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Abstract

A multivariate analogue of the fractionally integrated continuous time autoregressive
moving average (FICARMA) process defined by Brockwell (2004) is introduced. We show
that the multivariate FICARMA process has two kernel representations: as an integral
over the fractionally integrated CARMA kernel with respect to a Lévy process and as an
integral over the original (not fractionally integrated) CARMA kernel with respect to the
corresponding fractional Lévy process (FLP). In order to obtain the latter representation
we extend FLPs to the multivariate setting. In particular we give a spectral representa-
tion of FLPs and consequently, derive a spectral representation for FICARMA processes.
Moreover, various probabilistic properties of the multivariate FICARMA process are dis-
cussed. As an example we consider multivariate fractionally integrated Ornstein-Uhlenbeck

processes.
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1 Introduction

Continuous time models for multivariate time series are of considerable interest, especially, when
dealing with data observed at irregularly spaced time points or high-frequency data, as they
appear in finance, economics or telecommunications.

Being the continuous time analogue of the well-known ARMA processes (see e.g. Brockwell &
Davis (1991)), Lévy-driven continuous time ARMA (CARMA) processes, have been extensively
studied over the last years (see e.g. Brockwell (2001a), Brockwell (2001b), Todorov & Tauchen
(2004) and references therein). Recently, multivariate CARMA (MCARMA) processes have
been developed and studied by Marquardt & Stelzer (2005). CARMA and thus MCARMA
processes are short memory moving average processes and thus their autocorrelation functions

show an exponential rate of decrease. However, often observed time series show long memory
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behavior in the sense that they seem to require models, whose autocorrelation functions follow
a power law and where the decay is so slow that the autocorrelations are not summable.

Aiming at long memory models, using a fractional integration of the CARMA kernel, Brock-
well (2004) defined Lévy-driven fractionally integrated CARMA (FICARMA) processes, where
the autocorrelations are hyperbolically decaying. An alternative approach, which leads to the
same class of long memory processes, was discussed in Marquardt (2005), where the so-called
fractional Lévy processes were introduced and used to generate long memory. Processes gener-
ated by fractional integration are the most widely used long memory time series in economics
and econometrics. A survey of applications of fractional integration and long memory in macroe-
conomics and finance is Henry & Zaffaroni (2003). Furthermore, by considering Lévy-driven
fractional processes, instead of Gaussian fractional processes, one obtains a much richer class of
possibly heavy-tailed stationary processes with many potential applications in finance, where
such heavy tails are frequently observed in practice.

So far only univariate Lévy-driven FICARMA processes have been defined and investigated.
However, in order to model the joint behavior of several time series (e.g. prices of various stocks)
multivariate models are required. Our aim in this paper is to define Lévy-driven multivariate
FICARMA (MFICARMA) processes and study their probabilistic properties, where we follow
two approaches. The first one is based on a fractional integration of the CARMA kernel, whereas
the second approach substitutes the driving Lévy process by the corresponding fractional Lévy
process and leads to the same L?-process. We thus obtain a model which is the continuous time
analogue of the well-known multivariate fractionally integrated ARMA model (see e.g. Brock-
well & Davis (1991)) as well as the multivariate analogue of the univariate FICARMA processes
studied by Brockwell & Marquardt (2005). In particular, we obtain a spectral representation of
fractional Lévy processes which allows us to develop a spectral representation of MFICARMA
processes. This is a new result which has not been given for (univariate) FICARMA processes,
yet.

The paper is organized as follows. Section 2 contains the preliminaries. We review ele-
mentary properties of multivariate Lévy processes in section 2.1 and the stochastic integration
theory for deterministic functions with respect to them in section 2.2. The extension of frac-
tional Lévy processes (FLPs) to the multivariate setting is given in section 2.3. Since, depending
on the driving Lévy process, FLPs are not always semimartingales, stochastic integration is not
straightforward. We consider the integration theory with respect to multivariate FLPs in sec-
tion 2.4. A fundamental result is obtained in section 2.5, namely a spectral representation
for FLPs and a spectral representation for integrals with respect to FLPs. This result may
have interest of its own and is later used to obtain a spectral representation for MFICARMA
processes. We conclude section 2 with a brief summary of Lévy-driven multivariate CARMA
processes, recently introduced by Marquardt & Stelzer (2005). Based on their results, in section
3 a multivariate analogue of the FICARMA process defined by Brockwell (2004) is developed.
We show in section 3.1 that the multivariate FICARMA process has two kernel representations:
(I) as an integral over the fractionally integrated CARMA kernel with respect to a Lévy pro-
cess and (IT) as an integral over the original (not fractionally integrated) CARMA kernel with
respect to the corresponding fractional Lévy process. We would like to emphasize that both
MFICARMA representations lead to the same L2?-process. However, the first representation
is useful to derive distributional properties, whereas it is the second one, that enables us to
obtain a spectral representation of FICARMA processes. Furthermore, we derive probabilistic
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properties of MFICARMA models. In particular, we characterize the characteristic triplet, the
stationary limiting distribution, the covariance matrix function and the spectral density. More-
over, we investigate the sample path behavior and give conditions for the existence of a Cy°
density. As an example we consider in section 4 the fractional Ornstein-Uhlenbeck process.

Throughout this paper we use the following notation. We call M,,(R) the space of all real
m x m-matrices and let AT and A* denote the transposed and adjoint, respectively, of the
matrix A. Furthermore, I, € M,,(R) is the identity matrix and ||A|| is the operator norm of
A € My, (R) corresponding to the norm ||z|| for z € R™. Ip(-) is the indicator function of the
set B and we write a.s. if something holds almost surely. Moreover, we set Rf* := R™ \ {0} and
throughout assume as given an underlying complete, filtered probability space (2, F, (F;)¢>0, P)
with right continuous filtration (F);>o. Finally, we define for p > 0,

LP (M, (R)) := {f R x R = My, (R), / |f(t,s)||Pds < oo, forallte ]R} .
R

Notice that the space LP(M,,(R)) is independent of the norm || - || on M,,(R) used in the
definition.

2 Preliminaries

2.1 Basic Facts on Multivariate Lévy Processes

We state some elementary properties of multivariate Lévy processes that will be needed below.
For a more general treatment and proofs we refer to Protter (2004) and Sato (1999).

We consider a Lévy process L = {L(t)};>0 in R™ without Brownian component determined
by its characteristic function in the Lévy-Khinchine form F [e““’[‘(t»] = exp{tyY(u)}, t >0,
where

B(u) = i(v, u) + /(ei<"’z> = i{u, @) ey v(de), € R™, (2.1)
Bm
where v € R™ and v satisfies v({0}) = 0 and [, (||z]|* A 1) v(dz) < oo.
The measure v is the Lévy measure of L. We assume that v satisfies additionally

[ P vido) < o, (29)

ll>1
i.e. L has finite mean and covariance matrix function ¥, given by
Y = /a::nT v(dzx). (2.3)
Rm

We restrict ourselves to the case where E[L(1)] = 0. From (2.2) and E[L(1)] = 0 follows
that v = — f”x”>1 zv(dr) and (2.1) can be written in the form

w(u) = / () 1 — i(u, 2)) v(dz), uc R™. (2.4)

Rm
It is a well-known fact that to every Lévy process L on R™ one can associate a random
measure on Rf* x R describing the jumps of L. For any measurable set B C Rf" x R,

J(B) =#{s € R: (L(s) — L(s—),s) € B}. (2.5)
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The jump measure J is a Poisson random measure on RJ* xR (see e.g. Definition 2.18 in Cont
& Tankov (2004)) with intensity measure n(dz,ds) = v(dz) ds. By the Lévy-Itd decomposition

we can then rewrite L a.s. as

L(t) = / xJ(dz,ds), t>0. (2.6)

z€ERY*, s€[0,t]

Here J(dx,ds) = J(dz,ds) — v(dz)ds is the compensated jump measure. Moreover, L is a
martingale.

Throughout this paper we will work with a two-sided Lévy process L = {L(t)}:er con-
structed by taking two independent copies {Li(t)}:>0,{L2(t)}¢>0 of a one-sided Lévy process
and setting

Li(t ift >0
Ly = ® nhe 2.7)
—Lo(—t—) ift<O.
2.2 Stochastic Integrals with Respect to Lévy Processes
In this section we consider the stochastic process X = {X(t)}+er in R™ given by
X(t) = /f(t,s) L(ds), teR, (2.8)
R

where f : R x R = M,,(R) is a measurable function and L = {L(¢)}:cr is an m-dimensional
Lévy process without Brownian component. Again, we would like to stress that throughout this
paper we assume a Lévy process L which satisfies E[L(1)] = 0 and E[L(1)L(1)7] < oo, i.e. L
can be represented as in (2.6) together with (2.7).

In this case it is a well-known fact, that the process X in (2.8) can be represented by

X(t) = / f(t,s)x J(dz,ds), teR, (2.9)
R xR

where J(dx,ds) = J(dz,ds) — v(dz)ds is the compensated jump measure of L. If f(t,-) €
L?(M,,(R)), the stochastic integral (2.9) exists in L?({2, P). Then

EXHX(@)T'] = /f(t, ) fr(t,s)ds, teR, (2.10)
R
and the law of X(t) is for all ¢ € R infinitely divisible with characteristic function

Efexp {i(u, X())}] = exp / / (109 1~ idu, (1, 5)2) ) (da) ds (2.11)

R R™
(see e.g. Rajput & Rosinski (1989), Marcus & Rosinski (2005) or Sato (2005)).

2.3 Multivariate Fractional Lévy Processes

Fractional Lévy processes were introduced in Marquardt (2005) by replacing the Brownian
motion in the moving average representation of fractional Brownian motion by a Lévy processes
without Gaussian part, having zero mean and finite second moments. Here we extend the
definition of a univariate fractional Lévy process to the multivariate setting. For details on
univariate FLPs we refer to Marquardt (2005).
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Definition 2.1 (MFLP) For fractional integration parameter d = (di,...,dy)T such that
0<d;j <0.5 forall j=1,...,m, define the kernel f, : R — M, (R) by

ray [t =) = (=5){] 0

fi(s) == , s,teR (2.12)

0 raer (= 9% = (=8)§"]

Then we define a multivariate fractional Lévy process (MFLP) by

M) = (May 0+ Ma, (0) = [ ls) L), te R (213)
R
where L(t) = (L*(t),...,L™(t)T and L’ = {L7(t)}ter, j = 1,...,m are Lévy processes without
Gaussian component on R satisfying E[L7(1)] =0 and E[L/(1)*] <00, j =1,...m.

Note that f; € L?(M,,(R)) and therefore the following proposition is an obvious consequence
of (2.11).

Proposition 2.2 The process {My(t)}ier given in (2.13) is well-defined in L?(Q, P). The
distribution of My(t) is infinitely divisible with characteristic triplet (7%,,0,v%,), where

7}:\4 = —//ft(S)ZL'I{Hft(S)I”>1}I/(d:L')dS and (2.14)
R R™

v (B) = //IB(ft(S)a:)l/(da:)ds. (2.15)
R R™

Furthermore, for t € R and z € R™,

Elexpi(z, Ma(t)] = exp / / (X709 1~ itz fi(s)a)) w(de)ds | (2.16)

R R™

Remark 2.3 The process My is a.s. equal to an improper Riemann integral as for its j-th

component we have

My (t) = — /[(t—s)if‘l —(—=9)F L (s)ds, teR (2.17)

Moreover, (2.17) is continuous in ¢ (see Marquardt (2005)).

Using (2.10), we have the isometry property

EMAOMA)T) = [ 6)20s () ds, 1€ R (2.18)
R

and we see that the second-order properties of the MFLP {M(t) }:cr are specified by E[My(¢)] =
0 and covariance matrices

[(s,t) = E[Ma(s)Ma(t)"] = [vi(5,)]7=1, st €R,
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where for s,t € R,

Yij(s,t) = B[Mj(s)Mj(t)] = cov(L*(1), L (D)(f", f27) r2(w)
~ Ccov(Li(1),L7(1)) [ Clt—s ]
- 2T(d)T(d)) ’

where fF¥ denotes the k-th diagonal element of the matrix function f; and C'is a constant given
by

[e)

= d+d+1+/1—u w1 = )% — uh] du,

Recall that cov(Li(1),L(1)) = [y a'z) v(dz), where z = (2*,...,2™)T € R™. Hence, the
MFLP {M,(t)}+cr inherits its dependence structure from the driving Lévy process {L(¢)}+er -
To the end of this paper we use the notation

L(h) = BIX(t + X)) = [vi; (W]=1,

if the series {X(t)}ierm is stationary. We shall refer to I'(h) as the covariance matrix at lag
h. Notice that, if {X(t)}+erm is stationary with covariance matrix function I, then for each j,
{X7(t)}ter, j = 1,...,m is stationary with covariance matrix function 7;;. The function ~;;,
i # j, is called the cross-covariance function of the two series {X(t)};er and {X7(t)};er- It
should be noted that -y;; is not in general the same as ;;.

The sample path properties of a MFLP are analogous to the one-dimensional case. We
therefore omit the proof of the following proposition and refer to Marquardt (2005).

Proposition 2.4 (Sample Path Properties) Every MFLP is a process with long memory
and stationary increments but cannot be self-similar. Moreover, it is symmetric and Hélder

continuous of every order less than min(dy, ..., dy)-

In particular, a MFLP has less smooth sample paths than a fractional Brownian motion.
Note also, that the upper bound on the Hélder exponent of the MFLP cannot be improved. In
fact, if the Lévy measure v is not finite, the sample paths of MFLPs are not Hblder continuous
with probability 1 for every order 8 > min(dy,...,dp).

MFLPs are not always semimartingales. The proof of the following theorem is the same as
for a univariate FLP. We refer to Marquardt (2005).

Theorem 2.5 (i) If v(R) < oo, the sample paths of My are of finite total variation on
compacts and hence, My is a semimartingale.

(it) Define for 0 < a < 2 the parameter H = (Hy, ..., Hy,)T, where Hj = dj + 1/a such that
0<H;j<1forallj=1,...,m. Assume that v(dz) = g(x)dzx, where g is continuous on
(0,1] and g satisfies |g(x)| ~ |z|17* as * — 0. Then the sample paths of M, are a.s. of
infinite total variation on compacts.

Corollary 2.6 Analogously to the one-dimensional case it can be shown that the quadratic
variation of My is a.s. zero (see Marquardt (2005)). Thus, it follows that if v is of the form
(i), the corresponding MFLP cannot be a semimartingale.
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2.4 Integration with respect to MFLPs

As stated in Corollary 2.6 MFLPs are not always semimartingales and thus ordinary It6 in-
tegration theory cannot be applied. This section therefore contains the integration theory for
stochastic integrals with respect to MFLPs, which is heavily based on the integration theory
with respect to a one-dimensional FLP (see Marquardt (2005)).

We define the space H as the completion of L!(R) N L?(R) with respect to the norm

2

lglle = E[L(1)2]/(Ifg)2(1t)du ; (2.19)
R

where (Ig)(u) = %d) [Z(s —u)?'g(s)ds,u € R, is the Riemann-Liouville fractional
integral of order d of the function g : R — R, g € L'(R). Then for every g € H it a.s. holds,

/ g(s) My(ds) = / (1 ) (u) L(du), (2.20)

R R

where {M4(t)}1er is a univariate FLP (see Marquardt (2005)).

Now let G : R — M,,(R) be a matrix function whose components G, : R = R, j,k =
1,...,m, are in the space H. To ease notation we write G € H,,. Moreover, let {My(t)}+cr
denote an m-dimensional FLP. Then we define

[T G (w) LY (du)+ ... + [o(IP" Gim) (u) L™ (du)
/ G(t) My(dt) = : : L (221)
JoIE Gt (w) LM (du)+ ...+ [o(IP Gr) (w) L™ (du)
Denoting the coordinates of My by Md]., the j-th element ([ G(t) Mu(dt))? of [ G(t) Mu(dt) is
givenby 1L, [ G (t) Mg, (dt) = E (1" G,1,)(t) L* (dt), where the integrals are one-dimensional
k=1

stochastic integrals as in (2.20) in an L2-sense, i.e. the integration can be understood component-
wise. It is therefore obvious that the above integral (2.21) is well-defined, whenever G € H,,.
This leads to the following isometry property.

Proposition 2.7 Let F : R - M4, (R) and G : R — My, (R) be matriz functions whose
components Fij : R =+ R and G;; : R = R, ¢,5 =1,...,m are in the space H. Then

T

/ F(t) My(dt) / G(u)My(du) | | =R, (2.22)

where R is an m X m-matriz of which the (i,j)-element is given by

ri-g|YY [ Mk(dw G () Mo, (du)
= cov(L( Y Z(t)G (w)|t — u|™* T dt du,
= co ;;R//F .

where K > 0 is a constant.
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Proof. Tt is a well-known fact that (see e.g. Gripenberg & Norros (1996, p.405))
min(u,t)

(t — )5 u—s)t tds = K|t —u|™* T4t uteR,

where

. {F(l — i — )T/~ di), u<t

(1 - dy, — d)D(di)/T(1 = di), t>u
Hence, by (2.21),

RV = [ZZ / Fiy.(t) My, (dt) / Gt (u) My, du)]

k=11=1p

NE
Ms

= cov(L(i), L(j)) //sz G () (t — )5 (u — )" dt duds

k=1 1=1 F( / A

m m . min(t,u)
:cov(L(i),L(j))Zzi//Fik(t)Gﬂ(u) / (t — 8)% 1 (u — 5)% ds dt du,

k=1 [=1 F(dk)r(dl)

R R —00
IR A K _

:cov(L(z),L(]))ZZ//WFM(t)Gﬂ(u)H—u|dk+dz ! gt du,

k=11=13 & k !

where we have used Fubini’s theorem. 0

2.5 The Spectral Representation of MFLPs

In Marquardt & Stelzer (2005) it is shown that for every m-dimensional Lévy process L =
{L(t) }ter with E[L(1)] = 0 and E[L(1)L(1)T] = ¥, < oo there exists an m-dimensional
orthogonal random measure ®1, such that E[®,(A)] = 0 and E[®L(A)®L(A)*] = 5=SLA(A)
for any bounded Borel set A, where A denotes the Lebesgue measure. The random measure ®p,

is uniquely determined by

&1([a,b) = / e — e (2.23)
R

for all —oo < a < b < 0o. Moreover,

L(t) = / elt - Loy, temr (2.24)
R
Finally, for any function f € L?(M,,(C)),
[rmaay = 5 f / N DLE) = o [ fOL@),  (22)
R R R
fL(dt) = eMf(t)dt ®L(dN) = V2r | f(X) Br(dN). (226)
/ /] /

Here,

A

_L e—i)\t n :L eiAtA
f(t)—mk/ FOdA and () */ﬂ/ f(ty e
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are the Fourier transform and the inverse Fourier transform, respectively. We will use these
results to obtain a spectral representation for MFLPs and integrals with respect to them.

Theorem 2.8 Let My = {My(t)}:ter be an m-dimensional FLP. Then My has the spectral
representation
My(t) = /(ei“ —1)C@N) ®L(dN), tER, (2.27)
R

where ®p, is the random orthogonal measure defined in (2.23) and

(ix)~da-t 0
C(i)) = .
0 (ix)~dm—1
Furthermore, let
Brr([a, b)) = / Ly (VDN ®1(dN), a<b, (2.28)
R
define a random measure, where
(ix)~%h 0
D(iN) = .
0 (iX)~dm
Then ) )
B ([ b])—/MM(d) (2.29)
ML, 01 = 2mis a\as). )
R

Proof. Observe that (Bronstein et al. (1999, Formula 4, p. 1081))

iy 109t = =9t e (2.30)
F(d+1) S+ a S+€ S = ('L.A)d""l . .
R

Using (2.26) and (2.30) we obtain

M) - Mala) = [1s) = £u(s)] Lids)

R
ra [0 — 9)% — ()] 0
_ / / ™ ds d 1 (dN)
R & 0 rar (b — )% — (=s)n]

_ / (€™ — A O(iN) By (dN).
R
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It remains to prove (2.29):
efias _ efibs
— My(d

/ 2mis a(ds)
R

F 5 J( s —u) bl =™ go l(du)

2mis

@

[ = (s — u)dm =1 T g I (dy)
R u

2mis

iu)\( dp—1

e s—u), e—ias _
é e " ds du ®% (d))

27rzs

iuA( dm —1

e s— u) —ia —ib m
f f f F(dm) ‘ 271'1.9 dS du (I> (dA)
RRR

dy—1
1= ia —ib

e — du = ds @ (dN)
RRR

ud (g— u)d"‘_1 —ias_—ibs

ffe T(dm) du—s—— ds @7’ (dX)
RER

J

R

) efias _ efzbs

- //D(i)\)e”\sids B, (d)N) /D N0 (N) B1(dX) = ®ar([a, b]).
R R

2mis

Remark 2.9 From the proof of Theorem 2.8 follows that we can write

/ ) My(dt) // A g(t)D(iN) dt B, (dN) // g (t) dt ®pr(dN). (2.31)

2.6 Multivariate CARMA Processes

Our aim in this paper is to define a multivariate FICARMA process. Univariate FICARMA
processes are closely related to univariate CARMA processes as they are obtained via a fractional
integration of the CARMA kernel (Brockwell & Marquardt (2005)). Recently, using a state space
representation and the spectral representation (2.24) of the driving Lévy process, a multivariate
Lévy-driven CARMA model of order (p, q), ¢ < p was introduced in Marquardt & Stelzer (2005).
We give a brief review of the multivariate CARMA (MCARMA) processes, where we focus on
causal MCARMA processes.

Definition 2.10 (MCARMA Process) Let L = {L(t)};er be a two-sided square integrable
m-dimensional Lévy-process with E[L(1)L(1)T] = ¥, < co. An m-dimensional causal Lévy-
driven continuous time autoregressive moving average process {Y (t)}ter of order (p,q), p > q

(MCARMA (p,q) process) is defined to be the stochastic process having the spectral representation

Y(t) = / eMPENTIQ(IN) ®L(dN), tER, (2.32)
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where ®1, is the Lévy orthogonal random measure in (2.23) satisfying E[®r(d\)] = 0 and
E[®L(d\)®(d)\)*] = 5=1d\. Here,

P(z): = IpzP+A12P ™'+ .4+ A, (2.33)
Q(z): = Boz'+B2" ' +...+B,, (2.34)

where A; € M, (R), j =1,...,p and Bj € M,(R) are matrices satisfying By # 0 and N'(P) :=
{z € C:det(P(z)) =0} C (—00,0) +iR.

The name “multivariate continuous time ARMA process” is indeed appropriate, since an
MCARMA process Y can be interpreted as a solution to the p-th order m-dimensional differ-
ential equation

P(D)Y(t) = Q(D)DL(t),

where D denotes the differentiation operator. Moreover, the spectral representation (2.32) is
the continuous time analogue of the spectral representation of multivariate discrete time ARMA
processes (see e.g. Brockwell & Davis (1991, Section 11.8)).

The following Proposition 2.11 shows that for m = 1 the well-known univariate CARMA
processes are obtained. In fact, like univariate CARMA processes, MCARMA processes allow

for a short memory moving average representation.

Proposition 2.11 The MCARMA process (2.32) can be represented as a causal moving average

process

Y(t) = /g(t—s)L(ds), teR, (2.35)
R

where the kernel matriz function g : R — M,,(R) is given by

o(t) = 5- / e P(ip) Qi) d, ¢ € R, (2.36)

R

and satisfies g(t) = 0 for t < 0.

We finally summarize the second order properties.

Proposition 2.12 Let Y = {Y(t)}:cr be the MCARMA process defined by (2.32). Then its

covariance matriz function is given by

% / N PN I QNS L Q6N (PN 1) dA, he R
R

Ly (h) =

and its spectral density has the form

fr(\) = %P(M)‘IQ(M)ELQ(M)*(P(iA)‘l)*, AER (2.37)

Remark 2.13 MCARMA processes belong to the class of short memory moving average pro-
cesses. In the next section we define multivariate fractionally integrated CARMA (MFI-
CARMA) processes which show long memory properties.
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3 Multivariate Fractionally Integrated CARMA Processes

In this section we develop multivariate fractionally integrated CARMA (FICARMA) processes
which exhibit long range dependence. So far only univariate FICARMA processes have been
defined and investigated (see Brockwell (2004) and Brockwell & Marquardt (2005)). We first

give a meaning to ”long memory”.

Definition 3.1 (Long Memory Process) Let X = {X;}ier be a stationary stochastic pro-
cess and T'x (h) = cov(Xiqn,Xt), b € R, be its autocovariance function. If there exist d =
(di,...,dwn)T such that 0 < d; < 0.5 for all j =1,...,m and constants c?j >0,i,7=1,...,m,
such that
lim T%(h) = Z|h[>*1,  for alli,j=1,...,m, (3.38)
h—00
where Fz denotes the (i,j)-th element of the matriz Tx and d = max(dy,...,dy) € (0,0.5).

Then X is a stationary process with long memory.

3.1 Representations of MFICARMA Processes

In one dimension, starting from a short memory moving average process, there are at least two

possible ways to construct a long memory moving average process:
(I) a fractional integration of the kernel of the short memory process,
(IT) a substitution of the driving Lévy process by the corresponding fractional Lévy process.

Both approaches lead to the same long memory L2-process (see Marquardt (2005)). For the
univariate CARMA process (I) leads to the univariate FICARMA(p, d, ¢) process (see Brockwell
& Marquardt (2005))

Yi(t) = / galt — ) L(ds), tER, (3.39)

where the driving Lévy process L = {L(t)}cr satisfies E[L(1)] = 0 and E[L(1)?] < oo and the
kernel

1 it \—a (i)

gt:Idgt:—/e’t“z A du, teR, 3.40

i) = Ta)t) = oo [ ety "4 a (3.40)
R

is the left-sided Riemann-Liouville fractional integral of order d of the univariate CARMA kernel

g. Here 0 < d < 0.5 is referred to as the fractional integration parameter and

p(2) == 2P +a12" t + ...+ a, and q(2) ;= b2 + b2t + ...+ by,

where a, # 0, by # 0. The polynomials p(-) and ¢(-) are referred to as the autoregressive and
moving average polynomial, respectively.

We apply approach (I) to MCARMA processes to obtain MFICARMA processes, i.e. we
fractionally integrate the MCARMA kernel g as given in (2.36) (observe that ¢ € H,,) and
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obtain for ¢t € R,

(Ifgi)(w) ... (I¢gim)(w)
ga(t) : = : :
(I gm1) @) oo (I8 Gom) (u)
. giit—u) ... gim(t—u) udl_l/F(dl) 0
= : : . du
gt =1) o Gt —u) 0 =1 /T(d,)
o uh=1/T(dy) 0
=5 [ [ € Py Qlin) du du
0 R 0 udm=1/T(d,,)
) uh =1 /T(dy) 0
:%/ e P(ip) "' Q(ipr) /e - du dp
R 0 0 =1 /T (d,)
1 (N~ 0
~ 5 [ @ Pn QG dy
R 0 (iX) =t
_ %/ ¢ (i)~ Q (i) D (ips) d. (3.41)
R

Note that g4(t) = 0 for all t < 0 and g4 € L?(M,,(R)). Moreover, for m = 1, (3.41) is equivalent
0 (3.40). This leads to the following definition.

Definition 3.2 (MFICARMA Process I) Let 0 < d < 0.5. Forp > q the multivariate frac-
tionally integrated CARMA (p,d,q) (MFICARMA) process driven by the m-dimensional Lévy
process L = {L(t)}ser with E[L(1)] =0 and E[L(1)L(1)T] = %1 < oo is defined by

Ya(t) = / ga(t — s)L(ds), teR, (3.42)

where the fractionally integrated kernel gq is given as in (3.41) and where the polynomials P(-)
and Q(-) are defined as in (2.33) and (2.34), respectively.

Remark 3.3 We show in Theorem 3.8 below that the MFICARMA process Y, in (3.42) is
indeed well-defined.

Now, we turn our attention to approach (IT) and substitute in the MCARMA representation
the driving Lévy process by the corresponding MFLP.

Definition 3.4 (MFICARMA Process II) Let 0 < d < 0.5. For p > q the multivari-
ate fractionally integrated CARMA (p,d,q) (MFICARMA) process driven by the m-dimensional
fractional Lévy process Mg = {My(t) }+er is defined by
t
Yq(t) = / g(t —s)Mqy(ds), teR, (3.43)
“0

where the kernel g is the CARMA kernel given in (2.56).
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Representation (3.43) is equal to (3.42). In fact, using (2.21), we have

gult—s) ... gim(t—s) M} (ds)
/g(t—s)Md(ds) :/ : :
R Bl gmt—5) .. gmm(t—s) | My (ds)
I R[gn(t—s)Mdl(ds)+...+H{g1m(t—s)M;“(ds) 1

[ gim(t —s) Mi(ds) + ...+ [ gmm(t — ) M7 (ds)
R R

F(ldl) Ofsdl_lgn(t—s—u) ds ... —F(;m) Ofsdm_lglm(t—s—u) ds
_ / L(du)
R ® T oa
_ F(bl) Ofsdl Ygmi(t —s—u)ds ... F(ém) Ofsdm Lgmm(t —s —u)ds
ILg)(w) o (I gim)(u)
_ / : : L(du) = /gd(t _ 8) L(du).
Bl ULgm)@) oo (157 gnm) () R

As we will see in section 3.2 representation (3.42) is useful to obtain distributional and
sample path properties, whereas representation (3.43) is useful for simulations and essential to
obtain a spectral representation for MFICARMA processes.

Theorem 3.5 The MFICARMA (p,d, q) process Y4 = {Y 4(t) }+er has the spectral representa-
tion

Yalt) = [ Pl Qi) Dlim) B1(d) = [ €# PG Qi) arld), e By (340
R R

where @, is the random orthogonal measure corresponding to the Lévy process L and @y is the
random measure defined in Theorem 2.8.
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Proof. We use equality (2.31) and obtain

/ (t - 5) Mo(ds) / / 05) P(ipe) 1 Qige) dys Ma(ds)
- / / / e P Qi) DiN) dpds B (4)

1
// WP (i) "1 Q(ip) D( z)\2— e A3 ds dp & (dN)
T
R

- / e P(ije) Qi) Dip) B, (dp)

R
:/ e P(ip) T Qip) ®ar(dp).
R

O

Remark 3.6 Note that for d = 0 the MCARMA processes are obtained. Moreover, an MFI-
CARMA process Y4 can be interpreted as a solution to the p-th order m-dimensional differential
equation

P(D)Yq(t) = Q(D)DMa(t),

where D denotes the differentiation operator. Furthermore, the spectral representation (3.44)
shows that MFICARMA processes are the continuous-time analogue of the well-known discrete
time multivariate fractionally integrated ARMA (ARFIMA) processes (see e.g. Brockwell &
Davis (1991)).

Therefore, the so-called embedding problem arises.

Definition 3.7 A discrete time process {X (n)}nez is said to be embedded in a continuous-time
process {Y (t)}+er if the continuous time process sampled at integer times {Y (n)}necz has the
same autocorrelation function as the process {X (n)}nez.

In general the question of whether or not there exists a CARMA process Y whose autoco-
variance function at integer times coincides with that of a given ARMA process is referred to
as the embedding problem. It is well-known that every CARMA autocovariance function when
restricted to the integers is an ARMA autocovariance function. Thus the embedding problem is
equivalent to the question of whether the class of discrete time ARMA autocovariance functions
is the same as the class of CARMA autocovariance functions restricted to the integers. Brock-
well & Brockwell (1998) answer this question in the negative by showing that an ARMA(p, q)
process with unit root cannot be embedded in any CARMA process. In particular, the problem
of finding a simple characterization of the discrete time ARMA processes which are embeddable
remains open. Furthermore, the embedding problem is closely connected with the problem of
the identification of a CARMA process from observations at integer times. However, Brockwell
(1995) gives examples of AR(2) processes that can be embedded in CARMA(2,1) as well as
in CARMA(4,2) processes. Hence, based only on observations at integer times it will not be
possible to distinguish between these CARMA processes.

In the fractionally integrated case the embedding and identification problems are even more
complicated. Brockwell & Marquardt (2005) make a comparison of the autocorrelations func-
tions at integer times of the FICARMA(1,d, 0) process and the process obtained by fractionally
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integrating (in the discrete time sense) the ARMA process obtained by sampling the CARMA
process at integer times. The result is that in the fractionally integrated case the autocorre-
lations do not coincide, though the behavior of the autocorrelation functions is quite similar.
Therefore the question under which conditions a stationary (univariate or multivariate) discrete
time long memory process can be represented as a discretely sampled FICARMA process is still
open and has to be delayed to future work.

3.2 Properties of MFICARMA Processes

Having defined MFICARMA processes, we consider their distributional, second-order and sam-
ple path properties. First note that, since (3.42) is a moving average process, the MFICARMA
is stationary (Applebaum (2004, Theorem 4.3.16)).

Theorem 3.8 (Infinite Divisibility) The MFICARMA process as given in (3.42) is well-
defined in L?(Q, P). For all t € R the distribution of Y 4(t) is infinitely divisible with charac-

teristic triplet (vi,0,v%), where

’)/g/ = _//xgd(t_S)I{||gd(t—s)x||>1} v(dz)ds and (3.45)
R R™
v(B) = //IB(gd(t—s)x)l/(da?) ds, B e€ B(R™) (3.46)
R R™

and (,0,v) is the characteristic triplet of the driving Lévy process L.

Proof. Obviously, (3.42) is well-defined in L?(Q2, P), since gq € L?>(M,,(R)) and (3.45) and
(3.46) follow from (2.11) O

Remark 3.9 From Theorem 3.8 follows that the generating triplet of the stationary limiting
distribution of Y4(t) as t — oo is given by (75°,0,v5°), where

vy = —//a:gd(s)f{”gd(s)w‘bl}V(da:)ds and (3.47)
0 R

vP(B) = //IB(gd(s)a?)l/(da?)ds, B € B(R™). (3.48)
0 R™

Moreover, if g4 € L"(M,,(R)) and the driving Lévy process L is in L"(Q2, P) for some r > 0,
then the MFICARMA process Yq is in L"(Q, P). This follows from the general fact that an
infinitely divisible distribution with characteristic triplet (v, o, ) has finite r-th moment, if and

only if f\lw\|>€ l|||" v(dz) < oo for some e > 0 (Sato (1999, Corollary 25.8.)).

Since the characteristic function of Y4(t) for each ¢ > 0 is explicitly given in terms of (3.45)
and (3.46), we can investigate the existence of a C;° density, where C° denotes the space of

bounded continuous, infinitely often differentiable functions whose derivatives are bounded.

Proposition 3.10 Suppose that there exist an o € (0,2) and a constant C > 0 such that

//|<w,gd(t—s)x>|2I{KM,gd(t,s)z”Sl}u(dm) ds > Cllw|> (3.49)
R Rm

for any vector w such that ||w|| > 1. Then Y4(t) has a C° density.
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Proof. Tt is sufficient to show that [ ||w||*||®(w)||dw < oo for any non-negative integer k,
where ® denotes the characteristic function of Y4(t) (see e.g. Picard (1996, Proposition 0.2)).

The characteristic function of Y4(t) is given by

= exp // w9a(t=9)z) _ 1 _j(w, ga(t — s)x)] v(dz)ds (3.50)
R R™
Thus,
1/2
o) = | exp / [ [t g mitwant=02) 3] (i) s
R B

= exp / / (cos{w, gq(t — s)z) — 1) v(dx) ds

R R™

Then, using the inequality 1 — cos(z) > 2(z/7)? for ||z|| < 7 and assumption (3.49) we have

[|®(w)]| < exp —é'/ / [(w, ga(t — 8)Z)*I{| (w,ga(t—s)a) <1} V(d2) ds
R Rm™
< exp{—C||w|*~*},

and the proof is complete. a

So far we only used representation (3.42) to derive probabilistic properties. However, having
the spectral representation (3.44), we can immediately conclude that the spectral density of an
MFICARMA (p, d, q) process has the form

1
Fva@) = 5PN 'QEA DENTLDENQEN) (PN 1), A€ R.
The following proposition is therefore obvious.
Proposition 3.11 Let Yq(t) = {Ya(t)}ter be an MFICARMA (p,d,q) process. Then it has

the covariance matriz function

Ty,(h) = % /ei*hP(iA)*lQ(M)D(M)ELD(M)Q(M)*(P(M)*l)* d\, heR
R

Alternatively, we can use (2.22) together with representation (3.43) and obtain for the co-
variance matrix function of an MFICARMA process

t+h t

B =E |3 [ gult+h-9Mads) [ galt - Ma(dw
k=1 lzlfoo — 00
m m t+h t K
= cov(L(i), L(j)) kz:; l;é 4 ngk(t +h—8)gji(t —u)|s — u|* 1 ds du

and T (h) = T (=h), h <0. It follows

k=11=1

T, (0) ~ o (L0, 26) Y Y S [ [ gt dsdu as b o,
0 0
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Therefore an MFICARMA (p, d, q) process is a long memory process according to Definition
3.1.

We conclude the analysis of MFICARMA processes with a result on their sample path
behavior.

Proposition 3.12 (Continuity) If gq € C}(R), then the MFICARMA process Y 4 has a con-

tinuous version on every bounded interval I of R.

Proof. Applying Marcus & Rosinski (2005, Theorem 2.5), we obtain that Y4 has a continuous
version on I C R, if g4(0) = 0 and if for some € > 0,

1/2+4¢€
sup (log ) lga(u) — ga(v)]| < occ.

w,vel |U - U|

We have [lga(u) — ga(0)l| < IDga(©)lllu — o] < Clu— v, w < € < v, € € I. Therefore,

1/2+4¢€
) llga(u) — ga(v)l| < fUPC|t|(—10g |t)/2+e = sup m(t),
e !

sup (log
tel’

u,vel |U’ - ’U|

where m(t) = C|t|(=log|t|)!/>*¢ < C|t|(~=log|t|]) — 0 as t — 0F. Moreover m is continuous
and assumes its maximum on any compact interval. Hence,

sup;ep m(t) < oo. 0

4 The Fractional Ornstein-Uhlenbeck Process

Lévy-driven processes of Ornstein-Uhlenbeck (OU) type have been extensively studied over the
last years and widely used in applications, especially in the context of finance and econometrics.
Several examples of univariate non-Gaussian OU processes can be found in Barndorff-Nielsen
& Shephard (2001), where OU processes are used to model stochastic volatility. Recently mul-
tidimensional non-Gaussian OU processes have been considered in Masuda (2004). Moreover,
Buchmann & Kliippelberg (2005) discussed among other processes univariate fractional OU
processes which were driven by a fractional Brownian motion. In this section we generalize the
latter ideas to obtain a multivariate fractional OU process which shows long memory.

Definition 4.1 (Fractional Ornstein-Uhlenbeck Process) Let A € M, (R) be a matriz
such that all the eigenvalues of A have negative real part. Let B € M,,(R) be positive definite
and My = {My(t) }ter be an m-dimensional fractional Lévy process as defined above. We define
the fractional Ornstein- Uhlenbeck process by

t
oh4E / A=) BMy(ds), teR (4.51)
Remark 4.2 Obviously (4.51) is an MFICARMA(1,d, 0) process and is therefore stationary

and well-defined. Moreover, it is a process with long memory.

Without serious loss of generality we assume that the matrix A is diagonalizable. Therefore,
let U € M,,(R) be such that A = UDU !, where D = diag(\;)i=1,...m and X;, i = 1,...,m,
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are the eigenvalues of A. Then, when calculating the left-sided Riemann-Liouville fractional
integral of the kernel G(t — s) = eA(t_s)BI(O’OO) (t — s), we obtain

Galt) : = / A By (t — 8) ds. (4.52)
’ 0 i

Now, we consider the special case where it is assumed that the fractional integration orders are
the same for all variables, i.e. d; = d for j =1,...,m. Then (4.52) simplifies to

1 o0
Gq(t) = ) /sdileA(t*S)BI(Opo) (t—s)ds
0
= e /sdilUdiag(e*’\is) dsU 'B
'(d)
0
AtU !
= eF(d) /sdildiag(e*’\is) dsU 'B
0

t
Al—dfsdflefkls ds

A 4P(d, M\ t)
= eAtU . . UﬁlB,
A-4P(d, Ant)

where P(a,z) = oy e~ tt~1 dt is the lower incomplete gamma function with complex argu-

F(loz
ment z € C. Hence, it follows from (2.21) and (3.42),

C—sy

oh4B /Gd(t —u)L(du), teR (4.53)
R

We see that the main advantage of OU processes is that the explicit expression of the
fractionally integrated kernel is easy to compute, which is not the case for general MFICARMA
processes.

Finally, we would like to mention that the usual definition of an (not fractional) OU process
driven by Brownian motion is as the solution of a stochastic differential equation, the so-called
Langevin equation. The next proposition shows that this is also true for multivariate fractional
OU processes.

Proposition 4.3 The process Of’A’B as given in (4.51) is the unique stationary solution of
the SDE of Langevin-type

dO(t) = AO(t)dt + BMy(dt),  t >0, (4.54)

where the matrices A, B € M, (R) are defined as in Definition 4.1.
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Proof. Let tg < s < t. Notice that equation (4.54) can be written in the integral form

O(t) — O(ty) = /AO(s) ds + B[ML(t) — Ma(to)].

Therefore, using (2.21) and Fubini’s theorem we obtain

t t s
/ AO(s)ds= | A / e~ B My(du) ds
to —00

to
t to t s

= /A / e B M y(du) ds+/A/eA<S*">BMd(du) ds

to —00 to to

= / A / eAls=to) pAlto =) BV, (du) ds

to —00
—p)d1-1
t s 00 (ur—})zll) 0
+/A//6A(S_U)B duL(dv) ds
oo 0 L
_oydi—1
t t oo t % 0
= /AeA@*to)O(to)dH/A//ef‘(*“)B .
to to vou 0 (u;?};‘j:;fl
(u—v)#1~1!
t oo F(d1) 0
_ [eA(tfto) — I,,]O(to) + //[GA(t—U) —I,]B )
to v 0 (u—v)?m "
T(dm)

= [eAt) —1,10(to) + [ [eA™) — I,,,]B My(du)

o~
o
o+

= O(t) — O(to) — B[Mq(t) — Ma(to)]-

20

ds du L(dv)

du L(dv)

The proof of the uniqueness is a simple application of Gronwall’s Lemma (see e.g. Ikeda &

Watanabe (1989, Theorem 3.1)).
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