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Abstract

Die Finanzkrise hat gezeigt, dass die Annahme von konstanten Kovarianzen nicht gültig

ist. Diese Arbeit beschäftigt sich daher eingehend mit der Modellierung von stochastischer

Kovarianz in den Finanzmärkten und entwickelt Techniken, die es erlauben die stochastis-

che Kovarianz als Risikotreiber in die Bewertung von Derivaten miteinzubeziehen. Wir

behandeln zwei Modelle näher, eines mit stochastischer Varianz und deterministischer

Korrelation, ein anderes mit stochastischer Varianz und Korrelation.

Für das erste Modell können wir mit Hilfe von partiellen Differentialgleichungen und der

Separationsmethode semi-analytische Lösungsformeln für Barrier-Optionen herleiten. Im

zweiten Modell wenden wir Approximationstechniken der Störungstheorie an, um leicht

zu berechnende und gut konvergierende Approximationen für Nicht-Vanillaprodukte mit

mehr als einem Basistitel zu finden.





Abstract

The financial crisis has shown that constant covariances are an assumption which is not

valid as correlations tend to increase in extreme market events. This thesis covers ap-

proaches to model stochastic covariance risk in financial markets, and develops techniques

to incorporate stochastic covariance as a risk driver in the pricing of derivatives. We treat

two models, one with stochastic variance and deterministic correlation, one with stochas-

tic variance and stochastic correlation, more closely.

For the first model we find a semi-analytic pricing formula for double-barrier options us-

ing PDEs and the method of separation. In the second model we apply the techniques

of perturbation theory to find simply computable and well converging approximations for

non-vanilla products with more than one underlying.
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Part I

Introduction





Chapter 1

Introduction

1.1 Literature overview and purpose of the thesis

In 1973 Black and Scholes published their famous paper on the pricing and hedging of

contingent claims [13]. And even though Dupire [37], Heston [65] or Stein and Stein

[111] – just to name some of the papers – extended the model to relax its most rigorous

assumptions, such as a constant volatility, the basic Black Scholes framework is still used

as a standard to quote implicit volatility. Another assumption – the one underlying –

has first been relaxed in literature by Margrabe in his paper on exchange options [86]

where he found a closed-form formula for (max(S1 − S2, 0)) by a handy choice of the

numeraire, where Si denotes the price of the stock i. Stulz [112] and Johnson [73] priced

options depending on the minimum or maximum of two and more underlyings at maturity

time T . He et al. [64] found a closed-form solution for the joint distribution of the

maximum/minimum and maturity values of two assets in a two-dimensional Black-Scholes

framework [64] and priced barrier and lookback options with two underlyings.

During the last two decades the popularity of structured derivatives on several underlyings

has increased, e.g. as a component of certificates. In the late 1990s the Société Générale

has marketed the so-called mountain range options. Annapurna (barrier option), Altas

(call on average performance with worst and best performer removed), Everest (payoff

dependent on worst performer in basket) and Himalayan (payoff dependent on best per-

former in basket) are basket products and depend on the performance of the best/worst

performing asset in the basket [16]. Those products have been sold in certificate struc-

tures to retail investors as well.

The Bank of International Settlements conducts semi-annual and more comprehensive tri-

ennial surveys [10]. The years between the 2007 and 2010 BIS surveys are characterised
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by an extreme growth in OTC derivatives that peaked in the first half of 2008, and a

subsequent reduction in positions. The decline in amounts outstanding of derivatives on

all types of risks is partly due to trade compression following the bankruptcy of Lehman

Brothers in September 2008. But even though the decline in stock prices during the cur-

rent crisis resulted in much smaller positions in the equity segment of the OTC derivatives

market (notional amounts outstanding of equity-linked contracts fell by 28% to 7 trillion,

whereas gross market values dropped by 23% (forwards and swaps) and 37% (options)

[10]) and the sophistication of payoffs decreased, the crisis showed a need for more re-

alistic models. Instead of improving pricing and hedging algorithms for more and more

complex payoffs the interest has now shifted to relax long believed assumptions, like the

one in small neglectable interest basis spreads between different payment frequencies, or

the determination of the credit value adjustments (CVA) to the price of OTC derivatives.

The importance of the management of counterparty risk by applying bilateral netting and

collateral arrangements has increased. In the aftermath of the Lehman bankruptcy many

banks have founded CVA desks to actively manage the counterparty risk. The exposure

from unrealised P&L towards a certain counterparty can be treated as a complex hybrid

derivative. The accurate modelling of relationship patterns has, thus, become even more

important.

The growth of market volume and increase of sophistication in the late 1990s and the first

years of the new millennium induced a growing interest in the literature to relax the most

rigorous assumptions of the Black-Scholes framework, e.g. deterministic volatility. And

since recently – also fuelled by the crisis which clearly showed that correlations increase

in extreme market events – the assumption of constant covariance and correlation has

been tackled in more detail. The performance of a portfolio or any multi-dimensional

derivative greatly depends on the joint behaviour of the underlyings, i.e. the variances

and correlations. In multi-dimensional econometrics the authors have put their effort in

accurately modelling the volatility/covariance dynamics. ARCH-GARCH models (e.g.

Bollerslev et al. [14]) and multi-dimensional stochastic volatility models (e.g. [61], [77],

[94], [2]) have been applied to explain the dynamics in the markets. Chib et al. [22]

observes in his multi-dimensional stochastic volatility framework that the correlation pat-

terns change over time.

Ramchand and Susmel [99] fit a switching ARCH model to weekly international stock

market returns and find evidence of different correlations across regimes. In particular

correlations between the U.S. and other world markets are on average higher when the U.S.

market is in a high variance state as compared to a low variance regime. Ball and Torous

[9] model the correlation as a latent variable and find evidence that the estimated corre-

lation structure is dynamically changing over time. Andersen et al. [5] uses model-free
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estimators and observes that volatilities and correlations move dynamically. Moreover,

the correlations among different stocks tend to be high/low when the variances for the

underlying stocks are high/low, and when the correlations among the other stocks are also

high/low [5]. Engle [40] developed the Dynamic Conditional Correlation (DCC) model,

which allows the conditional correlation matrix to vary over time. Skintzi and Refenes

summarised some stylised facts about implied correlation and its dynamics studying an

implied correlation index [108]. They confirm an effect already observed before: There

is a systematic tendency for the implied correlation to increase when the market index

returns decrease and/or the market volatility increases, which indicates limited diver-

sification when it is needed most. The authors also observe a long-run dependence in

correlation.

In continuous-time finance literature Bakshi and Madan suggested a stochastic covariance

model for two underlyings in [8], which is also applied by Dempster and Hong [33] to price

spread options. In this thesis we work in that framework to extend the Fourier pricing

formulas to price barrier options and extend the results mentioned before by He et al.

[64] to derive the joint probability of hitting times.

There are some problems with the modelling of correlation as a risk driver: One is the

model to choose to keep the correlation between −1 and 1 and the other is the intractabil-

ity because the number of parameters grows exponentially when the dimensions are in-

creased. Emmerich [114] tries to model correlation directly by a process which stays

between −1 and 1. However, this model is analytically not tractable and difficult to

expand to more than two dimensions. Gourieroux et al. [58], Philipov and Glickman

[92] and da Fonseca et al. [27], [26] propose the use of Wishart processes to model

stochastic multivariate covariance matrices. This approach is rather cumbersome when

it comes to estimation and simulation. Pigorsch and Stelzer [93] and Muhle-Karbe et

al. [89] present a multivariate stochastic volatility model of OU-Wishart type, which is

analytically tractable, however the dimensions also increase.

In the framework we propose in [42] we try to tackle particularly the problem of tractabil-

ity (also see [41]). We use principal component analysis to reduce the dimensionality

of the framework to make it more tractable. This approach has been used before by

Alexander (see [3], [4]) for the orthogonal GARCH model. Due to the affine structure of

the here proposed model, vanilla options can be easily priced. Path-dependent options

like barrier options can be approximated applying perturbation techniques (see e.g.

[121] for an introduction). In finance this method has been applied to option pricing

under a stochastic volatility model by Fouque et al. (see e.g. [47], [49], [101], [52], [50],

[66], [24]). The approach has also been applied to various option types, e.g. exotic

options in [70], Asian options in [48], defaultable bonds in [53] and has been extended to
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multi-dimensions [55].

1.2 Summary of the results and contributions to the

literature

The main objective of the here presented thesis is the incorporation of stochastic co-

variance as a risk driver into pricing models. We treat two models, one with stochastic

variance and deterministic correlation, one with stochastic variance and stochastic corre-

lation, more closely. The first model has been proposed by Bakshi and Madan [8]. In that

model we show how barrier options can be valued by combining Fourier techniques with

the method of images when we assume a correlation ρ = − cos(π
n
), where n is a natural

number and n > 1 between the two underlying assets. We, thus, extend the Generalized

Fourier framework of Lewis [82] to two dimensions and show that the Fourier transform

can also be used for path-dependent options. Furthermore, we show how different Fourier

techniques (e.g. Lipton [83], Dempster and Hong [33], Lewis [82], see Schmelzle for a sum-

mary [104]) are related to each other. It can be numerically shown that the prices converge

to the Black-Scholes formula counterparts when we assume a degenerated stochastic co-

variance model, which tends to a two-dimensional Black-Scholes model.

Using PDEs and the method of separation we finally also find a semi-analytic pricing

formula for double-barrier options in this framework for any −1 ≤ ρ ≤ 1. These results,

however, make it also clear that an analytic solution for barrier options in more involved

models, i.e. when the covariance is driven by more than one common factor, can be ex-

cluded. Concluding, we extend the findings of He et al. [64] and Zhou [123], [124] by

allowing for a third factor in the model which governs the covariance of the two underly-

ings. We derive prices for double-barrier options, and derive the joint probabilities of the

survival time. The solution for the pricing formula is easy to implement and the pricing

algorithm performs quite well. The pricing is implemented and compared to the Fourier

technique pricing.

The pricing formulas are then used to value certificates under issuer risk. Issuer risk

is the risk of loss on securities and other tradeable obligations because the issuer does

not fulfil his contractual obligations due to his insolvency. So far, most of the time the

prices of certificates have not been adjusted for the issuer risk, which means that many

investors might actually pay too much for the risk they acquire. Pricing securities under

counterparty risk can be traced back to Merton [87]. Johnson and Stulz [74] analysed

the counterparty risk in option pricing. They used a firm-value model and assumed that
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the vulnerable option presents the single debt of the company. A huge increase in the

derivative’s value, thus, rises the risk of default of the company. This approach is only

appropriate when the derivative is the only or the predominant source of funding of the

counterparty. Klein [78] as well as Klein and Inglis [79] choose a firm-value model to

account for the issuer risk and to model the dependencies between the issuing firm and

the underlying. We follow their approach in that regard, and condition the payoff of the

certificate on the survival of the issuer: The certificate only pays the total investment and

gains back as long as the issuer has not defaulted, i.e. its asset value has not fallen under

a certain barrier.

In a next step we propose a model with stochastic correlation. To reduce complexity we

do not model the covariance or correlation as such but the eigenvalues and eigenvectors.

For tractability we set the eigenvectors constant but assume the eigenvalues stochastic.

An empirical analysis shows that the eigenvalues are driven by a time-scale which varies

in the order of days. Thus, our model allows that the eigenvalues are driven by a fast

mean-reverting Cox-Ingersoll-Ross process. Our model easily extends the Heston model

to more underlyings: We allow for stochastic volatility and at the same time for stochastic

correlation among assets and between variance and assets as well as between assets and

correlation. The basic stochastic principal component model is an affine model for which

the characteristic function is available and allows for easy calibration to plain vanilla

instruments. Even some parametrisations of the extension to the stochastic principal

component model which is presented here feature an affine characteristic function. As

stated before, a closed-form solution for more involved payoffs cannot be found using

PDE techniques. Thus, we show how perturbation theory can help to find easy and well

converging approximations to non-vanilla options on two correlated underlyings. Further-

more, we give a proof and some test calculations for the convergence. Hence, we extend

the results of Ilhan et al. [70] to price by the means of perturbation theory two-asset

barrier options.

Hence, in this line of development, our work improves previous literature on correlation

risk: The here presented model assumes stochastic correlation between the assets, and

pricing stays feasible.

1.3 Structure of the thesis

In the following we give some guidance on the structure of the chapters. The thesis

is split in three main parts: the introduction with the mathematical preliminaries in

Chapter 2, the first main part in Chapter 3, which consists of all results for the stochastic

covariance model, and the second main part in Chapter 4, which deals with the stochastic
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correlation model.

The chapter about the mathematical preliminaries (see Chapter 2) is on its part divided

in seven sections. Section 2.1 introduces the probability space, Section 2.2 familiarises

the reader with the concepts of distribution and characteristic functions, which are

needed in Chapter 3 for the Fourier pricing technique. In Section 2.3 we cover not

only Itô’s Lemma, but also the martingale representation and the Novikov condition

which we require in Chapter 4. Section 2.4 explains diffusion processes which lead

an important role throughout the main part of the thesis. Another important result

is the Feynman-Kac theorem which is presented in Section 2.5. In that section we

explain the connections between stochastic differential equations (SDEs) and partial

differential equations (PDEs). In Section 2.6 we illuminate the basic assumption of the

Black-Scholes framework, the risk-neutral valuation. Section 2.7 introduces the concepts

and transformations we apply in Chapter 3 to solve PDEs.

Chapter 3 is composed of four main parts. In Sections 3.1, 3.2 and 3.3 we introduce

the reader to the framework and give rational for our model choice. The second part is

dedicated to pricing derivatives with Fourier techniques (see 3.4), where we extend the

Fourier technique of Lewis [82] to price barrier options and find a solution for certain

correlation values. We extend our findings in Section 3.5 by using PDE techniques. The

findings of the previous sections is applied to pricing certificates under issuer risk in

Section 3.6.

Chapter 4 consists of four major parts, in the first one (4.1-4.2) we introduce the framework

and give some basic results of the instantaneous volatilities and correlations. Section

4.3 comprehends the empirical analysis of stock data for the components driving the

eigenvalues. In Section 4.4 we price single-barrier options. And, finally in Section 4.5

we price double-barrier options by approximating the price by means of the perturbation

theory.



Chapter 2

Mathematical preliminaries and

definitions

2.1 Probability spaces and stochastic processes

In this chapter we want to provide the mathematical preliminaries for the models intro-

duced later in this thesis. We limit the illustration here to definitions and propositions,

which are important in this thesis. For the description of the theory we use Zagst [119],

Bingham and Kiesel [12], Feller [45], Øksendal [91], and Karatzas and Shreve [76] in

particular.

Definition 1. (Øksendal [91], Definition 2.1.1, p. 7f, Measurable space, probability space)

If Ω is a given non-empty set, then a σ-algebra F on Ω is a family F of subsets of Ω with

the following properties:

i. ∅ ∈ F ,

ii. A ∈ F ⇒ AC ∈ F ,where AC = Ω\A is the complement of A ∈ Ω,

iii. A1,A2, . . . ∈ F ⇒ A :=
∞⋃

i=1

Ai ∈ F .

The pair (Ω,F) is called a measurable space. A probability measure Q on a measurable

space (Ω,F) is a function Q : F −→ [0, 1] such that

i. Q (∅) = 0,Q (Ω) = 1,
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ii. If A1,A2, . . . ∈ F are pairwise disjoint (i.e. Ai

⋂
Aj = ∅ if i 6= j), then

Q
( ∞⋃

i=1

Ai

)

=
∞∑

i=1

Q (Ai) .

The triple (Ω,F ,Q) is called a probability space. A set A0 ∈ F with Q (A0) = 0 is called

a (Q−) null set. (Ω,F ,Q) is called a complete probability space if F contains all subsets

of the (Q−) null sets.

If a measure space (Ω,F ,Q) is not complete it can be easily completed by adjoining the

set A0 of all subsets of the (Q−) null sets. To do this we extend F to FQ
, which contains

all sets of the form A∪A0 with A ∈ F and A0 ∈ A0, and we extend the measure Q to the

measure Q by setting Q(A ∪ A0) = Q(A) for all A ∈ F ,A0 ∈ A0. This process is called

completion. We additionally introduce the notion of filtered probability spaces.

Definition 2. (Zagst, [119], Definition 2.8, p. 15, Filtration)

A filtration F is a non-decreasing family of sub-sigma-algebras (Ft)t≥0 with Ft ⊂ F and

Fs ⊂ Ft for all 0 ≤ s < t < ∞. We call (Ω,F ,Q,F) a filtered probability space, and

require that

i. F0 contains all subsets of the (Q−) null sets of F ,

ii. F is right-continuous, i.e. Ft = Ft+ := ∩s>tFs.

(Ω,F ,Q,F) is a complete filtered probability space, if F as well as each Ft, 0 ≤ s < t <∞,

is complete. We require complete filtrations only and Definition 2 expresses this: For the

completion of the filtration it is sufficient to complete the sigma-algebra F0 only, due

to Assumption (ii) of Definition 2. However, if Assumption (ii) is not fulfilled, the (Q−
completed) filtration may be adjusted by setting F̂t := Ft+ for all 0 ≤ t <∞. The process

of making a filtration complete and right-continuous is called (Q−) augmentation of F.

One can think of Ft as the information available at time t, and F = (Ft)t≥0 describes the

complete flow of information over time assuming that no information is lost in the course

of time.

Definition 3. (Øksendal [91], p. 9, Random vector, distribution function)

A random vector X is a real function Ω −→ R
d, d ∈ N, which is measurable with respect

to its underlying σ-algebra F . For d = 1 X is a random variable. The function F defined

by F (x) = Q(X ≤ x) is called the distribution function of X.
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To describe the behaviour of the financial instruments, their volatility and correlation we

will use stochastic processes.

Definition 4. (Zagst [119], Definition 2.9, p. 15f, Stochastic process)

A stochastic process is a family X = (Xt)t≥0 = (X(t))t≥0 of random vectors X(t) defined

on the filtered probability space (Ω,F ,Q,F). The stochastic process X is called

i. adapted to the filtration F if Xt = X(t) is (Ft−) measurable for all t ≥ 0,

ii. measurable if the mapping X : [0,∞) × Ω −→ R
d, d ∈ N, is

(
B ([0, ∞ ))⊗F − B

(
R

d
)
−
)
measurable with B ([0, ∞ ))⊗F denoting the product

sigma-algebra created by B ([ 0,∞ )) and F , where B (A) denotes the Borel sigma-

algebra of A,

iii. progressively measurable if the mapping X : [0, t] × Ω −→ R
d, d ∈ N, is

(
B ([0, t])⊗Ft − B

(
R

d
))

measurable for each t ≥ 0.

Note that for each t fixed we have a random variable

ω̃ 7−→ X (t, ω̃) ,

with ω̃ ∈ Ω.

When fixing ω̃ ∈ Ω we have a function in t, i.e.

t 7−→ X (t, ω̃) ,

which is called a path of X(t). If the paths are continuous, i.e. t 7−→ X (t, ω̃) is a

continuous function for Q-almost all ω̃, X(t) is a continuous process.

Definition 5. (Zagst [119], Definition 2.13, p. 17, Natural filtration)

Let (Ω,F ,Q,F) be a filtered probability space and X be a stochastic process adapted to the

filtration F. The natural filtration F(X) is defined by the set of sigma-algebras

F := F (X(s) : 0 ≤ s ≤ t) , 0 ≤ t <∞,

with F (X(s) : 0 ≤ s ≤ t) being the smallest sigma-algebra which contains all sets

X(s)−1 (A) = {ω̃ ∈ Ω : X (s, ω̃) ∈ A} , 0 ≤ s ≤ t where A runs through the Borel sigma-

algebra B
(
R

d
)
, d ∈ N. Again, we claim that F(X) has undergone a (Q−) augmentation,

if necessary, to ensure that Conditions 1. and 2. of Definition 2 are satisfied.
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An important example for a stochastic process is the Wiener process.

Definition 6. (Karatzas and Shreve [76], Definition 2.1.1, p. 47f, d-dimensional Wiener

process, Brownian motion)

Let d ∈ N and χ be a probability measure on
(
R

d,B
(
R

d
))
. Let W = (Wt)t≥0 be a

continuous, adapted process with values in R
d, defined on some filtered probability space

(Ω,F ,Qχ,F(W )). This process is called d-dimensional Brownian motion with initial dis-

tribution χ, if

i. Qχ(W (0) ∈ A) = χ(A), ∀ A ∈ B
(
R

d
)
,

ii. the increment W (t)−W (s) is independent of W (t′′)−W (s′′) for all 0 ≤ s′′ ≤ t′′ ≤
s ≤ t <∞, and is normally distributed with mean zero and covariance matrix equal

to (t− s)Id, where Id is the (d× d) identity matrix,

iii. W has continuous paths Q- a.s.

If χ assigns measure one to some singleton {x}, we say that W is a d-dimensional Brow-

nian motion starting at x.

It is notationally and conceptually helpful to have a whole family of probability measures,

rather than just one. Thus, we want to define the concept of a so-called Brownian family.

For that introduction we need the following concept.

Definition 7. (Karatzas and Shreve [76], Definition 2.5.6, p. 73, Universally measurable)

Given a measurable space (Ω,F), we denote by B (F)χ the completion of the Borel σ-

field B (F) with respect to the finite measure χ on (Ω,F). The universal σ-field is

U (F) := ⋂

χ B (F)
χ
, where the intersection is over all finite measures (or, equivalently,

all probability measures) χ. A U (F) − B (R)-measurable, real-valued function is said to

be universally measurable.

Definition 8. (Karatzas and Shreve [76], Definition 2.5.8, p. 73, Brownian family)

A d-dimensional Brownian family is an adapted, d-dimensional processW = (W (t))t≥0 on

a measurable space (Ω,F) with filtration F and a family of probability measures {Qx}x∈Rd

such that

i. for each A ∈ F , the mapping x→ Qx (A) is universally measurable,

ii. for each x ∈ R
d, Qx(W (0) = x) = 1,

iii. under each Qx, the process W is a d-dimensional Brownian motion starting at x.
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A basic concept we will need later is the so-called martingale.

Definition 9. (Zagst [119], Definition 2.16, p. 18, Martingale)

Let (Ω,F ,Q,F) be a filtered probability space. A stochastic process X = (X(t))t≥0 is called

a martingale relative to (Q,F) if X is adapted, EQ [||X(t)||] <∞ for all t ≥ 0, and

EQ = [X(t) | Fs] = X(s) Q− a.s. for all 0 ≤ s ≤ t <∞.

We have seen that the Brownian motion has independent increments, thus, for W (t) =

W (s) + (W (t)−W (s)) the knowledge of the whole past up to time s provides no more

useful information about W (t) than knowing the value of W (s). This is known as the

concept of a Markov process.

Definition 10. (Karatzas and Shreve [76], Definition 2.5.10, p. 74, Markov process)

Let d ∈ N and χ be a probability measure on
(
R

d,B
(
R

d
))
. An adapted d-dimensional

process (X(t))t≥0 on some probability space (Ω,F ,Qχ) with filtration F is said to be a

Markov process with initial distribution χ if

i. Qχ(X(0) ∈ A) = χ(A), ∀ A ∈ B
(
R

d
)
,

ii. for s, t ≥ 0 and A ∈ B
(
R

d
)
,

Qχ (X (t+ s) ∈ Φ | Fs) = Qχ (X (t+ s) ∈ Φ |X(s)) , Qχ − a.s. (2.1)

Analogously to the Brownian family we define the Markov family.

Definition 11. (Karatzas and Shreve [76], Definition 2.5.11, p. 74, Markov family)

A d-dimensional Markov family is an adapted, d-dimensional process X = (X(t))t≥0 on a

measurable space (Ω,F) with filtration F and a family of probability measures {Qx}x∈Rd

such that

i. for each A ∈ F , the mapping x→ Qx (A) is universally measurable,

ii. for each x ∈ R
d, Qx(X(0) = x) = 1,

iii. for each x ∈ R
d, s, t ≥ 0 and A ∈ B

(
R

d
)
,

Qx (X (t+ s) ∈ A | Fs) = Qx (X (t+ s) ∈ A | X(s)) , Qx − a.s. (2.2)
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iv. for each x ∈ R
d, s, t ≥ 0 and A ∈ B

(
R

d
)
,

Qx (X (t+ s) ∈ A | X(s) = y) = Qy (X (t) ∈ A) , QxX(s)−1 − a.e. y, (2.3)

where QxX(s)−1 = Qx
{
ω̃ ∈ Ω : X(s, ω) ∈ B(Rd)

}
.

And as we have already seen:

Theorem 1. (Karatzas and Shreve [76], Theorem 2.5.12, p. 75)

A d-dimensional Brownian motion is a Markov process. A d-dimensional Brownian family

is a Markov family.

The Brownian family is even strongly Markovian. To explain this concept we first need

to introduce stopping and optional times.

Definition 12. (Zagst [119], Definition 2.18, p. 20, Karatzas and Shreve [76], Definition

1.2.1, p. 6, Stopping time, optional time)

Let (Ω,F ,Q,F) be a filtered probability space. A stopping time with respect to the filtration

F = (Ft)t≥0 is a (F − B ([0,∞])−) measurable function ι : Ω→ [ 0,∞ ) with

{ι ≤ t} := {ω̃ ∈ Ω : ι(ω̃) ≤ t} ∈ Ft for all t ∈ [0, ∞ ) . (2.4)

A (F − B ([0,∞])−) measurable function ι∗ : Ω→ [ 0,∞ ), satisfying

{ι∗ < t} := {ω̃ ∈ Ω : ι∗(ω̃) < t} ∈ Ft for all t ∈ [0, ∞ ) . (2.5)

is called an optional time with respect to the filtration F = (Ft)t≥0.

Definition 13. (Karatzas and Shreve [76], Definition 2.6.2, p. 81, Strong Markov pro-

cess)

Let d ∈ N and χ be a probability measure on
(
R

d,B
(
R

d
))
. A progressively measurable,

d-dimensional process (X(t))t≥0 on some probability space (Ω,F ,Qχ) with filtration F is

said to be a strong Markov process with initial distribution χ if

i. Qχ(X(0) ∈ A) = χ(A), ∀ A ∈ B
(
R

d
)
,

ii. for any optional time ι∗ with respect to F = {F}t≥0 and A ∈ B
(
R

d
)
,

Qχ (X (ι∗ + t) ∈ A | Fι∗+) = Qχ (X (ι∗ + t) ∈ A |X (ι∗)) , Qχ − a.s. on (ι∗ <∞) .

(2.6)
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Accordingly, we define the strong Markov family.

Definition 14. (Karatzas and Shreve [76], Definition 2.6.3, p. 81, Strong Markov family)

A d-dimensional strong Markov family is a progressively measurable, d-dimensional pro-

cess X = (X(t))t≥0 on a measurable space (Ω,F) with filtration F and a family of proba-

bility measures {Qx}x∈Rd such that

i. for each A ∈ F , the mapping x→ Qx (A) is universally measurable,

ii. for each x ∈ R
d, Qx(X(0) = x) = 1,

iii. for each x ∈ R
d, t ≥ 0, A ∈ B

(
R

d
)
and any optional time ι∗ of F = {Ft}t≥0,

Qx (X (ι∗ + t) ∈ A | Fι∗+) = Qx (X (ι∗ + t) ∈ A |X (ι∗)) , Qx − a.s. on (ι∗ <∞) ,

(2.7)

iv. for each x ∈ R
d, t ≥ 0, A ∈ B

(
R

d
)
and any optional time ι∗ of F = {Ft}t≥0,

Qx (X (ι∗ + t) ∈ A | X(ι∗) = y) = Qy (X (t) ∈ A) , QxX(ι∗)−1 − a.e. y. (2.8)

Definition 15. (Zagst [119], Definition 2.23, p. 22, Local martingale)

Let (Ω,F ,Q,F) be a filtered probability space and X = (Xt)t≥0 be a stochastic process with

X(0) = 0. If there is a sequence (ιn)n∈N of non-decreasing stopping times with

Q( lim
n→∞

ιn =∞) = 1 (2.9)

such that

Xn = (Xn
t )t≥0 := (Xt∧ιn)t≥0, t ∧ ιn := min {t; ιn} (2.10)

is a martingale relative to (Q,F) for all n ∈ N, then we call X a local martingale. The

sequence (ιn)n∈N is called localizing sequence. If X is a local martingale with continuous

paths, we call X a continuous local martingale.
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2.2 Distribution functions and characteristic func-

tion

2.2.1 Notations

First, we introduce some concepts and notions.

Definition 16. ([63], p. 7, Lp[a, b]- spaces and their norm)

Lp is the space of Lebesgue-measurable functions f on [a, b], summable of degree p, with

the norm

‖f‖p := (

∫ b

a

|f(x)|p) 1
pdx (Lp − Norm). (2.11)

Definition 17. ([63], Space of continuous functions)

C[a, b] is the space of continuous functions f defined on a segment [a, b], with the norm

‖f‖ := sup {|f(x)| | x ∈ [a, b]} . (2.12)

Ck[a, b] is the space of functions f with continuous derivatives up to and including order

k, k ∈ N, on the interval (a, b), with the norm

‖f‖ :=
k∑

n=0

sup {|f(x)n| | x ∈ [a, b]} . (2.13)

Definition 18. ([63], Absolute continuity)

A function f defined on a segment [a, b] is called absolute continuous if for any ǫ, there

exists δ > 0 such that for any finite system of pairwise non-intersecting intervals (ak, bk) ⊂
(a, b), k = 1, . . . , n for which

n∑

k=1

(bk − ak) < δ, (2.14)

the inequality
n∑

k=1

|f(bk)− f(ak)| < ǫ (2.15)

holds.

Definition 19. ([63], Hölder continuous)

A function f defined on an open domain D, D ⊂ R, f : D → R, is called (uniformly)

Hölder continuous to the exponent α ∈ (0, 1 ] iff there exists a positive real number Ξ such
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that for all x, x′ ∈ D,

|f(x)− f(x′)| ≤ Ξ |x− x′|α . (2.16)

Definition 20. ([63], Analytic function in a domain)

A function f(u), defined in a domain D, is said to be holomorphic (analytic) at a point

u0 ∈ D if there exists a neighbourhood of this point in which f may be represented by a

power series:

f(u) =
∞∑

n=0

an(u− u0)n. (2.17)

If this requirement is satisfied at every point u0 of D, the function f is said to be analytic

(holomorphic) in the domain D.

Definition 21. ([63], Lukacs [85], p.12, Singular function)

A non-constant function f which is continuous on the interval (a, b) and non-decreasing

with f(a) < f(b) whose derivative df(x)
dx

is almost-everywhere zero on the interval on which

it is defined is called singular.

Definition 22. ([63], Reed [102], p. 37, Scalar product for vectors and complex-valued

continuous functions)

The inner product of two d-dimensional vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) over

the complex numbers is given by

〈a, b〉 =
d∑

i=1

aibi, (2.18)

where bi describes the complex conjugate. The scalar product 〈f, g〉 of complex-valued

continuous functions on the interval [a, b] is defined by

〈f, g〉 :=
∫ b

a

fgdx. (2.19)

Definition 23. ([63], Even and odd functions)

An even real-valued function f does not change sign when the sign of the independent

variable is changed, i.e. satisfying the condition f(x) = f(−x). A real-valued function

that does change sign when the sign of the independent variable is changed, i.e. satisfying

the condition f(x) = −f(−x), is called an odd function.
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Definition 24. (Königsberger [80], p. 52, Gradient)

Let D be an open set in R
d. If the function f : D → R is differentiable, then ∇f is a

function defined by

lim
h→0

‖f(x+ h)− f(x)−∇f(x) · h‖
‖h‖ = 0 (2.20)

where · describes the scalar product.

Definition 25. (Königsberger [80], p. 61, Laplace operator, Poisson equation)

The Laplace operator △f :=
∑n

i=1 ∂
2
i f is given as the sum of all (unmixed) second partial

derivatives of a function f : D → R, where D is an open set, D ⊂ R
d. The equation

△f = 0 is known as Laplace equation. The inhomogeneous form of the Laplace equation,

i.e. △f = c, is known as Poisson equation.

2.2.2 Distribution functions

In this chapter we give an overview of distribution functions and their characteristic

function. We start by introducing the theory in R
1. For the description of the theory we

use Lukacs [84] and Feller [45].

Definition 26. (Lukacs [84], p. 10, Distribution function)

A point function F on a line is a distribution function if

i. F is non-decreasing, that is, a < b implies F (a) ≤ F (b),

ii. F is right-continuous, that is F (a) = F (a+),

iii. F (−∞) = 0 and F (∞) <∞.

F is a probability distribution function if it is a distribution function and F (∞) = 1.

Theorem 2. (Lukacs [84], Theorem 1.1.3, p. 12)

Every distribution function F (x) can be decomposed uniquely according to

F (x) = ς1Fd(x) + ς2Fac(x) + ς3Fs(x). (2.21)

Here Fd, Fac, Fs are three distribution functions. The points of increase of Fd are all

discontinuity points. The functions Fac and Fs are both continuous; however Fac is ab-

solutely continuous, while Fs is singular. The coefficients ς1, ς2, ς3 satisfy the relations

ς1 ≥ 0, ς2 ≥ 0, ς3 ≥ 0 and ς1 + ς2 + ς3 = 1.
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For a proof see Lukacs [84], p. 11f. A distribution function is called pure if one of the

coefficients in the Representation (2.21) equals one. For pure distribution functions we use

the expression discrete distribution function if ς1 = 1, absolutely continuous distribution

function if ς2 = 1, and singular distribution function if ς3 = 1.

2.2.3 Definitions and properties of the characteristic function

Integral transforms, defined by
∫∞
−∞ Ḡ(u, x)dF (x) (provided that the integral exists as

a Lebesgue integral), with suitable kernels Ḡ(u, x) are a useful tool for the analysis of

distribution functions. In the following we will cover the kernels: xk, |x|k, eux, eiux. The
first two transform F (x) into sequences, the latter into functions of the real variable u.

Definition 27. (Lukacs [84], p. 17, Algebraic and absolute moments)

Let X be a random variable with probability distribution F . The algebraic moment of

order k of F (x), x ∈ R, is then given by

αk =

∫ ∞

−∞
xkdF (x). (2.22)

Similarly, the absolute moment of order k of F (x) is defined by

βk =

∫ ∞

−∞
|x|k dF (x). (2.23)

Theorem 3. (Lukacs [84], Theorems 1.4.1 and 1.4.2, p. 19)

The algebraic moment of order k of a distribution function F (x) exists if and only if its

absolute moment of order k exists. Suppose that the algebraic moment of order k of F (x)

exists then the moments αn and βn for all orders n ≤ k exist.

For a proof see [84], p. 19.

Definition 28. (Lukacs [84], p. 18f, Feller [45], p. 499f, Moment generating function

and characteristic function)

Let X be a random variable with probability distribution F (x). The moment generating

function of F (x), x ∈ R, (or of X) is the function M̄ defined for real u by

M̄(u) =

∫ ∞

−∞
euxdF (x). (2.24)
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For absolutely continuous distributions with a density f ,

M̄(u) = E [eux] =

∫ ∞

−∞
euxf(x)dx. (2.25)

The characteristic function of F (x) is defined by

ϕ(u) = E
[
eiux
]
=

∫ ∞

−∞
eiuxdF (x) = ŵ(u) + i ˆ̟ (u), (2.26)

where

ŵ(u) =

∫ ∞

−∞
cos(ux)dF (x), ˆ̟ (u) =

∫ ∞

−∞
sin(ux)dF (x). (2.27)

We see that M̄(iu) = ϕ(u). ϕ is the Fourier transform of dF .

Definition 29. (Königsberger [80], p. 325, Fourier transform)

Let f be a Lebesgue-integrable function on R. Then, the Fourier transform of f , the

function f̂ : R→ C is defined by

f̂(u) :=

∫ ∞

−∞
f(x)eiuxdx, u ∈ R. (2.28)

f̂ is continuous and bounded by ‖f‖1.

The following properties of the characteristic function can be derived from the character-

istics of the Fourier transform.

Theorem 4. (Lukacs [84], Theorems 2.1.1 and 2.1.2, p. 22, Feller [45], Lemma 1, p.

499)

Let ϕ(u) = ŵ(u) + i ˆ̟ (u) be the characteristic function of a random variable X with

distribution F . Then

i. ϕ is continuous,

ii. ϕ(0)=1, |ϕ(u)| ≤ 1 for all u,

iii. aX + b has the characteristic function eibuϕ (au),

iv. ϕ(−u) = ϕ(u), where the horizontal bar atop of ϕ denotes the complex conjugate of

ϕ,

v. ŵ(u) is even and ˆ̟ (u) is odd. The characteristic function is real if and only if F

is symmetric,
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vi. for all u: 0 < 1− ŵ(2u) ≤ 4 (1− ŵ(u)).

For a proof see Lukacs [84], p. 22f, and Feller [45], p. 500.

Theorem 5. (Lukacs [84], Theorem 2.1.3, p. 23)

Suppose that the real numbers ς1, ς2, . . . , ςn satisfy the conditions ςk ≥ 0,
∑n

k=1 ςk = 1 and

that ϕ1, . . . , ϕn are characteristic functions. Then

ϕ(u) =
n∑

k=1

ςkϕk(u) (2.29)

is also a characteristic function.

For a proof refer to Lukacs [84], p. 23.

2.2.4 Characteristic function and the moments of the distribu-

tion

There is a close connection between the characteristic function and moments. Let us first

define the first and higher (central) differences with respect to an increment u by

∆u
1f(y) = f(y + u)− f(y − u) (2.30)

and

∆u
k+1f(y) = ∆u

1∆
u
kf(y). (2.31)

Theorem 6. (Lukacs [84], Theorem 2.3.1, p. 27f)

Let ϕ(u) be the characteristic function of a distribution function F (x), and let

∆u
2kϕ(0)

(2u)2k
(2.32)

be the 2nd (central) difference quotient of ϕ(u) at the origin. Assume that

lim
u→0

inf

∣
∣
∣
∣

∆u
2kϕ(0)

(2u)2k

∣
∣
∣
∣
<∞. (2.33)

Then the 2kth moment α2k of F (x) exists, as do all moments of order n, n ≤ 2k. More-

over, the derivatives ϕ(n)(u) exist for all u and for n = 1, 2, . . . , 2k and

ϕ(n)(u) = in
∫ ∞

−∞
xneiuxdF (x) (n = 1, 2, . . . , 2k), (2.34)
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so that αn = i−nϕ(n)(0).

For a proof see Lukacs [84], p. 27f. The following corollary follows directly.

Corollary 1. (Lukacs [84], Corollary 1 to Theorem 2.3.1, p. 29)

If the characteristic function of a distribution F (x) has a derivative of order k at u = 0,

then all the moments of F (x) up to order k exist if k is even, respectively up to order

k − 1 if k is odd.

2.2.5 Uniqueness and inversion

The uniqueness of characteristic functions is laid out in the following theorem.

Theorem 7. (Lukacs [84], Theorem 3.1.1, p. 35, Uniqueness theorem)

Two distribution functions F1(x) and F2(x) are identical if and only if their characteristic

functions ϕ1(u) and ϕ2(u) are identical.

For a proof refer to Lukacs [84], p. 35f. The density can be computed by inverting the

characteristic function provided that the assumptions of the following theorem are valid.

Theorem 8. (Feller [45], Theorem 3, p. 509, Inversion theorem)

Let ϕ be the characteristic function of the distribution F and suppose ϕ ∈ L1. Then F

has a bounded continuous density f(x), x ∈ R given by

f(x) = F ′(x) =
1

2π

∫ ∞

−∞
e−iuxϕ(u)du. (2.35)

The proof is given in [45], p. 509f.

For the convolution of the distribution function the following is true.

Theorem 9. (Lukacs [84], Theorem 3.3.1, p. 45, Convolution theorem)

A distribution function F is the convolution of two distributions F1 and F2, that is

F (y) =

∫ ∞

−∞
F1(y − x)dF2(x) =

∫ ∞

−∞
F2(y − x)dF1(x) = (F1 ∗ F2)(y), (2.36)

if and only if the corresponding characteristic functions satisfy the relationship

ϕ(u) = ϕ1(u)ϕ2(u). (2.37)
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For the inversion of a product of characteristic functions the following is valid.

Theorem 10. (Titchmarsh [113], Theorem 40, p. 59)

Let ϕ1(u) be the characteristic function of f1, ϕ1, f1 ∈ L1, and let f2(x) belong to L1 (so

that its Fourier transform ϕ2(u) is bounded). Then
√
2πϕ1(u)ϕ2(u) belongs to L1 and the

Fourier transform of the latter expression is
∫∞
−∞ f1(x− y)f2(y)dy.

For characteristic functions of the class L2 the Plancherel theorem indicates the conver-

gence.

Theorem 11. (Titchmarsh [113], Theorem 48, p. 69, Plancherel’s theorem)

Let f(x) be a density function of the class L2, and let

ϕ(u, a) =

∫ a

−a

f(x)eixudx. (2.38)

Then, as a → ∞ ϕ converges in mean over (−∞,∞) to a function ϕ(u) of L2; and

reciprocally

f(x, a) =
1

2π

∫ a

−a

ϕ(u)e−ixudu (2.39)

converges in mean to f(x).

Theorem 12. (Titchmarsh [113], Theorem 49, p. 70, Parseval’s formula)

If f1(x), ϕ1(u), f2(x), ϕ2(u) are Fourier transforms as in the above theorem, the following

equations hold:

∫ ∞

−∞
ϕ1(u)ϕ2(u)du =

∫ ∞

−∞
f1(x)f2(−x)dx, (2.40)

∫ ∞

−∞
ϕ1(u)ϕ2(u)du =

∫ ∞

−∞
f1(x)f2(−x)dx, (2.41)

∫ ∞

−∞
|ϕ1(u)|2 du =

∫ ∞

−∞
|f1(x)|2 dx, (2.42)

where the horizontal bar atop of ϕ (f2(x) respectively) denotes the complex conjugate of

ϕ (f2(x) respectively).
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2.2.6 Characteristic functions in higher dimensions

The theory of characteristic functions in higher dimensions is closely parallel to the theory

in R
1.

Definition 30. (Feller [45], p. 521f, Characteristic function in higher dimensions)

Let X be a vector of random variables X1, X2, . . . , Xn with probability distribution F (X).

The characteristic function of F (or of X) is the function ϕ defined for real u

ϕ (u) = E
[
ei〈ux〉

]
=

∫

Rd

ei〈ux〉dF (u) . (2.43)

The Fourier transform can also be formulated in R
d.

Definition 31. (Königsberger [80], p. 325, Fourier transform)

Let f be a Lebesgue-integrable function on R
d. Then, the Fourier transform of f , the

function f̂ : Rd → C is defined by

f̂(u) :=

∫

Rd

f(x)ei〈u,x〉dx, u ∈ R
d. (2.44)

f̂ is continuous and bounded by ‖f‖1 and 〈u,x〉 is the scalar product with u =

(u1, u2, . . . , ud).

One of the main theorems, the inversion theorem still holds true.

Theorem 13. (Feller [45], p. 524, Inversion theorem in higher dimensions)

Let ϕ (u) be the characteristic function of the distribution F (x) and suppose ϕ (u) ∈ L1.

Then F (x) has a bounded continuous density p (x) given by

p (x) = F ′ (x) =
1

(2π)d

∫

Rd

e−i〈ux〉ϕ (u) du. (2.45)

2.2.7 Analytic characteristic functions

We introduce now the class of analytic characteristic functions. In the following we denote

by w and ̟ real variables and by u = w + i̟ a complex variable with w,̟ ∈ R
1.

Definition 32. (Lukacs [84], p. 130, Analytic characteristic function)

A characteristic function ϕ(u) is said to be an analytic characteristic function if there

exists a function E(u) of the complex variable u which is regular in a circle |u| ≤ ĉ

(ĉ > 0) and a constant Ξ > 0 such that E(w) = ϕ(w) for |w| < Ξ.
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This can be expressed in an informal manner (see [84], p. 130) by saying that an analytic

characteristic function is a characteristic function which coincides with a holomorphic

function in some neighbourhood of the origin in the complex u-plane.

Theorem 14. (Lukacs [84], Theorem 7.1.1, p. 132)

If a characteristic function ϕ(u) is regular in a neighbourhood of the origin, then it is

also regular in a horizontal strip and can be represented in this strip by a Fourier integral.

This strip is either the whole plane, or it has one or two horizontal lines. The purely

imaginary points on the boundary of the strip of regularity (if this strip is not the whole

plane) are singular points of ϕ(u).

A proof can be found in [84], p. 130ff. The following example is based on an example in

[85].

Example 1. Take the characteristic function

ϕ(u) = (1− iu

a
)−1, (2.46)

with a ∈ R. This function satisfies the elementary necessary conditions for characteristic

functions, namely ϕ(−u) = ϕ(u), ϕ(0) = 1, |ϕ(u)| ≤ 1 for real u. It has a singularity on

the imaginary axis in u = −ia, i.e. the function is regular near the origin in the strip

−a ≤ ℑ(u) ≤ ∞, where ℑ(u) denotes the imaginary part of u (see Figure 2.1). In this

example we find that the strip of regularity is bounded by one horizontal line in ℑ(u) = a.

Boundary line

Strip of regularity

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 2.1: Strip of analyticity

Thus, for a < ℑ(u) < b, where ℑ(u) denotes the imaginary part of u, the characteristic
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function of the process X(t) is identical to the generalized Fourier transform of the tran-

sition density. We use here the concept of the complex Fourier transform by Titchmarsh

[113], p. 4ff and 42ff: The existence of the integral defining f̂ implies a certain restriction

on f(x) at infinity. But even if f̂ does not exist, the functions

f̂+(u) =

∫ ∞

0

f(x)eiuxdx, (2.47)

f̂−(u) =

∫ 0

−∞
f(x)eiuxdx, (2.48)

where u = w + i̟, may exist, the former for sufficiently large positive ̟, the latter for

sufficiently large negative ̟. For

f̂+(u) =

∫ ∞

0

f(x)e−̟xeiwxdx, (2.49)

so that f̂+ is the transform of the function equal to f(x)e−̟x for x > 0, and to 0 for

x < 0. For the inversion we may write

f(x) =
1

2π

(∫ ia1+∞

ia1−∞
f̂+(u)e

ixudu+

∫ ib1+∞

ib1−∞
f̂−(u)e

−ixudu

)

, (2.50)

where a1 is a sufficiently large positive number, b1 a sufficiently large negative number.

In this context the next three theorems, the Cauchy integral theorem, the Cauchy integral

formula and the Residue theorem, are quite helpful.

Definition 33. ([63], Simply-connected domain)

In a simply-connected domain D any closed path can be continuously deformed into a

point, remaining the whole time in the simply-connected domain D.

Theorem 15. ([63], Cauchy integral theorem)

If f(u) is a holomorphic function of a complex variable u in a simply-connected domain D

in the complex plane C, then the integral of f(u) along any closed rectifiable (i.e. having

finite length) curve γ in D vanishes:

∫

γ

f(u)du = 0. (2.51)

An equivalent version of Cauchy’s integral theorem states that the integral

∫ b

a

f(u)du, a, b ∈ D, (2.52)
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is independent of the choice of the path of integration (contour) between the fixed points

a and b in D.

Theorem 16. (Königsberger [80], p. 203, [100], Cauchy integral formula)

If f is a holomorphic function in an open domain D which includes the closure of the disk

Kr(a) = {u : |u− a| ≤ r} then for every point u0 ∈ Kr(a)

f(u0) =
1

2πi

∫

γ

f(u)

u− u0
du, (2.53)

where γ denotes the circle which forms the boundary of Kr. This formula can be extended

to two dimensions. If f is a function which is holomorphic in its variables u1 and u2 in

an open domain D which includes Kr(a1, a2) = {ui : |ui − ai| ≤ ri, i = 1, 2} then for every

point (u10, u20) ∈ Kr(a1, a2)

f(u10, u20) =
1

(2πi)2

∫

Γ

f(u1, u2)

(u1 − u10)(u2 − u20)
du1du2, (2.54)

where Γ = {ui : |ui − ai| = ri, i = 1, 2}.

Definition 34. ([63], Residue)

Let f(u) be a function of one complex variable and f has a finite isolated singular point

at a. The integral

Resaf :=
1

2πi

∫

γ

f(u)du, (2.55)

where γ is a counter-clockwise oriented circle of sufficiently small radius with centre at a,

is called residue of f in a.

Remark 1. If f has a simple pole at a the residue of f is given by

Resaf = lim
u→a

((u− a)f(u)) . (2.56)

See [63].

Theorem 17. ([63], Residue theorem)

Let f be a single-valued analytic function everywhere in a simply-connected domain D,

except for isolated singular points; then the integral of f(u) over any counter-clockwise

oriented, simple (i.e. injective) closed rectifiable curve γ lying in D and not passing through

the singular points of f(u) can be computed by the formula

∫

γ

f(u)du = 2πi
n∑

k=1

Resakf(u), (2.57)
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where ak, k = 1, . . . , n, are the singular points of f(u) inside γ.

Corollary 2. (Contour variation in the strip of regularity)

Assume a function f(u), u = w + i̟, analytic in a strip a < ℑ(u) < b which decays

at ±∞ like e−c̃1|u|. Then it follows from Cauchy’s theorem that the integral over f(u)

extending from −∞ to +∞ can be taken along any line in the strip of regularity parallel

to the real axis.

If f(u) = g(u)h(u), where g(u), h(u) are analytic in a strip a < ℑ(u) < b, g(u) bounded

and h(u) decays at ±∞ like e−c̃1|u| then it also follows from Cauchy’s theorem that an

integral over f(u) = g(u)h(u) extending from −∞ to +∞ can be taken along any line of

the strip of regularity parallel to the real axis.

See also Titchmarsh [113], p. 44f.

Proof.

Assume that we take the integral along a line in the strip of regularity at ℑ(u) = c̄1 from

−∞ to +∞:

Γ1 =

∫ ∞+ic̄1

−∞+ic̄1

f(u)du (2.58)

Assume a second line ℑ(u) = c̄2 parallel to ℑ(u) = c̄1, which also must be within the strip

of regularity.

ℑ(u)

−A A ℜ(u)

c̄1

c̄2

Γ2 Γ4

Γ3

Γ1
Strip of regularity

Figure 2.2: Contour variation within strip of regularity

By Cauchy’s theorem this integral is equal to the sum of three integrals, which build with

−Γ1 a closed curve,

Γ1 =

∫ −∞+ic̄2

−∞+ic̄1

f(u)du

︸ ︷︷ ︸

=Γ2

+

∫ ∞+ic̄2

−∞+ic̄2

f(u)du

︸ ︷︷ ︸

=Γ3

+

∫ ∞+ic̄1

∞+ic̄2

f(u)du

︸ ︷︷ ︸

=Γ4

. (2.59)
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For Γ2 and Γ4 we derive due to the decay e−c̃1|u| of f(u) at ±∞

lim
A→−∞

∫ A+ic̄2

A+ic̄1

f(u)du ≈ lim
A→−∞

∫ A+ic̄2

A+ic̄1

e−c̃1|u|
︸ ︷︷ ︸

≤e−c̃1w

du

≤ lim
A→−∞

e−c̃1|A|dw

= 0,

lim
A→∞

∫ A+ic̄1

A+ic̄2

f(u)du = 0. (2.60)

Thus, Γ1 = Γ3 and the first part of the corollary follows. If f(u) = g(u)h(u), with g(u)

bounded, then Γ2 and Γ3 are given by

lim
A→−∞

∫ A+ic̄2

A+ic̄1

g(u)h(u)du ≤ lim
A→−∞

∫ A+ic̄2

A+ic̄1

c̃3e
−c̃1|u|du

= 0,

lim
A→∞

∫ A+ic̄1

A+ic̄2

f(u)du = 0. (2.61)

Corollary 3. (Residue calculus, contour variation in a strip with simple poles)

Assume a function f(u) which decays at ±∞ like e−c̃1|u|. Furthermore, f(u) regular in a

strip a < ℑ(u) < b and except for simple poles at a and b it is regular in an even larger

strip S∗
f . Then it follows from Cauchy’s theorem and the Residue theorem that the integral

over f(u) extending from −∞ to +∞ can be taken along any line c̄2 in S∗
f parallel to the

real axis taking into account the contribution of the residue the contour has been moved

across or along. The residue contribution is given by







−2πiResaf for c̄2 < a,

−2πiResbf for c̄2 > b,

−πiResaf for c̄2 = a,

−πiResbf for c̄2 = b.

(2.62)

Assume f(u) = g(u)h(u) with g(u) bounded and h(u) decays at ±∞ like e−c̃1|u|. Moreover,

g(u), h(u) are regular in a strip a < ℑ(u) < b and except for simple poles at a and b they

are regular in an even larger strip S∗
f . Then it follows from Cauchy’s theorem and the

Residue theorem that the integral over f(u) = g(u)h(u) extending from −∞ to +∞ can

be taken along any line in S∗
f parallel to the real axis taking into account the residue

contribution.



30 2.2 Distribution functions and characteristic function

Proof.

Assume that we take the integral along a line in the strip of regularity at ℑ(u) = c̄1 from

−∞ to +∞:

Γ1 =

∫ ∞+ic̄1

−∞+ic̄1

f(u)du (2.63)

Assume a second line ℑ(u) = c̄2 parallel to ℑ(u) = c̄1 with c̄2
<

(=) a.

ℑ(u)

−A A ℜ(u)

c̄1

c̄2

Γ2 Γ4

Γ3

Γ1
Strip of regularity

γ−

Figure 2.3: Contour variation with simple poles

By Cauchy’s theorem this integral is equal to the sum of four integrals, which build with

−Γ1 a closed curve,

Γ1 =

∫ −∞+ic̄2

−∞+ic̄1

f(u)du

︸ ︷︷ ︸

=Γ2

+

∫ ∞+ic̄2

−∞+ic̄2

f(u)du

︸ ︷︷ ︸

=Γ3

+

∫ ∞+ic̄1

∞+ic̄2

f(u)du

︸ ︷︷ ︸

=Γ4

+

(
1

2

)

︸ ︷︷ ︸

for c̄2=a

∫

γ−

f(u), (2.64)

where γ− describes a circle, in clockwise direction, of sufficiently small radius with cen-

tre at a. According to the Residue theorem this integral is then given by −2πiResaf
(−πiResaf respectively). The results for c̄2 > b follow accordingly. From the above proof

we also know that Γ2 = 0 and Γ4 = 0.

The second part of the corollary follows analogously with Corollary 2.
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2.3 The Itô formula and the martingale representa-

tion theorem

In our context we work with so called Itô processes.

Definition 35. (Zagst [119], Definition 2.32, p. 27f, Itô process)

Let W (t) be a d-dimensional Wiener process, d ∈ N. A stochastic process X = (X(t))t≥0

is called an Itô process if for all t ≥ 0 we have

X(t) = X(0) +

∫ t

0

µ (s,X(s)) ds+

∫ t

0

σ (s,X(s)) dW (s)

= X(0) +

∫ t

0

µ (s,X(s)) ds+
d∑

k=1

∫ t

0

σk (s,X(s)) dWk(s), (2.65)

where X(0) is (F0−) measurable and µ = (µ(t))t≥0 and σ = (σ(t))t≥0 with σ(t) =

(σ1(t), . . . , σd(t))t≥0 are a one and a d-dimensional progressively measurable stochastic

process with

∫ t

0

|µ (s,X(s))| ds <∞, (2.66)

∫ t

0

σ2
k (s,X(s)) ds <∞, Q− a.s. for all t ≥ 0, k = 1, . . . , d. (2.67)

A d-dimensional Itô process is given by a vector X = (X1, . . . , Xd), d ∈ N, with each Xi

being an Itô process, i = 1, . . . , d.

Remark 2. For convenience we write (2.65) symbolically

dX(t) = µ (t,X(t)) dt+ σ (t,X(t)) dW (t)

= µ (t,X(t)) dt+
d∑

k=1

σk (t,X(t)) dWk(t), (2.68)

and call this stochastic differential equation (SDE) with drift parameter µ and diffusion

parameter σ.

To use Itô’s Lemma we have to define the quadratic covariance process.
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Definition 36. (Zagst [119], Definition 2.33, p. 28, Quadratic covariance process)

Let d ∈ N and W = (W1(t), . . . ,Wd(t))t≥0 and Xi = (Xi(t))t≥0 with i = 1, 2 be two Itô

processes with

dXi(t) = µi (t,X(t)) dt+ σi (t,X(t)) dW (t)

= µi (t,X(t)) dt+
d∑

k=1

σik (t,X(t)) dWk(t), i = 1, 2.

Then we call the stochastic process 〈X1, X2〉 = (〈X1, X2〉t)t≥0
defined by

〈X1, X2〉t :=
d∑

k=1

∫ t

0

σ1k (s,X(s)) · σ2k(s,X(s))ds

the quadratic covariance (process) of X1 and X2. If X1 = X2 =: X we call the stochastic

process 〈X〉 := 〈X,X〉 the quadratic variation (process) of X, i.e.

〈X,X〉t :=
d∑

k=1

∫ t

0

σ2
j (s,X(s)) ds

=

∫ t

0

‖σ (s,X(s))‖2 ds,

where ‖σ (t,X(t))‖ :=
√
∑d

k=1 σ
2
k, t ∈ [ 0,∞ ) denotes the Euclidean norm in R

d and

σ := σ1.

Theorem 18. (Zagst [119], Theorem 2.34, p. 29, Itô’s Lemma in higher dimensions)

Let W = (W (t))t≥0 be a d-dimensional Wiener process, d ∈ N, and X = (X1, . . . , Xn) =

(X1(t), . . . , Xn(t))t≥0 be a n-dimensional Itô process, n ∈ N, with

dXi(t) = µi(t)dt+ σi(t)dW (t) = µi(t)dt+
d∑

k=1

σik(t)dWk(t), i = 1, . . . , n. (2.69)

Furthermore, let G : Rn × [0,∞) −→ R be twice continuously differentiable in the first n

variables, and once continuously differentiable in the last variable (t). Then we have for

all t ∈ [ 0,∞ )

dG(X(t), t) =
∂G (t,X(t))

∂t
+

n∑

i=1

∂G (t,X(t))

∂xi
dXi(t)

+
1

2

n∑

k=1

n∑

i=1

∂2G (t,X(t))

∂xi∂xk
d 〈Xk, Xi〉 (t).
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The following theorem shows that each continuous local martingale relative to (Q,F(W )),

i.e. relative to Q and the natural filtration F(W ), can be written as an Itô process. In

the following we denote these martingales briefly (Q−) martingales.

Theorem 19. (Zagst [119], Theorem 2.38, p. 31, Martingale representation I)

Let d ∈ N, W = (W1(t), . . . ,Wd(t))t≥0 be a d-dimensional Wiener process, and M =

(M(t))t∈[0,T ] be a continuous local (Q−) martingale. Then there is a progressively mea-

surable process φ = (φ(t))t∈[0,T ] , φ : [0, T ]× Ω −→ R
d such that

i.
∫ T

0
‖φ(t)‖2 dt <∞ Q− a.s.,

ii. M(t) = M(0) +
∫ t

0
φ(s)′dW (s) or briefly dM(t) = φ(t)′dW (t) Q− a.s. for all

t ∈ [0, T ], where φ(s)′ is the transposed of φ(s).

If M = (M(t))t∈[0,T ] is a continuous (Q−) martingale with EQ [M2(t)] < ∞ for all t ∈
[0, T ], then 1. is strengthened to

EQ

[∫ T

0

‖φ(t)‖2 dt
]

<∞,

while 2. still holds.

For a proof see Øksendal [91], p. 53-54.

Lemma 1. (Zagst [119], Lemma 2.40, p. 33, Novikov condition)

Let γ̃ = (γ̃(t))t>0 be a d-dimensional progressively measurable stochastic process, d ∈ N,

with ∫ t

0

γ̃2k(s)ds <∞, Q− a.s. for all t ≥ 0, k = 1, . . . , d

and let the stochastic process E (γ̃) = (E (t, γ̃))t≥0 = (E (t, γ̃(t)))t≥0 for all t ≥ 0 be defined

by

E (t, γ̃) = e−
∫ t
0 γ̃(s)′dW (s)− 1

2

∫ t
0 ‖γ̃(s)‖

2ds.

Then E (γ̃) is a continuous (Q−) martingale if

EQ

[

e
1
2

∫ T
0 ‖γ̃(s)‖2ds

]

<∞. (Novikov condition)

For a proof see Karatzas and Shreve [76], p. 198-199.

Remark 3. Under Novikov’s condition it is true that

∫ T

0

‖γ̃(s)‖2 ds <∞, Q− a.s.
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and ∫ t

0

‖γ̃(s)‖2 ds <∞, Q− a.s. for all t ∈ [0, T ].

Remark 4. For each T ≥ 0 we define the measure Q̃ = Q̃E(T,γ̃) on the measure space

(Ω,FT ) by

Q̃ (A) := EQ [1A · E (T, γ̃)] =
∫

A

E (T, γ̃) dQ for all A ∈ FT ,

which is a probability measure if E (T, γ̃) is a Q-martingale. In this case, E (T, γ̃) is the

Q-density of Q̃, i.e. E (T, γ̃) = dQ̃
dQ on (Ω,FT ).

We provide the Girsanov theorem, which shows, how a
(

Q̃−
)

Wiener process W̃ =
(

W̃ (t)
)

t∈[0,T ]
starting with a (Q−) Wiener process W = (W (t))t≥0 can be constructed.

Theorem 20. (Zagst [119], Theorem 2.41, p. 34f, Girsanov theorem)

Let W = (W1(t), . . . ,Wd(t))t≥0 be a d-dimensional (Q−) Wiener process, d ∈
N, γ̃, E (γ̃) , Q̃, and T ∈ [ 0,∞ ) be as defined above, and the d-dimensional stochastic

process W̃ =
(

W̃1, . . . , W̃d

)

=
(

W̃1(t), . . . , W̃d(t)
)

t∈[0,T ]
be defined by

W̃k(t) := Wk(t) +

∫ t

0

γ̃k(s)ds, t ∈ [0, T ], k = 1, . . . , d,

i.e.

dW̃ (t) := γ̃(t)dt+ dW (t), t ∈ [0, T ].

If the stochastic process E (γ̃) = (E (t, γ̃))t∈[0,T ] is a (Q−) martingale, then the stochastic

process W̃ is a d-dimensional
(

Q̃−
)

Wiener process on the measure space (Ω,FT ).

For γ̃(t) constant the change of measure corresponds to a change of the drift from µ to

µ− γ̃. For a proof see Øksendal [91], p. 163-164.

2.4 Diffusions and stochastic differential equations

In this section we want to analyse the question of existence and uniqueness for solutions

to stochastic differential equations. According to Karatzas and Shreve [76], p. 281ff,

this endeavour is really a study of diffusion processes. Loosely speaking, a diffusion is a

Markov process which has continuous sample paths and can be characterised in terms of

its infinitesimal generator.
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Definition 37. (Karatzas and Shreve [76], Definition 5.1.1, p. 281f, Diffusion process)

Let X = (X(t))t≥0, (Ω,F), {Qx}x∈Rd be a d-dimensional Markov family, such that

i. X has continuous sample paths,

ii. for every ξ ∈ C2
(
R

d
)
which is bounded and has bounded first- and second-order

derivatives:

lim
t→0

1

t
(Ex [ξ (X(t))]− ξ(x)) = (Aξ) (x); ∀ x ∈ R

d, (2.70)

where E
x denotes the expectation with respect to Qx, and

(Aξ) (x) := 1

2

d∑

i=1

d∑

k=1

aik(x)
∂2ξ(x)

∂xi∂xk
+

d∑

i=1

µi(x)
∂ξ(x)

∂xi
, (2.71)

with aik =
∑n

j=1 σijσkj. The left-hand side of (2.70) is called infinitesimal generator

of the Markov family, applied to ξ. The operator in (2.71) is called second-order

differential operator with drift vector µ = (µ1, . . . , µd) and diffusion matrix a =

{aik}1≤i,k≤d.

iii. for every x ∈ R
d

E
x [Xi(t)− xi] = tµi(x) + o(t), (2.72)

E
x [(Xi(t)− xi)(Xk(t)− xk)] = taik(x) + o(t), (2.73)

iv. 1)-4) of Definition 14 are satisfied, but only for stopping times ι.

Then X is called a (Kolmogorov-Feller) diffusion process.

Definition 38. (Karatzas and Shreve [76], p. 282f, Kolmogorov forward and backward

equation)

Assume that the Markov family of Definition 37 has a transition density function

Qx(X(τ ′) ∈ A) = p(τ ′,x′, τ,x), A ∈ B(Rd). p(τ ′,x′) := p(τ ′,x′, τ,x) satisfies the Kol-

mogorov forward equation for every fixed τ ∈ (0,∞),x ∈ R
d, given by

∂

∂τ ′
p(τ ′,x′) = A∗p(τ ′,x′), p(τ,x′) = g(x′) for (τ ′,x′) ∈ (0,∞)× R

d, (2.74)

and p(τ,x) := p(τ ′,x′, τ,x) for every fixed τ ′ ∈ (0,∞),x′ ∈ R
d the backward Kolmogorov

equation, given by

∂

∂τ
p(τ,x) = Ap(τ,x), p(τ ′,x) = g(x) for (τ,x) ∈ (0,∞)× R

d, (2.75)
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where the adjoint operator A∗ is given by

(A∗p) (τ ′,x′) :=
1

2

d∑

i=1

d∑

k=1

∂2

∂x′i∂x
′
k

(aik (τ
′,x′) p (τ ′,x′))−

d∑

i=1

∂

∂x′i
(µi (τ

′,x′) p (τ ′,x′)) ,

(2.76)

if the derivatives are bounded and Hölder-continuous. (τ ′,x′) describe the forward vari-

ables, while (τ,x) are the backward variables, i.e. τ ′ ≥ τ .

Remark 5. The following equation with terminal condition

− ∂

∂t
p(t,x) = Ap(t,x); t′,x′ fixed, for (t,x) ∈ (0,∞)× R

d; p(t′,x) = g(x), (2.77)

can be easily transformed into the backward Kolmogorov equation presented before with

initial condition by the transformation τ = t′ − t (time reversal):

∂

∂τ
p(τ,x) = Ap(τ,x); τ ′,x′ fixed, for (τ,x) ∈ (0,∞)× R

d; p(0,x) = g(x). (2.78)

For the specific Kolmogorov equations of the models we treat in the main part refer to

Appendix A.1.1.

Theorem 21. (Øksendal [91], Theorem 8.1.1, p. 139f, Kolmogorov’s backward equation)

Let g ∈ C2
0(R

d). Define1

ξ(τ,x) = E
τ,x [g (X(0))] . (2.79)

Then

∂ξ

∂τ
= Aξ, τ > 0,x ∈ R

d, (2.80)

ξ(0,x) = g(x), x ∈ R
d. (2.81)

Moreover, if h(τ,x) ∈ C1,2
(
R× R

d
)
is a bounded function satisfying (2.80) and (2.81),

then h(τ,x) = ξ(τ,x), given by (2.79).

Definition 39. (Fouque et al. [49], p. 62f, Invariant probability density)

The existence of an invariant probability density means that p(t′, x′, t, x) does not depend

on t′ or t and consequently satisfies

A∗p = 0. (2.82)

1Note that we have reversed the time by setting τ = T − t, i.e. τ = 0 means t = T .
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Definition 40. ([63], Symmetric difference)

The symmetric difference of the sets A and B is denoted by

A△ B. (2.83)

The symmetric difference is equivalent to the union of both relative complements, i.e.

A△ B = (A \B) ∪ (B \ A). (2.84)

Definition 41. ([63], Measure-preserving transformation)

A measurable mapping T : Ω1 → Ω2, i.e. a mapping T from measure space (Ω1,F1,Q1)

to (Ω2,F2,Q2) with T−1(A2) = {x : T(x) ∈ A2} ∈ F1 for each A2 ∈ F2, such that

Q1(T−1(A2)) = Q2(A2) for every A2 ∈ F2 is called a measure-preserving transforma-

tion.

Theorem 22. (Walters [117], Theorem 1.5, p. 27, Ergodicity)

If T : Ω → Ω is a measure-preserving transformation of the probability space (Ω,F ,Q),
then the following statements are equivalent:

i. T is ergodic.

ii. The only members A1 of F with Q (T−1(A1)△ A1) = 0 are those with Q (A1) = 0

or Q (A1) = 1.

iii. For every A1 ∈ F with Q (A1) > 0 we have Q (
⋃∞

n=1 T
−n(A1)) = 1, where Tn denotes

the nth iterate of the transformation T and T−n its inverse.

iv. For every A1,A2 ∈ F with Q (A1), Q (A2) > 0 there exists n > 0 with

Q (T−n(A1)
⋂

A2) > 0.

For a proof see [117], p. 27f.

Theorem 23. (Fouque [54], p. 115, Ergodicity of Markov processes)

Let us assume a Markov process, which is irreducible, i.e. the process can visit any neigh-

bourhood of the state space with positive probability, in finite time and from any starting

point, and which possesses an invariant probability density function. Then the process is

ergodic.
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Remark 6. Every ergodic Markov process has a unique invariant probability distribution

pinv and the distribution converges to the invariant distribution as t→∞ for any initial

distribution. This probability distribution belongs to the null space of the adjoint generator

A∗ of its infinitesimal generator A, i.e. that is the invariant distribution solves the adjoint

equation: A∗ pinv=0.

See [54], p. 116.

Instead of proving the existence of a Markov process X satisfying the Kolmogorov back-

ward and forward equation, the methodology of stochastic differential equations was sug-

gested. Thus, in the following we introduce the concept of stochastic differential equations

with respect to Brownian motions and their solutions in the so-called strong sense.

Definition 42. (Zagst [119], Definition 2.44, p. 36, Strong solution)

If there exists a d-dimensional stochastic process X = (X(t))t≥0 on the filtered probability

space (Ω,F ,Q,F), where each satisfies (2.66) and (2.67), i.e. an Itô process, such that

for all t ≥ 0

X(t) = x+

∫ t

0

µ(s,X(s))ds+

∫ t

0

σ(s,X(s))dW (s) Q− a.s.,

X(0) = x ∈ R
d, fixed, (2.85)

we call X a strong solution of the stochastic differential equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), for all t ≥ 0,

X(0) = x. (2.86)

The following theorem answers the existence and uniqueness question for some stochastic

differential equations.

Theorem 24. (Zagst [119], Theorem 2.45, p. 36f, Existence and Uniqueness)

Let µ and σ of the stochastic differential equation be continuous functions such that for

all t ≥ 0,x,y ∈ R
n and for some constant Ξ1 > 0 the following conditions hold:

i. (Lipschitz condition)

‖µ(t,x)− µ(t,y)‖+ ‖σ(t,x)− σ(t,y)‖ ≤ Ξ1 ‖x− y‖ , (2.87)

ii. (Growth condition)

‖µ(t,x)‖2 + ‖σ(t,x)‖2 ≤ Ξ2
1(1 + ‖x‖2). (2.88)
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Then there exists a unique, continuous strong solution X = (X(t))t≤0 of the SDE and a

constant Ξ2, depending only on Ξ1 and T > 0, such that

EQ
[
‖X(t)‖2

]
≤ Ξ2(1 + ‖x‖2)eΞ2t for all t ∈ [0, T ]. (2.89)

Moreover,

EQ

[

sup
0≤t≤T

‖X(t)‖2
]

<∞.

For a proof see Øksendal [91], p. 69-71.

In the one dimensional case, the Lipschitz condition on the diffusion coefficient can be

considerably relaxed.

Proposition 1. (Karatzas and Shreve [76], Proposition 5.2.13, p. 291, Yamada and

Watanabe)

Let d = 1 and let us suppose that the coefficients of the one-dimensional equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) (2.90)

satisfy the conditions

|µ(t, x)− µ(t, y)| ≤ Ξ1 |x− y| ,
|σ(t, x)− σ(t, y)| ≤ h |x− y| ,

for every 0 ≤ t <∞ and x ∈ R, y ∈ R, where Ξ1 is a positive constant and h : [0,∞) 7−→
[0,∞) is a strictly increasing function with h(0) = 0 and

∫

0,Ξ2

h−2(u)du =∞; ∀ Ξ2 > 0. (2.91)

Then strong uniqueness holds for Equation (2.90).

For a proof see Karatzas and Shreve[76], p. 291-292.

Definition 43. (Karatzas and Shreve [76], Definition 5.3.1, p. 300, Weak solution)

A weak solution of Equation (2.65) is a tuple (X,W ), (Ω,F ,Q,F), where

i. (Ω,F ,Q) is a probability space, and F is a filtration of sub-σ-fields of F satisfying

the usual conditions,

ii. X = {X(t),Ft, 0 ≤ t <∞} is a continuous, adapted R
d-valued process,

W = {W (t),Ft, 0 ≤ t <∞} is a d-dimensional Brownian motion,
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iii. Q
(∫ t

0
(|µ (s,X(s))|+ σ2

k (s,X(s)) ds) <∞
)

= 1 holds for every 1 ≤ k ≤ d, and

0 ≤ t <∞, and

iv. the integral version of (2.65)

X(t) = X(0) +

∫ t

0

µ (s,X(s)) ds+

∫ t

0

σ (s,X(s)) dW (s), 0 ≤ t <∞. (2.92)

holds almost surely.

2.4.1 Important examples of SDE’s in R
1

Example 2. (Geometric Brownian Motion)

We model the stock prices with geometric Brownian motions with the following SDE

dX(t) = X(t) (µdt+ σdW (t)) , X(0) > 0, (2.93)

where µ and σ are fixed constants.

This differential equation has the unique solution

X(t) = X(0)e(µ−
1
2
σ2)t+σW (t). (2.94)

For a proof see Bingham and Kiesel [12], p. 215-216.

Furthermore, the expectation, variance, and covariance functions are (see Arcones [6], p.

178)

E [X(t)] = X(0)eµt, (2.95)

Var [X(t)] = X(0)2e2µt(eσ
2t − 1), (2.96)

Cov [X(s), X(t)] = X(0)2eµ(t+s)(eσ
2(t∧s) − 1). (2.97)

Example 3. (Ornstein-Uhlenbeck Process)

The oldest example of a stochastic differential equation is the Ornstein-Uhlenbeck (OU)

Process (see Bingham and Kiesel [12], p. 204)

dX(t) = −κX(t)dt+ σdW (t), X(0) > 0, (2.98)
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The solution of this equation is (see Karatzas and Shreve [76], p. 358)

X(t) = X(0)e−κt + σ

∫ t

0

e−κ(t−s)dW (s); 0 ≤ t <∞. (2.99)

The expectation, variance, and covariance functions are (see Karatzas and Shreve [76], p.

358)

E [X(t)] = X(0)e−κt, (2.100)

Var [X(t)] =
σ2

2κ
(1− e−2κt), (2.101)

Cov [X(s), X(t)] =
σ2

2κ
e−κ(t+s)(e2κ(t∧s) − 1). (2.102)

The invariant distribution of X is a zero-mean Gaussian distribution with covariance

function Cov(X(s), X(t)) = (σ2/2κ) e−κ|t−s|.

A special case is the mean-reverting Ornstein-Uhlenbeck process (see Øksendal [91], p. 75)

dX(t) = κ (ζ −X (t)) dt+ σdW (t), (2.103)

which can be solved for

X(t) = ζ
(
1− e−κt

)
+X(0)e−κt + σ

∫ t

0

e−κ(t−s)dW (s); 0 ≤ t <∞. (2.104)

See Øksendal [91], p. 75. The expectation, variance, and covariance functions are given

by

E [X(t)] = ζ
(
1− e−κt

)
+X(0)e−κt, (2.105)

Var [X(t)] =
σ2

2κ
(1− e−2κt), (2.106)

Cov [X(s), X(t)] =
σ2

2κ
e−κ(t+s)(e2κ(t∧s) − 1). (2.107)

X(t) is mean-reverting, i.e.

E [X(t)] = ζ
(
1− e−κt

)
+X(0)e−κt −→ ζ, (2.108)

as t −→ ∞. The invariant distribution is, thus, a Gaussian with mean ζ and covariance

function Cov(X(s), X(t)) = (σ2/2κ) e−κ|t−s|.
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Example 4. (Cox-Ingersoll-Ross Process (CIR))

dX(t) = κ (ζ −X(t)) dt+ σ
√

X(t)dW (t). (2.109)

Cox, Ingersoll, Ross applied this process to model interest rates, Heston used it to describe

the volatility in his model, because X(t) remains positive (if X(0) ≥ 0) provided (see Feller

[43])

ζ >
σ2

2κ
. (2.110)

Its existence and uniqueness can be proved with the Yamada-Watanabe proposition (Propo-

sition 1). For this process there is no explicit formula for X(t) in terms ofW (t). However,

there exists an explicit formula for the transition probability density

p ((t, x) −→ (s, y)) = p (X(s) = y | X(t) = x) . (2.111)

See Cox, Ingersoll and Ross [25].

The expectation and the variance are given by (see [30])

E [X(t)] = X(0)e−κt + ζ
(
1− e−κt

)
, (2.112)

Var [X(t)] = X(0)
σ2

κ

(
e−κt − e−2κt

)
+ ζ

σ2

2κ

(
1− e−2κt

)2
. (2.113)

Cov [X(s), X(t)] = X(0)
σ2

κ
(e−κt − e−κ(s+t))

+ζ
σ2

2κ
(e−κ(t−s) − 2e−κt + e−κ(t+s)), s < t (2.114)

As the CIR process is mean-reverting:

E [X(t)] = X(0)e−κt + ζ
(
1− e−κt

)
−→ ζ. (2.115)

The invariant distribution of the CIR process is the gamma distribution with expectation

ζ and variance ζ σ2

2κ
[36].
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2.5 Connections between stochastic differential equa-

tions and partial differential equations

A direct link is given by the Feynman-Kac representation. In the following we consider a

solution to the stochastic differential Equation (2.65), under the assumptions that

i. the coefficients µi(t,x) and σik(t,x) are continuous and satisfy the linear growth

condition (2.88),

ii. the Equation (2.65) has a weak solution
(
X(t,x),W

)
, (Ω,F ,Q,F) for every pair

(t,x) with X(t) = x, and that

iii. the solution is unique in the sense of probability law.

Closely related to the Stochastic Differential Equation (2.65) is the second-order differen-

tial operator

(Atξ) (x) :=
1

2

d∑

i=1

d∑

k=1

aik(t,x)
∂2ξ(x)

∂xi∂xk
+

d∑

i=1

µi(t,x)
∂ξ(x)

∂xi
, ξ ∈ C2

(
R

d
)
. (2.116)

With an arbitrary but fixed T > 0 and appropriate constants Ξ > 0, λ̂ ≥ 1, we consider

functions g(x) : Rd → R and r(t, x) : [0, T ]×R
d → [0,∞ ) which are continuous and g(x)

satisfies

|g(x)| ≤ Ξ
(

1 + ‖x‖2λ̂
)

or g(x) ≥ 0, ∀ x ∈ R
d. (2.117)

Theorem 25. (Karatzas and Shreve [76], Theorem 5.7.6, p. 366, Feynman-Kac theorem)

Under the preceding assumptions suppose that ξ(t,x) : [ 0, T ]×R
d → R is continuous, is

of class C1,2
(
[ 0, T ]× R

d
)
, and satisfies the Cauchy problem

− ∂ξ

∂t
= Atξ − rξ, t > 0, x ∈ R

d, (2.118)

ξ(T,x) = g(x), x ∈ R
d, (2.119)

where we simplified the terminal condition by foregoing the limes-formulation, r is called

killing rate of ξ, as well as the polynomial growth condition

max
0≤t≤T

|ξ(t,x)| ≤ Ξ
(

1 + ‖x‖2λ̂
)

, x ∈ R
d, (2.120)

for some Ξ > 0, λ̂ ≥ 1. Then ξ(t,x) admits on [0, T ]× R
d the stochastic representation

ξ(t,x) = E
(t,x)

[

g (X(T )) exp

{

−
∫ T

t

r(s,X)ds

}]

, (2.121)
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where E
(t,x) denotes the expected value with respect to Qt,x with Qt,x(X(t) = x) = 1, on

[0, T ]× R
d. In particular, such a solution is unique.

Definition 44. (Karatzas and Shreve [76], Definition 5.7.9, p. 368, Fundamental solu-

tion)

A fundamental solution of the second-order partial differential Equation (2.118) is a non-

negative function Ḡ (t′,x′, t,x) defined for 0 ≤ t < t′ ≤ T , x ∈ R
d, x′ ∈ R

d, with the

property that for every g ∈ C0(R
d), t′ ∈ (0, T ], the function

ξ(t,x) :=

∫

Rd

Ḡ (t′,x′, t,x) g (x′) dx′, 0 ≤ t < t′, x ∈ R
d (2.122)

is bounded, of class C1,2, satisfies (2.118) and (2.119).

Theorem 26. (Karatzas and Shreve [76], p. 368 Existence of a fundamental solution)

A fundamental solution Ḡ exists if the following conditions imposed on µi(t,x), aik(t,x),

and r(t,x) are satisfied,

i. Uniform ellipticity: There exists a positive constant Ξ such that

d∑

i=1

d∑

k=1

aik(t,x)x
′
ix

′
k ≥ Ξ ‖x′‖2 , (2.123)

holds for every x′ ∈ R
d and (t,x) ∈ [ 0,∞)× R

d,

ii. Boundedness: The functions µi(t,x), aik(t,x), and r(t,x) are bounded in [ 0, T ) ×
R

d,

iii. Hölder continuity: The functions µi(t,x), aik(t,x), and r(t, x) are (uniformly)

Hölder-continuous in [ 0, T )× R
d.

Remark 7. For fixed (t′,x′) ∈ ( 0, T ]× R
d the function

φ(t,x) := Ḡ (t′,x′, t,x) (2.124)

is of class C1,2
(
[ 0, T )× R

d
)
and satisfies the backward Kolmogorov equation in the

backward variables (t,x) with killing rate r and terminal conditions (exactly as in

(2.118)). See Karatzas and Shreve [76], p. 368f.
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If in addition the functions ∂
∂xi
µi(t,x),

∂
∂xi
aik(t,x) and ∂2

∂xi∂xk
aik(t,x) are bounded and

Hölder-continuous, then for fixed (t,x) ∈ ( 0, T ]× R
d the function

ψ (t′,x′) := Ḡ(t′,x′, t,x) (2.125)

is of class C1,2
(
[ 0, T )× R

d
)
and satisfies the forward Kolmogorov equation in the forward

variables (t′,x′) with killing rate r:

∂ψ

∂t′
= A∗

t′ψ − rψ, t > 0, x ∈ R
d. (2.126)

See Karatzas and Shreve [76], p. 368f.

With Theorem 25 the solution for ξ is given by

ξ(t,x) = E
(x,t)

[

e−
∫ t′

t
r(s,x)dsg (X(t′))

]

, g ∈ C0

(
R

d
)
, t′ ∈ [t, T ]. (2.127)

Comparing (2.127) and (2.122) we can deduce that any fundamental solution Ḡ (t′,x′, t,x)

is also the transition probability density for the discounted process X(t,x) determined by

Q(t,x) (X(t′) ∈ A) =

∫

A

Ḡ (t′,x′, t,x) dx′, A ∈ B
(
R

d
)
, 0 ≤ t < t′ ≤ T. (2.128)

In the following our descriptions are based on Zauderer [121], p. 415ff. The here so called

fundamental solution or transition probability is closely related to the Green functions.

This relationship is presented in the following.

Assume that µi(t,x) =
1
2

∑d

k=1
∂aik(x)
∂xk

then (2.116) can be simplified. In those cases we

call the second-order operator Aself
t and reformulate (2.116) to

Aself
t ξ(x) =

1

2

d∑

i=1

d∑

k=1

aik(x)
∂2ξ(x)

∂xi∂xk
+

d∑

i=1

(

1

2

d∑

k=1

∂aik(x)

∂xk

)

∂ξ(x)

∂xi

=
1

2

d∑

i=1

d∑

k=1

(

aik(x)
∂2ξ(x)

∂xi∂xk
+
∂aik(x)

∂xk

∂ξ(x)

∂xi

)

=
d∑

i=1

d∑

k=1

∂

∂xk

(

aik(x)
∂ξ

∂xi

)

. (2.129)

Definition 45. (Reed and Barry [102], p. 186, Adjoint operator)

The adjoint operator A∗ satisfies

〈Aξ, φ〉 = 〈ξ,A∗φ〉. (2.130)
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An operator for which A = A∗ is called self-adjoint.

We have already given the explicit form of the adjoint operator for a second-order differ-

ential operator in (2.76). Hence,

Aself
t

∗
ξ(x) =

1

2

d∑

i=1

d∑

k=1

∂2

∂xk∂xi
(aik(x)ξ(x))−

d∑

i=1

∂

∂xi

(

1

2

d∑

k=1

∂aik(x)

∂xk
ξ(x)

)

=
1

2

d∑

i=1

d∑

k=1

(

aik(x)
∂2ξ(x)

∂xi∂xk
+
∂aik(x)

∂xk

∂ξ(x)

∂xi

)

+
1

2

d∑

i=1

d∑

k=1

(

ξ(x)
∂2aik(x)

∂xi∂xk
+
∂aik(x)

∂xi

∂ξ(x)

∂xk

)

−1

2

d∑

i=1

d∑

k=1

(

ξ(x)
∂2aik(x)

∂xi∂xk
+
∂aik(x)

∂xi

∂ξ(x)

∂xk

)

= Aself
t ξ(x) (2.131)

Hence, operators A of the form A =
∑d

i=1

∑d

k=1
∂

∂xk

(

aik(x)
∂ξ

∂xi

)

are self-adjoint. In the

following we work with self-adjoint operators.

Theorem 27. (Zauderer [121], p. 415f, Green function for parabolic equation with

Dirichlet boundary conditions)

For a parabolic equation

∂ξ (t′,x′)

∂t′
−Aselfξ (t′,x′) + r(x′)ξ(t′,x′) = K (t′,x′) , x′ ∈ D, 0 < t′, (2.132)

with initial and Dirichlet boundary conditions

ξ (0,x′) = g (x′) , x′ ∈ D, ξ(t′,x′) |x′∈∂D = B (t′,x′) , 0 < t′, (2.133)

where r(x′) is a non-negative function, K(t′,x′) is a real-valued time-dependent function,

D is a bounded region in two or three dimensions and ∂D its boundary. B (t′,x′) is a

given function evaluated on ∂D. The integral theorem for the solution of ξ is then in

(t′,x′)-space:

ξ (t′,x′) =

∫ T

0

∫

D

Ḡ (t,x, t′,x′)K (t,x) dxdt+

∫

D

(
Ḡ (t,x, t′,x′) g(x)

)
|t=0 dx

−
∫ T

0

∫

∂D

a(t,x)B(t,x)
∂Ḡ (t,x, t′,x′)

∂n
dsdt. (2.134)

where a = {aik}, ds is an element of the respective boundary area and n denotes the unit

normal on ∂D pointing to the exterior of D. The Green function Ḡ(t,x, t′,x′) fulfils the
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following problem

− ∂Ḡ (t,x, t′,x′)

∂t
−AselfḠ (t,x, t′,x′) + r(x)Ḡ (t,x, t′,x′) = δ (x′ − x) δ (t′ − t) ,

x, x′ ∈ D, 0 < t, t′ < T, (2.135)

with the end and boundary conditions

Ḡ (T,x, t′,x′) = 0, Ḡ (t,x, t′,x′) |x∈∂D = 0, t ≤ T. (2.136)

The equation (2.135) satisfied by the Green’s function Ḡ (t,x, t′,x′) is a backward

parabolic equation that results on reversing the direction of time in the forward parabolic

Equation (2.132). It can be shown that Ḡ (t,x, t′,x′) = Ḡ (−t′,x′,−t,x, ). Thus, as a

function of x′ and t′, Ḡ satisfies a backward parabolic differential equation, but with time

now running forwards instead of backwards. [121], p. 416.

Remark 8. When the time is reversed in the forward parabolic Equation (2.132) by a

change in variables, i.e. t′ → t and we set now K = 0, remove the boundary conditions in

(2.139), then the equation can be reformulated to

− ∂ξ (t,x)

∂t
−Aselfξ (t,x) + r(x)ξ(t,x) = 0, x ∈ D, 0 < t < T, (2.137)

with the end conditions

ξ (T,x) = g (x) , x ∈ D, (2.138)

ξ is then given by

ξ (t,x) =

∫

D

(
Ḡ (t′,x′, t,x) g(x′)

)
|t=T dx

′, (2.139)

When we assume that the operator in (2.118) is self-adjoint the two problems are identical.

Thus, (2.139) and (2.122) must agree with each other, which means that the fundamental

solution is equal to the Green function in the backward variables.

The problem of the Green Function (2.135) can be reformulated to be consistent with

the problem the fundamental solution satisfies in the backward variables which we show

in the following. The connecting link between the two formulations lies in Duhamel’s

principle which is now introduced.
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Theorem 28. (Zauderer [121], p. 218ff, Duhamel’s principle)

Let ξ (t′,x′) satisfy a PDE of parabolic case

∂ξ (t′,x′)

∂t′
−Aselfξ (t′,x′) + r(x′)ξ(t′,x′) = K (t′,x′) , (2.140)

with the following initial conditions

ξ (0,x) = 0, (2.141)

and homogeneous boundary conditions (if available). Then there exists a function ϑ(x, t; s)

with parameter s (initial time) such that

ξ (t′,x′) =

∫ t

0

ϑ (t′,x′; s) ds, (2.142)

and ϑ satisfies the following equations

∂ϑ(t′,x′)
∂t′

−Aselfϑ (t′,x′) + r(x′)ϑ (t′,x′) = 0, (2.143)

with the same boundary condition (if any) as ξ and the following initial conditions, given

at t = s, where s ≥ 0:

ϑ (s,x) = K (s,x). (2.144)

Remark 9. It can be shown that in the parabolic case the Green function can be alterna-

tively constructed as follows (see [121], p. 417f)

− ∂Ḡ (t,x, t′,x′)

∂t
−AselfḠ (t,x, t′,x′) + r(x)Ḡ (t,x, t′,x′) = 0, x,x′ ∈ D, t < t′, (2.145)

with the boundary conditions as of before and the initial condition substituted by

Ḡ (t′,x, t′,x′) = δ (x′ − x), x′ ∈ D. (2.146)

The only difference is that the domain of integration in the original formulation of (2.134)

extends from 0 to T whereas in the present formulation it extends from 0 to t′. However,

Zauderer [121], p. 417f finds that the domains of integration are, in effect, identical for

both formulations.
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2.6 Pricing contingent claims

In the following we provide necessary tools to price contingent claims in financial markets.

We assume the existence of a risk-neutral measure Q̃. Then, a European contingent claim

with maturity T is given by the following formula.

Theorem 29. (Bingham and Kiesel [12], Theorem 6.2.3, p. 250, Risk-neutral valuation

formula)

Assume the existence of a risk-neutral measure Q̃, and a European contingent claim C(t, x)

with maturity T . Let P0 be an asset without systematic risk, the bank account, with a price

process given by dP0(t) = P0(t)r(t)dt, P0(0) = 1, where r(t) is the risk-free deterministic

instantaneous interest rate. The price of C(t, x), the arbitrage price process of X, is then

given by the risk-neutral valuation formula

C(t, x) = P0(t)EQ̃

[
X

P0(T )

∣
∣
∣
∣
Ft

]

= EQ̃

[

Xe−
∫ T
t

r(s)ds
∣
∣
∣Ft

]

.

In the classical Black-Scholes model the price of a contingent claim X is given by the

risk-neutral valuation principle with

C(t, x) = e−r(T−t)
EQ̃ [X | Ft] ,

where the unique martingale measure Q̃ is given by the Girsanov transformation

E(t, x) = e−(
µ−r
σ )W (t)− 1

2(
µ−r
σ )

2
t.

For the following explanations in the main part we introduce some more notations.

Definition 46. (Operators)

L denotes in the following the parabolic operator of a differential equation, L∗ is its adjoint

according to Definition 45, e.g. the adjoint operator of the differential operator L =
∂
∂t
+A− rf(t,x) is given by L∗ = − ∂

∂t′
+A∗ − rf(t,x). Thus, LBSf denotes the Black-

Scholes operator in two dimensions applied on the test function f(t,x), given by

LBSf(t,x) =
∂f(t,x)

∂t
+Af(t,x)− rf(t,x), (2.147)

where A is given in (2.71) with drift r. The adjoint operator L∗
BS is hence given by

L∗
BSf(t,x) = −

∂f(t,x)

∂t′
+A∗f(t,x)− rf(t,x). (2.148)
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2.7 Solution of PDE

In the following we will loosely state some concepts on which we base some of our proofs

later.

Definition 47. (Zauderer [121], p. 182f, Method of separation of variables)

Consider the following parabolic problem with the restrictions as defined in Definition 27

∂ξ(t′,x′)

∂t′
−Aselfξ(t′,x′) + r(x′)ξ(t′,x′) = 0, x′ ∈ D, t′ > 0, (2.149)

where 0 ≤ x′ ≤ b and ξ satisfies the boundary conditions

ξ(t′,x′) |x′∈∂D = 0, t′ > 0, (2.150)

and the initial condition ξ(0,x′) = g(x′), x ∈ D. The method of separation of variables

requires a solution of (2.149) in the form

ξ(t′,x′) = H(x′)T (t′), (2.151)

with the function H(x′) satisfying the boundary conditions 2.150. Substituting (2.151)

into (2.149) and dividing by HT yields

∂T (t′)
∂t′

T (t′)
=
AselfH(x′)− r(x′)H(x′)

H(x′)
. (2.152)

For more details see [121], p. 182ff.

Definition 48. (Zauderer [121], p. 476, Free space Green function)

The Green function Ḡ can be expressed in the form (see [121], p. 476ff)

Ḡ = ḠF + ḠG, (2.153)

where ḠF is the free space Green function. ḠF satisfies the same PDE as the Green

function Ḡ. In addition, ḠF satisfies the terminal condition in the parabolic case. Hence,

ḠG satisfies a homogeneous PDE with homogeneous end conditions at t = T . With respect

to the boundary conditions, we require ḠG = −ḠF on ∂D. The method of images is used

to determine ḠG.
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Theorem 30. (Harrell and Herod [60], Theorem 15.12, Fredholm alternative theorems

for ordinary differential operators)

Suppose that Ad is a dth-order differential operator. The problem is posed as follows:

Given f find ξ such that Adξ = f with ξ(Bk) = 0, with k = 1, . . . , d, where B1, . . . ,

Bd ∈ ∂D, the bounded region.

i. Exactly one of the following two alternatives holds:

(a) (First alternative) If f is continuous then Adξ = f with ξ(Bk) = 0, with

k = 1, . . . , d, has one and only one solution.

(b) (Second alternative) Adξ = 0 with ξ(Bk) = 0, with k = 1, . . . , d, has a non-

trivial solution.

ii. (a) If Adξ = f with ξ(Bk) = 0 has exactly one solution, then so does Ad∗ξ = f

with ξ(Bk) = 0 has exactly one solution where ξ is the conjugate function of ξ.

(b) Adξ = 0 with ξ(Bk) = 0 has the same number of linearly independent solutions

as Ad∗ξ = 0 with ξ(Bk) = 0.

iii. Suppose the second alternative (i(b)) holds. Then Adξ = f with ξ(Bk) = 0, with

k = 1, . . . , d, has a solution if and only if 〈f, ϑ〉 = 0 for each ϑ that is a solution for

Ad∗ϑ = 0 with ϑ(Bk) = 0,

where 〈f, ϑ〉 denotes the scalar product and Ad∗ is the adjoint operator as defined in

Definition (45).

The following theorem is important when a solution of a PDE gained by transformations

is in form of integrals and those integrals shall be stated in the original variables.

Theorem 31. (Königsberger [80], p. 300, Transformation theorem)

Let T : Rd → R
d,Tx = Ax + b, A ∈ R

d×d, b ∈ R
d, be a regular affine transformation. If

f : Rd → R
d is integrable over some A ⊂ R

d, then f ◦ T is integrable over T−1(A), and

∫

T−1(A)

f(Ax+ b)dx =
1

|detA|

∫

A

f(y)dy, (2.154)

where det(A) is called Jacobi determinant.
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Chapter 3

Pricing of barrier options within

stochastic covariance model

3.1 Introduction

Empirical studies are in support of the fact that asset price volatility is random and not

deterministic as assumed by the models originally proposed by Black and Scholes [13]

and Merton [87]. Although, the volume of trades in exotic options has tremendously

increased in the last decade, this assumption is still very popular in practice, especially

in plain vanilla option pricing context, due to its simplicity. Multi-dimensional products

depend to a great extent on the volatility and covariance structure of the underlying.

The financial crisis shows that the assumption that the covariance structure is constant

is not valid. For options on one underlying models which do no longer assume volatility

of the underlying to be constant have been introduced, e.g. the local volatility model by

Dupire [37] or stochastic volatility models, e.g. the ones by Stein and Stein [111] or Heston

[65]. In such models closed-form solutions for lookback and barrier options on a single

underlying are still available, e.g. in [83].

Recently, multivariate models, like for example the Wishart model, have been developed

by Gourieroux in [58], [57] and [56] as well as by da Fonseca and others in [27], [26].

However, these models are rather complex so that analytical expressions especially for

path-dependent options are rare. Hence, most of the exotic options, particularly those

involving barriers, are priced using techniques like Monte Carlo simulations, finite ele-

ment or difference methods when the strict assumptions of a Brownian motion framework

are released. However, numerical issues and convergence problems arise particularly in

the case of path-dependent options and refinements of the grid or simulations have to be

imposed to model the assets at price levels close to the barriers.
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In a two-underlying geometric Brownian model an analytical expression of the joint dis-

tribution of the maximum/minimum and maturity values of two assets exists and has

been derived by He et al. [64] and Zhou [123], [124].

In this chapter we can extend their analytic result to a model which allows for a third

factor, which governs the stochastic volatility of the two underlying processes, and price

options with time-dependent barriers. We will show that the pricing function can be

derived in two ways, via Fourier transformation and inversion, as well as via Fourier

series.

In Section 3.2 we introduce the framework of models, which are considered in the re-

mainder of the chapter. Some basic transformations to bring the PDE in a form we

can work with are presented in Section 3.3. In Section 3.4 we concentrate on the first

method, i.e. pricing options using Fourier integration techniques. We build upon methods

first introduced by Lipton [83] and Lewis [82]. One of the models we consider has been

first introduced by Bakshi and Madan [8] and has been applied by Dempster and Hong

[32] to value correlation and spread options using Fourier transform. As far as we know

Borovkov and Novikov [15] as well as Lipton [83] have been the only ones to price barrier

options on one underlying using Fourier transforms. Borovok and Novikov use a change of

measure with the normalised payoff without barriers as Radon-Nikodym derivative. We

follow Lipton’s approach in Section 3.4.1 using the reflection principle and the method of

images to price options with a time-varying barrier on each underlying in a three-factor

framework. A manageable closed-form solution is attained when the correlation structure

of the two Brownian motions is assumed to be of the form ρ = − cos π
n
, or takes those

values randomly. We will show that the formulas converge point-wise. The Lipton and

Lewis approach is then compared to the approach of Bakshi and Madan [8] as well as

Dempster [32] in Section 3.4.5. The formulas are implemented for double-digital barrier

options and correlation barrier options in 3.4.3 and 3.4.4. When we degenerate the three-

factor model it converges to the two-dimensional Black-Scholes framework. We compare

prices obtained in the degenerated model applying Fourier techniques with prices which

have been derived using the standard Black-Scholes formulas and find the results to be

quite close.

The assumed dependence structure might at first glance seem restrictive because the

correlations are negative for n > 2. However, the assumption of random correlations

makes a positive expected value for the correlation attainable (see Section 3.4.6) and

adds additional randomness to the covariance dynamics. Furthermore, we believe that

a closed-form solution is helpful to test various numerical methods like Monte Carlo

simulations.
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In the second part we deal with solutions (derived via PDE and Fourier series) which

relieve the restrictions made on ρ. The solutions are a direct extension of the analytical

expression of the joint distribution of the maximum/minimum and maturity values of two

assets each governed by a geometric Brownian motion derived by He et al. [64]. We exploit

the affine structure of the characteristic function and find an easy attainable solution

(see Section 3.5.1). The general pricing formula is again applied to double-digital and

correlation barrier options (see 3.5.2 and 3.5.3) and the results from the formulas derived

using PDE techniques are compared to the ones using the Fourier technique. They are

consistent. Finally, in Section 3.6, we apply those formulas to the pricing of certificates

under issuer risk and find that neglecting issuer risk and/or stochastic covariance leads

to tremendous price differences.

The focus and innovation of this chapter is the pricing of barrier options like double-

digital barrier options or product barrier options in a stochastic covariance framework,

but the transition-probability functions/characteristic functions presented can also be

used to value other barrier options based on two assets.

3.2 Model framework

The system of processes is defined on a filtered probability space (Ω,F , Q̃,F) where F0

contains all subsets of the (Q̃−) null sets of F and F is right-continuous. We define the

processes under the risk-neutral measure Q̃. We start from a simple two-dimensional

geometric Brownian model (GBM) to describe the dynamics of the two underlyings of the

derivatives.

dSi = Sirdt+ SiσidWi, for i ∈ I = {1, 2} (3.1)

〈dW1, dW2〉 = ρdt.

This model is extended and made more flexible by allowing for a third factor governing

the stochastic covariance:

dSi = Sirdt+ Siσiv
νdWi for i ∈ I = {1, 2}, (3.2)

dv = κ(ζ − v)dt+ σvv
γdZ,

〈dWi, dZ〉 = 0,

〈dW1, dW2〉 = ρdt,
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where κ, ζ, σv, and γ as well as ν are constants. The model includes well-known cases,

like for example the case of constant volatility, which follows from setting κ = σv = 0

and v(0) = 1. It also contains several known uni- and bi-dimensional stochastic volatility

models, for instance:

• The model with γ = ν = 1
2
has been considered in the case of correlation options by

Bakshi and Madan [8] and spread options in the work of Dempster and Hong [32].

Note that when |I| = 1, i.e. S1 = S2, as well as γ = ν = 1
2
the model is known as

the Heston model. The process which the volatility follows in this model has been

introduced in finance by Cox et al. for short rate modelling and is therefore referred

to as Cox-Ingersoll-Ross process (CIR process) (see Cox et al. [25]). The popularity

of the CIR process is due to the positive value of v, which is guaranteed as long as

(see Feller [44])

2κζ > σ2
v . (3.3)

• The case |I| = 1, γ = 0 and ν = 1 has been introduced by Stein and Stein (see

[111]). The volatility follows a Gaussian mean-reverting process, which is also called

Ornstein-Uhlenbeck process. This process has been introduced by Vasicek [115] to

term structure modelling and has been used by Hull and White [68], Scott [106] and

Schöbel and Zhu [105].

• The case |I| = 1, γ = 1 and ν = 1
2
gives Wiggins’ log-normal model (see [118]).

• The case |I| = 1, γ = 3
2
and ν = 1

2
gives Lewis’ model (see [81]).

In this chapter, we focus on the two diffusions with parameter sets γ = ν = 1
2
and γ = 0,

ν = 1, which possess affine-type characteristic functions, to derive closed-form expressions

for the price of barrier derivatives.

3.3 Pricing of two-asset barrier options

A two-asset knock-out barrier option has a payout g(S1, S2), which may depend on S1(T )

and S2(T ), at maturity time T provided that not any of the two assets has crossed

a predefined time-dependent barrier B1(t) = B1e
∫ t
0 r(s)ds or B2(t) = B2e

∫ t
0 r(s)ds. The

popularity of barrier options has increased in the last years (see Walmsley [116], p. 220).

Adding barriers is a convenient method for reducing an option’s cost (see Pooley et al.

[95]). Often they are part of complex structured notes, e.g. certificates. Barrier options

are also used to account for default in some credit models, e.g. in the CreditGrades model
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(see Sepp [107]). When we assume risk-neutral valuation the value of a general two-asset

barrier option with time-dependent barriers on each of the underlyings is given by

C(t, S1, S2, B1, B2) = EQ̃

[

e−
∫ T
t

r(s)dsg (S1(T ), S2(T ))1{ι1>T, ι2>T} |Ft

]

,

where

ι1 = inf (t′ ∈ (t, T ] : S1(t
′) ≤ B1(t

′)) ,

ι2 = inf (t′ ∈ (t, T ] : S2(t
′) ≤ B2(t

′)) , (3.4)

where the expectation is taken with respect to the pricing measure Q̃.
g (S1(T ), S2(T )) describes the part of the payoff which depends on the values of S1 and

S2 in T . The following PDE can be derived for the general model (in 3.2). It is clear that

the PDE and the initial conditions are equal to the case without barriers. Additionally,

we introduce boundary conditions. See also Appendix A.1.1 for the transformations.
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(3.5)

The PDE can be reduced to
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2γ ∂2G
∂v2

+ κ(ζ − v)∂G
∂v

= 0,

G(t, b1, x2, b1, b2, v) = 0, G(t, x1, b2, b1, b2, v) = 0,

G(T, x1, x2, b1, b2, v) = g (x1, x2)1{ι1>T, ι2>T},

(3.6)

where we use the transformations xi(t) := ln

(

Si(t)e
∫T
t r(s)ds

Ki

)

, bi := ln
(

Bi(T )
Ki

)

for i ∈

{1, 2}, and G(t, x1, x2, b1, b2, v) := e
∫ T
t

r(s)dsC(t, S1, S2, B1(t), B2(t), v). Equation (3.6) is

the Kolmogorov backward equation (see Karatzas and Shreve [76], p. 282) for the follow-

ing system of SDEs

dxi = −1

2
σ2
i v

2νdt+ vνσidWi,

dv = κ(ζ − v)dt+ σvv
γdZ, (3.7)
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with r implicitly set to zero.

3.4 Pricing of two-asset barrier options with Fourier

techniques

3.4.1 General pricing formulas for two-asset barrier options

with Fourier techniques

The system in (3.6) can be solved for a group of payoffs and models included in the

general framework (3.2), i.e. for specific values of the parameters γ and ν. A necessary

condition for this group is the existence of an affine and analytic characteristic function

(see Definition 32). A characteristic function, which is regular in a neighbourhood of 0,

is also regular in a strip a < ℑ(u) < b, where a and b are horizontal lines to the real

axis and ℑ(u) describes the imaginary part of u, or in the whole plane, and there it

can be represented by a Fourier integral (see Theorem 14). Thus, for a < ℑ(u) < b the

characteristic function of the process X(t) is identical to the generalized Fourier transform

of the transition density (see Section 2.2.7). Generalized Fourier transforms are inverted

by integrating along a contour in the complex u-plane, parallel to the real axis, with u in

the strip of regularity (see Equation (2.50)). Our work extends Lewis’ approach to two

dimensions (see [81],[82]).

These concepts can be extended to Fourier transforms in two variables.

Theorem 32. (Extension of Theorem 7.1.1 of [84] (see Theorem 14) to R
2)

If a characteristic function ϕ(u), where u represents a vector (u1, u2), is regular in a

neighbourhood of the origin, then it is also regular in a horizontal strip to the real axes

and can be represented in this space by a Fourier integral.

Proof.

We follow the lines of Lukacs [84], p. 130ff. Assume that ϕ(u1, u2) is an analytic charac-

teristic function. We know then that all moments of the corresponding distribution exist

and that it admits a MacLaurin expansion

ϕ(u1, u2) =
∞∑

k=0

∞∑

k=0

i(k+k)uk1u
k
2αk,k

k!k!
for |u| ≤ c̃0, (3.8)

where c̃0 = (c̃0,1, c̃0,2) > 0 is the radius of convergence of the series. αk,k =
∫

R2 x
k
1x

k
2p(x1, x2)dx1dx2 describes the algebraic moment. This series can be decomposed
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in an even and an odd part:

even: ϕ1(u1, u2) =
1

2
(ϕ(u1, u2) + ϕ(−u1,−u2)), (3.9)

odd: ϕ2(u1, u2) =
1

2
(ϕ(u1, u2)− ϕ(−u1,−u2)). (3.10)

It can be easily seen that

ϕ1(u1, u2) = ϕ11(u1, u2) + ϕ12(u1, u2), (3.11)

ϕ2(u1, u2) = ϕ21(u1, u2) + ϕ22(u1, u2), (3.12)

where

ϕ11(u1, u2) =
∞∑

k=0

∞∑

k=0

(−1)k+ku2k1 u
2k
2 α2k,2k

(2k)!(2k)!
, (3.13)

ϕ12(u1, u2) =
∞∑

k=1

∞∑

k=1

(−1)k+k−1u2k−1
1 u2k−1

2 α2k−1,2k−1

(2k− 1)!(2k− 1)!
, (3.14)

ϕ21(u1, u2) =
∞∑

k=0

∞∑

k=1

i2k+2k−1u2k1 u
2k−1
2 α2k,2k−1

(2k)!(2k − 1)!
, (3.15)

ϕ22(u1, u2) =
∞∑

k=1

∞∑

k=0

i2k+2k−1u2k−1
1 u2k2 α2k−1,2k

(2k− 1)!(2k)!
. (3.16)

The radii of convergence of these series are denoted by c̃1, c̃2, c̃11, c̃12, c̃21, and c̃22

respectively. From the inequality (derived from the Binomial theorem)

∣
∣x2k−1

1 x2k−1
2

∣
∣ ≤ 1

4

(
x2k1 + x2k−2

1

) (
x2k2 + x2k−2

2

)

=
1

4

(
x2k1 x

2k
2 + x2k1 x

2k−2
2 + x2k−2

1 x2k2 + x2k−2
1 x2k−2

2

)
, (3.17)

it follows that

α2k−1,2k−1

(2k− 1)!(2k − 1)!
≤ β2k−1,2k−1

(2k− 1)!(2k − 1)!

≤ 1

4

(
α2k,2k

(2k)!(2k)!
(2k)(2k) +

α2k,2k−2

(2k)!(2k − 2)!
(2k)

+
α2k−2,2k

(2k− 2)!(2k)!
(2k) +

α2k−2,2k−2

(2k− 2)!(2k − 2)!

)

, (3.18)
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where βk,k =
∫

R2 |x1|k |x2|k p(x1, x2)dx1dx2 describes the absolute moment. Thus, c̃12 ≥
c̃11 ≥ c̃0, as

lim
k→∞,k→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(−1)k+k+2u
2(k+1)
1 u

2(k+1)
2 α2(k+1),2(k+1)

(2(k+1))!(2(k+1))!

(−1)k+ku2k
1 u2k

2 α2k,2k

(2k)!(2k)!
︸ ︷︷ ︸

= 1
c̃11

(2(k+ 1))(2(k + 1))

(2k)(2k)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

c̃11
. (3.19)

We further see that the series
∑∞

k=1

∑∞
k=1

u2k−1
1 u2k−1

2 β2k−1,2k−1

(2k−1)!(2k−1)!
also converges for |u| < c̃11.

Now,

∣
∣x2k1 x

2k−1
2

∣
∣ ≤ 1

2

(
x2k1 x

2k
2 + x2k1 x

2k−2
2

)
,

and
∣
∣x2k−1

1 x2k2
∣
∣ ≤ 1

2

(
x2k1 x

2k
2 + x2k−2

1 x2k2
)
.

Thus,

α2k,2k−1

(2k)!(2k − 1)!
≤ β2k,2k−1

(2k)!(2k − 1)!

≤ 1

2

(
α2k,2k

(2k)!(2k)!
(2k)(2k) +

α2k,2k−2

(2k)!(2k − 2)!
(2k)

)

,

and
α2k−1,2k

(2k− 1)!(2k)!
≤ β2k−1,2k

(2k− 1)!(2k)!

≤ 1

2

(
α2k,2k

(2k)!(2k)!
(2k)(2k) +

α2k−2,2k

(2k− 2)!(2k)!
(2k)

)

. (3.20)

We derive that c̃21 ≥ c̃11 ≥ c̃0 and c̃22 ≥ c̃11 ≥ c̃0. Thus, c̃2 ≥ c̃1. Furthermore, the

series
∑∞

k=0

∑∞
k=0

uk
1u

k
2βk,k

(k)!(k)!
converges due to β2k,2k = α2k,k as well as (3.18) and (3.20) for

|u| < c̃11.

Let P be a real vector and denote the radius of convergence of the Taylor series of

ϕ1(u1, u2) (ϕ2) around P by c̃1(P) (c̃2(P)). Define the kth derivative with respect to u1

and the kth derivative with respect to u2 with

ϕ(k,k)(u1, u2) = ik+k

∫

R

ei(u1x1+u2x2)xk1x
k
2p(x1, x2)dx1dx2. (3.21)
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Note that αk,k = i−(k+k)ϕk,k(0, 0). We see

∣
∣ϕ(2k,2k)(P)

∣
∣ ≤ α2k,2k and

∣
∣ϕ(2k−1,2k−1)(P)

∣
∣ ≤ β2k−1,2k−1, (3.22)

∣
∣ϕ(2k−1,2k)(P)

∣
∣ ≤ β2k−1,2k and

∣
∣ϕ(2k,2k−1)(P)

∣
∣ ≤ β2k,2k−1. (3.23)

Hence,

c̃1(P) ≥ c̃1(0, 0) ≥ c̃0 and c̃2(P) ≥ c̃2(0, 0) ≥ c̃0, (3.24)

and the Taylor series of ϕ1(u1, u2) and ϕ2(u1, u2) around P converge therefore in circles

of radii at least equal to c̃0. The same is true for the expansion of ϕ(u1, u2) around P so

that ϕ(u1, u2) is regular at least in the strip |ℑ(u)| ≤ c̃0.

We have already shown that
∑∞

k=0

∑∞
k=0

|̟1|k|̟2|kβki,k

k!k!
converges for |̟| < c̃0. Thus,

∞∑

k=0

∞∑

k=0

|̟1|k |̟2|k βk,k
k!k!

≥
∞∑

i=0

∞∑

k=0

|̟1|k |̟2|k
k!k!

∫ A

−A

∫ A

−A

|x1|k |x2|k p(x1, x2)dx1dx2

=

∫ A

−A

∫ A

−A

e|x1̟1|+|̟2x2|p(x1, x2)dx1dx2, (3.25)

for any A and |̟| < c̃0. Therefore, the integral
∫

R2 e
i(u1x1+u2x2)p(x1, x2)dx1dx2, where

u = w + i̟, is convergent for any |̟| < c̃0 and any w. This integral is a regular

function in its strip of convergence and agrees with ϕ(u) for real u. Therefore, it must

agree with ϕ(u1, u2) also for complex values u, provided |ℑ(u)| < c̃0 (see Lukacs [84], p.

131f). The integral converges in a strip a < ℑ(u) < b, where |a| ≥ c̃0, b ≥ c̃0 and is

regular inside this strip.

Remark 10. As the moment generating function M̄(w) is given by M̄(w) = ϕ(iw) we

can derive from Theorem 32 that if ϕ(u), u = w + i̟, is regular in a neighbourhood of

the origin the moment generating function exists in a (real) neighbourhood of 0 as long

as ̟ is in the strip of convergence of ϕ. Furthermore, there exists a complex analytic

extension M̄(̟ − iw) to an open set D ⊂ C in the neighbourhood of the origin. See also

[31].

Thus, for a < ℑ(u) < b the characteristic function of the processes X(t) is identical to

the multi-dimensional generalized Fourier transform of the transition density. To apply

these concepts to option pricing we need the following conclusions about the convergence

of the inversion of the Fourier transform of a convolution.
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Theorem 33. (Fourier inversion of a product of functions with ℜ(u) ∈ R
d)

Let f̂(u) ∈ L1(Rd) be the Fourier transform of a function f(x), f ∈ L1(Rd), and let g(x)

and its Fourier transform ĝ(u) belong to L1(Rd). Then f̂(u) · ĝ(u) belongs to L1(Rd) and

its Fourier inversion is
∫

Rd g(x
′)f(x− x′)dx′. The Fourier inversion is defined by

1

(2π)d

∫

Rd

e−i〈x,u〉f̂(u)ĝ(u)du, (3.26)

where 〈x,u〉 is the scalar product of u and x. If the map x1, x2 →
∫

Rd g(x
′)f(x − x′)dx′

is continuous the convergence is point-wise.

Proof.

Let g(x) be an integrable function in R
d. The Fourier transform in R

d of g, ĝ, is bounded

by 1

(2π)
d
2
‖g‖1 (see [80], p. 325). Furthermore, we also assume f̂(u), ĝ(u) ∈ L1. Hence, the

product f̂ ĝ is Lebesgue integrable (see [80], p. 243). Thus,

1

(2π)d

∫

Rd

e−i〈x,u〉f̂(u)ĝ(u)du =
1

(2π)d

∫

Rd

e−i〈x,u〉f̂(u)

∫

Rd

g(x′)ei〈x
′,u〉dx′du

=
1

(2π)d

∫

Rd

g(x′)

∫

Rd

e−i〈x−x′,u〉f̂(u)dudx′

=

∫

Rd

g(x′)f(x− x′)dx′. (3.27)

The inversion is justified by absolute convergence. See also [113], p. 51. If the map

x1, x2 →
∫

Rd g(x
′)f(x − x′)dx′ is continuous the convergence is point-wise (see [80], p.

327f): Let
∫

Rd g(x
′)f(x−x′)dx′ be continuous in P0. As (3.26) is valid nearly everywhere

there exists a sequence (Sn) with Sn → P0 in such a way that (3.26) is true in the points

of Sn. The integral in (3.26) is continuous (see [80], p. 282) because the Fourier transform

is a continuous and bounded function. Thus, the identity is also true in P0.

Adding these pieces together we can make the following statement about pricing of barrier

options:

Theorem 34. (Barrier option pricing in R
2)

Let us assume

i. the setting described in Equation (3.2),

ii. the existence of an affine analytic characteristic function ϕ(τ,u, z) of the

respective model in the variables z1 := 1√
1−ρ2

(

ln
S1e

∫T
t r(s)ds

K1
−ln

B1(T )
K1

σ1
− ρz2

)
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and z2 :=
ln

S2e

∫T
t r(s)ds

K2
−ln

B2(T )
K2

σ2
, which is regular in a neighbourhood Sϕ =

{u = w + i̟ : ̟ ∈ (aϕ, bϕ)} , aϕ < 0, bϕ > 0 of the origin, and integrable,

iii. the generalized Fourier transform ĥ(x) of the transformed payoff function

e−c1x1−c2x2g(x) exists in a space Sg = {u = w + i̟ : ̟ ∈ (ag, bg)}, is integrable

for |x| <∞, and

iv. ρ = − cos(π
n
), where n is a natural number and n > 1.

If the space SC ≡ Sϕ ∩ Sg is not empty, then the barrier option value (3.4) is given by

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞

(

ĥ(u1, u2)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−), v

)

e
(iu1(− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)−iu2
b2
σ2

)
)

du1du2, u ∈ SC , (3.28)

where

z
(−)
k1 = rp cos

(
2kπ

n

+

(−) θp
)

, z
(−)
k2 = rp sin

(
2kπ

n

+

(−) θp
)

,

xi = ln
Sie

∫ T
t

r(s)ds

Ki

, bi = ln
Bi(T )

Ki

,

c1 =
σ1 − σ2ρ

2σ1(1− ρ2)
, c2 =

σ2 − σ1ρ
2σ2(1− ρ2)

,

ĥ(u1, u2) =

∫ ∞

−∞

∫ +∞

−∞
e−x′

1c1−x′
2c2g(x′1, x

′
2)

e

(
iu1

x′1
σ1

√
1−ρ2

+
x′2
σ2

(− ρ√
1−ρ2

iu1+iu2)
)

dx′1dx
′
2, u ∈ Sg,

ϕ(τ,u, z, v) = exp {iu1z1 + iu2z2 + V (τ,u, v)} ,

where V (τ,u) satisfies the System (3.36). The price converges point-wise if the map

S1, S2 → CB(t, S1, S2, B1, B2, v) is continuous.
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Proof.

We assume the settings described in (3.2) (see Theorem 34, i.). By introducing the

following transformations (see also Appendix A.1.1)

Z(t, x1, x2, b1, b2, v) := e−c1x1−c2x2G(t, x1, x2, b1, b2, v),

c1 :=
σ1 − σ2ρ

2σ1(1− ρ2)
,

c2 :=
σ2 − σ1ρ

2σ2(1− ρ2)
,

we can reduce the PDE problem (3.6) to







∂Z
∂t

+ 1
2
σ2
1v

2ν ∂2Z
∂x2

1
+ 1

2
σ2
2v

2ν ∂2Z
∂x2

2
− v2ν σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
Z

+ρσ1σ2v
2ν ∂2Z

∂x1∂x2
+ 1

2
σ2
vv

2γ ∂2Z
∂v2

+ κ(ζ − v)∂Z
∂v

= 0,

Z(t, b1, x2, b1, b2, v) = 0, Z(t, x1, b2, b1, b2, v) = 0,

Z(T, x1, x2, b1, b2, v) = e−c1x1−c2x2g(x1, x2)1{ι1>T, ι2>T}.

(3.29)

The transition probability density function p(t′,x′, v′, t,x, v) is governed by the following

Kolmogorov backward equation and boundary conditions in the backward variables

∂

∂τ
p(τ, x′1, x

′
2, v

′, x1, x2, v) =
1

2
σ2
1v

2ν ∂
2

∂x21
p(τ, x′1, x

′
2, v

′, x1, x2, v)

+
1

2
σ2
2v

2ν ∂
2

∂x22
p(τ, x′1, x

′
2, v

′, x1, x2, v)

+ρσ1σ2v
2ν ∂2

∂x1∂x2
p(τ, x′1, x

′
2, v

′, x1, x2, v)

−v2ν σ
2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) p(τ, x′1, x

′
2, v

′, x1, x2, v)

+
1

2
σ2
vv

2γ ∂
2p(τ, x′1, x

′
2, v

′, x1, x2, v)

∂v2

+κ(ζ − v)∂p(τ, x
′
1, x

′
2, v

′, x1, x2, v)

∂v
, (3.30)

where τ = t′ − t, t′ > t. We apply the following initial and boundary conditions

p(0, x′1, x
′
2, v

′, x1, x2, v) = δ(x′1 − x1)δ(x′2 − x2)δ(v′ − v),
p(τ, x′2, v

′, b1, x2, v) = 0,

p(τ, x′1, x
′
2, v

′, x1, b2, v) = 0.
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The payoff of the derivative does not depend on the volatility, therefore we can proceed

with

q(τ,x′,x, v) =

∫ ∞

0

p(τ,x′, v′,x, v)dv′. (3.31)

q solves the Kolmogorov Equation (3.30) (see Definition 38) supplied with the initial and

boundary conditions

q(0, x′1, x
′
2, x1, x2, v) = δ(x′1 − x1)δ(x′2 − x2),

q(τ, x′1, x
′
2, b1, x2, v) = 0,

q(τ, x′1, x
′
2, x1, b2, v) = 0.

In the following we reduce this PDE following the lines of He et al. [64]. We elim-

inate the mixing term by a transformation of coordinates. By using the transforma-

tions z1 := 1√
1−ρ2

(x1−b1
σ1
− ρx2−b2

σ2
) and z2 := x2−b2

σ2
we map the vertical axis to the line

z2 = −
√

1−ρ2

ρ
z1, while the second (horizontal) boundary is only translated to z2 = 0.

Thus, q(τ, z′1, z
′
2, z1, z2, v) satisfies the following PDE

∂q

∂τ
=

1

2
v2ν

∂2q

∂z21
+

1

2
v2ν

∂2q

∂z22
− v2ν σ

2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) q

+
1

2
σ2
vv

2γ ∂
2q

∂v2
+ κ(ζ − v)∂q

∂v
, (3.32)

with the following initial and boundary conditions

q(0, z′1, z
′
2, z1, z2, v) = δ(z′1 − z1)δ(z′2 − z2), (3.33)

q(τ, z′1, z
′
2, z1, 0, v) = 0,

q(τ, z′1, z
′
2, z1,−

√

1− ρ2
ρ

z1, v) = 0. (3.34)

We derive a solution of this PDE for particular values of the correlation, ρ = − cos
(
π
n

)

where n is any natural number (see Theorem 34, iv.). The idea is to find a solution ḠF

for (3.32) and (3.33) in the whole plane first and restrict it to the actual space (3.34) it

is defined for by using symmetries.

Due to the fact that for certain values of ν and γ the PDE is linear in v, we can guess

affine solutions for ḠF , i.e. the free space probability density, for those models.

ḠF (τ, z′1, z
′
2, z1, z2, v) =

1

4π2

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
exp {iu1(z′1 − z1) + iu2(z

′
2 − z2)

+V (τ,u, v) } du1du2, u = w + i̟ ∈ Sϕ, (3.35)



68 3.4 Pricing of two-asset barrier options with Fourier techniques

where u = (u1, u2) and Sϕ describes a space in a neighbourhood of the origin, parallel to

the real axis, in which the integrand is regular. Inserting (3.35) in (3.32) and (3.33) we

see that V (τ,u, v) has to satisfy the following system.

∂V

∂τ
= −1

2
v2νu21 −

1

2
v2νu22 − v2ν

σ2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2)

+
1

2
σ2
vv

2γ

(

∂2V

∂v2
+

(
∂V

∂v

)2
)

+ κ(ζ − v)∂V
∂v

,

V (0,u, v) = 0. (3.36)

Since the process is affine V (τ,u, v) can be denoted by exp{A0(τ, u) +
∑k

i=1Ai(τ, u)v
i},

where in the sum Ai(τ, u) are multiplied by v raised to the power of i, i ≤
k and (3.36) breaks then down into a system of Riccati equations (see [75]).

This solution is closely related to the concept of characteristic functions: To

see this, we Fourier transform PDE (3.32) and the initial conditions (3.33),

i.e. ϕ(τ,u, v) :=
∫∞
−∞
∫∞
−∞ ei(u1z1+u2z2)q(τ, z, v)dz1dz2 or respectively q(τ, z, v) :=

1
(2π)2

∫∞
−∞
∫∞
−∞ e−i(u1z1+u2z2)ϕ(τ,u, v)du1du2. Thus, with (A.21) we get

∂ϕ

∂τ
= −1

2
v2νu21ϕ−

1

2
v2νu22ϕ− v2ν

σ2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) ϕ

+
1

2
σ2
vv

2γ ∂
2ϕ

∂v2
+ κ(ζ − v)∂ϕ

∂v
, (3.37)

with the following initial condition

ϕ(0, u1, u2, v) = eiu1z
′
1+iu2z

′
2 . (3.38)

Inserting

ϕ(τ,u, v) = exp {iu1z′1 + iu2z
′
2 + V (τ,u, v)} (3.39)

in Equation (3.37) and initial Condition (3.38) we see that both are satisfied. Thus,

ϕ is the characteristic function of z′1 and z′2. According to Theorem 32 an analytic

characteristic function, which is regular in a neighbourhood of the origin, is also regular

in a horizontal space Sϕ = {u = w + i̟ : ̟ ∈ (aϕ, bϕ)} and can there be represented

by a Fourier integral (see ii.). Hence, in this case ϕ is also the Fourier transform of the

transition density of z1 and z2 (see Theorem 31). The free space solution (3.35) to the

Kolmogorov backward Equation (3.32) can, thus, be interpreted as the Fourier inversion

in the backward variables (z1, z2) of the characteristic function/Fourier transform in the

forward variables (z′1, z
′
2). Ḡ

F is a bounded continuous density if ϕ ∈ L1 (see Theorem 13)

(see ii.), and is, thus, the transition density of z′1, z
′
2 starting in z1 and z2. The solution
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for q, satisfying the boundary conditions, can be found from ḠF using the method of

images as described in [64]. By using the transformations z1 := 1√
1−ρ2

(x1−b1
σ1
− x2−b2

σ2
)

and z2 := x2−b2
σ2

we mapped the vertical axis to the line z2 = −
√

1−ρ2

ρ
z1, while the first

(horizontal) boundary is translated to z2 = 0. By transforming these to polar coordinates

the vertical boundary is described by the angle tan θp = −
√

1−ρ2

ρ
and the horizontal

boundary by θp = 0. When ρ = − cos
(
π
n

)
(see Theorem 34, iv.), the angles take the

special values βp,n = π
n
; n = 1; 2,. . . For these angles, a method of images solution to the

PDE is possible. Some Ḡk

Ḡ±
k (τ, z

′
1, z

′
2, z1, z2, v) = ±ḠF (τ, z′1, z

′
2, zk1, zk2, v)

satisfy the PDE (3.32) with initial condition for arbitrary zk1, zk2:

Ḡ±
k (0, z

′
1, z

′
2, z1, z2, v) = ±δ (z′1 − zk1) δ (z′2 − zk2) .

As the PDE is linear in ḠF , any linear combination of these Ḡ±
k ’s, with different

(starting) values of (zk1, zk2) also satisfies the PDE. For the particular solution we take

a combination of n Ḡ±
k . We have to find this particular solution that also satisfies the

boundary and initial condition.

Consider the case with β = π
3
, i.e. ρ = −1

2
. The first hextant of Figure 3.1 is the

region we want to solve the PDE for, i.e. θp ∈ [0, π
3
]. In this region a plus symbol is

positioned at P0 = (z01 = rp cos(θp), z02 = rp sin(θp)). This point makes an angle θp with

respect to the z1-axis and is located at a distance rp. Let us denote the lines, which

bound the first hextant by L1 (θp = 0) and L2 (θp = π
3
). For the other functions we

choose zk1, zk2 at a distance rp from the origin and with the angles θp +
2π
3
, θp +

4π
3

and

−θp,−θp + 2π
3
,−θp + 4π

3
. As Ḡ+

0 is the only function with (zk1, zk2) positioned in the first

hextant the initial condition is satisfied. We claim that q is given by the combination of

those 6 functions.
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−

P5

+

P2

−

+ P0

P4

P1

−

P3 +

L2

L1

Figure 3.1: Method of images in a circle (with β = π
3
).

As already seen this combination fulfils the initial condition and it also satisfies the PDE.

Additionally, we know that:

rp cos(
+
− θp +

2kπ

n
) = rp(cos(θp) cos(

2πk

n
)

−
+ sin(θp) sin(

2πk

n
))

= z1 cos(
2πk

n
)

−
+ z2 sin(

2πk

n
),

rp sin(
+
− θp +

2kπ

n
) = rp(

+
− sin(θp) cos(

2πk

n
) + cos(θp) sin(

2πk

n
))

=
+
− z2 cos(

2πk

n
) + z1 sin(

2πk

n
),

We can see from the symmetry of Figure 3.1 that the functions Ḡ±
k cancel pairwise

along the solid lines: To obtain zero-value at L1 we add to our first function Ḡ+
0

the function Ḡ−
0 with the image point of P0 = (z01, z02) in L1 as starting point:

P1 = (rp cos(−θp), rp sin(−θp)) = (z−01, z
−
02). For example one can show for any function f

in L1, i.e. θp = 0,

f(z′1 − rp cos(θp), z′2 − rp sin(θp))− f(z′1 − rp cos(−θp), z′2 − rp sin(−θp))
= f(z′1 − rp cos(θp), z′2)− f(z′1 − rp cos(θp), z′2)
= 0. (3.40)

To balance the point P1 in L2, the solid line with angle β = π
3
, we add the function Ḡ+

1
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with starting point P2 = (rp cos(θp + 2π
3
), rp sin(θp + 2π

3
)) = (z11, z12).

Furthermore to balance P2 in L1 we add the function Ḡ−
2 with starting value P3 =

(rp cos(−θp + 4π
3
), rp sin(−θp + 4π

3
)) = (z−11, z

−
12) and so on. See [19], p. 277f. Hence,

the boundary conditions are also satisfied, and the combination of the six functions is the

unique solution to the problem.

So in general, we slice a circle in 2n wedges with the same angles βp,n = π
n
;n = 1; 2, . . .

The first wedge with z01 = rp cos(θp) and z02 = rp sin(θp) always relates to the space

where we want to find a solution to the PDE. For this space the initial condition (3.33) is

satisfied, as z1 = rp cos(θp) and z2 = rp sin(θp). Thus, the combination in fact fulfils the

PDE and the initial condition. So we only need to show that the absorbing conditions

are satisfied. By the symmetry of the wedges in the circle the 2n density functions cancel

along the lines θp = 0 and θp = βp,n in pairs. Thus, the solution is given by

q(τ, x′1, x
′
2, x1, x2, v) =

n−1∑

k=0

(
Ḡ+

k (τ, z
′
1, z

′
2, zk1, zk2, v) + Ḡ−

k (τ, z
′
1, z

′
2, z

−
k1, z

−
k2, v)

)

σ1σ2
√

1− ρ2
,

where 1

σ1σ2

√
1−ρ2

is the Jacobi matrix of the transformation from x → z which needs to

be applied if we carry out the integration in the original variable x (see Theorem 31),

Ḡ±
k (τ, z

′
1, z

′
2, z

(−)
k1 , z

(−)
k2 , v) =

+

(−) ḠF
(
τ, z′1, z

′
2, z1 = zk1

(−), z2 = zk2
(−), v

)
,

zk1
(−) = rp cos

(
2kπ

n

+

(−) θp
)

, zk2
(−) = rp sin

(
2kπ

n

+

(−) θp
)

,

rp =
√

z21 + z22 , tan θp =
z2
z1
,

z1 =
1

√

1− ρ2

[
x1 − b1
σ1

− ρ
(
x2 − b2
σ2

)]

= z01, z2 =
x2 − b2
σ2

= z02. (3.41)
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From risk-neutral pricing, it follows

CB (t, S1, S2, B1, B2, v) = ex1c1+x2c2−
∫ T
t

r(s)ds

∫ ∞

−∞

∫ ∞

−∞

(

e−x′
1c1−x′

2c2g(x′1, x
′
2)

q(τ, x′1, x
′
2, v, x1, x2)

)

dx′1dx
′
2

(3.41)
=

ex1c1+x2c2−
∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ ∞

−∞

∫ ∞

−∞
e−x′

1c1−x′
2c2g(x′1, x

′
2)

n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞

(

ϕ(τ,u, z′ − zk, v)

−ϕ(τ,u, z′ − zk
−, v)

)

du1du2dx
′
1dx

′
2. (3.42)

We have required that the payoff function and the characteristic function are Lebesgue

integrable in the generalized sense in a space SC (see ii. and iii.). Moreover, we know

that the transformed payoff function is Lebesgue integrable (see iii.). Hence, g(x′1, x
′
2) is

bounded and the integrand is Lebesgue integrable (see [80], p. 243), and we can apply

Fubini’s theorem and change the sum and integrals if there exists a space SC = Sϕ ∩ Sg.

Then, the above expression can be simplified. We denote the Fourier transform of the

complete payoff function by ĥ(u1, u2)

ĥ(u1, u2) =

∫ ∞

−∞

∫ +∞

−∞
e−x′

1c1−x′
2c2g(x′1, x

′
2)

e

(
iu1

x′1
σ1

√
1−ρ2

+
x′2
σ2

(− ρ√
1−ρ2

iu1+iu2)
)

dx′1dx
′
2, u ∈ Sg. (3.43)

Then, using (3.39) and (3.35),

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞

(

ĥ(u1, u2)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
(3.44)

e
(iu1(− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)−iu2
b2
σ2

)
)

du1du2,

u ∈ SC = Sϕ ∩ Sg.

According to Theorem 33 together with (ii. and iii.) CB(t, S1, S2, B1, B2, v) converges

point-wise to the actual solution if the function S1, S2 → CB (t, S1, S2, B1, B2, v) is con-

tinuous in S1 and S2.
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Remark 11. We know that

q(τ, x′1 − x1, x′2 − x2, v) =
1

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
eiu1z

′
1+iu2z

′
2

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
du1du2, (3.45)

and (3.43). Hence, (3.44) can be transformed to

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
(∫ ∞

−∞

∫ ∞

−∞
(e−c1x

′
1−c2x

′
2g(x′1, x

′
2)e

iu1z
′
1+iu2z

′
2dx′1dx

′
2)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
)

du1du2

=
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ ∞

−∞

∫ ∞

−∞
e−c1x

′
1−c2x

′
2g(x′1, x

′
2)

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
eiu1z

′
1+iu2z

′
2

(ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v))du1du2dx′1dx′2
= ex1c1+x2c2−

∫ T
t

r(s)ds (3.46)
∫ ∞

−∞

∫ ∞

−∞
e−c1x

′
1−c2x

′
2g(x′1, x

′
2)q(τ, x

′
1 − x1, x′2 − x2, v)dx′1dx′2.

3.4.2 Properties of selected two-dimensional affine characteris-

tic functions

In this section we want to treat properties of two characteristic functions which are

included in the general set-up of (3.2) and which fulfil the PDE (3.37), i.e. have an

affine characteristic function. The first one is a Heston-type characteristic function with

γ = ν = 1
2
, the other model, in which the covariance is governed by an Ornstein-Uhlenbeck

process, has actually no affine characteristics for (Si, v), however, a characteristic function

can be derived (see Kallsen [75]). In the following we analyse properties like the regular-

ity at the origin in Sϕ and integrability in this space for the Heston- and the Stein and

Stein-type two-dimensional models.

Proposition 2. (Heston-type characteristic function)

The Heston-type characteristic function is defined by

ϕH(τ,u) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(AH(τ,u) + BH(τ,u)v)

}

, (3.47)
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where

BH(τ,u) =
(κ− d) (1− exp (−dτ))

1− κ−d
κ+d

exp (−dτ)

=

(

κ− d
sinh

(
d
2
τ
)
+ κ

d
cosh

(
d
2
τ
)

cosh
(
d
2
τ
)
+ κ

d
sinh

(
d
2
τ
)

)

, (3.48)

AH(τ,u) = ζκ

(

(κ− d) τ − 2 ln
(1− κ−d

κ+d
exp (−dτ)

1− κ−d
κ+d

))

= κζ

(

κτ − 2 ln

(
κ

d
sinh

(
d

2
τ

)

+ cosh

(
d

2
τ

)))

, (3.49)

d = d(u) =

√

κ2 + σ2
v

(

u2 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

, (3.50)

where u2 = u21+u
2
2. For

4κ2

ǫ2
> −σ2

1+σ2
2−2ρσ1σ2

1−ρ2
the characteristic function, ϕH , is integrable

and regular in a neighborhood of the origin [w−,w+] with w−
1 < 0 < w+

1 (w−
2 < 0 < w+

2

respectively).

Proof.

For the derivation of the characteristic function see Appendix A.1.2. For the analysis of

the regularity in a space SϕH
in the neighbourhood of the origin we follow the lines of del

Bano Rollin et al. [31]. Define D(u) = d(u)2. If we assume that 4κ2

σ2
v
> −σ2

1+σ2
2−2ρσ1σ2

1−ρ2
,

we see that ϕH is well-defined and regular in a neighbourhood of the origin according

to Cauchy’s integral theorem (see Theorem 15), i.e. according to Remark 10 the moment

generating function M̄(̟) exists in a (real) neighbourhood of 0 and there exists a complex

analytic extension of M̄H(w) = ϕ(iw) to an open set D ⊂ C in the neighbourhood of

the origin. Observing the components of the moment generating function we see that the

main and most critical ingredient of the moment generating function is

f(w) =
κ

d̄(w)
sinh

(
d̄(w)

2
τ

)

+ cosh

(
d̄(w)

2
τ

)

, (3.51)

with

d̄(w)2 = d(iw)2 = D(−w) = κ2 + σ2
v

(

−w2
1 − w2

2 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

, (3.52)

because this part is in the denominator of BH and in the log-part of AH . D(w) with

w ∈ R
2 is a cup-shaped inverted parabola with leading coefficient −σ2

v and real roots
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w−
1 < 0 < w+

1 (w−
2 < 0 < w+

2 respectively) given by

w±
1,2 = ±

√

σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2) +

κ2

σ2
v

, (3.53)

i.e. d̄(w) ≥ 0 on [w−,w+]. Hence, f(z) is well-defined and analytic in such an interval.

As f has no zeroes in [w−,w+] the moment generating function exists there. We define

DefH(z) =
{
w ∈ R

2 :MH(w) = E
[
e〈wz〉] <∞

}
. (3.54)

And thus, [w−,w+] ⊂ DefH(z) and SϕH
= {u = w + i̟ : ̟ ∈ (aϕH

, bϕH
)}, where aϕH

=

w− and bϕH
= w+. Please note that E (ez1+z2) might not exist. We prove integrability of

the characteristic function ϕH(w+ i̟) with u = w+ i̟ ⊂ SϕH
. It suffices to show that

the real part of the exponent decays like |w| (see [38]). In the following the real part of x is

denoted ℜ(x). The real part of a square root in R
2 is given by ℜ(

√
w + i̟) =

√
|w+i̟|+w

2

(see [1], 3.7.27). Thus, for −ℜ(d) we see

−ℜ(d) = − 1√
2

(∣
∣
∣κ2 + (w2

1 + w2
2)σ

2
v − (̟2

1 +̟2
2)σ

2
v + 2iw1̟1σ

2
v + 2iw2̟2σ

2
v

+σ2
v

σ1 + σ2 − 2ρσ1σ2
4(1− ρ2)

∣
∣
∣

+κ2 + (w2
1 + w2

2)σ
2
v − (̟2

1 +̟2
2)σ

2
v + σ2

v

σ1 + σ2 − 2ρσ1σ2
4(1− ρ2)

) 1
2

≤ − 1√
2

√

κ2 + (w2
1 + w2

2)σ
2
v − (̟2

1 +̟2
2)σ

2
v + σ2

v

σ1 + σ2 − 2ρσ1σ2
4(1− ρ2)

≤ − c̃√
2
|w| σv, (3.55)

where c̃ is a constant. Next, we take a closer look at the real part of BH . Note that as

long as κ < d (which is always the case for w → ∞ the denominator of the fraction is

bigger than the nominator. The fraction, however, approaches 1 as w grows due to the

graphs of the cosh- and sinh- functions. Thus, we find

−ℜ
(

d
sinh

(
d
2
τ
)
+ κ

d
cosh

(
d
2
τ
)

cosh
(
d
2
τ
)
+ κ

d
sinh

(
d
2
τ
)

)

≤ − c̃1√
2
|w| σv, (3.56)
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where c̃1 is a constant. Another important ingredient is the log part. The following is

true as w1 and w2 increase, i.e. we can assume κ < d:

ℜ
(

−2 ln
(
κ

d
sinh

(
d

2
τ

)

+ cosh

(
d

2
τ

)))

≤ ℜ
(

−2 ln
(

e
d

2
τ
))

≤ − c̃τ√
2
|w| σv. (3.57)

Hence, the exponent decays component-wise like |w| and the characteristic function is

integrable in the space SϕH
.

Proposition 3. (Stein and Stein-type characteristic function)

The Stein and Stein-type characteristic function is defined by

ϕS2(τ,u) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(
AS2(τ,u) + BS2(τ,u)v + CS2(τ,u)v

2
)
}

, (3.58)

where

CS2(τ,u) =
1

2

(

κ− d
sinh (dτ) + κ

d
cosh (dτ)

cosh (dτ) + κ
d
sinh (dτ)

)

, (3.59)

BS2(τ,u) =
1

d





(

κζd− κ3ζ

d

)

+ κ2ζ
(
sinh (dτ) + κ

d
cosh (dτ)

)

cosh (dτ) + κ
d
sinh (dτ)

− κζd



 , (3.60)

AS2(τ,u) = −σ
2
v

2
ln
(

cosh (dτ) +
κ

d
sinh (dτ)

)

+
σ2
v

2
κτ

+
κ2ζ2d2 − κ4ζ2

2d3

(
sinh (dτ)

cosh (dτ) + κ
d
sinh (dτ)

− dτ

)

+
κ2ζ

(

κζd− κ3ζ

d

)

d3
(

cosh(dτ)− 1

cosh (dτ) + κ
d
sinh (dτ)

), (3.61)

with d(u) given in (3.50). For 4κ2

ǫ2
> −σ2

1+σ2
2−2ρσ1σ2

1−ρ2
the characteristic function, ϕH ,

is integrable and regular in a neighborhood of the origin [w−,w+] with w−
1 < 0 < w+

1

(w−
2 < 0 < w+

2 respectively).

Proof.

For a proof of the characteristic function see Appendix A.1.2. We proceed analogously

to before with the analysis of the regularity in a space Sϕ in the neighbourhood of the

origin. Again, if we assume that 4κ2

σ2
v
> −σ2

1+σ2
2−2ρσ1σ2

1−ρ2
, we see that ϕ is well-defined and

regular in a neighbourhood of the origin. The main ingredient of the moment generating
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function is

f(w) =
κ

d̄(w)
sinh

(
d̄(w)

2
τ

)

+ cosh

(
d̄(w)

2
τ

)

. (3.62)

Thus, we can transfer the results from above and conclude that [w−,w+] ⊂ DefS2(z)

and SϕS2
= {u = w + i̟ : ̟ ∈ (aϕS2

, bϕS2
)}, where aϕS2

= w− and bϕS2
= w+. With

respect to the integrability we can see that ϕS2 is composed of similar expressions as ϕH .

Performing similar techniques one can easily see that the exponent decays like |w| and
the characteristic function is integrable in the space SϕS2

.

Remark 12. If the three-factor model degenerates to a two-factor GBM model then the

characteristic function is given by

ϕGBM(u) = e

(

iu1z1+iu2z2− 1
2
τ

(

u2
1+u2

2+(
σ2
1+σ2

2−2ρσ1σ2
4(1−ρ2)

)

))

. (3.63)

Proof.

For κ, ζ, σv → 0, v(0)→ 1 we can show that the three-factor stochastic volatility Heston-

type and the Stein and Stein-type model degenerate to the two-factor geometric Brownian

motion model. First, we take the limits of AH(τ,u), BH(τ,u), AS2(τ,u), BS2(τ,u), and

CS2(τ,u) when κ, ζ, σv → 0, v(0)→ 1:

lim
κ,σv ,ζ→0,v(0)→1

AH(τ,u)

σ2
v

= 0,

lim
κ,σv ,ζ→0,v(0)→1

BH(τ,u)v(0)

σ2
v

= lim
κ,σv ,ζ→0,v(0)→1

1

σ2
v

(κ2 − d2) (1− exp (−dτ))
(κ+ d)− (κ− d) exp (−dτ)

= lim
κ,σv ,ζ→0,v(0)→1

−

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

(1− 1 + dτ)

(κ+ d)− (κ− d) (1− dτ)

= lim
κ,σv ,ζ→0,v(0)→1

−

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

dτ

2d+ dτ (κ− d)

= −

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

τ

2
,

lim
κ,σv ,ζ→0,v(0)→1

AS2(τ,u)

σ2
v

= 0,

lim
κ,σv ,ζ→0,v(0)→1

BS2(τ,u)v(0)

σ2
v

= 0,

lim
κ,σv ,ζ→0,v(0)→1

CS2(τ,u)v(0)
2

σ2
v

= −

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

τ

2
,
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where the limit of CS2v(0)
2

σ2
v

is calculated analogously to the limes of BHv(0)
σ2
v

. Thus, both

characteristic functions, ϕH(τ,u) ϕS2(τ,u), approach in the limit

lim
κ,σv ,ζ→0,v(0)→1

ϕH,S2(u) = eiu1z1+iu2z2−

(

u21+u22+
σ2
1+σ2

2−2ρσ1σ2
4(1−ρ2)

)

τ

2 . (3.64)

It can be shown that this limit is consistent with the characteristic function of the two-

factor GBM model. The characteristic function of the GBM model satisfies the following

PDE

∂q

∂τ
=

1

2

∂2q

∂z21
+

1

2

∂2q

∂z22
− σ2

1 + σ2
2 − 2ρσ1σ2

8(1− ρ2) q, (3.65)

with the initial condition ϕGBM(0,u) = eiu1z1+iu2z2 . It can be easily seen that (3.64)

satisfies the terminal condition and also (3.65).

This function is obviously regular in the whole space, and the moment-generating function

exists everywhere. Furthermore, it is integrable in the whole space.

3.4.3 Pricing of two-asset double-digital options with Fourier

techniques

Double-digital options pay out one unit provided that both underlyings are at maturity

time T above their predefined strike price K1 and K2. In the case of a double-digital

barrier option the payout is only guaranteed if both underlyings do not cross the given

barriers B1(t) = B1e
∫ t
0 r(s)ds and B2(t) = B2e

∫ t
0 r(s)ds during the lifetime of the option.

The value of a digital option with time-dependent barriers on each of the underlyings is

given as the expectation of two discounted indicator functions:

C2D(t, S1, S2, B1, B2) = EQ̃
[
e−

∫ T
t

r(s)ds
1{S1(T )>K1, S2(T )>K2}

1{ι1>T, ι2>T} |Ft

]
, (3.66)

where

ι1 = inf (t′ ∈ (t, T ] : S1(t
′) ≤ B1(t

′)) ,

ι2 = inf (t′ ∈ (t, T ] : S2(t
′) ≤ B2(t

′)) .

Thus, we have to Fourier transform e−c1x1−c2x2gD(x1, x2) = e−c1x1−c2x21{x1(T )>0 ∧ x2(T )>0}.

For c1, c2 < 0 the integrals are unbounded and e−c1x1−c2x2gD does not belong to L1. Thus,

the Fourier transform does not exist (see also Schmelzle [104] for a summary). This could

be circumvented by introducing a damping factor like in Carr and Madan [18], Dempster
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and Hong [33], or Eberlein et al. [38]. The introduction of a damping factor has the same

effect as the generalized Fourier transform along a contour in the complex space, parallel

to the real axis, i.e. loosely speaking it renders an actual non-Lebesgue integrable payoff

integrable (see also [82] and [104]):

ĥD(u1, u2) =

∫ ∞

0

∫ ∞

0

e−x′
1c1−x′

2c2e

(

iu1
x′1

σ1

√
1−ρ2

+
x′2
σ2

(

− ρ√
1−ρ2

iu1+iu2

))

dx′1dx
′
2

=
1

i u1

σ1

√
1−ρ2
− c1

1

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

− c2
. (3.67)

The integral only exists if u ∈ SgD =
{

u = w + i̟ : ̟1 > −c1σ1
√

1− ρ2∧
̟2 >

ρ√
1−ρ2

̟1 − c2σ2 }. The same payoff function dampened by e−αd
1z

′
1−αd

2z
′
2 , where z′1

and z′2 are given in 3.41, can also be transformed

ĥ∗D(u1, u2) =

∫ ∞

0

∫ ∞

0

e
−αd

1

x′1
σ1

√
1−ρ2

− x′2
σ2

(

− ρ√
1−ρ2

αd
1+αd

2

)

e−x′
1c1−x′

2c2

e

(

iu1
x′1

σ1

√
1−ρ2

+
x′2
σ2

(− ρ√
1−ρ2

iu1+iu2)

)

dx′1dx
′
2

=
1

i u1

σ1

√
1−ρ2
− αd

1

σ1

√
1−ρ2
− c1

1

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

+
ραd

1

σ2

√
1−ρ2
− αd

2

σ2
− c2

,

where we have to choose αd
i accordingly with α

d
1 > −c1σ1

√

1− ρ2 and αd
2 >

ρ√
1−ρ2

αd
1−c2σ2

assuming u real. In Section 3.4.5 we show one of the possibilities to derive the price of the

derivative with the dampened payoff function. The price of the option in the generalized

Fourier framework can be given in the following corollary.

Corollary 4. (Double-digital barrier option price)

Let us assume

i. the setting described in Equation (3.2),

ii. the existence of an affine analytic characteristic function ϕ(τ,u, z), which is regular

in a neighbourhood Sϕ = {u = w + i̟ : ̟ ∈ (aϕ, bϕ)} , aϕ < 0, bϕ > 0 of the

origin, and integrable,

iii. that the generalized Fourier transform ĥD(x) of the transformed payoff function

e−c1x1−c2x2gD(x)1{ι1>T,ι2>T} exists in a space SgD = {u = w + i̟ :

̟1 > −c1σ1
√

1− ρ2 ∧̟2 >
ρ√
1−ρ2

̟1 − c2σ2 }, is there integrable for |x| <∞, and

iv. ρ = − cos(π
n
), where n is a natural number and n > 1.
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If the space SCD
≡ Sϕ ∩ SgD is not empty, the double-digital barrier option value is given

by

C2D (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥD(u)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
(3.68)

e
(iu1(− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)−iu2
b2
σ2

)
du1du2, u ∈ SCD

,

where ϕ, z
(−)
i , xi, bi, and ci are given in Theorem 34. ĥD(u1, u2) is indicated in (3.67).

The corollary directly follows from Theorem 34 and Equation (3.67). Note that if ρ < 0,

c1, c2 > 0. Thus, in those cases we can choose ̟ = 0, i.e. we integrate on the real space.

By using the method of images in the plane we can derive prices for double-digitals with a

barrier on S2 only: C1D(t, S1, S2, B2) = EQ̃
[
e−

∫ T
t

r(s)ds
1{S1(T )>K1 ∧ S2(T )>K2}1{ι2>T} |Ft

]
.

The solution is found by reflecting the characteristic function in the plane (z2(0) →
−z2(0)).

Corollary 5. (Double-digital single-barrier option price)

Let us assume the setting described in Equation (3.2) and the assumptions of Corollary

4, then the double-digital single-barrier (in S2) option value is given for any ρ by

C1D(t, S1, S2, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥD(u)

(ϕ(τ,u,−z1,−z2, v)− ϕ(τ,u,−z1, z2, v)) (3.69)

e

(

iu1
b2ρ

σ2

√
1−ρ2

−iu2
b2
σ2

)

du1du2, u ∈ SCD
,

where ϕ, xi, b2, ci, are given in Theorem 34, and ĥD(u1, u2) is given in (3.67).

The corollary directly follows from Theorem 34 and Equation (3.67). For details on the

method of images in a half-space please refer to Appendix A.1.3.
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We implement the above proposed models and pricing formulas. First, we compute prices

arising from the three-factor stochastic volatility Model (3.2) using the formula in Theorem

4 with the Heston-type characteristic function while we set ζ, σv, κ→ 0, v(0)→ 1. Thus,

the three-factor model degenerates to the two-factor GBM Model (3.1). The resulting

prices are compared in Table 3.1 to prices for the two-asset digital option, which we

compute in the GBM Model (3.1) with a formula derived by He et al. [64]. The figures

show the accuracy of the Fourier transform method in the degenerated case.

Table 3.1: Prices of the two-asset double-digital barrier option computed in the limit to
bivariate normal distribution.

GBM model Degenerated 3-factor model
Correlation ρ

Strike K1 0 -0.5 -0.71 0 -0.5 -0.71
80 0.1049 0.0507 0.0288 0.1049 0.0507 0.0288
85 0.1032 0.0493 0.0277 0.1032 0.0493 0.0277
90 0.1001 0.0469 0.0258 0.1001 0.0469 0.0258
95 0.0960 0.0438 0.0234 0.0960 0.0438 0.0234
100 0.0912 0.0403 0.0208 0.0912 0.0403 0.0208
105 0.0860 0.0367 0.0181 0.0860 0.0367 0.0181
110 0.0805 0.0331 0.0156 0.0805 0.0331 0.0156

S1(0) = S2(0) =100, r =0.04, T =1.0, σ1 = σ2 =0.5, v(0) =1.0,
B1(0) = B2(0) =75, ζ =0.0004, κ =0.0004, σv =0.0004.

For the following scenario computations for the two-asset barrier option in the three-factor

Model (3.2) applying Theorem 4 with the Heston-type characteristic function we choose

the parameters: S1 = S2 = 100, K1 = K2 = 100, r = 0.04, T = 1, σ1 = σ2 = 0.5, ρ = 0,

σv = 0.4, ζ = 0.9, κ = 0.4, v(0) = 0.9. For the double-digital options, a downward sliding

graph is drawn when the barriers B1(0), B2(0) are increased (see Figure 3.2). The slope

of the graph is less pronounced for smaller barriers and more distinct for higher ones. We

have repeated the computations for correlation ρ = −0.5. The same appearance of the

graphs can be observed as for ρ = 0 in Figure 3.3.



82 3.4 Pricing of two-asset barrier options with Fourier techniques

V
al
u
e

Barrier B2(0) Barrier B1(0)
40

60

80

40
50

60
70

80
90

0.05

0.1

0.15

Figure 3.2: Double-Digital Option with Barriers (ρ=0).

V
al
u
e

Barrier B2(0) Barrier B1(0)
40

60

80

40
50

60
70

80
90

0.02

0.04

0.06

0.08

0.1

Figure 3.3: Double-Digital Option with Barriers (ρ=-0.5).
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In Table 3.2 we provide more results showing the impact of the various parameters of

the covariance process on the price of the derivatives. The barrier levels B1(0) and B2(0)

are set at 75. The scenario is described in detail in the respective table. The digital

barrier option increases in value when the volatility of the third process σv is raised and

it falls when the mean-reversion level is incremented. The characteristics towards κ, the

mean-reversion speed, are ambiguous: For a mean-reversion level of ζ = 0.6 an increase

in κ leads to a higher value, however, for higher mean-reversion levels, such as 0.9 or 1.2,

while setting σv = 0.8, an increase in κ reduces the value of the derivative. The value of

the digital barrier option reflects, in fact, the probability that both assets stay above the

barrier levels during the lifetime of the option and are above the strike levels at maturity.

In the scenario we have chosen the probability for that is higher when the overall volatility

in the system is low because then the derivative stays above the barriers and ends in the

money.

To analyse the influence of the volatility and the various parameters we change the scenario

and choose a barrier level of B1(0) = B2(0) = 60 and strike levels K1 = K2 = 110. σ1 and

σ2 are set to 0.2 (see Table 3.3). The barriers and strikes are set at such levels to make

more volatility a necessary component to raise the probability that the options finish in

the money at maturity. Thus, the value of the digital barrier options increases with higher

mean-reversion levels as the barrier correlation option does.

Table 3.2: Prices of double-digital options with barriers in Heston-type model (Fourier
technique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ =

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 0.1041 0.0962 0.0891 0.1078 0.0966 0.0871 0.1111 0.0970 0.0855
0.6 0.1077 0.0994 0.0920 0.1109 0.0993 0.0894 0.1138 0.0993 0.0874
0.8 0.1125 0.1037 0.0960 0.1151 0.1029 0.0926 0.1174 0.1023 0.0899

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.

Table 3.3: Prices of double-digital options with barriers in Heston-type model (Fourier
technique) with low σ-values.

κ = 0.6 κ = 0.9 κ = 1.2
ζ =

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 0.1165 0.1185 0.1203 0.1156 0.1184 0.1208 0.1148 0.1184 0.1212
0.6 0.1154 0.1175 0.1194 0.1146 0.1176 0.1201 0.1139 0.1177 0.1206
0.8 0.1137 0.1161 0.1181 0.1131 0.1164 0.1191 0.1126 0.1167 0.1198

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.2,
B1(0) = B2(0) =60, K1 = K2 =110, v(0) =1.0, ρ =0.
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3.4.4 Pricing of correlation barrier options with Fourier tech-

niques

In the following we derive formulas to price two-asset and single-asset barrier correlation

options with time-dependent barriers. Bakshi and Madan price correlation options in [8].

Correlation derivatives are desirable for coping with cross-market or cross-currency (com-

modity) risks (see [122], [8]). As Bakshi and Madan point out for equity markets they

even allow investors to position on a stock/sector relative to a market index. The corre-

lation option is actually a product of two call options. Each security can be interpreted

as the expectation of a unity payout conditional on both calls expiring in the money. The

option is closely related to the digital presented in the previous section. Barriers are again

introduced to lower the price of the derivative. Assuming risk-neutral valuation we can

compute the value of a correlation option with time-dependent barriers on each of the

underlyings by

C2C(t, S1, S2, B1, B2) = EQ̃

[

e−
∫ T
t

r(s)dsmax (S1(T )−K1, 0)

max (S2(T )−K2, 0)1{ι1>T, ι2>T} |Ft

]

. (3.70)

Thus, we have to Fourier transform e−c1x1−c2x2gC(x1, x2) =

e−c1x1−c2x2 (ex1K1 −K1)
+ (ex2K2 −K2)

+ = K1K2

(
e(1−c1)x1 − e−c1x1

)+ (
e(1−c2)x2 − e−c2x2

)+

(see A.14), where xi = ln Sie
∫T
t r(s)ds

Ki
. e−c1x1−c2x2gC does not belong to L1. The ordinary

Fourier transform does not exist and we have to apply the generalized Fourier transform:

ĥC(u1, u2) = K1K2

∫ ∞

0

∫ ∞

0

(

e(1−c1)x′
1 − e−c1x

′
1

)(

e(1−c2)x′
2 − e−c2x

′
2

)

e

(
iu1

x′1
σ1

√
1−ρ2

+
x′2
σ2

(− ρ√
1−ρ2

iu1+iu2)
)

dx′1dx
′
2

= K1K2



− 1

i u1

σ1

√
1−ρ2

+ (1− c1)
+

1

i u1

σ1

√
1−ρ2
− c1



 (3.71)






− 1

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

+ (1− c2)
+

1

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

− c2






.

Note that we choose ℑ(u1) > σ1
√

1− ρ2(1 − c1) and ℑ(u2) > ρ√
1−ρ2
ℑ(u1) + σ2(1 − c2),

i.e. SgC =

{

u = w + i̟ : ̟1 > σ1
√

1− ρ2(1− c1) ∧̟2 >
ρ√
1−ρ2

̟1 + σ2(1− c2)
}

. The

price of the option can be given in the following corollary.



3 Pricing of barrier options within stochastic covariance model 85

Corollary 6. (Correlation barrier option price)

Let us assume

i. the setting described in Equation (3.2),

ii. the existence of an affine analytic characteristic function ϕ(τ,u, z), which is regular

in a neighbourhood Sϕ = {u = w + i̟ : ̟ ∈ (aϕ, bϕ)} , aϕ < 0, bϕ > 0 of the

origin, and integrable,

iii. that the generalized Fourier transform ĥC(x) of the payoff func-

tion e−c1x1−c2x2gC(x) at maturity exists in a space SgC =
{

u = w + i̟ : ̟1 > σ1
√

1− ρ2(1− c1) ∧̟2 >
ρ√
1−ρ2

̟1 + σ2(1− c2)
}

, is there

integrable for |x| <∞, and

iv. ρ = − cos(π
n
), where n is a natural number and n > 1.

If the space SCC
≡ Sϕ ∩ SgC is not empty, the correlation barrier option (see (3.70) for

the payoff profile) value is given by

C2C (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥC(u)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
(3.72)

e
(iu1(− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)−iu2
b2
σ2

)
du1du2,

u ∈ SCC
,

where ϕ, z
(−)
i , xi, bi, and ci as in Theorem 34. ĥC(u1, u2) as defined in 3.71

The corollary directly follows from Theorem 34 and Equation (3.71).

Excursus: Contour variation

The general formula (Theorem 34) with Sg has many variations. Those variations

can be obtained by applying residue calculus (see Corollary 3 and [81]). This is best

shown with the example of the correlation option. The integrand in Formula (3.72)

is regular in u1 throughout Sϕ except for simple poles in ǔ1 = i(1 − c1)σ1
√

1− ρ2
and ǔ1 = −ic1σ1

√

1− ρ2. In u2 we have poles at ǔ2 = ρ√
1−ρ2

u1 + iσ2(1 − c2) and
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ǔ2 =
ρ√
1−ρ2

u1 − iσ2c2. Thus, if we move the contour (path of integration) to ̟1 = 0

while keeping ̟2 >
ρ√
1−ρ2

̟1 + σ2(1 − c2) we only cross a single singularity at ǔ1 =

i(1−c1)σ1
√

1− ρ2. This can be seen in the example (ρ = 0.5, σ1 = σ2 = 0.3) pictured

in Figure 3.4. Hence, we can apply Corollary 3.
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Figure 3.4: Contour variation.

Then by Corollary 3 the correlation option price must also equal the integral along

the real axis of u1 minus 2πi times the residue at ǔ1 = i(1− c1)σ1
√

1− ρ2. According
to (2.56) the residue at ǔ1 = i(1− c1)σ1

√

1− ρ2 is given by

Resǔ1f = K1K2 lim
u1→ǔ1

(

u1 − iσ1
√

1− ρ2(1− c1)
) ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

σ1
√

1− ρ2

i
(

u1 − iσ1
√

1− ρ2(1− c1)
)(

i u1

σ1

√
1−ρ2
− c1

)

1
(

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

+ (1− c2)
)(

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

− c2
)

(
ϕ(τ, u1, u2,−zk, v)− ϕ(τ, u1, u2,−zk−, v)

)
(3.73)

e

(

(1−c1)
(

b1
σ1

− b2σ1ρ
σ2

)

−iu2
b2
σ2

)
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= K1K2
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

iσ1
√

1− ρ2

1
(

i

(

u2

σ2
− ρǔ1

σ2

√
1−ρ2

)

+ (1− c2)
)(

i

(

u2

σ2
− ρǔ1

σ2

√
1−ρ2

)

− c2
)

(
ϕ(τ, ǔ1, u2,−zk, v)− ϕ(τ, ǔ1, u2,−zk−, v)

)
(3.74)

e

(

(1−c1)
(

b1
σ1

− b2σ1ρ
σ2

)

−iu2
b2
σ2

)

,

where f is the integrand in (3.72). Hence, the new pricing formula is indicated by

C2C (t, S1, S2, B1, B2, v) =
n−1∑

k=0

(

− 2πi

∫ i̟2+∞

i̟2−∞
Resǔ1du2

+
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ ∞

−∞
ĥC(u)

(
ϕ(τ,u,−zk, v)− ϕ(τ,u,−zk−, v)

)
(3.75)

e
(iu1(− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)−iu2
b2
σ2

)
du1du2

)

,

̟1 = 0, ̟2 > σ2(1− c2).

In a next step we want to move ̟2 to 0. This time we pass singularities at ǔ2 =
ρu1√
1−ρ2

+ iσ2(1− c2). The residue for the second integral in (3.75) is given by

Res
(2)
ǔ2
f2 = K1K2 lim

u2→ǔ2

(u2 −
ρu1

√

1− ρ2
− iσ2(1− c2))

ex1c1+x2c2−
∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

1

(i u1

σ1

√
1−ρ2

+ (1− c1))(i u1

σ1

√
1−ρ2
− c1)

σ2

i

(

u2 − ρu1√
1−ρ2
− iσ2(1− c2)

)(

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

− c2
)

(
ϕ(τ, u1, u2,−zk, v)− ϕ(τ, u1, u2,−zk−, v)

)
(3.76)

e

(

iu1

(

− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)

−iu2
b2
σ2

)
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= K1K2
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

iσ2

1
(

i u1

σ1

√
1−ρ2

+ (1− c1)
)(

i u1

σ1

√
1−ρ2
− c1

)

(
ϕ(τ, u1, ǔ2,−zk, v)− ϕ(τ, u1, ǔ2,−zk−, v)

)
(3.77)

e

(

iu1

(

− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)

−iǔ2
b2
σ2

)

,

where f2 is the integrand of the second integral in (3.75). The residue for the first

integral is given by

Res
(1)
ǔ2
f1 = −2πiK1K2 lim

u2→ǔ2

(u2 −
ρu1

√

1− ρ2
− iσ2(1− c2))

ex1c1+x2c2−
∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
n−1∑

k=0

iσ1
√

1− ρ2

σ2

i

(

u2 − ρu1√
1−ρ2
− iσ2(1− c2)

)(

i

(

u2

σ2
− ρu1

σ2

√
1−ρ2

)

− c2
)

(
ϕ(τ, u1, u2,−zk, v)− ϕ(τ, u1, u2,−zk−, v)

)

e

(

iu1

(

− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)

−iu2
b2
σ2

)

= K1K2
ex1c1+x2c2−

∫ T
t

r(s)ds

2πσ2
n−1∑

k=0

iσ2
(
ϕ(τ, ǔ1, ǔ2,−zk, v)− ϕ(τ, ǔ1, ǔ2,−zk−, v)

)

e

(

(1−c1)
(

b1
σ1

− b2σ1ρ
σ2

)

−iǔ2
b2
σ2

)

, (3.78)

where f1 is the integrand of the first integral in (3.75). Thus, the pricing formula with
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integration on the real axis is indicated by

C2C (t, S1, S2, B1, B2, v) =
n−1∑

k=0

(

− 2πi

∫ ∞

−∞
Resǔ1du2

−2πi
∫ ∞

−∞
Res

(2)
ǔ2
du1

−2πiRes(1)ǔ2
+
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ ∞

−∞

∫ ∞

−∞
ĥC(u)

(
ϕ (τ,u,−zk, v)− ϕ

(
τ,u,−zk−, v

))
(3.79)

e

(

iu1

(

− b1

σ1

√
1−ρ2

+
b2ρ

σ2

√
1−ρ2

)

−iu2
b2
σ2

)

du1du2

)

.

By using the method of images in the plane we can derive prices for correlation options

with a barrier on S2 only: C1C(t, S1, S2, B2) = EQ̃

[

e−
∫ T
t

r(s)ds max (S1(T )−K1, 0)

max (S2(T )−K2, 0)1{ι2>T} |Ft

]

. The solution is found by reflecting the characteristic

function in the plane (z2(0)→ −z2(0)).

Corollary 7. (Correlation single-barrier option price)

Let us assume the setting described in Equation (3.2) and the assumptions of Corollary

6, then the correlation single-barrier option value is given for any ρ by

C1C(t, S1, S2, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥC(u)

(ϕ(τ,u,−z1,−z2, v)− ϕ(τ,u,−z1, z2, v)) (3.80)

e
(iu1

b2ρ

σ2

√
1−ρ2

−iu2
b2
σ2

)
du1du2, u ∈ SgC ,

where ϕ, xi, bi, and ci are as defined in Theorem 34, as well as ĥC(u1, u2) in 3.71.

The corollary directly follows from Theorem 34 and Equation (3.71). For details on

the method of images in half-space please refer to Appendix A.1.3. In the following we

compute prices of a two-asset correlation option in the three-factor Model (3.2) using

Theorem 6 with the Heston-type characteristic function, which we degenerate to the

two-factor GBM Model (3.1). We compare the resulting values to prices computed in

the GBM model with a formula derived by He et al. [64]. The exactness of the prices
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computed using Fourier transform can be seen in Table 3.4. For the following scenario

Table 3.4: Prices of the two-asset barrier correlation option computed in the limit to
bivariate normal distribution.

GBM model Degenerated 3-factor model
Correlation ρ

strike K1 0 -0.5 -0.71 0 -0.5 -0.71
80 453.06 99.59 31.58 453.06 99.60 31.58
85 421.59 88.71 26.92 421.59 88.71 26.92
90 390.85 78.36 22.61 390.85 78.36 22.62
95 361.20 68.78 18.77 361.20 68.78 18.79
100 332.91 60.05 15.47 332.90 60.05 15.47
105 306.14 52.22 12.65 306.14 52.22 12.65
110 280.99 45.27 10.29 280.98 45.27 10.29

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5, v(0) =1.0,
B1(0) = B2(0) =75, ζ =0.0004, κ =0.0004, σv =0.0004.

computations for Theorem 6 we set again S1 = S2 = 100, K1 = K2 = 100, r = 0.04,

T = 1, σ1 = σ2 = 0.5, ρ = 0, σv = 0.4, ζ = 0.9, κ = 0.4, v(0) = 0.9. When the barriers

B1(0), B2(0) are increased we also observe in Figure 3.5 for correlation options with two

barriers a downward sliding graph.
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Figure 3.5: Correlation Option with Barriers (ρ=0).
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We repeat the computations again for correlation ρ = −0.5. For the two-asset barrier

correlation option the features of the graph do not change in comparison to ρ = 0 in

Figure 3.6.
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Figure 3.6: Correlation Option with Barriers (ρ=-0.5).

In Table 3.5 we provide more results which show the impact of the various parameters

of the covariance process on the price of the two-asset barrier correlation option. The

barrier levels B1(0) and B2(0) are set at 75 as before. One notes the – at first – striking

different behaviour of digital and correlation options towards the parameters of the model:

For the correlation option the picture is different to before. The payoff of this derivative

is not only influenced by the probability that the underlyings stay above the barriers

during lifetime and above the strike levels at maturity but also by the actual level of

the underlyings at maturity. Thus, in the here presented scenario there are two contrary

effects: A higher volatility increases the probability that the underlyings are far above

the strike levels at maturity but it also increases the probability that the underlyings fall

below the barrier levels during the lifetime. The former effect seems to be dominant in

this scenario as the value of the barrier correlation option raises when the mean-reversion

level is increased. If the volatility of the volatility process is incremented the value of the

option falls. Therefore, the probability that both underlyings stay above the barrier and

far above the strike levels at maturity is lowered. As the opposite effect is visible with



92 3.4 Pricing of two-asset barrier options with Fourier techniques

digital options it seems that a higher σv leads to a higher probability of lower volatility

values in the whole system. When κ is augmented the overall effect depends again on the

mean-reversion level: In the case of a low mean-reversion level of ζ = 0.6 the value of the

derivative falls. Obviously, lower volatility values below and at the mean-reversion level

become more probable. The opposite is true for the higher mean-reversion levels as the

fast mean reversion ensures high values of volatilities.

To analyse the influence of the volatility and the various parameters in more detail we

proceed analogously to the digital options and choose now a barrier level of B1(0) =

B2(0) = 60 and strike levels K1 = K2 = 110. σ1 and σ2 are set to 0.2. Comparing Tables

(3.3) and (3.6) we can observe that digital and correlation options behave in the same

way to a change in the different parameter values.

Table 3.5: Prices of correlation options with barriers barriers in Heston-type model
(Fourier technique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ =

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 313.86 326.25 337.69 307.88 325.27 340.86 302.70 324.43 343.41
0.6 310.11 322.79 334.49 304.69 322.40 338.27 299.98 322.03 341.29
0.8 305.05 318.09 330.12 300.39 318.51 334.73 296.30 318.77 338.38

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.

Table 3.6: Prices of correlation options with barriers in Heston-type model (Fourier tech-
nique) with low σ-values.

κ = 0.6 κ = 0.9 κ = 1.2
ζ =

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 28.99 32.37 35.81 27.30 31.91 36.65 25.90 31.53 37.35
0.6 29.24 32.60 36.03 27.51 32.10 36.82 26.08 31.69 37.49
0.8 29.58 32.91 36.32 27.79 32.36 37.06 26.32 31.91 37.69

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.2,
B1(0) = B2(0) =60, K1 = K2 =110, v(0) =1.0, ρ =0.

3.4.5 Alternative Fourier Technique

As already mentioned, alternatively, the methods derived by Carr and Madan [18] and

Dempster and Hong [32] could be extended to allow for barrier option pricing. They

Fourier transform the option price directly. As many of those integrands are not Lebesgue

integrable and singular, they transform a modified (dampened) call price, which assures

integrability. We price any terminal payoff g(S1, S2) without barriers. Starting from
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Equation (3.6) and for Ki = 1 we define the characteristic function of the two variables

x′1 and x′2 at time t starting from x1 and x2 in t = 0 in terms of the two independent

variables z1 and z2 (see transformations for (3.32)) by

ϕ(t, w1, w2) = EQ̃ [exp {iw1z
′
1(t) + iw2z

′
2(t)}]

=

∫ ∞

−∞

∫ ∞

−∞
eiw1z

′
1+iw1z

′
2 q̂(t, z′1, z

′
2, z1, z2, v)dz

′
1dz

′
2, w ∈ R

2, (3.81)

where

z′1 =
1

√

1− ρ2

(
x′1 − b1
σ1

− ρx
′
2 − b2
σ2

)

,

z′2 =
x′2 − b2
σ2

,

xi = ln
(

Sie
∫ T
t

r(s)ds
)

,

bi = lnBi(T ),

τ = T − t.

q̂ is the joint density function of x′1, x
′
2 in T conditional on x1 and x2 in t. As already

shown, we can reformulate any option for which the payoff only depends on the terminal

values of the stocks by

C(T − t, x1, x2, k1, k2) = e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2, k1, k2)

e−c1x
′
1−c2x

′
2 q̂(τ, x′1, x

′
2, x1, x2, v)dx

′
2dx

′
1, (3.82)

where ki = ln(Ki). In many cases the joint density function is not known in closed form

but the characteristic function so that we cannot use the formulation in (3.82). Therefore

we want to Fourier transform the above problem. However, if C(T − t, x1, x2, k1, k2) is

not L1 (see also Schmelzle [104] for a summary) the Fourier transform does not exist. As

mentioned above we can circumvent this by introducing a damping factor αd
i . Following

Carr and Madan [18] and Dempster and Hong [32] we multiply the option price by:

c(t, x1, x2, k1, k2) := eα
d
1k1+αd

2k2C(t, x1, x2, k1, k2).

For suitable αd
1, α

d
2, c(t, x1, x2, k1, k2) is an integrable function, since then

∫

R2

∣
∣
∣eα

d
1k1+αd

2k2C(t, x1, x2, k1, k2)
∣
∣
∣ dk1dk2 <∞. (3.83)
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Along the lines of Dempster and Hong [32] we derive the Fourier transform of the modified

double-digital option price (without barriers), i.e. g(x1, x2) = 1{x1>k1,x2>k2}, where ki =

lnKi.

ĉD(w1, w2) =

∫ ∞

−∞

∫ ∞

−∞
eiw1k1+iw2k2cD(t, x1, x2, k1, k2)dk2dk1

=

∫ ∞

−∞

∫ ∞

−∞
e(α

d
1+iw1)k1+(αd

2+iw2)k2e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

k1

∫ ∞

k2

e−c1x
′
1−c2x

′
2 q̂(τ, x′1, x

′
2, x1, x2, v)dx

′
2dx

′
1dk2dk1

=

∫ ∞

−∞

∫ ∞

−∞
e−

∫ T
t

r(s)ds+c1x1+c2x2 q̂(τ, x′1, x
′
2, x1, x2, v)

∫ x′
1

−∞

∫ x′
2

−∞
e(α

d
1+iw1)k1+(αd

2+iw2)k2e−c1x
′
1−c2x

′
2dk2dk1dx

′
2dx

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞

e(α
d
1−c1+iw1)x′

1+(αd
2−c2+iw2)x′

2 q̂(τ, x′1, x
′
2, x1, x2, v)

(αd
1 + iw1)(αd

2 + iw2)
dx′2dx

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞

e(
αd
1−c1+iw1)

(√
1−ρ2σ1z

′
1+b1+ρσ1z

′
2

)

(αd
1 + iw1)(αd

2 + iw2)

e(α
d
2−c2+iw2)(z′2σ2+b2)q̂(τ, z′1, z

′
2, z1, z2, v)dz

′
2dz

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2
e(α

d
1−c1+iw1)b1+(αd

2−c2+iw2)b2

(αd
1 + iw1)(αd

2 + iw2)
ϕ(τ, u1, u2, v),

where

u1 = σ1
√

1− ρ2
(
w1 − i

(
αd
1 − c1

))
,

u2 = σ2
(
u2 − i

(
αd
2 − c2

))
+ ρσ1

(
w1 − i

(
αd
1 − c1

))
.

We can apply the Theorem of Fubini in the forth line due to 3.83.

The damping factor improves the integrability on the negative real axis. A sufficient

condition for cD to be square-integrable is the finiteness of ĉD(0, 0), which can be achieved

by choosing αd
i accordingly. Then the inversion of ĉD converges to cD in L2- norm in line

with Plancherel’s Theorem (see Theorem 11). Comparing u1 to (3.67) and the there

defined strip of regularity for u1 we can observe that the introduction of the damping

factor αd
i ensures in a similar manner as the application of the generalized Fourier inversion

(integration in the complex plane) integrability.



3 Pricing of barrier options within stochastic covariance model 95

The price of a digital option without barriers is given by

CD(τ, S1, S2, K1, K2, v) =
e−α1k1−α2k2

4π2
∫ ∞

−∞

∫ ∞

−∞
e−i(w1k1+w2k2)ĉD(τ, w1, w2)dw2dw1. (3.84)

The value of the barrier option in the three-factor model can be found when we apply

the method of images in a wedge (see He et al. [64], Carslaw and Jaeger [19], p. 277f,

Sommerfeld [109]) to the characteristic function in accordance with the proof of Theorem

34.

Corollary 8. (Double-digital barrier option price with alternative method)

Let us assume

i. the setting described in Equation (3.2),

ii. the existence of an affine characteristic function,

iii. ρ = − cos
(
π
n

)
, where n is a natural number and n > 1, and that

iv. there are αd
1, α

d
2 so that exp {α1x1 + α2x2}CD ∈ L2.

Then the price of a two-asset digital barrier option (see (3.66) for the payoff profile) is:

C2D(t, S1, S2, K1, K2, B1, B2, v) =
e−α1k1−α2k2

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(w1k1+w2k2)

ĉ2D(w1, w2)dw2dw1, (3.85)

where

ĉ2D(w) =
e−

∫ T
t

r(s)ds+c1x1+c2x2e(α
d
1−c1+iw1)b1+(αd

2−c2+iw2)b2

(αd
1 + iw1)(αd

2 + iw2)
n−1∑

k=0

(
ϕ (τ,u,−zk, v)− ϕ

(
τ,u,−z−k , v

))
,

where ϕ, z
(−)
k1 and z

(−)
k2 are given Theorem 34. The convergence is in L2-norm.

Similarly, the price of the correlation barrier option can be derived. The transform of the
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dampened correlation option price is given by

ĉC(w1, w2) =

∫ ∞

−∞

∫ ∞

−∞
e(iw1+αd

1)k1+(iw2+αd
2)k2e−

∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

k1

∫ ∞

k2

e−c1x
′
1−c2x

′
2

(

ex
′
1 − ek1

)(

ex
′
2 − ek2

)

q̂(τ, x′1, x
′
2, x1, x2, v)dx

′
2dx

′
1dk2dk1

=

∫ ∞

−∞

∫ ∞

−∞
e−

∫ T
t

r(s)ds+c1x1+c2x2 q̂(τ, x′1, x
′
2, x1, x2, v)

∫ x′
1

−∞

∫ x′
2

−∞
e(iw1+αd

1)k1

e(iw2+αd
2)k2e−c1x

′
1−c2x

′
2

(

ex
′
1 − ek1

)(

ex
′
2 − ek2

)

dk2dk1dx
′
2dx

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞
q̂T (x

′
1, x

′
2, v)

ex
′
1(α

d
1+1−c1+iw1)(αd

1 + 1 + iw1)− ex′
1(α

d
1+1−c1+iw1)(αd

1 + iw1)

(αd
1 + iw1)(αd

1 + 1 + iw1)

ex
′
2(α

d
2+iw2+1−c2)(αd

2 + 1 + iw2)− ex′
2(α

d
2+iw2+1−c2)(αd

2 + iw2)

(αd
2 + iw2 + 1)(αd

2 + iw2)
dx′2dx

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞

ex
′
1(α

d
1+1−c1+iw1)

(αd
1 + iw1)(αd

1 + 1 + iw1)

ex
′
2(α

d
2+iw2+1−c2)

(αd
2 + iw2 + 1)(αd

2 + iw2)
q̂T (x

′
1, x

′
2, v)dx

′
2dx

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2

∫ ∞

−∞

∫ ∞

−∞
q̂T (z

′
1, z

′
2, v)

e(
√

1−ρ2σ1z
′
1+b1+ρσ1z

′
2)(α

d
1+1−c1+iw1)e(z

′
2σ2+b2)(αd

2+1−c2+iw2)

(αd
1 + iu1)(αd

1 + 1 + iw1)(αd
2 + 1 + iw2)(αd

2 + iw2)
dz′2dz

′
1

= e−
∫ T
t

r(s)ds+c1x1+c2x2
eb1(α

d
1+1−c1+iw1)eb2(α

d
2+1−c2+iw2)ϕ(τ, u′1, u

′
2, v)

(αd
1 + iw1)(αd

1 + 1 + iw1)(αd
2 + iw2)(αd

2 + 1 + iw2)
,

where

u′1 = σ1
√

1− ρ2
(
w1 − i

(
αd
1 + 1− c1

))
,

u′2 = σ2
(
w2 − i

(
αd
2 + 1− c2

))
+ ρσ1

(
w1 −

(
αd
1 + 1− c1

))
. (3.86)

Thus, the price of the correlation option is given by

CC(t, S1, S2, K1, K2, v) =
e−α1k1−α2k2

4π2
∫ ∞

−∞

∫ ∞

−∞
e−i(w1k1+w2k2)ĉC(u1, u2)dw2dw1, (3.87)
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where

ĉC(w1, w2) =
e−

∫ T
t

r(s)ds+c1x1+c2x2e(α
d
1+1−c1+iw1)b1+(αd

2+1−c2+iw2)b2
(
αd
1 + iw1

) (
αd
1 + 1 + iw1

) (
αd
2 + iw2

) (
αd
2 + 1 + iw2

)ϕ (τ, u′1, u
′
2, v) ,

u′1 = σ1
√

1− ρ2
(
w1 − i

(
αd
1 + 1− c1

))
,

u′2 = σ2(w2 − i(αd
2 + 1− c2)) + ρσ1

(
w1 − i

(
αd
1 + 1− c1

))
.

Corollary 9. (Correlation barrier option price with alternative method)

Let us assume

i. the setting described in Equation (3.2),

ii. the existence of an affine characteristic function,

iii. ρ = − cos
(
π
n

)
, where n is a natural number and n > 1, and that

iv. there are αd
1, α

d
2 so that exp {α1x1 + α2x2}CD ∈ L2.

Then the price of a two-asset barrier correlation option (see (3.70) for the payoff profile)

is given by:

C2C(t, S1, S2, K1, K2, B1, B2, v) =
e−α1k1−α2k2

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(w1k1+w2k2)

ĉ2C(u1, u2)dw2dw1, (3.88)

where

ĉ2C(w1, w2) =
e−

∫ T
t

r(s)ds+c1x1+c2x2e(α
d
1+1−c1+iw1)b1+(αd

2+1−c2+iw2)b2
(
αd
1 + iw1

) (
αd
1 + 1 + iw1

) (
αd
2 + iw2

) (
αd
2 + 1 + iw2

)

n−1∑

k=0

(
ϕ (τ,u,−zk+, v)− ϕ

(
τ,u,−z−k , v

))
,

u′1 = σ1
√

1− ρ2
(
w1 − i

(
αd
1 + 1− c1

))
,

u′2 = σ2(w2 − i(αd
2 + 1− c2)) + ρσ1

(
w1 − i

(
αd
1 + 1− c1

))
,

where ϕ, z
(−)
k1 and z

(−)
k2 are given Theorem 34. The convergence is in L2-norm.
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3.4.6 Random correlations

The restriction of the solution for the two-asset barrier options to correlations ρ =

− cos (π
n
) with n ∈ N might seem rather restrictive because all possible correlations are

negative for n > 2. We can, however, loosen this constraint. The assumption that the

correlation takes the attainable values ρn randomly with a probability pn makes positive

expected correlations achievable. For example, if we assume that p1 = p2 =
1
2
and pi = 0,

for i > 2 then the expected correlation is 1
2
with variance 1

4
.

Theorem 35. (Random correlation)

Let us assume that the correlation ρ can take any value ρn = − cos π
n
with a positive

probability pn and that this probability pn is known. Then, the value of any derivative is

given as the weighted sum

C(t, S1, S2, v) =
∞∑

i=1

pnC(ρ=−cosπ
n
)(t, S1, S2, v). (3.89)

Remark 13. Given this assumption E(ρ) > 0 is attainable, although most of the possible

values for ρ are actually negative.

3.4.7 Conclusion

In this section we have shown how to derive easily attainable and quickly computable

solutions to a range of two-asset barrier options in a stochastic covariance framework

for a special correlation structure. This framework is extended to allow for a random

correlation structure. The formulas derived can be computed via fast Fourier transform

following the transformations done by Dempster and Hong [33] but even without the

adoption of the fast Fourier transform the formulas can be quickly evaluated.

3.5 Pricing of two-asset barrier options with PDE

techniques

In the following we use the method of separation and the solution to well-known ODEs

to find pricing techniques for valuing options for any ρ. In Subsection 3.5.1 we use our

knowledge about affine characteristic functions and the PDEs which they solve to find a

simple extension to the solution He et al. proposed for two correlated geometric Brownian

motions for our three-factor stochastic covariance Model (3.2). Moreover, we derive the
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survival probabilities.

3.5.1 General pricing formulas for two-asset barrier options ex-

ploiting the affine form in v

The System (3.6) can be solved for a group of models included in the general framework

(3.2), i.e. for specific values of the parameters γ and ν. This group is characterised by

the existence of an affine characteristic function. For these models a feasible and easily

manageable solution for the pricing of two-asset barrier options can be found:

Theorem 36. (Barrier option pricing in R
2 with PDE technique)

Let us assume the setting described in Equation (3.2) and the existence of an affine char-

acteristic function. Then the price of a two-asset barrier option (see (3.4) for the payoff

profile) in the three-factor stochastic volatility model is given by

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

−∞

∫ ∞

−∞
g(x′1, x

′
2)

e−x′
1c1−x′

2c2q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.90)

where

xi = ln
Sie

∫ T
t

r(s)ds

Ki

,

q (τ, x1, x2, x
′
1, x

′
2, v) =

2

βp

∫ ∞

0

λV (τ, λ) (3.91)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ,

tan βp = −
√

1− ρ2
ρ

, β ∈ [0, π] ,

rp =

√

1

(1− ρ2)

(
x1 − b1
σ1

− ρx2 − b2
σ2

)2

+

(
x2 − b2
σ2

)2

,

tan(θp) =
x2−b2
σ2

1√
1−ρ2

(
x1−b1
σ1
− ρx2−b2

σ2

) , θp ∈ [0, βp] ,

c1 =
σ1 − σ2ρ

2σ1(1− ρ2)
, c2 =

σ2 − σ1ρ
2σ2(1− ρ2)

,
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where V (τ, λ) solves the PDE given in (3.100) and Jς(x) denotes the Bessel function of

the first kind.

Proof.

We start from (3.32) and separate q(τ, z1, z2, v) = H(z1, z2)V (τ, v). We get

∂V

∂τ
H =

1

2
v2νV

∂2H

∂z21
+

1

2
v2νV

∂2H

∂z22
− v2ν σ

2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) HV

+
1

2
σ2
vv

2γ ∂
2V

∂v2
H + κ(ζ − v)∂V

∂v
H. (3.92)

Dividing by H we obtain

∂V

∂τ
=

1

2
v2ν

V

H

(
∂2H

∂z21
+
∂2H

∂z22

)

− v2ν σ
2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) V

+
1

2
σ2
vv

2γ ∂
2V

∂v2
+ κ(ζ − v)∂V

∂v
. (3.93)

Furthermore, we set
1

2

(
∂2H

∂z21
+
∂2H

∂z22

)

= −λ
2

2
H. (3.94)

By transforming z1 and z2 in Equation (3.94) to polar coordinates the vertical

boundary is described by the angle tan θp = −
√

1−ρ2

ρ
and the horizontal bound-

ary by θp = 0. Thus, the bounded area for which the PDE is defined is a

wedge Y = {(rp cos (θp) , rp sin (θp)) : rp > 0, 0 < θp < βp} ⊂ R
2, where tan βp =

−
√

1−ρ2

ρ
, βp ∈ [0, π]. The boundary of the wedge is described by ∂Y =

{(rp cos (θp) , rp sin (θp)) : rp ≥ 0, θp ∈ {0, βp}} ⊂ R
2. Choosing a separable solution of

the form R(rp)Θ(θp) we get the following relationship



r2p

d2R
dr2p

R
+ rp

dR
drp

R
+ λ2r2p



+





d2Θ
dθ2p

Θ



 = 0. (3.95)

We define
d2Θ

dθ2p

Θ
= −k2 and find

Θ(θp) ∼ A sin (kθp) + B cos (kθp) . (3.96)

Θ has to fulfil the boundary conditions Θ(0) = Θ(βp) = 0. Thus, B = 0 as k is real.

Hence,

kn =
nπ

βp
, n = 1, 2 . . . (3.97)
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The radial part is given by

(λrp)
2 d2R

d (λrp)
2 + (λrp)

dR

d (λrp)
+
(
(λrp)

2 − kn2
)
R = 0. (3.98)

As R(0) has to be well-behaved, the general solution of the radial part is

R(rp) ∼ Jkn (λrp) , (3.99)

where Jς(x) is the Bessel function of the first kind. We insert (3.94) in (3.93) and get

∂V

∂τ
= −1

2
v2νλ2V − v2ν σ

2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) V

+
1

2
σ2
vv

2γ ∂
2V

∂v2
+ κ(ζ − v)∂V

∂v
, (3.100)

V (0, v) = 1. (3.101)

If the process possesses an affine-type characteristic function, (3.100) collapses to a system

of ODEs and the solution can be given by

q
(
τ, rp, θp, r

′
p, θ

′
p, v
)

=

∫ ∞

0

V (τ, λ)
∞∑

n=1

cn(λ)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) dλ. (3.102)

To determine cn(λ) we use the initial condition q (0, rp, θp, v) =
1
r′p
δ
(
rp − r′p

)
δ
(
θp − θ′p

)
.

Multiply (3.102) at τ = 0 by sin
(

mπθp
βp

)

and integrate over θp.

1

r′p
δ
(
rp − r′p

)
sin

(
mπθ′p
βp

)

=
βp
2

∫ ∞

0

cm(λ)Jmπ
βp

(λrp) dλ, (3.103)

where we use the integral identity
∫ π

0
sin (mx) sin (nx) dx = π

2
δ(m− n) (see Arfken [7], p.

632) and, thus,
∫ βp

0
sin
(

mπθp
βp

)

sin
(

nπθp
βp

)

dθ = βp

2
δ(m− n).

Finally, multiplying by rpJmπ
βp

(λ′rp) and integrating over rp results in the following solution

for cn(λ)

cm(λ
′) =

2λ′

βp
sin

(
mπθ′p
βp

)

Jmπ
βp

(
λ′r′p

)
, (3.104)

where we use the Bessel function closure equation
∫∞
0
xJς(ax)Jς(bx)dx = 1

a
δ(a − b) (see
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Arfken [7], p. 648). Thus,

q(τ, rp, θp, r
′
p, θ

′
p, v) =

2

βp

∫ ∞

0

λV (τ, λ)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ.

and,

p(x1(τ) ∈ dx1, x2(τ) ∈ dx2, x1(τ) > b1, x2(τ) > b2, v) =

=
ec1x1+c2x2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
q (τ, x1, x2, x

′
1, x

′
2, v) dx

′
1dx

′
2, (3.105)

where xi denotes the minimum value xi takes in τ and
1

σ1σ2

√
1−ρ2

is the Jacobi determinant.

Remark 14. If the three-factor model degenerates to a two-factor GBM model then (3.91)

is consistent with the formula He et al. [64] found.

qGBM (τ, x1, x2, x
′
1, x

′
2, v) =

2

βpτ
e
−σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
τ

∞∑

n=1

e−
r2p+r′p

2

2τ

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Inπ
βp

(
r′prp

τ

)

, (3.106)

where Iς(x) denotes the modified Bessel function of the first kind.

Proof.

If the three-factor model degenerates to a two-factor GBM model then (3.91) is consistent

with the formula He et al. [64] found:

qGBM(τ, x1, x2, v) =
2

βp

∫ ∞

0

λe
− 1

2
(λ2τ+

σ2
1+σ2

2−2ρσ1σ2
4(1−ρ2)

τ)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ

=
2

βpτ
e
−σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
τ

∞∑

n=1

e−
r2p+r′p

2

2τ sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Inπ
βp

(
r′prp

τ

)

, (3.107)
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where we used the formula (see Gradshtein [59], 6.633)

∫ ∞

0

xe−c2xJς(ax)Jς(bx)dx =
1

2c2
e−

(a2+b2)

4c2 Iς

(
ab

2c2

)

, (3.108)

with Iς
(

ab
2c2

)
, the modified Bessel function of the first kind.

One of the models for which the affine characteristic function exists is the model with

the Heston-type third factor. The price of a two-asset barrier option is presented in the

following corollary.

Corollary 10. (Barrier option pricing in Heston-type model in R
2 with PDE technique)

Let us assume the setting described in Equations (3.2) and (3.3) with ν = γ = 1
2
. Then

the price of a two-asset barrier option (see (3.4) for the payoff profile) in the three-factor

stochastic volatility model is

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

−∞

∫ ∞

−∞
g(x′1, x

′
2)

e−x′
1c1−x′

2c2q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.109)

where

xi = ln

(

Sie
∫ T
t

r(s)ds

Ki

)

,

q (τ, x1, x2, x
′
1, x

′
2, v) =

2

βp

∫ ∞

0

λe
1

σ2
v
(AH(τ,λ)+BH(τ,λ)v)

(3.110)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ,

tan βp = −
√

1− ρ2
ρ

, β ∈ [0, π] ,

rp =

√

1

(1− ρ2)

(
x1 − b1
σ1

− ρx2 − b2
σ2

)2

+

(
x2 − b2
σ2

)2

,

tan(θp) =
x2−b2
σ2

1√
1−ρ2

(
x1−b1
σ1
− ρx2−b2

σ2

) , θp ∈ [0, βp],

d = d(λ) =

√

κ2 + σ2
v

(

λ2 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

,

c1 =
σ1 − σ2ρ

2σ1(1− ρ2)
, c2 =

σ2 − σ1ρ
2σ2(1− ρ2)

,

where AH and BH are given in (3.49) and (3.48).
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Proof.

Inserting (A.24) in (3.100) we find the same ODEs as before in (A.1.2). The solutions

follow.

We have seen before that the Ornstein-Uhlenbeck process also possesses a characteristic

function. The pricing formula for the two-asset barrier option can, thus, be indicated in

the same way as for the Heston-type model:

Corollary 11. (Barrier option pricing in a Stein and Stein-type model in R
2 with PDE

technique)

Let us assume the setting described in Equation (3.2) with ν = 1 and γ = 0. Then the

price of a two-asset barrier option (see (3.4) for the payoff profile) in the three-factor

stochastic volatility model is given by

CB (t, S1, S2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

−∞

∫ ∞

−∞
g(x′1, x

′
2)

e−x′
1c1−x′

2c2q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.111)

where

xi = ln

(

Sie
∫ T
t

r(s)ds

Ki

)

,

q (τ, x1, x2, x
′
1, x

′
2, v) =

2

βp

∫ ∞

0

λe
1

σ2
v
(AS2(τ,λ)+BS2(τ,λ)v+CS2(τ,λ)v

2)
(3.112)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ,

tan βp = −
√

1− ρ2
ρ

, β ∈ [0, π] ,

rp =

√

1

(1− ρ2)

(
x1 − b1
σ1

− ρx2 − b2
σ2

)2

+

(
x2 − b2
σ2

)2

,

tan(θp) =
x2−b2
σ2

1√
1−ρ2

(
x1−b1
σ1
− ρx2−b2

σ2

) , θp ∈ [0, β],

where AS2, BS2 and CS2 are given in (3.59-3.61).

Proof.

Inserting (A.37) in (3.100) we find the same ODEs as before in (A.1.2). The solutions

follow.
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Using the Result (3.91) we can derive some more densities along the lines of Iyengar

[71], i.e. the density of the first hitting time ι′ and xi(ι
′) and the survival probability, i.e.

px(ι′ ∈ dt′,x(ι′) ∈ ∂D) and px(ι′ < t′) with 0 ≤ t ≤ t′ ≤ T .

By using the same arguments as Daniels [28], Iyengar [71] and Metzler [88] we derive the

probability density px (ι′ ∈ dt′,x(ι′) ∈ ∂D) of the hitting time ι′, where ι′ = min (ι1, ι2),

and the density of x(ι′) = (x1(ι
′), x2(ι

′)) in ι′. ∂D describes the boundaries with

(b1, x2(ι
′))
⋃

(x1(ι
′), b2) ⊂ ∂D.

Theorem 37. (px (ι′ ∈ dt′,x(ι′) ∈ ∂D))

The probability density function px(ι′ ∈ dt′,x(ι′) ∈ ∂D) is given by

px (ι′ ∈ dt′,x(ι′) ∈ ∂D) = ec1x1+c2x2−
∫ t′

t
r(s)ds π

β2
prp

∫ ∞

0

λV (t′, λ)

∞∑

n=1

nδn sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλ∂Ddt′, (3.113)

where δn = (−1)n+1 if θ′p = βp and δn = 1 if θ′p = 0,

xi = ln

(

Sie
∫ T
t

r(s)ds

Ki

)

,

rp =

√

1

(1− ρ2)

(
x1 − b1
σ1

− ρx2 − b2
σ2

)2

+

(
x2 − b2
σ2

)2

,

tan (θp) =
x2−b2
σ2

1√
1−ρ2

(
x1−b1
σ1
− ρx2−b2

σ2

) .

Proof.

Using a similar argument to Daniels [28], Iyengar [71] and Metzler [88] and transforming

to polar coordinates it can be shown that

pz (ι′ ∈ dt′, z(ι′) ∈ ∂Y ) = ec1x1+c2x2−
∫ t′

t
r(s)ds

qz (ι′ ∈ dt′, z(ι′) ∈ ∂Y ) dz1dz2

=
ec1x1+c2x2−

∫ t′

t
r(s)ds

2
[
∂

∂n
q
(
t, rp, θp, t

′, r′p, θ
′
p

)
r′p

∣
∣
∣
z∈∂Y

]

dr′pdθ
′
p,

where (b1, x2(ι
′))
⋃
(x1(ι

′), b2) ⊂ ∂D, ∂Y describes ∂D in polar coordinates. ∂
∂n

de-

notes the normal derivative, i.e. a directional derivative taken in the inward nor-
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mal (orthogonal) direction, to the boundary ∂Y in point z (z ∈ ∂Y ). x =
(

σ1

(√

1− ρ2z1 + ρz2

)

+ b1, σ2z2 + b2

)

and (z1, z2) = rp
(
cos
(
θ′p
)
, sin

(
θ′p
))
. In our

case the (unit) normal vector n on the boundary is either (0, 1) for z = (rp, 0), i.e.

z2 = 0, or (sin (βp) ,− cos (βp)) for z = rp (cos (βp) , sin (βp)), i.e. z2 = −
√

1−ρ2

ρ
z1. With

∂q

∂n
= ∇q · n =

(
∂q

∂r′p
, ∂q

r′p∂θ
′
p

)

· (0, 1) = 1
r′p

∂q

∂θ′p
we obtain for z = (rp, 0)

qz (ι′ ∈ dt′, z(ι′) ∈ ∂Y ) =

[
1

2r′p

∂

∂θ′p

2r′p
βp

∫ ∞

0

λV (t′, λ)

∞∑

n=1

sin

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdr′pdθ

′
p

]

θ′p=0,r′p≥0

=

[
1

βp

∫ ∞

0

λV (t′, λ)

∞∑

n=1

nπ

βp
cos

(
nπθ′p
βp

)

sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdr′pdθ

′
p

]

θ′p=0,r′p≥0

=
π

β2
p

∫ ∞

0

λV (t′, λ)

∞∑

n=1

n sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdr′pdθ

′
p

=
π

r′pβ
2
p

∫ ∞

0

λV (t′, λ)
∞∑

n=1

n sin

(
nπθp
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdz′1dz

′
2. (3.114)

The respective probability for z = rp(cos(βp), sin(βp)) can be derived by reflecting z about

the line z2 = tan
(

βp

2

)

z1, i.e. the reflected θ̃p = βp − θp.
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We insert the reflection in (3.114) and compute

qz (ι′ ∈ dt′, z(ι′) ∈ ∂Y ) =
π

r′pβ
2
p

∫ ∞

0

λV (t′, λ)
∞∑

n=1

n sin

(

nπθ̃p
βp

)

Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdz′1dz

′
2

= − π

r′pβ
2
p

∫ ∞

0

λV (t′, λ)
∞∑

n=1

n sin

(
nπθp
βp

)

cos (nπ) Jnπ
βp

(λrp) Jnπ
βp

(
λr′p
)
dλdz′1dz

′
2. (3.115)

The survival probability can be obtained by integrating (3.91) over the wedge (see Iyengar

[71] and Metzler [88]).

Theorem 38. (Survival probability)

The survival probability px(ι′ > t′) is given by the following expression in polar coordinates.

px(ι′ > t′) = ec1x1+c2x2−
∫ t′

t
r(s)ds

∑

n=1,3,5...

4

πn
sin

(
nπθp
βp

)∫ ∞

0

V (t′, λ) Jnπ
βp

(λrp)

∫ ∞

0

r′pJnπ
βp

(
λr′p
)
dr′pdλ, (3.116)

where

xi = ln

(

Sie
∫ T
t

r(s)ds

Ki

)

,

rp =

√

1

(1− ρ2)

(
x1 − b1
σ1

− ρx2 − b2
σ2

)2

+

(
x2 − b2
σ2

)2

,

tan(θp) =
x2−b2
σ2

1√
1−ρ2

(
x1−b1
σ1
− ρx2−b2

σ2

) , θp ∈ [0, βp].

Proof.

The probability that x1 and x2 do not hit the barrier during lifetime in 0 ≤ t ≤ t′ ≤ T

can be obtained by integrating (3.91) over the wedge. This is facilitated by converting to



108 3.5 Pricing of two-asset barrier options with PDE techniques

polar coordinates.

px(ι′ > t′) = ec1x1+c2x2−
∫ t′

t
r(s)ds

∫ βp

0

∫ ∞

0

q
(
t, rp, θp, r

′
p, θ

′
p, v
)
r′pdr

′
pdθ

′
p

= ec1x1+c2x2−
∫ t′

t
r(s)ds

∞∑

n=1

2

nπ
sin

(
nπθp
βp

)∫ βp

0

nπ

βp
sin

(
nπθ′p
βp

)

dθ′p

∫ ∞

0

λV (t′, λ) Jnπ
βp

(λrp)

∫ ∞

0

r′pJnπ
βp

(
λr′p
)
dr′pdλ

= ec1x1+c2x2−
∫ t′

t
r(s)ds

∑

n=1,3,5...

4

πn
sin

(
nπθp
βp

)∫ ∞

0

λV (t′, λ) Jnπ
βp

(λrp)

∫ ∞

0

r′pJnπ
βp

(
λr′p
)
dr′pdλ.

If the three-factor model is degenerated to the two-factor model the probability is given

by (see Metzler [88])

pxGBM(ι′ > t′) = ec1x1+c2x2−
∫ t′

t
r(s)ds

∑

n=1,3,5...

4

πnt′
sin

(
nπθp
βp

)

e
−σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
t′

∫ ∞

0

r′pe
−(

r2p+r′p
2)

2t′ Inπ
βp

(
rpr

′
p

t′

)

dr′p

= ec1x1+c2x2−
∫ t′

t
r(s)ds

∑

n=1,3,5...

4

πnt′
sin

(
nπθp
βp

)

e
−σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
t′

rp

∫ ∞

0

e−
(r2p+r′p

2
)

2t′
1

2

(

Inπ
βp

−1

(
rpr

′
p

t′

)

+ Inπ
βp

+1

(
rpr

′
p

t′

))

dr′p

= ec1x1+c2x2−
∫ t′

t
r(s)ds 2rp√

2πt′
e
−σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
t′

e−
r2p
4t′

∑

n=1,3,5...

1

n
sin

(
nπθp
βp

)(

I̟−1
2

(
r2p
4t′

)

+ I̟+1
2

(
r2p
4t′

))

,

where we used the identities 2I ′ς(x) = Iς−1(x) + Iς+1(x) (see Abramowitz and Stegun [1],

9.6.26) and
∫∞
0
e−bt2Iς(at)dt =

1
2

√
π
b
e

a
2

8b I ς
2
( a

2

8b
) (see Gradshtein [59], 6.618).

3.5.2 Pricing of two-asset double-digital barrier options with

PDE techniques

In the following we are going to derive formulas to price two-asset barrier double-digital

options with two time-dependent barriers.
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Corollary 12. (Double-digital barrier option in Heston-type model with PDE technique)

Let us assume the setting described in Equations (3.2) and (3.3) with ν = γ = 1
2
. Then

the price of a two-asset barrier double-digital option (see (3.66) for the payoff profile) is

given by

C2D(t, S1, S2, K1, K2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

0

∫ ∞

0

(

e−c1x
′
1−c2x

′
2

)

q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.117)

where q (τ, x1, x2, x
′
1, x

′
2, v) is given in Formula (3.110).

Table 3.7: Prices of double-digital options with barriers in Heston-type model (PDE
technique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 0.1054 0.0973 0.0901 0.1092 0.0978 0.0881 0.1126 0.0982 0.0864
0.6 0.1091 0.1006 0.0931 0.1124 0.1005 0.0904 0.1154 0.1005 0.0883
0.8 0.1142 0.1052 0.0972 0.1168 0.1043 0.0937 0.1191 0.1036 0.0910

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.

Table 3.8: Prices of double-digital options with barriers in Heston-type model (PDE
technique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 0.1417 0.1325 0.1243 0.1461 0.1331 0.1219 0.1499 0.1336 0.1200
0.6 0.1456 0.1360 0.1274 0.1494 0.1360 0.1244 0.1528 0.1360 0.1221
0.8 0.1507 0.1407 0.1317 0.1539 0.1399 0.1278 0.1566 0.1393 0.1249

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.3.

In a first step we want to compare the prices of the formulas in this chapter with the

formulas derived using Fourier techniques (see Section 3.4.3). Thus, we reprice the sce-

nario in Table 3.2 using the PDE based formulas (see Table 3.7). For the following

scenario computations we have chosen the parameters: S1 = S2 = 100, K1 = K2 = 100,

B1 = B2 = 75, r = 0.04, T = 1, σ1 = σ2 = 0.5, ρ = 0.3, v(0) = 1.0. In Table 3.8 one can

find several scenario computations showing the impact of the various parameters of the

covariance process on the price of the derivatives. For the Heston-type model the value of

a two-asset digital option decreases for rising mean-reversion levels, i.e. when the overall



110 3.5 Pricing of two-asset barrier options with PDE techniques

volatility of the two assets rises. The option increases in value when the volatility of the

third process σv is raised. The characteristics towards κ, the mean-reversion speed, is

ambiguous: When we increase κ from 0.6 to 0.9 for a mean-reversion level of ζ = 0.6 as

well as in the case ζ = 0.9 and σv = 0.3 an increase in κ leads to a higher value, however,

for higher mean-reversion levels, such as 1.2, an increase in κ reduces the value of the

derivative. The value of the digital barrier option reflects, in fact, the probability that

both assets stay above the barrier levels during the lifetime of the option and are above

the strike levels at maturity. In the scenario we have chosen the probability for that is

higher when the overall volatility in the system is low because then the derivative stays

above the barriers and ends in the money.

Corollary 13. (Double-digital barrier option in Stein and Stein-type model with PDE

technique)

Let us assume the setting described in Equation (3.2) with ν = 1 and γ = 0. Then the

price of a two-asset barrier double-digital option (see (3.66) for the payoff profile) is given

by

C2D(t, S1, S2, K1, K2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

0

∫ ∞

0

(

e−c1x
′
1−c2x

′
2

)

q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.118)

where q (τ, x1, x2, x
′
1, x

′
2, v) is given in Formula (3.112).

Table 3.9: Prices of double-digital options with barriers in Stein-type model (PDE tech-
nique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 0.1571 0.1429 0.1304 0.1692 0.1503 0.1340 0.1812 0.1585 0.1392
0.6 0.1580 0.1442 0.1316 0.1681 0.1493 0.1324 0.1780 0.1548 0.1344
0.8 0.1564 0.1434 0.1311 0.1647 0.1463 0.1290 0.1725 0.1492 0.1277

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.3.

For the Stein-type model the behaviour towards ζ is comparable to the Heston-type model:

The value of the option falls with an increase of the mean-reversion level. Incrementing

σv we can observe a fall in value except for the scenario κ = 0.6. The value of the option

increases in the Stein-type model when we increase the value of κ and only falls when

both σv and ζ are very high (σv = 0.8 and ζ = 1.2). The different characteristics of the
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Heston and the Stein model can be explained by the different form of the diffusion term

of the third factor process: The diffusion in the former model depends on
√
vσv while the

diffusion of the later only depends on σv.

3.5.3 Pricing of two-asset barrier correlation options with PDE

techniques

In the following we derive formulas to price two-asset barrier correlation options with

time-dependent barriers.

Corollary 14. (Correlation barrier option in Heston-type model with PDE technique)

Let us assume the setting described in Equations (3.2) and (3.3) with ν = γ = 1
2
. Then

the price of a two-asset barrier correlation option (see (3.70) for the payoff profile) is

given by

C2C(t, S1, S2, K1, K2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
K1K2

∫ ∞

0

∫ ∞

0

(

ex
′
1(1−c1) − e−x′

1c1

)

(

ex
′
2(1−c2) − e−x′

2c2

)

q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.119)

where q (τ, x1, x2, x
′
1, x

′
2, v) is given in Formula (3.110).

Table 3.10: Prices of correlation options with barriers in Heston-type model (PDE tech-
nique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 313.87 326.25 337.69 307.90 325.27 340.85 302.73 324.43 343.40
0.6 310.23 322.84 334.50 304.80 322.43 338.27 300.08 322.05 341.28
0.8 305.52 318.31 330.21 300.76 318.64 334.76 296.62 318.85 338.38

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.

Again, we first compare prices computed using the Fourier technique (see Section 3.4.4)

with the prices computed with PDE-based formulas. In Table 3.10 it can be seen that

the results are quite close to Table 3.5. For the correlation option the picture is different.

The payoff of this derivative is not only influenced by the probability that the underlyings

stay above the barriers during lifetime and above the strike levels at maturity but also by
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Table 3.11: Prices of correlation options with barriers in Heston-type model (PDE tech-
nique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 590.26 623.48 655.53 573.94 620.06 663.92 560.10 617.18 670.81
0.6 585.78 619.16 651.40 570.16 616.46 660.55 556.91 614.15 668.02
0.8 580.17 613.55 645.89 565.39 611.72 655.99 552.84 610.13 664.22

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.3.

the actual level of the underlyings at maturity. Thus, in the here presented scenario there

are two contrary effects: A higher volatility increases the probability that the underlyings

are far above the strike levels at maturity but it also increases the probability that the

underlyings fall below the barrier levels during the lifetime. The former effect seems to be

dominant in this scenario for the Heston-type model as the value of the barrier correlation

option raises when the mean-reversion level is increased. If the volatility of the covariance

process is incremented the value of the option falls. Therefore, the probability that both

underlyings stay above the barrier and far above the strike levels at maturity is lowered.

As the opposite effect is visible with digital options it seems that a higher σv leads to a

higher probability of lower volatility values in the whole system in the Heston-type model.

When κ is augmented the overall effect depends again on the mean-reversion level: In the

case of a low or medium mean-reversion level of ζ = 0.6 or 0.9 the value of the derivative

falls. Obviously, lower volatility values below and at the mean-reversion level become

more probable. The opposite is true for the higher mean-reversion levels as the fast mean

reversion ensures high values of volatilities.
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Corollary 15. (Correlation barrier option in Stein and Stein-type model with PDE tech-

nique)

Let us assume the setting described in Equation (3.2) with ν = 1 and γ = 0. Then the

price of a two-asset barrier correlation option (see (3.70) for the payoff profile) is given

by

C2C(t, S1, S2, K1, K2, B1, B2, v) =
ex1c1+x2c2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
K1K2

∫ ∞

0

∫ ∞

0

(

ex
′
1(1−c1) − e−x′

1c1

)

(

ex
′
2(1−c2) − e−x′

2c2

)

q (τ, x1, x2, x
′
1, x

′
2, v) dx

′
1dx

′
2, (3.120)

where q (τ, x1, x2, x
′
1, x

′
2, v) is given in Formula (3.112).

Table 3.12: Prices of correlation options with barriers in Stein-type model (PDE tech-
nique).

κ = 0.6 κ = 0.9 κ = 1.2
ζ

σv 0.6 0.9 1.2 0.6 0.9 1.2 0.6 0.9 1.2
0.4 556.82 604.77 651.57 515.67 575.07 633.05 478.92 545.26 610.33
0.6 579.87 627.79 675.83 540.39 601.81 664.02 505.65 576.50 649.18
0.8 611.56 659.42 708.59 574.0 638.28 705.47 541.37 618.56 700.60

S1(0) = S2(0) =100, T =1.0, r =0.04, σ1 = σ2 =0.5,
B1(0) = B2(0) =75, K1 = K2 =100, v(0) =1.0, ρ =0.3.

In Table 3.12 we note that the behaviour of both models is similar with respect to the

mean-reversion level ζ: The values of a two-asset correlation option in the Stein-type and

the Heston-type model raise with an increase of ζ. Thus, the effect that higher volatility

increases the probability that the underlyings are far above the strike levels dominates the

second effect in this case in both models. In the Stein-type model an increase in σv leads to

a higher value of the option, i.e. the sensitivity towards σv is reversed in most of the cases

in comparison to the valuation of the digital option. A higher value of σv, thus, increases

the probability that both underlyings take on values in the money at maturity. This

effect even compensates the decrease in the probability that both underlyings stay above

the barrier during the lifetime of the option. The sensitivity towards κ in the Stein-type

model is also reversed: With an increase in κ the value of the option is lowered.
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3.5.4 Conclusion

We have found a closed-form expression to price two-asset barrier options. Those options

have a payout at maturity time T , which may depend on S1(T ) and S2(T ) provided that

not any of the two assets crossed a predefined barrier. Closed-form expressions for barrier

options on two assets are rare. He et al. [64] and Zhou [123], [124] presented closed-

form pricing of those derivatives in the context of constant covariance. We extend their

result by allowing for a third factor in the model which governs the covariance of the two

underlyings. The solution found in Theorem 36 is true for any correlation −1 ≤ ρ ≤ 1

between the underlyings, and the implementation is numerically stable. Moreover, we

derive the joint survival probability of the two assets. In some scenario calculations we

analyse the impact of the model parameters on the price of two-asset barrier correlation

and digital options. From our proof of the general pricing formula with PDE techniques, it

is also clear that the assumption that the covariance process and the underlying processes

are independent cannot be relaxed. For those frameworks a closed-form solution is not

possible. Thus, we deal with approximation techniques in the next chapter. There we

also relax the assumption that the covariance is only driven by one common factor. We

rather assume several drivers and even set the correlation stochastic.

In the following we apply the techniques derived in this chapter to the pricing of certificates

under issuer risk. Certificates are retail products which consist of simpler internal hedging

derivatives.
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3.6 Pricing certificates under issuer risk

3.6.1 Introduction

Since market introduction in 1989, certificates have become very popular with retail cus-

tomers in Germany. In the years 2002 to 2007, the market volume doubled every year

[120], peaking in an all time high of 139 billion EUR at the end of the 3rd quarter of 2007.

In the financial market crisis, the market volume began to decline. Following the filing of

Chapter 11 of Lehman brothers in September 2008, the market for certificates dropped

by 30 billion EUR in one quarter to 80 billion EUR. Until the end of March 2010, the

market in Germany recovered to 106 billion EUR [34].

Certificate are also referred to as structured products. The simplest structures are index

certificates which allow a retail customer to directly invest in an index like the German

stock index Deutscher Aktien Index (DAX) or the Dow Jones Euro Stoxx 50. From a

legal point of view those products are bonds and the investors are, thus, creditors of the

respective issuer. This rather technical aspect has been disregarded in the investment

decision by many retail investors. Even the Value at Risk figures which are sometimes

given by banks as an indicator of the risk involved in single certificates are based on the

assumption of a non-defaultable issuer. However, in the case of an insolvency of the issuer

the investor may lose his total investment regardless of the performance of the underlyings

of the certificate. The case of Lehman Brothers shows that this risk can in fact materialise.

Certificates differ in this feature from an investment in funds. The investment in a fund

is a so-called special property and is not affected at all by the creditworthiness of the

issuing company because the fund is protected against the bankruptcy of the issuer.

Issuer risk is the risk of loss on securities and other tradeable obligations because the

issuer does not fulfil his contractual obligations due to his insolvency. Up to today this

kind of risk has hardly been addressed in the pricing of exotic securities and especially not

from a retailer’s perspective but only in connection with regulatory capital requirements,

e.g. Basel II. More details about modelling and evaluating counterparty/issuer risk under

an economic or regulatory perspective can be found in [17], [97], [98].

Pricing securities under counterparty risk can be traced back to Merton [87]. Johnson

and Stulz [74] analysed the counterparty risk in option pricing. They used a firm value

model and assumed that the vulnerable option presents the single debt of the company.

A huge increase in the derivative’s value, thus, rises the risk of default of the company.

This approach is only appropriate when the derivative is the only or the predominant

source of funding of the counterparty. Hull and White [69] as well as Jarrow and Turnbull

[72] value so-called vulnerable options, options on a bond written by a defaultable party,
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in a reduced form model. They assume independence between the credit risk of the

counterparty and the asset underlying the derivative. Cherubini and Luciano (see [20],

[21]) suggest to use a copula approach to value the counterparty risk in an investment.

This allows to model a dependence structure between term-structure movements and a

default of one of the parties.

Klein [78] as well as Klein and Inglis [79] choose a firm-value model to account for the

issuer risk and to model the dependencies between the issuing firm and the underlying.

We follow their approach in that regard, and condition the payoff of the certificate on

the survival of the issuer: The certificate only pays the total investment and gains back

as long as the issuer has not defaulted, i.e. its asset value has not fallen under a certain

barrier.

Like Klein [78] and Klein and Inglis [79] we model the correlation between the assets of

the issuer and the asset underlying the derivative explicitly. The barrier is exponentially

increasing in time. The issuer can default any time before maturity. In the case of default

the investor recovers a constant fraction of the market value of his investment. As we deal

with retail products we furthermore assume that the exotic structures are fully hedged,

i.e. all debt owed to the investor has to be seen alongside assets which the company owns.

In the case of default, however, these assets do not cover the claims of the investors but are

part of the insolvency estate. This allows us to assume the boundary as deterministically

increasing rather than stochastic (see [79]).

3.6.2 The model

The model formulation is influenced by the CreditGrades framework (for details see [110]

and [107]). This approach allows us to derive closed-form expressions for index, partici-

pation guarantee, bonus guarantee, discount, and bonus certificates under issuer risk in a

Black-Scholes and a stochastic covariance framework.

The system of processes is defined on a filtered probability space (Ω,F , Q̃,F). We as-

sume the existence of an equivalent martingale measure. As an immediate consequence

the market is arbitrage-free. The processes are directly formulated under the martingale

measure Q̃. We consider an issuing company i = 1 with an asset value per share at time t

of V1(t), an equity price S1(t), and a total debt per share of D1(t). The firm’s asset value

dynamics follow a geometric Brownian motion

dV1
V1

= (r − d1)dt+ σ1dW1, V1(0) = S1(0) +D1(0), (3.121)
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or a process with stochastic volatility, respectively

dV1
V1

= (r − d1)dt+ σ1v
νdW1, V1(0) = S1(0) +D1(0), (3.122)

where r is the risk-free interest rate and d1 is the dividend yield on the company’s assets.

Both processes, r and d1, are assumed deterministic. v is driven by a stochastic process

dv = κ(ζ − v)dt+ σvv
γdZ, (3.123)

〈dW1, dZ〉 = 0,

and ν, κ, ζ, σv, and γ are constants. The company’s debt is deterministic and yields a

continuous interest of r(s)− d1(s).

D1(t) = D1(0)e
∫ t
0 (r(s)−d1(s))ds. (3.124)

The issuing company defaults if its asset value falls below that barrier D1(t). Thus, the

time of default is defined by the stopping time ι′1

ι′1 = inf {t′ ∈ (t0, T ] : V1(t
′) < D1(t

′)} . (3.125)

We denote the equity per share by

{

S1(t) = V1(t)−D1(t), if ι1 > t and,

S1(t) = 0 otherwise.
(3.126)

This implies that default occurs whenever the stock price S1(t) falls to zero. As soon as

S1(t) reaches zero it remains there. In this framework an European option is seen as the

corresponding down-and-out barrier option with an absorbing barrier for S1(t) set at 0.

Hence, an equivalent time to default to ι′1 is

ι1 = inf {t′ ∈ (t0, T ] : S1(t
′) ≤ 0} . (3.127)

In the GBM framework the dynamics for S1(t) are, prior to default, found by applying

Itô to (3.126) and are given by

dS1 = S1(r − d1)dt+ (D1(t) + S1)σ1dW1. (3.128)

The stock price of the issuer follows – prior to default – a shifted log-normal distribution.

This distribution implies negative stock prices with positive probability (see [107] for more

details): The higher the leverage (debt-to-equity ratio) the higher is the probability of
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default and vice versa.

The dynamics of the underlying assets of a certificate are modelled by geometric Brownian

motions. The following system is considered to describe the assets of the issuer and the

underlying assets of the derivatives:

dS1 = S1(r − d1)dt+ (D1(t) + S1)σ1dW1, (3.129)

dSi = Si(r − di)dt+ SiσidWi for i = 2, . . . , d,

〈dWi, dWk〉 = ρikdt,

where σi and ρ are constants (see [67]).

This framework is compared to a stochastic covariance framework, where S1 is modelled

by

dS1 = S1(r − d1)dt+ (D1(t) + S1)σ1v
νdW1, (3.130)

where v is driven by (3.131). Hence, the framework is given by

dS1 = S1(r − d1)dt+ (D1(t) + S1)σ1v
νdW1, (3.131)

dSi = Si(r − di)dt+ Siσiv
νdWi for i = 2, . . . , d,

dv = κ(ζ − v)dt+ σvv
γdZ, (3.132)

〈dWi, dZ〉 = 0,

〈dWi, dWk〉 = ρikdt.

In the following we consider the Heston-type model with ν = γ = 1
2
and the Stein-type

model with ν = 1 and γ = 0.

3.6.3 Pricing of certificates under issuer risk

Building blocks

The most popular certificates are composed from simple building blocks such as zero-

coupon bonds CZ(t), investments in an underlying S2(t), call options CCall (t, S2, K2),

and digital options CD (t, S2, K2) as well as knock-out put options C1P (t, S2, K2, B2).

The formulas for these components are derived for the case that the issuer can default

and has a recovery rate of zero (for a similar model see [83], p. 635ff). In the case of no

default the valuation of the building blocks is well-known and will be provided for the

purpose of completeness. By means of these building blocks defaultable index, guarantee,

and bonus certificates can be valued for any assumption of the recovery rate. The proofs
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for the results in this section will be provided in the Appendix A.2.

A main component of index certificates and discount certificates is the investment in the

underlying S2, which is actually worth S2(t) at time t, when we assume that the issuer

cannot default. However, when we suppose that the investor does not obtain the dividends

paid out the value is given by S2(t)e
−
∫ T
t

d2(s)ds.

Proposition 4. (Investment in a stock)

In the case when the investment in the equity is guaranteed by an issuer who is defaultable

with recovery rate zero, the price SD
2,t of this investment in Model (3.129) at time t is given

by

CD
S = S2e

−
∫ T
t

d2(s)ds
(

N (d1)

− exp
{
2x∗1(c1 − ρ

σ2
σ1

(1− c2))
}
N
(

d̃1

))

,

where N2(x, y, ρ) is the standard bivariate normal distribution function with correlation

ρ,

x∗1 = ln(
S1 +D1(t)

D1(t)
), x2 = ln

(

S2e
∫ T
t
(r(s)−d2(s))ds

)

,

τ = T − t,

c1 =
σ1 − ρσ2

2σ1(1− ρ2)
, c2 =

σ2 − ρσ1
2σ2(1− ρ2)

,

d1 =
x∗1

σ1
√
τ
− 1

2
σ1
√
τ + ρσ2

√
τ , d̃1 = −

x∗1
σ1
√
τ
− 1

2
σ1
√
τ + ρσ2

√
τ .

In the stochastic covariance Framework (3.131) the price is given by

CD
S (t, S1, S2, v) =

ex
∗
1c1+x2c2−

∫ T
t

r(s)ds

2πσ1

∫ i̟1+∞

i̟1−∞

˜̂
hCD

S
(u1)

(ϕ (τ,u,−z1,−z2, v)− ϕ (τ,u, z1,−z2, v)) du1,
u ∈ SCD

S
= Sϕ ∩ Sg

CD
S

,

where

˜̂
hDS (u1, u2) =

(

−1
iu1

σ1
+ ρσ2(1−c2)

σ1
− c1

)

,

with ℑ(u1) = ̟1 > −σ1c1 + (1 − c2)σ2ρ, i.e. Sg
CD
S

=

{u = w + i̟ : ̟2 = 0 ∧̟1 > −σ1c1 + (1− c2)σ2ρ} and the characteristic functions
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ϕ(τ,u, z, v) for the Heston-type and the Stein and Stein-type models are given by

ϕH(τ,u, z, v) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(AH(τ,u) + BH(τ,u)v)

}

, (3.133)

ϕS2(τ,u, z, v) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(
AS2(τ,u) + BS2(τ,u)v + CS2(τ,u)v

2
)
}

,

with AH , BH , AS2, BS2, and CS2 as defined in (3.48)-(3.49) and (3.59)-(3.61).

For a proof see A.2.2.

Products, which ensure a repayment of an investment with notional 1 at maturity, are

internally stripped into a zero-coupon bond and several derivatives. As known, a non-

defaultable zero-coupon bond is priced by CZ(t) = e−
∫ T
t

r(s)ds.

Proposition 5. (Zero-coupon bond)

When we assume that the issuer can default and – if he defaults – he does so with no

recovery, the value of the zero-coupon bond in the GBM framework can be computed by

(see [107])

CD
Z (t) = e−

∫ T
t

r(s)ds
(

N (d∗
1)− ex

∗
1N
(

d̃∗
1

))

, (3.134)

with N (.) being the standard cumulative normal distribution function, and

d∗
1 =

x∗1
σ1
√
τ
− 1

2
σ1
√
τ , d̃∗

1 = −
x∗1

σ1
√
τ
− 1

2
σ1
√
τ .

When the issuer additionally promises a fixed interest rI on the investment this is valued,

assuming no default, by CD
Z (t, I) = (1 + rI) e

−
∫ T
t

r(s)ds and accordingly by CD
Z (t, I) =

e−
∫ T
t

r(s)ds (1 + rI)
(

N (d∗
1)− ex

∗
1N
(

d̃∗
1

))

in a world with defaults and zero recovery.

In the stochastic covariance framework with defaults the zero bond is priced by (see [107])

CD
Z (t, S1, v) =

e
1
2
x∗
1−
∫ T
t

r(s)ds

2π

∫ ∞

−∞

ϕ(τ, u1, x
∗
1, v)− ϕ(τ, u1,−x∗1, v)
iu1 − 1

2

du1, (3.135)

where the one-dimensional characteristic functions for the Heston-type model and the

Stein-type model are given by

ϕH(τ, u, v) = exp

{

iu1x
∗
1 +

1

σ2
v

(AH(τ, u1) + BH(τ, u1)v)

}

, (3.136)

ϕS2(τ, u, v) = exp

{

iu1x
∗
1 +

1

σ2
v

(
AS2(τ, u1) + BS2(τ, u1)v + CS2(τ, u1)v

2
)
}

,
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where

d = d(u1) =

√

κ2 + σ2
vσ

2

(

u12 +
1

4

)

,

and with AH , BH , AS2, BS2, and CS2 as defined in (3.48)-(3.49) and (3.59)-(3.61).

Call options are introduced in the structured products to leverage the investment and

to grant the investor a high participation rate in the returns of the underlying. In

the GBM framework with a non-defaultable issuer the call option with strike K2 is

priced by the well-known Black-Scholes formula CCall (t, S2, K2) = S2e
∫ T
t

r(s)dsN (d2) −
K2e

−
∫ T
t

r(s)dsN (d∗
2), where d2 =

x2

σ2
√
τ
+ 1

2
σ2
√
τ , x2 =

S2e
∫T
t (r(s)−d2(s))ds

K2
and d∗

2 = d2−σ2
√
τ .

In the stochastic covariance framework the call price is given by CCall(t, S2, K2, v) =
K2e

1
2x2−

∫T
t r(s)ds

2π

(

2πe
1
2
x2 −

∫∞
−∞

ϕ(τ,u2,−x2,v)

u2
2+

1
4

)

(see [107]).

Proposition 6. (Call option)

In the GBM Framework (3.129) at time t the price CD
C (t, S1, S2, K2) of a defaultable call

option, when the payment of the call option is guaranteed by an issuer who is defaultable

with recovery rate zero, is given by

CD
Call(t, S1, S2, K2) =

((

S2e
−
∫ T
t

d2(s)dsN2 (d1,d2, ρ)−K2e
−
∫ T
t

r(s)dsN2 (d
∗
1,d

∗
2, ρ)

)

−
(

S2e
−
∫ T
t

d2(s)ds exp

{

2x∗1(c1 − (1− c2)
σ2ρ

σ1
)

}

N2

(

d̃1, d̃2, ρ
)

−K2e
−
∫ T
t

r(s)ds exp

{

2x∗1(c1 + c2
σ2ρ

σ1
)

}

N2

(

d̃∗
1, d̃

∗
2, ρ
))
)

,

where x∗1, x2, c1, c2, as well as d1, and d̃1 are given in Proposition 4,

d2 = x2

σ2
√
τ
+ 1

2
σ2
√
τ , d̃2 =

x2
σ2
√
τ
− 2ρ

x∗1
σ1
√
τ
+

1

2
σ2
√
τ ,

d∗
1 = d1 − ρσ2

√
τ , d∗

2 = d2 − σ2
√
τ ,

d̃∗
1 = d̃1 − ρσ2

√
τ , d̃∗

2 = d̃2 − σ2
√
τ .

In the stochastic covariance Framework (3.131) the price is given by

CD
Call(t, S1, S2, v) =

ex
∗
1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥCD

Call
(u1)

(ϕ (τ,u,−z1,−z2, v)− ϕ (τ,u, z1,−z2, v)) du1du2,
u ∈ SCD

Call
= Sϕ ∩ Sg

CD
Call

,
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where

ĥDC (u1, u2) = K2
1

i

(

u1

σ1
− u2ρ

σ1

√
1−ρ2

)

− c1

1
(

i u2

σ2

√
1−ρ2

+ 1− c2
)(

i u2

σ2

√
1−ρ2
− c2

) .

Note that we have to set ℑ(u2) > σ2
√

1− ρ2(1 − c2) and ℑ(u1) > ρ√
1−ρ2
ℑ(u2) − σ1c1,

i.e. SgDC
=

{

u = w + i̟ : ̟2 > σ2
√

1− ρ2(1− c2) ∧̟1 >
ρ√
1−ρ2

̟2 − σ1c1
}

. The char-

acteristic functions for the Heston-type and the Stein and Stein-type models are as given

in Proposition 4.

For a proof see A.2.2.

Similarly in the GBM framework, the non-defaultable digital option with strike K2 is

priced by CD(t, S2, K2) = e−
∫ T
t

r(s)dsN(d∗
2) and in the stochastic covariance model by

CD(t, S2, K2, v) =
e
1
2x2−

∫T
t r(s)ds

2π

∫∞
−∞

ϕ(τ,u2,−x2,v)
1
2
−iu2

.

Proposition 7. (Digital option)

In the GBM Model (3.129) at time t the price CD
D (t, S1, S2, K2) of a defaultable digital

call option, when the payment of one is guaranteed by an issuer who is defaultable with

recovery rate zero, is given by

CD
D (t, S1, S2, K2) = e−

∫ T
t

r(s)ds

(

N2 (d
∗
1,d

∗
2, ρ)− exp

{

2x∗1(c1 + c2
σ2ρ

σ1
)

}

N2

(

d̃∗
1, d̃

∗
2, ρ
))

,

where x∗1, x2, c1, c2, d∗
1, and d̃∗

1 are given in Proposition 4, d∗
2 and d̃∗

2 are defined in

Proposition 6.

In the stochastic covariance Framework (3.131) with defaults the price is given by

CD
D (t, S1, S2, K2, v) =

ex
∗
1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĥCD

D
(u1)

(ϕ(τ,u,−z1,−z2, v)− ϕ(τ,u, z1,−z2, v)) du1du2,
u ∈ SCD

D
= Sϕ ∩ Sg

CD
D

,

where

ĥDD(u1, u2) =
1

iu2

σ2

√

1− ρ2 − c2
1

i

(

u1

σ1
− ρ u2

σ2

√
1−ρ2

)

− c1
,
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with ℑ(u2) > −σ2
√

1− ρ2c2 and ℑ(u1) > ρ√
1−ρ2
ℑ(u2)− σ1c1, i.e. SgDC

= {u = w + i̟ :

̟2 > −σ2
√

1− ρ2c2 ∧ ̟1 > ρ√
1−ρ2

̟2 − σ1c1 }. The characteristic functions for the

Heston-type and the Stein and Stein-type models are as given in Proposition 4.

For a proof see A.2.2.

The bonus certificate includes, beside other derivatives, a knock-out put option. The

price of a non-defaultable knock-out put option with barrier B2(t) = B2e
∫ t
0 (r(s)−d2(s))ds

and strike K2 is given by (see also [64])

C1P (t, S1, S2, K2, B2) = CP (t, S2, K2)

−e−
∫ T
t

d2(s)dsB2

N
(
2b2 − x2
σ2
√
τ
− 1

2
σ2
√
τ

)

+Se−
∫ T
t

r(s)dsK2

B2

N
(

2b2 − x2
σ2
√
T − t +

1

2
σ2
√
τ

)

,

where

CP (t, S2, K2) = K2e
−
∫ T
t

r(s)dsN
(

−d̂2

)

− S2e
−
∫ T
t

d2(s)dsN
(

−d̂1

)

,

x2 = ln(
S2e

∫ T
t
(r(s)−d2(s))ds

K2

), b2 = ln (
B2(T )

K2

).

In the stochastic covariance framework the default-free price is given by

C1P (t, S2, K2, B2, v) = −K2e
− 1

2
x2−

∫ T
t

r(s)ds

2π

∫ ∞

−∞
(ϕ(τ, u2,−x2, v)− ϕ(τ, u2, x2 − 2b, v))

1 + eib2u2

((
iu2 − 1

2

)
e

b2
2 −

(
iu2 − 1

2

)
e−

b2
2

)

u22 +
1
4

du2, (3.137)

where the one-dimensional characteristic functions are given in (3.136). For a proof see

[39].
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Proposition 8. (Barrier option)

In the GBM Model (3.129) the price CD
1P (t, S1, S2, K2, B2) of a defaultable knock-out put

option at time t, when the payoff is guaranteed by an issuer who is defaultable with recovery

rate zero, is given by

CD
1P (t, S1, S2, K2, B2) =

K2e
c1x

∗
1+c2x2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

0

∫ 0

−∞
e−c1x

∗
1
′
(

e−c2x
′
2 − e(1−c2)x2

)

pGBM(τ, x∗1
′, x′2, x

∗
1, x2)dx

∗
1
′dx′2, (3.138)

where y1 =
x∗
1

σ1
, y2 =

x2

σ2
, and

pGBM(τ, x∗1
′, x′2, x

∗
1, x2) =

2e−ατ

βpτ

∞∑

n=1

e−
(r2p+r′p

2
)

2τ sin
nπθ′p
βp

sin
nπθp
βp

Inπ
βp

(
r′prp

τ

)

,

tan βp = −
√

1− ρ2
ρ

, β ∈ [0, π] ,

rp =

√

1

(1− ρ2)

(
x∗1
σ1
− ρx2

σ2

)2

+

(
x2
σ2

)2

,

tan(θp) =
x2

σ2

1√
1−ρ2

(
x∗
1

σ1
− ρx2

σ2

) , θp ∈ [0, βp] . (3.139)

In the stochastic covariance framework with defaults the respective formulas were derived

in Section 3.5.1. Hence,

CD
1P (t, S1, S2, K2, B2, v) =

K2e
c1x

∗
1+c2x2−

∫ T
t

r(s)ds

σ1σ2
√

1− ρ2
∫ ∞

0

∫ 0

−∞
e−c1x

∗
1
′
(e−c2x

′
2 − e(1−c2)x2)

q(τ, x∗1
′, x′2, x

∗
1, x2, v)dx

′
2dx

∗
1
′, (3.140)

where q(τ, x∗1
′, x′2, x

∗
1, x2, v) is given in (3.91) for the general case, for the Heston-type

model in (3.110) and for the Stein-type model in (3.112).

Index certificates

In this section we price an index certificate with price IC(t) at time t under issuer risk.

As stated before, the index certificate allows a retail investor to invest in a single stock

or stock index with price S2(t) at time t. He fully participates in any movement of the

underlying. The index certificate does not provide any protection against a decline of the

underlying. Internally this certificate is hedged by buying the respective index or single

stock. Taking into consideration the issuer risk and assuming a constant recovery rate R
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in the case of default of the issuer, the index certificate can be valued by

IC (t, S1, S2) = S2e
−
∫ T
t

d2(s)ds − (1−R) e−
∫ T
t

r(s)ds
EQ̃
[
S2(T )1{ι1≤T} | Ft

]
,

(3.141)

where ι1 is given in (3.127). The index certificate can be valued by using the building

blocks of Proposition 4. Thus, the certificate is priced by the following formula

IC (t, S1, S2) = RS2(t)e
−
∫ T
t

d2(s)ds + (1−R)CD
S (t, S1, S2). (3.142)

The number of parameters rises considerably if the notion of issuer risk is incorporated

in the pricing of derivatives. In the following we show the results of the valuation of the

index certificate in different scenarios. Our analysis is two-fold. In a first step we compare

the issuer-risk adjusted prices to values which neglect issuer risk in the GBM framework.

Secondly, we analyse the influences of stochastic volatility and compare the Heston-type

and the Stein-type model. We focus in this analysis on the effect of the volatility of the

covariance process.1 For the scenario computations in this chapter we have chosen the

following instrument parametrisations if not stated differently in the respective examples:

• Initial stock prices of the issuer and the underlying: S1(0) = S2(0) = 100,

• Initial debt endowment: D1(0) = 50,

• Maturity: T = 2,

• Volatility of the issuer and the underlying: σ1 = σ2 = 0.4,

• Correlation between the underlying and the issuer: ρ = 0.3,

• Risk-free rate of return: r = 0.04,

• Dividend yield of the underlying and the issuer: d1 = d2 = 0,

• Stochastic volatility:

– Heston-type framework: ζ = v(0) = 1, κ = 2, σv = 1, ν = γ = 1
2
2,

– Stein and Stein-type framework: ζ = v(0) = 1, κ = 2, σv = 1, ν = 1, γ = 0.

1The scenario analysis in the stochastic covariance model has been prepared during a master thesis project
in cooperation with Kolja Einig. See [39].

2In contrast to the previous examples the volatility level of S1 and S2 is determined by σ1 or σ2 respec-
tively. The covariance process governs the stochasticity only.
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Figure 3.7 shows that for increasing debt of the issuing company the value of the index

certificate declines and finally approaches RS2(t). The price of the non-defaultable cer-

tificate stays at par regardless of the debt level. This shows that for a retail investor a

simple comparison of the prices of index certificates of different issuers is not appropriate

in order to find the security with the best price-performance ratio. For his investment

decision the investor has to take the financial soundness of the issuer into consideration.

Figure 3.7 also analyses the impact of the volatility of the issuer’s asset (the volatility

of the underlying is kept to 0.4) and the correlation between the issuer’s asset and the

underlying. For that reason we choose a relatively low debt scenario. The negative rela-

tionship between the volatility of the issuer’s assets and the price is clearly visible. The

probability of a default considerably increases in high volatility scenarios and, thus, the

price decreases.
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Figure 3.7: IC: Analysis of issuer risk in GBM framework.

It strikes that the impact of the correlation on the price grows with the volatility: For

a very high volatility a correlation near 1 leads to a considerably higher value than a

correlation near −1. In a low volatility and low debt scenario with D1(0) = 50 the price is

not much affected by the level of the correlation as the probability of default is relatively

low. However, in a high volatility and low debt scenario with, thus, higher probability

of default of the issuer, both assets tend to move in the same direction if the correlation

rises. Thus, in contrast to a negative correlation the probability that the issuer survives

and the underlying asset features a positive return goes up. A negative correlation results

in a different performance of the issuer’s assets and the underlying. Thus, the probability

increases that the certificate matures at a low value or worthless. This effect is known
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as wrong way risk. According to the ISDA wrong way risk occurs when exposure to a

counterparty is adversely correlated with the credit quality of that counterparty [35]. Now

we turn to the analysis of the influence of stochastic covariance in the model framework

(see 3.131). In Figure 3.8, we show the impact of stochastic volatility in both, the Heston-

type as well as the Stein and Stein-type framework, for the three t = 0 levels of debt,

D1(0) = 20, 50, 100.

 

 

σS
vσS

vσS
v

σH
vσH

v

P
ri
ce

of
IC

σH
v

Heston
Stein

D1(0) = 50D1(0) = 20 D1(0) = 100

0 0.2 0.4 0.60 0.2 0.4 0.60 0.2 0.4 0.6

0 1 2 30 1 2 30 1 2 3
84

84.5

85

85.5

86

86.5

87

87.5

95

95.2

95.4

95.6

95.8

96

96.2

96.4

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Figure 3.8: IC: Impact of σv in stochastic covariance framework.

In the case σv = 0 both models degenerate to a simple two-factor geometric Brownian

motion model. When σv is now increased we observe that the prices of the index certificate

decrease for the lower initial debt levels D1(0) = 20 and D1(0) = 50 in both models. In

the Heston-type model the high debt case D1(0) = 100 can be differentiated from the

other cases in terms of that the price increases with rising volatility of volatility. It

seems that the probability of default decreases with higher σv in the Heston model. This

suggestion is supported by Figure 3.9, which shows the reaction of the probability of

default with respect to a rise in σv in the same debt scenarios D1(0) = 20, D1(0) = 50,

and D1(0) = 100. As suggested we see that the probability of default decreases with

increased σv in the high debt scenario D1(0) = 100.
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Figure 3.9: Default probability: Impact of σv.

This behaviour might seem rather peculiar. Hence, in Figure 3.10 the term structure of

default probabilities for two different levels of debt and volatility, D1(0) = 50, 100 and

σv = 0, 2 is analysed.
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The figure shows that for large t, a higher σv causes the default probabilities in the Heston-

type model to decrease for all levels of debt. This effect is comparable to what we found

for double-digital options when we increased the mean-reversion speed in Section 3.4.3.

Participation guarantee certificates

In contrast to the index certificate the participation guarantee certificate offers the in-

vestor some risk protection against a decrease of the underlying. However, this protection

is financed by a limited profit in cases when the underlying increases. The investor

participates in any positive performance of the underlying on the basis of the so-called

participation rate p. This structure is built up by a long position in a zero-coupon bond

with a standardized notional of 1 and stock options whereby the number of stock options

is determined by the level of the participation rate. Taking into consideration the issuer

risk, the price is indicated by

PG (t, S1, S2, K2, p) = e−
∫ T
t

r(s)ds
(

EQ̃ [(1 + pmax [S2(T )−K2, 0]) | Ft]

− (1−R)EQ̃
[
(1 + pmax [S2(T )−K2, 0])1{ι1≤T} | Ft

] )

,

(3.143)

where ι1 is as described in (3.127), p is the participation rate of the contract, and K2 de-

scribes the price level where the participation starts. This means that below this point the

investor does not profit from any increase in the stock price. A defaultable participation

guarantee certificate of an issuer with recovery rate R is, thus, priced by:

PG (t, S1, S2, K2, p) = R (CZ(t) + pCCall (t, S2, K2))

+(1−R)
(
CD

Z (t, S1) + pCD
Call (t, S1, S2, K2)

)
. (3.144)

For the participation guarantee certificate we compute some scenario values in the GBM

model to analyse the effect of the issuer risk. For these computations we choose a partic-

ipation level of K2 = 100 and a participation rate of p = 50%.

In the first plot of Figure 3.11 we find the impact of the debt level on the participation

guarantee certificate similar to that of the index certificate: As before the price falls

especially steeply for smaller D1(0) levels.
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Figure 3.11: PG: Analysis of issuer risk in GBM framework.

In the second plot in Figure 3.11 the joint impact of the issuer’s volatility and the cor-

relation is shown. The form of the graphs resembles the graph of Figure 3.7 and the

same explanations apply to explain the form. The effect of the correlation on the price

of the participation guarantee certificate is, however, clearly less distinct because the to-

tal price of the certificate considerably depends on the value of the zero-coupon bond

for which the correlation is irrelevant. In Figure 3.12, we show the impact of stochastic

covariance in the Heston-type and the Stein and Stein-type model, for the initial debt

values D1(0) = 20, 50, 100. In the stochastic covariance framework the behaviour of the

participation guarantee certificate resembles again the one of the index certificate: In the

Heston-type model the negative relationship between the volatility of volatility and the

price of the certificate for lower levels of debt, and the positive relationship between both

for higher levels of debt are again clearly visible. However, due to the call option compo-

nent, which allows an investor to participate in value increases of the underlying of the

certificate, the volatility of the underlying S2 becomes now an important impact factor

for the value of the total certificate. Comparing the graphs with the ones of the index

certificate we see that this additional impact factor amplifies/dampens the slopes in the

Heston-type model: The value of the participation guarantee certificate decreases faster

for lower levels of debt and increases slower for higher levels of debt. It seems that for

higher debt level the positive effect of an increased σv on the default probability is diluted

by the negative effects of a rising σv on the price of the call option. This is comparable

to what we observed for the double-barrier correlation options in Section 3.4.4.
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Figure 3.12: PG: Impact of σv.

Bonus guarantee certificates

When investing in a bonus guarantee certificate one does not directly participate in fluc-

tuations of the value of the underlying. Rather, one receives a fixed interest rate and

additionally a bonus payment if the underlying is above the bonus barrier at maturity.

The investor could compose this payoff by buying a zero-coupon bond and a digital option:

BG (t, S1, S2, K2, rI ,Ψ) = e−
∫ T
t

r(s)ds
(

EQ̃
[(
1 + rI +Ψ 1{S2(T )>K2}

)
| Ft

]

−(1−R)EQ̃
[(
1 + rI +Ψ 1{S2(T )>K2}

)
1{ι1≤T} | Ft

] )

,

(3.145)

where ι1 is defined in (3.127), rI the basic interest, Ψ the bonus payment rate, and K2 the

bonus barrier. In our framework the risk-neutral price of the bonus guarantee certificate

is given by

BG (t, S1, S2, K2, rI ,Ψ) = R (CZ(t, I) + Ψ CD (t, S2, K2))

+(1−R)
(
CD

Z (t, I, S1) + Ψ CD
D (t, S1, S2, K2)

)
.

(3.146)
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To show the impact of debt, volatility, and correlation we structure a bonus guarantee

certificate with bonus barrier K2 = 120, basic interest rI = 3.0%, and bonus payment

rate = 5.0%. For the bonus guarantee certificate we observe the same typical feature of

the graph, which shows prices for different debt levels (see first plot of Figure 3.13): The

graph decreases sharply for lower debt levels and approaches R-times the price of the

analogous certificate of a non-defaultable issuer.
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Figure 3.13: BG: Analysis of issuer risk in GBM framework.

In the second plot in Figure 3.13 the relationship between price and volatility is of nearly

linear kind: The higher the volatility the lower the price the investor has to pay. The

impact of the correlation is less distinct as in the case of index certificates due to the fact

that a major part of the value of the bonus guarantee depends on the zero-coupon bond.

This fact is also reflected in the stochastic covariance framework. We see here clearly that

the value of the zero bond is mainly driven by the quality of the underlying credit: Hence,

the graphs in Figure 3.14 resemble a mirrored image of the ones in Figure 3.9.
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Figure 3.14: BG: Impact of σv.

Discount certificates

The risk protection of a discount certificate consists in a risk buffer: The investor buys

the certificate at a discount on the actual value of the underlying. This risk limitation is

again financed by a gain limit. The structure can be hedged by investing in the underlying

and writing a call option, i.e. the value is specified by

DC (t, S1, S2, K2) = S2(t)e
−
∫ T
t

d2(s)ds − CCall (t, S2, K)− (1−R) e−
∫ T
t

r(s)ds

EQ̃
[
(S2(T )−max [S2(T )−K2, 0])1{ι1≤T} |Ft

]
, (3.147)

where ι1 is as in (3.127). The discount certificate can be valued by the following formula

DC (t, S1, S2, K2) = R

(

S2(t)e
−
∫ T
t

d2(s)ds − CCall (t, S2, K2)

)

+(1−R)
(
CD

S (t, S1, S2)− CD
Call (t, S1, S2, K2)

)
. (3.148)

We value a discount certificate with K2 = 120 in different scenarios. In respect to the

debt level the value of the discount certificate does not differ in its characteristics from the

certificates analysed before (see Figure 3.15). In Figure 3.15 we look into the dependence

of the price on the issuer’s volatility and the correlation. Regarding the volatility we

see the known structure, i.e. the price falls when the volatility increases. The slopes are



134 3.6 Pricing certificates under issuer risk

similar for all correlation scenarios. As the certificate consists of building blocks clearly

dependent on the correlation the impact of the correlation on the value of the certificate

is similar to the index certificate example.
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Figure 3.15: DC: Analysis of issuer risk in GBM framework.

In the analysis of the discount certificate in the stochastic covariance framework (see

Figure 3.16) we see in the Heston-type model that by increasing σv we do not only lower

the default probability but also increase the price of the short call (in contrast to the long

call in the participation guarantee certificate). Both effects lead to increases in the price

of the certificate in the Heston-type model.
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Figure 3.16: DC: Impact of σv.

Bonus certificates

The investor in this certificate is protected from a decline of the underlying up to a certain

point, the protection barrier B2(t) = B2e
∫ t
0 r(s)ds. Below this point the investor fully

participates in any fluctuation of the underlying. The same is true for the performance

of the underlying beyond the bonus barrier K2. The certificate can be fully hedged

by an investment in the underlying and by buying a knock-out put option with barrier

B2(t) = B2e
∫ t
0 r(s)ds. When the issuer risk is incorporated in the pricing model the price

is specified by

BC (t, S1, S2, K2, B2(t)) = S2(t)e
−
∫ T
t

d2(s)ds + e−
∫ T
t

r(s)ds

EQ̃
[
max [K2 − S2,T , 0]1{ι2>T} | Ft

]
− (1−R) e−

∫ T
t

r(s)ds

EQ̃
[(
S2(T ) + max [K2 − S2(T ), 0]1{ι2>T}

)
1{ι1≤T} | Ft

]
,

(3.149)

where

ι2 = inf (t′ ∈ (t0, T ] : S2(t
′) ≤ B2(t

′)) , (3.150)
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where ι1 is as in (3.127). The following formula evaluates the payoff:

BC (t, S1, S2) = R
(

S2(t)e
−
∫ T
t

d2(s)ds + C1P (t, S2, K2, B2(t))
)

+(1−R)
(
CD

S (t, S1, S2) + CD
1P (t, S1, S2, K2, B2(t))

)
. (3.151)

Finally, we show some exemplary computations of the bonus certificate. We assumed a

protection barrier B2(0) = 70 and a bonus barrier K2 = 130 for our computations.
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Figure 3.17: BC: Analysis of issuer risk in GBM framework.

Not surprisingly, the graph (Figure 3.17) plotting the debt level of the issuer against

the value of the bonus certificates shows the same features as in the examples above.

The bonus certificate is constructed by combining the investment in the underlying and

a knock-out put option. Thus, it is not surprising that the second plot in Figure 3.17

resembles strongly the respective graph for the index certificate.
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Figure 3.18: BC: Impact of σv.

The impact of the index components is, however, not so visible in the analysis of the

stochastic covariance framework: In contrast to the graphs of the index certificate where

in nearly all scenarios the prices decreased with increasing σv we see here all graphs of

the Heston-type model increasing. Thus, we deduce from Figure 3.18 that the impact of

stochastic volatility on the value of the down-and-out put is stronger than on the index

component. The large impact of the down-and-out put option on the price can be traced

back to its moneyness. In the Stein and Stein framework this picture is less uniform.

3.6.4 Conclusion

We have derived closed-form expressions for index, discount, participation guarantee, and

bonus certificates under issuer risk in a Black-Scholes model and a stochastic covari-

ance model framework. Our scenario computations clearly depict that, depending on the

issuer’s capital soundness, a pricing formula which neglects issuer risk considerably over-

prices the value of the singular certificate. Thus, for a retail investor a simple comparison

of the prices of analogous certificates of different issuers is not appropriate in order to

find the security with the best price-performance ratio. For his investment decision the

investor has to take the financial soundness of the issuer into consideration. Furthermore,

the introduction of a third process which governs the covariance matrix of the issuer

and the underlying leads to big differences in the valuation compared to a Black-Scholes
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framework. We have analysed the behaviour of the certificate prices for rising stochas-

ticity in the covariance in detail. The choice of the assumed stochastic covariance model

considerable influences the price dynamics, e.g. the price in the Heston-type model reacts

completely different to a rise in the volatility of the covariance process than the value in

the Stein-type model.



Chapter 4

Pricing of barrier options within

stochastic correlation model

4.1 Introduction

As already mentioned, local and stochastic volatility models have been in place for some

years now, e.g. Dupire [37] or Stein and Stein [111] and Heston [65]. A natural extension

of the latter ones is a multivariate model with stochastic correlation, not only stochastic

covariance like the model presented in Section 3. And indeed, the performance of a

portfolio or a multi-dimensional derivative depends very much on the joint behaviour of the

underlyings, i.e. the covariances. Correlations are not constant over time. The popularity

of discrete stochastic correlation models like the Dynamic Conditional Correlation (DCC)

model proposed by Engle [40] supports this idea. Stylised facts featured by historical

data as well as by implicit market prices, e.g. the smile and skew of volatilities and

correlations, can be captured by the assumption of a stochastic behaviour of correlation

(besides volatility) (see e.g. da Fonseca et al. [26], Christoffersen et al. [23]). There are

two main problems with the modelling of correlation: One is the model to choose to keep

the correlation between −1 and 1 and the other is intractability because the number of

parameters grows exponentially when the dimensions are increased.

Gourieroux et al. [58], Philipov and Glickman [92] and da Fonseca et al. [27], [26] pro-

pose the use of Wishart processes to model stochastic multivariate covariance matrices.

However, this approach is rather cumbersome when it comes to estimation and simu-

lation. Pigorsch and Stelzer [93] and Muhle-Karbe et al. [89] present a multivariate

stochastic volatility model of OU-Wishart type, which is analytically tractable, however

the dimensions increase which renders a calibration rather complicated.
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In their discrete modelling works Kim et al. [77], Aguilar and West [2], Pitt and Shephard

[94] Chib et al. [22] suggest a multivariate factor stochastic volatility model to represent

stochastic dependencies between the underlyings. The factor models as well as our prin-

cipal component model reduce the dimension of the original problem. Our paper is based

on a stochastic principal component model introduced earlier by works of Escobar et al.

[42] and Escobar et al. [41]. This framework introduces stochastic eigenvalues and, thus,

avoids proliferation of parameters as the number of eigenvalues can be diminished to a

suitable number. Other publications applying principal component analysis are in support

of the fact that two to three eigenvalues are sufficient to describe most of the variation in

the portfolio (see Alexander [3], [4]).

Moreover, our model easily extends the Heston model to more underlyings: We allow

for stochastic volatility and at the same time for stochastic correlation among assets

and between variance and assets as well as between assets and correlation. The basic

stochastic principal component model is an affine model for which the characteristic func-

tion is available and allows for easy calibration to plain vanilla instruments. Even some

parametrisations of the extension to the stochastic principal component model which is

presented here feature an affine characteristic function.

We continue in this chapter to price barrier derivatives in one and two dimensions as in

Chapter 3 but now within the context of the principal component model. By means of

the affine characteristic function in some parametrisations of the model we are able to

find analytical expressions for single-barrier options. However, as mentioned in Chapter

3 we are not able to find a closed-form solution for two barriers in two dimensions and we

hence follow a perturbation theory approximation. The accuracy of the approximation is

analytically proven.

Hence, in this line of development, our work improves previous literature on correlation

risk and default dependencies: The here presented model assumes stochastic correlation

between the assets, and the pricing stays feasible. The simplicity of the approximative

pricing scheme is a key element of a good pricing performance.

This chapter is structured as follows. In Section 4.2 we give a short insight in the stochastic

principal component model and we empirically motivate the structure of the model (see

Section 4.3). We derive closed-form solutions for single-asset instruments such as single-

barrier call options in this framework in Section 4.4. To solve for barrier options on two

underlyings we apply an approximation, which is motivated by perturbation theory in

Section 4.5.
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4.2 Model framework

The system of processes is defined on a filtered probability space (Ω,F , Q̃,F) where F0

contains all subsets of the (Q̃−) null sets of F and F is right-continuous. We define the

processes under the risk-neutral measure Q̃.

We introduce a fast mean-reverting stochastic principal component model. In the next

section we motivate the choice of a fast mean-reverting component to the eigenvalue

empirically. One can think of the fast mean-reverting component as influenced by the

fast mean reversion of the volatility which has been found by several authors (see [125],

[46]). In our analysis we limit ourselves for demonstration purposes to two underlyings.

However, an extension to d underlyings is straight forward.

dSi = rSidt+ Si

p̄
∑

j=1

aijf(vj(t))dWj, i ∈ {1, 2} , p̄ = 2, (4.1)

dvj =
κvj
δ2j

(ζvj − vj)dt+
σvj
δj

√
vjdZj, (4.2)

〈dWi, dZj〉 = 0,

〈dWj, dZj〉 = ρvjdt,

〈dWi, dWj〉 = 0, for j ∈ {1, 2} .

f(vj) represents the jth eigenvalue of the instantaneous covariance matrix Σ of the under-

lying process Si. The eigenvalues are driven by a fast mean-reverting Cox-Ingersoll-Ross

process with mean-reversion rate
κj

δj
, where we assume δj very small. We further suppose

that the eigenvalues f(vj) are positive and bounded. We assume that there are constants

o11, o12, o21, o22 such that 0 < oj1 ≤ f(vj) ≤ oj2, for all j ≤ p̄. (aij) represents the (2× 2)

matrix of eigenvectors. For any fixed time t the process decomposes into two orthogonal

directions given by the eigenvectors aij, which are not dependent on time. We presume

that the Feller condition is satisfied for all processes.

In the following we denote the instantaneous variance of the log-asset lnSi by σ
2
Si

and the

instantaneous correlation between the two assets lnSi and lnSk by ρSi,Sk
.

Remark 15. The log-assets exhibit stochastic variance and correlation given by

σ2
Si
(t) =

2∑

j=1

a2ijf (vj(t))
2 ,

ρSi,Sk
(t) =

∑2
j=1 aijakjf (vj(t))

2

√
∑2

j=1 a
2
ijf (vj(t))

2
√
∑p̄

j=1 a
2
kjf (vj(t))

2
. (4.3)
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Proof.

The expression(4.3) can be obtained by applying Itô’s formula (see Theorem 18) and

quadratic variation (see Definition 36). Thus, with

df (vj(t))
2 =

(

∂f (vj(t))
2

∂vj

κvj
δ2j

(
ζvj − vj

)
+

1

2

∂2f (vj(t))
2

∂v2j

σ2
vj

δ2j
vj

)

dt

+
∂f (vj(t))

2

∂vj

σvj
δj

√
vjdZvj (4.4)

and

σ2
f(vj(t))

=

(

∂f (vj(t))
2

∂vj

)2
σ2
vj

δ2j
vj, (4.5)

the results follow.

Theorem 39. (Characteristic function)

For any time t the joint conditional characteristic function ϕ(t′ − t,u) =

E [exp {i 〈ux(t′)〉} |Ft ] of the log-assets x1 = ln
(

S1e
∫ t′

t
r(s)ds

)

and x2 = ln
(

S2e
∫ t′

t
r(s)ds

)

,

where S1 and S2 are given by Model (4.1), satisfies the following PDE

− ∂ϕ (τ,u)

∂τ
+

2∑

i=1

(

r − 1

2

2∑

j=1

a2ijf (vj(t))
2

)

∂ϕ (τ,u)

∂xi

+
1

2

2∑

i,k=1

∂2ϕ (τ,u)

∂xi∂xk

2∑

j=1

aijakjf (vj(t))
2

+
2∑

j=1

(
κvj
δ2j

(
ζvj − vj

) ∂ϕ (τ,u)

∂vj
+

1

2

σ2
vj

δ2j
vj
∂2ϕ (τ,u)

∂v2j

)

+
2∑

i=1

2∑

j=1

aijf (vj(t))

(

ρvj
√
vj
σvj
δj

∂2ϕ (τ,u)

∂xi∂vj

)

= 0, (4.6)

where τ = t′ − t, t′ > t, with initial condition ϕ(0,u) = exp {i 〈ux〉}.

Proof. The theorem trivially follows from Itô’s Lemma.
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Corollary 16. (Special case)

In the case ρvj = 0, ∀j, and f (vj) = √vj the characteristic function has an affine solution

given by

ϕ (τ,u) = exp

{

i 〈ux〉+ A∗
H (τ,u) +

2∑

j=1

δ2j
σ2
vj

B∗
H1j (τ,u) vj

}

,

(4.7)

where

B∗
H1j (τ,u) =

κvj
δ2j
− dvj

sinh
(

dvj
2
τ
)

+
κvj

δ2j dvj
cosh

(
dvj
2
τ
)

cosh
(

dvj
2
τ
)

+
κvj

δ2j dvj
sinh

(
dvj
2
τ
) , (4.8)

A∗
H (τ,u) = τ

(

ir (u1 + u2) +
2∑

j=1

κ2vj
δ2jσ

2
vj

ζvj

)

−2
2∑

j=1

(
κvj
σ2
vj

ζvj ln

(
κvj
δ2jdvj

sinh

(
dvj

2
τ

)

+ cosh

(
dvj

2
τ

)))

, (4.9)

dvj = dvj(u) =

√

κ2vj
δ4j

+
σ2
vj

δ2j

(
i
(
u1a21j + u2a22j

)
+ 2u1u2a1ja2j + u21a

2
1j + u22a

2
2j

)
.

This characteristic function is well defined and analytic in a neighbourhood of 0.

For a proof refer to Appendix B.1.

4.3 Data analysis for mean-reversion scales

In the following1 we study if there exists a fast mean-reversion scale of the eigenvalues

and/or covariances of the assets as suggested by the model. In our analysis we follow the

lines of Fouque et al. [51], who analyse variograms of the log absolute returns for the

mean-reversion speed, and extend their approach to two dimensions from an underlying

perspective. As proposed by our model we assume constant orthonormal eigenvectors

(a11, a21)
′ and (a12, a22)

′ and focus on the estimation of the mean-reversion speed param-

eters κ∗vj =
κvj

δ2j
, j = 1, 2, of the dynamics of the eigenvalues f(v1) := f1 and f(v2) := f2.

In order to facilitate the estimation we set the correlation between the Brownian motions

1The following chapter has been prepared in cooperation with Daniela Neykova during her master thesis
project. See [90].
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for the assets and the volatility processes ρvj , j = 1, 2, to zero. An analysis by Fouque et

al. (see [49], p. 81ff) showed in a one-dimensional setting that the rate of mean-reversion

was insensitive to the correlation parameter.

Our data set2 comprises stock prices of the three companies IBM, Apple and Dell. We

use their high-frequency intra-day data over one year (from October 1, 2008 to September

30, 2009) to proof our hypothesis of the existence of a fast mean-reverting factor. To es-

timate the covariance matrices3 we apply daily stock-price data over 15 years (from June

30, 1995 to June 30, 2010). The large data set should ensure the stability of the estima-

tors. The high-frequency data points are averaged over intervals of 5 minutes. Intervals

during working days without any observations are collapsed. So we finally end up with

78 matching observations per company per day, thus a total of 19, 593 data points per

company. Furthermore, the high-frequency data must be adjusted by the day effect, i.e.

the systematic effect that the volatility is the highest at the beginning of the day when

trading starts and at the end of the day. We follow here Fouque et al. [51] who model

the day effect by fitting a periodical function to the 78 observations.

The steps which are described in the following are performed for both time series, the

daily and the intra-day data, separately for a combination of two companies at a time.

We adjust the stock price returns by their means and normalise the data:

S̄d
1(n) :=

2(S1(n)− S1(n− 1))√
∆t(S1(n) + S1(n− 1))

,

S̄d
2(n) :=

2(S2(n)− S2(n− 1))√
∆t(S2(n) + S2(n− 1))

, n = 1, 2, . . . , (4.10)

where n describes the nth observation, ∆t is either 5 minutes in the case of the high-

frequency data or 1 day in the case of the daily data, and Si denotes the mean-adjusted

data point. When we theoretically discretise the stock price processes (4.1) by applying

Euler approximation4

∆S1(n)

S1(n)
√
∆t

= µ1

√
∆t+ a11f1(v1(n))

∆W1(n)√
∆t

+ a12f2(v2(n))
∆W2(n)√

∆t
,

∆S2(n)

S2(n)
√
∆t

= µ2

√
∆t+ a21f1(v1(n))

∆W1(n)√
∆t

+ a22f2(v2(n))
∆W2(n)√

∆t
, (4.11)

n = 1, 2, . . .

where (ai1, ai2)
′ describe the eigenvalues of asset Si, f(vj(n)) := fj(n) is the positive

2The data has been downloaded from The Trade and Quote (TAQ) database.
3Note that we assume constant eigenvectors.
4Note that we work now under the pricing measure. µi are r in the risk-neutral world (see (4.1)).
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eigenfunction process, and ∆Wj is the respective increment of the Brownian motion Wj,

we see that

S̄d
1(n) = a11f1(n)

∆W1(n)√
∆t

+ a12f2(n)
∆W2(n)√

∆t
,

S̄d
2(n) = a21f1(n)

∆W1(n)√
∆t

+ a22f2(n)
∆W2(n)√

∆t
, n = 1, 2, . . . . (4.12)

To extract the behaviour of f1 and f2 from the data we de-correlate the two-dimensional

discrete process (S̄d
1 , S̄

d
2)

′ by multiplying it with the eigenvectors of the covariance matrix

for (ln(S1), ln(S2))
′. As already mentioned our assumptions of constant eigenvectors allows

us to estimate the covariance matrix from the daily data set over its whole period from

1995 to 2010. From there we gain the two eigenvectors

(

a11

a21

)

and

(

a12

a22

)

.

(

S̃d
1(n)

S̃d
2(n)

)

=

(

a11 a21

a12 a22

)(

S̄d
1(n)

S̄d
2(n)

)

, n = 1, 2, . . . . (4.13)

We, thus, obtain the two independent time series (S̃d
1 , S̃

d
2)

′ for our high-frequency data.

S̃d
1(n) = f1(n)

∆W1(n)√
∆t

and S̃d
2(n) = f2(n)

∆W2(n)√
∆t

, n = 1, 2, . . . . (4.14)

As mentioned above the day effect in the intra-day data, i.e. the fact that the volatility of

stocks is especially high when the stock exchanges open and decreases to a lower level in

the course of time over the day before it rises again, has to be accounted for. We include

this effect into our model by replacing (4.14) with

Ŝd
1(n) = f1(n)f

d
1 (n)

∆W1(n)√
∆t

and Ŝd
2(n) = f2(n)f

d
2 (n)

∆W2(n)√
∆t

, n = 1, 2, . . . , (4.15)

where fd
j (n), j = 1, 2 is a periodic function of day-time with period 78 (which corresponds

to the 78 observation points per day). For the estimation of the periodic function we treat

each data point Ŝd
1(n) as influenced by the realisation of the function fd

j (n) at the time

point n, n = 1, . . . , 78. We compute the root-mean square over all data points Ŝd
1(n)

realised at a certain time n, n = 1, . . . , 78, e.g. for the calculation of the first root mean-

square at n = 1 we take all those data points into account which were realised at 9am.

The result of all 78 root-mean squares is presented in Figure 4.1 for the examples Dell

and Apple. The graph falls until a certain point in time before it increases again. This

form could be reversed engineered with the sum of two exponential functions, one with

a component exp
{

−n/l(j)1

}

, which causes a decrease in n, and one with a component
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exp
{

(n− 1)/l
(j)
2

}

, which is an increasing function for n > 1. l
(j)
1 and l

(j)
2 govern the form

and determine the inflexion point of the graph. Hence, we fit the root-mean square results

to the the sum of two exponentials, fd
j (n) = fd

j

(1)
(n) + fd

j

(2)
(n) with fd

j

(1)
(n) = a

(j)
1 +

a
(j)
2 exp

{

−n/l(j)1

}

and fd
j

(2)
(n) = a

(j)
3 + a

(j)
4 exp

{

(n− 1)/l
(j)
2

}

, j = 1, 2, to the 78 root-

mean squares with a least-square approach. The fitted functions are marked in Figure 4.1

with a dotted line. In our analysis we obtained the following estimates for the parameters:

a
(1)
1 = −0.1491, a(1)2 = 0.0083, a

(1)
3 = 0.1439, a

(1)
4 = 0.1509, l

(1)
1 = 0.0042, l

(1)
2 = 0.1732 and

a
(2)
1 = −0.1478, a(2)2 = 0.0328, a

(2)
3 = 0.1706, a

(2)
4 = 0.1522, l

(2)
1 = 0.0168, l

(2)
2 = 0.2530.
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Figure 4.1: Observed data (solid line) and estimated functions (dotted line) for the sys-
tematic intra-day behaviour of variability for the eigenfunction j = 1 in the left figure
and for j = 2 in the right one.

To clean the actual data set we transform S̃d
1(n) := Ŝd

1(n)/f
d
1 (n), S̃

d
2(n) := Ŝd

2(n)/f
d
2 (n).

In the following we consider the log of the absolute high-frequency data of S̃d
i (n),

L̄d
1(n) := ln

∣
∣
∣S̃d

1(n)
∣
∣
∣ = ln(f1(n)) + ln

(∣
∣
∣
∣

∆W1(n)√
∆t

∣
∣
∣
∣

)

,

L̄d
2(n) := ln

∣
∣
∣S̃d

2(n)
∣
∣
∣ = ln(f2(n)) + ln

(∣
∣
∣
∣

∆W2(n)√
∆t

∣
∣
∣
∣

)

. (4.16)

and apply a 10-points median filter to compensate for the noise in the data.5 Finally, we

5In one-dimensional form, a median filter uses a sliding window with respect to the data series. When
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can compute the variogram functions for the the high-frequency data which allows us to

analyse the autocorrelations in our data series in closer detail.

V d,N
1 (k) =

1

N − k

N−k∑

n=1

(
L̄d
1(n+ k)− L̄d

1(n)
)2
,

V d,N
2 (k) =

1

N − k

N−k∑

n=1

(
L̄d
2(n+ k)− L̄d

2(n)
)2
, (4.17)

where N is the total number of observations, and k, the lag. If the graphs of those

variogram functions for the intra-day data were now flat we would have to conclude that

there is no mean-reversion effect in the respective time scale. To estimate the extent of

the curvature and, thus, the respective mean-reversion scale, we fit the variogram to

V d,N
j (k) ≈ 2ϑ2

vj

(

1− e−κ∗
vj

k∆t
)

+ cj, (4.18)

with ϑ2
vj
=

(σ∗
vj
)2ζvj

2κ∗vj
, σ∗

vj
=
σvj
δj
, j = 1, 2,

where κ∗vj =
κvj

δ2j
, j = 1, 2. As shown in the Appendix B.4 V d,N

j (k) is an estimator of

the variogram function in a mean-reversion model. 1
κ∗
vj

represents the time-scale of the

fast mean-reversion in the data, and is, thus, the figure of interest. Finally, we fit the

functions defined in (4.18) to the transformed intra-day variogram data (V d,N
1 (k), V d,N

2 (k))′.

The parameters cj and ϑ2
vj
, j = 1, 2, are determined by averaging the first and the last

values of the variogram function. From there we carry out a least-square estimation for

a non-linear regression to find the mean-reverting speed parameters κ∗vj , j = 1, 2. The

Figure 4.2 pictures the empirical and fitted variograms of the eigenvalues of the Dell and

Apple time series for the intra-day data.

the number is odd the centre data point in the respective window is replaced by the median of the data
points in the window, e.g. if the values of the data points within a window are 1, 2, 9, 4, 5 the centre data
point would be replaced by the value 4, which is the median value of the sorted sequence 1, 2, 4, 5, 9.
When, like in our case, the number of elements n in the window is even, the median filter sorts the
numbers and then takes the average of the n/2 and n/2+1 elements, e.g. if the values of the data points
within a window are 1, 2, 9, 4 the data point 9 would be replaced by the value 3, which is the average of
2 and 4.[96], p. 271f.
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Figure 4.2: Empirical variogram functions (dotted lines) and fitted curves (solid lines) for
the two series of normalised eigenvalues {Ŝd

1(n)} (top plot) and {Ŝd
2(n)} (bottom plot)

obtained from the intra-day data analysis for Dell and Apple without considering the day
effect.

The already discussed day effect is reflected in the oscillating graph of the empirical

variograms of the high-frequency data. The adjusted variogram function is plotted in

Figure 4.3. The slope of the fitted curves for adjusted and unadjusted data are very

similar.
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Figure 4.3: Empirical variograms (dashed lines, i.e. {Ŝd
1(n)} (thinner dashed line with

higher amplitude), {S̃d
1(n)} (thicker dashed graph with lower amplitude)) and the re-

spective fitted curves (thinner solid line is the fit for {Ŝd
1(n)}, the thicker solid line the

respective fit for {S̃d
1(n)}) after compensating for the systematic intra-day variability be-

haviour, compared to the case without considering the day effect (dotted and solid lines
respectively).

This analysis has been carried out for each of the three tuples of the three companies

Dell, Apple and IBM. In Table 4.1 we summarise the results. The results show clearly

the existence of a fast mean-reverting scale for each eigenvalue.

Data κ∗v1 κ∗v2
1

κ∗
v1

(day)

1
κ∗
v2

(day)
IBM,Dell 257.70 361.66 0.98 0.70
Dell, Apple 150.82 111.04 1.67 2.27
Apple, IBM 115.10 100.53 2.19 2.51

Table 4.1: Estimated mean-reverting speeds (κ∗vj , j = 1, 2) and typical times for mean-

reversion ( 1
κ∗
vj

, j = 1, 2).
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4.4 Pricing of single-barrier options

The marginal knock-out barrier option has a payout g(S1), which may depend on S1(T ) at

maturity time T provided that S1(t) has not crossed a predefined time-dependent barrier

B1(t) = B1e
∫ t
0 r(s)ds prior to maturity. When we assume risk-neutral valuation the value

of a general barrier option with a time-dependent barrier on its underlying is given by

C(t, S1, B1,v) = EQ̃

[

e−
∫ T
t

r(s)dsg (S1(T ))1{ι1>T} |Ft

]

,

where

ι1 = inf (t′ ∈ (t, T ] : S1(t
′) ≤ B1(t

′)) , (4.19)

where the expectation is taken with respect to the pricing measure Q̃.
g (S1(T )) describes the part of the payoff which depends on the value of S1 in T . The

following PDE can be derived for the Model (4.1) with ρvj = 0. The restriction is necessary

to apply the method of images.







∑2
j=1

(
1
2
a21jf(vj)

2S2
1
∂2C
∂S2

1

)

+ rS1
∂C
∂S1

+ ∂C
∂t
− rC

+
∑2

j=1

(
κvj

δ2j
(ζvj − vj) ∂C∂vj +

1
2

σ2
vj

δ2j
vj

∂2C
∂v2j

)

= 0,

C (t, B1(t), B1(t),v) = 0, C (T, S1, B1(t),v) = g (S1)1{ι1>T}.

The PDE can be reduced to







∑2
j=1

(
1
2
a21jf(vj)

2 ∂2G
∂x2

1
− 1

2
a21jf(vj)

2 ∂G
∂x1

)

+ ∂G
∂t

+
∑2

j=1

(
κvj

δ2j
(ζvj − vj) ∂G∂vj +

1
2

σ2
vj

δ2j
vj

∂2G
∂v2j

)

= 0,

G (t, b1, b1,v) = 0, G (T, x1, b1,v) = g (x1)1{ι1>T},

where we use the transformations x1(t) := ln

(

S1(t)e
∫T
t r(s)ds

K1

)

, b1 := ln
(

B1(T )
K1

)

, and

G (t, x1, b1,v) := e
∫ T
t

r(s)dsC (t, S1, B1,v). See also Appendix A.1.1. Following the lines

of the derivation in Section 3.4 we can then derive the following theorem on pricing a

single-barrier option.

Theorem 40. (Single-barrier option pricing in Model (4.1))

Let us assume

i. the setting described in Equation (4.1) as well as ρvj=0,

ii. the existence of an affine analytic characteristic function ϕ(τ, u1) in z1, which is
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regular in a neighbourhood Sϕ = {u1 = w1 + iω1 : ω1 ∈ (aϕ, bϕ)} , aϕ < 0, bϕ > 0 of

the origin, and integrable, and

iii. that the generalized Fourier transform ĥ(x1) of the payoff function e−
x1
2 g(x1) at

maturity exists in a space Sg = {u1 = w1 + iω1 : ω1 ∈ (ag, bg)}, is integrable for

|x1| <∞.

If the space SC ≡ Sϕ ∩ Sg is not empty, then the barrier option value (4.19) is given by

CB (t, S1, B1,v) =
e

x1
2
−
∫ T
t

r(s)ds

2π

∫ iω1+∞

iω1−∞
ĥ(u1)

(ϕ(τ, u1,−x1)− ϕ(τ, u1, x1 − 2b1)) du1,

u1 ∈ SC , (4.20)

where

ϕ(τ, u1, x1) = exp

{

iu1x1 + A∗(τ, u1) +
2∑

j=1

(

δ2j
σ2
vj

B∗
1j(τ, u1)vj

)}

,

ĥ(u1) =

∫ +∞

−∞
e−

x′1
2 g(x′1)e

iu1x
′
1dx′1, u1 ∈ Sg,

x1 = ln
S1e

∫ T
t

r(s)ds

K1

, b1 = ln
B1(T )

K1

,

where ϕ(τ, u1, x1) satisfies the PDE 4.6. The price converges point-wise if the map S1 →
CB(t, S1, B1,v) is continuous.

Proof.

By introducing the following transformations

G(t, x1, b1,v) := e
x1
2 Z(t, x1, b1,v),

∂G

∂x1
=

1

2
G+ e

x1
2
∂Z

∂x1
,

∂2G

∂x21
=

1

4
G+ e

x1
2
∂Z

∂x1
+ e

x1
2
∂2Z

∂x21
,

we can reduce the PDE problem (4.20) to







∑2
j=1

(
1
2
a21jf(vj)

2 ∂2Z
∂x2

1
+ ∂G

∂t
− 1

8

∑2
j=1 a

2
1jf(vj)

2Z
)

+
∑2

j=1

(
κvj

δ2j
(ζvj − vj) ∂Z

∂vj
+ 1

2

σ2
vj

δ2j
vj

∂2Z
∂v2j

)

= 0,

Z (t, b1, b1,v) = 0, Z (T, x1, b1,v) = e−
x1
2 g(x1)1{ι1>T}.
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As in Section 3.4.1 we can specify the Kolmogorov backward equation and boundary

conditions of the transition probability density function p(t′, x′1,v
′, t, x1,v). Since the

payoff of the derivative does not depend on the volatility, we pursue with

q(τ, x1,v, x
′
1) =

∫ ∞

0

p(τ, x1
′,v′, x1,v)dv

′. (4.21)

Here q solves the Kolmogorov Equation (see Definition 38) supplied with the initial and

boundary conditions

q(0, x1, b1,v) = δ(x1 − x′1),
q(τ, b1, b1,v) = 0. (4.22)

In the following we apply the reflection principle (see [76], p. 79f) (the counterpart to

the method of images in a half space in two dimensions (see A.1.3)), i.e. we first derive a

solution ḠF in the whole plane and restrict it to the space (see (4.22)) it is defined for by

using symmetries.

Assume an affine solution can be found6:

ḠF (τ, x′1,v; x1) =
1

2π

∫ iω1+∞

iω1−∞
exp

{

iu1(x
′
1 − x1) + A∗(τ, u1)

+
2∑

j=1

( δ2j
σ2
vj

B∗
1j(τ, u1)vj

)}

du1,

u1 = v1 + iω1 ∈ Sϕ, (4.23)

where Sϕ describes a space in a neighbourhood to the origin, parallel to the real axis, in

which the integrand is regular.

The solution for q, satisfying the boundary conditions, can be found by the approach

q = ḠF + ḠG by using the symmetry of ḠF in x1 (see [83]). Note that the point 2b1 − x1
is symmetric to x1 in b1. Thus, we set ḠG(τ, x′1 − x1,v) = −ḠF (τ, x′1 − 2b1 + x1,v). In

x1 = b1, Ḡ
G = −ḠF and the boundary condition is, thus, satisfied. The PDE is also

6e.g. with f(vj) =
√
vj with B∗

1j = B∗

H1j(τ, u1) and A∗ = A∗

H(τ, u) given in (4.8)-(4.9),

dvj
= dvj

(u) =

√

κ2
vj

δ4j
+

σ2
vj

δ2j

(

u2
1a

2
1j +

1

4
a21j

)

,
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satisfied by ḠG. Hence, the solution is given by

q(τ, x′1,v, x1) = ḠF (τ, x′1 − x1,v)− ḠF (τ, x′1 + x1 − 2b1,v)

=
1

2π

∫ iω1+∞

iω1−∞
exp

{

A∗(τ, u1) +
2∑

j=1

(

δ2j
σ2
vj

B∗
1j(τ, u1)vj

)}

(4.24)

(exp {iu1(x′1 − x1)} − exp {iu1(x′1 + x1 − 2b1)}) du1.

From risk-neutral pricing, then

CB (t, S1, B1,v) = e
x1
2
−
∫ T
t

r(s)ds

∫ ∞

−∞

(

e−
x′1
2 g(x′1)q(τ, x

′
1,v, x1)

)

dx′1. (4.25)

We have required that the payoff function, its transform and the characteristic function

are Lebesgue integrable in a space SC . Hence, we can apply Fubini’s theorem and change

the integrals if there exists a space SC = Sϕ ∩ Sg. Then, the above expression can be

simplified. We denote the Fourier transform of the payoff by ĥ(u1)

ĥ(u1) =

∫ +∞

−∞
e−

x′1
2 g(x′1)e

iu1x
′
1dx′1, u1 ∈ Sg.

Then,

CB (t, S1, B1,v) =
e

x1
2
−
∫ T
t

r(s)ds

2π

∫ iω1+∞

iω1−∞
ĥ(u1)

(ϕ (τ, u1,−x1)− ϕ(τ, u1, x1 − 2b1) du1,

u1 ∈ SC = Sϕ ∩ Sg,

where

ϕ(τ, u1, x1) = exp

{

iu1x1 + A∗(τ, u1) +
2∑

j=1

(

δ2j
σ2
vj

B∗
1j(τ, u1)vj

)}

. (4.26)

If S1 → CB (t, S1, B1,v) is continuous the above relationship converges point-wise with

Theorem 33.

Exemplarily, we price single-barrier call options with gCall(S1) = max(S1 − K1, 0), i.e.

gCall(x1) = K1 max(ex1 − 1, 0). Thus, we have to Fourier transform e−
1
2
x1gCall(x1).

e−
1
2
x1gCall does not belong to L1. The ordinary Fourier transform does not exist and
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we apply the generalized Fourier transform:

ĥCall(u1) = K1

∫ ∞

0

(e
x′1
2 − e−

x′1
2 )eiu1x

′
1dx′1

= K1

(

− 1

iu1 +
1
2

+
1

iu1 − 1
2

)

. (4.27)

Note that we choose ℑ(u1) > 1
2
, i.e. SgCall

=
{
u1 = w1 + iω1 : ω1 >

1
2

}
. Then, the price

of the barrier call option can be specified with

C1Call (t, S1, B1,v) =
e

x1
2
−
∫ T
t

r(s)ds

2π

∫ iω1+∞

iω1−∞
ĥCall(u1)

(ϕ(τ, u1,−x1)− ϕ(τ, u1, x1 − 2b1)) du1,

u1 ∈ SCCall
= Sϕ ∩ SgCall

. (4.28)

ĥCall has a simple singularity in ω1 = 1
2
. We can, thus, again apply residue calculus and

move the contour of integration to the real axis (see Corollary 3). With (2.56) we derive

the residue of ĥCall:

ResCall = lim
u1→i 1

2

(

u1 − i
1

2

)

K1

(
1

i(u1 − i12)(iu1 − 1
2
)

)

= K1(−i)(−1) = K1i. (4.29)

Then by Corollary 3 the option price also equals the integral along the real axis of u1 minus

2πi times the residue of the Call price at ǔ1 = i1
2
, i.e. 2K1π

∫∞
−∞ δ(u1−i12)

(

ϕ(τ, u1,−x1)−

ϕ(τ, u1, x1 − 2b1)

)

du1. See also [82]. The pricing formula with integration on the real

axis is then given by

C1Call(t, S1, B1,v) = e
x1
2
−
∫ T
t

r(s)dsK1

(

ϕ(τ, i
1

2
,−x1,v)

−ϕ(τ, i1
2
, x1 − 2b1)

)

+
e

x1
2
−
∫ T
t

r(s)ds

2π

∫ ∞

−∞
ĥCall(u1)

(ϕ(τ, u1,−x1)− ϕ(τ, u1, x1 − 2b1) du1,

u1 real. (4.30)
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4.5 Pricing of two-asset barrier options with pertur-

bation theory

Options with barriers on more than one underlying cannot be priced in closed form but

have to be approximated. Due to the form of our model an approximation using pertur-

bation techniques seems to be the right choice. In finance this method has been applied

to option pricing under a stochastic volatility model by Fouque et al. (see e.g. [47], [49]).

They theoretically prove the convergence of their approach in [52]. The approximation is

correct to an order of O
(

δ
1
2

)

and it is valid everywhere except in a boundary layer near

expiry. This group applied the approach to various option types, e.g. exotic options in

[70], Asian options in [48], defaultable bonds in [53]. Their approach has been extended

to additionally allow a slow mean-reverting component [50] and to multi-dimensions [55].

Howison [66] applies perturbation theory to price vanilla options near expiry, options in

illiquid markets etc. Howison [66], Rasmussen [101] as well as Conlon and Sullivan [24]

extend the expansion and show the convergence.

We shortly introduce perturbation theory. The introduction to perturbation theory is

based on the explications of Zauderer [121], p. 572ff.

Consider a differential equation

L(C, ǫ) = 0, (4.31)

that depends on the small positive parameter ǫ and is given over a spatial region D. For a

parabolic or hyperbolic problem the boundary conditions are assigned on ∂D and initial

data are given in D at the time t = 0. The so-called reduced or unperturbed problem

associated with (4.31) results when we set ǫ = 0 in (4.31), i.e. L(C, 0) = 0. The given

problem is called regular if the reduced problem has a unique solution. If this is not the

case we have to deal with a so called singular perturbation problem. When we set ǫ = 0

in a singular problem we obtain an equation for which either the order or the type of the

differential equation has changed.

For regular perturbation problems, the solution C is expanded in the perturbation series

C =
∞∑

n=0

Cnǫ
n. (4.32)

The difference between C and C0 is called a perturbation on the solution C0 of the reduced
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or unperturbed problem. Inserting the expansion into (4.31) yields

L(C, ǫ) = L
( ∞∑

n=0

Cnǫ
n, ǫ

)

= 0. (4.33)

The assumption is taken that L(C, ǫ) can be expanded in a power series in C and ǫ. Thus,

(4.31) can be written as a series

L(C, ǫ) =
∞∑

n=0

Ln(Cn, Cn−1, . . . , C1, C0)ǫ
n = 0, (4.34)

where Ln describe differential operators which may be linear or non-linear, and which act

on the functions C0, C1, . . . , Cn. To solve the problem we equate the coefficients of ǫn in

(4.34) to zero (i.e. equating like powers of ǫ) and get

Ln(Cn, Cn−1, . . . , C1, C0) = 0, n = 0, 1, . . . . (4.35)

The same is true for any initial and/or boundary conditions. Hence, we obtain a system

of equations which we can solve recursively.

In the following sections we exemplary price two-asset options with and without barriers

in the Model (4.1) with perturbation theory, describe the convergence analytically and

give some numerical examples. Furthermore, we present a possible extension to Model

(4.1) and indicate how perturbation theory could also be applied in this model.

4.5.1 Approximation of Model (4.1)

We will see that the PDE for the valuation in fast mean-reversion models is a singular

perturbation problem. We will show that the singular perturbation can be applied and

converges everywhere except in a boundary layer near expiry. We also provide some

numerical results which back the theoretical convergence results.

By means of the perturbation technique we want to price options which depend on two

underlyings with and without barriers on both of the underlyings in the Model (4.1).

The payoff in T is indicated by g(S1, S2) in the following. Exemplarily, we show the

computations of a two-asset option with and without barriers (see [62] for two-asset digital

options without barriers). In the case of the option without barriers the value can be

determined by

C (t, S1, S2) = EQ̃

[

max(S2 −K2, 0)1S1>K1

]

, (4.36)
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the value of the barrier option is given by

CB(t, S1, S2, B1, B2) = EQ̃

[

max(S2 −K2, 0)1S1>K11{ι1>T,ι2>T}

]

, (4.37)

where ι1 = inf
(

t′ ∈ ( t, T ] : S1(t
′) ≤ B1(t

′)
)

and ι2 = inf
(

t′ ∈ ( t, T ] : S2(t
′) ≤ B2(t

′)
)

.

B1(t) and B2(t) describe the barriers on S1 and S2 respectively. As we presume fast

mean reversion for all the eigenvalues, i.e. δj → 0, C(S1, S2) and CB(S1, S2, B1, B2) can

be asymptotically approximated (see [49]). We pursue the expansion for the two-asset

option C (t, S1, S2) and only provide the expressions for CB(t, S1, S2, B1, B2) explicitly

when there are clear differences in the solutions.

First, we expand the problem in δ1 (see (4.32)), after that in δ2.

Cδ =
∞∑

n=0

Cδ2
n δ

n
1 , (4.38)

Cδ2
n =

∞∑

k=0

Cn,kδ
k
2 . (4.39)

The infinitesimal generator Lδ is given by

Lδ :=
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2. (4.40)

Note that it is expressed in the form of a power series in δj. Thus, the problem to be

solved for the two-asset option becomes

LδCδ = 0,

Cδ (T, S1, S2) = g(S1, S2), (4.41)

and for the barrier option, respectively

LδCδ
B = 0,

Cδ
B(t, B1(t), S2) = 0,

Cδ
B(t, S1, B2(t)) = 0,

Cδ
B (T, S1, S2) = g(S1, S2), (4.42)
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where

L1
0 = κv1 (ζv1 − v1)

∂

∂v1
+
σ2
v1

2
v1
∂2

∂v21
, (4.43)

L2
0 = κv2 (ζv2 − v2)

∂

∂v2
+
σ2
v2

2
v2
∂2

∂v22
, (4.44)

L1
1 = ρv1S1σv1a11

√
v1f(v1)

∂2

∂S1∂v1
+ ρv1S2σv1a21

√
v1f(v1)

∂2

∂S2∂v1
, (4.45)

L2
1 = ρv2S1σv2a12

√
v2f(v2)

∂2

∂S1∂v2
+ ρv2S2σv2a22

√
v2f(v2)

∂2

∂S2∂v2
, (4.46)

L2 =
∂

∂t
+

1

2
S2
1

2∑

j=1

a21jf(vj)
2 ∂

2

∂S2
1

+
1

2
S2
2

2∑

j=1

a22jf(vj)
2 ∂

2

∂S2
2

+S1S2

2∑

j=1

a1ja2jf(vj)
2 ∂2

∂S1∂S2

+ r

(

S1
∂

∂S1

+ S2
∂

∂S2

− 1

)

. (4.47)

Theorem 41. (Barrier option pricing in R
2)

Let us assume the setting described in Equation (4.1). Then the price of a two-asset option

without barriers (4.36) (and with barriers (4.37) respectively) can be approximated by

Cδ(t, S1, S2,v) ≈ Qδ = C0,0 + δ1C1,0 + δ2C0,1 + δ1δ2C1,1, (4.48)

Cδ
B(t, S1, S2, B1(t), B2(t),v) ≈ Qδ

B = CB,0,0 + δ1CB,1,0 + δ2CB,0,1

+δ1δ2CB,1,1, (4.49)

where C0,0 and CB,0,0 are given in (4.66) and (B.6), C1,0 and CB,1,0 in (4.84) and (4.96),

C0,1 and CB,0,1 in (4.105) and (4.112), C1,1 and CB,1,1 in (4.116) and (4.123).
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Proof.

We insert (4.38) in (4.41) and (4.42) respectively. To solve the problem we equate like

powers of δ1. This results in several PDE problems which can be solved. We restrict the

asymptotic solution to the first expansion terms:

1

δ21
L1

0C
δ2
0 +

1

δ1

(
L1

0C
δ2
1 + L1

1C
δ2
0

)
+

((
1

δ22
L2

0 +
1

δ2
L2

1 + L2

)

Cδ2
0 (4.50)

+L1
1C

δ2
1 + L1

0C
δ2
2

)

+ δ1

((
1

δ22
L2

0 +
1

δ2
L2

1 + L2

)

Cδ2
1 + L1

1C
δ2
2 + L1

0C
δ2
3

)

. . . = 0.

We set the first four leading order terms to zero and find the following relationships

δ−2
1 : L1

0C
δ2
0 = 0, (4.51)

δ−1
1 : L1

0C
δ2
1 + L1

1C
δ2
0 = 0, (4.52)

δ01 :
(

1
δ22
L2

0 +
1
δ2
L2

1 + L2

)

Cδ2
0 + L1

1C
δ2
1 + L1

0C
δ2
2 = 0, (4.53)

δ11 :
(

1
δ22
L2

0 +
1
δ2
L2

1 + L2

)

Cδ2
1 + L1

1C
δ2
2 + L1

0C
δ2
3 = 0. (4.54)

Regarding Equation (4.51) one observes that L1
0 only involves derivatives in v1. Thus,

any function independent of v1 is a solution of (4.51). On the other hand v1-dependent

solutions show the unreasonable growth e
2κv1
σv1

v1
at infinity7. We will draw on that

argument repeatedly in the course of this proof. Thus, we search for a solution of Cδ2
0

which does not depend on v1.

In Equation (4.52) L1
1 also takes a derivative in v1, thus, L1

1C
δ2
0 = 0. It follows due to the

same reasons as for Equation (4.51) Cδ2
1 = Cδ2

1 (t, S1, S2, v2). Hence, the approximation

Cδ2
0 + δ1C

δ2
1 does not depend on the current level of the eigenvalue v1.

As Cδ2
1 does not depend on v1 Equation (4.53) can be reformulated to

(
1

δ22
L2

0 +
1

δ2
L2

1 + L2

)

Cδ2
0 + L1

0C
δ2
2 = 0. (4.55)

7L1
0C

δ2
0 can be solved by dividing the equation by 1

2σ
2
v1
v1 and by multiplying the term by the integrating

factor e

∫

v

0

2κv1
(ζv1

−w1)

σ2
v1

w1
dw1

. The ODE can then be transformed to ∂
∂v1

(

e

∫

v

0

2κv1
(ζv1

−w1)

σ2
v1

w1
dw1 ∂C

δ2
0

∂v1

)

= 0.

We, thus, see that
∂C

δ2
0

∂v
= c̃e

−

2κv1
ζv1

σ2
v1

ln(v1)+
2κv1
σ2
v1 . See also [90].
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Then, we expand Cδ2
i , i ≥ 0 in δ2

Cδ2
i =

∞∑

n=0

Ci,nδ
n
2 . (4.56)

Inserting this expansion in (4.55) and grouping terms of equal order in δ2, and setting the

first four leading terms to zero we get

δ−2
2 : L2

0C0,0 = 0, (4.57)

δ−1
2 : L2

0C0,1 + L2
1C0,0 = 0, (4.58)

δ02 : L2
0C0,2 + L2

1C0,1 + L2C0,0 + L1
0C2,0 = 0, (4.59)

δ12 : L2
0C0,3 + L2

1C0,2 + L2C0,1 + L1
0C2,1 = 0. (4.60)

Solving the PDE for the leading terms C0,0 and CB,0,0

Similarly to before, we can derive from (4.57) and (4.58) that C0,0 and C0,1 are both

independent from v2. Equation (4.59) can be simplified by the fact that L2
1C0,1 = 0 to

L2
0C0,2 +L2C0,0 +L1

0C2,0 = 0. This is a Poisson equation (see Definition (25)) in C0,2 and

C2,0 with respect to v1 and v2.

The Fredholm alternatives (see Theorem 30, i(b) with iii) state that there exists only

a solution if L2C0,0 is orthogonal to the null space of the adjoint generator L∗
0 of L0 =

L1
0 + L2

0. According to Remark 6 an ergodic Markov process has a unique invariant

probability function, which solves the adjoint equation. The CIR process is ergodic and

has, thus, an invariant distribution (see Example (4)). Hence, L2C0,0 must feature mean

zero (be orthogonal) with respect to the invariant measures of v1 and v2. See also Equation

(B.29). ∫ ∫

L2C0,0p
inv(v1, v2)dv1dv2 = 〈〈L2C0,0〉〉 = 〈〈L2〉〉C0,0 = 0, (4.61)

where pinv(v1, v2) is the invariant distribution of the CIR processes v1, v2. The second

equality in (4.61) is true because C0,0 is independent from v1 and v2. We use here the

notation of Fouque (see [50], [52], [53], [55], [46]): The bracket notation means integration

with respect to the invariant distributions of the CIR processes for v1 and v2, i.e. the inner

product with respect to the invariant measure.

Note if we set f(v1) =
√
v1 and f(v2) =

√
v2 respectively that 〈f(v1)2〉 =

∫∞
0
pinv(v1)v1dv1 = ζv1 and 〈f(v2)2〉 =

∫∞
0
pinv(v2)v2dv2 = ζv2 , where p

inv(vj) denotes

the invariant distribution of the CIR process, the Gamma distribution (see Appendix

B.3). 〈〈L2〉〉 is equal to the two-dimensional Black-Scholes operator LBS (see (2.147))
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with eigenvalues 〈f(v1)2〉 = f(v1)2 and 〈f(v2)2〉 = f(v2)2.

〈〈L2〉〉 = LBS

=
∂

∂t
+

1

2
S2
1

2∑

j=1

a21j〈f(vj)2〉
∂2

∂S2
1

+
1

2
S2
2

2∑

j=1

a22j〈f(vj)2〉
∂2

∂S2
2

+S1S2

2∑

j=1

a1ja2j〈f(vj)2〉
∂2

∂S1∂S2

+ r

(

S1
∂

∂S1

+ S2
∂

∂S2

− 1

)

. (4.62)

Hence, we can also write (4.61) as

LBS(σ1, σ2, ρ)C0,0 = 0, (4.63)

where the centred volatilities of S1 and S2, σ1 and σ2, and the centred correlation ρ

between the two assets can be indicated by

σ2
1 = a211〈f(v1)2〉+ a212〈f(v2)2〉,
σ2
2 = a221〈f(v1)2〉+ a222〈f(v2)2〉,

ρ =
a11a21〈f(v1)2〉+ a12a22〈f(v2)2〉

σ1σ2

. (4.64)

Corollary 17. (C0,0)

The term C0,0 is the solution of the following problem

LBS(σ1, σ2, ρ)C0,0 = 0,

C0,0 (T, S1, S2) = max(S2 −K2, 0)1S1>K1 . (4.65)

C0,0 can be evaluated by the following formula

C0,0 (t, S1, S2) = S2N2(d2,d1, ρ)−K2e
−rτN2(d

∗
2;d

∗
1, ρ), (4.66)

where

τ = T − t, xi = ln
Sie

−
∫ T
t

r(s)ds

Ki

,

d∗
1 = d1 − ρσ2

√
τ , d1 =

x1
σ1

√
τ
− 1

2
σ1

√
τ + ρσ2

√
τ ,

d∗
2 = d2 − σ2

√
τ , d2 =

x2
σ2

√
τ
+

1

2
σ2

√
τ .

For a proof see Appendix B.2.
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Corollary 18. (CB,0,0)

CB,0,0, the respective expansion term for the two-asset option with two barriers, is given

by (see [62])

LBS(σ1, σ2, ρ)CB,0,0 = 0,

CB,0,0 (T, S1, S2) = max (S2 −K2, 0)1S1>K1 ,

CB,0,0(t, B1(t), S2) = 0,

CB,0,0(t, S1, B2(t)) = 0. (4.67)

(4.67) can be solved for ρ = − cos
(
2πk
n

)
:

CB,0,0 (t, S1, S2, B1(t), B2(t)) =
n−1∑

k=0

e
y1

(

c1σ1−c1σ1 cos( 2πk
n )+ 1√

1−ρ2
(−c2σ2−ρc1σ1) sin( 2πk

n )
)

(
B2

(
H+

1 −H−
1

)
− e−rτK2

(
H+

2 −H−
2

))
, (4.68)

where

y1 =
ln
(

S1e
rτ

K1

)

− b1
σ1

, y2 =
ln
(

S2e
rτ

K2

)

− b2
σ2

,

c1 =
σ1 − ρσ2

2σ1 (1− ρ2)
, c2 =

σ2 − ρσ1

2σ2 (1− ρ2)

H+
1 = e

y2

(

c2σ2+(1−c2)σ2 cos( 2πk
n )+ 1√

1−ρ2
(c1σ1−ρ(1−c2)σ2) sin( 2πk

n )
)

e
y1

(

σ2√
1−ρ2

sin( 2πk
n )

)

N2

(
l1
(
γ+1 , η

+
2

)
, l2
(
γ+1 , η

+
2

)
, ρ
)
, (4.69)

H−
1 = e

y2

(

c2σ2+(−(1−c2)σ2+2σ1c1ρ) cos( 2πk
n )+ 1√

1−ρ2
(−c1σ1(1−2ρ2)−ρ(1−c2)σ2) sin( 2πk

n )
)

e
y1

(

σ2√
1−ρ2

sin( 2πk
n )

)

N2

(
l1
(
γ−1 , η

−
2

)
, l2
(
γ−1 , η

−
2

)
, ρ
)
, (4.70)

H+
2 = e

y2

(

c2σ2−c2σ2 cos( 2πk
n )+ 1√

1−ρ2
(c1σ1+ρc2σ2) sin( 2πk

n )
)

N2

(
l1
(
γ+1 , γ

+
2

)
, l2
(
γ+1 , γ

+
2

)
, ρ
)
, (4.71)

H−
2 = e

y2

(

c2σ2+(c2σ2+2σ1c1ρ) cos( 2πk
n )+ 1√

1−ρ2
(−c1σ1(1−2ρ2)+ρc2σ2) sin( 2πk

n )
)

N2

(
l1
(
γ−1 , γ

−
2

)
, l2
(
γ−1 , γ

−
2

)
, ρ
)
,
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l1 (k1, k2) =
√
T − t (k1 + ρk2) +

b1

σ1

√
T − t ,

l2 (k1, k2) =
√
T − t (ρk1 + k2) +

b2

σ2

√
T − t ,

γ+1 = −c1σ1 + y1
cos
(
2πk
n

)

(T − t) (1− ρ2)

+y2

(

− sin
(
2πk
n

)

(T − t)
√

1− ρ2
− ρ cos

(
2πk
n

)

(T − t) (1− ρ2)

)

,

γ−1 = −c1σ1 + y1
cos
(
2πk
n

)

(T − t) (1− ρ2)

+y2

(

sin
(
2πk
n

)

(T − t)
√

1− ρ2
− ρ cos

(
2πk
n

)

(T − t) (1− ρ2)

)

,

γ+2 = −c2σ2 + y1

(

− ρ cos
(
2πk
n

)

(T − t) (1− ρ2) +
sin
(
2πk
n

)

√

1− ρ2(T − t)

)

+y2
cos
(
2πk
n

)

(1− ρ2)(T − t) ,

γ−2 = −c2σ2 + y1

(

− ρ cos
(
2πk
n

)

(T − t) (1− ρ2) +
1

√

1− ρ2(T − t)
sin

(
2πk

n

))

+y2

(

− 1− 2ρ2

(1− ρ2)(T − t) cos
(
2πk

n

)

− 2
ρ sin

(
2πk
n

)

√

1− ρ2(T − t)

)

,

η+2 = (1− c2)σ2 + y1

(

− ρ cos
(
2πk
n

)

(T − t) (1− ρ2) +
sin
(
2πk
n

)

√

1− ρ2(T − t)

)

+y2
cos
(
2πk
n

)

(1− ρ2)(T − t) ,

η−2 = (1− c2)σ2 + y1

(

− ρ cos
(
2πk
n

)

(T − t) (1− ρ2) +
sin
(
2πk
n

)

√

1− ρ2(T − t)

)

+y2

(

− 1− 2ρ2

(1− ρ2) (T − t) cos
(
2πk

n

)

− 2
ρ sin

(
2πk
n

)

√

1− ρ2(T − t)

)

.

For a proof refer to Appendix B.2.

Solving the PDE for the first-order corrections C0,1 and CB,0,1

Equation (4.59) can be interpreted as a Poisson equation in v2 only (in v1 respectively)

for C0,2 (C2,0). Thus, the following solvability conditions which have to be imposed due
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to the Fredholm alternatives for the two differential equations, are given by

〈
L1

0C2,0 + L2C0,0

〉

v2
= 0,

〈
L2

0C0,2 + L2C0,0

〉

v1
= 0, (4.72)

where we indicate by 〈h〉vj that h is centred with respect to the invariant distribution of

vj.
8 As L2

0 and C0,2 are independent from v1 (due to (4.51) and explanations all C0,i are

independent from v1) and analogously L1
0 and C2,0

9 are independent from v2 and we find

L1
0C2,0 = −(〈L2〉v2 C0,0) + f e

2,0 (t, S1, S2) ,

L2
0C0,2 = −(〈L2〉v1 C0,0) + f e

0,2 (t, S1, S2) , (4.73)

where f e
2,0 (f

e
0,2) is another eigenfunction, which does not depend on v1 (or v2 respectively).

These expressions can be simplified by the use of the following relationship

− L1
0C2,0

4.73
= 〈L2〉v2 C0,0 = 〈L2〉v2 C0,0 − 〈〈L2C0,0〉〉

︸ ︷︷ ︸

=0, see (4.61)

=
1

2
a211(f(v1)

2 − f(v1)2)S2
1

∂2C0,0

∂S2
1

+
1

2
a221(f(v1)

2 − f(v1)2)S2
2

∂2C0,0

∂S2
2

+a11a21(f(v1)
2 − f(v1)2)S1S2

∂2C0,0

∂S2∂S1

= (f(v1)
2 − f(v1)2)

(1

2
a211S

2
1

∂2C0,0

∂S2
1

+
1

2
a221S

2
2

∂2C0,0

∂S2
2

+a11a21S1S2
∂2C0,0

∂S1∂S2

)

, (4.74)

and

− L2
0C0,2 = 〈L2〉v1 C0,0 = (f(v2)

2 − f(v2)2)
(1

2
a212S

2
1

∂2C0,0

∂S2
1

+
1

2
a222S

2
2

∂2C0,0

∂S2
2

+a12a22S1S2
∂2C0,0

∂S1∂S2

)

. (4.75)

8Note that both conditions are necessary and do not contradict the results we get when we regard (4.59)
as Poisson equation in v1 and v2. This can be seen when we solve

〈
L1
0C2,0 + L2C0,0

〉

v2
=
〈
L1
0

〉

v2
C2,0 +

L2C0,0 = 0. When L2C0,0 is unknown the last expression is again a Poisson equation, this time in v1.

Thus, according to the Fredholm alternatives
〈〈
L1
0

〉

v2

〉

v1

. The same follows for
〈
L2
0C0,2 + L2C0,0

〉

v1
= 0.

9The perturbation could also analogously be started in δ2. Thus, all Ci,0 are independent from v2.
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Further, we define φ as the solution of Poisson equations

(L1
0 + L2

0)φ =
2∑

j=1

(f(vj)
2 − f(vj)2), (4.76)

L1
0φ1 = f(v1)

2 − f(v1)2,
L2

0φ2 = f(v2)
2 − f(v2)2.

Hence, we can write with (4.76) and (4.73)

C2,0 = −1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C0,0

+f e
2,0 (t, S1, S2) , (4.77)

C0,2 = −1

2
φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

C0,0

+f e
0,2 (t, S1, S2) . (4.78)

Equation (4.60) is a Poisson equation in v1, v2. As C0,3 is independent from v1 (due to

(4.51) and explanations all C0,i are independent from v1) and C2,1 is independent from

v2
10 we can reformulate (4.60):

(L2
0 + L1

0)(C0,3 + C2,1) = −(L2
1C0,2 + L2C0,1). (4.79)

Hence, the following statement must be imposed to guarantee the solvability of the Poisson

equation

〈〈L2〉〉C0,1 = −
〈〈
L2

1C0,2

〉〉
= −

〈
L2

1C0,2

〉

v2
(4.80)

(4.78)
=

〈

L2
1

1

2
φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

C0,0

〉

v2

.

Applying (4.76) the problem for C0,1 can be simplified.

Corollary 19. (C0,1)

The problem for C0,1 is given by

LBS(σ1, σ2, ρ)C0,1 = A2C0,0,

C0,1 (T, S1, S2) = 0, (4.81)

10Due to (4.58) and the following explanations all C1,i are independent from v1. We get the analogous
result for Ci,1 being independent from v2 when we start the perturbation in δ2.
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with

A2 =

〈√
v2f(v2)

∂φ2

∂v2

〉

v2

ρv2σv2

(
a12
2
S1

∂

∂S1

+
a22
2
S2

∂

∂S2

)

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

, (4.82)

where ∂φ2

∂v2
= − 2

σ2
v2

v2p(v2)

∫ v2

0
(f(z2)

2 − f(v2)2)p(z2)dz2 (see Equation (B.32)). Thus,

〈√
v2f(v2)

∂φ2

∂v2

〉

v2

=

∫ ∞

0

√
v2f(v2)

∂φ2

∂v2
p(v2)dv2

= − 2

σ2
2,v

∫ ∞

0

∫ v2

0

f(v2)(f(z2)
2 − f(v2)2)√
v2

p(z2)dz2dv2.

If f(v2) =
√
v2

〈√
v2f(v2)

∂φ2

∂v2

〉

v2

= − 2

σ2
2,v

∫ ∞

0

∫ v2

0

(z2 − v2)p(z2)dz2dv2

(B.28)
= − 2

σ2
2,v

∫ ∞

0

(
∫ v2

0

µCIRaCIR

Γ(aCIR)
za

CIR

2 e−µCIRz2dz2 − v2
)

dv2

= − 2

σ2
2,v

∫ ∞

0

(

1

µCIR

∫ v2

0

x
(aCIR+1)−1
2

Γ(aCIR)
e−x2dx2 − v2

)

dv2

= − 2

σ2
2,v

∫ ∞

0

(
γ(aCIR + 1, µCIRv2)

Γ(aCIR)µCIR
− v2

)

dv2, (4.83)

where γ(c̃, x) =
∫ x

0
e−ttc̃−1dt is the lower incomplete gamma function (see [59], 8.350 and

8.351).

It can be easily shown that

C0,1 = −(T − t)A2C0,0, (4.84)

as LBS commutes with Si
∂k

∂Sk
i

for k = 1, 211 and LBSC0,0 = 0, i.e. LBS (−(T − t)A2C0,0) =

A2C0,0 − (T − t)A2LBSC0,0
(4.61)
= A2C0,0.

11For k = 1: Si
∂

∂Si

(

S2
i
∂2C0,0

∂S2
i

)

= Si

(

2Si
∂2C0,0

∂S2
i

+ S2
i
∂3C0,0

∂S3
i

)

= S2
i

∂2

∂S2
i

(

Si
∂C0,0

∂Si

)
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The PDE in the case of the barrier option is given by

LBS(σ1, σ2, ρ)CB,0,1 = A2CB,0,0,

CB,0,1 (T, S1, S2) = 0,

CB,0,1(t, B1(t), S2) = 0,

CB,0,1(t, S1, B2(t)) = 0.

We simplify the problem by defining (see [70])

ĈB,0,1 = CB,0,1 + Ṽ12S1
∂2CB,0,0

∂f(v2)2∂S1

+ Ṽ22S2
∂2CB,0,0

∂f(v2)2∂S2

. (4.85)

When we differentiate LBSCB,0,0 with respect to f(vj)2 we see

∂

∂f(vj)2
(LBSCB,0,0) =

∂
∂CB,0,0

∂f(vj)2

∂t
+

1

2
S2
1

2∑

j=1

a21jf(vj)
2
∂2

∂CB,0,0

∂f(vj)2

∂S2
1

+
1

2
S2
2

2∑

j=1

a22jf(vj)
2
∂2

∂CB,0,0

∂f(vj)2

∂S2
2

+ S1S2

2∑

j=1

a1ja2jf(vj)2
∂2

∂CB,0,0

∂f(vj)2

∂S1∂S2

+r



S1

∂
∂CB,0,0

∂f(vj)2

∂S1

+ S2

∂
∂CB,0,0

∂f(vj)2

∂S2

− ∂CB,0,0

∂f(vj)2





+
1

2

(

S2
1a

2
1j

∂2CB,0,0

∂S2
1

+ S2
2a

2
2j

∂2CB,0,0

∂S2
2

+ 2S1S2a1ja2j
∂2CB,0,0

∂S1∂S2

)

= LBS

∂CB,0,0

∂f(vj)2
+ (4.86)

+
1

2

(

S2
1a

2
1j

∂2CB,0,0

∂S2
1

+ S2
2a

2
2j

∂2CB,0,0

∂S2
2

+ 2S1S2a1ja2j
∂2CB,0,0

∂S1∂S2

)

= 0,
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due to Equation (4.67).12 Hence, LBS(σ1, σ2, ρ)
∂CB,0,0

∂f(vj)2
for j = 1, 2 solves the PDE problem

LBS

∂CB,0,0

∂f(vj)2
= −1

2

(

S2
1a

2
1j

∂2CB,0,0

∂S2
1

+ S2
2a

2
2j

∂2CB,0,0

∂S2
2

+2S1S2a1ja2j
∂2CB,0,0

∂S1∂S2

)

,

∂CB,0,0

∂f(vj)2
(T, S1, S2) = 0,

∂CB,0,0

∂f(vj)2
(t, B1(t), S2) = 0,

∂CB,0,0

∂f(vj)2
(t, S1, B2(t)) = 0. (4.87)

Differentiating this with respect to Si with i = 1, 2 we see that due to the fact that LBS

commutes with Si
∂k

∂Sk
i

for k = 1, 2,

LBS(Si

∂2CB,0,0

∂Si∂f(vj)2
) = −1

2
Si

∂

∂Si

(

S2
1a

2
1j

∂2CB,0,0

∂S2
1

+ S2
2a

2
2j

∂2CB,0,0

∂S2
2

+2S1S2a1ja2j
∂2CB,0,0

∂S1∂S2

)

,

∂2CB,0,0

∂Si∂f(vj)2
(T, Si, Sk) = 0,

∂2CB,0,0

∂Si∂f(vj)2
(t, Bi(t), Sk) in general not 0,

∂2CB,0,0

∂Si∂f(vj)2
(t, S1, Bk(t)) = 0. (4.88)

ĈB,0,1 is therefore the solution to the problem

LBS(σ1, σ2, ρ)ĈB,0,1 = 0,

ĈB,0,1 (T, S1, S2) = 0,

ĈB,0,1(t, B1(t), S2) = Ṽ12g12(t, B1, S2(t)),

ĈB,0,1(t, S1, B2(t)) = Ṽ22g22(t, S1(t), B2), (4.89)

12Note that with (4.62) LBSCB,0,0 =
∂CB,0,0

∂t
+ 1

2S
2
1

∑2
j=1 a

2
1jf(vj)

2 ∂2CB,0,0

∂S2
1

+ 1
2S

2
2

∑2
j=1 a

2
2jf(vj)

2 ∂2CB,0,0

∂S2
2

+ S1S2

∑2
j=1 a1ja2jf(vj)

2 ∂2CB,0,0

∂S1∂S2
+ r

(

S1
∂CB,0,0

∂S1
+ S2

∂CB,0,0

∂S2
− CB,0,0

)

= 0.
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where

Ṽ12 =

〈√
v2f(v2)

∂φ2

∂v2

〉

v2

ρv2σv2a12, (4.90)

Ṽ22 =

〈√
v2f(v2)

∂φ2

∂v2

〉

v2

ρv2σv2a22, (4.91)

g12(t, B1, S2(t)) = S1
∂2CB,0,0

∂f(v2)2∂S1

∣
∣
∣
∣
S1=B1(ι1),S2=S2(ι1)

,

g22(t, S1(t), B2) = S2
∂2CB,0,0

∂f(v2)2∂S2

∣
∣
∣
∣
S1=S1(ι2),S2=B2(ι2)

.

The solution can be found by (for the following results see [71].)

ĈB,0,1(t, S1, S2, B1, B2) =

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c2(σ2a
′
p sinβp)Ṽ12g12(t

′, B1, B2e
σ2a

′
p sinβp)

pxGBM

(
ι′ ∈ dt′, θ′p = βp

)
da′pdt

′

+

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c1(σ1a
′
p

√
1−ρ2)Ṽ22g22(t

′, B1e
σ1

√
1−ρ2a′p , B2)

pxGBM

(
ι′ ∈ dt′, θ′p = 0

)
da′pdt

′, (4.92)

where r′p = a′p and θ′p = (0, βp).

pxGBM(ι′ ∈ dt′, z (ι′) ∈ ∂Y ) =
πec1x1+c2x2−

∫ t′

t
r(s)ds−α(t′−t)

β2
pt

′a′p
e

a′p
2
+r2p

2t′

∞∑

n=1

δnn

sin

(
nπθp
βp

)

Inπ
βp

(
a′prp

t′

)

, (4.93)

where z describes the vector of transformed variables in polar coordinates, ∂Y describes

the boundary, i.e. the wedge with δn = 1 if θ′p = 0 (i.e. S2 = B2(t), S1 = ex
′
1K1 =

B1e
σ1

√
1−ρ2z′1 = B1e

σ1

√
1−ρ2r′p cos(θ′p) = B1e

σ1

√
1−ρ2r′p) and δn = (−1)n+1 if θ′p = βp (i.e.

S1 = B1(t),S2 = K2e
x′
2 = B2e

σ2z
′
2 = B2e

σ2r
′
p sin θ′p). tan βp = −

√
1−ρ2

ρ
, βp ∈ [0, π]. For

ρ = − cos π
n
, pxGBM(ι′ ∈ dt′, z(ι′) ∈ ∂Y ) can be attained in an easier way.

For θ′p = 0

pxGBM(ι′ ∈ dt′, z(ι′) ∈ ∂Y ) = ec1x1+c2x2−
∫ t′

t
r(s)ds−α(t′−t)

1

t′2

2n−1∑

k=0

(−1)kΦ(z
′ − Tkz√

t
)
∣
∣
∣
z′2=0

(e2Tkz
′) ,

where e2 is the vector (0, 1), Φ is the standard normal distribution with 1
2π
e−

(z′1−z1)
2+(z′2−z2)

2

2 ,
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z′ = (z′1, z
′
2), z0 = (z1, z2),

Tkz =







(rp cos(
2kπ
n

+ θp), rp sin(
2kπ
n

+ θp)) for k even,

(rp cos(
2(k−1)π

n
− θp), rp sin(2(k−1)π

n
− θp)) for k odd,

(4.94)

xi = ln

(

Sie
∫ T
t

rds

Ki

)

,

z1 =
1

√

1− ρ2

(
x1 − b1
σ1

− ρ
(
x2 − b2
σ2

))

,

z2 =
x2 − b2
σ2

.

For θ′p = βp

pxGBM(ι′ ∈ dt′, z(ι′) ∈ ∂Y ) = ec1x1+c2x2−
∫ t′

t
r(s)ds−α(t′−t)

1

t′2

2n−1∑

k=0

(−1)kΦ(z
′ − Tkz√

t
)
∣
∣
∣
z′2=0

(e2Tkz
′) ,

with θ̃p = βp − θp and

Tkz =







(rp cos(
2kπ
n

+ θ̃p), rp sin(
2kπ
n

+ θ̃p)) for k even,

(rp cos(
2(k−1)π

n
− θ̃p), rp sin(2(k−1)π

n
− θ̃p)) for k odd.

(4.95)

Corollary 20. (CB,0,1)

The solution for CB,0,1 is given by

CB,0,1 = ĈB,0,1 − Ṽ12S1
∂2CB,0,0

∂f(v2)2∂S1

− Ṽ22S2
∂2CB,0,0

∂f(v2)2∂S2

. (4.96)

Solving the PDE for the first-order corrections C1,0 and CB,1,0

Inserting expression (4.56) in (4.54) and collecting terms of the same order of δ2 we obtain

the following relationships

δ−2
2 : L2

0C1,0 = 0, (4.97)

δ−1
2 : L2

0C1,1 + L2
1C1,0 = 0, (4.98)

δ02 : L2
0C1,2 + L2

1C1,1 + L2C1,0 + L1
1C2,0 + L1

0C3,0 = 0, (4.99)

δ12 : L2
0C1,3 + L2

1C1,2 + L2C1,1 + L1
1C2,1 + L1

0C3,1 = 0. (4.100)
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We notice that C1,0 and C1,1 are both independent from v2. Equation (4.99) is a Poisson

equation in v1, v2 while L2
1C1,1 = 0.

As L2
0C3,0 = 0 due to the independence of C3,0 from v2 (due to (4.51) and explanations all

C0,i are independent from v1. The same follows analogously for Ci,0 as the perturbation

could be also started with δ2.) and L1
0C1,2 = 0 because C1,2 is independent from v1 (due

to (4.52) and the respective explanations) we can reformulate (4.99)

(
L2

0 + L1
0

)
(C1,2 + C3,0) = −

(
L1

1C2,0 + L2C1,0

)
. (4.101)

The following condition has to be fulfilled so that this Poisson equation is solvable:

〈〈L2〉〉C1,0 = −
〈〈
L1

1C2,0

〉〉 (4.77)
= −

〈
L1

1C2,0

〉

v1
. (4.102)

Using (4.76) and (4.77) the respective problem for C1,0 can be found.

Corollary 21. (C1,0)

C1,0 solves the following problem

LBS(σ1, σ2)C1,0 = A1C0,0,

C1,0 (T, S1, S2) = 0, (4.103)

where

A1 =

〈√
v1f(v1)

∂φ1

∂v1

〉

v1

ρv1σv1

(
a11
2
S1

∂

∂S1

+
a21
2
S2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

. (4.104)

Analogously to (4.84) the solution for the two-asset option without barriers can be easily

indicated by

C1,0 = −(T − t)A1C0,0. (4.105)

Accordingly, the problem for the barrier option is given by

LBS(σ1, σ2, ρ)CB,1,0 = A1CB,0,0,

CB,1,0 (T, S1, S2) = 0,

CB,1,0(t, B1(t), S2) = 0,

CB,1,0(t, S1, B2(t)) = 0. (4.106)



172 4.5 Pricing of two-asset barrier options with perturbation theory

We redefine the problem analogously to (4.87)-(4.88) by

ĈB,1,0 = CB,1,0 + Ṽ11S1
∂2CB,0,0

∂f(v1)2∂S1

+ Ṽ21S2
∂2CB,0,0

∂f(v1)2∂S2

. (4.107)

ĈB,1,0 is the solution to the problem

LBS(σ1, σ2)ĈB,1,0 = 0,

ĈB,1,0 (T, S1, S2) = 0,

ĈB,1,0(t, B1(t), S2) = Ṽ11g11(t, B1, S2(t)),

ĈB,1,0(t, S1, B2(t)) = Ṽ21g21(t, S1, B2(t)), (4.108)

where

Ṽ11 =
1

2

〈√
v1f(v1)

∂φ1

∂v1

〉

v1

ρv1σ1,va11, (4.109)

Ṽ21 =
1

2

〈√
v1f(v1)

∂φ1

∂v1

〉

v1

ρv1σ1,va21, (4.110)

g11(t, B1, S2(t)) = S1
∂2CB,0,0

∂f(v1)2∂S1

∣
∣
∣
∣
S1=B1(ι1),S2=S2(ι1)

,

g21(t, S1, B2(t)) = S2
∂2CB,0,0

∂f(v1)2∂S2

∣
∣
∣
∣
S1=S1(ι2),S2=B2(ι2)

.

Analogously to (4.92) the solution can be found by

ĈB,1,0(t, S1, S2, B1, B2) =

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c2(σ2a
′
p sinβp)Ṽ12g11(t

′, B1, B2e
σ2a

′
p sinβp)

pxGBM

(
ι′ ∈ dt′, θ′p = βp

)
da′pdt

′

+

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c1(σ1a
′
p

√
1−ρ2)Ṽ22g21(t

′, B1e
σ1

√
1−ρ2a′p , B2)

pxGBM

(
ι′ ∈ dt′, θ′p = 0

)
da′pdt

′, (4.111)

where the probability is given in (4.93).

Corollary 22. CB,1,0

The solution to CB,1,0 is given by

CB,1,0 = ĈB,1,0 − Ṽ11S1
∂2CB,0,0

∂f(v1)2∂S1

− Ṽ21S2
∂2CB,0,0

∂f(v1)2∂S2

. (4.112)
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Solving the PDE for the first-order corrections C1,1 and CB,1,1

Equation (4.99) is a Poisson equation with respect to v1 for C3,0. Thus, we deduce with

(4.102)

L2
0C1,2 = −

〈
L1

1C2,0 + L2C1,0

〉

v1

(4.102)
= −

(
−〈〈L2〉〉C1,0 + 〈L2〉v1 C1,0

)

(4.105)
=

1

2
(T − t)(f(v2)2 − f(v2)2)
(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A1C0,0, (4.113)

C1,2 =
1

2
(T − t)φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A1C0,0

+f e
1,2 (t, S1, S2) ,

where f e
1,2 (t, S1, S2) is another eigenfunction, which does not depend on v1. In this way,

Equation (4.60) is a Poisson equation in v2 for C0,3. Hence, from the solvability condition

together with (4.80) follows, analogue to (4.113):

L1
0C2,1 = −

〈
L2

1C0,2 + L2C0,1

〉

v2

=
1

2
(T − t)(f(v1)2 − f(v1)2)
(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A2C0,0, (4.114)

C2,1 =
1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A2C0,0

+f e
2,1 (t, S1, S2) ,

where f e
2,1 (t, S1, S2) is another eigenfunction, which does not depend on v2. Finally,

Equation (4.100) is a Poisson equation in v1 and v2 for C3,1 and C1,3. To ensure its

solvability we have to enforce the following condition

〈〈L2〉〉C1,1 = −
〈〈
L2

1C1,2 + L1
1C2,1

〉〉
.

Corollary 23. (C1,1)

C1,1 satisfies the following problem

〈〈L2〉〉C1,1 = 2(t− T )A1A2C0,0. (4.115)
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Concluding, as in (4.84) and (4.105),

C1,1 = (T − t)2A1A2C0,0. (4.116)

This result can be easily checked by inserting (4.116) in (4.115).

For the barrier option the problem is given by

LBS(σ1, σ2, ρ)CB,1,1 = 2(T − t)A1A2CB,0,0,

CB,1,1 (T, S1, S2) = 0,

CB,1,1(t, B1(t), S2) = 0,

CB,1,1(t, S1, B2(t)) = 0. (4.117)

In order to simplify the problem we deduce that

LBS

(
(T − t)2A1A2CB,0,0

)
= −2(T − t)A1A2CB,0,0 + (T − t)2LBSA1A2CB,0,0

︸ ︷︷ ︸

=0

, (4.118)

the last term equals zero as A1 and A2 commutes with LBS. Hence, we define

ĈB,1,1 = CB,1,1 + (T − t)2A1A2CB,0,0 (4.119)

ĈB,1,1 is the solution to the problem

LBS(σ1, σ2)ĈB,1,1 = 0,

ĈB,1,1 (T, S1, S2) = 0,

ĈB,1,1(t, B1(t), S2) = g̃1(t, B1, S2),

ĈB,1,1(t, S1, B2(t)) = g̃2(t, S1, B2), (4.120)

where

g̃1(t, B1, S1) = (T − t)2A1A2CB,0,0

∣
∣
∣
∣
S1=B1,S2=S2(ι1)

,

g̃2(t, S1, B2) = (T − t)2A1A2CB,0,0

∣
∣
∣
∣
S1=S1(ι2),S2=B2

. (4.121)
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The solution can be found by

ĈB,1,1 (t, S1, S2, B1, B2) =

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c2(σ2a
′
p sinβp)g̃1(t

′, B1, B2e
σ2a

′
p sinβp)

pxGBM

(
ι′ ∈ dt′, θ′p = βp

)
da′pdt

′

+

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c1(σ1a
′
p

√
1−ρ2)g̃2(t

′, B1e
σ1

√
1−ρ2a′p , B2)

pxGBM

(
ι′ ∈ dt′, θ′p = 0

)
da′pdt

′, (4.122)

where the probability is given in (4.93).

Corollary 24. (CB,1,1)

The solution for CB,1,1 given by

CB,1,1 = ĈB,1,1 − (T − t)2A1A2CB,0,0. (4.123)

Accuracy of the approximation

We derive the accuracy of the price approximation along the lines of Fouque et al [52],

[49]. Each call or digital option has a payoff function which is only C0 smooth with a

discontinuous first derivative at the kink Si = Ki. However, for the proof we require a

smooth payoff function and smooth derivatives.

Thus, in order to proceed we regularise the payoff, which is a two-asset option, by replacing

it with the Black-Scholes price CBS of the two-asset option with time to maturity ǫ̃ with

volatilities σ1, σ2 and correlation ρ, i.e. deterministic covariance because at t < T the

Black-Scholes price CBS is smooth, and the derivatives are well-defined.

We define therefore

gǫ̃ (S1, S2) = CBS (T, S1, S2, K1, K2, T + ǫ̃, σ1, σ2, ρ) , (4.124)

with

CBS (t, S1, S2, K1, K2, T, σ1, σ2, ρ) = C0,0 (t, S1, S2, K1, K2, T, σ1, σ2, ρ) .

(4.125)
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Hence, the regularised price C ǫ̃,δ solves

LδC ǫ̃,δ = 0,

C ǫ̃,δ (T, S1, S2) = gǫ̃(S1, S2).

Let Qǫ̃,δ denote the first-order approximation to the regularised option price, i.e.

Qǫ̃,δ ≡ C ǫ̃
0,0 + δ1C

ǫ̃
1,0 + δ2C

ǫ̃
0,1 + δ1δ2C

ǫ̃
1,1, (4.126)

where

C ǫ̃
0,0 (t, S1, S2) = CBS (t, S1, S2, K1, K2, T + ǫ̃, σ1, σ2, ρ) , (4.127)

C ǫ̃
1,0 = −(T − t)A1C

ǫ̃
0,0, (4.128)

C ǫ̃
0,1 = −(T − t)A2C

ǫ̃
0,0, (4.129)

C ǫ̃
1,1 = (T − t)2A1A2C

ǫ̃
0,0. (4.130)

Concluding, the proof must involve three steps. First, we show that the regularised price,

C ǫ̃,δ, is converging to the actual unregularised price, Cδ (see Lemma 2), in a next step we

deduct that the regularised approximation Qǫ̃,δ is close to the approximation Qδ, which

is defined in Equation (4.48), (see Lemma 3). Finally, it is left to prove that C ǫ̃,δ ∼ Qǫ̃,δ

in Lemma 4.

Lemma 2. (C ǫ̃,δ ∼ Cδ)

For the fixed point (t, S1, S2, v), where t < T and v = (v1, v2), there exist constants δ
1

1 > 0,

δ
1

2 > 0, ǫ̃1 > 0, and c1 > 0 such that

∣
∣Cδ(t, S1, S2, v)− C ǫ̃,δ(t, S1, S2, v)

∣
∣ ≤ c1ǫ̃, (4.131)

for all 0 < δ1 < δ
1

1, 0 < δ2 < δ
1

2, and 0 < ǫ̃ < ǫ̃1.

Proof.

In the following we show that C ǫ̃,δ and Cδ converge to each other by conditioning the

difference in the prices on the paths of the eigenvectors up to T . For that we use the

probabilistic representation of the price as the risk-neutral value of the discounted payoff.

For the proof of this lemma we introduce the processes for S̃i, i ∈ (1, 2) with ρvj :

dS̃i = rS̃idt+ S̃i

2∑

j=1

aijf(ṽj(t))
(√

1− ρvj 2dŴj + ρvjdZj

)

, i = 1, 2, (4.132)
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where

f(ṽj(t)) =







f(vj(t)) for t ≤ T

f(vj)2 for t > T
(4.133)

and vj follows the process described in (4.2). Note that Ŵj and Zj are two independent

Brownian motions with Zj = Zj in (4.2) and Ŵj = 1√
1−ρvj

2
(Wj − ρvjZj) in (4.1). The

assumption of a risk-neutral equivalent martingale measure allows for the probabilistic

representation of the price as the expected discounted payoff. Thus, we find

C ǫ̃,δ = EQ̃

[

e−r(T−t+ǫ̃)g
(

S̃1(T + ǫ̃), S̃2(T + ǫ̃)
)]

,

Cδ = EQ̃

[

e−r(T−t)g
(

S̃1(T ), S̃2(T )
)]

.

In the next step we condition the difference of the regularised and the unregularised prices

on the paths of the Brownian motions of the eigenvalues follow, i.e.

C ǫ̃,δ − Cδ = EQ̃

[

E

[

e−r(T−t+ǫ̃)g
(

S̃1 (T + ǫ̃) , S̃2(T + ǫ̃)
)

−e−r(T−t)g
(

S̃1(T ), S̃2(T )
) ∣
∣Zj(s)t≤s≤T , j = 1, 2

]]

. (4.134)

To calculate the expectations we determine the conditional joint distribution of S̃1 and

S̃2. We start with the expectation in T and obtain the following diffusions for ln(S̃1) and

ln(S̃2):

d
(

ln(S̃1)
)

= rdt− 1

2

2∑

j=1

a21jf(ṽj(t))
2(1− ρvj 2)dt−

1

2

2∑

i=1

a21jf(ṽj(t))
2ρvj

2dt

+
2∑

j=1

a1jf(ṽj(t))
√

1− ρvj 2dŴj +
2∑

j=1

a1jf(ṽj(t))ρ
v
jdZj,

d
(

ln(S̃2)
)

= rdt− 1

2

2∑

j=1

a22jf(ṽj(t))
2(1− ρvj 2)dt−

1

2

2∑

j=1

a22jf(ṽj(t))
2ρvj

2dt

+
2∑

j=1

a2jf(ṽj(t))
√

1− ρvj 2dŴj +
2∑

j=1

a2jf(ṽj(t))ρ
v
jdZj,
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or

S̃1(T ) = S̃1(t)e
Λ1 exp

{

r(T − t)− 1

2

∫ T

t

2∑

j=1

a21jf(ṽj(s))
2(1− ρvj 2)ds

+
2∑

j=1

∫ T

t

a1jf(ṽj(s))
√

1− ρvj 2dŴj

}

,

S̃2(T ) = S̃2(t)e
Λ2 exp

{

r(T − t)− 1

2

∫ T

t

2∑

j=1

a22jf(ṽ1(s))
2(1− ρvj 2)ds

+
2∑

j=1

∫ T

t

a2jf(ṽj(s))
√

1− ρvj 2dŴj

}

,

where

Λi =

∫ T

t

2∑

j=1

aijf(ṽj(s))ρ
v
jdZj −

1

2

∫ T

t

2∑

j=1

a2ijf(ṽj(s))
2ρvj

2ds. (4.135)

vj, j = 1, 2, i.e. ṽj, j = 1, 2, t ≤ T are independent from
(

Ŵj(s)
)

0≤s≤T
under Q̃ as we

have reformulated the processes with independent Brownian motions
(

Ŵj(s)
)

0≤s≤T
and

(Zj(s))0≤s≤T
(see (4.132)). The conditional distribution of S̃1(T ) (S̃2(T ) respectively) is,

thus,

ln

(

S̃1(T )

S̃1(t)

)

∣
∣Zj(s)t≤s≤T ∼ N

(

r(T − t) + Λ1 −
1

2
σ̂2
1, σ̂1

)

, (4.136)

with

σ̂2
i = σ̂2

i (t, T ),

=

∫ T

t

((
1− ρv21

)
a2i1f(ṽ1(s))

2 +
(
1− ρv22

)
a2i2f(ṽ2(s))

2
)
ds. (4.137)

To summarise we obtain the following conditional joint distribution

F
(

ln
(

S̃1

)

, ln
(

S̃2

) ∣
∣Zj(s)t≤s≤T , j = 1, 2

)

for ln(S̃1) and ln(S̃2) (for a single under-

lying see [103])

F
(

ln
(

S̃1(T )
)

, ln
(

S̃2(T )
) ∣
∣Zj(s)t≤s≤T , j = 1, 2

)

= N2

(
m1,m2, σ̂

2
1, σ̂

2
2, ρ̂
)
, (4.138)

where

mi = ln (Si(0)) + Λi + r(T − t)− 1

2
σ̂2
i , (4.139)

ρ̂ =

∫ T

t
(a11a21(1− ρv12)f(ṽ1(s))2 + a12a22(1− ρv22)f(ṽ2(s))2)ds

σ̂1σ̂2
. (4.140)
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It follows that

E

[

e−r(T−t)g(S̃1(T ), S̃2(T ))
∣
∣Zj(s)t≤s≤T , j = 1, 2

]

= CBS

(

t, S1e
Λ1 , S2e

Λ2 , K1, K2, T,
σ̂1√
T − t

,
σ̂2√
T − t

, ρ̂

)

. (4.141)

Accordingly, we get

F
(

ln
(

S̃1 (T + ǫ̃)
)

, ln
(

S̃2 (T + ǫ̃)
) ∣
∣Zj(s)t≤s≤T , j = 1, 2

)

= N2

(
m̃1, m̃2, σ̃

2
1, σ̃

2
2, ρ̃
)
, (4.142)

where

m̃i = ln (Si(0)) + Λi + r(T − t) + rǫ̃− 1

2
σ̃2
i , (4.143)

σ̃2
i = σ̃i(t, T + ǫ̃)2

(4.133,4.137)
= σ̂i(t, T )

2 +

∫ T+ǫ

T

(

a2i1f(v1(s))
2 + a2i2f(v2(s))

2
)

(4.64)
= σ̂2

i + ǫ̃σ2
i , (4.144)

ρ̃ = ρ̃(t, T + ǫ)

(4.140)
=

ρ̂(t, T )σ̂1(t, T )σ̂2(t, T ) +
∫ T+ǫ

T
(a11a21f(v1(s))2 + a12a22f(v2(s))2)ds

σ̃1(t, T + ǫ̃)σ̃2(t, T + ǫ̃)

(4.64)
=

ρ̂σ̂1σ̂2 + ǫ̃ρ σ1 σ2

σ̃1σ̃2
. (4.145)

The conditional expectation can be computed by

E

[

e−r(T−t+ǫ̃)g
(

S̃1(T + ǫ̃), S̃2 (T + ǫ̃)
) ∣
∣Zj(s)t≤s≤T , j = 1, 2

]

= e−rǫ̃Cδ
BS

(

t, S1e
Λ1+rǫ̃, S2e

Λ2+rǫ̃, K1, K2, T,
σ̃1√
T − t

,
σ̃2√
T − t

, ρ̃

)

. (4.146)

Using the explicit formulas and the assumption that σ̂i, i = 1, 2, is bounded above and

below (for detailed calculations see (B.2)), we derive that

∣
∣
∣e−rǫ̃CBS

(
t, S1e

Λ1+rǫ̃, S2e
Λ2+rǫ̃, σ̃1, σ̃2, ρ̃

)
− C ǫ̃,δ

BS

(
t, S1e

Λ1 , S2e
Λ2 , σ̂1, σ̂2, ρ̂

)
∣
∣
∣

≤ ǫc̃4 (1 + |Λ1|+ |Λ2|+ |Λ1| |Λ2|)
(
eΛ2 + 1

)
. (4.147)

E(T ) := eΛi is the stochastic exponential of γ̃(T ) =
∫ T

t

∑p

j=1 ρ
v
jf(vj)aij because eΛi =

eγ̃(T )− 1
2
〈γ̃,γ̃〉 and dE = Edγ̃. The expectation of the exponential martingale exists if the

Novikov condition is fulfilled, i.e. if E
[

e
1
2

∫ T
t ||√vj||2ds] <∞, which is the case for the CIR
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process (see [29]). We find

∣
∣Cδ(t, S1, S2, v)− C ǫ̃,δ(t, S1, S2, v)

∣
∣ ≤ c1ǫ̃, (4.148)

for c1 and ǫ̃ small enough.

Lemma 3. (Qǫ̃,δ ∼ Qδ)

For the fixed point (t, S1, S2, v), where t < T and v = (v1, v2), there exist constants δ
2

1 > 0,

δ
2

2 > 0, ǫ̃2 > 0, and c2 > 0 such that

∣
∣Qδ (t, S1, S2,v)−Qǫ̃,δ (t, S1, S2,v)

∣
∣ ≤ c2ǫ̃, (4.149)

for all 0 < δ1 < δ
2

1, 0 < δ2 < δ
2

2, and 0 < ǫ̃ < ǫ̃2.

Proof.

In the following we show that the approximation Qǫ̃,δ of the regularised payoff is close to

Qδ, the approximation of the unregularised payoff. From the definitions of the correction

terms C1,0 (see (4.105)), C0,1 (see (4.84)), and C1,1 (see (4.116)) it follows that

Qǫ̃,δ −Qδ =
(
1− (T − t) (δ1A1 + δ2A2) + (T − t)2δ1δ2A1A2

) (
C ǫ̃

0,0 − C0,0

)
.

From the definition of A1 (see (4.104)) and A2 (see (4.82)) one can see that they are

bounded due to the boundedness of the solutions of the Poisson equations in v1 and v2

(see (B.3)).

As C ǫ̃
0,0 (t, T, S1, S2) = C0,0(t, T + ǫ̃, S1, S2) and C0,0 as well as its successive derivatives

with respect to S1 and S2 are differentiable in t at any t < T we deduce for (t, S1, S2, v)

with fixed t < T :

|Qδ −Qδ,ǫ̃| ≤ c2ǫ̃, (4.150)

for some c2 > 0 and ǫ̃ small enough.

Lemma 4. (C ǫ̃,δ ∼ Qǫ̃,δ)

For the fixed point (t, S1, S2, v), where t < T and v = (v1, v2), there exist constants δ
3

1 > 0,

δ
3

2 > 0, ǫ̃2 > 0, and c3 > 0 such that

∣
∣C ǫ̃,δ(t, S1, S2, v)−Qǫ̃,δ(t, S1, S2, v)

∣
∣ ≤ c3

(

δ21

(

1 + ǫ̃−
1
2 + δ1ǫ̃

−1
)

(4.151)

+δ22

(

1 + ǫ̃−
1
2 + δ2ǫ̃

−1
)

δ1δ2

(

1 + ǫ̃−
1
2 + δ1ǫ̃

−1 + δ2ǫ̃
−1
))

,
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for all 0 < δ1 < δ
3

1, 0 < δ2 < δ
3

2, and 0 < ǫ̃ < ǫ̃3.

Proof.

In the following we show that the regularised approximation Qǫ̃,δ converges to the actual

regularised price C ǫ̃,δ by finding a boundary for the absolute value of the error in the

approximation, Rǫ̃,δ. We first introduce Ĉ ǫ̃,δ, which we define by

Ĉ ǫ̃,δ = Qǫ̃,δ + δ21C
ǫ̃
2,0 + δ22C

ǫ̃
0,2 + δ21δ2C

ǫ̃
2,1 + δ1δ

2
2C

ǫ̃
1,2 + δ31C

ǫ̃
3,0 + δ32C

ǫ̃
0,3, (4.152)

and, thus, define the error in the approximation for the regularised problem as

Rǫ̃,δ = Ĉ ǫ̃,δ − C ǫ̃,δ. (4.153)

By applying Lδ on Rǫ̃,δ and forming terms of equal power in δ1 and δ2 we see that

LδRǫ̃,δ = Lδ(Ĉ ǫ̃,δ − C ǫ̃,δ)

=
1

δ21
L1

0C
ǫ̃
0,0 +

1

δ1

(
L1

0C
ǫ̃
1,0 + L1

1C
ǫ̃
0,0

)

+
1

δ22
L2

0C
ǫ̃
0,0 +

1

δ2

(
L2

0C
ǫ̃
0,1 + L2

1C
ǫ̃
0,0

)

+
(
L2

0C
ǫ̃
0,2 + L2

1C
ǫ̃
0,1 + L2C

ǫ̃
0,0 + L1

0C
ǫ̃
2,0

)

+δ2
(
L2

0C
ǫ̃
0,3 + L2

1C
ǫ̃
0,2 + L2C

ǫ̃
0,1 + L1

0C
ǫ̃
2,1

)

+
δ1
δ22
L2

0C
ǫ̃
1,0 +

δ1
δ2
(L2

0C
ǫ̃
1,1 + L2

1C
ǫ̃
1,0)

+δ1
(
L2

0C
ǫ̃
1,2 + L2

1C
ǫ̃
1,1 + L2C

ǫ̃
1,0 + L1

0C
ǫ̃
2,0 + L1

1C
ǫ̃
2,0

)

+
δ2
δ21
L1

0C
ǫ̃
0,1 +

δ2
δ1

(
L1

0C
ǫ̃
1,1 + L1

1C
ǫ̃
0,1

)

+δ1δ2
(
L2

1C
ǫ̃
1,2 + L2C

ǫ̃
1,1 + L1

1C
ǫ̃
2,1

)

+δ21
(
L2C

ǫ̃
2,0 + δ2L2C

ǫ̃
2,1 + L1

1C
ǫ̃
3,0 + δ1L2C

ǫ̃
3,0

)

+δ22
(
L2C

ǫ̃
0,2 + δ1L2C

ǫ̃
1,2 + L2

1C
ǫ̃
0,3 + δ2L2C

ǫ̃
0,3

)

= δ1δ2F
ǫ̃
1 (t, S1, S2,v) + δ21F

ǫ̃
2 (t, S1, S2,v)

+δ22F
ǫ̃
3 (t, S1, S2,v) , (4.154)

because LδC ǫ̃,δ = 0 and the first approximations are chosen to cancel the first brackets

(see (4.51)-(4.54) and (4.57)-(4.60)). We define

F ǫ̃
1 (t, S1, S2,v) = L2

1C
ǫ̃
1,2 + L2C

ǫ̃
1,1 + L1

1C
ǫ̃
2,1 + δ1L2C

ǫ̃
2,1 + δ2L2C

ǫ̃
1,2,

F ǫ̃
2 (t, S1, S2,v) = L2C

ǫ̃
2,0 + L1

1C
ǫ̃
3,0 + δ1L2C

ǫ̃
3,0,

F ǫ̃
3 (t, S1, S2,v) = L2C

ǫ̃
0,2 + L2

1C
ǫ̃
0,3 + δ2L2C

ǫ̃
0,3. (4.155)
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The derivation of C3,0 and C0,3 is shown in the Appendix B.2. From Equations (4.77,

4.78, 4.113, 4.114) we moreover deduce

C ǫ̃
0,2 = −1

2
φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

C ǫ̃
0,0

+f0,2
e,ǫ̃ (t, S1, S2) ,

C ǫ̃
2,0 = −1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C ǫ̃
0,0

+f2,0
e,ǫ̃ (t, S1, S2) ,

C ǫ̃
1,2 =

1

2
(T − t)φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A1C
ǫ̃
0,0

+f1,2
e,ǫ̃ (t, S1, S2) ,

C ǫ̃
2,1 =

1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A2C
ǫ̃
0,0

+f2,1
e,ǫ̃ (t, S1, S2) ,

C ǫ̃
0,3 =

1

2
(T − t)φ2

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A2C
ǫ̃
0,0

+ρ2σ2vξ2

(

S1
a12
2

∂

∂S1

+ S2
a22
2

∂

∂S2

)

(

a212S
2
1

∂2

∂S2
1

+ a222S
2
2

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

C ǫ̃
0,0

+f0,3
e,ǫ̃ (t, S1, S2) ,

C ǫ̃
3,0 =

1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A1C
ǫ̃
0,0

+ρ1σ1vξ1

(

S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C ǫ̃
0,0

+f3,0
e,ǫ̃ (t, S1, S2) , (4.156)

where

(L1
0 + L2

0)ξ =
2∑

i=1

(

√
vif(vi)

∂φi

∂vi
−
〈√

vif(vi)
∂φi

∂vi

〉

vi

)

, (4.157)

L1
0ξ1 =

√
v1f(v1)

∂φ1

∂v1
−
〈√

v1f(v1)
∂φ1

∂v1

〉

v1

,

L2
0ξ2 =

√
v2f(v2)

∂φ2

∂v2
−
〈√

v2f(v2)
∂φ2f

∂v2

〉

v2

.
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and f e
i are other eigenfunctions which are not dependent on v.

Furthermore, we see that the value of Rǫ̃,δ at maturity T is given by

Rǫ̃,δ(T, S1, S2,v) = δ1δ2G
ǫ̃
1(T, S1, S2,v) + δ21G

ǫ̃
2(T, S1, S2,v)

+δ22G
ǫ̃
3(T, S1, S2,v), (4.158)

where

Gǫ̃
1(T, S1, S2,v) = δ1C

ǫ̃
2,1(T, S1, S2) + δ2C

ǫ̃
1,2(T, S1, S2),

Gǫ̃
2(T, S1, S2,v) = C ǫ̃

2,0(T, S1, S2) + δ1C
ǫ̃
3,0(T, S1, S2),

Gǫ̃
3(T, S1, S2,v) = C ǫ̃

0,2(T, S1, S2) + δ2C
ǫ̃
0,3(T, S1, S2). (4.159)

Here we have exploited the definition of Ĉ ǫ̃,δ (4.152), the terminal conditions

C ǫ̃,δ (T, S1, S2) = C ǫ̃
0,0 (T, S1, S2) = gǫ̃(S1, S2), C ǫ̃

1,0 (T, S1, S2) = C ǫ̃
0,1 (T, S1, S2) =

C ǫ̃
1,1 (T, S1, S2) = 0. Using (4.156) we find that Gǫ̃

i can be written in the form

Gǫ̃
1 (T, S1, S2) = q̃1 (T, S1, S2) ,

Gǫ̃
2(T, S1, S2,v) =

∑

i,k;i+k=2

q12,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+ δ1
∑

i,k;i+k=3

q22,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+q̃2 (T, S1, S2) ,

Gǫ̃
3(T, S1, S2,v) =

∑

i,k;i+k=2

q13,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+ δ2
∑

i,k;i+k=3

q23,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+q̃3 (T, S1, S2) ,

where q̃i (t, S1, S2) are functions which depend on the eigenfunctions. q̃11,ik (q̃12,ik) is a

function that depends on φ1 (φ2 respectively). Whereas, q̃21,ik (q̃22,ik) is a function that

depends on ξ1 (ξ2 respectively).
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F ǫ̃
i can be written in the form (see Appendix B.2 for detailed calculations):

F ǫ̃
1 (t, S1, S2,v) = (T − t)2

∑

i,k;i+k=8

r̃11,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+(T − t)
∑

i,k;i+k=6

r̃21,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+δ1

(
∑

i,k;i+k=5

r̃31,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+(T − t)
∑

i,k;i+k=7

r̃41,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

)

+δ2

(
∑

i,k;i+k=5

r̃51,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+(T − t)
∑

i,k;i+k=7

r̃61,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

)

+ q̃4 (t, S1, S2) ,

F ǫ̃
2 (t, S1, S2,v) = (T − t)

∑

i,k;i+k=6

r̃12,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+
∑

i,k;i+k=4

r̃22,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+δ1

(

(T − t)
∑

i,k;i+k=7

r̃32,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+
∑

i,k;i+k=5

r̃42,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

)

+ q̃5 (t, S1, S2) ,

F ǫ̃
3 (t, S1, S2,v) = (T − t)

∑

i,k;i+k=6

r̃13,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+
∑

i,k;i+k=4

r̃23,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+δ2

(

(T − t)
∑

i,k;i+k=7

r̃33,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

+
∑

i,k;i+k=5

r̃43,ikS
i
1S

k
2

∂i+kC ǫ̃
0,0

∂Si
1∂S

k
2

)

+ q̃6 (t, S1, S2) ,

where r̃ji defines functions which either depend on φ or ξ.

First, let us analyse those terms r̃ji more closely with respect to their boundedness. Let

ψ = r̃ji or ψ = q̃ji with the functions r̃ji and q̃ji being defined above.

Then

‖ψ(v)‖ ≤ c̃5 max(‖φ(v)‖ , ‖φ′(v)‖ , ‖ξ(v)‖ , ‖ξ′(v)‖), (4.160)

for some constant c̃5 and with φ(v) and ξ(v) defined in (4.76) and (4.157), i.e. φ and ξ are
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the solutions of Poisson equations with h = f(v)2−f(v)2 or h =
√
vf(v)∂φ

∂v
−
〈√

vf(v)∂φ
∂v

〉
.

Due to the results in Appendix B.3 ψ is at most logarithmically growing in v at infinity

(see Appendix B.3). As the moments of the process of v are uniformly bounded in

δ = (δ1, δ2) (see Section 2.4.1) we can conclude that there exists a constant c̃6 > 0, which

may depend on v, such that

E [|ψ(v(s))| |v(t) ] ≤ c̃6 ≤ ∞ for t ≤ s ≤ T. (4.161)

Next, let us deal with the derivatives in Si and analyse their boundedness. It can be

derived that (see Appendix B.1)

∂i+kC ǫ̃
0,0

∂xi1∂x
k
2

=







ex2K2e
−rτ ǫ̃N2(d

ǫ̃
2,d

ǫ̃
1, ρ) for i = 0 ∧ k = 1,

ex2K2e
−rτ ǫ̃N2(d

ǫ̃
2,d

ǫ̃
1, ρ)

+
∑k−2

k=0 e
x2
∫ dǫ̃

1

−∞
b̃1
k√
τ ǫ̃

∂k

∂xk
2
e

(

− 1
2(1−ρ2)

(y21+dǫ̃
2
2−2ρdǫ̃

2y1)
)

dy1 for i = 0 ∧ k ≥ 2,

ex2
∫ dǫ̃

2

−∞
b̃2i√
τ ǫ̃

∂i−1

∂xi−1
1

e

(

− 1
2(1−ρ2)

(dǫ̃
1
2
+y22−2ρdǫ̃

1y2)
)

dy2

−Ke−rτ
∫ dǫ̃

2
∗

−∞
b̃3i√
τ ǫ̃

∂i−1

∂xi−1
1

e

(

− 1
2(1−ρ2)

(y22+dǫ̃
1
∗2−2ρy2dǫ̃∗

1 )
)

dy2 for i ≥ 1, k = 0,

ex2
∫ dǫ̃

2

−∞
b̃4i√
τ ǫ̃

∂i−1

∂xi−1
1

e

(

− 1
2(1−ρ2)

(dǫ̃
1
2
+y22−2ρdǫ̃

1y2)
)

dy2 for i ≥ 1 ∧ k = 1,

ex2
∫ dǫ̃

2

−∞
b̃4i√
τ ǫ̃

∂i−1

∂xi−1
1

e

(

− 1
2(1−ρ2)

(dǫ̃
1
2
+y22−2ρdǫ̃
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dy2
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k=0 e
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k

τ ǫ̃
∂i+k−1

∂xi−1
1 ∂xk
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(

− 1
2(1−ρ2)

(dǫ̃
1
2
+dǫ̃

2
2−2ρdǫ̃

1d
ǫ̃
2)
)

for i ≥ 1 ∧ k ≥ 2,

(4.162)

for some constants b̃i and b̃k and with

dǫ̃
2 =

x2

σ2

√
τ ǫ̃

+ 1
2
σ2

√
τ ǫ̃, dǫ̃∗

2 = dǫ̃
2 − σ2

√
τ ǫ̃,

dǫ̃
1 =

x1

σ1

√
τ ǫ̃
− 1

2
σ1

√
τ ǫ̃ + ρσ2

√
τ ǫ̃, dǫ̃∗

1 = dǫ̃
1 − ρσ2

√
τ ǫ̃,

τ ǫ̃ = T − s+ ǫ̃, x2 = ln
S2e

rτ ǫ̃

K2

.

In the following we have to differentiate between options with short and long remaining

maturity. For long maturities, i.e. T − s ≥ T−t
2
> 0,

∣
∣
∣E

[
∂i+kC ǫ̃

0,0

∂xi
1∂x

k
2

]∣
∣
∣ ≤ c̃7, for some constant

c̃7, which depends on x1 and x2, as the derivatives are uniformly bounded in ǫ̃.
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For 0 < T − s < T−t
2

we consider

∣
∣
∣
∣
∣
E

[
∂i+kC ǫ̃

0,0

∂xi1∂x
k
2

]
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
E

[

E

[

∂i+kC ǫ̃
0,0

∂xi1∂x
k
2

∣
∣
∣
∣
Zj,t′ ; t ≤ t′ ≤ s

]]∣
∣
∣
∣
∣
. (4.163)

The conditional (conditioned on Zj,t′ , j = 1, 2, t ≤ t′ ≤ s) distribution of lnS1 and lnS2

is Gaussian with means, variances and correlations as given in (4.139)-(4.140) with T

replaced by s. The joint conditional density of x1 = ln S1e
∫ s
t r(t′)dt′

K1
and x2 = ln S2e

∫ s
t r(t′)dt′

K2

is denoted by p(x1, x2) and is given by

p(x1, x2) =
1

2πσ̂1σ̂2
√

1− ρ̂2
e
− 1

2(1−ρ̂)
(
(x1−m̂1)

2

σ̂1
+

(x2−m̂2)
2

σ̂2
−2ρ̂

(x1−m̂1)
σ̂1

(x2−m̂2)
σ̂2

)
,

with

m̂i = xi(0) + Λi −
1

2
σ̂2
i ,

σ̂2
i =

∫ s

t

((
1− ρv12

)
a211f(ṽ1(t

′))2 +
(
1− ρv22

)
a212f(ṽ2(t

′))2
)
dt′,

ρ̂ =

∫ s

t
(a11a21(1− ρv12)f(ṽ1(t′))2 + a12a22(1− ρv22)f(ṽ2(t′))2)dt′

σ̂1σ̂2
,

Λi =

∫ s

t

2∑

j=1

aijf(ṽj(t
′))ρvjdZj −

1

2

∫ s

t

2∑

j=1

a2ijf(ṽj(t
′))2ρvj

2dt′.

To simplify the analysis of the conditional expectation we compute the following expres-

sions

∫ ∞

−∞
ew2p(w1, w2)dw2 =

∫ ∞

−∞
ew2

e
− 1

2(1−ρ̂)
(
(x1−m̂1)

2

σ̂1
+

(x2−m̂2)
2

σ̂2
−2ρ̂

(x1−m̂1)
σ̂1

(x2−m̂2)
σ̂2

)

2πσ̂1σ̂2
√

1− ρ̂2
dx2

=
1

2πσ̂1σ̂2

∫ ∞

−∞
ez2σ̂2+m̂2e−

1
2
(z21+z22)dz22

=

∫ ∞

−∞
e−

1
2
(z2−σ̂2)2em̂2+

1
2
σ̂2
2 e−

z21
2

︸︷︷︸

≤1

dz2

≤ em̂2+
1
2
σ̂2
2 c̃8, (4.164)

1√
2π

∫ ∞

−∞
|x|i e− 1

2
x2

dx =
2√
2π

∫ ∞

0

(x)i e−
1
2
x2

dx

=

√

2

π

∫ ∞

−∞
2

i
2χ

i
2 e−χ(2χ)−

1
2dχ

=
2

i
2√
π
Γ(
i+ 1

2
). (4.165)
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See for example [11].
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where we apply (4.164) in the fourth last line and (4.165) in the third and the last line,

yi =
xi

σi
, ỹ2 =

y2−ρdǫ̃
1

(1−ρ2)
, wi =

xi√
τ ǫ̃
, dǫ̃,w1

1 = w1

σ1
− 1

2
σ1

√
τ ǫ̃ + ρσ2

√
τ ǫ̃, and dǫ̃,w2

2 = w2
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+ 1

2
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√
τ ǫ̃.

Analogously, we obtain
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and by integrating the prior expression multiplied by (T − s+ ǫ̃) we obtain
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where z2 = w2 and z1 =
1√
1−ρ2

(w1 − ρw2).

Due to (4.161) we can deduce from these results that
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and by integrating the prior expression we obtain
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(4.170)
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Using the Green Theorem we can represent Rǫ̃,δ as

Rǫ̃,δ (t, S1, S2,v) = E

[

e−r(T−t)δ1δ2G
ǫ̃
1(S1(T ), S2(T ),v)

−
∫ T

t

e−r(s−t)δ1δ2F
ǫ̃
1(s, S1(s), S2(s),v)ds

]

+ E

[

e−r(T−t)δ21G
ǫ̃
2(S1(T ), S2(T ),v)

−
∫ T

t

e−r(s−t)δ21F
ǫ̃
2(s, S1(s), S2(s),v)ds

]

+ E

[

e−r(T−t)δ22G
ǫ̃
3(S1(T ), S2(T ),v)

−
∫ T

t

e−r(s−t)δ22F
ǫ̃
3(s, S1(s), S2(s),v)ds

]

.

Assuming that the eigenfunctions are bounded it follows that
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Concluding,

∣
∣Rǫ̃,δ

∣
∣ ≤ ĉ7
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and therefore for (t, S1, S2, v) fixed with t < T using (4.171) and the bounds from 4.170
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we have

∣
∣C ǫ̃,δ −Qǫ̃,δ

∣
∣ =
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Theorem 42. (Accuracy of the perturbation)

At a fixed point (t, S1, S2,v), t < T and under the assumption that the eigenvalues are

positive and bounded the accuracy of the approximation of the two-asset option is given

by

lim
δ1→0,δ2→0

∣
∣Cδ(t, S1, S2, v)−Qδ (t, S1, S2)

∣
∣

(

δ
4
3
−p

1

) = 0, (4.173)

for δ1 > δ2, p > 0.

Remark 16. The price CB,0,0 is smooth in S1 > B1(t) and S2 > B2(t) and its derivatives

have finite limits as S1 → B+
1 and/or S2 → B+

2 . Hence, the convergence for knock-out

barrier options can be proved in just the same way.

For single-barrier options see [70].

Proof.
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. Using Lemmas

2, 3, and 4 we deduce
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for 0 < δ1 < δ1, 0 < δ2 < δ2, and 0 < ǫ̃ < ǫ̃, where the functions are evaluated at the

fixed point (t, S1, S2, v). Taking ǫ̃ = max
(

δ
4
3
1 , δ

4
3
2

)

. Assume that δ1 > δ2 then
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for some fixed c4 > 0 and Theorem 42 follows.

Numerical accuracy of the approximation

In the following we compute the exact value of the two-asset option without barriers (4.36)

with the alternative Fourier technique described in Section 3.4.5 and compare it to our

approximation. We calculate some scenarios to get a deeper insight into the quality of the

approximation. The basic scenario is given by f(vj) =
√
vj, σv1 = σv2 = 0.1, ζvj = 0.1,

κv1 = κv2 = 0.2, T = 1, and K1 = K2 = 10.5. We set the eigenvalues to a11 = 0.9,

a12 = a21 =
√

(1− 0.92), and a22 = −0.9. In our first calculation we set the value of

S1 = 10.5 and vary the value of S2. It takes values between 8 and 12. In Table 4.2 we

indicate the results of the approximation for δ1 = δ2 =
1
20

and δ1 = δ2 =
1
2
. In the Plots 4.4

and 4.5 we show the relative differences between the exact result and the approximation

for δ1 = δ2 =
1
20

and δ1 = δ2 =
1
2
respectively. The relative error is a decaying function in

the value of S2. The relative error seems to be the highest for out-of-the-money options.
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Figure 4.4: Relative difference between exact result and approximation for two-asset
option without barriers for δj =

1
20
.
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Figure 4.5: Relative difference between exact result and approximation for two-asset
option without barriers for δj =

1
2
.

Table 4.2: Prices of the two-asset option computed with Fourier technique and approxi-
mation.

Exact result Approximation

δ1 = δ2
S2

1
20

1
2

1
20

1
2

8 0.3582 0.3515 0.3594 0.3592
8,21 0.3971 0.3900 0.3983 0.3982
8,42 0.4381 0.4306 0.4394 0.4393
8,63 0.4812 0.4734 0.4826 0.4825
8,84 0.5264 0.5184 0.5279 0.5278
9,05 0.5736 0.5654 0.5752 0.5751
9,26 0.6229 0.6144 0.6245 0.6244
9,47 0.6741 0.6655 0.6758 0.6757
9,68 0.7273 0.7185 0.7289 0.7290
9,89 0.7822 0.7733 0.7840 0.7840
10,11 0.8390 0.8300 0.8408 0.8409
10,32 0.8975 0.8885 0.8993 0.8994
10,53 0.9577 0.9487 0.9595 0.9597
10,74 1.0196 1.0105 1.0214 1.0216
10,95 1.0830 1.0739 1.0848 1.0851
11,16 1.1479 1.1389 1.1497 1.1500
11,37 1.2143 1.2054 1.2161 1.2164
11,58 1.2820 1.2732 1.2838 1.2843
11,75 1.3512 1.3425 1.3530 1.3534
12 1.4216 1.4130 1.4234 1.4239

S1(0) =10.5, K1 = K2 =10.5, r =0.05,
ρ1 = ρ2 =0.05, T =1.0, ζvj =0.1, κvj =0.2,

σvj =0.1, vj(0) =0.2, a12 = a21 =
√
1− 0.92,

a11=0.9, a22=-0.9
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4.5.2 Extension of Model (4.1)

We suggest here an extension to Model (4.1) and introduce – beside the fast mean-

reverting component – a further, slow mean-reverting component to the stochastic dy-

namic of the eigenvalue. In this context we shortly want to give an insight how per-

turbation could be applied in the extended model as well. Further future research will

have to be undertaken as far as for example convergence and the number of necessary

perturbation terms are concerned. The following model is suggested:

dSi = rSidt+ Si

p̄
∑

j=1

aijf(vj(t), yj(t))dWj, i ∈ {1, 2} , p̄ = 2 (4.176)

dvj =
κvj
δ2j

(ζvj − vj)dt+
σvj
δj

√
vjdZvj , (4.177)

dyj = ǫ2jκyj(ζyj − yj)dt+ ǫjσyj
√
yjdZyj , (4.178)

〈
dWj, dZvj

〉
= ρvjdt,

〈
dWj, dZyj

〉
= ρyjdt,

〈
dZvj , dZyj

〉
= ρvyj dt, for j ∈ {1, 2} ,

all other correlations are set to 0. To allow for slow mean reversion we assume ǫj very

small.

In the following we shortly indicate how an approximation applying perturbation theory

could by analogously to before performed in this model.13

As before we price in this framework options which depend on two underlyings with and

without barriers on both of the underlyings (see (4.36) and (4.37)). The payoff in T is

indicated by g(S1, S2) in the following. We asymptotically approximate the prices with

singular (in δj) and regular (in ǫj) perturbation theory. The infinitesimal generator Lδ,ǫ

is again expressed as a power series, this time in ǫj and δj

Lδ1,δ2,ǫ̃1,ǫ̃2 =
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2 + ε21M1
0 + ε22M2

0

+ε1M1
1 + ε2M2

1 +
ε1
δ1
M1

3 +
ε2
δ2
M2

3, (4.179)

13This chapter has been prepared during a master thesis project in cooperation with Daniela Neykova.
See also [90]
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where

L1
0 = κv1(ζv1 − v1)

∂

∂v1
+

1

2
σ2
v1
v1
∂2

∂v21
, (4.180)

L2
0 = κv2(ζv2 − v2)

∂

∂v2
+

1

2
σ2
v2
v2
∂2

∂v22
, (4.181)

L1
1 = ρv1a11f1(v1, y1)σv1

√
v1S1

∂2

∂S1∂v1
+ ρv1a21f1(v1, y1)σv1

√
v1S2

∂2

∂S2∂v1
, (4.182)

L2
1 = ρv2a12f2(v2, y2)σv2

√
v2S1

∂2

∂S1∂v2
+ ρv2a22f2(v2, y2)σv2

√
v2S2

∂2

∂S2∂v2
, (4.183)

L2 =
∂

∂t
+ r

(

S1
∂

∂S1

+ S2
∂

∂S2

− ·
)

+
(
a11a21f

2
1 + a12a22f

2
2

)
S1S2

∂2

∂S1∂S2

+
1

2

(
a211f

2
1 + a212f

2
2

)
S2
1

∂2

∂S2
1

+
1

2

(
a221f

2
1 + a222f

2
2

)
S2
2

∂2

∂S2
2

, (4.184)

M1
0 = κy1(ζy1 − y1)

∂

∂y1
+

1

2
σ2
y1
y1
∂2

∂y21
, (4.185)

M2
0 = κy2(ζy2 − y2)

∂

∂y2
+

1

2
σ2
y2
y2
∂2

∂y22
, (4.186)

M1
1 = ρy1a11f1σy1

√
y1S1

∂2

∂S1∂y1
+ ρy1a21f1σy1

√
y1S2

∂2

∂S2∂y1
, (4.187)

M2
1 = ρy2a12f2σy2

√
y2S1

∂2

∂S1∂y2
+ ρy2a22f2σy2

√
y2S2

∂2

∂S2∂y2
, (4.188)

M1
3 = ρvy1 σv1σy1

√
v1y1

∂2

∂v1∂y1
, (4.189)

M2
3 = ρvy2 σv2σy2

√
v2y2

∂2

∂v2∂y2
, (4.190)

where fj = (vj, yj). The problem to be solved for the two-asset option Cδ,ǫ, hence, becomes

Lδ,ǫCδ,ǫ = 0, (4.191)

Cδ,ǫ(T, S1, S2) = g(S1, S2),

and for the barrier option, respectively,

LδCδ,ǫ
B = 0,

Cδ,ǫ
B (t, B1(t), S2) = 0,

Cδ,ǫ
B (t, S1, B2(t)) = 0,

Cδ,ǫ
B (T, S1, S2) = g(S1, S2). (4.192)
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The similarity to our problem before can be seen. Thus, an approximation of a two-asset

option without barriers (4.36) (and with barriers (4.37) respectively) can be approximated

by

Cδ,ǫ(t, S1, S1,v,y) ≈ Qδ,ǫ (4.193)

= C0,0,0,0 + ǫ1C1,0,0,0 + ǫ2C0,1,0,0

+δ1C0,0,1,0 + δ2C0,0,0,1 + . . . ,

Cδ,ǫ
B (t, S1, S2, B1(t), B2(t),v,y) ≈ Qδ,ǫ

B (4.194)

= CB,0,0,0,0 + ǫ1CB,1,0,0,0 + ǫ2CB,0,1,0,0

+δ1CB,0,0,1,0 + δ2CB,0,0,0,1 + . . . , (4.195)

where C0,0,0,0 and CB,0,0,0,0 are given in (B.66) and (B.68), C1,0,0,0 and CB,1,0,0,0 in (B.74)

and (B.80), C0,1,0,0 and CB,0,1,0,0 in (B.75) and (B.82). C0,0,1,0 and CB,0,0,1,0 are denoted

in (B.70) and (B.72) and C0,0,0,1 and CB,0,0,0,1 in (B.69) and (B.71). We show in the

Appendix B.5 that the results of the terms indicated can be found analogously to Section

4.5.

4.6 Conclusion

In this second chapter of the main part we have presented a multivariate model with

stochastic correlation which offers enough flexibility to reflect the stylised facts about

correlation explained in the introduction (see 1.1). By analysing high-frequency data

we can empirically show that there exists a fast mean-reverting factor (with a time-

scale in the order of days) which drives the eigenvalues. Moreover, our model allows

to avoid the dimensionality pitfall. In many cases the first three to five eigenvalues are

sufficient to explain the dynamics of a certain basket. In some cases an affine characteristic

function is available and, thus, eases the calibration of the model. With the perturbation

technique we furthermore present an approximation for path-dependant options which is

easy and quick to calculate and implement. Moreover, the convergence is proved and the

performance is shown numerically. Thus, we contribute a feasible and also empirically

valid model to literature.
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Appendix A

Appendix for Chapter 3

A.1 Appendix for Section 3.4

A.1.1 Transformations used for PDE

For constant barriers B1 and B2 (only GBM framework):







1
2
σ2
1S

2
1
∂2C
∂S2

1
+ 1

2
σ2
2S

2
2
∂2C
∂S2

2
+ ρσ1σ2S1S2

∂2C
∂S1∂S2

+

+rS1
∂C
∂S1

+ rS2
∂C
∂S2

+ ∂C
∂t
− rC = 0,

C(t, B1, S2) = 0, C(t, S1, B2) = 0,

C(T, S1, S2, B1, B2) = g (S1, S2)1{ιt>T,ι2>T}.

(A.1)

Transform Si to xi := ln( Si

Ki
) and Bi to bi := ln(Bi

Ki
). The new derivatives in terms of C ′

are given by

∂C

∂Si

=
1

Si

∂C ′

∂xi
,

∂2C

∂S2
i

=
1

S2
i

∂2C ′

∂x2i
− 1

S2
i

∂C ′

∂xi
,

∂2C

∂SiSj

=
1

SiSj

∂2C ′

∂xi∂xj
.
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Thus, the PDE in terms of C ′(t, x1, x2, b1, b2) has the form







1
2
σ2
1
∂2C′

∂x2
1
+ 1

2
σ2
2
∂2C′

∂x2
2
+ (r − 1

2
σ2
1)

∂C′

∂x1
+ (r − 1

2
σ2
2)

∂C′

∂x2
+ ρσ1σ2

∂2C′

∂x1∂x2
+

+∂C′

∂t
− rC ′ = 0,

C ′ (t, b1, x2) = 0, C ′ (t, x1, b2) = 0,

C ′ (T, x1, x2, b1, b2) = g (x1, x2)1{ι1>T,ι2>T}.

(A.2)

Then transform to G := e
∫ T
t

r(s)ds−β1x1−β2x2+α(T−t)C ′. The derivatives are given by

∂C ′

∂t
= e−

∫ T
t

r(s)ds+β1x1+β2x2+αt

(

(r + α)G+
∂G

∂t

)

,

∂C ′

∂xi
= e−

∫ T
t

r(s)ds+β1x1+β2x2+αt

(

βiG+
∂G

∂xi

)

,

∂2C ′

∂x2i
= e−

∫ T
t

r(s)ds+β1x1+β2x2+αt

(

2βi
∂G

∂xi
+ β2

iG+
∂2G

∂x2i

)

,

∂2C

∂xi∂xj
= e−

∫ T
t

r(s)ds+β1x1+β2x2+αt

(

βiβjG+ βj
∂G

∂xi
+ βi

∂G

∂xj

)

.

β1 and β2 are determined in such a way that we get rid of the first derivatives in x1 and

x2. Thus,

β1 =
σ1

(
1
2
− r

σ2
1

)

− ρσ2(12 − r
σ2
2
)

σ1 (1− ρ2)
,

β2 =
σ2(

1
2
− r

σ2
2
)− ρσ1

(
1
2
− r

σ2
1

)

σ2 (1− ρ2)
,

α = −1

2
σ2
1β

2
1 −

1

2
σ2
2β

2
2 − (r − 1

2
σ2
1)β

2
1 − (r − 1

2
σ2
2)β

2
2 − ρσ1σ2β1β2.

Inserting βi and α and grouping the derivatives of order one and the terms in G this

becomes clear

∂G

∂x1

(

−1

2
σ2
1 + σ2

1β1 + ρσ1σ2β2 + r

)

=
∂G

∂x1



−1

2
σ2
1 + σ2

1

σ1

(
1
2
− r

σ2
1

)

− ρσ2(12 − r
σ2
2
)

σ1 (1− ρ2)
+ ρσ1σ2

σ2(
1
2
− r

σ2
2
)− ρσ1

(
1
2
− r

σ2
1

)

σ2 (1− ρ2)
+ r





=
∂G

∂x1




−1

2
σ2
1 (1− ρ2)

(1− ρ2) +
σ2
1

(
1
2
− r

σ2
1

)

− ρ2σ2
1

(
1
2
− r

σ2
1

)

(1− ρ2) +
r (1− ρ2)
(1− ρ2)





= 0.
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The same is true for ∂G
∂t
.

G

(

−r + r + α + (r − 1

2
σ2
1)β1 + (r − 1

2
σ2
2)β2 + ρσ1σ2β1β2 +

1

2
σ2
1β

2
1 +

1

2
σ2
2β2

2

)

= 0.

(A.3)

The PDE for G(t, x1, x2, b1, b2) is given by







1
2
σ2
1
∂2G
∂x2

1
+ 1

2
σ2
2
∂2G
∂x2

2
+ ρσ1σ2

∂2G
∂x1∂x2

++∂G
∂t

= 0,

G (t, b1, x2) = 0, G (t, x1, b2) = 0,

G (T, x1, x2, b1, b2) = g (x1, x2)1{ι1>T,ι2>T}e
−β1x1−β2x2 .

(A.4)

The respective Kolmogorov backward equation for the transition density p(t, x′1, x
′
2, x1, x2)

is now given by (see Remark 7)

− ∂p

∂t
=

1

2
σ2
1

∂2p

∂x21
+

1

2
σ2
2

∂2p

∂x22
+ ρσ1σ2

∂2p

∂x1∂x2
(A.5)

p (t, x′1, x
′
2, b1, x2) = 0,

p (t, x′1, x
′
2, x1, b2) = 0,

p (T, x′1, x
′
2, x1, x2) = δ(x′1 − x1)δ(x′2 − x2). (A.6)

This equation can be transformed in the standard form by the transformation τ := T − t:

∂p

∂τ
=

1

2
σ2
1

∂2p

∂x21
+

1

2
σ2
2

∂2p

∂x22
+ ρσ1σ2

∂2p

∂x1∂x2
(A.7)

p (τ, x′1, x
′
2, x

′
1, x

′
2, b1, x2) = 0,

p (τ, x′1, x
′
2, x1, b2) = 0,

p (0, x′1, x
′
2, x1, x2) = δ(x′1 − x1)δ(x′2 − x2). (A.8)

By Fourier transforming this PDE we find that the equation the characteristic function

ϕ has to fulfil. We set ϕ(τ, u1, u2, x
′
1, x

′
2) :=

∫∞
−∞
∫∞
−∞ ei(u1x1+u2x2)p(τ, x′1, x

′
2, x1, x2)dx1dx2

or respectively p(τ, x′1, x
′
2, x1, x2) := 1

(2π)2

∫∞
−∞
∫∞
−∞ e−i(u1x1+u2x2)ϕ(τ, u1, u2, x

′
1, x

′
2)du1du2.
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Thus,

∂p

∂τ
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(u1x1+u2x2)

∂ϕ(τ, u1, u2, x
′
1, x

′
2)

∂τ
du1du2,

∂p

∂x1
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
−e−i(u1x1+u2x2)iu1ϕ(τ, u1, u2, x

′
1, x

′
2)du1du2,

∂2p

∂x21
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
−e−i(u1x1+u2x2)u21ϕ(τ, u1, u2, x

′
1, x

′
2)du1du2,

∂2p

∂x1∂x2
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
−e−i(u1x1+u2x2)u1u2ϕ(τ, u1, u2, x

′
1, x

′
2)du1du2,

ϕ(0, u1, u2, x
′
1, x

′
2) =

∫ ∞

−∞

∫ ∞

−∞
ei(u1x1+u2x2)δ(x′1 − x1)δ(x′2 − x2)dx1dx2

= ei(u1x
′
1+u2xz

′
2)

and

∂ϕ

∂τ
= −1

2
σ2
1u

2
1ϕ−

1

2
σ2
2u

2
2ϕ− ρσ1σ2u1u2ϕ (A.9)

ϕ (τ, u1, u2, b1, x
′
2) = 0,

ϕ (τ, u1, u2, x
′
1, b2) = 0,

ϕ (0, u1, u2, x
′
1, x

′
2) = ei(u1x

′
1+u2xz

′
2). (A.10)

For time-dependent barriers, which are applied particularly in the case of stochastic or

local volatilities:







1
2
v2νσ2

1S
2
1
∂2C
∂S2

1
+ 1

2
v2νσ2

2S
2
2
∂2C
∂S2

2
+ ρv2νσ1σ2S1S2

∂2C
∂S1∂S2

+

1
2
ǫ2v2γ ∂2C

∂v2
+ rS1

∂C
∂S1

+ rS2
∂C
∂S2

+ κ(ζ − v)∂C
∂v

+ ∂C
∂t
− rC = 0,

C (t, B1(t), S2) = 0, C (t, S1, B2(t)) = 0,

C (T, S1, S2, B1(t), B2(t)) = g (S1, S2)1{ι1>T,ι2>T}.

(A.11)

To reduce the above PDE transform Si to xi := ln(Sie
∫T
t r(s)ds

Ki
) and Bi(t) to bi :=

ln
(

Bi(T )
Ki

)

for i ∈ {1, 2}. The new derivatives for C(t, S1, S2, K1, K2, B1(t), B2(t)) in
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terms of C ′(t, x1, x2, B1(t), B2(t)) are given by

∂C

∂t
=

∂C ′

∂t
− r

2∑

i=1

∂C ′

∂xi
,

∂C

∂Si

=
1

Si

∂C ′

∂xi
,

∂2C

∂S2
i

=
1

S2
i

∂2C ′

∂x2i
− 1

S2
i

∂C ′

∂xi
,

∂2C

∂SiSj

=
1

SiSj

∂2C ′

∂xi∂xj
.

Thus, the PDE in terms of C ′(t, x1, x2, b1, b2) has the form







1
2
v2νσ2

1
∂2C′

∂x2
1
+ 1

2
v2νσ2

2
∂2C′

∂x2
2
− 1

2
v2νσ2

1
∂C′

∂x1
− 1

2
v2νσ2

2
∂C′

∂x2
+ ρv2νσ1σ2

∂C′

∂x1∂x2
+

1
2
ǫ2v2γ ∂2C′

∂v2
+ κ(ζ − v)∂C′

∂v
+ ∂C′

∂t
− rC ′ = 0,

C ′ (t, b1, x2) = 0, C ′ (t, x1, b2) = 0,

C ′ (T, x1, x2, b1, b2) = g (x1, x2)1{ι1>T,ι2>T}.

(A.12)

Then transform to G := e
∫ T
t

r(s)ds−c1x1−c2x2C ′. The derivatives are given by

∂C ′

∂t
= e−

∫ T
t

r(s)ds+c1x1+c2x2

(

rG+
∂G

∂t

)

,

∂C ′

∂xi
= e−

∫ T
t

r(s)ds+c1x1+c2x2

(

ciG+
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∂xi

)

,
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∂x2i
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r(s)ds+c1x1+c2x2

(

2ci
∂G

∂xi
+ c2iG+

∂2G

∂x2i

)

,
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∂xi∂xj
= e−
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t

r(s)ds+c1x1+c2x2

(

cicjG+ cj
∂G

∂xi
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∂G

∂xj

)

.

c1 and c2 are determined in such a way that we get rid of the first derivatives in x1 and

x2:

c1 =
σ1 − σ2ρ

2σ1 (1− ρ2)
,

c2 =
σ2 − σ1ρ

2σ2 (1− ρ2)
.
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Thus,

∂G

∂x1

(
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2
v2νσ2

1 + v2νσ2
1c1 + ρv2νσ1σ2c2

)

=
∂G

∂x1
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−1

2
v2νσ2

1 + v2νσ2
1

σ1 − σ2ρ
2σ1 (1− ρ2)

+ ρv2νσ1σ2
σ2 − σ1ρ

2σ2 (1− ρ2)

)

=
∂G

∂x1

(

v2ν
−σ2

1 (1− ρ2)
2 (1− ρ2) + v2νσ1

σ1 − σ2ρ
2 (1− ρ2) + ρv2νσ1

σ2 − σ1ρ
2 (1− ρ2)

)

= 0.

The computation for ∂G
∂x2

is analogue. In the following we determine the killing rate of the

PDE, i.e. the term G:

G

(

c1c2ρσ1σ2v
2ν +

1

2
c21σ

2
1v

2ν +
1

2
c22σ

2
2v

2ν − 1

2
σ2
1c1v

2ν − 1

2
σ2
2c2v

2ν

)

= v2νG

(
σ1σ2ρ− ρ2σ2

1 − ρ2σ2
2 + ρ3σ1σ2

4 (1− ρ2)2
+
−σ2

1 − σ2
2 + 2ρσ1σ2

4 (1− ρ2)

)

+
(1 + ρ2)σ2

1 − 4ρσ1σ2 + σ2
2(1 + ρ2)

8 (1− ρ2)2

= −v2νG
(
σ2
1 + σ2

2 − 2ρσ1σ2
8 (1− ρ2)

)

. (A.13)

The PDE in terms of G(t, x1, x2, b1, b2) has the form







1
2
v2νσ2

1
∂2G
∂x2

1
+ 1

2
v2νσ2

2
∂2G
∂x2

2
− v2νG(σ2

1+σ2
2−2ρσ1σ2

8(1−ρ2)
) + ρv2νσ1σ2

∂G
∂x1∂x2

+

1
2
ǫ2v2γ ∂2G

∂v2
+ κ(ζ − v)∂G

∂v
+ ∂G

∂t
= 0,

G (t, b1, x2) = 0, G (t, x1, b2) = 0,

G (T, x1, x2, b1, b2) = e−c1x1−c2x2g (x1, x2)1{ι1>T,ι2>T}.

(A.14)

In a constant volatility framework (v2ν = 1) it is now possible to remove the component

with the killing rate, i.e −v2ν(σ2
1+σ2

2−2ρσ1σ2

8(1−ρ2)
), as well by the transformation U := eα(T−t)G

as
∂G

∂t
= e−α(T−t)

(

αU +
∂U

∂t

)

. (A.15)

Thus,

α = −
(

c1c2ρσ1σ2 +
1

2
c21σ

2
1 +

1

2
c22σ

2
2 −

1

2
σ2
1c1 −

1

2
σ2
2c2

)

=
σ2
1 + σ2

2 − 2ρσ2σ2
8 (1− ρ2) . (A.16)



A Appendix for Chapter 3 205

By introducing

z1 :=
1

√

1− ρ2

(
x1
σ1
− ρx2

σ2

)

,

z2 :=
x2
σ2
, (A.17)

the mixing derivative in x1 and x2 is removed. The derivatives are given by

∂

∂x1
=

1
√

1− ρ2σ1
∂

∂z1
,

∂

∂x2
=

1

σ2

∂

∂z2
− ρ
√

1− ρ2σ2
∂

∂z1
,

∂2

∂x21
=

1

(1− ρ2) σ2
1

∂2

∂z21
,

∂2

∂x22
=

1

σ2
2

∂2

∂z22
+

ρ2

(1− ρ2) σ2
2

∂2

∂z21
− 2

ρ
√

1− ρ2σ2
2

∂2

∂z1∂z2
,

∂2

∂x1∂x2
= − ρ

(1− ρ2) σ1σ1
∂2

∂z21
+

1

σ1σ2
√

1− ρ2
∂2

∂z1∂z2
.

We insert these derivatives and group terms of the same derivative:

∂2G

∂z21

(
1

2
v2νσ2

1 +
1

2
v2νσ2

2

ρ2

σ2
2 (1− ρ2)

− v2νσ1σ2ρ
ρ

σ1σ2 (1− ρ2)

)

=
1

2
v2ν

∂2G

∂z21
,

∂2G

∂z1∂z2

(

−21
2
v2νσ2

2

ρ

σ2
2

√

1− ρ2
+ v2νσ1σ2ρ

1

σ1σ2
√

1− ρ2

)

= 0.

Furthermore, we transform t→ τ , where τ := T − t.






−1
2
v2ν ∂2G

∂z21
− 1

2
v2ν ∂2G

∂z22
+ v2νG(

σ2
1+σ2

2−2ρσ1σ2

8(1−ρ2)
)−

1
2
ǫ2v2γ ∂2G

∂v2
− κ(ζ − v)∂G

∂v
+ ∂G

∂τ
= 0,

G (τ, z1, 0) = 0, G

(

τ, z1,−
√

1−ρ2

ρ
z1

)

= 0,

G (0, z1, z2) = e−c1x1−c2x2g (z1, z2)1{ι1>T,ι2>T}.

(A.18)

The respective Kolmogorov backward equation for the transition density
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p(τ, z′1, z
′
2, z1, z2, v) is given by

∂p

∂τ
=

1

2
v2ν

∂2p

∂z21
+

1

2
v2ν

∂2p

∂z22
− v2νp(σ

2
1 + σ2

2 − 2ρσ1σ2
8 (1− ρ2) )

+
1

2
ǫ2v2γ

∂2p

∂v2
+ κ(ζ − v)∂p

∂v
, (A.19)

p (τ, z′1, z
′
2, z1, 0) = 0,

p

(

τ, z′1, z
′
2, z1,−

√

1− ρ2
ρ

z1

)

= 0,

p (0, z′1, z
′
2, z1, z2) = δ(z′1 − z1)δ(z′2 − z2). (A.20)

By Fourier transforming this PDE we find the equation the characteristic function ϕ has

to fulfil. We set ϕ(τ, u1, u2, z
′
1, z

′
2) :=

∫∞
−∞
∫∞
−∞ ei(u1z1+u2z2)p(τ, z′1, z

′
2, z1, z2)dz1dz2 or re-

spectively p(τ, z′1, z
′
2, z1, z2) :=

1
(2π)2

∫∞
−∞
∫∞
−∞ e−i(u1x1+u2x2)ϕ(τ, u1, u2, z

′
1, z

′
2)du1du2. Thus,

∂p

∂τ
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(u1z1+u2z2)

∂ϕ(τ, u1, u2, z
′
1, z

′
2)

∂τ
du1du2,

∂p

∂z1
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
−e−i(u1z1+u2z2)iu1ϕ(τ, u1, u2, z

′
1, z

′
2)du1du2,

∂2p

∂z21
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
−e−i(u1z1+u2z2)u21ϕ(τ, u1, u2, z

′
1, z

′
2)du1du2,

∂p

∂v
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(u1z1+u2z2)

∂ϕ(τ, u1, u2, z
′
1, z

′
2)

∂v
du1du2,

ϕ(0, u1, u2, z
′
1, z

′
2)) =

∫ ∞

−∞

∫ ∞

−∞
ei(u1z1+u2z2)δ(z′1 − z1)δ(z′2 − z2)dz1dz2

= ei(u1z
′
1+u2z

′
2) (A.21)

and we get

∂ϕ

∂τ
= −1

2
v2νu21ϕ−

1

2
v2νu22ϕ− v2νϕ(

σ2
1 + σ2

2 − 2ρσ1σ2
8 (1− ρ2) )

+
1

2
ǫ2v2γ

∂2ϕ

∂v2
+ κ(ζ − v)∂ϕ

∂v
, (A.22)

ϕ (τ, u1, u2, z
′
1, 0) = 0,

ϕ

(

τ, u1, u2, z
′
1,−

√

1− ρ2
ρ

z′1

)

= 0,

ϕ (0, u1, u2, z
′
1, z

′
2) = ei(u1z

′
1+u2z

′
2). (A.23)
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A.1.2 Characteristic functions

Proof. (Derivation of Heston-type characteristic function)

Assume the following affine form

ϕH(τ,u) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(AH(τ,u) + BH(τ,u)v)

}

, (A.24)

and plug it in the PDE (3.37) with ν = γ = 1
2
:

1

σ2
v

(
∂AH(τ,u)

∂τ
+ v

∂BH(τ,u)

∂τ

)

= −1

2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ1
4(1− ρ2)

)

+
1

2σ2
v

vBH(τ,u)
2 +

1

σ2
v

κ(ζ − v)BH(τ,u),

AH(0,u) = 0, (A.25)

BH(0,u) = 0. (A.26)

We find then the following ODEs for AH and BH .

∂AH(τ,u)

∂τ
− κζBH(τ,u) = 0,

AH(0,u) = 0, (A.27)

∂BH(τ,u)

∂τ
− 1

2
BH(τ,u)

2 + κBH(τ,u)

+
1

2
σ2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ1
4(1− ρ2)

)

= 0,

BH(0,u) = 0. (A.28)

For the proof of the solution see Lipton (see [83], p. 380). (A.28) is a Riccati ODE which

we solve with the usual transformation BH = −2
∂EH
∂τ

EH
. In terms of EH(τ,u), AH(τ,u)

can be written as AH = −2κζ lnEH . The ODE and appropriate initial conditions for

EH(τ,u) have the form

− 2
∂2EH

∂τ2

EH

+ 2

(
∂EH

∂τ

EH

)2

− 2

(
∂EH

∂τ

EH

)2

−2κ
∂EH

∂τ

EH

+
1

2
σ2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

= 0,

⇔ ∂2EH

∂τ 2
+ κ

∂EH

∂τ
− 1

4
σ2
v

(

u1
2 + u22 +

σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

EH = 0,

EH(0,u) = 1,
∂EH

∂τ
(0,u) = 0. (A.29)
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The general solution of (A.29) can be indicated by

EH(τ,u) = eH+e
KH+τ + eH−e

KH−τ , (A.30)

where eH± are arbitrary constants and KH± solve the following quadratic equation

K2
H± + κKH± −

1

4
σ2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

= 0. (A.31)

Hence,

KH± =

−κ±
√

κ2 + σ2
v

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

2
. (A.32)

We introduce d = d(u) =

√

κ2 + σ2
v

(

u21 + u22 +
σ2
1+σ2

2−2ρσ1σ2

4(1−ρ2)

)

. EH(τ,u) has, thus, the

following form

EH(τ,u) = eH+e
1
2
(−κ+d)τ + eH−e

1
2
(−κ−d)τ . (A.33)

From the first initial condition follows eH+ = 1 − eH−. From the second equation we

obtain for eH− = −κ+d
2d

and for eH+ = κ+d
2d

. Thus,

EH(τ,u) =
(κ+ d)e

1
2
(−κ+d)τ + (−κ+ d)e

1
2
(−κ−d)τ

2d

= e
1
2
(−κ+d)τ κ+ d+ (−κ+ d)e−dτ

2d
. (A.34)

AH and BH have then the following solutions:

BH(τ,u) =
(κ− d)(1− exp (−dτ))

1− κ−d
κ+d

exp (−dτ)

= κ− d
sinh( d

2
τ) + κ

d
cosh( d

2
τ)

cosh( d
2
τ) + κ

d
sinh( d

2
τ)
, (A.35)

AH(τ,u) = ζκ

(

(κ− d) τ − 2 ln

(

1− κ−d
κ+d

exp (−dτ)
1− κ−d

κ+d

))

= κζ

(

κτ − 2 ln

(
κ

d
sinh

(
d

2
τ

)

+ cosh

(
d

2
τ

)))

. (A.36)
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Proof. (Derivation of Stein and Stein-type characteristic function)

For the Stein model we guess the following affine form.

ϕS2(τ,u) = exp

{

iu1z1 + iu2z2 +
1

σ2
v

(
AS2(τ,u) + BS2(τ,u)v + CS2(τ,u)v

2
)
}

, (A.37)

where AS2(0,u) = BS2(0,u) = CS2(0,u) = 0. We plug it in the PDE (3.37) with ν = 1

and γ = 0:

1

σ2
v

(
∂AS2(τ,u)

∂τ
+ v

∂BS2(τ,u)

∂τ
+ v2

∂CS2(τ,u)

∂τ

)

= −1

2
v2
(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ1
4(1− ρ2)

)

+
1

2σ2
v

( 1

σ4
v

BS2(τ,u)
2 +

4

σ4
v

vBS2(τ,u)CS2(τ,u)

+
2

σ2
v

CS2(τ,u) +
4

σ4
v

v2CS2(τ,u)
2
)

+
1

σ2
v

κ(ζ − v) (B2S(τ,u) + 2vC2S(τ,u)) ,

AS2(0,u) = 0, (A.38)

BS2(0,u) = 0, (A.39)

CS2(0,u) = 0. (A.40)

Inserting (A.37) in (3.32) we find the following ODEs

∂AS2(τ,u)

∂τ
− κζBS2(τ,u)− σ2

vCS2(τ,u)−
1

2
BS2(τ,u)

2 = 0,

AS2(0,u) = 0, (A.41)

∂BS2(τ,u)

∂τ
+ κBS2(τ,u)− 2BS2(τ,u)CS2(τ,u)− 2κζCS2(τ,u) = 0,

BS2(0,u) = 0, (A.42)

∂CS2(τ,u)

∂τ
+ 2κCS2(τ,u)− 2CS2(τ,u)

2

+
σ2
v

2

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

= 0,

CS2(0,u) = 0. (A.43)

(A.43) is again a Riccati equation. We set CS2 = −1
2

∂DS2
∂τ

DS2
. The ODE and appropriate
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initial conditions for DS2(τ,u) have the form:

− 1

2

∂2DS2

∂τ2

DS2

+
1

2

(
∂DS2

∂τ

DS2

)2

− 1

2

(
∂DS2

∂τ

DS2

)2

− κ
∂DS2

∂τ

DS2

+
σ2
v

2

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

= 0,

∂2DS2

∂τ 2
+ 2κ

∂DS2

∂τ
− σ2

v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

DS2 = 0,

DS2(0,u) = 1,
∂DS2

∂τ
(0,u) = 0. (A.44)

The general solution of (A.44) can be indicated by

DS2(τ,u) = dS2+e
LS2+τ + dS2−e

LS2−τ , (A.45)

where dS2± are arbitrary constants and LS2± solves the following quadratic equation

L2
S2± + 2κLS2± − σ2

v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

= 0. (A.46)

Hence,

LS2± = −κ±
√

κ2 + σ2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

,

d = d(u) =

√

κ2 + σ2
v

(

u21 + u22 +
σ2
1 + σ2

2 − 2ρσ1σ2
4(1− ρ2)

)

.

DS2(τ,u) has, thus, the following form

DS2(τ,u) = dS2+e
(−κ+d)τ + dS2−e

(−κ−d)τ . (A.47)

From the first initial condition follows dS2+ = 1 − dS2−. From the second equation we

obtain for dS2− = −κ+d
2d

and for dS2+ = κ+d
2d

.

DS2(τ,u) =
(κ+ d)e(−κ+d)τ + (−κ+ d)e(−κ−d)τ

2d

=
e−κτ

2d

(
κ(edτ − e−dτ ) + d

(
edτ + e−dτ

))

= e−κτ
(κ

d
sinh (dτ) + cosh (dτ)

)

.



A Appendix for Chapter 3 211

Similar to (A.35) we conclude

CS2(τ,u) =
1

2

(

κ− d
sinh (dτ) + κ

d
cosh (dτ)

cosh (dτ) + κ
d
sinh (dτ)

)

. (A.48)

(A.42) is a first-order ODE of the form dy

dτ
+ p(τ)y = q(τ), which can be solved by

y =
∫

exp(
∫ τ ′

p(τ ′′)dτ ′′)q(τ ′)dτ ′+c

exp(
∫ τ

p(τ ′)dτ ′)
. In this case p(τ) = κ − 2CS2(τ,u) and q(τ) = 2κζCS2(τ,u)

(see Arfken [7], p. 465ff). Due to the initial condition BS2 has the form

BS2(τ,u) =

(
∫ τ

0

2κζCS2(τ
′,u) exp

{
∫ τ ′

0

(κ− 2CS2(τ
′′,u)dτ ′′)

}

dτ ′

)

exp

{

−
∫ τ

0

κ− 2CS2(τ
′,u)dτ ′

}

=

(∫ τ

0

2κζCS2(τ
′,u) exp {κτ ′ + ln (DS2(τ

′,u))} dτ ′
)

exp {−κτ − ln (DS2(τ,u))}

=

(

−
∫ τ

0

κζ
∂DS2(τ

′,u)

∂τ ′
exp(κτ ′)dτ ′

)
1

DS2(τ,u)
exp {−κτ}

= −κζ
∫ τ

0

(

− κ
(κ

d
sinh(dτ ′) + cosh(dτ ′)

)

+d
(κ

d
cosh(dτ ′) + sinh(dτ ′)

))

dτ ′
1

DS2(τ,u)
exp {−κτ}

= −κζ exp {−κτ}
DS2(τ,u)

∫ τ

0

(d− κ2

d
) sinh(dτ ′)dτ ′

=
κζ exp {−κτ}
DS2(τ,u)

(

(1− κ2

d2
) cosh(0)− (1− κ2

d2
) cosh(dτ)

)

=
κζ exp {−κτ}
DS2(τ,u)

((
κ2

d2
− 1

)

cosh (dτ)−
(
κ2

d2
− 1

))

=
1

d

(
(

κζd− κ3ζ

d

)

+ κ2ζ
(
κ
d
cosh (dτ) + sinh (dτ)

)

cosh (dτ) + κ
d
sinh (dτ)

−κζd
(
κ
d
sinh (dτ) + cosh (dτ)

)

cosh (dτ) + κ
d
sinh (dτ)

)

=
1

d





(

κζd− κ3ζ

d

)

+ κ2ζ
(
sinh (dτ) + κ

d
cosh (dτ)

)

cosh (dτ) + κ
d
sinh (dτ)

− κζd



 .
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For AS2 we show that

AS2(τ,u) = −σ
2
v

2
ln
(

cosh (dτ) +
κ

d
sinh (dτ)

)

+
σ2
v

2
κτ

+
κ2ζ2d2 − κ4ζ2

2d3

(
sinh (dτ)

cosh (dτ) + κ
d
sinh (dτ)

− dτ

)

+
κ2ζ(κζd− κ3ζ

d
)

d3

(
cosh (dτ)− 1

cosh (dτ) + κ
d
sinh (dτ)

)

fulfils (A.41). For that reason we compute κζBS2 +
1
2
B2

S2:

κζBS2 +
1

2
B2

S2 =
1
2
κ2ζ2 + κ6ζ2

2d4
− κ4ζ2

d2
(
cosh (dτ) + κ

d
sinh (dτ)

)2

+
κ2ζ

d2
(κζd− κ3ζ

d
)
(
sinh (dτ) + κ

d
cosh (dτ)

)

(
cosh (dτ) + κ

d
sinh (dτ)

)2

+
1
2
κ4ζ2

d2

(
sinh (dτ) + κ

d
cosh (dτ)

)2

(
cosh (dτ) + κ

d
sinh (dτ)

)2 − 1

2
κ2ζ2. (A.49)

This is compared to

∂AS2(τ,u)

∂τ
=

σ2
v

2

(

κ− d
sinh (dτ) + κ

d
cosh(dτ)

cosh (dτ) + κ
d
sinh (dτ)

)

+

(
cosh2(dτ)d− sinh2(dτ)d

(cosh (dτ) + κ
d
sinh (dτ))2

− d

)(
κ2ζ2

2d
− κ4ζ2

2d3

)

+

(
κ sinh2(dτ)− κ cosh2(dτ) + d sinh (dτ) + κ cosh (dτ)

(cosh (dτ) + κ
d
sinh (dτ))2

)

·κ2ζ
(
κζ

d2
− κ3ζ

d4

)

= σ2
vCS2(τ,u) +

1
2
κ2ζ2 − κ4ζ2

2d2
− κ4ζ2

d2
+ κ6ζ2

d4
(
cosh (dτ) + κ

d
sinh (dτ)

)2

−1

2
κ2ζ2 +

κ4ζ2

2d2
+ κ2ζ(

κζ

d2
− κ3ζ2

d4
)d

sinh (dτ) + κ
d
cosh (dτ)

(
cosh (dτ) + κ

d
sinh (dτ)

)2
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= σ2
vCS2(τ,u) +

1
2
κ2ζ2 − κ4ζ2

d2
+ κ6ζ2

2d4
(
cosh (dτ) + κ

d
sinh (dτ)

)2 −
κ2ζ2

2

+

κ2ζ

d2

(

κζd− κ3ζ

d

) (
sinh (dτ) + κ

d
cosh (dτ)

)

(
cosh (dτ) + κ

d
sinh (dτ)

)2

+
κ4ζ2

2d2

(
cosh (dτ) + κ

d
sinh (dτ)

)2

(
cosh (dτ) + κ

d
sinh (dτ)

)2

+
κ4ζ2

2d2

(
sinh2(dτ)− cosh2(dτ)

)

(
cosh (dτ) + κ

d
sinh (dτ)

)2 +
κ6ζ2

2d4

(
− sinh2(dτ) + cosh2(dτ)

)

(
cosh (dτ) + κ

d
sinh (dτ)

)2

= σ2
vCS2(τ,u) + κζBS2(τ,u) +

1

2
BS2(τ,u)

2. (A.50)

A.1.3 Method of images in a half-space

For the Corollaries 5 and 7 we apply the method of images in a half-space to the charac-

teristic function ϕ. Thus, according to (3.32) q(τ, z1, z2, v) satisfies the following PDE

∂q

∂τ
=

1

2
v2ν

∂2q

∂z21
+

1

2
v2ν

∂2q

∂z22
− v2ν σ

2
1 + σ2

2 − 2ρσ1σ2
8(1− ρ2) q

+
1

2
σ2
vv

2γ ∂
2q

∂v2
+ κ(ζ − v)∂q

∂v
, (A.51)

with the following initial and boundary conditions

q(0, z1, z2, v) = δ(z′1 − z1)δ(z′2 − z2), (A.52)

q(τ, z1, 0, v) = 0. (A.53)

As before the idea is to find a solution ḠF for (A.51) and (A.52) in the whole plane first

and restrict it to the actual space (A.53) by the following approach Ḡ = ḠF + ḠG.

ḠF has been found in (3.35). ḠG must satisfy (A.51) and, as Ḡ is required to vanish at

z2 = 0, then ḠF = −ḠG in z2 = 0. Due to the form of ḠF we test for ḠG(τ, u1, u2, z
′
1 −

z1, z
′
2− z2) = −ḠF (τ, u1, u2, z

′
1− z1, z′2+ z2). It can be easily seen that ḠG satisfies (A.51)

as there are only pure second order derivatives in zi. On the boundary ḠG is given by

ḠG(τ, z′1, z
′
2, v; z1, z2) =

1

4π2

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
exp {iu1(z′1 − z1) + iu2z2

+V (τ,u) } du1du2 (A.54)
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As V (τ,u) is symmetric in u2 (see (3.36)) ḠG is invariant to a reflection −u2 → u2 and,

thus, also to a reflection −z2 → z2. Hence ḠG = −ḠF at the boundary z2 = 0. In

the bounded area, i.e. for z2 > 0 the initial condition is satisfied as GF fulfils it. The

transition density function is therefore given by

q(τ, z′1, z
′
2, v; z1, z2) =

1

4π2

∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞

(

Ḡ(τ, u1, u2, z
′
1 − z1, z′2 − z2)

−Ḡ(τ, u1, u2, z′1 − z1, z′2 + z2)

)

du1du2,

u = w + i̟ ∈ Sϕ. (A.55)
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A.2 Appendix for Section 3.6

A.2.1 Derivation of general pricing formula for defaultable op-

tions in GBM and stochastic volatility framework

Proof. In the following we want to price defaultable options with a payoff g(S2) in T in

an extended CreditGrades model. In this section we place the general expressions. In

Section A.2.2 the specific propositions are derived.

Due to the shifted form of the model we apply slightly different transformations than in

Appendix A.1.1.

Hence,

CD(t, S1, S2) = E

[

e−
∫ T
t

r(s)dsg(S2)1{ι1>T} |Ft

]

, (A.56)

where

ι1 = inf (t′ ∈ (t, T ] : S1(t
′) ≤ 0) , (A.57)

where the expectation is with respect to Q̃. In the GBM framework CD fulfils the following

partial differential equation and boundary conditions







1
2
σ2
1(S1 +D1(t))

2 ∂2CD

∂S2
1

+ 1
2
σ2
2S

2
2
∂2CD

∂S2
2

+ ρσ1σ2(S1 +D1(t))S2
∂2CD

∂S1∂S2
+

+(r − d1)S1
∂CD

∂S1
+ (r − d2)S2

∂CD

∂S2
+ ∂CD

∂t
− rCD = 0,

CD(t, 0, S2) = 0,

CD(T, S1, S2) = g(S2)1{ι1>T}.

In the stochastic volatility framework the PDE and boundary condition are given by







1
2
v2νσ2

1(S1 +D1(t))
2 ∂2CD

∂S2
1

+ 1
2
v2νσ2

2S
2
2
∂2CD

∂S2
2

+ρv2νσ1σ2(S1 +D1(t))S2
∂2CD

∂S1∂S2
+ 1

2
σ2
vv

2γ ∂2C
∂v2

+ κ(ζ − v)∂C
∂v

+(r − d1)S1
∂CD

∂S1
+ (r − d2)S2

∂CD

∂S2
+ ∂CD

∂t
− rCD = 0,

CD(t, 0, S2) = 0,

CD(T, S1, S2) = g(S2)1{ι1>T}.
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Those PDEs can be reduced to







∂GD

∂t
+ 1

2
σ2
1
∂2GD

∂x∗
1
2 + 1

2
σ2
2
∂2GD

∂x2
2
− 1

2
σ2
1
∂GD

∂x∗
1
− 1

2
σ2
2
∂GD

∂x2
+

ρσ1σ2
∂2GD

∂x∗
1∂x2

= 0,

GD(t, 0, x2) = 0,

GD(T, x∗1, x2) = g(x2)1{ι1>T},

(A.58)

or respectively,







∂GD

∂t
+ 1

2
σ2
1v

2ν ∂2GD

∂x∗
1
2 + 1

2
σ2
2v

2ν ∂2GD

∂x2
2
− 1

2
σ2
1v

2ν ∂GD

∂x∗
1
− 1

2
σ2
2v

2ν ∂GD

∂x2
+

ρσ1σ2v
2ν ∂2GD

∂x∗
1∂x2

+ 1
2
σ2
vv

2γ ∂2GD

∂v2
+ κ(ζ − v)∂GD

∂v
= 0,

GD(t, 0, x2) = 0,

GD(T, x∗1, x2) = g(x2)1{ι1>T},

(A.59)

where we use the transformations x2(t) := ln S2(t)e
∫T
t (r(s)−d2(s))ds

K2
, x∗1(t) := ln

(
S1(t)+D1(t)

D1(t)

)

.

We further apply the transformation GD(t, x∗1, x2) := e
∫ T
t

r(s)dsCD(t, S1, S2). The transfor-

mations for x∗1 are given below:

∂CD

∂S1

=
∂CD

∂x∗1

1

S1 +D1(t)
,

∂2CD

∂S2
1

=
1

(S1 +D1(t))
2

(
∂2CD

∂x∗1
2 −

∂CD

∂x∗1

)

,

∂2CD

∂S1∂S2

=
1

S2

1

S1 +D1(t)

∂2CD

∂x∗1∂x2
,

∂CD

∂t
=

∂CD

∂t
+
∂CD

∂x∗1

D1(t)

S1 +D1(t)

D1(t)
2(r − d1)− (S1 +D1(t))D1(t)(r1 − d1)

D1(t)2

−∂C
D

∂x2
(r − d2)

=
∂CD

∂t
− ∂CD

∂x∗1
(r − d1)

S1

S1 +D1(t)
− ∂CD

∂x2
(r − d2).

Now we can pursue the transformations suggested in (A.12)-(A.16) for the GBM model.

Then choose y1 :=
x∗
1

σ1
, and y2 :=

x2

σ2
. For the stochastic volatility framework we proceed as

in Section 3.4.1 with only the difference that we set z1 :=
x∗
1

σ1
and z2 :=

1√
1−ρ2

(x2

σ2
− ρx∗

1

σ1
).

Finally, we end with the following Kolmogorov backward equation for the probability
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density p(τ, y′1, y
′
2, y1, y2) in the GBM model.

∂p

∂τ
=

1

2

∂2p

∂y21
+

1

2

∂2p

∂y22
+ ρ

∂2p

∂y1∂y2
, (A.60)

with the following initial and boundary conditions

p(0, y1, y2) = δ(y′1 − y1)δ(y′2 − y2), (A.61)

p(τ, 0, y2) = 0.

For the GBM framework the solution for the free space is (see [83], p. 511)

pF (τ, y′1, y
′
2, y1, y2) =

1

2π
√

1− ρ2τ
e
−(

(y′1−y1)
2+(y′2−y2)

2−2ρ(y′1−y1)(y
′
2−y2))

2(1−ρ2)τ (A.62)

=: p̄F (τ, y′1 − y1, y′2 − y2).

We apply the method of images (see [121], p. 476ff) to restrict the fundamental solution

pF to the area the problem is defined for. This method is appropriate when the region to

which the solution should be bounded is highly symmetric: A solution for the free space is

first derived (pF (τ, y′1, y
′
2, y1, y2)) and then restricted to the defined region via symmetry,

i.e. the principle of reflection. The point (−y1,−2ρy1 + y2) is symmetric with respect to

the boundary y′1 = 0 to (y1, y2). We test this by substituting (−y1,−2ρy1 + y2) in the

nominator of the exponential in (A.62):

y21 + (y′2 − y2 + 2ρy1)
2 − 2ρy1(y

′
2 − y2 + 2ρy1)

= y21 + (y′2 − y2)2 + 4ρ2y21 + 4ρy1(y
′
2 − y2)− 2ρy1(y

′
2 − y2)− 4ρ2y21

= y21 + (y′2 − y2)2 + 2ρy1(y
′
2 − y2) (A.63)

Thus,

pG(τ, y′1, y
′
2, y1, y2) =

1

2π
√

1− ρ2τ
e
−(

(y′1+y1)
2+(y′2+2ρy1−y2)

2−2ρ(y′1+y1)(y
′
2+2ρy1−y2))

2(1−ρ2)τ (A.64)

=: p̄F (τ, y′1 + y1, y
′
2 + 2ρy1 − y2).

satisfies the requirement to compensate pF on the boundary, i.e. pF − pG = 0 if y1 = 0.
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pG must also satisfy the PDE (A.60):

∂pG

∂τ
= −p

G

τ
+ pG

((y′1 + y1)
2 + (y′2 + 2ρy1 − y2)2 − 2ρ(y′1 + y1)(y

′
2 + 2ρy1 − y2))

2(1− ρ2)τ 2 ,

∂pG

∂y1
= −pG (y

′
1 + y1) + (y′2 − y2 + 2ρy1)2ρ− ρ((y′2 − y2 + 2ρy1) + (y′1 + y1)2ρ)

(1− ρ2)τ

= −pG (y
′
1 + y1) + ρ(y′2 − y2)− 2ρ2y′1

τ(1− ρ2) ,

∂pG

∂y2
= −pG−(y

′
2 − y2 + 2ρy1) + ρ(y′1 + y1)

(1− ρ2)τ ,

∂2pG

∂y21
= pG

((y′1 + y1) + ρ(y′2 − y2)− 2ρ2y′1)
2 − (1− ρ2)τ

(1− ρ2)2τ 2 ,

∂2pG

∂y22
= pG

(−(y′2 − y2 + 2ρy1) + ρ(y′1 + y1))
2 − (1− ρ2)τ

(1− ρ2)2τ 2 ,

∂2pG

∂y1∂y2
= pG

(−(y′2 − y2 + 2ρy1) + ρ(y′1 + y1))((y
′
1 + y1) + ρ(y′2 − y2)− 2ρ2y′1)

(1− ρ2)2τ 2

+
ρ(1− ρ2)τ
(1− ρ2)2τ 2p

G.

Thus,

∂pG

∂τ
=

1

2

∂2pG

∂y21
+

1

2

∂2pG

∂y22
+ ρ

∂2pG

∂y1∂y2
,

−2τ(1− ρ2) + (y′1 + y1)
2 + (y′2 − y2 + 2ρy1)

2 − 2ρ(y′1 + y1)(y
′
2 − y2 + 2ρy1)

=
((y′1 + y1)− 2ρ2(y′1 + y1) + ρ(y′2 − y2 + 2ρy1))

2 − (1− ρ2)τ
1− ρ2

+
(ρ(y′1 + y1)− (y′2 − y2 + 2ρy1))

2 − (1− ρ2)τ + 2ρ2(1− ρ2)τ
1− ρ2

+
2ρ (−(y′2 − y2 + 2ρy1) + ρ(y′1 + y1)) ((y

′
1 + y1) + ρ(y′2 − y2 + 2ρy1)− 2ρ2(y′1 + y1))

1− ρ2

=
−(1− ρ2)2τ(1− ρ2) + (y′2 − y2 + 2ρy1)

2(1 + ρ2 − 2ρ2)

1− ρ2

+
(y′1 + y1)

2(ρ2 + 1 + 4ρ4 − 4ρ2 + 2ρ2 − 4ρ4)

1− ρ2

−2ρ(y′1 + y1)(y
′
2 − y2 + 2ρy1)(1 + (−1 + 2ρ2) + 1− 2ρ2 − ρ2)

1− ρ2
= −(1− ρ2)2τ + (y′1 + y1)

2 + (y′2 − y2 + 2ρy1)
2 − 2ρ(y′1 + y1)(y

′
2 − y2 + 2ρy1).

Hence, with α as in (A.16) and with y1, y2 as defined above the solution for general payoff
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functions g(y2) is found by

CD(τ, y1, y2) = ex
∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds

(∫ ∞

−∞

∫ ∞

−∞
p̄F (τ, y′1 − y1, y′2 − y2)

e−c1x
∗
1
′−c2x

′
2g(y′2)dy

′
1dy

′
2

−
∫ ∞

−∞

∫ ∞

0

p̄F (τ, y1 + y′1, y
′
2 + 2ρy1 − y2)

e−c1x
∗
1
′−c2x

′
2g(y′2)dy

′
1dy

′
2

)

. (A.65)

For further reference we compute the following double integral

L =
1

2π
√

1− ρ2τ

∫ ∞

b1

∫ ∞

b2

eγ1y1+γ2y2e
− y21+y22−2ρy1y2

2(1−ρ2)τ dy2dy1

=
1

2π
√

1− ρ2τ

∫ ∞

b1

∫ ∞

b2

eγ1y1+γ2y2e
− ỹ21+ỹ22−2ρỹ1ỹ2

2(1−ρ2)τ

e
−−τ2(γ1+ργ2)

2−τ2(γ2+ργ1)
2+2y1τ(γ1+ργ2)+2y2τ(γ2+ργ1)

2(1−ρ2)τ

e
−−2ρy1τ(γ2+ργ1)−2ρy2τ(γ1+ργ2)+2ρτ2(γ1+ργ2)(γ2+ργ1)

2(1−ρ2)τ dy2dy1

=
1

2π
√

1− ρ2τ

∫ ∞

b1

∫ ∞

b2

e
−−τ(γ21(1+ρ2)+γ22(1+ρ2)+4ργ1γ2)+2γ1y1(1−ρ2)+2γ2y2(1−ρ2)

2(1−ρ2)

e
− τ(2ρ2γ21+2ρ2γ22+2ργ1γ2+2ρ3γ1γ2)

2(1−ρ2) e
− ỹ21+ỹ22−2ρỹ1ỹ2

2(1−ρ2)τ eγ1y1+γ2y2dy2dy1

=
1

2π
√

1− ρ2τ

∫ ∞

b1−τ(γ1+ργ2)

∫ ∞

b2−τ(γ2+ργ1)

eτ
γ21+γ22+2ργ1γ2

2 e
− ỹ21+ỹ22−2ρỹ1ỹ2

2(1−ρ2)τ dỹ2dỹ1

=
eτ

γ21+γ22+2ργ1γ2
2

2π
√

1− ρ2
∫ ∞

b1√
τ
−√

τ(γ1+ργ2)

∫ ∞

b2√
τ
−√

τ(γ2+ργ1)

e
− ŷ21+ŷ22−2ρŷ1ŷ2

2(1−ρ2) dŷ2dŷ1

= eτ
γ21+γ22+2ργ1γ2

2 N2(
√
τ(γ1 + ργ2)−

b1√
τ
,
√
τ(γ2 + ργ1)−

b2√
τ
; ρ), (A.66)

where ỹ1 = y1 − τ(γ1 + ργ2), ỹ2 = y2 − τ(γ2 + ργ1), and ŷi =
ỹi√
τ
.

Furthermore, note that

1

2π
√

1− ρ2τ
e
−(

(y′1−y1)
2+(y′2−y2)

2−2ρ(y′1−y1)(y
′
2−y2))

2(1−ρ2)τ

=
1

2π
√

1− ρ2τ
e
− y′1

2
+y′2

2
−2ρy′1y

′
2+y21+y22−2ρy1y2−2y′1(y1−ρy2)−2y′2(y2−ρy1)

2(1−ρ2)τ (A.67)
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and

1

2π
√

1− ρ2τ
e
−(

(y′1+y1)
2+(y′2−y2+2ρy1)

2−2ρ(y′1+y1)(y
′
2−y2+2ρy1))

2(1−ρ2)τ

=
1

2π
√

1− ρ2τ
e
− y′1

2
+y′2

2
−2ρy′1y

′
2+y21+y22−2ρy1y2+2y′1(y1−2ρ2y1+ρy2)−2y′2(y2−ρy1)

2(1−ρ2)τ (A.68)

For the stochastic covariance framework we proceed from (A.59) exactly as in 3.4.1. With

Corollary 5 we can, thus, derive

CD(t, S1, S2, v) =
ex

∗
1c1+x2c2−

∫ T
t

r(s)ds

4π2σ1σ2
√

1− ρ2
∫ i̟2+∞

i̟2−∞

∫ i̟1+∞

i̟1−∞
ĝCD(u1)

(

ϕ(τ,u, z1, z2)− ϕ(τ,u, z1,−z2)
)

du1du2,

u ∈ SCD = Sϕ ∩ Sg
CD
.

A.2.2 Proof of propositions 4-8

Proof. (Proof of proposition 4)

Thus, with A.65 and g(S2(T )) = S2(T ) = ex
′
2 in the GBM framework the value of the

index in t is given by

CD
S (τ, y1, y2) = ex

∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds

(∫ ∞

−∞

∫ ∞

0

pF (τ, y′1 − y1, y′2 − y2)

e−c1x
∗
1
′+(1−c2)x′

2dy′1dy
′
2

−
∫ ∞

−∞

∫ ∞

0

pF (τ, y′1 + y1, y
′
2 + 2ρy1 − y2)

e−c1x
∗
1
′+(1−c2)x′

2dy′1dy
′
2

)

,
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where x2 = ln(S2e
∫ T
t
(r(s)−d2(s))ds). With (A.66)-(A.68) follows

CD
S (τ, y1, y2) = ex

∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds exp

{

−y
2
1 + y22 − 2y1y2ρ

2(1− ρ2)τ

}
1

2π
√

1− ρ2τ
(
∫ ∞

−∞

∫ ∞

0

exp

{

−y
′
1
2 + y′2

2 − 2y′1y
′
2ρ

2(1− ρ2)τ

}

(

exp

{(

−c1σ1 +
y1 − ρy2
(1− ρ2)τ

)

y′1 +

(

(1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

}

− exp

{(

−c1σ1 −
y1 − 2ρ2y1 + ρy2

(1− ρ2)τ

)

y′1

}

exp

{(

(1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

})

dy′1dy
′
2

)

= ex
∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds exp

{

−y
2
1 + y22 − 2y1y2ρ

2(1− ρ2)τ

}

(
e

τ
2
(γ+

1
2
+η+2

2
+2ργ+

1 η+2 )

2π
√

1− ρ2
∫ ∞

−∞

∫ ∞

−√
τ(γ+

1 +ρη+2 )

exp

{

−y
′
1
2 + y′2

2 − 2y′1y
′
2ρ

2(1− ρ2)τ

}

dŷ1dŷ2

−e τ
2
(γ−

1
2
+η−2

2
+2ργ−

1 η−2 )

∫ ∞

−∞

∫ ∞

−√
τ(γ−

1 +ρη−2 )

exp

{

−y
′
1
2 + y′2

2 − 2y′1y
′
2ρ

2(1− ρ2)τ

}

dŷ1dŷ2

)

= ex
∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds exp

{

−y
2
1 + y22 − 2y1y2ρ

2(1− ρ2)τ

}

(

e
τ
2
(γ+

1

2
+η+2

2
+2ργ+

1 η+2 )N
(√

τ(γ+1 + ρη+2 )
)

−e τ
2
(γ−

1
2
+η−2

2
+2ργ−

1 η−2 )N
(√

τ(γ−1 + ρη−2 )
)
)

, (A.69)

with

γ+1 = −c1σ1 +
y1 − ρy2
(1− ρ2)τ ,

η+2 = (1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ ,

γ−1 = −c1σ1 +
−y1(1− 2ρ2)− ρy2

(1− ρ2)τ ,

η−2 = η+2 .
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To simplify we calculate

d1 :=
√
τ(γ+1 + ρη+2 ) =

√
τ

(

−c1σ1 + ρ(1− c2)σ2 +
x∗1
σ1τ

)

=
√
τ

(

− σ1 − ρσ2
2(1− ρ2) + ρ

σ2(1− 2ρ2) + ρσ1
2(1− ρ2) +

x∗1
σ1τ

)

=
x∗1

σ1
√
τ
− σ1

√
τ

2
+ ρσ2

√
τ ,

d̃1 :=
√
τ(γ−1 + ρη−2 ) =

√
τ

(

− σ1 − ρσ2
2(1− ρ2) + ρ

σ2(1− 2ρ2) + ρσ1
2(1− ρ2) − x∗1

σ1τ

)

= − x∗1
σ1
√
τ
− σ1

√
τ

2
+ ρσ2

√
τ ,

τ

2
(γ+1

2
+ η+2

2
+ 2ργ+1 η

+
2 ) =

τ

2

(

c21σ
2
1 + (1− c2)2σ2

2 − 2ρσ1σ2c1(1− c2)

+

(
y1 − ρy2
(1− ρ2)τ

)2

− 2c1σ1
y1 − ρy2
(1− ρ2)τ +

(
y2 − ρy1
(1− ρ2)τ

)2

+2(1− c2)σ2
y2 − ρy1
(1− ρ2)τ + 2ρ(1− c2)σ2

y1 − ρy2
(1− ρ2)τ

−2ρc1σ1
y2 − ρy1
(1− ρ2)τ + 2ρ

(y2 − ρy1)(y1 − ρy2)
(1− ρ2)2τ 2

)

=
τ

2

(

σ2
1

(
σ1 − ρσ2
σ1(1− ρ2)2

)2

+

(
σ2 − ρσ1
σ2(1− ρ2)2

)2

σ2
2

+2ρσ1σ2
σ1 − ρσ2
σ1(1− ρ2)2

σ2 − ρσ1
σ2(1− ρ2)2

+ σ2
2 − 2c2σ

2
2 − 2ρc1σ1σ2

−2c1σ1
y1
τ

+ 2(1− c2)σ2
y2
τ

+
y21(1 + ρ2 − 2ρ2) + y22(ρ

2 + 1− 2ρ2)− 2ρy1y2(1− ρ2)
(1− ρ2)2τ 2

)

=
τ

2

(
σ2
1(1− ρ2) + σ2

2(1− ρ2)− 2ρσ1σ2(1− ρ2)
4(1− ρ2)2

+σ2
2 − σ2

σ2 − ρσ1
1− ρ2 − σ2

ρσ1 − ρ2σ2
1− ρ2

)

+

(

−c1x∗1 + (1− c2)x2 +
y21 + y22 − 2ρy1y2

2(1− ρ2)τ

)

= ατ − c1x∗1 + (1− c2)x2 +
y21 + y22 − 2ρy1y2

2(1− ρ2)τ , (A.70)
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τ

2
(γ−1

2
+ η−2

2
+ 2ργ−1 η

−
2 ) = ατ +

τ

2

((−y1(1− 2ρ2)− ρy2
(1− ρ2)τ

)2

−2c1σ1
−y1(1− 2ρ2)− ρy2

(1− ρ2)τ

+

(
y2 − ρy1
(1− ρ2)τ

)2

+ 2(1− c2)σ2
y2 − ρy1
(1− ρ2)τ

+2ρ(1− c2)σ2
−y1(1− 2ρ2)− ρy2

(1− ρ2)τ − 2ρc1σ1
y2 − ρy1
(1− ρ2)τ

+2ρ
(y2 − ρy1)(−y1(1− 2ρ2)− ρy2)

(1− ρ2)2τ 2
)

= ατ +
τ

2

(

− 2c1σ1
−y1(1− 2ρ2 + ρ2)

(1− ρ2)τ

+2(1− c2)σ2
y2(1− ρ2)− y1ρ(1 + 1− 2ρ2)

(1− ρ2)τ

+
y21(1 + 4ρ4 − 4ρ2 + ρ2 + 2ρ2(1− 2ρ2)) + y22(ρ

2 + 1− 2ρ2)

(1− ρ2)2τ 2

−2ρy1y2(−(1− 2ρ2) + 1 + (1− 2ρ2)− ρ2)
(1− ρ2)2τ 2

)

= ατ + c1x
∗
1 + (1− c2)

(

x2 − 2ρσ2
x∗1
σ1

)

+
y21 + y22 − 2ρy1y2

2(1− ρ2)τ , (A.71)

where α =
σ2
1+σ2

2−2ρσ1σ2

8(1−ρ2)
. Hence,

CD
S (t, S1, S2) = ex

∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds

(

exp {ατ − c1x∗1 + (1− c2)x2}N2 (d1, y2, ρ)

− exp

{

ατ + c1x
∗
1 − 2(1− c2)

σ2ρx
∗
1

σ1
+ (1− c2)x2

}

N2

(

d̃1, y2, ρ
))

= S2e
−
∫ T
t

d2(s)ds
(

N2 (d1, y2, ρ)

− exp
{
2x∗1(c1 − ρ

σ2
σ1

(1− c2))
}
N2

(

d̃1, y2, ρ
))

,

where

d1 =
x∗1

σ1
√
τ
− σ1

√
τ

2
+ ρσ2

√
τ ,

d̃1 = − x∗1
σ1
√
τ
− σ1

√
τ

2
+ ρσ2

√
τ .
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For the stochastic covariance framework we have to derive ĥDS (u1, u2) using the transfor-

mations in Section A.2.1 analogue to (3.43).

ĥDS (u1, u2) =

∫ ∞

0

∫ ∞

−∞
e−c1x

∗
1
′+(1−c2)x′

2eiu1z
′
1+iu2z

′
2dx′2dx

∗
1
′

=

∫ ∞

0

∫ ∞

−∞
e−c1x

∗
1
′+(1−c2)x′

2e

(

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)

+iu2
x′2

σ2

√
1−ρ2

)

dx′2dx
∗
1
′

=

∫ ∞

0

∫ ∞

0

e−c1x
∗
1
′
e(1−c2)x′

2e

(

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)

+iu2
x′2

σ2

√
1−ρ2

)

dx′2dx
∗
1
′

+

∫ ∞

0

∫ 0

−∞
e−c1x

∗
1
′
e(1−c2)x′

2e

(

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)

+iu2
x′2

σ2

√
1−ρ2

)

dx′2dx
∗
1
′

=

∫ ∞

0

e−c1x
∗
1
′
e

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)
(

− 1
iu2

σ2

√
1−ρ2

+ 1− c2





̟2>(1−c2)σ2

√
1−ρ2

+




1

iu2

σ2

√
1−ρ2

+ 1− c2





̟2<(1−c2)σ2

√
1−ρ2

)

dx∗1
′.

Note that we can set ℑ(u2) = ̟2 = 0 for the second (first) fraction if c2 < 1 (c2 > 1).

Then we can move the path of integration of the first (second) bracket to the real axis

with Corollary 3. We compute with (2.56) the residue of the integrand f of ĥDS at ǔ2 =

i(1− c2)σ2
√

1− ρ2.

Resǔ2f = lim
u2→ǔ1

(

u2 − iσ2
√

1− ρ2(1− c2)
)



− σ2
√

1− ρ2

i
(

u2 − iσ2
√

1− ρ2(1− c2)
)





= iσ2
√

1− ρ2 (A.72)

When we set now the path with Corollary 3 to ̟2 = 0 the fractions cancel and we are

left with a Dirac delta function. Thus,

ĥDS (u1, u2) =

∫ ∞

0

e−c1x
∗
1
′
e

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)

(

− 2πiσ2
√

1− ρ2iδ(u2 − iσ2
√

1− ρ2(1− c2))
)

dx∗1
′

=



− σ2
√

1− ρ22π
iu1

σ1
− ρiu2√

1−ρ2σ1

− c1





̟1>(−σ1c1+(1−c2)σ2ρ),̟2=0

δ(u2 − iσ2
√

1− ρ2(1− c2)).
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Proof. (Proof of proposition 6)

With (A.65), g(S2) = max(S2 − K2, 0) and the transformations performed according

to Section A.2.1 (compare to the transformation performed after (3.70)) in the GBM

framework the value of the call option in t is given by

CD
C (τ, y1, y2) = K2e

x∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds

(∫ ∞

0

∫ ∞

0

pF (τ, y′1 − y1, y′2 − y2)

(e−c1x
∗
1
′+(1−c2)x′

2 − e−c1x
∗
1
′−c2x

′
2)dy′1dy

′
2

−
∫ ∞

0

∫ ∞

0

pF (τ, y′1 + y1, y
′
2 + 2ρy1 − y2)

(e−c1x
∗
1
′+(1−c2)x′

2 − e−c1x
∗
1
′−c2x

′
2)dy′1dy

′
2

)

,

where x2 = ln(S2e
∫T
t r(s)ds

K2
). With (A.66)-(A.68) follows

CD
C (τ, y1, y2) = K2e

x∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds exp

{

−y
2
1 + y22 − 2y1y2ρ

2(1− ρ2)τ

}
1

2π
√

1− ρ2τ
∫ ∞

0

∫ ∞

0

exp

{

−y
′
1
2 + y′2

2 − 2y′1y
′
2ρ

2(1− ρ2)τ

}

(
(
exp

{(

−c1σ1 +
y1 − ρy2
(1− ρ2)τ

)

y′1 +

(

(1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

}

− exp

{(

−c1σ1 +
y1 − ρy2
(1− ρ2)τ

)

y′1 +

(

−c2σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

}
)

−
(
exp

{(

−c1σ1 −
y1 − 2ρ2y1 + ρy2

(1− ρ2)τ

)

y′1

}

exp

{(

(1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

}

− exp

{(

−c1σ1 −
y1 − 2ρ2y1 + ρy2

(1− ρ2)τ

)

y′1

}

exp

{(

−c2σ2 +
y2 − ρy1
(1− ρ2)τ

)

y′2

}
)
)

dy′1dy
′
2

= K2e
x∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds exp

{

−y
2
1 + y22 − 2y1y2ρ

2(1− ρ2)τ

}

((

e
τ
2
(γ+

1
2
+η+2

2
+2ργ+

1 η+2 )N2

(√
τ(γ+1 + ρη+2 ),

√
τ(η+2 + ργ+1 ), ρ

)

−e τ
2
(γ+

1
2
+γ+

2
2
+2ργ+

1 γ+
2 )N2

(√
τ(γ+1 + ργ+2 ),

√
τ(γ+2 + ργ+1 ), ρ

) )

−
(

e
τ
2
(γ−

1
2
+η−2

2
+2ργ−

1 η−2 )N2

(√
τ(γ−1 + ρη−2 ),

√
τ(η−2 + ργ−1 ), ρ

)

e
τ
2
(γ−

1

2
+γ−

2

2
+2ργ−

1 γ−
2 )N2

(√
τ(γ−1 + ργ−2 ),

√
τ(γ−2 + ργ−1 ), ρ

) )
)

, (A.73)
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with

γ+1 = −c1σ1 +
y1 − ρy2
(1− ρ2)τ ,

η+2 = (1− c2)σ2 +
y2 − ρy1
(1− ρ2)τ ,

γ+2 = −c2σ2 +
y2 − ρy1
(1− ρ2)τ ,

γ−1 = −c1σ1 +
−y1(1− 2ρ2)− ρy2

(1− ρ2)τ ,

η−2 = η+2 ,

γ−2 = γ+2 .

To simplify we calculate

d∗
1 :=
√
τ(γ+1 + ργ+2 ) =

√
τ

(

−c1σ1 − ρc2σ2 +
x∗1
σ1τ

)

=
√
τ

(

− σ1 − ρσ2
2(1− ρ2) − ρ

σ2 − ρσ1
2(1− ρ2) +

x∗1
σ1τ

)

=
x∗1

σ1
√
τ
− σ1

√
τ

2
,

d̃∗
1 :=
√
τ(γ−1 + ργ−2 ) =

√
τ

(

− σ1 − ρσ2
2(1− ρ2) − ρ

σ2 − ρσ1
2(1− ρ2) −

x∗1
σ1τ

)

= − x∗1
σ1
√
τ
− σ1

√
τ

2
,

d2 :=
√
τ(η+2 + ργ+1 ) =

√
τ

(

(1− c2)σ2 − ρc1σ1 +
x2
σ2τ

)

=
x2

σ2
√
τ
+
√
τ

(
σ2(1− 2ρ2) + ρσ1

2(1− ρ2) − ρ σ1 − ρσ2
2(1− ρ2)

)

=
x2

σ2
√
τ
+

1

2

√
τσ2,

d∗
2 :=
√
τ(γ+2 + ργ+1 ) =

√
τ

(

−c2σ2 − ρc1σ1 +
x2
σ2τ

)

=
x2

σ2
√
τ
+
√
τ

(

− σ2 − ρσ1
2(1− ρ2) − ρ

σ1 − ρσ2
2(1− ρ2)

)

=
x2

σ2
√
τ
− 1

2

√
τσ2,
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d̃2 :=
√
τ(η−2 + ργ−1 ) =

1

2

√
τσ2 +

√
τ

(
y2 − ρy1
(1− ρ2)τ − ρ

y1(1− 2ρ2) + ρy1
(1− ρ2)τ

)

=
1

2

√
τσ2 +

√
τ

(
y2(1− ρ2)
(1− ρ2)τ −

ρy1(2− 2ρ2)

(1− ρ2)τ

)

=
1

2

√
τσ2 +

y2√
τ
− 2ρ

y1√
τ
,

d̃∗
2 :=
√
τ(γ−2 + ργ−1 ) = −1

2

√
τσ2 +

√
τ

(
y2 − ρy1
(1− ρ2)τ − ρ

y1(1− 2ρ2) + ρy1
(1− ρ2)τ

)

= −1

2

√
τσ2 +

y2√
τ
− 2ρ

y1√
τ
,

τ

2
(γ+1

2
+ γ+2

2
+ 2ργ+1 γ

+
2 ) =

τ

2
(c21σ

2
1 − c22σ2

2 + 2ρσ1σ2c1c2)

+

(
y1 − ρy2
(1− ρ2)τ

)2

− 2c1σ1
y1 − ρy2
(1− ρ2)τ +

(
y2 − ρy1
(1− ρ2)τ

)2

−2c2σ2
y2 − ρy1
(1− ρ2)τ − 2ρc2σ2

y1 − ρy2
(1− ρ2)τ

−2ρc1σ1
y2 − ρy1
(1− ρ2)τ + 2ρ

(y2 − ρy1)(y1 − ρy2)
(1− ρ2)2τ 2

=
τ

2

(
σ2
1(1− ρ2) + σ2

2(1− ρ2)− 2ρσ1σ2(1− ρ2)
4(1− ρ2)2

)

+

(

−c1x∗1 − c2x2 +
y21 + y22 − 2ρy1y2

2(1− ρ2)τ

)

= ατ − c1x∗1 − c2x2 +
y21 + y22 − 2ρy1y2

2(1− ρ2)τ ,

τ

2
(γ−1

2
+ γ−2

2
+ 2ργ−1 γ

−
2 ) = ατ + c1x

∗
1 − c2(x2 − 2ρσ2

x∗1
σ1

) +
y21 + y22 − 2ρy1y2

2(1− ρ2)τ ,
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CD
C (t, S1, S2, K2) = K2e

x∗
1c1+x2c2−ατ−

∫ T
t

r(s)ds

((

exp {−c1x∗1 + (1− c2)x2 + ατ}N2 (d1,d2, ρ)

− exp {−c1x∗1 − c2x2 + ατ}N2 (d
∗
1,d

∗
2, ρ)

)

−
(

exp

{

ατ + c1x
∗
1 − 2(1− c2)

σ2ρx
∗
1

σ1
+ (1− c2)x2

}

N2

(

d̃1, d̃2, ρ
)

− exp

{

ατ + c1x
∗
1 + 2c2

σ2ρx
∗
1

σ1
− c2x2

}

N2

(

d̃∗
1, d̃

∗
2, ρ
))
)

=

((

S2e
−
∫ T
t

d2(s)dsN2 (d1,d2, ρ)−K2e
−
∫ T
t

r(s)dsN2 (d
∗
1,d

∗
2, ρ)

)

−
(

S2e
−
∫ T
t

d2(s)ds exp

{

2x∗1(c1 − (1− c2)
σ2ρ

σ1
)

}

N2

(

d̃1, d̃2, ρ
)

−K2e
−
∫ T
t

r(s)ds exp

{

2x∗1(c1 + c2
σ2ρ

σ1
)

}

N2

(

d̃∗
1, d̃

∗
2, ρ
))
)

,

where

d1 =
x∗
1

σ1
√
τ
− 1

2
σ1
√
τ + ρσ2

√
τ , d2 =

x2
σ2
√
τ
+

1

2
σ2
√
τ ,

d̃1 = − x∗
1

σ1
√
τ
− 1

2
σ1
√
τ + ρσ2

√
τ , d̃2 =

x2
σ2
√
τ
− 2ρ

x∗1
σ1
√
τ
+

1

2
σ2
√
τ ,

d∗
1 = d1 − ρσ2

√
τ , d∗

2 = d2 − σ2
√
τ ,

d̃∗
1 = d̃1 − ρσ2

√
τ , d̃∗

2 = d̃2 − σ2
√
τ .

For the stochastic covariance framework we derive ĥDC :

ĥDC (u1, u2) = K2

∫ ∞

0

∫ ∞

0

e−c1x
∗
1
′
(

ex
′
2(1−c2) − e−x′

2c2

)

e

(

x∗1
′

σ1

(

− ρ√
1−ρ2

iu2+iu1

)

+iu2
x′2

σ2

√
1−ρ2

)

dx′2dx
∗
1
′

= K2
1

i

(

u1

σ1
− u2ρ

σ1

√
1−ρ2

)

− c1

1
(

i u2

σ2

√
1−ρ2

+ 1− c2
)(

i u2

σ2

√
1−ρ2
− c2

) .

Note that we have to set ℑ(u2) > σ2
√

1− ρ2(1− c2) and ℑ(u1) > ρ√
1−ρ2
ℑ(u2)− σ1c1, i.e

SgDC
=

{

u = w + i̟ : ̟2 > σ2
√

1− ρ2(1− c2) ∧̟1 >
ρ√
1−ρ2

̟2 − σ1c1
}

.
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Proof. (Proof of proposition 7)

Analogue to the proof above for the call option the value of the digital call option in t in

the GBM framework with payoff g(S2) = 1S2(T )>K (for the transformation compare with

the explanations after (3.66)) follows

CD
D (t, S1, S2, K2) = e−

∫ T
t

r(s)ds

(

N2 (d
∗
1,d

∗
2, ρ)− exp

{

2x∗1(c1 + c2
σ2ρ

σ1
)

}

N2

(

d̃∗
1, d̃

∗
2, ρ
))

,

and,

d∗
2 =

x2
σ2
√
τ
− 1

2
σ2
√
τ , d̃∗

2 =
x2

σ2
√
τ
− 2ρ

x∗1
σ1
√
τ
− 1

2
σ2
√
τ .

The result for the stochastic covariance framework follows with Corollary 5 with b2 = 0

.

Proof. (Proof of proposition 8)

(A.60) with additional boundary condition p(τ, y1, b2) = 0 can be solved by applying

Theorem 36 in connection with Remark 14.

(A.59) with the additional boundary condition is solved by the application of Theorem

36. The results follow.





Appendix B

Appendix for Chapter 4

B.1 Appendix for Section 4.2

Proof. (Proof of Corollary 16)

Assume the affine form (4.7) and plug it in the PDE (4.6). We obtain then the following

PDE:

− ∂A∗
H (τ,u)

∂τ
−

2∑

j=1

(

δ2j
σ2
vj

∂B∗
H1j (τ,u)

∂τ
vj

)

+i
2∑

l=1

(

r −
2∑

j=1

a2ljf (vj)
2

2

)

ul −
1

2

2∑

l,k=1

uluk

2∑

j=1

aljakjf (vj)
2

+
2∑

j=1

(

δ2j
σ2
vj

B∗
H1j (τ,u)

κvj
δ2j

(
ζvj − vj

)
+

1

2

δ2j
σ2
vj

vjB
∗
H1j (τ,u)

2

+
2∑

l=1

2∑

j=1

iulaljf (vj)

(

B∗
H1j (τ,u) ρ

v
lj

√
vj
δj
σvj

))

= 0. (B.1)
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If f (vj) =
√
vj and ρ

v
j = 0 the PDE is affine and breaks down into several ODEs:

∂A∗
H (τ,u)

∂τ
− i

2∑

l=1

ulr −
2∑

j=1

(

1

σ2
vj

B∗
H1j (τ,u)κvjζvj

)

= 0,

A∗
H (0,u) = 0, (B.2)

δ2j
σ2
vj

∂B∗
H1j (τ,u)

∂τ
+ i

2∑

i=1

ui
a2ij
2

+
1

2

2∑

i,k=1

uiukaijakj

+
1

σ2
vj

B∗
H1j (τ,u)κvj −

δ2j
2σ2

vj

B∗
H1j (τ,u)

2 = 0,

B∗
H1j(0,u) = 0. (B.3)

These ODEs can be solved analogously to (A.28). Thus, we set B∗
H1j = −2

∂E∗
H1j
∂τ

E∗
H1j

. E∗
H1j

is then given by

E∗
H1j (τ,u) = e

1
2

(

−
κvj

δ2
j

+dvj

)

τ

κvj

δ2j
+ dvj +

(

−κvj

δ2j
+ dvj

)

e−dvj τ

2dvj
, (B.4)

with

dvj = dvj (u) =

√

κ2vj
δ4j

+
σ2
vj

δ2j

(
i
(
u1a21j + u2a22j

)
+ 2u1u2a1ja2j + u21a

2
1j + u22a

2
2j

)
.

Thus,

A∗
H (τ,u) = τ (ir (u1 + u2))− 2

2∑

j=1

(

κvjζvj
σ2
vj

lnE∗
H1j

)

= τ

(

ir (u1 + u2) +
2∑

j=1

κ2vjζvj

δ2jσ
2
vj

)

−2
2∑

j=1

(

κvj
σ2
vj

ζvj ln

(
κvj
δ2jdvj

sinh

(
dvj

2
τ

)

+ cosh

(
dvj

2
τ

)))

,

and B1j follows from (A.35) with κ :=
κvj

δ2j
for B1j.

Define D∗
vj
(u) = dvj(u)

2. We see that D∗
vj
(0) =

κ2
vj

δ4j
> 0. Hence, we see that ϕ is

well-defined and regular in a neighbourhood of the origin according to Cauchy’s integral

theorem, i.e. there exists a complex analytic extension of M̄(w), the moment generating

function, to an open set D ⊂ C in the neighbourhood of the origin (see Theorem 32 and

Section 3.4.2).
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B.2 Appendix for Section 4.5

Proof. (Pricing of two-asset option in GBM model)

Pursue the transformations of the PDE according to A.11-A.14. The Green function is

then given by

p(τ, x′1, x
′
2, x1, x2) =

1

2σ1σ2π
√

1− ρ2τ
e
−

(x′1−x1)
2

σ2
1

+
(x′2−x2)

2

σ2
2

−2
ρ(x′1−x1)(x

′
2−x2)

σ1σ2

2(1−ρ2)τ . (B.5)

Thus,

C0,0 (t, S1, S2) = K2e
c1x1+c2x2+ατ−

∫ T
t

r(s)ds

∫ ∞

0

∫ ∞

0

p (τ, x1 − x′1, x2 − x′2)
(

e−c1x
′
1+(1−c2)x′

2 − e−c1x
′
1−c2x

′
2

)

dx′1dx
′
2. (B.6)

We transform this expression to a bivariate normal distribution.

With L given in (A.66) follows

C0,0 (t, S1, S2) = K2e
c1x1+c2x2+ατ−

∫ T
t

r(s)ds

(

e−ατ−c1x1+(1−c2)x2N2 (d2,d1, ρ)

−e−ατ−c1x1−c2x2N2 (d
∗
2,d

∗
1, ρ)

)

, (B.7)

where

τ = T − t, xi = ln
Sie

−
∫ T
t

r(s)ds

Ki

,

d∗
1 = d1 − ρσ2

√
τ , d1 =

x1
σ1

√
τ
− 1

2
σ1

√
τ + ρσ2

√
τ ,

d∗
2 = d2 − σ2

√
τ , d2 =

x2
σ2

√
τ
+

1

2
σ2

√
τ .

Proof. (Pricing of two-asset barrier options in GBM model)

Follow the transformations in Section A.1.1 for constant barrier options and apply (A.17)

to (A.18). For ρ = − cos
(
2πk
n

)
the Green function is then given by (see also Section 3.4
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for the method of images in a wedge)

p(τ, z′1, z
′
2, z1, z2) =

n−1∑

k=0

1

2πτ

(

e
− 1

2τ

(

(z′1−rp cos ( 2πk
n

+θp))
2
+(z′2−rp sin ( 2πk

n
+θp))

2
)

−e−
1
2

(

(z′1−rp cos ( 2πk
n

−θp))
2
+(z′2−rp sin ( 2πk

n
−θp))

2
))

. (B.8)

Hence,

CB,0,0(t, S1, S2) = K2e
c1x1+c2x2−ατ−

∫ T
t

r(s)ds

∫ ∞

0

∫ ∞

−z1

√
1−ρ2

ρ

p(τ, z′1, z
′
2, z1, z2)

(

e−c1x
′
1+(1−c2)x′

2 − e−c1x
′
1−c2x

′
2

)

dz′2dz
′
1. (B.9)

With (A.66)

L2 =

∫ ∞

0

∫ ∞

−z1

√
1−ρ2

ρ

1

2πτ
exp

{

− 1

2τ

((

z′1 − rp cos
(
2πk

n
± θp

))2

+

(

z′2 − rp sin
(
2πk

n
± θp

))2)
}

exp {k1x′1 + k2x
′
2} dz′1dz′2

= e−
1
2τ

r2p

∫ ∞

− b1
σ1

∫ ∞

− b2
σ2

1

2πτ
√

1− ρ2

exp

{

− 1

2(1− ρ2)τ
(

y′1
2 − 2ρy′1y

′
2 + y′2

2
)}

exp

{

y′1
√

1− ρ2τ
rp cos

(
2πk

n
± θp

)

+
y′2
τ

(

rp sin(
2πk

n
± θp)−

ρ
√

1− ρ2
rp cos

(
2πk

n
± θp

))}

exp {k1σ1y
′
1 + k2σ2y

′
2 + k1b1 + k2b2} dy′2dy′1

= e−
1
2τ

r2p+k1b1+k2b2 exp







τ
(

γ±1
2
+ 2ργ±1 γ

±
2 + γ±2

2
)

2







N2

(√
τ(γ±1 + ργ±2 ) +

b1
σ1

√
τ
,
√
τ(ργ±1 + γ±2 ) +

b2
σ2

√
τ

)

, (B.10)
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where yi =
xi−bi
σi

, z21 := 1
(1−ρ2)

(y1 − ρy2)2 = 1
(1−ρ2)

(y21 + y22ρ
2 − 2y1y2ρ), and z

2
2 := y22,

γ±1 =
1

τ
√

1− ρ2
rp cos

(
2πk

n

+
− θp

)

+ k1σ1

=
1

τ
√

1− ρ2
(

rp cos(
2πk

n
) cos(θp)

−
+ rp sin(

2πk

n
) sin(θp)

)

+ k1σ1

=
1

τ
√

1− ρ2
(

z1 cos(
2πk

n
)

−
+ z2 sin(

2πk

n
)

)

+ k1σ1

=
1

τ
√

1− ρ2

(

1
√

1− ρ2
(y1 − ρy2) cos(

2πk

n
)

−
+ y2 sin(

2πk

n
)

)

+ k1σ1

= k1σ1 + y1
1

τ(1− ρ2) cos
(
2πk

n

)

+y2

(

−
+

1

τ
√

1− ρ2
sin

(
2πk

n

)

− ρ

τ (1− ρ2) cos
(
2πk

n

))

, (B.11)

γ±2 =
1

τ
√

1− ρ2
(
√

1− ρ2rp sin
(
2πk

n

+
− θp

)

− ρrp cos
(
2πk

n

+
− θp

))

+ k2σ2

=
1

τ
√

1− ρ2

(
√

1− ρ2
(

+
− rp sin(θp) cos(

2πk

n
) + rp cos(θp) sin(

2πk

n
)

)

−ρ
(

rp cos(
2πk

n
) cos(θp)

−
+ rp sin(

2πk

n
) sin(θp)

))

+ k2σ2

=
1

τ
√

1− ρ2

(
√

1− ρ2
(

+
− z2 cos(

2πk

n
) + z1 sin(

2πk

n
)

)

−ρ
(

z1 cos(
2πk

n
)

−
+ z2 sin(

2πk

n
)

))

+ k2σ2

=
1

τ
√

1− ρ2

(
√

1− ρ2
(

+
− y2 cos(

2πk

n
) +

1
√

1− ρ2
(y1 − ρy2) sin(

2πk

n
)

)

−ρ
(

1
√

1− ρ2
(y1 − ρy2) cos(

2πk

n
)

−
+ y2 sin(

2πk

n
)

))

+ k2σ2



236 B.2 Appendix for Section 4.5







= 1

τ
√

1−ρ2

(

y2

(
√

1− ρ2 cos
(
2πk
n

)
+ ρ2√

1−ρ2
cos
(
2πk
n

)
)

+y1

(

sin
(
2πk
n

)
− ρ√

1−ρ2
cos
(
2πk
n

)
))

+ k2σ2 for γ+2

= 1

τ
√

1−ρ2

(

y2

(

−
√

1− ρ2 cos
(
2πk
n

)
+ ρ2√

1−ρ2
cos
(
2πk
n

)
− 2ρ sin(2πk

n
)

)

+y1

(

sin
(
2πk
n

)
− ρ√

1−ρ2
cos
(
2πk
n

)
))

+ k2σ2 for γ−2







= 1

τ
√

1−ρ2

(

y2
1√
1−ρ2

cos
(
2πk
n

)

+y1

(

sin
(
2πk
n

)
− ρ√

1−ρ2
cos
(
2πk
n

)
))

+ k2σ2 for γ+2

= 1

τ
√

1−ρ2

(

y2

(

− 1−2ρ2√
1−ρ2

cos
(
2πk
n

)
− 2ρ sin(2πk

n
)

)

+y1

(

sin
(
2πk
n

)
− ρ√

1−ρ2
cos
(
2πk
n

)
))

+ k2σ2 for γ−2

(B.12)
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Hence, CB,0,0 is given by

CB,0,0(t, S1, S2) =
n−1∑

k=0

ec1x1+c2x2−ατe−
1
2τ

r2p−c1b1−c2b2 (B.13)

(

B2

(

exp







τ
(

γ+1
2
+ 2ργ+1 η

+
2 + η+2

2
)

2







N2

(√
τ(γ+1 + ρη+2 ) +

b1
σ1

√
τ
,
√
τ(ργ+1 + η+2 ) +

b2
σ2

√
τ

)

− exp







τ
(

γ−1
2
+ 2ργ−1 η

−
2 + η−2

2
)

2







N2

(√
τ(γ−1 + ρη−2 ) +

b1
σ1

√
τ
,
√
τ(ργ−1 + η−2 ) +

b2
σ2

√
τ

))

−K2e
−
∫ T
t

r(s)ds

(

exp







τ
(

γ+1
2
+ 2ργ+1 γ

+
2 + γ+2

2
)

2







N2

(√
τ(γ+1 + ργ+2 ) +

b1
σ1

√
τ
,
√
τ(ργ+1 + γ+2 ) +

b2
σ2

√
τ

)

− exp







τ
(

γ−1
2
+ 2ργ−1 γ

−
2 + γ−2

2
)

2







N2

(√
τ(γ−1 + ργ−2 ) +

b1
σ1

√
τ
,
√
τ(ργ−1 + γ−2 ) +

b2
σ2

√
τ

)))

,

where γ±1 , γ
±
2 are as indicated in (B.11)-(B.12) with k1 = −c1 and k2 = −c2, η±2 follows

γ±2 with k2 = (1− c2).

Now, we simplify the singular multiplying factors of the normal distributions

by inserting (B.11)-(B.12) and we use our calculations in (A.70) for ατ , i.e.
τ
2
(c21σ

2
1 + (1− c2)2σ2

2 − 2ρσ1σ2c1(1− c2)) = τ
2
(c21σ

2
1 + c22σ

2
2 + 2ρσ1σ2c1c2) = ατ .
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τ

2
(γ±1

2
+ 2ργ±1 η

±
2 + η±2

2
)

=
τ

2

(
c21σ

2
1 + (1− c2)2σ2

2 − 2ρc1(1− c2)σ1σ2

)

+
τ

2

(

1
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2
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(
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n
± θp
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1
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(
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n
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n
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−2ρ
√
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(
2πk

n
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(
2πk

n
± θp

)

+2
ρ

τ 2(1− ρ2)

(
√

1− ρ2r2p sin
(
2πk

n
± θp

)
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(
2πk

n
± θp

)
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(
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n
± θp
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−2 c1σ1

τ
√

1− ρ2
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(
2πk

n
± θp

)

+ 2
(1− c2)σ2

τ
√
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(
√

1− ρ2rp sin
(
2πk

n
± θp
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(
2πk

n
± θp

))

−2 ρc1σ1

τ
√

1− ρ2
(
√

1− ρ2rp sin
(
2πk

n
± θp
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(
2πk

n
± θp

))

+2
ρ(1− c2)σ2

τ
√

1− ρ2
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n
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2
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c1σ1(1− ρ2)
τ
√

1− ρ2
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n
± θp
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1

τ
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n
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1
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√
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(
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n
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)
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n
± θp

)
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1

2τ
r2p − c1σ1

√
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(
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)
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1
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√
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1
√
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(
2πk

n

)
−
+ y2 sin

(
2πk

n

))

+((1− c2) σ2 − ρc1σ1)

(

+
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(
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(
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n
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1

√
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)
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= ατ +
1

2τ
r2p + y1(−c1σ1 cos

(
2πk

n

)

+
1

√
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((1− c2)σ2 − ρc1σ1) sin
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2πk

n

)
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(
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√
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2πk
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)
+ 1√
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Analogously, we obtain

τ

2
(γ±1

2
+ 2ργ±1 η

±
2 + η±2

2
)

= ατ +
1
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r2p − c1σ1

√
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± θp
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= ατ + 1
2τ
r2p + y1

(
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)
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Thus,

CB,0,0(t, S1, S2) =
n−1∑

k=0

e
y1

(

c1σ1−c1σ1 cos( 2πk
n )+ 1√

1−ρ2
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√
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√
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√
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n )

)

N2

(√
τ(γ−1 + ρη−2 ) +

b1
σ1

√
τ
,
√
τ(ργ−1 + η−2 ) +

b2
σ2

√
τ

))

−e−
∫ T
t

r(s)dsK2

(

e
y2

(

−c2σ2 cos( 2πk
n )+ 1√

1−ρ2
(c2σ2ρ+σ1c1) sin( 2πk

n )
)

N2

(√
τ(γ+1 + ργ+2 ) +

b1
σ1

√
τ
,
√
τ(ργ+1 + γ+2 ) +

b2
σ2

√
τ

)

−e
y2

(

(c2σ2+2σ1c1ρ) cos( 2πk
n )+ 1√

1−ρ2
(c2σ2ρ−σ1c1(1−2ρ2)) sin( 2πk

n )

)

N2

(√
τ(γ−1 + ργ−2 ) +

b1
σ1

√
τ
,
√
τ(ργ−1 + γ−2 ) +

b2
σ2

√
τ

)))

,
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Proof. (Explicit expression of differences for Lemma 2)

∣
∣
∣CBS

(
t, S1e

Λ1+rǫ, S2e
Λ2+rǫ, σ̃1, σ̃2, ρ̃

)
− C ǫ̃,δ

BS

(
t, S1e

Λ1 , S2e
Λ2 , σ̂1, σ̂2, ρ̂

)
∣
∣
∣

=

∣
∣
∣
∣
∣
S2e

Λ2

(

e−rǫ̃N2

(
x1 + Λ1 + rǫ− 1

2
σ̃2
1

σ̃1
+ ρ̃σ̃2,

x2 + Λ2 + rǫ+ 1
2
σ̃2
2

σ̃2
, ρ̃

)

−N2

(
x1 + Λ1 − 1

2
σ̂2
1

σ̂1
+ ρ̂σ̂2,

x2 + Λ2 +
1
2
σ̂2
2

σ̂2
, ρ̂

))

−K2e
−r(T−t)

(

e−rǫ̃N2

(
x1 + Λ1 + rǫ− 1

2
σ̃2
1

σ̃1
,
x2 + Λ2 + rǫ− 1

2
σ̃2
2

σ̃2
, ρ̃

)

−N2

(
x1 + Λ1 − 1

2
σ̂2
1

σ̂1
,
x2 + Λ2 − 1

2
σ̂2
2

σ̂2
, ρ̂

))
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
S2e

Λ2

(

e−rǫ̃N2

(
x1 + Λ1 + rǫ− 1

2
σ̃2
1

σ̃1
+ ρ̃σ̃2,

x2 + Λ2 + rǫ+ 1
2
σ̃2
2

σ̃2
, ρ̃

)

−N2

(
x1 + Λ1 − 1

2
σ̂2
1

σ̂1
+ ρ̂σ̂2,

x2 + Λ2 +
1
2
σ̂2
2

σ̂2
, ρ̂

))
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
−K2e

−r(T−t)

(

e−rǫ̃N2

(
x1 + Λ1 + rǫ− 1

2
σ̃2
1

σ̃1
,
x2 + Λ2 + rǫ− 1

2
σ̃2
2

σ̃2
, ρ̃

)

−N2

(
x1 + Λ1 − 1

2
σ̂2
1

σ̂1
,
x2 + Λ2 − 1

2
σ̂2
2

σ̂2
, ρ̂

))
∣
∣
∣
∣
∣
.

Note that

1

2π
√

1− ρ2
∫ d1

−∞

∫ d2

−∞
e
−x21+x22−2ρx1x2

2(1−ρ2) dx2dx1 =
1

2π

∫ d1

−∞

∫ d2−ρz1√
1−ρ2

−∞
e−

z21+z22
2 dz2dz1, (B.15)

as we set z1 = x1 and z2 = 1√
1−ρ2

(x2 − ρx1). Hence, x2 =
√

1− ρ2z2 + ρz1, x
2
2 =

(1 − ρ2)z22 + ρ2z21 + 2ρ
√

1− ρ2z1z2, and −2ρx1x2 = −2ρz1(
√

1− ρ2z2 + ρz1). In the

following

d1 =
x1 + Λ1

σ̂1
− 1

2
σ̂1 + ρ̂σ̂2,

d2 =
x2 + Λ2

σ̂2
+

1

2
σ̂2,

dǫ̃
1 =

x1 + Λ1 + rǫ̃

σ̃1
− 1

2
σ̃1 + ρ̃σ̃2,

d2 =
x2 + Λ2

σ̃2
+

1

2
σ̃2.
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To simplify the following calculation we compute the two expressions with (4.144) and

(4.145)

(

ρ̃
√

1− ρ̃2
− ρ̂
√

1− ρ̂2

)

=
ρ̃σ̃1σ̃2

√

1− ρ̃2σ̃1σ̃2
− ρ̂σ̂1σ̂2
√

1− ρ̂2σ̂1σ̂2
=

ρ̂σ̂1σ̂2 + ǫρ σ1σ2
√

1− ρ̃2σ̃1σ̃2
− ρ̂σ̂1σ̂2
√

1− ρ̂2σ̂1σ̂2

≤ ǫ˜̃c1 + ρ̂σ̂1σ̂2

(√

1− ρ̂2σ̂1σ̂2 −
√

1− ρ̃2σ̃1σ̃2
σ̂1σ̂2σ̃1σ̃2

√

1− ρ̂2
√

1− ρ̃2

)

= ǫ̃˜̃c1 + ρ̂σ̂1σ̂2
σ̂2
1σ̂

2
2 − ρ̂2σ̂2

1σ̂
2
2 − σ̃2

1σ̃
2
2 + σ̃2

1σ̃
2
2 ρ̃

2

σ̂1σ̂2σ̃1σ̃2
√

1− ρ̂2
√

1− ρ̃2
1

σ̂1σ̂2
√

1− ρ̂2 +
√

1− ρ̃2σ̃1σ̃2

= ǫ̃˜̃c1 + ρ̂σ̂1σ̂2
σ̂2
1σ̂

2
2 − ρ̂2σ̂2

1σ̂
2
2 − (σ̂2

1 + ǫ̃σ2
1)(σ̂

2
2 + ǫ̃σ2

2) + (ρ̂σ̂1σ̂2 + σ1σ2ρǫ̃)
2

σ̂1σ̂2σ̃1σ̃2
√

1− ρ̂2
√

1− ρ̃2
︸ ︷︷ ︸

bounded in ǫ̃

1

σ̂1σ̂2
√

1− ρ̂2 +
√

1− ρ̃2σ̃1σ̃2
≤ ǫ̃˜̃c2, (B.16)

and

∣
∣
∣
∣
∣

dǫ̃1σ̃1
√

1− ρ̃2σ̃1
− d1σ̂1
√

1− ρ̂2σ̂1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

d1σ̂1 + ǫ(r − 1
2
σ2
1 + ρσ1σ2)

√

1− ρ̃2σ̃1
− d1σ̂1
√

1− ρ̂2σ̂1

∣
∣
∣
∣
∣

≤ ǫ̃˜̃c3 +

∣
∣
∣
∣
∣

d1σ̂
2
1

√

1− ρ̂2 − d1σ̂1σ̃1
√

1− ρ̃2
√

1− ρ̃2
√

1− ρ̂2σ̂1σ̃1

∣
∣
∣
∣
∣

= ǫ̃˜̃c3 +

∣
∣
∣
∣
∣
∣
∣
∣
∣

d1σ̂1
σ̂1
√

1− ρ̂2 − σ̃1
√

1− ρ̃2
σ̂1σ̃1

√

1− ρ̃2
√

1− ρ̂2
︸ ︷︷ ︸

see above: bounded in ǫ̃

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ǫ̃˜̃c4(1 + |Λ1|). (B.17)

The assessment for the respective expression with dǫ̃2 follows analogously.
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Thus,

∣
∣
∣
∣
∣

(
e−rǫ̃N2

(
x1 + Λ1 + rǫ− 1

2
σ̃2
1

σ̃1
,
x2 + Λ2 + rǫ− 1

2
σ̃2
2

σ̃2
, ρ̃

)

−N2

(
x1 + Λ1 − 1

2
σ̂2
1

σ̂1
,
x2 + Λ2 − 1

2
σ̂2
2

σ̂2
, ρ̂

)
)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ d1

−∞

∫ d
ǫ̃
2−ρ̃z1√
1−ρ̃2

−∞
e−

z21+z22
2 dz2dz1 +

∫ dǫ̃
1

d1

∫ d
ǫ̃
2−ρ̃z1√
1−ρ̃2

−∞
e−

z21+z22
2 dz2dz1

−
∫ d1

−∞

∫ d2−ρ̂z1√
1−ρ̂2

−∞
e−

z21+z22
2 dz2dz1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ d1

−∞

∫ d2−ρ̂z1√
1−ρ̂2

−∞
e−

z21+z22
2 dz2dz1 +

∫ d1

−∞

∫ d
ǫ̃
2−ρ̃z1√
1−ρ̃2

d2−ρ̂√
1−ρ̂2

e−
z21+z22

2 dz2dz1

+

∫ dǫ̃
1

d1

∫ d
ǫ̃
2−ρ̃√
1−ρ̃2

−∞
e−

z21+z22
2 dz2dz1 −

∫ d1

−∞

∫ d2−ρ̂z1√
1−ρ̂2

−∞
e−

z21+z22
2 dz2dz1

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫ d1

−∞

∫ d
ǫ̃
2−ρ̃z1√
1−ρ̃2

d2−ρ̂z1√
1−ρ̂2

e−
z21+z22

2
︸ ︷︷ ︸

≤1

dz2dz1

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∫ dǫ̃
1

d1

∫ d
ǫ̃
2−ρ̃z1√
1−ρ̃2

−∞
e−

z21+z22
2 dz2dz1

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ d1

−∞

(

dǫ̃
2 − ρ̃z1
√

1− ρ̃2
− d2 + ρ̂z1
√

1− ρ̂2

)

e−
1
2
z21dz1

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ d2

−∞

(

dǫ̃
1 − ρ̃z2
√

1− ρ̃2
− d1 + ρ̂z2
√

1− ρ̂2

)

e−
1
2
z22dz2

∣
∣
∣
∣
∣

≤ c̃1

∣
∣
∣
∣
∣
(1 + d1)

(

dǫ̃
2

√

1− ρ̃2
− d2
√

1− ρ̂2

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
−
∫ d1

−∞
e−

1
2
z21

(

ρ̃
√

1− ρ̃2
− ρ̂
√

1− ρ̂2

)

z1dz1

∣
∣
∣
∣
∣

+c̃2

∣
∣
∣
∣
∣
(1 + d2)

(

dǫ̃
1

√

1− ρ̃2
− d1
√

1− ρ̂2

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
−
∫ d2

−∞
e−

1
2
z22

(

ρ̃
√

1− ρ̃2
− ρ̂
√

1− ρ̂2

)

z2dz2

∣
∣
∣
∣
∣

≤ c̃3

∣
∣
∣
∣
∣
(1 + d1)

(

dǫ̃
2

√

1− ρ̃2
− d2
√

1− ρ̂2

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
e−

d
2
1
2

(

ρ̃
√

1− ρ̃2
− ρ̂
√

1− ρ̂2

)∣
∣
∣
∣
∣

+c̃4

∣
∣
∣
∣
∣
(1 + d2)

(

dǫ̃
1

√

1− ρ̃2
− d1
√

1− ρ̂2

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
e−

d
2
2
2

(

ρ̃
√

1− ρ̃2
− ρ̂
√

1− ρ̂2

)∣
∣
∣
∣
∣

≤ c̃5ǫ̃(1 + |Λ1|+ |Λ2|+ |Λ1| |Λ2|). (B.18)

The inequality in the third last line is derived by separating
∫ 0

−∞ e−
1
2
z21 = 1

2
and

∣
∣
∣
∣
∣
∣

∫ d1

0
e−

1
2
z21

︸ ︷︷ ︸

≤1

dz1

∣
∣
∣
∣
∣
∣

≤ |d1|. The inequality in the second last line is derived from integrat-
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ing
∫ d2

−∞ e−
1
2
z22(−z2)dz2 =

∣
∣
∣e−

1
2
z22

∣
∣
∣

d2

−∞
. Now, we easily see that

∣
∣
∣CBS(t, S1e

Λ1+rǫ, S2e
Λ2+rǫ, σ̃1, σ̃2, ρ̃)− C ǫ̃,δ

BS(t, S1e
Λ1 , S2e

Λ2 , σ̂1, σ̂2, ρ̂)
∣
∣
∣

≤ c̃4ǫ̃
(
eΛ2 + 1

)
(1 + |Λ1|+ |Λ2|+ |Λ1| |Λ2|) . (B.19)

(C3,0, C0,3 and explicit representation of F ǫ̃
i (t, S1, S2))

(4.60) is a Poisson equation in v2. Hence, we can write

L1
0C3,0 = −

〈
L1

1C2,0 + L2C1,0

〉

v2

= −
[

−
〈

L1
1

(
1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

+f e
2,0(t, S1, S2)

)〉

v2

+ 〈L2〉v2 C1,0−〈〈L2〉〉C1,0 +A1C0,0
︸ ︷︷ ︸

=0

]

= −〈L2〉v2 C1,0 + 〈〈L2〉〉C1,0

+L1
1

(
1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

+f e
2,0(t, S1, S2)

)

−A1C0,0

=
1

2
(T − t)

(
v1 − σ2

1

)
(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+2a11a21S1S2
∂2

∂S1∂S2

)

A1C0,0

+ρv1σv1

(

v1
∂φ1

∂v1
−
〈

v1
∂φ1

∂v1

〉)

(S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C0,0.

Thus,

C3,0 =
1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A1C0,0

+ρv1σv1ξ1

(

S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C0,0

+f e
3,0(t, S1, S2), (B.20)
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where L1
0ξ1 =

(

v1
∂φ1

∂v1
−
〈

v1
∂φ1

∂v1

〉)

. C0,3 can be solved accordingly.

Inserting (4.156) in (4.155) we obtain

F ǫ̃
1(t, S1, S2) = (T − t)ρv2σv2v2

∂φ2

∂v2

(
a12
2
S1

∂

∂S1

+ S2
a22
2

∂

∂S2

)

(

a212S
2
1

∂2

∂S2
1

+ S2
2a

2
22

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A1C0,0

−2(T − t)A1A2C0,0 + (T − t)2A1A2L2C0,0

(T − t)ρv1σv1
∂φ1

∂v1

(
a11
2
S1

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ S2
2a

2
21

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A2C0,0

+δ1

(

− 1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ S2
2a

2
21

∂2

∂S2
2

+2a11a21S1S2
∂2

∂S1∂S2

)

A2C0,0 +
1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ S2
2a

2
21

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A2L2C0,0

)

+δ2

(

− 1

2
φ1

(

a212S
2
1

∂2

∂S2
1

+ S2
2a

2
22

∂2

∂S2
2

+2a12a22S1S2
∂2

∂S1∂S2

)

A2C0,0 +
1

2
(T − t)φ

(

a212S
2
1

∂2

∂S2
1

+ S2
2a

2
22

∂2

∂S2
2

+ 2a12a22S1S2
∂2

∂S1∂S2

)

A2L2C0,0

)

+q̃4(t, S1, S2),
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F ǫ̃
2(t, S1, S2) = −1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

L2C0,0

+ρv1σv1(T − t)v1
∂φ1

∂v1

(

S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A1C0,0

+ρv1
2σ2

v1

∂ξ1
∂v1

(

S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

C0,0

+δ1

(

− 1

2
φ1

(

a211S
2
1

∂2

∂S2
1

+ S2
2a

2
21

∂2

∂S2
2

+2a11a21S1S2
∂2

∂S1∂S2

)

A1C0,0 +
1

2
(T − t)φ1

(

a211S
2
1

∂2

∂S2
1

+ S2
2a

2
21

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

A1L2C0,0

+ρv1σv1ξ1

(

S1
a11
2

∂

∂S1

+ S2
a21
2

∂

∂S2

)

(

a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

+ 2a11a21S1S2
∂2

∂S1∂S2

)

L2C0,0

)

+q̃5(t, S1, S2).

F ǫ̃
3(t, S1, S2) follows accordingly.
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In the following we derive the form of the derivatives of C0,0:

∂C0,0

∂x2
= ex2K2e

−rτ ǫ̃N2(d
ǫ̃
2,d

ǫ̃
1, ρ) +

S1

2πσ2

√

1− ρ2
∫ dǫ̃1

−∞
e
− (y21+dǫ̃2

2
−2ρy1d

ǫ̃
2)

2(1−ρ2) dy1

− K2e
−rτ ǫ̃r

2πσ2

√

1− ρ2
√
τ ǫ̃

∫ dǫ̃1−ρσ2

√
τ ǫ̃

−∞
e
− (y21+(dǫ̃2+σ2

√
τǫ̃)2−2ρy1(d

ǫ̃
2+σ2

√
τǫ̃))

2(1−ρ2) dy1

= ex2K2e
−τ ǫ̃rN2(d

ǫ̃
2,d

ǫ̃
1, ρ) +

S1

2πσ2

√

1− ρ2
∫ dǫ̃1

−∞
e
− (y21+dǫ̃2

2
−2ρy1d

ǫ̃
2)

2(1−ρ2) dy1

− K2e
−rτ ǫ̃

2πσ2

√

1− ρ2
√
τ ǫ̃

∫ dǫ̃1

−∞
e
− (y1+ρσ2

√
τǫ̃)2+(dǫ̃2+σ2

√
τǫ̃)2−2ρ(y1+ρσ̃2

√
τǫ̃)(dǫ̃2+σ2

√
τǫ̃)

2(1−ρ2) dy1

= ex2K2e
−τ ǫ̃rN2(d

ǫ̃
2,d

ǫ̃
1, ρ) +

S1

2πσ2

√

1− ρ2
∫ dǫ̃1

−∞
e
− (y21+dǫ̃2

2
−2ρy1d

ǫ̃
2)

2(1−ρ2) dy1

− K2e
−rτ ǫ̃

2πσ2

√

1− ρ2
√
τ ǫ̃

∫ dǫ̃1

−∞
e
− y21+dǫ̃2

2
−2ρy1d

ǫ̃
2

2(1−ρ2)

e
− (2y1ρσ2

√
τǫ̃+ρ2σ2

2τ
ǫ̃+2dǫ̃2σ2

√
τǫ̃+σ2

2τ
ǫ̃−2ρy1σ2

√
τǫ̃−2ρ2σ2

√
τǫ̃dǫ̃2−2ρ2σ2

2τ
ǫ̃)

2(1−ρ2) dy1

= ex2K2e
−rτ ǫ̃N2(d

ǫ̃
2,d

ǫ̃
1, ρ) +

S1

2πσ2

√

1− ρ2
∫ dǫ̃1

−∞
e
− (y21+dǫ̃2

2
−2ρy1d

ǫ̃
2)

2(1−ρ2) dy1

− K2e
−rτ ǫ̃

2πσ2

√

1− ρ2
√
τ ǫ̃

∫ dǫ̃1

−∞
e
− y21+dǫ̃2

2
−2ρy1d

ǫ̃
2

2(1−ρ2) e
− (σ2

2(1−ρ2)τǫ̃+2dǫ̃2σ2

√
τǫ̃(1−ρ2))

2(1−ρ2) dy1

= ex2K2e
−rτ ǫ̃N2(d

ǫ̃
2,d

ǫ̃
1, ρ),

because ex2K2e
−τ ǫ̃r −K2e

−τ ǫ̃re−
1
2
σ2
2τ

ǫ̃−dǫ̃2σ2

√
τ ǫ̃ = 0.

Thus,

∂kC0,0

∂xk2
= S2N2

(
dǫ̃
2,d

ǫ̃
1, ρ
)
+

k−2∑

k=0

ex2

∫ dǫ̃
1

−∞

b̃1k√
τ ǫ̃

∂k

xk2

(

exp

{

− 1

2(1− ρ2)
(

y21 + dǫ̃
2

2 − 2ρdǫ̃
2y2

)})

dy1, (B.21)
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where b̃1k is some constant term. For derivatives in x1 we find:

∂C0,0

∂x1
=

K2e
−τ ǫ̃r

2πσ2

√

1− ρ2
√
τ ǫ̃

[

ex2e−
1
2
dǫ̃
1
2

∫ dǫ̃
2

−∞
exp

{

− 1

2(1− ρ2)(y2 − ρd
ǫ̃
1)

2

}

dy2

−K2e
−r(T−t)e−

1
2
dǫ̃∗
1

2

∫ dǫ̃∗
2

−∞
exp

{

− 1

2(1− ρ2)(y2 − ρd
ǫ̃∗
1 )

2

}

dy2

]

,

and, thus, we deduce

∂iC0,0

∂xi1
= ex2

∫ dǫ̃
2

−∞

b̃2i√
τ ǫ̃

∂i−1

∂xi−1
1

exp

{

−dǫ̃
1
2
+ y22 − 2ρdǫ̃

1y2
2 (1− ρ2)

}

dy2

−K2e
−r(T−t)

∫ dǫ̃
2−σ2

√
τ ǫ̃

−∞

b̃3i√
τ ǫ̃

∂i−1

∂xi−1
1

exp

{

− 1

2(1− ρ2)
(

y22 + dǫ̃∗
1

2 − 2ρy2d
ǫ̃∗
1

)}

dy2.

We further see that

C0,0

∂x2∂x1
=

ex2K2e
−τ ǫ̃r

2πσ1
√

(1− ρ2) (T − t)
∫ dǫ̃

2

−∞
exp

{

−dǫ̃
1
2
+ y22 − 2ρdǫ̃

1y2
2 (1− ρ2)

}

dy2, (B.22)

and

∂i+1C0,0

∂x2∂xi1
= ex2

∫ dǫ̃
2

−∞

b̃4i√
τ ǫ̃

∂i−1

∂xi−1
1

exp

{

−dǫ̃
1
2
+ y22 − 2ρdǫ̃

1y2
2 (1− ρ2)

}

dy2,

(B.23)

as well as

∂i+kC0,0

∂xk2∂x
i
1

= ex2

∫ dǫ̃
2

−∞

b̃4i√
τ ǫ̃

∂i−1

∂xi−1
1

exp

{

−dǫ̃
1
2
+ y22 − 2ρdǫ̃

1y2
2 (1− ρ2)

}

dy2

+
n−2∑

k=0

ex2
b̃5k

T − t

∂i+k−1

∂xi−1
1 ∂xk2

exp

{

−dǫ̃
1
2
+ dǫ̃

2
2 − 2ρdǫ̃

1d
ǫ̃
2

2 (1− ρ2)

}

. (B.24)



B Appendix for Chapter 4 249

B.3 Poisson equation with CIR operator

Let χ solve

Lj
0χ(vj) + hj = 0, for j = 1, 2 (B.25)

with Li
0 as defined in Equation (4.43) or (4.44) and with hj satisfying the centering

condition

〈h1〉v1 = 0, (B.26)

or

〈h2〉v2 = 0, (B.27)

respectively. The averaging is done as explained before with respect to the invariant

density pinv(vj) of the Cox-Ingersoll-Ross (CIR) process [36]

pinv(vj) =
µCIR
j

aCIR
j

Γ(aCIR
j )

v
aCIR
j −1

j e−µCIR
j vj1vj>0, (B.28)

where

aCIR
j =

2κjζj
σ2
vj

,

µCIR
j =

2κj
σ2
vj

.

Equation (B.25) has to satisfy Equation (B.26) (B.27 respectively) to be solvable (see

Theorem 30). We see that by taking into account the following relationship

〈hj〉vj = −
〈
Lj

0ξ(vj)
〉

vj
= −

∫ ∞

0

(
Lj

0ξ(vj)
)
pinv(vj)dvj

Def.45
=

∫ ∞

0

ξ(vj)
(

Lj
0

∗
pinv(vj)

)

dvj

= 0, (B.29)

where Lj
0

∗
is the adjoint operator of Lj

0 (see Definition (45)) and the inequality in

line two is due to the definition of the adjoint operator. In the third line we exploit

that the invariant distribution solves the adjoint equation Lj
0

∗
pinv(vj) = 0 (see Remark 6).

In the following we derive an upper boundary on the absolute value of ∂χ

∂vj
and χ(vj).
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Hence, we derive an equivalent expression for Lj
0χ:

Lj
0χ =

1

2

(
∂χ

∂vj

(
2κvjζvj

)
− 2vjκvj

∂χ

∂vj
+ σ2

vj
vj
∂2χ

∂v2j

)

=
σ2
vj

2

(
∂χ

∂vj
+ vj

∂χ

∂vj

1

vj
(aj − 1) + vj

∂χ

∂vj
(−µj) + v

∂2χ

∂v2j

)

=
σ2
vj

2pinv(vj)

(

pinv(vj)
∂χ

∂vj
+ vj

∂pinv(vj)

∂vj

∂χ

∂vj
+ vjp

inv(vj)
∂2χ

∂v2j

)

=
σ2
vj

2pinv(vj)

∂

∂vj

(

vjp
inv(vj)

∂χ

∂vj

)

= −hj, (B.30)

where the last line follows due to (B.25). Thus,

σ2
vj

2pinv(vj)

∂

∂vj

(

vjp
inv(vj)

∂χ

∂vj

)

= −hj, (B.31)

and we can solve (B.31) for ∂χ

∂vj
.

∂χ

∂vj
= − 2

σ2
vj
vjpinv(vj)

∫ vj

0

hj(w)p(w)dw, (B.32)

When |hj(vj)| ≤ c1

(

1 + |vj|l
)

we obtain for v →∞, 0

∣
∣
∣
∣

∂χ

∂vj

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
− 2

σ2
vj
vjpinv(vj)

∫ vj

0

h(w)p(w)dw

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
− c2
pinv(vj)vjσ2

vj

∫ vj

0

wlp(w)dw

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

c2
pinv(vj)vjσ2

vj

∫ vj

0

(−µCIR
j )waCIR

j +l−1e−µCIRwµ
CIRaCIR

j −1

Γ(aCIR
j )

dw

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

c2
pinv(vj)vjσ2

vj

(
[

e−µCIRwwaCIR
j +l−1

]vj

0
−
∫ vj

0

waCIR
j +l−2e−µCIRwµ

CIRaCIR
j

Γ(aCIR
j )

dz

)∣
∣
∣
∣
∣

∼ c3v
l−1
j , (B.33)

where we use the inequality for the absolute value of hj(vj) in the second line, the third

line follows when we insert (B.28). We partially integrate the expression in the third

line to obtain the forth line. Note that the first part of the partial integration increases

like vl−1
j because evaluating the expression at the upper limit we get

c3p
inv(vj)v

l

pinv(vj)
while

the expression at the lower limit is zero. The second part, the integral, could be again
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evaluated using partial integration. Note that the result would increase like vl−2
j and so

on. Thus, the absolute value of the above expression increases at infinity or zero at most

like vl−1
j .

For l = 0 we further analyse the behaviour of |χ′| at 0 (the upper limit is c3
1
vj
):

lim
vj→0

∣
∣
∣
∣
∣

−2c4
σ2
vj
vjpinv(vj)

F inv(vj)

∣
∣
∣
∣
∣

(L’Hôpital)
= lim

vj→0

∣
∣
∣
∣
∣
∣

−2c4 ∂F
inv(vj)

∂vj

σ2
vj

(

pinv(vj) + vj
∂pinv(vj)

∂vj

)

∣
∣
∣
∣
∣
∣

= c5. (B.34)

The last equality follows as
∂F inv(vj)

∂vj
and pinv(vj) cancel and vj

∂pinv(vj)

∂vj
= 0. From (B.33)

and (B.34) we can show for l = 0 that

|χ(vj)| ≤ c6 (1 + ln (1 + |vj|)) . (B.35)

B.4 Autocorrelation function for CIR processes

In the following we omit the index j, which indicates the order of the eigenvalue. As

mentioned above we assume no correlation between the processes for the stock prices and

the processes driving the volatility (i.e. ρvj = 0).

Due to the stationarity of {L̄d(n)} the variogram defined by V d,N(k) =
1

N−k

∑N−k

n=1 (L̄
d(n+ k) − L̄d(n))2 is an estimator of the value E

[(
L̄d(j)− L̄d(0)

)2
]

. For

the discrete equilibrium processes {v̄(n)} it is true that (see 2.114 for t→∞):

Cov (v̄(k), v̄(0)) = ϑ2
ve

−κ∗
vk
√
∆t, (B.36)

where

ϑ2
v =

σ2
vζv
2κv

.

By applying (B.36) we compute for the function f(v) = exp {v}:

E

[(
L̄d(n+ k)− L̄d(n)

)2
]

= E

[(
L̄d(k)− L̄d(0)

)2
]

= E
[
(ln f (v̄(k))− ln f (v̄(0)))2

]
+ E

[(

ln

∣
∣
∣
∣

∆W (k)√
∆t

∣
∣
∣
∣
− ln

∣
∣
∣
∣

∆W (0)√
∆t

∣
∣
∣
∣

)2
]

= 2E
[
(v̄)2

]
− 2E [v̄(k)v̄(0)] + 2Var

(

ln

(∣
∣
∣
∣

∆W√
∆t

∣
∣
∣
∣

))

= 2ϑ2
v

(

1− e−κ∗
vk
√
∆t
)

+ 2Var

(

ln

(∣
∣
∣
∣

∆W√
∆t

∣
∣
∣
∣

))

.
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B.5 Appendix to Section 4.5.2

In the following we fist show the expansion of the problem in ε1. We only provide those

expansions which are necessary to solve for the explicitly indicated terms in (4.195). The

analysis of the number of necessary terms for a good convergence will be left for future

research.

Cδ,ε =
∞∑

n=0

Cδ,ε2
n εn1 .

This series is substituted in (4.191) and the first two leading order terms are set to zero.

ε01 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2

+ε22M2
0 + ε2M2

1 +
ε2
δ2
M2

3

]

Cδ,ε2
0 = 0, (B.37)

ε11 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2 + ε22M2
0 + ε2M2

1 +
ε2
δ2
M2

3

]

Cδ,ε2
1

+

[

M1
1 +

1

δ1
M1

3

]

Cδ,ε2
0 = 0. (B.38)

Next we expand in ε2

Cδ,ε2
0 =

∞∑

n=0

Cδ
0,nε

n
2 ,

Cδ,ε2
1 =

∞∑

n=0

Cδ
1,nε

n
2 .

Inserting these expansions in (B.37) as well as (B.38) and forming terms of equal order

in ε2 we get for the first two leading terms

ε01, ε
0
2 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2

]

Cδ
0,0 = 0, (B.39)

ε01, ε
1
2 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2

]

Cδ
0,1

+

[

M2
1 +

1

δ2
M2

3

]

Cδ
0,0 = 0, (B.40)
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ε11, ε
0
2 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2

]

Cδ
1,0

+

[

M1
1 +

1

δ1
M1

3

]

Cδ
0,0 = 0, (B.41)

ε11, ε
1
2 :

[
1

δ21
L1

0 +
1

δ22
L2

0 +
1

δ1
L1

1 +
1

δ2
L2

1 + L2

]

Cδ
1,1

+

[

M1
1 +

1

δ1
M1

3

]

Cδ
0,1 +

[

M2
1 +

1

δ2
M2

3

]

Cδ
1,0 = 0. (B.42)

We expand in δ1

Cδ
0,0 =

∞∑

n=0

Cδ2
0,0,nδ

n
1 , C

δ
0,1 =

∞∑

n=0

Cδ2
0,1,nδ

n
1 , C

δ
1,0 =

∞∑

n=0

Cδ2
1,0,nδ

n
1 .

Again these expansions are substituted in (B.39), (B.40), and (B.41). We set the first

four order terms for (B.39), the first three ones for (B.40) and (B.41) in δ1 to zero and

obtain

for (B.39)

ε01, ε
0
2, δ

−2
1 : L1

0C
δ2
0,0,0 = 0⇒ Cδ2

0,0,0 does not depend on v1, (B.43)

ε01, ε
0
2, δ

−1
1 : L1

0C
δ2
0,0,1 + L1

1C
δ2
0,0,0

︸ ︷︷ ︸

=0

= 0⇒ Cδ2
0,0,1 does not depend on v1, (B.44)

ε01, ε
0
2, δ

0
1 : L1

0C
δ2
0,0,2 + L1

1C
δ2
0,0,1

︸ ︷︷ ︸

=0

+

[

L2 +
1

δ22
L2

0 +
1

δ2
L2

1

]

Cδ2
0,0,0 = 0, (B.45)

ε01, ε
0
2, δ

1
1 : L1

0C
δ2
0,0,3 + L1

1C
δ2
0,0,2 +

[

L2 +
1

δ22
L2

0 +
1

δ2
L2

1

]

Cδ2
0,0,1 = 0. (B.46)

Note that we use here the same argument as in (4.51) and choose a v1-independent solution
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for Cδ2
0,0,0 and Cδ2

0,0,1. Furthermore, insert the expansion

in (B.40)

ε01, ε
1
2, δ

−2
1 : L1

0C
δ2
0,1,0 = 0⇒ Cδ2

0,1,0 does not depend on v1, (B.47)

ε01, ε
1
2, δ

−1
1 : L1

0C
δ2
0,1,1 + L1

1C
δ2
0,1,0

︸ ︷︷ ︸

=0

= 0⇒ Cδ2
0,1,1 does not depend on v1, (B.48)

ε01, ε
1
2, δ

0
1 : L1

0C
δ2
0,1,2 + L1

1C
δ2
0,1,1

︸ ︷︷ ︸

=0

+

[

L2 +
1

δ22
L2

0 +
1

δ2
L2

1

]

Cδ2
0,1,0

+

[

M2
1 +

1

δ2
M2

3

]

Cδ2
0,0,0 = 0, (B.49)

in (B.41)

ε11, ε
0
2, δ

−2
1 : L1

0C
δ2
1,0,0 = 0⇒ Cδ2

1,0,0 does not depend on v1, (B.50)

ε11, ε
0
2, δ

−1
1 : L1

0C
δ2
1,0,1 + L1

1C
δ2
1,0,0 +M1

3C
δ2
0,0,0

︸ ︷︷ ︸

=0

= 0

⇒ Cδ2
1,0,1 does not depend on v1, (B.51)

ε11, ε
0
2, δ

0
1 : L1

0C
δ2
1,0,2 + L1

1C
δ2
1,0,1

︸ ︷︷ ︸

=0

+

[

L2 +
1

δ22
L2

0 +
1

δ2
L2

1

]

Cδ2
1,0,0

+M1
1C

δ2
0,0,0 +M1

3C
δ2
0,0,1 = 0. (B.52)

Finally, we expand in δ2

Cδ2
0,0,0 =

∞∑

n=0

C0,0,0,nδ
n
2 , C

δ2
0,0,1 =

∞∑

n=0

C0,0,1,nδ
n
2 ,

Cδ2
0,1,0 =

∞∑

n=0

C0,1,0,nδ
n
2 , C

δ2
1,0,0 =

∞∑

n=0

C1,0,0,nδ
n
2 .

Inserting these expressions in (B.45), (B.46), (B.49) as well as (B.52), forming terms of

equal power in δ2 and setting the first four leading terms in (B.45) and the first three
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leading terms in (B.46), (B.49) and (B.52) to zero we receive

for (B.45)

ε01, ε
0
2, δ

0
1, δ

−2
2 : L2

0C0,0,0,0 = 0⇒ C0,0,0,0 does not depend on v2, (B.53)

ε01, ε
0
2, δ

0
1, δ

−1
2 : L2

0C0,0,0,1 + L2
1C0,0,0,0
︸ ︷︷ ︸

=0

= 0⇒ C0,0,0,1 does not depend on v2, (B.54)

ε01, ε
0
2, δ

0
1, δ

0
2 : L2

0C0,0,0,2 + L2
1C0,0,0,1
︸ ︷︷ ︸

=0

+L2C0,0,0,0 + L1
0C0,0,2,0 = 0, (B.55)

ε01, ε
0
2, δ

0
1, δ

1
2 : L2

0C0,0,0,3 + L2
1C0,0,0,2 + L2C0,0,0,1 + L1

0C0,0,2,1 = 0, (B.56)

for (B.46)

ε01, ε
0
2, δ

1
1, δ

−2
2 : L2

0C0,0,1,0 = 0⇒ C0,0,1,0 does not depend on v2, (B.57)

ε01, ε
0
2, δ

1
1, δ

−1
2 : L2

0C0,0,1,1 + L2
1C0,0,1,0
︸ ︷︷ ︸

=0

= 0⇒ C0,0,1,1 does not depend on v2, (B.58)

ε01, ε
0
2, δ

1
1, δ

0
2 : L2

0C0,0,1,2 + L2
1C0,0,1,1
︸ ︷︷ ︸

=0

+L2C0,0,1,0 + L1
0C0,0,3,0 + L1

1C0,0,2,0 = 0, (B.59)

for (B.49)

ε01, ε
1
2, δ

0
1, δ

−2
2 : L2

0C0,1,0,0 = 0⇒ C0,1,0,0 does not depend on v2, (B.60)

ε01, ε
1
2, δ

0
1, δ

−1
2 : L2

0C0,1,0,1 + L2
1C0,1,0,0 +M2

3C0,0,0,0
︸ ︷︷ ︸

=0

= 0

⇒ C1,0,0,1 does not depend on v2, (B.61)

ε01, ε
1
2, δ

0
1, δ

0
2 : L2

0C0,1,0,2 + L2
1C0,1,0,1
︸ ︷︷ ︸

=0

+L2C0,1,0,0 + L1
0C0,1,2,0

+M2
1C0,0,0,0 +M2

3C0,0,0,1
︸ ︷︷ ︸

=0

= 0, (B.62)
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for (B.52)

ε11, ε
0
2, δ

0
1, δ

−2
2 : L2

0C1,0,0,0 = 0⇒ C1,0,0,0 does not depend on v2, (B.63)

ε11, ε
0
2, δ

0
1, δ

−1
2 : L2

0C1,0,0,1 + L2
1C1,0,0,0
︸ ︷︷ ︸

=0

= 0

⇒ C1,0,0,1 does not depend on v2, (B.64)

ε11, ε
0
2, δ

0
1, δ

0
2 : L1

0C1,0,2,0 + L2
0C1,0,0,2 + L2

1C1,0,0,1
︸ ︷︷ ︸

=0

+L2C1,0,0,0

+M1
1C0,0,0,0 +M1

3C0,0,1,0
︸ ︷︷ ︸

=0

= 0. (B.65)

Solving the PDE for the leading terms C0,0,0,0 and CB,0,0,0,0

We see that C0,0,0,0 is independent from v1 and v2 (see (B.43) and (B.53)) and that

Equation (B.55) is a Poisson equation in C0,0,0,2 and C0,0,2,0 with respect to v1 and v2. All

other steps are analogue to Section 4.5.1 (compare (4.66) and the explanations before)

and thus,

C0,0,0,0 (t, S1, S2) = S2N2(d2,d1, ρ)−K2e
−rτN2(d

∗
2;d

∗
1, ρ), (B.66)

where

τ = T − t, xi = ln
Sie

−
∫ T
t

r(s)ds

Ki

,

d∗
1 = d1 − ρσ2

√
τ , d1 =

x1
σ1

√
τ
− 1

2
σ1

√
τ + ρσ2

√
τ ,

d∗
2 = d2 − σ2

√
τ , d2 =

x2
σ2

√
τ
+

1

2
σ2

√
τ ,

with

σ̄2
1(y1, y2) = a211

〈
f 2
1

〉

v1
+ a212

〈
f 2
2

〉

v2
,

σ̄2
2(y1, y2) = a221

〈
f 2
1

〉

v1
+ a222

〈
f 2
2

〉

v2
, (B.67)

ρ̄(y1, y2) =
a11a21 〈f 2

1 〉v1 + a12a22 〈f 2
2 〉v2

σ̄1σ̄2
.

CB,0,0,0,0, the respective expansion term for the two-asset option with two barriers, is

hence for ρ = − cos
(
2πk
n

)
given by (see also (4.67) and (4.68))

CB,0,0,0,0 (t, S1, S2) =
n−1∑

k=0

e
y1(c1σ1−c1σ1 cos( 2πk

n )+ 1√
1−ρ2

(−c2σ2−ρc1σ1) sin(
2πk
n

))

(
B2(H

+
1 −H−

1 )− e−rτK2(H
+
2 −H−

2 )
)
, (B.68)
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with the parameter given in (4.72).

Solving the PDE for the first-order corrections C0,0,0,1, CB,0,0,0,1 and C0,0,1,0 as

well as CB,0,0,1,0

Equation (B.55) can be also seen as a Poisson equation in v1 only (in v2 respectively)

for C0,0,0,2 (C0,0,2,0). We perform the steps analogously to the Solution (4.84) under the

fast-mean reversion model in Section 4.5.1 and we can give the solutions:

C0,0,0,1 = −(T − t)A2C0,0,0,0, (B.69)

where

A2C0,0,0,0 = σv2ρ
v
2

〈

f2
√
v2
∂φ2

∂v2

〉

v2

(

a12S1
∂

∂S1

+ a22S2
∂

∂S2

)

(

a12a22S1S2
∂2

∂S1∂S2

+
1

2
a212S

2
1

∂2

∂S2
1

+
1

2
a222S

2
2

∂2

∂S2
2

)

C0,0,0,0

with ∂φ2

∂v2
= − 2

σ2
v2

v2p(v2)

∫ v2

0

(

f 2
2 (z, y2)− 〈f 2

2 〉
2
v2

)

p(z)dz (see (B.3)).

We obtain with Equation (B.59) an analogous expression for C0,0,1,0.

C0,0,1,0 = −(T − t)A1C0,0,0,0, (B.70)

with

A1 = σv1ρ
v
1

〈

f1
√
v1
∂φ1

∂v1

〉

v1

(

a11S1
∂

∂S1

+ a21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

.

Analogously to the Solution (4.96) we can write down the solution of the barrier option

term:

CB,0,0,0,1 = ĈB,0,0,0,1 − Ṽ12S1
∂2CB,0,0,0,0

∂S1∂ 〈f 2
2 〉v2
− Ṽ22S2

∂2CB,0,0,0,0

∂S2∂ 〈f 2
2 〉v2

. (B.71)

and

CB,0,0,1,0 = ĈB,0,0,1,0 − Ṽ11S1
∂2CB,0,0,0,0

∂S1∂ 〈f 2
2 〉v2
− Ṽ21S2

∂2CB,0,0,0,0

∂S2∂ 〈f 2
2 〉v2

. (B.72)
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Solving the PDE for the first-order corrections C1,0,0,0, CB,1,0,0,0 and C0,1,0,0 as

well as CB,0,1,0,0

We interpret Equation (B.65) as a Poisson equation in C1,0,2,0 and C1,0,0,2 with respect to

v1 and v2. Hence,

〈〈L2〉〉v1,v2 C1,0,0,0 = −
〈〈
M1

1

〉〉

v1,v2
C0,0,0,0,

where

〈〈
M1

1

〉〉

v1,v2
C0,0,0,0 = ρy1σy1

√
y1 〈f1〉v1

(

a11S1
∂

∂S1

+ a21S2
∂

∂S2

)
∂

∂y1
C0,0,0,0. (B.73)

We know that (compare (4.87))

LBS(σ̄1, σ̄2, ρ)
∂C0,0,0,0

∂ 〈f 2
1 〉v1

= −
(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0,

∂

∂ 〈f 2
1 〉v1

C0,0,0,0 (T, S1, S2) = 0.

From there we can conclude

∂

∂ 〈f 2
1 〉v1

C0,0,0,0 = (T − t)
(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0.

We can then reformulate (B.73) to

〈〈
M1

1

〉〉

v1,v2
C0,0,0,0 = (T − t)ρy1σy1

√
y1 〈f1〉v1

∂ 〈f 2
1 〉v1

∂y1

(

a11S1
∂

∂S1

+ a21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0.

The following result easily follows as LBS commutes with Si
∂k

∂Sk
i

for k = 1, 2.

C1,0,0,0 =
1

2
(T − t)

〈〈
M1

1

〉〉

v1,v2
C0,0,0,0. (B.74)

Analogously, the respective corollary for C0,1,0,0 follows from Equation (B.62).

C0,1,0,0 =
1

2
(T − t)

〈〈
M2

1

〉〉

v1,v2
C0,0,0,0. (B.75)
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〈〈
M2

1

〉〉

v1,v2
C0,0,0,0 = (T − t)ρy2σy2

√
y2 〈f2〉v2

∂ 〈f 2
2 〉v2

∂y2

(

a12S1
∂

∂S1

+ a22S2
∂

∂S2

)

(

a12a22S1S2
∂2

∂S1∂S2

+
1

2
a212S

2
1

∂2

∂S2
1

+
1

2
a222S

2
2

∂2

∂S2
2

)

C0,0,0,0.

Introducing barriers leads to the following system for C1,0,0,0

LBSCB,1,0,0,0 = −
〈〈
M1

1

〉〉

v1,v2
CB,0,0,0,0,

CB,1,0,0,0 (T, S1, S2) = 0,

CB,1,0,0,0(t, B1(t), S2) = 0,

CB,1,0,0,0(t, S1, B2(t)) = 0. (B.76)

Again, we transform the PDE in such a way that we solve a homogeneous PDE with

inhomogeneous boundary conditions. Hence,

LBS

(

−(T − t)
〈〈
M1

1

〉〉

v1,v2
C0,0,0,0

)

= 〈〈M1
1〉〉v1,v2C0,0,0,0

−(T − t)ρy1σy1
√
y1 〈f1〉v1

1

2
(a11S1

∂

∂S1

+ a21S2
∂

∂S2

)
(

2a11a21S1S2
∂2

∂S1∂S2

+ a211S
2
1

∂2

∂S2
1

+ a221S
2
2

∂2

∂S2
2

)

C0,0,0,0,

and

LBS

(

− (T − t)2
2

(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0

)

= (T − t)
(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0,



260 B.5 Appendix to Section 4.5.2

as LBS commutes with Si
∂k

∂Sk
i

, k = 1, 2 and LBSC0,0,0,0 = 0. Thus, we define

ĈB,1,0,0,0 = CB,1,0,0,0 − (T − t)
〈〈
M1

1

〉〉

v1,v2
C0,0,0,0 −

(T − t)2
2

(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0,

˜̃V11 = a11ρ
y
1σy1
√
y1 〈f1〉v1

∂ 〈f1〉v1
∂y1

,

˜̃V21 = a11ρ
y
1σy1
√
y1 〈f1〉v1

∂ 〈f1〉v1
∂y1

. (B.77)

Hence, we obtain

LBS(ρ̄, σ̄1, σ̄2)ĈB,1,0,0,0 = 0,

ĈB,1,0,0,0 (T, S1, S2) = 0,

ĈB,1,0,0,0(t, B1(t), S2) = ˜̃g11(t, B1, S2, y1, y2),

ĈB,1,0,0,0(t, S1, B2(t)) = ˜̃g12(t, S1, B2, y1, y2), (B.78)

with

˜̃g11(t, B1, S2, y1, y2) = −(T − t)
〈〈
M1

1

〉〉

v1,v2
C0,0,0,0

−(T − t)2
2

(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0

∣
∣
S1=B1(ι1),

˜̃g12(t, S1, B2, y1, y2) = −(T − t)
〈〈
M1

1

〉〉

v1,v2
C0,0,0,0

−(T − t)2
2

(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0

∣
∣
S2=B2(ι2).

For the solution it holds

ĈB,1,0,0,0(t, S1, S2, B1, B2) =

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c2(σ2a
′
p sinβp)˜̃g11(t

′, B1, B2e
σ2a

′
p sin βp)

pxGBM

(
ι′ ∈ dt′, θ′p = βp

)
da′pdt

′

+

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c1(σ1a
′
p

√
1−ρ2)˜̃g21(t

′, B1e
σ1

√
1−ρ2a′p , B2)

pxGBM

(
ι′ ∈ dt′, θ′p = 0

)
da′pdt

′. (B.79)
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CB,1,0,0,0 is given by

CB,1,0,0,0 = ĈB
1,0,0,0 + (T − t)

〈〈
M1

1

〉〉

v1,v2
C0,0,0,0 +

(T − t)2
2

(

˜̃V11S1
∂

∂S1

+ ˜̃V21S2
∂

∂S2

)

(

a11a21S1S2
∂2

∂S1∂S2

+
1

2
a211S

2
1

∂2

∂S2
1

+
1

2
a221S

2
2

∂2

∂S2
2

)

C0,0,0,0. (B.80)

Analogously, we can conclude

ĈB,0,1,0,0(t, S1, S2, B1, B2) =

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c2(σ2a
′
p sinβp)˜̃g21(t

′, B1, B2e
σ2a

′
p sin βp)

pxGBM

(
ι′ ∈ dt′, θ′p = βp

)
da′pdt

′

+

∫ T

0

∫ ∞

0

e−c1b1−c2b2e−c1(σ1a
′
p

√
1−ρ2)˜̃g22(t

′, B1e
σ1

√
1−ρ2a′p , B2)

pxGBM

(
ι′ ∈ dt′, θ′p = 0

)
da′pdt

′, (B.81)

with

˜̃g21(t, B1, S2, y1, y2) = (T − t)
〈〈
M2

1

〉〉

v1,v2
C0,0,0,0

−(T − t)2
2

(

˜̃V12S1
∂

∂S1

+ ˜̃V22S2
∂

∂S2

)

(

a12a22S1S2
∂2

∂S1∂S2

+
1

2
a212S

2
1

∂2

∂S2
1

+
1

2
a222S

2
2

∂2

∂S2
2

)

C0,0,0,0

∣
∣
S1=B1(ι1),

˜̃g22(t, S1, B2, y1, y2) = −(T − t)
〈〈
M2

1

〉〉

v1,v2
C0,0,0,0 −

(T − t)2
2

(

˜̃V12S1
∂

∂S1

+ ˜̃V22S2
∂

∂S2

)

(

a12a22S1S2
∂2

∂S1∂S2

+
1

2
a212S

2
1

∂2

∂S2
1

+
1

2
a222S

2
2

∂2

∂S2
2

)

C0,0,0,0

∣
∣
S2=B2(ι2),

˜̃V22 = a22ρ
y
2σy2y2 〈f1〉v2

∂σ̃2
∂y2

,

˜̃V12 = a12ρ
y
2σy2y2 〈f1〉v2

∂σ̃2
∂y2

.

CB,0,1,0,0 is given by

CB,0,1,0,0 = ĈB
0,1,0,0 +

(T − t)2
2

(

˜̃V12S1
∂

∂S1

+ Ṽ22S2
∂

∂S2

)

(

a12a22S1S2
∂2

∂S1∂S2

+
1

2
a212S

2
1

∂2

∂S2
1

+
1

2
a222S

2
2

∂2

∂S2
2

)

CB,0,0,0,0

+(T − t)〈〈M2
1〉〉v1,v2C0,0,0,0. (B.82)
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Ḡ (t,x) . . . . . . . . . . . . . . . . . . Kernel, e.g. fundamental solution, Green function
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1(n)} (top plot) and {Ŝd
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