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Abstract: Computing the subspace spanned by the eigenvectors corresponding to the r
largest eigenvalues of a symmetric matrix is an important subtask in many signal processing
applications and statistics. Here, from the application side, we focus on subspace based
algorithms for sensor node localization in wireless sensor networks. A conjugate gradient
method on the Grassmann manifold is proposed to compute the r-dimensional dominant
subspace of an (n × n)-symmetric matrix. This leads to new subspace algorithms which
avoid the time consuming eigendecomposition of the data matrix, but rather compute the
signal and the noise space in O(n2r3) flops. Some convergence aspects are discussed and
numerical simulations are presented to illustrate the performance of the proposed algorithm.
When applied to the problem of sensor positions estimation with M sensors, the full-set
subspace algorithm is reduced from order O(M6) to O(M4) without loosing accuracy.
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Subspace based algorithms are widely used in signal
processing applications. They are for example used in
two or three dimensional sensor node localization in
wireless sensor networks (WSN) using node-to-node
squared distance measurements obtained from pair-
wise time-of-arrival (TOA) or received signal strength
(RSS) (So & Chan, 2007; Chan, et al., 2009).
A typical subproblem in subspace algorithms is the
task of estimating an orthogonal basis of the signal
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and the noise space of the so called multidimensional
similarity matrix (Chan, et al., 2009). Considering M
sensors, this matrix is a symmetric (M2×M2) matrix
of rank 2 (if noise is neglected). Since a complete
eigendecomposition of a symmetric (n× n) matrix is
of order O(n3), it is of order O(M6) for the multidi-
mensional similarity matrix in terms of the number of
sensors. In this paper we propose a method to compute
an orthogonal basis of the signal space that avoids
the computation of a complete eigendecomposition by
assuming that its dimension is known a priori. The
algorithm is of order O(n2r3) and hence efficient in
the case when r << n. Implemented in the full



set subspace algorithm, it will reduce the order from
O(M6) to O(M4).
Note, that also other methods are thinkable, e.g. meth-
ods that extract in each step an approximation of the
dominant eigenvector, e.g. with Rayleigh quotient it-
eration methods (Parlett, 1974) and then reduce the
problem. In contrast to these methods, our approach
focusses on the direct computation of the signal space.

Following the ideas developed in (Gabay, 1982), a
conjugate gradient (CG) method on the Grassmann
manifold is presented that computes the subspace cor-
responding to the r largest eigenvalues of the symmet-
ric matrix A. This geometric approach is in contrast
to conjugate gradient methods in the Euclidean space
(Yang, et al., 1989), that do not iterate on the restricted
manifold and hence work with a larger number of
parameters. Such an intrinsic approach has also been
exploited in (Absil, et al., 2002), where a Newton-
type method on the Grassmann manifold is proposed.
The algorithm proposed in (Absil, et al., 2002) has
low numerical complexity only if the initial symmetric
matrix is preconditioned to be tridiagonal. However,
if A changes over time, such a tridiagonalization is
required at each time instance. CG-methods, in con-
trast, are powerful optimization techniques and suit-
able for tracking (Fu & Dowling, 1995). They have
also been used in (Feng & Owen, 1996) for computing
the smallest eigenpair of a symmetric matrix. Another
disadvantage of Newton-methods is that they usually
get stuck in critical points, whereas our method shows
global convergence behavior.

Here, we modify and specify the algorithm by using
an approximation of the Riemannian exponential via
QR-decomposition and a step size which is computa-
tionally efficient to compute. Ultimately, this leads to
an algorithm that maintains the geometric structure of
the problem and is computationally cheap. Exploiting
the intrinsic structure of the problem lets us expect that
the computation of the signal and noise spaces is very
accurate and robust to rounding errors. Our approach
has the advantage of leading to efficient subspace es-
timation algorithms, which are more adapted to real
time applications. Besides the aforementioned im-
provement of the most accurate localization method,
the so called full-set subspace algorithm (Chan, et
al., 2009), the multidimensional scaling localization
method (MDS) (Shang, et al., 1984) is reduced from
order O(M3) to order O(M2) while maintaining ac-
curacy.

The rest of the paper is organized as follows. The
mathematical framework is provided in Section 2 and
the algorithm is proposed in Section 3, including a
discussion of convergence properties and aspects of
implementation. Simulation results to illustrate the
performance of the proposed method are presented in
Section 4. Concluding remarks are given in Section 5.

1. MATHEMATICAL FRAMEWORK ON THE
GRASSMANN MANIFOLD

Let P be the r-dimensional dominant subspace of a
symmetric (n × n)-matrix A. In many applications,
A is a symmetric positive semidefinite matrix and
P is called the signal space. In this context, its or-
thogonal complement P⊥ is referred to as the noise
space. We follow the ideas proposed in (Kleinsteuber
& Hüper, 2007) and consider a conjugate gradient
algorithm on the set of r-dimensional subspaces of
Rn, the so-called Grassmann manifold, which is dif-
feomorphic to the set of symmetric rank-r projectors
Grr,n := {uu> | u ∈ Rn×r, u>u = I}, where I is
the identity matrix. We endowGrr,n with the Rieman-
nian structure inherited from the surrounding space of
symmetric matrices with inner product tr(AB), where
tr(X) is the trace of the matrix X . In contrast to
(Kleinsteuber & Hüper, 2007), a more sophisticated
approximation of the Riemannian exponential map
and the parallel transport is proposed. Although here
we restrict to the real case, an extension to Hermitian
matrices is straightforward.

At first we have to introduce some notations. Let
son := {Ω ∈ Rn×n | Ω = −Ω>} denote the set of all
skew-symmetric (n× n)-matrices and SOn := {Q ∈
Rn×n |Q>Q = I} the set of orthogonal matrices. Let
Rn be the set of invertible upper triangular (n × n)-
matrices with positive entries on the diagonal and let
Gln := {X ∈ Rn×n | X is invertible}. It follows
from the Gram-Schmidt orthogonalization procedure
that the map

SOn ×Rn → Gln, (Q,R) 7→ QR (1)

is a diffeomorphism. According to Eq. (1) every X ∈
Gln decomposes uniquely into

X =: XQXR (2)

with XQ ∈ SOn and XR ∈ Rn. Every (n × n)-
matrix decomposes uniquely into the sum of a skew-
symmetric and an upper triangular matrix. We write

X =: Xskew +Xupp (3)

with Xskew ∈ son and Xupp upper triangular. The
map

qΩ : R→ Un, t 7→ (I + tΩ)Q (4)

is smooth for all Ω ∈ son. Moreover,

q̇Ω(0) = Ω, q̈Ω(0) = (Ω2)upp (5)

cf. (Kleinsteuber & Hüper, 2007). Now, for fixed θ ∈
SOn, the identities

q̇θ>Ωθ(0) = θ>Ωθ, q̈θ>Ωθ(0) = (θ>Ω2θ)upp (6)

are easily verified. For two squared matrices A,B,
we denote the commutator by [A,B] := AB −
BA. The above results allow us to give an accurate
approximation of the geodesics

γξ(t) = et[ξ,P ]P e−t[ξ,P ], (7)



where ξ ∈ TPGrr,n = {[P,Ω] | Ω ∈ son}, the
tangent space at P ∈ Grr,n. Indeed, for all θ ∈ SOn
the curve

αξ : R→ Grr,n,

t→ θqθ>[ξ,P ]θ(t)θ
>Pθ

(
qθ>[ξ,P ]θ(t)

)>
θ>,

(8)

where q[ξ,P ](t) is defined as in Eq. (4), is a first order
approximation of the geodesic (7) around P , i.e. the
identities

αξ(0) = γξ(0), α̇ξ(0) = γ̇ξ(0) (9)

hold. The parallel transport of η ∈ TPGrr,n with re-
spect to the Levi-Civita connection along the geodesic
γξ(t) is given by

η(t) = et[ξ,P ]ηe−t[ξ,P ] (10)

and, according to the above results, will be approxi-
mated by

τ(η, t) := θqθ>[ξ,P ]θ(t)θ
>ηθ

(
qθ>[ξ,P ]θ(t)

)>
θ>.

(11)
In general, a conjugate gradient method for optimizing
a smooth function on RN requires a restart after N
iterations in order to achieve N -step local quadratic
convergence, cf. (Nocedal & Wright, 1999). This
also holds true for the generalization of CG-methods
to geodesically complete Riemannian manifolds, cf.
(Gabay, 1982), where in this case N is the dimension
of the manifold. For our purposes, however, it turns
out that the algorithm converges with much fewer it-
erates, hence we will not stress the issue of restarting.

2. COST FUNCTION AND IMPLEMENTATION

In the following, the cost function that is to be opti-
mized is presented. We refer to (Helmke, et al., 2007)
for a derivation of the stated results. Given some
u ∈ {u ∈ Rn×r | u>u = I} we denote by u⊥ ∈
Rn×(n−r), u>u⊥ = 0, (u⊥)>u⊥ = I an orthonormal
basis of the orthogonal complement of the vectorspace
spanned by the columns of u. Note, that u⊥ is unique
up to multiplication with some orthogonal (n − r) ×
(n − r) matrix and that the matrix [u, u⊥] (not to be
confounded with a commutator) is orthogonal. Let

f : Grr,n → R, P 7→ tr(PA). (12)

The Riemannian gradient of f is given by

∇f(P ) = [P, [P,A]]. (13)

Moreover, cf. (Helmke & Moore, 1994),

(a) P = uu> is a critical point of f if and only if
Ã = [u, u⊥]>A[u, u⊥] is blockdiagonal, i.e.

Ã =
[
A11 0
0 A22

]
,

whereA11 is (r×r) andA22 is (n−r)×(n−r).

(b) P is a maximum of f if and only if trA11 =∑r
i=1 λi, where λ1 ≥ · · · ≥ λn are the eigenval-

ues of A. This maximum is unique on Grr,n if
λr > λr+1.

In its abstract form, the CG-method for computing
the r-dimensional dominant subspace of the symmet-
ric (n × n)-matrix A now reads as follows. We will
provide an implementable version subsequently. Ab-
breviatory, denote the Riemannian gradient at Pi by
Gi := ∇f(Pi) = [Pi, [Pi, A]].

CG-Sweep. Let P0 ∈ Grr,n be given. Set H0 := G0

and Ω0 := [P0, H0]. Then for i = 0, 1, . . .

Line-Search
The line search is done via a modified one dimensional
Newton step along the curve αHi

(t), cf. Eq. (8), where
θ is chosen such that θ>Ωθ is blockdiagonal with
nonzero entries only in the upper (2r×2r)-block (See
later for more details). The proposed stepsize is

λi :=
d
dt |t=0f ◦ αHi

(t)

| d
2

dt2 |t=0f ◦ αHi
(t)|

, (14)

where, using Ωi = [Hi, Pi],
d
dt |t=0f ◦ αHi

(t) = 2tr(A[Ωi, Pi]),
d2

dt2 |t=0f ◦ αHi(t) =

= 2tr(A(θ(θ>Ω2
i θ)uppθ

>Pi − ΩiPiΩi)).

(15)

Set Pi+1 = αH0(λi).

Direction-Update
We compute the new direction Hi+1 ∈ TPi+1Grr,n
according to a Riemannian adaption of the Hestenes-
Stiefel-Formula, cf. (Nocedal & Wright, 1999), namely

Hi+1 = −Gi+1 + γiτHi, (16)

where γi =
tr
(
Gi+1(Gi+1 − τGi)

)
tr
(
τHi(Gi+1 − τGi)

)
and τHi := τ(Hi, λi), τGi := τ(Gi, λi).

(17)

2.1 On the convergence of the dominant subspace
algorithm

It is easily seen that every critical point of the cost
function is a stationary point of the algorithm. How-
ever, the step size is chosen in a way, that all critical
points except the maximum are not attractive. To see
this, we first investigate a regular Newton-step along
the curve g(t) := f ◦ αH(t), where αH(0) =: P and
H ∈ TPGrr,n. Let Z := g(t∗) be a critical point of g.
The following lemma translates the well known local
convergence results for the one dimensional Newton
method to the problem considered here.

Lemma 1. Let |t∗| be sufficiently small. A regular
Newton-step along the curve αH , given by

N(αH(t)) = αH

(
t− g′(t)

g′′(t)

)
, (18)



reduces the distance from P to Z. Under the assump-
tion that g′′(t∗) 6= 0, this reduction is even quadratic,
i.e. ‖N(P ) − Z‖ ≤ C‖P − Z‖2 for some constant
C ≥ 0.

Proof. The derivative of N is given by

Ṅ(αH(t)) =

α̇H

(
t− g′(t)

g′′(t)

)(
1− (g′′(t))2 + g′(t)g′′′(t)

(g′′(t))2

)
.

(19)

Thus, by a Taylor argument, using N(Z) = Z,

‖N(P )− Z‖ = ‖N(αH(0))−N(αH(t∗))‖
= ‖Ṅ(αH(t∗)) + 1

2N̈(αH(ξ))t2∗‖
≤ C1t

2
∗,

(20)

where C1 := max
ξ∈[0,t∗]

‖ 1
2N̈(αH(ξ))‖. The approxima-

tion property of αH , cf. Eq. (9), now yields

|t∗| = ‖γH(0)− γH(t∗)‖
= ‖P − αH(t∗) +O(t2∗)‖ ≤ ‖P − Z‖+O(t2∗).

(21)

It follows, that for small |t∗| there is a constantC2 > 0
(independent of t∗) such that

|t∗| ≤ C2‖P − Z‖ (22)

and hence

‖N(P )− Z‖ ≤ C1t
2
∗

≤ C1C
2
2‖P − Z‖2

≤ C‖P − Z‖2,
(23)

where C := C1C
2
2 . In the case where t∗ is a higher

order zero of g, i.e. g(l)(t∗) = 0 for l = 2, . . . , n and
g(n+1)(t∗) 6= 0, a standard argument from the one-
dimensional Newton iteration applies in a similar way,
leading to linear reduction of the distance between P
and Z.
The non-attractiveness of the critical points Z that
are not maxima is easily verified: Since Z is not a
maximum, there exists a direction H ∈ TZGrr,n and
some δ > 0 such that g(t) := αH(t), αH(0) = Z
is strictly convex for t ∈ (−δ, δ). Now let P :=
αH(δ/2). Since g′′(δ/2) > 0, the stepsize (14) is
exactly the negative of the regular Newton step. Since
the latter one reduces the distance between P and Z if
δ is chosen sufficiently small, stepsize (14) enlarges
the distance. Note that the above statements do not
guarantee global convergence of the algorithm, nor
do they allow to deduce results of the local speed of
convergence. However, the non-attractiveness of the
non-maximal critical points seems to be essential for
practical purposes. Indeed, if a regular Newton step is
implemented instead of the one that is proposed here,
the algorithm get stuck in non-maximal critical points,
whereas in all experiments with stepsize (14), global
convergence has been observed.

2.2 Implementation

Let u ∈ Rn×r with u>u = I . Then u⊥ is computed
via a Householder QR-decomposition, i.e.

Q[I 0]> = u. (24)

This computation requires 2/3r(r2−3rn+6n2) flops,
cf. (Golub & van Loan, 1996), and Q = [u, u⊥].

Lemma 2
Let P = uu>, let Q as in Eq. (24) and H ∈ TPGrr,n.
Then there exist r Householder transformations θ̃ :=
θrθr−1 . . . θ1 such that for Ω := [H,P ] we obtain the
block structure

Ω = Qθ̃

0 −R> 0
R 0 0
0 0 0

 θ̃>Q>, (25)

with R ∈ Rr×r upper triangular. The computation
of the sequence θrθr−1 . . . θ1 requires 2rn2 + r2n −
8/3r3 flops.

Proof
Let s := Hu ∈ Rn×r (requires n2r flops), s̃ :=
(u⊥)>s (requires (n− r)nr flops) and let

θ̃[R 0]> = s̃ (26)

be the QR-decomposition of s̃. Storing θ̃ as a se-
quence of r Householder transformations, the compu-
tation of Eq. (26) requires 2r2((n − r) − r/3) flops.
Now
Q>ΩQ = Q>(Huu> − uu>H)Q

= Q>(su> − us>)Q

= [u, u⊥]>su>[u, u⊥]− [u, u⊥]>us>[u, u⊥]

=
[
u>s 0

(u⊥)>s 0

]
−
[
s>u s>u⊥

0s 0

]
=
[

0 −s>u⊥
(u⊥)>s 0

] [
0 −s̃>
s̃ 0

]
,

(27)

since s>u = u>s. Hence altogether 2rn2 + r2n −
8/3r3 flops are needed to compute

Ω = θ

0 −R> 0
R 0 0
0 0 0

 θ>, with θ := Q

[
I 0
0 θ̃

]
. 2

(28)
We use the above results and implement an intrinsic
CG-method of order O(n2r3) for computing the r-
dimensional dominant subspace of a symmetric (n ×
n)-matrix A. The algorithm stops if the norm of the
gradient is small. As an easy norm to compute for a
matrix G, we choose

‖G‖∞ := max
i,j
|Gij |. (29)

Let Ir denote the (r × r)-identity matrix and let the
blocks of A be denoted as

A =
[
A11 A

>
21

A21 A22

]
,

where A11 ∈ Rr×r, A22 ∈ R(n−r)×(n−r). For
some squared matrix X , diag(X) is a diagonal matrix



having the same diagonal entries than X . Moreover,
Xij denotes the (i, j)-entry of X .

Algorithm
function [u, u⊥] = domsub(A, r)

u ←
[
Ir
0

]
; u⊥ ←

[
0

In−r

]
; H ←

[
0 A>21

A21 0

]
;

b←
[

0
A21

]
;

while 1

s ← Hu; s̃ ← (u⊥)>s;
(
θ̃,

[
R
0

])
← QR-dec. of

s̃; θ ← [u, u⊥]
[
Ir 0
0 θ̃

]
;

% Next, we compute ∆ := (θ>Ω2θ)upp as in Eq. (15).

S ←

−R>R 0 0
0 −RR> 0
0 0 0

; ∆← diag(S)

for i = 1 : 2r
for j = i+ 1 : 2r

∆ij ← 2Sij ;
end

end

λ←
tr
(

(b>(s− us>u)
)

∣∣∣tr(b>θ∆θ>u)− tr
(

(s− us>u)>(bs>u−As)
)∣∣∣ ;

(θ2, R2)←QR-decomposition of I2r+λ
[

0 −R>
R 0

]
;

Θ← θ

[
θ2 0
0 In−2r

]
θ>;

τG← Θ(ub> + bu> − 2uu>bu>)Θ>; u← Θu;(
[u, u⊥],

[
Ir
0

])
← QR-dec. of u;

b← Au; τΩ← Θsu> − u(Θs)>;
τH ← τΩuu> + u(τΩu)>;
G← ub> + bu> − 2uu>bu>;
if ‖G‖∞ < thresh; break;

γ ←
tr
(
G(G− τG)

)
tr
(
τH(G− τG)

) ; H ← −G+ γτH;

end
Note, that it is not required to explicitly compute θ
nor θ2, but rather storing the product of [u, u⊥] and a
sequence of Housholder matrices, cf. Eq. (25).

2.3 Discussion of the dominant subspace algorithm

The above algorithm for computing the signal and the
noise space of a symmetric matrix is, as well as any al-
gorithm for computing the complete eigendecomposi-
tion, not a finite algorithm, i.e. the dominant subspace
can not be computed in finitely many steps. We there-
fore have to check that the number of iterations until
a certain stopping criterion is achieved is independent
of the size of the initial matrix. To that end, several
simulations are presented for different matrices that
support this independence. In Figure 1, the dominant
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Fig. 1. Boxplot illustration of the independency of the
dominant subspace algorithm of the size n of the
matrix for n = 1, 2, 3..., 10.

subspace algorithm for computing the 2-dimensional
signal space is applied to ten matrices of size (n×n),
n = 1, 2, 3, ..., 10. In each case the matrix A has been
randomly generated 100 times via

A = XX> + ε, (30)

where X is randomly chosen in Rn×2 and ε is a
symmetric matrix with entries uniformly distributed
on the open interval (0, 1). As a measure of quality
for how good the computed subspaces u and u⊥

approximate the signal and the noise space, we make
use of the fact that for the true noise space us

[us, u⊥s ]A[us, u⊥s ]> =
[
B11 0
0 B22

]
. (31)

Let

[u, u⊥]A[u, u⊥]> =:
[
B̃11 B̃12

B̃21 B̃22

]
(32)

As a test function we choose

t(u) = log(‖B̃12‖), (33)

where ‖B̃12‖ is the Frobenius norm of B̃12. The sim-
ulations support that, independently of the size of A,
the change in the number of iteration to compute the
signal and noise subspace is very small. Indeed, it
can be observed from the boxplot in Figure 1 that the
variations in the integer median, lower quartile (25th

percentiles) and upper quartile (75th percentiles) of
the number of iterations is very small. In Figure 2,
the dominant subspace algorithm for computing the
k-dimensional signal space for k = 2, 5 is applied
to three matrices of size (10 × 10), (100 × 100) and
(1000 × 1000) to illustrate the speed of convergence.
This corresponds to t(u) versus the number of itera-
tion averaged over 10 cases. Again, it can be observed
that the grow in required iterations is very slow.

3. CONCLUSION

A number of subspace algorithms have been proposed
in signal processing applications. Some of these al-
gorithms are based on diagonalizing an (M × M)
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Fig. 2. Illustration of the convergence speed of the
proposed dominant subspace algorithm for com-
puting the k-dimensional signal space for k = 2
top, 3, 4, k = 5 bottom for matrices of size: +:
n = 10, o: n = 100, x: n = 1000 averaged over
10 cases.

symmetric data matrix of known rank to generate the
signal and noise subspaces which are essential in com-
puting the parameter estimates of interest. This leads
in the best case to a computational complexity of order
O(M3). A novel approach to compute the signal and
noise subspaces of a data matrix of known rank r has
been proposed. Based on the Knowledge of the dimen-
sion of the signal subspace, the proposed approach
uses concept from geometrical optimization to com-
pute the basis that spans the noise subspace rather than
using diagonalization. This has advantage of reducing
the computational complexity of these subspace algo-
rithms. Indeed, when applied to the problem of sensor
positions estimation with the full-set subspace algo-
rithm (Chan, et al., 2009) and the multidimensional
scaling (MDS)(Shang, et al., 1984) the proposed ap-
proach reduces the computational complexity order
from O(M6) to O(M4) and from O(M3) to O(M2)
respectively without loosing accuracy. This makes this
approach particularly suited for real-time applications.
The performance of the proposed approach applied
to the full-set subspace algorithm was analyzed in a
simulation example in term of CPU computation time.

4. REFERENCES

Absil, P.A., R. Mahony, R. Sepulchre, and P. van
Dooren (2002). A Grassmann–Rayleigh quo-
tient iteration for computing invariant subspaces.
SIAM Rev., 44(1), 57–73.

Chan, F.K.W., H.C. So, and W.K. Ma (2009). A novel
subspace approach for cooperative localization in
wireless sensor networks using range measure-
ments. IEEE Transactions on Signal Processing,
57(1), 260–269.

Fu, Z. and E.M. Dowling (1996). Conjugate gradi-
ent methods for solving the smallest eigenpair of
large symmetric eigenvalue problems. Int. J. Nu-
merical Methods in Engineering, 39(13), 2209–
2229.

Fu, Z. and E.M. Dowling (1995). Conjugate Gradient
Eigenstructure Tracking for Adaptive Spectral
Estimation. IEEE Trans. on Signal Processing,
43(5), 1151–1160.

Gabay, D. (1982). Minimizing a Differentiable Func-
tion over a Differential Manifold. J. of Optimiza-
tion Theory and Applications, 37(2), 177–219.

Golub, G.H. and C.F. van Loan (1996). Matrix Com-
putations, The John Hopkins University Press,
Baltimore.

Helmke, U. and J.B. Moore (1994). Optimization and
Dynamical Systems. Springer, London.
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