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Abstract

The quantum world contains many counterintuitive phenomena and trig-
gers the development of new technologies. Unfortunately, in most cases
classical numerical simulations of quantum systems are intractable. A
quantum simulator addresses this problem by running the simulation on
a quantum system. In this thesis we discuss three proposals for quantum
simulators of the following out-of-equilibrium phenomena: Anderson lo-
calization in disordered systems, dissipative quantum phase transitions,
and Hawking radiation emitted by black holes.

We propose to realize Anderson localization of ultracold atoms in an
optical lattice with a disorder potential generated via a secondary species
frozen in a superposition of random configurations. We investigate two
preparation schemes: the independent preparation of both species and
the transfer of a part of the population into a different internal state,
for bosonic gases with infinite and weak intra-species interactions. In all
setups we observe dynamical localization, i.e., the wavefunctions of the
steady states feature exponential tails and reduced coherence.

In a second proposal we study the dynamics of systems with quantum
phase transitions in contact with a Markovian, i.e., memoryless, bath. For
exactly solvable spin systems, e.g., the anisotropic XY chain, we derive a
closed equation for the dynamics of the second moments. We find that
the asymptotic decoherence rates of the dissipative dynamics reflect a
quantum phase transition in the system and are related to ground state
properties.

Finally, we discuss a proposal for the simulation of acoustic black holes
with ions trapped on a ring geometry. If the ions are rotating with a sta-
tionary and inhomogeneous velocity profile, regions can appear where the
ion velocity exceeds the group velocity of the phonons. In these regions
phonons are trapped like light in black holes, even though they are de-
scribed by a discrete field theory with a nonlinear dispersion relation. We
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study the appearance of Hawking radiation in this setup and propose a
scheme to detect it. The generation of entanglement between the inside
and the outside of the black hole signals the quantum nature of this radi-
ation.



Zusammenfassung

Die Welt der kleinen Teilchen, die Quantenwelt, überrascht mit vielen
unerwarteten Phänomenen und ermöglicht neue technische Anwendun-
gen. Die Möglichkeiten klassischer numerischer Simulationen sind bei
vielen interessanten Quantensystemen jedoch sehr eingeschränkt. Ein
Quantensimulator umgeht dieses Problem dadurch, dass die Simulation
selbst auf einem Quantensystem abläuft. In dieser Doktorarbeit stellen
wir drei Vorschläge für Quantensimulatoren folgender dynamischer Ef-
fekte vor: Anderson Lokalisierung in ungeordneten Systemen, dissipative
Quantenphasenübergänge und Hawkingstrahlung aus schwarzen Löchern.

Wir schlagen vor, Anderson Lokalisierung von kalten Atomen in opti-
schen Gittern mit einem ungeordneten Potential zu realisieren, das durch
eine zweite, in einer Superposition von zufälligen Konfigurationen einge-
frorenen, Teilchenart erzeugt wird. Wir untersuchen zwei mögliche Initia-
lisierungen: die unabhängige Präparierung beider Teilchenarten und den
teilweisen Transfer von Atomen in einen anderen internen Zustand, für
bosonische Gase mit unendlich starken und mit schwachen Wechselwirkun-
gen. In allen untersuchten Anordnungen ist dynamische Lokalisierung zu
beobachten, d.h. die Wellenfunktionen der stationären Zustände fallen
exponentiell ab und ihre Kohärenz ist verringert.

In einem zweiten Vorschlag betrachten wir die Dynamik von Systemen
mit Quantenphasenübergängen, wenn diese mit einem Markovschen Bad,
einer Umgebung ohne Erinnerung, in Kontakt sind. Für exakt lösbare
Systeme, z.B. die anisotrope XY Kette, leiten wir eine geschlossene Dif-
ferentialgleichung für die Dynamik der zweiten Momente her. Wir können
zeigen, dass die asymptotische Dekohärenzrate der dissipativen Dynamik
einen Quantenphasenübergang des Systems widerspiegelt. Darüber hin-
aus entsprechen sie Grundzustandseigenschaften des Systems.

Schließlich schlagen wir vor, akustische schwarze Löcher mit Ionen in
einer Ringfalle zu simulieren. Wenn die Ionen mit einem stationären und
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inhomogenen Geschwindigkeitsprofil rotieren, können Bereiche entstehen,
in denen die Ionengeschwindigkeit größer als die Gruppengeschwindigkeit
der Phononen ist. Obwohl sie durch eine diskrete Feldtheorie mit nichtli-
nearer Dispersionsrelation beschrieben werden, sind die Phononen in diesen
Bereichen gefangen, so wie Licht in schwarzen Löchern. Wir untersuchen
die Emission von Hawkingstrahlung in dieser Anordnung und diskutieren
ihre Messung. Die Erzeugung von Verschränkung zwischen dem Inneren
und dem Äußeren des schwarzen Loches zeigt uns die Quantennatur dieser
Strahlung.
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HDR10 B. Horstmann, S. Dürr, and T. Roscilde, Localiza-
tion of Cold Atoms in State-Dependent Optical Lat-

tices via a Rabi Pulse, Phys. Rev. Lett. 105,
160402 (2010).

HSR+11 B. Horstmann, R. Schützhold, B. Reznik, S. Fag-
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Chapter 1

Introduction

This thesis is a contribution to the rapidly expanding field of quantum
simulations [BN09, FT10]. In the following I will first pay tribute to the
foundations of this research field and summarize the main results, before
introducing my proposals for quantum simulations of out-of-equilibrium
systems with ultracold atoms in artificial crystals of light, i.e., optical
lattices, and trapped ions.

A quantum simulator is a quantum system that can solve quantum
models. The description of reality with quantum theory was boosted by
Schrödinger [Sch26] and Heisenberg [Hei25] in 1925. This description and
its extensions make fascinating and counterintuitive predictions for the
physics on small scales, e.g. for atoms, ions, electrons, quarks, photons,
which have been confirmed again and again with unprecedented accuracy.
The complexity of important (quantum) systems, e.g., strongly-interacting
electrons in solids, quantum magnets undergoing phase transitions, and
out-of-equilibrium systems, makes it unavoidable to create simplified effec-
tive model descriptions of reality. Furthermore, in the iterative refinement
process (via simulations) of matching model and reality one can achieve
an improved understanding of the (quantum) physical mechanisms.

Unfortunately, it is often a challenging task to determine the predic-
tions of quantum models. Only for the simplest quantum models exact
analytic solutions are at our disposal, and often perturbation theory is
not applicable in the most interesting situations due to the lack of small
parameters. The direct treatment of quantum systems with classical com-
puters is often intractable, which can be illustrated by the exponential
explosion [Fey82] of the memory size and processing time required for an
arbitrary many-body quantum state. For example, the state of N spin-1/2
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particles requires the storage of 2N complex numbers and its processing
requires the manipulation of a 2N × 2N matrix. Another approach for
the simulation of quantum systems is the use of approximate numerical
techniques, among which quantum Monte Carlo methods (MC) and pro-
jected entangled pair state algorithms (PEPS), including density matrix
renormalization group and matrix product state algorithms, are the most
popular. However, both of them have severe limitations: MC is not suited
for fermionic or frustrated systems, in more than one dimension PEPSs
are so far limited to relatively small systems.

These difficulties in simulating quantum models could be overcome
with a quantum simulator, an idea first put forward by Feynman [Fey82]
in 1982. A quantum simulator is a quantum system that is described by
a given model Hamiltonian, circumventing the exponential explosion by
exploiting the quantum nature of the simulator. The key requirement for
a quantum simulator is its controllability. Above all, this implies that it
must faithfully realize a class of model Hamiltonians with controllable pa-
rameters. Both for stationary and dynamical simulations the parameters
must be tunable during the simulation to start, stop, and modify the evo-
lution. In contrast to the necessary tunability, controllable interactions of
the quantum simulator with its environment are required. Furthermore,
one must be able to initialize the simulation and perform a measurement
of its outcome.

An even more challenging task is that of building a quantum computer,
i.e., a universal computer based on the laws of quantum mechanics. The
interest in processing information by the means of quantum mechanics
arose in 1985, when Deutsch, driven by central questions of information
theory, tried to define a computational device, capable of efficiently sim-
ulating an arbitrary physical system [Deu85]. This lead him directly to a
model of computation, exploiting the theory of quantum mechanics. Sub-
sequently, algorithms have been found for efficiently solving certain prob-
lems, that are believed not be efficiently tractable on classical computers,
like finding the prime factors of an integer [Sho94] or searching through
an unstructured database [Gro95]. Now several proof-of-principle exper-
iments have demonstrated the principle feasibility of scalable quantum
computation [ZBB+05].

The circuit-based model is the most common description of quantum
computation: a sequence of elementary unitary gates connects the qubits,
the elementary memory units. By reproducing the evolution of model
Hamiltonians with these elementary gates on appropriately interpreted
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qubits, the universal quantum computer can serve as a digital quantum
simulator. However, universal quantum computers sufficiently large to ex-
ceed the power of modern classical computers have still to be developed.
Fortunately, for certain models the realization of analog quantum simula-
tors can be much less demanding. In this case the simulating system is
tuned such that it directly represents the model Hamiltonian. It requires
less local control and gets by without the overhead for quantum error cor-
rection. In the long run a digital quantum simulator would certainly be
more versatile, in the short run analog quantum simulators can generate
useful insights and promote the experimental progress towards a universal
quantum computer.

An extensive list of proposal for and implementations of analog quan-
tum simulators including their physical principle and the simulated model,
can be found in [BN09]. The simulated models range from condensed
matter theory to relativistic field theories. A lot of activity is aiming at
challenging open questions in condensed matter physics, e.g., strongly-
interacting systems, phase transitions, or high-temperature superconduc-
tivity. Such systems are relatively straightforward to simulate with arrays
of qubits, e.g., with atoms in optical lattices, arrays of trapped ions, atoms
in cavity arrays, quantum dots, or arrays of Josephson junctions [BN09].
In this thesis we address the full spectrum of analog quantum simulations
from disorder in condensed matter physics to black holes in astrophysics.
We will proceed with an introduction to quantum simulations in optical
lattices and ion chains, the systems studied in this thesis.

An optical lattice is made up of standing electromagnetic waves created
by counter-propagating laser beams [BDZ08, LSA+07]. The frequency of
these lasers is adjusted to an optical transition within a species of neutral
atoms. If the laser frequency is far detuned from this transition, the
atoms will remain in their ground state, but feel an effective periodic
potential. Naturally, only sufficiently cold atoms feel a noticeable lattice
potential. In modern experiments atoms are first cooled with the help of
Bose-Einstein condensates and subsequently loaded into the lowest band of
an optical lattice [GME02]. Atoms in this band are described by Hubbard
models [JBC+98], i.e., versions of the celebrated Fermi-Hubbard model
describing correlated electrons in solids and possibly high-temperature
superconductivity.

The Bose-Hubbard model, for example, contains a quantum phase
transition between an insulating and a superfluid phase: In lattices with
suppressed hopping of bosons between neighboring sites, each boson is lo-
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calized on a single site and the bosons tend to occupy different sites (Mott
insulator). In lattices with huge hopping strengths each boson is spread
over the whole lattice and all bosons are occupying the same state (super-
fluid). The transition between these phases was probed in a pioneering
quantum simulation experiment [GME02]. Here the lattice depth, i.e.,
the ratio between hopping and interaction strength, was tuned through
the intensity of the laser beams. An alternative method of tuning the
interaction strength is offered by Feshbach resonances [CGJ+10]. The
momentum distribution of particles in optical lattices is routinely probed
through time-of-flight imaging. Recently, two research groups succeeded in
demonstrating microscope imaging and control with single-site resolution
[SWE+10, BGP+09] paving the way for new and exciting quantum simu-
lations. In the last decade optical lattices have attracted a huge interest
from the theoretical as well as the experimental side [LSA+07], especially
addressing condensed-matter phenomena for bosons, fermions, anyons, or
their mixtures. With this thesis we contribute to the field of disordered
optical lattices in chapter 2.

The confinement of cold atomic ions in an electrodynamic trap pro-
vides another system suitable for quantum simulations [WMI+98]. In
contrast to optical lattices, the control and manipulation of single trapped
ions is relatively simple, whereas the realization of scalable interacting sys-
tems is a challenging task. Early experiments with trapped ions motivated
by the quest for accurate frequency standards were performed on single
ions, where the occupation of two internal states was manipulated with
electrodynamic radiation. These internal states can represent quasi-spins
or qubits, but their natural interactions are typically negligible. Thus, the
proposal by Cirac and Zoller for using phononic modes to mediate interac-
tions between the quasi-spins was a milestone towards scalable quantum
computation and quantum simulations with ions [CZ95]. To summarize,
each ion typically represent one spin/qubit, easily addressable with lasers;
interactions between these spins/qubits are mediated by the collective mo-
tional degrees of freedoms of the ions.

Following the invention of the Cirac-Zoller gate, universal quantum
computation with chains of cold ions has attracted a lot of interest for
offering great local control and very long coherence times. These proper-
ties make cold ions an ideal candidate for the quantum simulation of spin
chains [PC04] as recently demonstrated experimentally [FSG+08]. Quan-
tum spin models can tackle unsolved issues of condensed matter theory
related to quantum magnetism, quantum phase transitions, or frustra-
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tion. In chapter 3 we study the dynamics of spin systems in contact with
a memoryless bath which can be simulated with chains of trapped ions.
In chapter 4 we propose to use ion rings to simulate astrophysical black
holes.

We will now proceed with an overview over the proposals for quantum
simulations presented in this thesis [HCR07, HDR10, HC11, HRF+10,
HSR+11], introducing their main ideas and motivating them in the context
of current research. Note that we give more detailed introductions at the
beginning of each chapter.

First, we propose the realization of disordered potentials in optical lat-
tices with two species of particles in chapter 2 [HCR07, HDR10]. Disorder
can trigger insulating behavior in metals stemming from Anderson local-
ization of electronic matter waves [And58], i.e., wavefunctions with expo-
nentially localized tails. While disorder can induce localization of classical
particles, Anderson localization of quantum particles is possible even when
their energy exceeds the energy scale of the disorder due to an interference
effect, the coherent backscattering of matter waves. Though Anderson lo-
calization is a single-particle effect, in interacting many-particle systems
it brings into force a variety of interesting phases. In recent years a huge
theoretical and experimental effort has been aiming at the observation
of Anderson localization for bosons with ultracold atoms culminating in
two successful experiments using speckle potentials and incommensurate
lattices to generate a disorder potential [BJZ+08, RDF+08].

An alternative approach for creating the disorder potential is the pin-
ning of a secondary (frozen) species of atoms [GC05], where we consider
two hyperfine states of the atoms. This allows to explore different statis-
tics of the disorder potential by adjusting the state of the frozen species.
We can even consider the frozen species to generate a superposition of
random configurations such that the mobile atoms sample all realizations
of the disorder potential in one measurement [PVC05]. We investigate two
preparation schemes: First, we discuss the dynamics of two independently
prepared species of hardcore bosons in one dimension after the sudden
on-turn of the inter-species interactions [HCR07]. These hardcore bosons
are effectively non-interacting as they are equivalent to non-interacting
fermions. Alternatively, we propose to dynamically dope frozen bosons
into a gas of weakly interacting mobile bosons in two dimensions via a Rabi
pulse [HDR10]. In both schemes we observe dynamical localization with
exponentially localized wavefunctions and the reduction of coherence. The
case of weakly-interacting bosons further allows to numerically explore the
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counterintuitive role of intra-species interactions in the dynamical-doping
scheme.

Second, we propose the quantum simulation of spin chains in contact
with a Markovian, i.e., memoryless, bath in chapter 3 [HC11]. This simu-
lation can be realized in a chain of trapped ions. In the field of quantum
computation and quantum simulation decoherence due to the interaction
with an environment is traditionally regarded as a source of difficulty. Re-
cently, however, it has been proposed to engineer the interaction with a
bath to prepare interesting quantum states as the steady state of a deco-
herent evolution [VWC09, KBD+08]. In a recent experiment the naturally
present two-body interactions have been exploited for the quantum simu-
lation of a Tonks-Girardeau gas [SBL+08]. In this thesis we try to detect
properties of the system in the decoherence dynamics, especially in the
asymptotic decoherence rate.

We restrict ourselves to Markovian environments described by a Lind-
blad master equation. For our analysis, we develop a framework that
allows for its exact solution for quadratic fermionic Hamiltonians and
quadratic Hermitian Lindblad operators. This framework can also be
applied to certain spin chains, e.g., the anisotropic XY chain in a trans-
verse magnetic field, which correspond to such fermionic models via the
Jordan-Wigner transformation. We find a dissipative phase transition in
the asymptotic decoherence rate, i.e., the decoherence rate after a long
evolution, reflecting a phase transition in the system and can relate this
rate to ground state properties.

Third, we propose the realization of acoustic black holes on ion rings
in chapter 4 [HRF+10, HSR+11]. The existence of black holes is predicted
by the classical theory of general relativity at points of huge mass densi-
ties. No particle, not even massless ones, should be able to leave such a
black hole. Surprisingly, using concepts of quantum theory Hawking could
show in 1974 that black holes emit thermal radiation [Haw74]. Hawking
radiation can be intuitively understood as the spontaneous pair creation
of particles close to the black hole horizon, i.e., its border. Some pairs
are subsequently separated by the horizon and cannot recombine. Unfor-
tunately, the temperature of Hawking radiation from astrophysical black
holes is very small and the original theoretical derivation relies on modes
with infinite frequencies.

These issues can be addressed with acoustic black holes: Analogous
hydrodynamical systems with a transition from subsonic to supersonic
flow emit Hawking radiation [Unr81]. In such systems the Hawking effect
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can be observed experimentally and its robustness against changes in the
microphysics, i.e., the behavior at large frequencies, can be examined. Let
us now illustrate the idea of analogous black holes. A one-dimensional
hydrodynamical system contains two modes of excitations that travel into
opposite directions with the same sound velocity ±c. If the the fluid is
moving with velocity v, the excitation velocity in the lab frame becomes
v ± c. Thus, in regions of supersonic flow with v > |c| both modes are
dragged along with the fluid (v ± c > 0) and an analog black hole ap-
pears. In recent years many experimental realizations of this idea have
been proposed and some have been implemented [BLV05]. Nevertheless,
quantum Hawking radiation, i.e., spontaneously emitted radiation induced
by quantum fluctuations, has not been definitely observed in experiments,
yet.

In this thesis we are proposing the observation of the quantum Hawk-
ing effect with ions trapped on a ring. Here the rotation of the ions with
an inhomogeneous, but stationary velocity profile constitutes the hydrody-
namic flow, and the longitudinal oscillations of the ions, i.e., the phonons,
constitute the excitations and the emitted Hawking radiation. A special
ingredient of our proposal is its discreteness. The dispersion relation is,
additionally, non-trivial at low wavenumbers because of the long-range
Coulomb force. Nevertheless, we still obtain quantum Hawking radia-
tion; the emitted radiation has a thermal spectrum, comes in pairs, and
generates entanglement between the inside and the outside of the black
hole.

After this introduction, we will present the details of our proposals
for the quantum simulation of disordered lattice systems (see chapter 2),
open spin systems (see chapter 3), and black holes (see chapter 4).





Chapter 2

Anderson Localization

2.1 Introduction

The control and manipulation of ultracold atoms in magnetic and op-
tical traps has made enormous progresses towards the quantum simu-
lation of fundamental condensed matter phenomena [JBC+98, GME02,
BDZ08, LSA+07]. On the one hand, known fundamental models for the
physics of solid state systems can be literally implemented in optical lat-
tices [JZ04, JVD+03]. On the other hand, they offer the further advantage
of controlling the Hamiltonian parameters in real time, and this enriches
the range of correlated phases that can be implemented, if one can guide
the evolution of the system towards an off-equilibrium state which is not
necessarily an eigenstate of a known Hamiltonian.

In this chapter we are studying the phenomenon of quantum localiza-
tion of matter waves induced by a random potential, observed in a variety
of condensed-matter setups [KM93]. The fundamental model describing
this rich phenomenology in presence of a lattice is the Bose-Hubbard model
in a random potential [FWG+89], where, beside the conventional Mott in-
sulating and superfluid phases, a Bose-glass phase appears, either associ-
ated with the fragmentation of weakly repulsive bosons into exponentially
localized states, or with the localization of collective gapless modes for
strong repulsion.

In fact, the capability of fine tuning the disorder potential as well as
the interaction among atoms within the same sample leads to the possi-
bility of investigating the Anderson localization transition with unprece-
dented control, and to monitor the complex effect of interparticle inter-
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actions [SPL10, FFI08]. In 2008 substantial progress has been made in
this direction with optical disorder potentials, leading to the observation
of Anderson localization for weakly interacting bosons [BJZ+08, RDF+08,
DZR+10] and to experiments aiming at the realization of a strongly in-
teracting Anderson insulator (Bose glass) with bosons in optical lattices
[FLG+06, WPM+09, PMW+10].

However, the task of realizing Anderson localization in ultracold atoms
started a few years earlier with several experimental attempts [LFM+05,
CVH+05, FFG+05, SDK+05, SDK+06, FLG+06] and theoretical propos-
als/discussions [DZS+03, RB03a, RB03b, SCL+07, KMD+05, CVR+06,
LCB+07, San06, GWS+05, SRH07, SKS+04]. The disorder potential is re-
alized optically, either through laser speckles [BJZ+08, LFM+05, CVH+05,
FFG+05, SDK+05] in presence or absence of an optical lattice, or, in opti-
cal lattices, through a secondary incommensurate standing wave [RDF+08,
FLG+06]. In the former case, the typical length scale associated with
the disorder potential was quite extended with respect to the correlation
length of the bosons in the early experiments, so that classical trapping
rather than quantum localization was responsible for the observed sup-
pression of transport properties [SDK+06]. In the latter case, an incom-
mensurate superlattice [RDF+08, FLG+06] realizes a potential which is
strongly fluctuating over the distance of a few lattice sites, but its pseudo-
disordered nature requires to take also into account gapped insulating
phases at incommensurate fillings, competing with the Bose glass [RSC06].

An alternative route to Anderson localization of cold atoms is that
of creating a disorder potential by pinning a random distribution of a
frozen atomic species. A second atomic species is mobile and experiences a
disorder potential due to interspecies collisions. This localizes the mobile
species [GC05, PVC05, RC07, HCR07, HDR10]. Its huge advantage is
that the correlations in the disorder potential are given by the correlations
within the frozen species, and are thus naturally of the order of the lattice
spacing.

In this chapter we are discussing refinements of this proposal, where
the two species correspond to two different hyperfine states of the atoms.
This approach has the unique advantage that the disorder potential can
be prepared in a quantum superposition of different realizations, such
that the time evolution of the mobile atoms samples all realizations of
the potential at once, and measurements on the mobile particles deliver
disorder-averaged observables [PVC05, HCR07, HDR10].

One strategy to achieve this is the independent preparation of the
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Figure 2.1: Sketch of the Bose-Hubbard model (see Eq. (2.1)). Bosons
can hop to the nearest-neighbor site with amplitude J , bosons on the same
site feel an interaction with strength U .

mobile and frozen atoms, and subsequent switching of their mutual inter-
action [HCR07], which can be realized by controlling the spatial phase
of different polarization components of the lattice [JBC+99, BCJ+99,
MGW+03] (see Sec. 2.3). This analysis has the advantage of a great flexi-
bility in the generated disorder potential, but the independent preparation
and control of two species is experimentally demanding. Another strategy
is the preparation of a single mobile species, and subsequent transfer of
some atoms into a frozen hyperfine state, i.e., the “dynamical doping”
of frozen atoms into a cloud of mobile atoms. (see Sec. 2.4), which can
be less demanding to achieve in experiments. In the former case we are
treating effectively non-interacting hardcore bosons in one dimensions (see
Sec. 2.3), in the latter case weakly interacting bosons in two dimensions
(see Sec. 2.4). After the presentation of the two schemes we discuss their
experimental realization in Sec. 2.5 before summarizing our findings in
Sec. 2.6.

2.2 System and Method

An interesting proposal for the implementation of quantum simulation is
that of using optical lattices. An optical lattice is made up of standing
electromagnetic waves that can easily be created by two counter propagat-
ing laser beams. The frequency of these standing waves is adjusted to the
transition between the ground state and an excited internal state of some
neutral atoms, e.g. Rubidium 87Rb. If the laser frequency is far detuned
from this transition, the atoms will always remain in their ground state,
but an effective periodic potential is created [JZ04].

It has been shown in [JBC+98] that the atoms in this lattice can be
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described by the Bose-Hubbard model (see Fig. 2.1).

HBH = −J
∑

〈ij〉

(
a†iaj +H.c.

)
+
U

2

∑

i

[
ni

(
ni − 1

)]
, (2.1)

which allows tunneling to nearest-neighbor sites with hopping amplitude
J and includes an on-site interaction with strength U . In this chapter we
propose to introduce a disorder potential in an optical lattice via a frozen
secondary species of light. The full system of two trapped interacting
bosonic species in an optical lattice is described by the Hamiltonian

H = H0 +Hf +Hint, (2.2)

where H0 is the Hamiltonian of the bosons which will remain mobile,

H0 = − J
∑

〈ij〉

(
a†iaj +H.c.

)

+
∑

i

[
U

2
ni

(
ni − 1

)
+ V

(
i− i0

)2
ni

]
, (2.3)

Hf is the Hamiltonian for the bosons to be frozen,

Hf = − J f
∑

〈ij〉

(
af†i a

f
j + H.c.

)

+
∑

i

[
U f

2
nf
i

(
nf
i − 1

)
+ V f

(
i− i0

)2
nf
i

]
, (2.4)

and Hint is the interaction Hamiltonian

Hint =W
∑

i

nin
f
i. (2.5)

Here a†i and ai are boson creation and annihilation operators and ni = a†iai
is the number operator for site i. Symbols with the superscript f are the
corresponding operators for the frozen bosons that create the disorder
potential. In Eqs. (2.3), (2.4) we also consider an external harmonic
trap, where V = m

2
ω2d2 and V f = m

2
ωf2d2 determine the size of an overall

harmonic trap of frequency ω/2π. Here m is the atomic mass and d the
lattice spacing. We consider repulsive interactions W > 0.
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2.3 Independent Preparation

We are now discussing a specific proposal for the realization of disorder
with two species of particles, where a frozen species creates a disorder
potential for a mobile species [HCR07, Hor07]. After the independent
preparation of two species of particles in two different hyperfine states, the
two species are brought into interaction (see Fig. 2.2). Subsequently the
mobile one evolves in a quantum superposition of all possible realizations
of the random potential associated with the Fock components of the state
of the frozen species |Φf〉, and expectation values over the evolved state are
therefore automatically averaged over the disorder distribution [PVC05].
In this proposal not only is the disorder potential strongly fluctuating over
the length scale of a few lattice sites, but in principle one can also vary
its statistics by preparing the frozen bosons in different states |Φf〉.

In this section we investigate the above proposal in detail in the ex-
actly solvable case of a one-dimensional gas of hardcore bosons on a lat-
tice [LSM61, PWM+04]. We consider both species of bosons (the mobile
one and the frozen one) to be hardcore repulsive, which is not only ex-
perimentally feasible [PWM+04, KWW04], but it has three fundamental
theoretical advantages:

1. The state |Φf〉 of the frozen bosons can be obtained exactly from the
Hamiltonian of the system before freezing, and disorder averaging
can therefore be accurately performed.

2. Jordan-Wigner diagonalization [LSM61] allows to calculate the exact
real-time evolution of the mobile particles [RM04a, RM05a, RM04b,
RM05b] after they are brought into interaction with the frozen ones.

3. Most importantly from a conceptual point of view, localization phe-
nomena of hardcore bosons are perfectly understood in terms of
Anderson localization of non-interacting fermions.

While the observation of localization for interacting bosons is limited
by screening of the disorder potential and the reduction of the healing
length due to the interaction, many-body effects enter the system of non-
interacting fermions only through Fermi statistics.

In particular we focus on the case in which the frozen bosons are ini-
tially prepared in the superfluid ground state |Φf〉 of the hardcore boson
Hamiltonian at half filling with periodic boundary conditions. The re-
sulting disorder potential has the structure of a bimodal random on-site
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energy, with algebraically decaying correlations, but also with a very rich
Fourier spectrum dominated by short-wavelength components. Most im-
portantly, such a potential is found to lead to Anderson localization of all
single-particle eigenstates (apart from possibly a set of zero measure) as
expected for uncorrelated disorder [Ish72, Tho74, AAL+79]. The evolu-
tion of the mobile bosons in such a potential is found to invariably lead
to a localized steady state with exponentially decaying correlations and
absence of quasi-condensation for a wide variety of realistic initial condi-
tions. In particular phenomena of quasi-condensation in finite-momentum
states [RM04b] and fermionization [RM05b], reported upon expansion of
the hardcore bosons from a Mott-insulating state and a superfluid state
respectively, are completely washed out by the disorder potential. Hence
we can conclude that this setup allows for a robust implementation of a
localized state as the off-equilibrium steady state of the system evolution.

This section is structured as follows: Sec. 2.3.1 describes the system
of two bosonic species, the exact diagonalization method for the study of
real-time evolution, the Monte Carlo sampling of the disorder distribution,
and the main features of the random potential. Sec. 2.3.2 is devoted to
the study of localization of the single-particle eigenstates in the random
potential. Sec. 2.3.3 investigates the evolution of the mobile bosons after
interaction with the frozen ones when both species are prepared on a ring.
Finally, Sec. 2.3.4 is dedicated to the study of the expansion of the mobile
bosons in the random potential, starting from different initial confined
states.

2.3.1 System and Method

In this section we present the system of two hardcore bosonic species
which is used to study the effect of a disorder potential. We then briefly
describe the numerical procedure to exactly treat the equilibrium and out-
of-equilibrium properties of the system, and the sampling of the disorder
distribution. Finally, we examine the nature of the correlations in the
disorder potential created by a frozen species of hardcore bosons.

Hamiltonian Dynamics

We have presented the full Hamiltonian for two interacting bosonic species
trapped in an optical lattice in Sec. 2.2. In this section we consider one-
dimensional optical lattices with L sites and the possibility of both species
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a)

b) c)

Figure 2.2: Sketch of the preparation of the disorder potential and of the
tuning of its strength using state-dependent optical lattices for a mixture
of atoms in two internal states. The two species are first prepared in two
shifted optical lattices (a), then one of the two optical lattice is increased
in strength so as to freeze one of the two bosonic species (b), and finally
the spatial phase of the two lattices is changed to bring the two species
into interaction (c).

being confined by a parabolic trap with different trapping strengths V , V f

for the two species.
At times t < 0 the two species of bosons are not interacting with

each other (W = 0), and they are prepared in the factorized ground state∣∣Ψ〉t=0 =
∣∣Φf〉 ⊗

∣∣Φ〉0 of their respective Hamiltonian with fixed numbers
of particles N and N f. The ground state

∣∣Φf〉 of the frozen particles can
be decomposed in the Fock basis

∣∣Φf〉 =
∑

{nf
i}

c
({
nf
i

}) ∣∣{nf
i

}
〉, (2.6)

where the sum extends over all Fock states,

{
nf
i

}
=

(
nf
1, n

f
2, . . . , n

f
L :

L∑

i=1

nf
i = N f

)
. (2.7)

At some time t ≤ 0 the frozen bosons are made immobile (J f = 0), and
subsequently at t = 0 the interaction between the two species is turned
on (W > 0). Furthermore, releasing the mobile bosons from their trap
(V = 0) allows us to study their expansion properties.
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The time evolution of the initially prepared state for t > 0 is described
by

∣∣Ψ〉t = e−iHt/~
∑
{
nf
i

}
c
({
nf
i

}) ∣∣{nf
i

}
〉 ⊗

∣∣Φ〉0 (2.8)

=
∑
{
nf
i

}
c
({
nf
i

}
, t
) ∣∣{nf

i

}
〉 ⊗

∣∣Φ
({
nf
i

})
〉0, (2.9)

where the coefficients

c(
{
nf
i

}
, t) = exp

[
−iφ

({
nf
i

})
t
]
c
({
nf
i

})
(2.10)

have acquired a phase factor which will become irrelevant, and the state

∣∣Φ
({
nf
i

})
〉t = exp

{
−i
[
H0 +Hint

({
nf
i

})]
t/~
} ∣∣Φ〉0 (2.11)

represents the time evolution of the initial state of the mobile bosons
interacting with a single Fock state

∣∣{nf
i

}
〉 of the frozen bosons, which

determines the static external potential. We have used the property that,
for J f = 0, [Hf ,H0 +Hint] = 0.

Hence, equation (2.8) describes the parallel time evolution of the mo-
bile bosons in a quantum superposition of different realizations of the dis-
order potential Vi = V nf

i, each appearing with a probability

P
({
nf
i

})
= |c

({
nf
i

})
|2. (2.12)

Remarkably, the time evolution of the expectation value of an operator
A acting only on the mobile bosons is automatically averaged over the
disorder statistics [PVC05]:

t〈Ψ
∣∣A
∣∣Ψ〉t =

∑
{
nf
i

}
∣∣c
({
nf
i

})∣∣2
t〈Φ
({
nf
i

})∣∣A
∣∣Φ
({
nf
i

})
〉t. (2.13)

Hardcore limit and Jordan-Wigner Transformation

From here onwards we will restrict ourselves to the exactly solvable case
of hardcore bosons, obtained in the limit U, U f → ∞ for filling smaller
than or equal to one. It is convenient to incorporate the hardcore con-
straint directly in the operator algebra, passing to hardcore boson oper-
ators which anticommute on the same site, {ai, a†i} = 1, {a(†)i , a

(†)
i } = 0,
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and {afi, af†i } = 1, {af(†)i , a
f(†)
i } = 0. The hardcore boson operators for dif-

ferent sites i 6= j commute like normal bosons, [ai, a
†
j ] = [a

(†)
i , a

(†)
j ] = 0,

and [afi, a
f†
j ] = [a

f(†)
i , a

f(†)
j ] = 0.

Making use of the Jordan-Wigner transformation [LSM61],

a†i = f †
i

i−1∏

k=1

e−iπf†
kfk , ai =

i−1∏

k=1

eiπf
†
kfkfi, (2.14)

one can map the hardcore boson operators onto spinless fermion opera-
tors f †

i and fi, obeying the same Hamiltonian as the bosonic one, apart
from a boundary term depending on the number of particles in the case
of periodic/antiperiodic boundary conditions. The fermionic problem is
exactly solvable, and its eigenstates can be written in the following form

∣∣Φ〉 =
N∏

m=1

L∑

n=1

Pnmf
†
n

∣∣0〉, (2.15)

where the N columns of the matrix Pnm = {P}nm represent the first N
single-particle eigenstates. Following the recipe given in [RM04a, RM05a],
from the matrix Pnm one can efficiently calculate the one-particle density
matrix (OPDM)

ρij = 〈a†iaj〉, (2.16)

and hence the momentum distribution

〈nk〉 =
1

L

L∑

m,n=1

e−ik(m−n)〈a†man〉, (2.17)

which represents a fundamental observable in trapped atomic systems.
At a more fundamental level, the knowledge of the eigenvalues λη of
the OPDM, associated to eigenvectors φη

i also known as natural orbitals
(NO), allows one to rigorously study condensation phenomena through the
scaling of the maximum eigenvalue λ0 with the particle number [PO56,
RM04a, RM05a]. In absence of an external potential the OPDM of the
hardcore bosons decays algebraically as ρij ∼ |i− j|−α, where α = 0.5,
signaling off-diagonal quasi-long-range order in the system [KIB93]. Cor-
respondingly the occupation of the k = 0 momentum state, which coin-
cides with the natural orbital with largest eigenvalue for a translationally
invariant system, scales as nk=0 ∼

√
N with the particle number N for
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any fixed density n = N/L < 1, namely it exhibits quasi-condensation.
Remarkably, quasi-long-range order and quasi-condensation (in the form
of a

√
N scaling of the largest eigenvalue λ0 of the OPDM) survive also

in presence of a trapping potential V
(
i − i0

)a
when the particle number

is increased and correspondingly the trap strength V is decreased so that
the characteristic density in the trap

ρ̃ = N

(
V

J

)1/a

, (2.18)

is kept constant and smaller than a critical value ρc (≈ 2.6 for a = 2) to
avoid formation of a Mott plateau in the trap center [RM04a, RM05a].

Finally, the exact solution of the fermionic Hamiltonian allows one to
calculate the real-time evolution of the fermionic wavefunction, and in
particular of the P matrix as

P (t) = e−iHtP (2.19)

with the single-particle time evolution operator given by
(
e−iHt

)
ij
= 〈0

∣∣fie−iHt/~f †
j

∣∣0〉. (2.20)

Making use of this approach, Refs. [RM04b, RM05b] have shown that
quasi-condensation is a robust feature of the system after expansion start-
ing from an initially trapped quasi-condensed state, and it is even dynami-
cally recovered when the initial state before expansion is a fully incoherent
Mott insulator state.

Disorder Averaging

Eq. (2.37) shows that, ideally, the unitary evolution of the system explores
all possible realizations of the disordered potential at once. Numerical
calculations based on a matrix-product-state representation of the system
state also enjoy this feature of ”quantum parallelism” of the Hamiltonian
evolution [PVC05] by treating the disorder potential as a quantum vari-
able in the system. In this chapter we use the more traditional approach
of exactly calculating the ground-state properties and the Hamiltonian
evolution of hardcore bosons for a single realization of disorder at a time,
averaging then over the disorder distribution through Monte Carlo impor-
tance sampling. Accepting the overhead of disorder averaging, this ap-
proach has the advantage that, unlike the method proposed in [PVC05],
the time evolution is exact for arbitrarily long times.
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According to Eq. (2.13), the weights of the disorder configurations are
defined by the coefficients of the Fock-state decomposition for the initial
state of the frozen bosons through Eq. (2.12). Introducing the bosonic
Fock state ∣∣{nf

i

}
〉 = a†i1a

†
i2
. . . a†i

Nf

∣∣0〉 (2.21)

and the N f × L matrix Qnm = {Q}nm = δin,m, after some algebra we get

c
({
nf
i

})
= 〈
{
nf
i

}
|Φf〉 = det

(
Q†P

)
. (2.22)

The energy eigenstates of noninteracting fermions with periodic boundary
conditions, contained in the columns of the P matrix, are given by plain
waves. Thus it can be shown that the Slater determinant of Eq. (2.22)
is a Vandermonde determinant, which can be evaluated analytically. The
disorder weights finally become

∣∣c
({
nf
i

})∣∣2 = 1

LN f

∏

1≤n<m≤N f

sin2
[π
L
(in − im)

]
. (2.23)

Throughout the section we will compare the effect of the disorder poten-
tial generated by the frozen superfluid state of N f bosons with that of the
potential generated by N f fully uncorrelated frozen bosons (The uncorre-
lated frozen bosons are considered to be in the state

∣∣Φf〉 = ⊗L
i=1(1+a

†
i)
∣∣0〉

projected on the subspace with a fixed number of particles. This state
cannot straightforwardly be prepared in an optical lattice.), with the flat
distribution ∣∣c

({
nf
i

})∣∣2 = (N f !(L−N f)!)/L!. (2.24)

Even when equipped with the exact statistics of disorder as in Eqs. (2.23)
and (2.24), it is generally hopeless to fully average the results of any
calculation on the L!/(N f !(L − N f)!) disorder configurations. Hence we
opt for Monte Carlo importance sampling, where starting from an initially
chosen random configuration

∣∣{nf
i

}
〉, we propose a new one

∣∣{nf
i

}′〉, e.g.
by swapping the occupation of two sites, and accept it with Metropolis
probability

p = min
(
|c(
{
nf
i

}′
)
∣∣2/|c

({
nf
i

})∣∣2, 1
)
. (2.25)

The real-space properties are typically averaged over 105 disorder real-
izations, obtained one from the other by updating O(L) sites, while the
OPDM is averaged over 102 realizations (due to the computational over-
head of the OPDM calculation). This provides full convergence of the
disorder-averaged quantities.
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Characteristics of Disorder

A fundamental figure of merit for the proposed setup to introduce disor-
der in optical lattices is represented by the correlation properties of the
disorder potential generated by the frozen particles. As discussed in the
introduction, the aspect of correlations represents one of the main weak-
nesses of the optical implementation of disorder through laser speckles
[SDK+06]. In particular, we focus on the density-density correlation func-
tion

Cr

(∣∣Φf 〉
)
=

1
L

∑L
i=1

〈(
nf
i − nf

) (
nf
i+r − nf

)〉

1
L

∑L
i=1

〈(
nf
i − nf

)2〉 , (2.26)

where nf = 〈nf
i〉 = N f/L. This correlation function for the frozen hard-

core bosons is identical to the one for the corresponding fermions, and
can be calculated exactly in the homogeneous system (V f = 0) with peri-
odic boundary conditions; for N f < L, namely in the superfluid state of
hardcore bosons,

Cr

(∣∣Φf 〉
)
=




1 for r = 0

−
[
N f
(
L−N f

)]−1 sin2
(
πNf r

L

)

sin2
(
π r

L

) for r ≥ 1.
(2.27)

Hence, in the limit r ≪ L (which is always satisfied in the thermody-
namic limit) the correlator decays algebraically like Cr

(∣∣Φf 〉
)
∼ r−2 with

a superimposed oscillation at twice the Fermi wavevector kF = πnf . The
negative values of the correlator can be understood as resulting from an ef-
fective long-range repulsion between the hardcore bosons due to the kinetic
energy, which enjoys as much free space around each boson as possible.

From Eq. (2.27) we deduce that the disorder potential created by
the frozen bosons has slowly decaying correlations. Nonetheless it has
fast oscillations on short distances, which are captured by the structure
factor, namely the Fourier transform of the correlator:

Ck =
1

L

L−1∑

r=0

Cr cos (kr) . (2.28)

This function can be evaluated to give for k ∈ [−π, π] and nf ≤ 0.5

Ck =





1

L
(
1−nf

) · |k|
2kF

for |k| ≤ 2kF

1

L
(
1−nf

) for 2kF ≤ |k| ≤ π.
(2.29)
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The expression for nf > 0.5 follows from particle-hole symmetry. The
corresponding functions for an uncorrelated random potential generated
by randomly displayed frozen particles are Cr = δr0 and Ck = 1/L. We
observe that the Fourier spectrum of the frozen-boson potential is ex-
tremely broad, and it has a flat maximum for k ≥ kF, reflecting the short
wavelength oscillations of the potential. Hence we are in presence of a
correlated but strongly fluctuating potential. In the following section we
will see that such a potential generally leads to Anderson localization of
all single-particle states and to the suppression of quasi-condensation at
all fillings. Throughout the rest of the section, we will take the case of
half-filling for the frozen bosons, N f = L/2.

2.3.2 Ground-State Localization

In this section we investigate the properties of the eigenstates of the Hamil-
tonian H0 + Hint (see equations (2.3) and (2.5)) for the mobile bosons
moving in the potential created by the frozen bosons. Here we consider
an homogeneous system (V = V f = 0) with periodic boundary conditions
for both species of bosons. We start with an analysis of the localization
properties in real space and continue with an analysis of coherence in
momentum space.

We investigate the localization properties in the frozen-boson potential
through the participation ratio (PR) defined as

PR
(∣∣Φ〉

)
=

(∑L
i=1〈ni〉

)2

∑L
i=1〈ni〉2

, (2.30)

where 〈ni〉 is the average particle density on site i. In the case of a
rectangular density profile the participation ratio gives the support of
the density profile, for exponentially localized states it is proportional to
the decay length of the wavefunction, and for a Gaussian-shaped density
profile it is proportional to its standard deviation.

The average PR of single particle eigenstates in the potential created
by a half-filled system of frozen bosons at W = 0.5J is shown in Fig. 2.3a
as a function of energy, for various system sizes. The PR essentially be-
comes size independent for L ≥ 1000, clearly indicating the localization of
all single-particle eigenstates, except for possibly a subset of zero measure;
we find a similar result for all strengths of the potential we investigated.
Still a non-extensive number of extended eigenstates, not captured by this
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(a) (b)

Figure 2.3: (a) Average participation ratio and (b) density of states (DOS)
of the single-particle energy eigenstates in the correlated random potential
created by frozen bosons with disorder strength W = 0.5J . The DOS
is the disorder averaged number of eigenstates per energy interval; it is
calculated for the system size L = 2002.

analysis, is in principle sufficient to suppress localization, e.g. in transport
experiments [DWP90], so that further analysis is required to complete the
picture on the localization properties of the frozen-boson potential (see
Sec. 2.3.4). The peak in the PR at the center of the band can be un-
derstood by the following argument: Without disorder the single-particle
eigenstates in the center of the band are plain waves with wavenumber
k = ±π/2. Thus, in the presence of a shallow disorder potential the corre-
sponding states have dominant k = ±π/2 components. As these are also
the dominant Fourier components of the random potential for half filling,
the eigenstates in the center of the bands are less localized.

We now move on to discuss the properties of the many-body ground
state for hardcore bosons in the frozen-boson potential. Making contact
with the discussion of Sec. 2.3.1, such a ground state can be reached
by adiabatically turning on the interaction W between the two species
after having prepared each of them separately and having quenched the
hopping of the frozen bosons. In particular we analyze the properties of
the disorder-averaged OPDM, which is translationally invariant, so that
its eigenvalues correspond to the momentum distribution function (MDF),
and hence average condensation properties are studied in momentum space
through the scaling of λ0 = nk=0 with the number of particles N .

The scaling analysis of the disorder-averaged occupations of the lowest
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(a) (b)

Figure 2.4: Scaling of the (a) disorder-averaged largest eigenvalue λ0 of
the OPDM and (b) the occupation of the zero momentum state nk=0 for
the ground state of a half-filled system of mobile bosons, interacting with
the disorder potential. The cases of a correlated potential resulting from
the superfluid state, Eq. (2.23), and that of a fully uncorrelated potential,
Eq. (2.24), are compared. Here the strength of disorder is W = 0.5J .
The black lines are fits to nk=0, 〈λ0〉 ∝

√
N for the first four data points.

natural orbitals λ0 is shown in Fig. 2.4a where, as N grows, N f and L are
grown correspondingly such that N = N f = L/2. For small system sizes
the hardcore bosons show quasi-condensation behaviour λ0 ∼ Nα, with
α = 0.5 within the error given by the simulation, but for larger system
sizes λ0 saturates, hence revealing the absence of quasi-condensation in
the thermodynamic limit. As shown in Fig. 2.4a, the same quantity for
the potential generated by fully uncorrelated frozen particles gives a com-
pletely analogous picture. This crossover can be qualitatively explained
as a fragmentation effect. The lowest natural orbital in each disorder con-
figuration is localized, namely it does not scale with the system size and
hence it can can only accommodate a finite number of particles, since the
bosons repel each other.

As translational invariance is restored after disorder-averaging, the
eigenvalues of the disorder-averaged OPDM correspond to the momen-
tum distribution function. The peak at zero momentum, in which quasi-
condensation appears in the case without disorder, is significantly re-
duced in presence of disorder. A scaling analysis of nk=0 of the mobile
bosons, shown in Fig. 2.4b detects a similar crossover from algebraic
increase to saturation as for the disorder-averaged λ0. Therefore, the con-
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Figure 2.5: Scaling of the steady-state zero-momentum occupation nk=0

with the particle number N in a homogeneous system of mobile and frozen
bosons (V = V f = 0) at half-filling (N = N f = L/2), with interaction
strength W = 0.5J . The line corresponds to a fit nk=0 ∼

√
N to the first

four data points.

sequences of fragmentation extends to this experimentally accessible ob-
servable, and we can conclude on the absence of quasi-condensation in the
disorder-averaged OPDM of the ground state of the system. (Although
the disorder-averaged largest eigenvalue 〈λ0〉 and the disorder-averaged
k = 0 occupation nk=0 show a similar scaling with system size, they have
no simple relationship to each other; indeed λ0 refers to localized natu-
ral orbitals, while nk=0 is associated with an extended one.) Moreover,
the density of states, shown in Fig. 2.3b, reveals a continuous excitation
spectrum at all energies. Hence, for a system of interacting bosons, the
absence of quasi-condensation, together with the absence of gaps in the
density of states, leads to classify the state of the system as a Bose glass.
At the same time the Jordan-Wigner transformation translates this phase
into an ideal Anderson insulator of non-interacting fermions. Thus, re-
markably, the gas of hardcore boson subjected to a disorder potential can
be regarded as both a Bose glass and an Anderson glass.
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Figure 2.6: Snapshot of the evolution of the real-space density ni for
a single particle, initially in the ground state of a harmonic trap with
V = 0.01J , and interacting with a correlated disorder potential. Here the
interaction strength is W = 0.5J , and the system size is L = 502.

2.3.3 Dynamical Localization

While the previous section investigated the state of the mobile bosons
after an adiabatic on-turn of the interaction with the disorder potential
created by the frozen bosons, in this section we consider the evolution of
the mobile bosons after turning on that interaction suddenly. We consider
such a time evolution in the homogeneous system, i.e., V = V f = 0,
with periodic boundary conditions, mimicking the situation in which both
species of particles are prepared in the same region of space before being
brought into interaction. In this situation, the disorder-averaged real-
space density of the mobile bosons remains uniform during time evolution,
so that real-space localization effects are not visible. Nonetheless, even in a
more realistic experimental scenario, in which both species of particles are
kept in the same nonvanishing trap (V = V f > 0), the disorder-averaged
density profile of the mobile species does not reveal marked localization
effects, and it is even expanding during time evolution in order to reduce
the overlap with the confined frozen bosons [PVC05].

The fundamental effect of disorder on the time evolution can be very
clearly detected in momentum space, which can be measured in time-of-
flight experiments. The initial quasi-condensation peak in the MDF at
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tJ/h

Figure 2.7: Time evolution of the participation ratio of a single particle
for various disorder strengths. Other parameters as in Fig. 2.6.

k = 0 decreases quickly during time evolution until a stationary regime is
reached, in which the value of nk=0 is oscillating with a small amplitude
(∼ 1%). The scaling analysis for the value of nk=0, time-averaged over
the small oscillations, is shown in Fig. 2.5 for a half-filled system of
mobile bosons. The occupation of the zero momentum state nk=0 increases
approximately like

√
N for small N , but it then deviates from an algebraic

increase and saturates for larger N ; a completely analogous behavior is
found for the case of uncorrelated disorder. Hence the scaling of nk=0

reveals a crossover from quasi-condensation to fragmentation, with close
similarity to the case of adiabatic evolution described in Sec. 2.3.2; in
analogy to that case, we conclude that the steady state reached by time
evolution realizes dynamically a Bose glass.

2.3.4 Transport Properties

In this section we discuss the expansion properties of initially confined
mobile bosons in the potential created by the frozen particles. The initial
confinement for the mobile particles is provided by a tight parabolic trap
(V > 0), while the frozen particles can be imagined as prepared in a much
shallower trap, whose effect is ignored for simplicity, so that the random
potential they generate is the same as the one studied in the homogeneous
case in Sec. 2.3.1. In particular we imagine that at time t = 0 the trap
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Figure 2.8: Steady-state participation ratio (recorded at t = 500~/J)
for N particles, time-evolved in a system of size L = 702 starting from
the ground state of a harmonic trap (V = 0.01J) and interacting with a
correlated random potential or with a fully uncorrelated random potential.
The lines show a fit to the data points with an algebraically decaying
function.

confining the mobile bosons is released (V = 0) and simultaneously the
two species are brought into interaction (W > 0). After release from the
trap, the mobile particles would expand forever in absence of disorder, so
that a halt in presence of disorder explicitly shows localization effects.

The first subsection deals with the evolution of the real-space proper-
ties during expansion, while the second subsection studies the evolution
of the condensation properties of the system.

Real-space localization

In this subsection we focus on the real-space properties of the time-evolved
hardcore bosons in the frozen-boson potential, starting from a confined
state in a parabolic trap. Snapshots from a disorder-averaged time evo-
lution of a single particle starting from the ground state in the trap are
depicted in Fig. 2.6. It is shown that the expansion reaches a localized
steady state in the long-time limit; in particular the spatial decay of the
particle density undergoes a dramatic change from Gaussian - as expected
in a parabolic trap - to exponential - as expected in presence of Anderson
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(a) (b)

Figure 2.9: (a) Steady-state participation ratio (recorded at t = 400~/J)
of N particles as a function of the particle number for various disorder
strengths. Other parameters as in Fig. 2.8. (b) Total, kinetic, and po-
tential energy of the Mth single-particle eigenstate of the initial system
in the trap.

localization. Hence an Anderson localized state is realized dynamically
during expansion; it is fundamental to stress that this steady state does
not correspond to the ground state of the system, as the energy of the
particle is conserved during expansion and hence it does not relax to the
ground-state value.

The dynamical localization of the single particle wavefunction is fully
captured by the time evolution of the PR, depicted in Fig. 2.7 for various
strengthsW of the disorder potential. Without disorder, the wavefunction
spreads ballistically without changing its Gaussian shape [RM04b]. In the
presence of disorder, the PR saturates instead to a finite value, which
decreases when increasing the disorder potential; a fit to the final value
of the PR, shown in Fig. 2.8, suggests that saturation in the PR takes
place for any arbitrarily small value of the potential, as it would be ex-
pected for uncorrelated disorder, although exploring very small strengths
of the disorder is numerically demanding as the steady state is reached for
prohibitively large values of the PR.

The time evolution of the participation ratio of many particles initially
confined in a harmonic trap is similar to that exhibited by a single particle,
and a saturation of the PR to a steady-state value is observed for the
smallest value of W that we could treat numerically (Fig. 2.8).

Nonetheless, upon increasing the particle number in the trap beyond
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Figure 2.10: Snapshots of the time evolution of the momentum distribu-
tion nk for a system of N = 100 hardcore bosons, initially in a trap with
density ρ̃ = 0.5, interacting with a correlated disorder potential. Here the
system size is L = 1002 and the interaction strength is W = 0.5J . The
momentum distribution for the corresponding spinless fermions is shown
for comparison.

a critical value Nc ≈ 26 (see Eq. (2.18) with V = 0.01) a Mott plateau at
unit filling starts forming in the center, and the properties of the initial
trapped ground state change drastically. It is then interesting to study
whether the different initial conditions for the time evolution reflect them-
selves in the steady state of the system after the halt of the expansion.
Fig. 2.9a shows the PR of the steady state as a function of the number of
particles N . The steady state PR increases with the number of particles
for N ≤ Nc, showing a small peak for N = Nc beyond which the increase
with N is much slower. This feature can be understood in terms of the
time evolution of the fermionic wavefunction Eq. (2.15), whose real-space
properties such as the PR are equivalent to those of the hardcore bosons,
and whose time evolution is simply obtained through the time evolution
of single-particle eigenfunctions. For N > Nc the single particle wavefunc-
tions that are populated for increasing N are more and more confined to
the sides of the trap, as the center has already a saturated density, and
their energy is dominated by the trapping term, while the single-particle
kinetic energy decreases with increasing N beyond Nc (see Fig. 2.9b).
Given that the trapping energy vanishes at t = 0 after the trap release,
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Figure 2.11: Decay of the modulus of the OPDM |ρi0,i0+r| from the system
center i0 at various times during evolution. Parameters as in Fig. 2.10.

the fermions occupying levels beyond the Nc-th expand with an energy
which is less than that of the Nc-th level, so that they are expected to be
localized by the disorder potential with a final participation ratio which
is similar (or even less than) that of the Nc-th particle. The time-evolved
particle density of the many-body system is the simple sum of the squared
time-evolved wavefunctions of the free fermions, so that the total partici-
pation ratio is not expected to increase significantly when adding particles
beyond the Nc-th.

Coherence properties

In the previous subsection the real-space properties of initially confined
hardcore bosons expanding in a disorder potential have been discussed.
This subsection addresses the condensation properties of the same system,
motivated by the rich physical scenario offered by expanding hardcore
bosons in absence of disorder [RM04b, RM05b]. The first part is devoted
to the time evolution of hardcore bosons initially confined in a superfluid
state, while the second part analyses the expansion from a Mott insulator.

Time evolution starting from a superfluid state This part focuses
on the expansion of the hardcore bosons initially confined in a shallow
trap with characteristic density ρ̃ = 0.5 (see Eq. (2.18)) well below the
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Figure 2.12: Scaling of the steady-state λ0 (recorded at time t = 500~/J)
for varying number of particles in a system of size L = 1502; other param-
eters as in Fig. 2.10. The data for correlated frozen bosons are compared
with those for fully uncorrelated ones. The line corresponds to a fit to
λ0 ∼

√
N .

critical value ρ̃c ≈ 2.6 for the onset of a Mott plateau in the trap center.
With this initial condition quasi-condensation in the first NO is present,
and the MDF is peaked around k = 0 at t = 0 [RM05b]. In the absence
of disorder the MDF evolves towards that of the fermions (which is a
constant of motion), namely the bosons fermionize in momentum space,
although they still quasi-condense in the lowest NO which contains many
momentum components [RM05b]. Furthermore, the OPDM is decaying
algebraically like ρi,i+r ∼ |r|−0.5, showing quasi-long-range order, whereas
the phase of the OPDM is oscillating at large distances leading to fermion-
ization in momentum space. The decay of the OPDM is measured from
the center of the trap, i.e., the center of the lowest NO and the site with
maximum occupation.

We now move on to the analysis of the evolution of the MDF during
expansion from a shallow trap in the presence of disorder created by the
frozen bosons. The MDF of the mobile hardcore bosons is depicted in
Fig. 2.10 at different times t, compared to the MDF of fermions in the
same system. In presence of disorder the MDF of the fermions is no
longer a constant of motion, but it is only slightly broadening in time due
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Figure 2.13: Time evolution of (a) the density profile and (b) the momen-
tum distribution function of N = 35 hardcore bosons, initially in a perfect
Mott insulator, in a system of size L = 502 without disorder.

to its interaction with the frozen species of particles. The effect of the
disorder potential on the hardcore bosons is more significant. The t = 0
peak at zero momentum reduces its height, but, contrary to the expansion
without disorder, it does not disappear and fermionization is not present.
Following [RM05b], fermionization in absence of disorder is understood
through the argument that, after a long-term expansion, the hardcore-
boson system is dilute enough to be considered essentially non-interacting,
and so it becomes equivalent to its fermionic counterpart. In presence of
disorder, on the contrary, the expansion is stopped by localization, so
that the extremely dilute limit is never reached and the hardcore bosons
preserve their nature of strongly interacting particles. Furthermore, the
interaction with a disorder potential leads to the loss of quasi-long-range
order during time evolution, as shown in Fig. 2.11 by the decay of the
OPDM at various times. The system finally reaches a steady state with
an exponentially decaying OPDM.

The loss of quasi-long-range order during expansion strongly suggests
the loss of quasi-condensation in the system. As the initial conditions
break the translational symmetry, condensation properties are not cap-
tured by the scaling of the occupation of the zero-momentum state, and
direct diagonalization of the disorder-averaged OPDM is necessary to ex-
tract the scaling of the occupation λ0 of the lowest natural orbital. λ0
decreases during time evolution, reaching a constant value in correspon-
dence with the steady state observed in real-space. The scaling analysis
of λ0 is performed for this constant value in Fig. 2.12. The scaling of λ0
deviates from the quasi-condensation behavior at sufficiently large particle
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Figure 2.14: Time evolution of (a) the density profile and (b) the mo-
mentum distribution function of N = 35 hardcore bosons, initially in a
Mott insulator, interacting with the disorder potential created by frozen
particles at half-filling. Here the interaction strength is W = 0.5J .

numbers, revealing a crossover from quasi-condensation to fragmentation
due to the localized nature of the lowest NO. Fully uncorrelated disorder
leads to a similar behavior, although the crossover appears to be much
broader, and a quasi-condensation regime at low N could not be identi-
fied.

Time Evolution starting from a Mott insulator As reported in
[RM04b], hardcore bosons prepared in a perfect Mott insulating state
(corresponding to an infinitely steep trap) and subsequently time evolved
exhibit the phenomenon of dynamical quasi-condensation at finite mo-
mentum. Indeed, from the initially flat MDF of the Mott insulator two
quasi-condensation peaks emerge at momenta k = ±π/2 during time evo-
lution [RM04b], as reproduced in Fig. 2.13. Strictly speaking quasi-
condensation happens in two degenerate NOs whose Fourier transform
is sharply peaked around k = ±π/2; the NOs propagate at a velocity
v = ±2J corresponding to the maximal group velocities ∂ǫk/∂k for the
single-particle dispersion relation ǫk = −2J cos k at momenta k = ±π/2.

The occupation of the degenerate lowest NOs, λ0, follows initially a
universal power-law increase with time, independent of the number of
particles N ; at an N -dependent characteristic time τc, the two degener-
ate lowest NOs begin to move in opposite directions, and λ0 starts to
algebraically decrease, although its scaling with particle number shows
the typical quasi-condensation behavior λ0 ∼

√
N . The two lowest NOs
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Figure 2.15: Time evolution of λ0, (a) for various disorder strengths
and N = 35 particles, (b) for various numbers of particles and disorder
strength W = 0.1J . Other parameters as in Fig. 2.14.

clearly appear in the real-space densities as coherent fronts of the atomic
cloud moving in opposite directions (see Fig. 2.13). This aspect suggests
the use of this setup to produce an atom laser [RM04b].

We now consider the case of expanding hardcore bosons in the dis-
order potential created by frozen particles. Fig. 2.14 shows the density
profile and the MDF for the expansion from a perfect Mott insulator in
the presence of disorder created by frozen particles. Initially peaks at mo-
menta k = ±π/2 are emerging from the flat MDF at t = 0 as in the case
without disorder, and the hardcore boson cloud shows two outer fronts
expanding ballistically in opposite directions. Nonetheless this initially
coherent expansion is rapidly suppressed due to localization, which leads
to a decrease and broadening of the momentum peaks at larger times
up to a final steady-state MDF in which two broad peaks survive, and
which corresponds to a localized state in real space as seen in the previous
subsection.

A deeper analysis of condensation effects relies on the NOs and their
occupations. Figs. 2.15 show the time evolution of the largest eigen-
value λ0 for different disorder strengths and different particle numbers.
Initially λ0 is two-fold degenerate, corresponding to reflection symmetry
at the center of the system, and it increases following a universal power
law independent of the particle number, similarly to what is observed in
absence of disorder but with a different disorder-dependent exponent. As
in the case W = 0, at a characteristic time τc the two degenerate natural
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Figure 2.16: Scaling of the maximal value of λ0 during time evolution of
N hardcore bosons, initially in a Mott insulator. All parameters as in Fig.
2.15b. The line corresponds to a fit to λ0 ∼
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N of the first four data

points.

orbitals start to move into opposite directions, and correspondingly the
time evolution of λ0 turns into a decreasing behavior; τc strongly depends
on the disorder strength (Fig. 2.15a), while its dependence on the particle
number N becomes weaker for large N , where τc is seen to approach an
asymptotic value (Fig. 2.15b). Unlike the case W = 0, at a later stage
the expansion of the system is stopped by disorder, and the degeneracy in
the lowest NOs is removed, going from two propagating ones to a single
NO localized in the system center.

Hence the expanding system of hardcore bosons from a pure Mott
state shows a crossover from an incipient quasi-condensation regime at
finite momenta to a localization regime. It is natural to ask whether the
system displays true quasi-condensation at any intermediate point in time.
To address this issue, we perform a scaling analysis of λ0 at the maximum-
coherence time t = τc. The results of this analysis are shown in Fig. 2.16,
where λ0 exhibits a clear saturation for large particle numbers, and hence a
crossover from quasi-condensation to fragmentation. Repeating the same
analysis for uncorrelated random disorder we find a scaling of λ0 which
is in qualitative agreement with the case of disorder generated by frozen
particles (the apparent quantitative agreement is accidental).
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2.4 Dynamical Doping

In this section, we theoretically explore a different scheme leading to local-
ization in atomic mixtures, based on “dynamical doping” of frozen b-atoms
into a cloud of mobile a-atoms. a and b-atoms represent two internal states
of the same atomic species [HDR10].

Like in Sec 2.3, we use a state-dependent optical lattice to freeze one
species and keep the other mobile. All N atoms are initially prepared in
state

∣∣a〉, and occupy the motional ground state. Subsequently, a short
radio-frequency Rabi pulse is applied, creating an internal-state super-
position cos(α/2)|a〉 + sin(α/2)|b〉, where α is the pulse area. We show
that the frozen b component creates a quantum superposition of disorder
potentials (see Fig. 2.17). The wavefunction of weakly interacting a-
atoms in a two-dimensional lattice is studied numerically and evolves into
a quasi-stationary profile with exponential tails. While we concentrate our
discussion on bosons, our scheme should work equally well for fermions.
The idea of dynamical doping can also generate new perspectives for other
disordered systems.

The analysis of our scheme is interesting for several reasons:

1. The fact that dynamical doping results in localization is not obvious,
because the Rabi pulse transfers a fraction sin2(α/2) of the popula-
tion at each site into the frozen state

∣∣b〉. Without measuring the
frozen atoms, no quantum projection noise is introduced and it is
not a priori evident why the frozen atoms should generate disorder.

2. We show that the resulting disorder potential has negligible spatial
correlations, unlike the most recent realizations in cold atom experi-
ments [FLG+06, WPM+09, PMW+10, BJZ+08, RDF+08, DZR+10].

3. The experimental implementation of this scheme should be signifi-
cantly simpler than the previously proposed schemes for disorder in
atomic mixtures [PVC05, RC07, HCR07], e.g. the one discussed in
Sec. 2.3. These schemes involve either the diabatic preparation of
quantum emulsion states, whose statistics is controlled by the initial
state and preparation scheme [RC07]; or the individual preparation
of each species on disjoint optical lattices, and the subsequent rel-
ative motion of the two lattices to achieve coupling of the mobile
particles to the disorder potential [PVC05, HCR07].
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Figure 2.17: Sketch of atom localization in state-dependent optical lat-
tices. The mobile a-atoms, initially prepared in the ground state of the
lattice, are converted to a quantum superposition cos(α/2)|a〉+sin(α/2)|b〉
by a Rabi pulse, where the b-atoms are frozen by the lattice. The state of
the system can be viewed as mobile a-atoms (red) moving in a quantum
superposition of random potentials created by the frozen b-atoms (blue).

4. Due to the quantum parallelism, single-shot experiments with large
atom numbers directly provide disorder averages.

The structure of this section is as follows. In Sec. 2.4.1 we introduce
our description for an optical lattice with two species of bosons, discuss
the preparation scheme, analyze the generated disorder potential, and
explain our numerical procedure. We present and discuss the signatures
for Anderson localization appearing in this system after the dynamical
doping of frozen bosons in Sec. 2.4.2.

2.4.1 System and Method

In this section we first give a Hamiltonian description for the dynamics
of two bosonic species in an optical lattice and the process of dynamical
doping. Then we specialize on the case of weakly interacting bosons and
examine the nature of the correlations in the disorder potential created by
the frozen species. Finally, we give details on our numerical calculations.
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Hamiltonian Dynamics

Our system consists of mobile a and frozen b-bosons trapped in the lowest
band of an optical lattice, described by the Hamiltonian H from Eqs.
(2.2)-(2.5). Here we consider both species to be confined by the same
harmonic trap V = V f .

The system initially contains only the mobile bosons in the ground
state of the Hamiltonian H0, which can be expanded in the basis of lattice
Fock states

|Ψ〉t=0− =
∑

{ni}

C({ni})
(
∏

i

1√
ni!

(a†i )
ni

)
|0〉 (2.31)

subject to the constraint
∑

i ni = N .
Under the assumption that the Rabi pulse is fast compared to the

Hamiltonian dynamics, the application of a pulse instantaneously rotates
the bosonic operators on all sites

a†i → cos(α/2)a†i + sin(α/2)af†i . (2.32)

The resulting state can be expanded as a quantum superposition of many
partitions of the N atoms over the mobile and the frozen species

|Ψ〉t=0+ =
∑

{ni},{nf
i}

C̃
(
{ni}, {nf

i}
)
|{nf

i}〉 ⊗ |{ni}〉 (2.33)

under the constraint
∑

i

(
ni + nf

i

)
= N . This state can be rewritten as

|Ψ〉t=0+ =
∑

{nf
i},

∑
i n

f
i≤N

c({nf
i})|{nf

i}〉 ⊗ |Φ({nf
i})〉t=0, (2.34)

where
|Φ({nf

i})〉t=0 = c({nf
i})−1

∑

{ni}

C̃
(
{ni}, {nf

i}
)
|{ni}〉 (2.35)

is the normalized state of the mobile bosons subject to the constraint of
having a Fock state |{nf

i}〉 of the frozen bosons. c({nf
i}) is a normalization

constant and can be chosen to be real.
The subsequent time evolution of the system is governed by the full

Hamiltonian H. The evolved state at time t, |Ψ〉t, can again be expanded
in the form of Eq. (2.33). We now assume that tunneling of the (frozen)
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b-bosons is negligible, J f = 0, so that they are frozen in the Fock states
|{nf

i}〉. Hence, the mobile boson components in Eq. (2.35) evolve decou-
pled from each other as

|Φ({nf
i})〉t = exp[−iH({nf

i})t/~]|Φa({nf
i})〉t=0. (2.36)

We will argue in this subsection that the Hamiltonian of the frozen bosons
Hf does not contribute to the interesting dynamics such that this equation
again assumes the form of Eq. (2.11). At time t, observables A, referring
to mobile bosons only, take the expectation value [PVC05]

〈A〉t =
∑

{nf
i}

∣∣c
(
{nf

i}
)∣∣2

t〈Φ({nf
i})|A|Φ({nf

i})〉t, (2.37)

which describes the average over parallel quantum evolutions of the mo-
bile bosons in all possible realizations of the static potential Vi = Wnf

i

generated by the frozen bosons. These realizations follow the statistics
dictated by the |c({nf

i})|2 coefficients, which are completely controlled by
the choice of the initial state of the bosons. In particular, if this state is
homogeneously spread over a given region of space, the distribution of the
resulting effective potential will be dominated by configurations in which
a number ∼ N sin2(α/2) of frozen bosons is randomly scattered over this
region, hence giving rise to an effective disorder potential. Note that in
contrast to the proposal in Sec. 2.3 the number of frozen bosons N f is not
fixed here.

With J f = 0, the Hamiltonian Hf obviously contributes only a phase
factor to the time evolution of each |Φ({nf

i})〉t. This has no effect in Eq.
(2.37). Hence, Hf can be omitted in our numerical calculations below.
Furthermore, if there is spin decoherence, i.e., if the relative phase of
states a and b fluctuates due to experimental imperfections, this will cause
fluctuations in the phases of all the |Φ({nf

i})〉t in Eq. (2.34). This also
has no effect in Eq. (2.37). This insensitivity to spin decoherence is a
strength of our scheme.

Weakly interacting bosons and disorder statistics

In the following, we consider weakly interacting (U . J) Bose gases.
To analyze the statistical properties of the disorder, we describe the state
before the Rabi pulse with a condensate wavefunction on a lattice [BDZ08]

|Ψ〉t=0 =
1√
N !

(
∑

i

ψia
†
i

)N ∣∣0〉 =: |{ψi}〉⊗N , (2.38)
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which is a good approximation far from the superfluid-to-Mott-insulator
transition (occurring for U/J ∼ 16 with n = 1). Here, ψi = Ψi/

√
N

is the effective single-particle state. After the Rabi pulse, Eq. (2.32),
the state can be written in the form of Eq. (2.34) with

∣∣Φ(
{
nf
i

}
)〉t=0 =

|{ψi}〉⊗(N−N f) and

∣∣c
(
{nf

i}
)∣∣2 =

(
sin2 α/2

)N f (
cos2 α/2

)N−N f

× N !

(N −N f)!

∏

i

|ψi|2nf
i

nf
i!

. (2.39)

The |c|2 coefficients describe the statistics of a random potential with an
average number of frozen bosons per site 〈nf

i〉 = 〈N f〉 |ψi|2 and an average
total number of frozen bosons

〈
N f
〉
= N sin2(α/2). The correlations in

the disorder potential can be described by the density-density correlation
function g

(2)
ij , taking the expression

g
(2)
ij =

〈b†ib†jbibj〉
〈b†ibi〉〈b†jbj〉

= 1− 1

N
. (2.40)

Therefore, for large N the magnitude of the disorder potential on differ-
ent sites can be regarded as independent. Thus, in contrast to speckle
potentials, our proposal does not suffer from problems with the autocor-
relation in the disorder potential. The disorder distribution is, however,
inhomogeneous because of the external trapping potential.

In our simulations, we take N = 50 bosons, a two-dimensional L × L
lattice with L = 60 and V = V f = m

2
ω2d2 = 0.004J which yields a density

〈n〉 ≤ 1 throughout the trap (〈n〉 ≈ 1 for the U = 0 case). Here, d = λ/2
is the lattice spacing. We determine |ψi|2 by numerically minimizing the
Gross-Pitaevskii (GP) energy functional [PS02]

E = −J
∑

〈ij〉

(
ΨiΨ

∗
j + c.c.

)
+
∑

i

(
U

2
|Ψi|2 + V (i− i0)

2

)
|Ψi|2 (2.41)

subject to the condition that the total number of particles be fixed to
N . Next, we generate disorder realizations {nf

i} according to the |c|2
statistics of Eq. (2.39) via standard Monte Carlo Metropolis sampling
(see Eq. (2.25)). We are sampling over approximately 100 independent
disorder realizations. Finally, we numerically solve the time-dependent GP
equation governed by the Hamiltonian H to calculate the time evolution
after the pulse.
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Figure 2.18: Time-evolution of the density profile n(x) = 〈nx/d〉 for the
non-interacting gas, U = 0, after a pulse of duration α = π/2 and with
interspecies interaction W = 7Ja.

2.4.2 Dynamical Localization

Now we can proceed with the discussion of the results of our numerical
simulations. Fig. 2.18 shows the time evolution of the density profile of
the mobile bosons for U = 0, W = 7J , α = π/2. After the Rabi pulse
at t = 0, the cloud of mobile bosons rapidly expands from its initially
Gaussian state, due to the repulsion from the dynamically doped frozen
bosons. The expanding cloud wings are then reflected by the trap. This
generates breathing oscillations, which are quickly damped by the disor-
der. Remarkably the resulting, quasi-stationary density profile features a
central peak with exponentially decaying tails, 〈ni〉 ∼ exp(−|ri − r0|/ξ),
clearly exhibiting Anderson localization. A similar behavior is observed
for U > 0 and for different values of W and α. Yet, the dependence of
the localization phenomenon on these parameters is nontrivial and differs
significantly from what one expects at equilibrium.

The fast, diabatic Rabi pulse takes the system out of the initial ground
state into an excited non-equilibrium state. According to Eq. 2.39, the
remaining mobile bosons occupy a superposition of different condensate
states with variable particle number N −N f ; these condensate states are
non-equilibrium ones because they are immersed in the disordered back-
ground of frozen bosons, and because, in presence of finite interactions
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U > 0, the condensate wavefunction is no longer minimizing the interac-
tion energy for a reduced particle number N−N f . To quantify the distance
from equilibrium, we evaluate the energy transfer per mobile boson due
to the Rabi pulse

δε =
〈H0 +W

∑
i nin

f
i〉after

N cos2(α/2)
− 〈H0〉before

N
, (2.42)

where 〈...〉before(after) denotes the expectation value over the wavefunction
before (after) the pulse. Fig. 2.19 clearly shows that the transferred energy
δε increases for increasing disorder strength (namely for increasing α and
W ), while it decreases for increasing interactions U . This is partly due to
the fact that, for a given initial distribution (controlled uniquely by the
U/J ratio and by the trapping potential), the gain in on-site interaction
for the mobile bosons is ∝ W − U/2, namely it increases linearly with
W . On the other hand, increasing U reduces the probability that many a-
bosons occupy the same site before the Rabi pulse; this latter fact reduces
the probability that, immediately after the pulse, a site will be occupied
by both mobile and frozen bosons, and this reduces δε.

So on the one hand, the equilibrium physics suggests that stronger lo-
calization should occur for stronger disorderW and for weaker interactions
U , due to reduced screening [KM93, DZR+10]. On the other hand, the
non-equilibrium physics suggests the exact opposite, namely that stronger
W and weaker U both increase δǫ, so that the mobile bosons expand more
violently, making the wings of the quasi-stationary density profile fall off
more slowly, and therefore increasing the localization length ξ. The evolu-
tion of ξ in Fig. 2.19 shows that the non-equilibrium aspects dominate in
this competition. Note that, for larger ξ, the density profile exhibits expo-
nential tails over a larger spatial range, which facilitates the experimental
observation of the tails (The spatial support of the disorder distribution
is finite, being the same as that of the condensate wavefunction before the
pulse. Part of the mobile bosons can expand beyond this region, so that
the extreme tails do not belong to the localized wavefunction, but to the
wavefunction transmitted through the disorder.)

While the real-space localization exhibits counterintuitive, non-equili-
brium properties, the coherence properties of the expanding cloud exhibit
instead a more intuitive behavior. We consider the momentum distri-
bution of the mobile bosons, 〈nk〉t =

∑
i,j e

−ik(i−j)〈a†iaj〉t/L2 right after
the pulse (t = 0) and after time evolution to a quasi-stationary state
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Figure 2.19: Lower panels: localization length (in units of the lattice spa-
cing d) of the evolved cloud for a non-interacting gas of mobile bosons
(U = 0, left), and for interacting mobile bosons with W = 7J (right).
Upper panels: corresponding transferred energy per mobile boson.

(t = tmax = 200~/J), and we monitor the loss of coherence during evo-
lution via the relative coherent fraction R = 〈nk=0〉tmax/〈nk=0〉t=0. Fig.
2.20 shows that the relative coherent fraction is suppressed for increased
disorder strength (larger α), showing that, although the cloud displays
exponential tails with a longer ξ, the internal phase coherence is spoiled
by disorder more effectively. This effect is reduced upon increasing the
repulsion strength U , showing that disorder screening is indeed observed
in the cloud core, which is the part contributing more significantly to the
overall coherence properties.

2.5 Experimental Realization

While our proposals are quite general, we wish to point out that an ex-
perimental implementation is feasible with existing technology in ultra-
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Figure 2.20: Relative coherent fraction R after time evolution (see text)
for W = 7J .

cold gases. However it is more straightforward to implement the dy-
namical doping scheme (see Sec. 2.4). Thus we will begin with the
description of its implementation, in a way that all relevant parame-
ters can be adjusted independently. One could, e.g. choose 87Rb atoms
with hyperfine states |a〉 = |F = 1, mF = 1〉 and |b〉 = |F = 2, mF =
2〉. For circularly-polarized lattice light, there is a so-called magic wave-
length near 787 nm where the mobile a-atoms see no lattice potential
[JBC+99, BCJ+99, JZ04, MDW02]. The ratio of the tunneling ampli-
tudes J/J f can be adjusted over a wide range by tuning the wavelength
λ near the magic wavelength. Hence, one can make J f very small, thus
freezing the b-bosons. A Feshbach resonance [CGJ+10] for state

∣∣a〉 can
be used to adjust the interaction strength U . Due to the state-selective
character of Feshbach resonances, this leaves the interspecies interaction
strength W unchanged. The intensity of the lattice light controls W/J .
Finally, this choice of states

∣∣a〉 and
∣∣b〉 is stable against spin exchange

and it is only subject to very slow dipolar relaxation [PS02].

For the case of an independent preparation of the two species (see
Sec. 2.3) further techniques must be applied. As shown in [MGW+03] it
is possible to coherently control the phase between the two polarization
components, i.e., between the two optical lattices. Hence, if the two po-
larization components are initially shifted by π/2 in space, the two species
are non essentially interacting (see Fig. 2.2). The possibility of increasing
drastically the intensity of one of the two polarization components would
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allow for a sudden quench of the hopping of one of the two species, prepar-
ing in this way the quantum superposition of random potentials. The
two species can be then brought into interaction at different strengths by
shifting the spatial phase between the two polarization components of the
lattice. An adiabatic shift would transfer the mobile species to the Bose-
glass ground state in the random potential, as discussed in Sec. 2.3.2,
whereas a sudden shift would give rise to an out-of-equilibrium Bose-glass
state as steady state after a transient evolution, as discussed in Sec. 2.3.3.
As demonstrated in [PWM+04], the hardcore regime is achieved by using
deep lattices for both polarization components and extremely dilute gases
of both hyperfine states, so that a density of less than one atom per site
is achieved in the lattice after loading.

As seen in Sec. 2.3.4, expansion experiments in the disorder potential
require to confine the two components with strongly different trapping
frequencies, and then to release one of the two traps independently of the
other. Making use of the selective coupling of different hyperfine states
to different polarization components of a magic-wavelength laser, it is
possible to more strongly confine one of the two species through an optical
dipole trap obtained by a tightly focused and polarized laser propagating
transverse to the chain direction in the one-dimensional optical lattice.

Throughout this chapter we have seen that the onset of localization
leaves very strong signatures on the momentum distribution, which is ob-
served in standard time-of-flight experiments [GME02]. Moreover expan-
sion experiments in the disorder potential lead to exponentially localized
steady states, whose density profiles can be measured with a single-site res-
olution. Atom microscopes with this resolution have been demonstrated
recently [SWE+10, BGP+09].

2.6 Conclusion

In this chapter we have shown that bosonic gases undergo genuine quan-
tum localization effects when set into interaction with a secondary species
of bosons frozen in a massive quantum superposition of Fock states. Each
Fock state can be regarded as a realization of a random potential, and the
unitary evolution of the mobile species of bosons follows all possible paths
related to the various disorder realizations in parallel. A rich disorder
statistics can be generated by state preparation of the system before the
pulse [PVC05].
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In Sec. 2.3 we propose to prepare the frozen bosons in the superfluid
state of one-dimensional hardcore bosons, realizing a rapidly fluctuating
disorder potential over the length scale of a few lattice spacings; despite
its power-law decaying correlations, this disorder potential is found to lead
to the same localization effects as those observed in a fully uncorrelated
potential. The equilibrium state of the hardcore bosons in the random
potential is found to be a homogeneous Bose-glass state with exponentially
decaying correlations; a similar state can be realized also dynamically
after a sudden on-turn of the interaction between the two species. When
the hardcore bosons are initially confined in a tight trap and then set
free to expand in the random potential, for any non-vanishing disorder
strengths the expansion stops and the system reaches an exponentially
localized state [HCR07]. For any setup discussed in this section we observe
the absence of quasicondensation and quasi-long-range order due to the
disorder potential.

Alternatively, we have proposed an experimentally simpler scheme in
Sec. 2.4. By dynamically doping frozen weakly interacting bosons into
the system via a Rabi pulse, novel, non-equilibrium disorder effects on the
many-body state of bosons trapped in a spin-dependent optical lattice can
be observed. After the the release from a tight trap, the weakly interacting
bosons evolve into an exponentially localized steady state with reduced
coherence. [HDR10].

Our predictions can be tested by state-selective time-of-flight measure-
ments and in-situ imaging of the bosonic cloud (see Sec. 2.5). Hence disor-
der created by a species of frozen hardcore bosons represents a very robust
way to experimentally implement strongly fluctuating random potentials
in optical lattices, and to realize fundamental localization effects of many-
body systems. Moreover, an experimental implementation of dynamical
doping is particularly desirable, as it could access the regime of strongly
interacting mobile atoms on the verge of the superfluid-to-Mott transition,
which remains challenging for all current theoretical approaches.



Chapter 3

Decoherence Dynamics

3.1 Introduction

The control and manipulation of systems in the quantum regime has seen
great progress in recent years [SVB+08]. Research goals include the quan-
tum simulation of condensed matter systems [BN09] as well as the re-
alization of quantum computers [ZBB+05]. In this field decoherence is
traditionally regarded as the main obstacle, which has to be avoided or
corrected for [Sho95]. An alternative view on decoherence has recently
been proposed [VWC09, KBD+08]. One can make use of decoherence and
engineer the interaction of a quantum system with a reservoir. This allows
for the preparation of any desired state as the steady state of a dissipative
evolution.

In systems of cold atoms the quantum simulation of strongly cor-
related states has so far been achieved by cooling to the ground state
of nicely tunable Hamiltonians [BDZ08]. Recently it has been found
how to prepare Bose-Einstein condensates [DMK+08], superconducting
d-wave states [DYD+10], three-body interactions [DTD+09], and Pfaffian
states [RRC10] by engineering local dissipation. Beyond the prepara-
tion of interesting states, the full non-equilibrium phase diagram has been
mapped out in these systems [DTM+10]. The experimental realization of
a dissipative quantum simulation has been achieved in a similar project
[SBL+08, DGS+09, GDS+09] based on naturally present two-body losses.
These losses dynamically enforce a hardcore constraint on the atoms gen-
erating the strongly-correlated Tonks-Girardeau phase. Another line of
active research is the creation of entanglement for quantum information
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processing. It has been proposed [MPC10] and experimentally verified
[KMJ+10] that the engineering of a dissipative process allows for the gen-
eration and maintenance of entanglement in atomic systems. Also quan-
tum memories can be protected by engineered dissipation [PCC11].

In this chapter we are studying the dependence of the decoherence
dynamics on the physics of the system. We show that the asymptotic
decoherence rate, i.e., the decoherence rate at late times, or the steady
state reflect a phase transition of the system in the limit of weak system-
bath couplings. The decoherence dynamics undergo a dissipative phase
transition if the system shows a quantum phase transition. Assumping
Markovian dynamics, i.e., memoryless baths, we can resort to the Lind-
blad master equation to describe the decoherent dynamics [Lin76]. In par-
ticular, we are studying the anisotropic quantum XY chain in a transverse
magnetic field containing the prototype of a continuous phase transition
[Sac99]. We point out that this dissipative quantum simulator can be
experimentally realized in systems of cold ions with currently available
techniques.

To this end we develop a mathematical framework that allows to ex-
actly solve the dynamics of non-interacting, i.e., quadratic, fermionic sys-
tems for certain relevant Lindblad master equations. Note that our frame-
work also applies to the systems studied in [Pro08, Pro10] where quadratic
fermionic systems are coupled to a Markovian bath with Lindblad oper-
ators which are linear in the fermionic creation/annihilation operators.
However, such systems require underlying Hamiltonians, which are linear
in these fermionic operators and thus violate causality [Pop00].

This chapter is structured as follows. In Sec. 3.2 we are introducing
the Lindblad master equation which allows to describe decoherence due
to the weak interaction with a Markovian bath. We are presenting the
covariance matrix formalism, allowing the exact treatment of quadratic
fermionic systems, and extend it to decoherent systems. Then we perform
the analytic calculation of the steady states and the asymptotic decoher-
ence rates in this framework in Sec. 3.3. As an example we apply this
general result to the anisotropic XY chain in a transverse magnetic field
in Sec. 3.4.1, and compare the interesting results, namely the display of
quantum phase transitions in the decoherence rates, with numerical exam-
ples for finite system sizes, finite time evolutions, and finite interactions
between system and bath in Sec. 3.4.2. The comparison with an exam-
ple system which cannot be solved exactly in Sec. 3.5 shows that phase
transitions are displayed in the dissipative dynamics for a wide class of
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systems. In Sec. 3.6 we propose a possible implementation of this quan-
tum simulation with cold ions, before giving concluding remarks in Sec.
3.7.

3.2 System and Method

In this section we introduce the Lindblad master equation, the dynamical
equation describing the interaction of a system with a Markovian bath (see
Sec. 3.2.1). We further describe the fermionic covariance matrix formalism
which is ideally suited for describing non-interacting and spinless fermionic
systems, and extend this formalism to systems in contact with a bath (see
Sec. 3.2.2). We discuss the representation for all translationally invariant
fermionic systems in one dimension (see Sec. 3.2.3). Finally, we describe
the Jordan Wigner transformation which allows to transform some exactly
solvable one-dimensional spin systems, especially the anisotropic XY-chain
in a transverse magnetic field, into non-interacting fermionic systems (see
Sec. 3.2.4).

3.2.1 Lindblad Master Equation

In this chapter we treat the decoherence of a system in contact with a
heat bath with the Lindblad master equation [Lin76]

∂tρ = − i

~
[H, ρ] +

∑

α

(
LαρLα† − 1

2

{
Lα†Lα, ρ

})
, (3.1)

where ρ is the density matrix of the system, H is its Hamiltonian, and the
Lindblad operators Lα determine the interaction between the system and
the bath. This dynamical equation for an open system can be derived from
two different points of view [BP02]. First, it can be derived from the full
dynamics of system and bath. Here three major approximation have to
be used: The state of system and environment are initially uncorrelated,
the coupling between system and bath is weak (Born approximation),
and the environment equilibrates fast (Markov approximation). Second,
this Lindblad equation describes the dynamics of a quantum dynamical
semigroup. A quantum dynamical semigroup is a completely positive,
trace preserving map, which is continuous and transitive in time.

Throughout most of this chapter we will restrict the discussion to the
case of Hermitian Lindblad operators. Then we can rewrite the Lindblad
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master equation (3.1)

∂tρ = − i

~
[H, ρ]− 1

2

∑

α

[Lα, [Lα, ρ]] . (3.2)

In terms of
∣∣ρ〉, the vector of components of ρ, this equation becomes

∂t
∣∣ρ〉 = S

∣∣ρ〉 =
(
H− 1

2

∑

α

(
Lα
)2
)
∣∣ρ〉. (3.3)

with the superoperators

H = − i

~

(
H⊗ 1− 1⊗HT

)
, (3.4)

Lα = Lα ⊗ 1− 1⊗ LαT. (3.5)

We will later use that the superoperator H is anti-Hermitian and that the

superoperators Lα are Hermitian, so that the
(
Lα
)2

are Hermitian and
non-negative.

3.2.2 Covariance Matrix Formalism

Now we will present a framework in which the dissipative dynamics of the
Lindblad master equation (3.2) can be solved exactly. We are focusing
on fermions with N creation and annihilation operators a†i and ai (system
size N). These operators obey the canonical anti-commutation relations

{ak, al} = 0,
{
a†k, al

}
= δkl. (3.6)

We introduce fermionic Majorana operators

ck,0 = a†k + ak, ck,1 = (−i)
(
a†k − ak

)
, (3.7)

which as generators of the Clifford algebra satisfy the anti-commutation
relations

{ck,m, cl,n} = 2δklδmn. (3.8)

We are describing the state of the system with its real and antisymmetric
covariance matrix

Γkl,mn = tr

(
ρ
i

2
[ck,m, cl,n]

)
. (3.9)
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The magnitudes of the imaginary eigenvalues of Γ are smaller than or
equal to unity. Pure states ρ =

∣∣Ψ〉〈Ψ
∣∣ satisfy Γ2 = −1. In our notation

Γkl denotes a 2 × 2 matrix that describes the coherence between sites k
and l.

Here we concentrate on Hamiltonians and Lindblad operators which
are quadratic in the fermionic Majorana operators

H =
i

4

∑

klmn

Hkl,mnck,mcl,n, (3.10)

Lα =
i

4

∑

klmn

Lα
kl,mnck,mcl,n. (3.11)

The matrices H and Lα are real and anti-symmetric for Hermitian Hamil-
ton and Lindblad operators. All eigenstates and thermal states of these
quadratic Hamiltonians are Gaussian and remain Gaussian under the evo-
lution with quadratic Hamiltonians. Gaussian states have density opera-
tors which are exponentials of quadratic forms in the Majorana operators.
For such Gaussian states all correlation functions are related to the co-
variance matrix through Wick’s theorem. Because of this significance of
the covariance matrix we concentrate on studying the system dynamics
through the covariance matrix. We use the anti-commutation relations
(3.8) to determine the dynamical equation for the covariance matrix Γ
from Eq. (3.2)

∂tΓ =
1

~
[H,Γ] +

1

2

∑

α

[Lα, [Lα,Γ]] . (3.12)

This equation is the analog of the Lindblad master equation in the co-
variance matrix formalism. We reformulate this equation for the vector of
components

∣∣Γ〉

∂t
∣∣Γ〉 = S

∣∣Γ〉 =
(
H− 1

2

∑

α

(
Lα
)2
)
∣∣Γ〉, (3.13)

where H is anti-symmetric and
(
Lα
)2

is symmetric and non-negative anal-
ogous to the case of the density matrix (3.3).

∣∣Γ〉 is treated as an element
of the vector space C2L for N lattice sites in this notation, while only real
and anti-symmetric covariance matrices are physically meaningful. This
must be considered during the analysis.
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3.2.3 Translationally invariant Hamiltonians

The Hamiltonian matrix H defined in Eq. (3.10) takes a special form for
a translationally invariant Hamiltonian. The 2 × 2 matrices Hkl, corre-
sponding to the interaction between sites k and l, only depend on the
distance between the sites, i.e., Hkl = Hk−l, where the difference k − l
is understood as k − l modulo N , taking into account periodic boundary
conditions.

Any real anti-symmetric matrix can be transformed into a real and
anti-symmetric block-diagonal matrix by an orthogonal transformation
O. For the Hamiltonian matrix H this means

H ′
kl,mn =

(
OHOT

)
kl,mn

, Hkl = δkl

(
0 ǫk

−ǫk 0

)
, (3.14)

where the real number ǫn are the energies of the elementary excitations.
We, however, transform the Hamiltonian matrix with the unitary Fourier
transform

H̃kl,mn =
(
UHU †

)
kl,mn

, Ukl,mn =
1√
N
e

2πi
N

klδmn. (3.15)

The resultant matrix H̃ is anti-Hermitian, but not real. Therefore, we
include also non-physical Hamiltonians in our calculations. The matrix H̃
is block-diagonal

H̃kl = δkl

N−1∑

δ=0

Hδe
− 2πi

N
δk. (3.16)

The block-diagonal is parametrized according to

H̃mn = δmn

(
ikn hn
−h∗n iln

)
, kn, ln ∈ R, hn ∈ C. (3.17)

For later use we observe the properties

h−n = h∗n, k−n = −kn, l−n = −ln. (3.18)

The spectrum of the Hamiltonian matrix determines the elementary exci-
tation energies

ǫn =

∣∣∣∣∣∣
kn + ln

2
±
√(

kn − ln
2

)2

+ |hn|2
∣∣∣∣∣∣
. (3.19)
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It will be necessary to transform the covariance matrix Γ accordingly

Γ̃ = UΓU †. (3.20)

By minimizing the energy expectation value

〈E〉 = Tr
(
HTΓ

)
= Tr

(
H̃†Γ̃

)
(3.21)

we find the covariance matrix for the ground state. In the case knln < |hn|2
it is

Γ̃0
mn = δmn

((
kn−ln

2

)2
+|hn|2

)−1/2

(
ikm−lm

2
−hm

h∗m −ikm−lm
2

)
(3.22)

and otherwise

Γ̃0
mn = δmnsign (kn + ln)

(
−i 0
0 −i

)
. (3.23)

In the case of isotropic systems along the chain kn = −ln holds, thus
knln < |hn|2 is fullfilled in such systems. Since the XY chain is isotropic,
we can concentrate on the case of Eq. (3.22).

3.2.4 Jordan-Wigner Transformation

As already indicated, we can treat spin systems in the formalism of non-
interacting fermions. The Jordan-Wigner transformation maps Pauli spin
operators onto fermionic operators via

ck,0 =

k−1∏

l=1

σl
zσ

k
x, ck,1 =

k−1∏

l=1

σl
zσ

k
y . (3.24)

This transformation maps some spin chains onto spinless non-interacting
fermionic systems which can be solved exactly. A prominent example is
the anisotropic XY chain in a transverse magnetic field [Sac99] with the
Hamiltonian

H = −J
N∑

i=1

[(
1 + γ

)
σi
xσ

i+1
x +

(
1− γ

)
σi
yσ

i+1
y

]
+B

N∑

i=1

σi
z , (3.25)

where B is the magnetic field, J the ferromagnetic coupling, and γ the
anisotropy parameter. This translationally invariant Hamiltonian is rep-
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resented by a Hamiltonian matrix with

H0 =

(
0 −2B
2B 0

)
(3.26)

H1 =

(
0 2J

(
1− γ

)

−2J
(
1 + γ

)
0

)
(3.27)

H−1 =

(
0 2J

(
1 + γ

)

−2J
(
1− γ

)
0

)
. (3.28)

After Fourier transforming (see Eq. (3.15)) this Hamiltonian matrix as-
sumes the form given in Eq. (3.17) with

hn = −2B + 4J cos
2π

N
n + 4Jγi sin

2π

N
n, (3.29)

kn = ln = 0. (3.30)

The energies of the elementary excitations of this Hamiltonian are ǫn =
|hn|. A phase transition occurs iff the ground state is degenerate, i.e., an
ǫn = 0 exists. For the XY chain in Eq. (3.29) the gap closes at B = 2J in
the thermodynamic limit. Thus the quantum XY chains exhibit a phase
transition at this point. In fact, these models constitute the archetypal
example of a continuous quantum phase transition [Sac99]. In this chapter
we want to find properties of the dissipative dynamics signaling this phase
transition.

3.3 Exactly solvable quadratic Systems

In this section we are studying the dynamical properties of the Lindblad
master equation with Hermitian Lindblad operators. First in Sec. 3.3.1
we are describing the steady states of the Lindblad master equation (3.2).
We find that in our case the steady states are not interesting. Therefore,
we are calculating the asymptotic decoherence rate that determines the
long-time dynamics of the decoherence process in Sec. 3.3.2. We find that
phase transitions of the system are reflected in this rate. We further find
an agreement between the asymptotic decoherence rate and the ground
state variance (see Sec. 3.3.3).
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3.3.1 Steady States

Let us first determine the steady state density matrices satisfying ∂t
∣∣ρ0〉 =

0. We consider all complex valued vectors
∣∣ρ〉 instead of just the ones

corresponding to positive density matrices with trace one. Therefore, we
have to check after the calculation if our results correspond to physically
meaningful states.

Following Eq. (3.3) the steady states satisfy

〈ρ0
∣∣(H− 1

2

∑

α

(
Lα
)2)∣∣ρ0〉 = 0. (3.31)

As found above, for Hermitian Lindblad operators Lα, H is anti-Hermitian

and all
(
Lα
)2

are Hermitian. Applying these properties we can conclude
from Eq. (3.31) that

〈ρ0
∣∣∑

α

(
Lα
)2∣∣ρ0〉 = 〈ρ0

∣∣H
∣∣ρ0〉 = 0 (3.32)

holds. It follows from the non-negativity of
(
Lα
)2

that

(
Lα
)2∣∣ρ0〉 = 0 ∀α. (3.33)

Because the Lα can be diagonalized this implies Lα
∣∣ρ0〉 = 0. It follows

that H
∣∣ρ0〉 vanishes identical. In terms of matrices ρ0, we can summarize

these conditions for steady states

[H, ρ0] = [Lα, ρ0] = 0 ∀α. (3.34)

It can be verified with Eq. (3.2) that this condition for steady states is
not only necessary but also sufficient.

We can derive the analogous condition for the steady state covariance
matrix Γ0 from Eq. (3.12)

[H,Γ0] = [Lα,Γ0] = 0 ∀α. (3.35)

To summarize, steady states for Hermitian Lindblad operators corre-
spond to density matrices commuting with the Hamiltonian and all Lind-
blad operators. Therefore, they are the identity up to symmetries shared
by the Hamiltonian and the Lindblad operators. We are giving examples
in Sec. 3.4.
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Another class of density matrices are non-decaying, but oscillating den-
sity matrices ∂t

∣∣ρ1〉 = iλ
∣∣ρ1〉 with a real λ 6= 0. We can exclude them under

the condition that the Hermitian Lindblad operators form a set of stabi-
lizer operators, i.e. a set of commuting observables

[
Lα,Lβ

]
= 0 ∀α, β,

where the eigenvalues of the Lα can distinguish between all states in the
Hilbert space. We will show this in the following. Analogous to the steady
states, non-decaying, but oscillating density matrices ρ1 must satisfy

[H, ρ1] = λρ1, [Lα, ρ1] = 0 ∀α. (3.36)

Since ρ1 commutes with the set of stabilizer operators Lα, ρ1 can be diag-
onalized. Thus [ρ1, ρ

†
1] = 0 holds, in contradiction with the first condition

of Eq. (3.36) for ρ1 6= 0:

0 = Tr
(
H
[
ρ1, ρ

†
1

])
= Tr

(
ρ†1 [H, ρ1]

)
= λTr

(
ρ1ρ

†
1

)
6= 0. (3.37)

Therefore, λ = 0 must be fulfilled and all non-decaying states are steady
states.

3.3.2 Asymptotic Decoherence Rate

In the previous section we found that steady states are trivial for Hermi-
tian Lindblad operators. Thus, we concentrate on the asymptotics of the
decoherence process in the following. It is studied through the eigenvalues
λi of the superoperator S (see Eq. (3.13))

S
∣∣Γ〉 = λi

∣∣Γ〉. (3.38)

Those eigenvalues whose real parts are closest to zero ℜ
(
λi
)
∼ 0 determine

the asymptotics of the decoherence dynamics. The real parts of λi are non-
positive. The eigenvalue with the smallest absolute nonzero real part,
denoted µ, determines the asymptotic dynamics

Γ (t) = eStΓ (t)
t→∞−−−→ Γ(∞) + eµtΓµ. (3.39)

Now we are calculating the asymptotic decoherence rate µ in the limit of
small couplings to the environment. We focus on theN Lindblad operators

Lα = l · σα
z = l · i

2
[cα,1, cα,0] (3.40)
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in the limit l → 0. In this case the Lindblad equation (3.12) becomes

∂tΓkl,mn =
1

~
[H,Γ]kl,mn − 4l2Γkl,mn (1− δkl) , (3.41)

where we have exploited the anti-symmetry of the the covariance matrix.
For translationally invariant (see Sec. 3.2.3) systems we can write this

equation in Fourier space for Γ̃

∂tΓ̃kl =
1

~

[
H̃, Γ̃

]
kl
− 4l2

(
Γ̃kl −

1

N

N∑

r,s=1

Γ̃rsδr−s,k−l

)
, (3.42)

This corresponds to the unitary transformation of the superoperator S

S̃ =
(
U ⊗ U

)
S
(
U ⊗ U

)†
(3.43)

with U from Eq. (3.15) and does not change its eigenvalues. For weak
couplings between system and bath l → 0, the eigenvalues of S can be
determined by first order perturbation expansion. To this end we first
diagonalize the unperturbed unitary part of S

[
H̃, Γ̃

]
kl
= H̃kkΓ̃kl − Γ̃klH̃ll = λΓ̃kl, (3.44)

where we will use the notation introduced in Eq. 3.16 for the Hamiltonian
H̃. The 4N2 eigenvalues λmnk (m,n = 1, . . . , N , k = 1, . . . , 4) are

λmn1 = i (αm − αn + βm − βn) (3.45)

λmn2 = i (αm − αn − βm + βn) (3.46)

λmn3 = i (αm − αn + βm + βn) (3.47)

λmn4 = i (αm − αn − βm − βn) (3.48)

with

αm = |km + lm|/2, (3.49)

βm =
√

|hm|2 + (km − lm)2/4. (3.50)

The corresponding eigenmatrices are denoted as Λ̃mni with nonzero ele-
ments Λ̃mni

kl only for m = k and n = l, i.e., Λ̃mni
kl = δmkδnlΛ̃

mni
mn . Perturba-

tion theory demands to calculate the matrix elements of the perturbative
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part of S, −4l2(δmkδnlδij − Pmni
klj /N) (see Eq. (3.42)), with

Pmni
klj =

N

4l2
〈Λ̃mni

∣∣1
2

∑

α

(
Lα
)2∣∣Λ̃klj〉+Nδmkδnlδij

=

N∑

r,s,t,u=1

δr−s,t−uTr
((

Λ̃mni
tu

)†
Λ̃klj

rs

)

= δm−n,k−lTr
((

Λ̃mni
mn

)†
Λ̃klj

kl

)
. (3.51)

The largest eigenvalue with µ < N of the Hermitian matrix P restricted
to the spaces of degenerate eigenvalues λmni, called µP , determines the
asymptotic decoherence rate µ = −4l2

(
1 − µp

N

)
. Because |µ| should be

as small as possible, we must find eigenvalues µP of the order of the
system size N . The matrix elements of P fulfill

∣∣Pmni
klj

∣∣ ≤ 1. Thus an
N -fold degeneracy of λmni is required, which is in general possible only for
λmni = 0, i.e., m = n and i = 1, 2. The corresponding eigenmatrices are

Λ̃mm1
kl = δmkδml

1√
2βn

(
ikm−lm

2
−hm

h∗m −ikm−lm
2

)
, (3.52)

Λ̃mm2
kl = δmkδml

1√
2

(
1 0
0 1

)
. (3.53)

As the eigenmatrices Λ̃mm2 give eigenvalues equal to N and 0 only and
Pmn2
kl1 = 0, we focus on the matrices Λ̃mm1. The corresponding part of the

perturbation matrix is

Pmn = Pmm1
nn1 =

2hmh
∗
n + 2h∗mhn −

(
km − lm

)(
kn − ln

)

4βmβn
. (3.54)

We diagonalize this matrix by introducing the three vectors
∣∣a〉,

∣∣b〉,
∣∣c〉

with the components

am =
km − lm
2βm

, bm =
ℑ
(
hm
)

βm
, cm =

ℜ
(
hm
)

βm
(3.55)

and writing Pmn in terms of these unnormalized vectors

P =
∣∣c〉〈c

∣∣+
∣∣b〉〈b

∣∣−
∣∣a〉〈a

∣∣. (3.56)

We now exploit the symmetries of hn, kn, and ln stated in Eq. (3.18).
First we observe that

∣∣c〉 is orthogonal to
∣∣a〉 and

∣∣b〉. We have chosen the
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covariance matrices corresponding to the three vectors (3.55) to be anti-
Hermitian. After transforming back into real space the ones corresponding
to
∣∣a〉 and

∣∣b〉 are purely imaginary so that they have no overlap with any
physically meaningful real and anti-symmetric covariance matrix. Only
the matrix corresponding to

∣∣c〉 is real and anti-symmetric

Γµ =

(
N∑

m=1

|hm|2
2β2

m

)−1∑

n

ℜ
(
hn
)

βn
U †Λnn1U. (3.57)

Therefore, it determines the asymptotic decoherence rate. We get

µP =

N∑

m=1

ℜ
(
hm
)2

β2
m

=

N∑

m=1

ℜ
(
hm
)2

|hm|2 + (km − lm)2/4
(3.58)

or

µ = −4l2

N

N∑

m=1

4ℑ
(
hm
)2

+ (km − lm)
2

4|hm|2 + (km − lm)2
. (3.59)

as the general from of the asymptotic decoherence rate.
Based on this result we can now argue why µ is likely to undergo a

phase transition at critical points of the system in the special case of an
isotropic system kn + ln = 0 (see Eq. (3.23)). In the thermodynamic
limit, the sum in Eq. (3.59) can be replaced by a loop integral around
the origin of the complex plane with radius one, where the integration
variable is z = exp

(
2πi
N
n
)
. This is possible because hn, kn, and ln are

results of a Fourier series. For local interactions, the denominator of the
integrand is a polynomial in z and thus has a finite number of distinct
roots. Applying the residue theorem, a non-continuity in µ is possible iff
a residue of the integrand, i.e., a root of its denominator, moves through
the integral contour in the complex plane as a function of some external
parameters. This happens if ǫ2n = |hn|2 + (kn − ln)

2/4 = 0 (see Eq.
(3.19)) for some real n ∈ [0, N). Since a vanishing energy gap ǫn = 0 is
a signature of a quantum phase transition, we expect to observe a non-
analytic behavior in the decoherence rate µ if the system is tuned through
a quantum phase transition.

3.3.3 Ground State Variance

In this section we show that the asymptotic decoherence rate µ is related
to the variance of the Lindblad operator in the ground state of the system.
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We focus on the special case knln < |hn|2 ∀n, which includes the isotropic
case kn + ln = 0. The system ground state is given in Eq. (3.22). The
variance of the Lindblad operators Lα = lσα

z is defined as

var

l2
=

〈
(∑N

α=1 σ
α
z

)2〉 − 〈∑N
α=1 σ

α
z 〉2

N
(3.60)

=
N−1∑

r=0

〈σ0
zσ

r
z〉 −N〈σ0

z〉2, (3.61)

where the second equality holds for translationally invariant states. The
quantity 〈σ0

z〉 is contained in the covariance matrix, the higher order cor-
relations are evaluated with Wick’s theorem [Wic50]

〈σ0
zσ

r
z〉 = −〈c0,1c0,0cr,1cr,0〉 (3.62)

=

{
1 r = 0

Pf
(
Γ0|(0,1),(0,0),(r,1),(r,0)

)
r ≥ 1.

(3.63)

In this case the Pfaffian is given by

Pf
(
Γ0|(0,1),(0,0),(r,1),(r,0)

)
= Γ0

00,10Γ
0
rr,10 − Γ0

0r,11Γ
0
0r,00 + Γ0

0r,10Γ
0
0r,01. (3.64)

The variance assumes the form

var = −µ
2
=

2l2

N

N∑

m=1

4ℑ
(
hm
)2

+ (km − lm)
2

4|hm|2 + (km − lm)2
(3.65)

and equals the negative asymptotic decoherence rate µ (see Eq. (3.59))
up to the factor 2.

This equality between the variance of the Lindblad operator in the
system ground state and the asymptotic decoherence rate can be made
plausible by viewing the dissipation due to the Lindblad master equation
as a constant measurement of the system in the Lindblad operator basis.
If the system prefers states with a small variance of the Lindblad oper-
ators, these measurements do not affect the system and the decoherence
rate is small. If this variance is large, however, a measurement in the
Lindblad operator basis changes the state of the system significantly and
the decoherence rate is large.
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Figure 3.1: Asymptotic decoherence rate µ (see Eq. (3.59) of the XY chain
(3.25) for different anisotropy parameters γ as a function of the magnetic
field in the limits N → ∞ and l → 0. A phase transition in µ is visible at
B = 2J for γ 6= 0.

3.4 Quantum XY Chain

We will now apply the results of the previous Sec. 3.3 to the example
of the anisotropic XY chain in a transverse magnetic field. After a brief
discussion of the steady states and a derivation of the asymptotic decoher-
ence rate in the thermodynamic limit (N → ∞) and in the limit of weak
system bath couplings l → 0 (see Sec. 3.4.1), we will present numerical
results of the system dynamics for finite N and l and compare them with
our analytic predictions (see Sec. 3.4.2).

3.4.1 Analytical Results

The anisotropic XY chain in a transverse magnetic field given by the
Hamiltonian (3.25) is introduced in Sec. 3.2.4. These models are trans-
lationally invariant and isotropic, i.e., described with kn = −ln (see Eq.
(3.17)). We focus on the Lindblad operators Lα = lσα

z and can apply all
results from Sec. 3.3 to this example.

First, we discuss the steady states of these systems (see Sec. 3.3.1).
From Eq. (3.34) we have concluded that the steady state density matrix
is the identity up to symmetries shared by the Lindblad operators and the
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Hamiltonian. A rigorous derivation of the steady states for this example
could start from the Ansatz that the steady state density matrix is diag-
onal in the Fock basis, following from

[
σα
z , ρ
]
= 0. Then the commutator[

H, ρ
]
= 0 must be exploited to get the steady state.

As the Lindblad operators correspond to local particle number oper-
ators, the important compatible symmetries for the XY chains are the
parity P = σ1

z . . . σ
N
z , discriminating between an odd and an even num-

ber of particles, and the total particle number N =
(
1 +

∑
σi
z

)
/2. For

truly asymmetric XY chains γ 6= 0.5 the parity is the highest symmetry
compatible with the Lindblad operators. In these cases the steady state
density matrix is given by the identity in the two sectors of even and odd
parity, the relative weight of these sectors is determined by the initial
state. For the symmetric chain γ = 0.5, the steady state density matrix is
the identity only in the sectors with a constant total number of particles.
Thus for γ 6= 0.5 the steady state magnetization is 〈σi

z〉 = 0 regardless of
the initial state, whereas the magnetization of the initial state is conserved
for γ = 0.5.

Second, we calculate the asymptotic decoherence rate (3.59) for the
XY chains with Eq. (3.29). For γ = 0 we get µ = 0 easily. For γ 6= 0 we
will reformulate the sum in (3.59), and evaluate it in the thermodynamic
limit by transforming it into a contour integral and applying the residue
theorem. We reformulate Eq. (3.59)

µ = −4l2

N

N∑

m=1

ℑ
(
hm
)2

|hm|2
= −2l2

(
1− 1

N

N∑

m=1

hm
h∗m

)
(3.66)

and evaluate the sum 1/N ·∑N
m=1 hm/h

∗
m in the thermodynamic limit by

introducing the complex variable z = exp
(
2πim/N

)

lim
N→∞

1

N

N∑

m=1

hm
h∗m

=
1

2πi

∮

|z|=1

dz

z

2J
(
1− γ

)
z2 − 2Bz + 2J

(
1 + γ

)

2J
(
1 + γ

)
z2 − 2Bz + 2J

(
1− γ

) (3.67)

where the integration contour is a circle of radius |z| = 1 around z = 0
in the complex plane. The complex integrand is analytic except for three
distinct poles at

z0 = 0,

z± =
1

2J
(
1 + γ

)
(
B ±

√
B2 − 4J2

(
1− γ2

))
. (3.68)
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Figure 3.2: Asymptotic decoherence rate µ (see Eq. (3.59)) of the XY
chain (3.25) for different coupling strengths l, γ = 1, and N = 100 as a
function of the magnetic field B. For l ≤ 0.1 (J/~)0.5 the results agree
with the limit of weak coupling l → 0 (see Eq. (3.69))

.

The contour integral is determined by the sum over the residues at those
poles which are inside the contour (|z| < 1). z0 is always inside this
contour. In the case γ > 0, z+ is inside the contour for B < 2J and
outside for B > 2J , while z− is always inside the contour. In the case
γ < 0, z− is inside the contour for B > 2J and outside for B < 2J ,
while z+ is always outside the contour. So residues cross the contour at
the quantum phase transition B = 2J (because then hn = 0 for some n),
leading to a non analytical behavior in the asymptotic decoherence rate.

After applying the residue theorem we get the asymptotic decoherence
rate

µ = −4l2 ·





|γ|
1+|γ|

B ≤ 2J

γ2

1−γ2

(
1√

1−( 2J
B )

2
(1−γ2)

− 1

)
B ≥ 2J

(3.69)

for all γ. It does not depend on the sign of γ and is shown in Fig. 3.1 for
several values of γ ∈ [0, 1]. For B < 2J the asymptotic decoherence rate
does not vary with the magnetic field, while its magnitude decays to zero

for large magnetic fields like ∼
(
J/B

)2
. The same behavior was found for

the variance of the particle number in these models in a previous work
[BSS+08]. To summarize, the asymptotic decoherence rate undergoes a
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Figure 3.3: Asymptotic decoherence rate µ (see Eq. (3.59)) of the XY
chain (3.25) for different system sizes N and γ = 1, l = 0.01 (J/~)0.5 as a
function of the magnetic field B. For N ≥ 50 the thermodynamic limit is
reached except for small variations at the phase transition B = 2J .

dissipative phase transition at B = 2J signaling the phase transition in
the system.

3.4.2 Numerical Simulations

The final result for the asymptotic decoherence rate (3.69) is valid in the
limits N → ∞ and l → 0. In this section we perform a numerical diago-
nalization of the Lindblad master equation superoperators S to compare
the analytic result with the values for finite N and l. Furthermore, we
extract the asymptotic decoherence rate from a simulation of the system
dynamics and compare it with our prediction.

In Fig. 3.2 we present the asymptotic decoherence rate for finite cou-
pling strengths l. For l2 ≤ 0.01J/~ the result of perturbation theory is
in excellent agreement with the numerical diagonalization of the Lind-
blad master equation superoperator. Deviations are strongest at small
magnetic fields. We show the asymptotic decoherence rate µ for different
finite system sizes in Fig. 3.3. Even in small systems with N = 10 spins
the same qualitative behavior is found as in thermodynamic limit, i.e., the
asymptotic decoherence rate signals the quantum phase transition in the
system at B = 2J . However, finite values of l and N lead to a smearing
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Figure 3.4: Evolution of the magnetization 〈σi
z〉 in time starting from the

system ground state of the XY chain (3.25), for different magnetic fields B,
l = 0.01 (J/~)0.5, and γ = 1. The magnetization decreases exponentially
in time.

out of the phase transition.

We have defined the asymptotic decoherence rate through a diagonal-
ization of the master equation, trying to describe the long-time dynam-
ics of the system. To demonstrate the deep relation between µ and the
dissipative dynamics, we extract the decoherence rate from a dynamical
calculation (see Fig. 3.4). Here we start from the ground state of the
system and study the decay of the magnetization in time after the sys-
tem is brought into contact with a Markovian bath. In this example the
exponential decay expected after long evolution times is nicely visible.
In Fig. 3.5 we compare the extracted decay rates for different magnetic
fields with the result of the diagonalization. We find an exact agreement
with the asymptotic decay rate numerically calculated with the same finite
parameters.

3.5 Non-exactly solvable System

For general Lindblad operators the dynamics determined by the Lindblad
master equation (3.1) cannot be solved exactly. In this section we are
studying, as an example for such a case, the dynamics of the Ising chain
(see Eq. (3.25) with γ = 1) coupled to a Markovian bath with the non-
Hermitian Lindblad operators Lα = lσα

+ in the limit of small couplings to



66 Decoherence Dynamics

0 1 2 3 4 5 6
0.0

0.4

0.8

1.2

1.6

2.0(b)

-
/l2

B/J

 l 0
 l=0.01(J/ )0.5

 Time Evolution l=0.01(J/ )0.5

Figure 3.5: The asymptotic decoherence rates µ (see Eq. (3.59)) of the
XY chain (3.25) for γ = 1 for l = 0.01 (J/~)0.5 and l → 0 (result of per-
turbation theory) as a function of the magnetic field B are compared with
the late-time decoherence rates extracted from Fig. 3.4. The agreement
between the asymptotic decoherence rate and the late-time decoherence
rate shows the validity of our calculations for finite times.

the environment l → 0. We try to show that also in this case the quantum
phase transition in the Ising chain is reflected in the decoherence dynamics.
Since the asymptotic decoherence rate is found to be constant, we analyze
the steady states of the decoherent dynamics.

In this case we have to resort to exact numerical methods. Matrix
Product States (MPS) are ideally suited for the study of one-dimensional
spin systems. Their extension to Matrix product operators (MPO) allows
to solve for the decoherence dynamics of a system [VGC04]. In recent
works MPOs have been used to solve the Lindblad master equation for
quadratic spin systems with linear Lindblad operators in the Heisenberg
picture [PZ05, CPH+10]. Here we calculate the steady state of the dynam-
ics of the open Ising chain in the Schrödinger picture in two steps. First
we perform a real time evolution starting from the Hamiltonian ground
state, second we find the kernel of the time evolution superoperator S (see
Eq. (3.3)) through a minimization of the functional

E (ρ) =
〈ρ
∣∣S†S

∣∣ρ〉
〈ρ
∣∣ρ〉 . (3.70)
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Figure 3.6: (a) Magnetization 〈σi
z〉 and (b) its derivative ∂B〈σi

z〉 of the
steady state of the XY chain (3.25) for γ = 1 coupled to a Markovian bath
with Lindblad operators Lα = lσα

+ and l2 = 0.01J/~ as a function of the
magnetic field B for different system sizes N (result of MPO simulation).
The curve in (b) is a polynomial fit to the simulation results for N = 10
around B = 2J . The peak in ∂B〈σi

z〉 at the quantum phase transition at
B = 2J signals the presence of a dissipative phase transition.

In order to detect the continuous dissipative phase transition we calculate
the derivative of the magnetization ∂B〈σi

z〉 with respect to the magnetic
field B. The accuracy of our numerical simulation close to the phase tran-
sition is limited, especially the numerical derivative is inaccurate. We have
checked the validity of our approach by comparing with exact calculations
for small chains N ≤ 10.

The result of this simulation is depicted in Fig. 3.6. A peak in ∂B〈σi
z〉

seems to signal the dissipative quantum phase transition we expect. Never-
theless, further numerical studies seem necessary to confirm this statement
[HC11].

3.6 Experimental Realization

We now discuss an experiment suited for the measurement of the asymp-
totic decoherence rate in spin systems. The quantum simulation of spin
systems with trapped ions was proposed in [PC04], where the spin degree
of freedom is represented by two hyperfine levels. The magnetic field can
be simulated either by directly driving Rabi oscillations of the hyperfine
transition or with space-independent Raman transitions induced by suit-
ably aligned lasers. The spin-spin interaction is mediated via motional
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degrees of freedoms. State-dependent optical dipole forces (compare with
state-dependent optical lattices) are generated by coupling the two hyper-
fine levels to electronically excited states with off-resonant laser beams.
These dipole forces change the distance and consequently the Coulomb
repulsion between two ions dependent on their internal states. This state-
dependent Coulomb repulsion can be designed to give the required spin-
spin interaction. The spin state can be measured by fluorescence imaging
of the ions.

In this way the quantum Ising chain [FSG+08, SFS+09] and frustrated
Ising models [KCK+10] have been realized in recent experiments. In these
experiments the ions were first cooled to their zero-point motional ground
state and optically pumped into a certain spin configuration. The initial
state represents the ground state of the system without spin-spin inter-
actions. Then the spin-spin interactions are adiabatically increased such
that the system undergoes a phase transition. Finally, it is checked that
the final states represents the ground state of the simulated Hamiltonian.

We propose to extend this quantum simulation by adding an incoherent
evolution. The Lindblad master equation (3.1) with Hermitian Lindblad
operators Lα = lσα

z (see Sec. 3.3) can be realized by introducing fluctu-
ations of the simulated magnetic field Bα(t) = Bα + δBα(t) [MP08] as
shown in the following. The local magnetic fields δBα(t) should be uncor-
related between different sites δBα(t1)δBβ(t2) = δαβδBα(t1)δBα(t2). We
restrict our derivation to a single Lindblad operator without loss of gen-
erality. Let, for example, δB(t) constitute a Gaussian stochastic process
of zero mean δB(t) = 0 with the time-correlations

δB(t1)δB(t2) =

{
δB2 for |t1 − t2| ≤ T

0 for |t1 − t2| > T.
(3.71)

The correlation time T has to be much shorter than every process in the
system (Markovian limit), i.e., |H|T < ωT ≪ 1, with the spectral width
ω and the superoperator H from Eq. (3.4). The averaged density matrix
evolves like

∣∣ρ(t)〉 = U (t)
∣∣ρ(0)〉, where the bar denotes the statistical

average over the fluctuating magnetic field. The time evolution operator
U (t) consists of contributions from H and

V(t) = i
δB(t)

~
V = − i

~

(
V(t)⊗ 1− 1⊗VT(t)

)
. (3.72)

with V = σz . We can evaluate the statistical average of the time evolution
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operator in the interaction picture for the superoperators

U (t) = eHtT exp

(∫ t

0

dτe−HτV(τ)eHτ

)

= eHt

∞∑

n=0

∫

t≥t1≥···≥tn≥0

dt1 . . . dtne−Ht1V(t1)eHt1 · · · e−HtnV(tn)eHtn

= eHt
∞∑

m=0

(
−δB

2

~2
· T
2

)m

·
∫

t≥t1≥···≥tm≥0

dt1 . . . dtme
−Ht1V2eHt1 · · · e−HtmV2eHtm

U (t) = exp

(
Ht− 1

2

δB2T

~2
V2t

)
(3.73)

with the time ordering operator T . Between the second and the third
line, we keep only even summation indices m = 2n (zero mean Gaussian
process), evaluate the statistical average at adjacent times t2n−1 − t2n ≤
T (correlation time T ), and neglect the terms exp (H(t2n−1 − t2n)) ≪
1 (Markovian limit). In summary, we have shown that the described
fluctuations of the magnetic field generate Markovian dynamics (see Eq.
(3.3)) with Lindblad operators Lα = lσα

z = lV and decoherence strength

l2 =
δB2T

~2
. (3.74)

In the case of the anisotropic XY chain (see Eq. (3.25)), the correlation
time T is bounded by the width of the single particle excitation spectrum
T−1 ≫ max (4B/~, 8J/~). In the recent experiment [FSG+08] 2J/~ ≈
B/~ = 2π×4.4kHz was used, but experimentally available laser intensities
allow 2J/~ ≈ B/~ ≈ 2π × 40kHz. We propose to create fluctuations
of the magnetic field with frequency T−1 = 2π × 1.6MHz and variance
δB2/~2 = (0.2B/~)2 ≈ (2π×8kHz)2. This would result in the decoherence
strength l2 ≈ 2 · 10−3J/~ and would require coherence times of order
2π/l2 ≈ 25ms. These coherence times can in principle be achieved in
systems of trapped ions [WMI+98].
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3.7 Conclusion

To conclude, in this chapter we have analyzed the decoherence dynamics
of a system exhibiting a quantum phase transition. We concentrated our
analysis on spin system which can be transformed into non-interacting
fermionic systems via the Jordan-Wigner transformation. An important
example in this class of Hamiltonians is the anisotropic XY chain with a
transverse magnetic field containing a continuous phase transition.

The covariance matrix formalism is known to give an exact solution
for the unitary dynamics of such spin chains. We treat the decoherence
in the framework of the Lindblad master equation valid for Markovian
baths. Here we have extended this formalism to get an exact treatment
of the Lindblad master equation (see Sec. 3.2).

This method allowed us to find that a quantum phase transition in a
system in contact with a Markovian bath leads to a dissipative phase tran-
sition, i.e., a transition in the decoherence properties. We observe a dissi-
pative phase transition in the asymptotic decoherence rate for quadratic
Lindblad operators (see Sec. 3.3) and in the steady state for an example of
non-quadratic Lindblad operators (see Sec. 3.5). Numerical calculations
show that our results are approximately valid also for finite systems and
finite decoherence strengths (see Sec. 3.4).

We have proposed an experimental realization of this quantum sim-
ulation with trapped ions (see Sec. 3.6). We expect the engineering of
decoherence to be a valuable tool for future quantum simulators, quan-
tum memories, quantum communicators, and quantum computers. With
this work we suggest the possibility of detecting certain system properties
through an observation of the decoherent dynamics.



Chapter 4

Hawking Radiation

4.1 Introduction

In 1974 Hawking showed that the theory of quantum fields (QFT) in
curved spacetime predicts that, surprisingly, black holes emit thermal ra-
diation [Haw74]. Unfortunately, the temperature of this radiation is too
small to be detected for typical astrophysical black holes. Furthermore,
the original theoretical derivation suffers from the problem that the wave
equation is assumed to be valid on all scales, whereas QFT in curved space
is reliable just up to the Planck energy. Unruh showed that the Hawking
effect is also manifested in analogous hydrodynamical systems which have
a region of supersonic flow and hence a sonic horizon [Unr81]. Such anal-
ogous systems offer great advantages, since the effect can potentially be
accessible to experiments. Moreover, its robustness can be proven based
on the well known microphysics of the hydrodynamical systems. This
will contribute to deepen our understanding of the Hawking effect also in
gravitational black holes.

In recent years many experimental tests of Hawking radiation have
been proposed based on this hydrodynamical analogy [BLV05], e.g., pho-
nons in Bose-Einstein condensates (BECs) [GAC+00, GAC+01, FF03,
BFF+08, CFR+08, MP09a], ultracold Fermi gases [Gio05], superfluid He-
lium [JV98], slow light [LP00, Rez00, US03], and nonlinear electromag-
netic waveguides [SU05]. Some analog spacetimes have been experimen-
tally implemented, e.g., in BECs [LIB+10], in optical fibres [PKR+08],
and on water surfaces [RMM+08, WTP+11]. Common to all these at-
tempts is that they have not reported on the observation of the quantum
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Figure 4.1: Schematic depiction of the ion rotation with velocity v (θ) and
the phononic excitations with velocity ±c (θ), that depend on the varying
ion spacing. In the subsonic region the ion velocity is v (θ) = vmin, in the
supersonic region it is v (θ) = vmax. The external force F e (θ) localized at
the transition between the super- and subsonic region (de-) accelerates the
ions. The black area represents the supersonic black hole region. (Online
only) Clicking on the figure opens a movie displaying the equilibrium
motion of the ions.

Hawking effect. The observation of the quantum Hawking effect has been
claimed in [BCC+10] for ultrashort laser pulses in nonlinear optical media.
But pair emission of and entanglement between Hawking particles has not
been observed in this setup.

In the present work we discuss a proposal how to build an analog model
of a black hole in an experimentally realizable system of cold ions trapped
on a ring by electrodynamic forces [HRF+10, HSR+11]. A special ingredi-
ent of our proposal is its discreteness, which naturally leads to a sublinear
dispersion relation at high wavenumbers. This affects the trajectories of
blue shifted waves close to the event horizon [Jac91]. The dispersion rela-
tion is, additionally, non-trivial at low wavenumbers because of the long
range Coulomb force. However, as we will show, we still obtain Hawk-
ing radiation. Analytic derivations [Jac91, CJ98, JM99, US05, Cor98,
BMP+95, HT00, SS00, SU08] as well as numerical calculations show that
the Hawking effect is robust against such short scale modifications, e.g.,
for a continuous field with a sublinear dispersion relation [Unr95] and a
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Figure 4.2: Typical profiles of the ion (v, green) and the sound velocity (c,
blue) used in this chapter (see Appendix A.2). The profile shows a super-
and a subsonic region. The ion velocity in the subsonic region is vmin =
2π× 0.83̄/T and the black hole horizon is located at σvminT = 2π × 0.25.
A white hole horizon is also present on the ring [HRF+10].

discretized field on a falling lattice [CJ98, JM99]. Our proposal uses a
parameter regime which is accessible in experiments at temperatures cur-
rently achieved. Thus, it could lead to the experimental observation of
Hawking radiation.

Let us now summarize the main idea of our proposal. We are con-
structing a discrete analog of an hydrodynamical system with super- and
subsonic regions in a quadrupole ring trap [DP64, BKW92] as schemati-
cally depicted in Fig. 4.1. The ions are rotating on a ring with circumfer-
ence L with an inhomogeneous velocity profile v (θ) (see Fig. 4.2). Since
the velocity profile should be stationary in the lab frame, the ions must
be inhomogeneously spaced. Additional electrodes exerting a force F e (θ)
on the ions generate the necessary (de-)acceleration. The oscillating dis-
placements of the ions around this equilibrium motion are phonons with
velocities c (θ) ∝ (v (θ))−1/2. Regions with sufficiently large ion spacings
and sufficiently low phonon velocities are supersonic; here phonons can
only move in the direction of the ion flow and are trapped like light inside
a black hole. We consider a system with a super- and a subsonic region.
The border between these regions is analogous to a black hole horizon and
will be shown to emit Hawking radiation.



74 Hawking Radiation

The plan of this chapter is the following. First we will describe the
system of ions on a ring and explain why it is expected to show the Hawk-
ing effect in Sec. 4.2. Then we briefly review previous works which are
relevant for our analysis in Sec. 4.3. After this preparation of the reader
we present our simulation results and discuss them in Sec. 4.4. We are
analyzing the Hawking effect in our system in two distinct ways: First
we prove that the Hawking effect has a thermal spectrum by scattering
pulses on the black hole horizon, second we are analyzing the emission of
Hawking radiation from a black hole after its formation. In the latter sit-
uation we analyze the entanglement between pairs of Hawking particles,
one inside and one outside the black hole. In this context we observe a
transition from the quantum to the classical Hawking effect. Most im-
portantly, this is suitable for experimental verification. In Sec. 4.5 we
will discuss experimental setups which allow for the measurement of the
analyzed physics.

4.2 Ion Ring System

In this section we are presenting our theoretical description of ions on
a ring. In Sec. 4.2.1 we start with the full Hamiltonian, explain our
assumptions and approximations, and point to the equations underlying
our simulations. We establish the connection with the general descrip-
tion of analog black holes in hydrodynamical system by considering the
continuum limit of the system in Sec. 4.2.2.

4.2.1 Discrete Ion System

In the following we are explaining the detailed setup of our proposal.
The dynamics of N ions with mass m and charge e are described by the
Hamiltonian

H = −
N∑

i=1

4π2~2

2mL2

∂2

∂θ2i
+

N∑

i=1

V e (θi) + V c (θ1, . . . , θN) (4.1)

with the Coulomb potential V c between the ions and a local external
potential V e (θ) from external electrodes. Instead of specifying V e we will
impose an angular velocity profile v (θ) by fixing the equilibrium positions.
The required V e is then determined through the difference between the ion
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acceleration θ̈0i (t) and the Coulomb force F c
i (θ

0
1, . . . , θ

0
N). The Coulomb

force and the external force are given in Appendix A.1.
To this aim we impose the classical equilibrium positions

θ0i (t) = g

(
i

N
+
t

T

)
, (4.2)

where g maps the normalized indices i/N ∈ [0, 1] monotonically increas-
ing onto the angles θ ∈ [0, 2π] and is periodically continued. g must
be sufficiently smooth, i.e., three times continuously differentiable. The
stationary angular velocity profile is

v (θ) =
g′ (g−1 (θ))

T
, (4.3)

where T denotes the rotation time of the ions (see Fig. 4.2) and g′ is the
derivative with respect to the argument of the function g. In a part of
this chapter we consider to dynamically create a black hole metric from a
flat metric. To this aim, we decrease vmin from the value vmin = 2π/T for
homogeneously spaced ions in a Gaussian way with time constant τ (see
Appendix A.2).

We choose a stationary velocity profile as depicted in 4.2. It is com-
posed of a subsonic region with the constant angular ion velocity v (θ) =
vmin in the angular range 0 < θ < σvminT and 2π − σvminT < θ < 2π. In
the supersonic region σvminT < θ < 2π−σvminT the constant angular ion
velocity is

v (θ) = vmax =
2π

T

1− 2σvminT
2π

1− 2σ
. (4.4)

The two velocities vmin and vmax are naturally constrained by the rotation
time of the ions vmin < 2π/T < vmax. The black hole horizon in our
system is located close to θH = σvminT . Due to the ring structure a
second horizon, the white hole horizon exists at θH = 2π − σvminT . The
transitions at the horizons between the subsonic and the supersonic regions
contain 2γ1 (black hole horizon) and 2γ2 ions (white hole horizon). The
exact expression for the velocity profile is given in the Appendix in Eq.
(A.8).

We choose vmin = 2π × 0.83/T and that the small transition regions
2γ1, 2γ2 contain 0.04N and 0.1N ions if not stated otherwise. If necessary,
the black hole is dynamically created in the small time interval τ = 0.05T
(see Eq. (A.9)).



76 Hawking Radiation

In this chapter we do not work with the full Hamiltonian (4.1). In-
stead, we treat small perturbations around the equilibrium motion θ̂i (t) =
θ0i (t) + δθ̂i (t) and expand the Hamiltonian to second order in δθ̂i

H =
1

2m

N∑

i=1

δp̂2i +
m

2

∑

i 6=j

fij(t)δθ̂iδθ̂j (4.5)

with the time dependent force matrix F = (fij) (see Appendix A.1)

and the canonical operators δθ̂i and Lδp̂i/(2π) = −i~∂δθi describing the
phononic oscillations of the ions. This harmonic approximation is valid
if the typical variation of the ion position is much smaller than the ion
spacing

√
〈δθ̂2〉 ≈ 2π

L

√
~

mNωrot

(
〈n̂〉+ 1

2

)
≈ 2π

7 · 105
(
〈n̂〉+ 1

2

)
≪ 2π

N
. (4.6)

Here we use the typical mode frequency Nωrot where ωrot = 2π/T is
the rotation frequency of the ions. If we tune the ion velocity to lie in
the same order of magnitude as the sound velocity, ωrot gives the smallest
mode frequency. We insert the experimental parameters considered in Sec.
4.5 with N = 1000 here. In this chapter we propose an experiment with
Hawking temperature TH and initial temperature T0 being not much larger
than ~ωrot/kB, so we can assume 〈n̂〉 ∼ 1. Then the above requirement is
nicely fullfilled.

The quasi-free quantum dynamics of this harmonic system (4.5) are
governed by the classical linear equations of motion for the first and second
moments. Through Wick’s theorem all higher order correlation functions
are determined by these moments. The first moments are 〈ξ̂i〉 with the
definition

ξ̂i =

{
δθ̂i i ∈ {0, . . . , N − 1}
−i~∂̂θi i ∈ {N, . . . , 2N − 1}. (4.7)

The second moments are grouped in the covariance matrix

Γij =
1

2~
〈{ξ̂iξ̂j}+〉, (4.8)

where {}+ denotes an anticommutator. The equations governing the dy-
namics and determining the equilibrium states of the first and second
moments are given in Appendix A.3.
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Figure 4.3: Phononic group velocity c(k) in the flat subsonic region as a
function of k for full Coulomb interactions (blue dashed line) and nearest-
neighbor interactions only (green solid line). For nearest-neighbor inter-
actions only the group velocity approaches a constant at small wavenum-
bers displaying the linear dispersion. For full Coulomb interactions a
logarithmic divergence at small wavenumbers is observed for a finite sys-
tem size. We use σvminT = 2π · 0.375, N = 1000, and e2/4πǫ0 =
1.2591/(2N) ·mL3T−2 (see Appendix A.2).

A stability analysis of this system is described in Appendix B. We
find that exponential instabilities, though present in this system, are not
important for the proposed experiment because it is performed during
only one rotation period T .

4.2.2 Continuum Limit

In order to get some insight, we consider the limit of an infinite number of
ions and formulate the analogy with the standard Hawking effect in this
limit.

We will first study the behavior of the dispersion relation of the ions
at small wavenumbers (see Fig. 4.3 for the finite chain). We use the
approximation given in [PMD+08] for small wavenumbers in the open
Coulomb chain taking into account the long range Coulomb interactions.
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From

ω(k) = ck

√
1− 2

3
log

(
ka

2

)
(4.9)

with the ion spacing a = L/N we get

dω(k)

dk
=
ω

k
− 1

3

c√
1− 2

3
log
(
ka
2

) (4.10)

and

d2ω(k)

dk2
=

−c
3k
√

1− 2
3
log
(
ka
2

)

[
1 +

1

3
(
1− 2

3
log
(
ka
2

))
]

(4.11)

For k = 2π/L · n with 1 ≤ n ≤ n0 ≪ N this can be summarized as

dω(k)

dk
≈ ω

k
, and

d2ω(k)

dk2
≈ 0. (4.12)

For a given k, the the phase and group velocity become identical in the
continuum limit N/L → ∞ as explicitly shown in Eq. (4.10). This is
important for the definition of the Hawking temperature in the following,
see Eq. (4.17). If group and phase velocity did not coincide, it would
not be clear a priori how to determine the correct Hawking temperature.
For example, in the scenario considered in [SU08], the product of group
and phase velocity enters the formula for the Hawking temperature. Since
both velocities are identical in the continuum limit for our proposal, for
the finite system we can determine the Hawking temperature at a given k
from the group velocity.

Now, we calculate the Lagrangian for the scalar field Φ̂ (θ0i (t) , t) =
δθ̂i (t) in the continuum limit. Here we can make an analogy with the
standard Hawking effect as observed in [Unr81]. Because of the equilib-
rium motion of the ions the kinetic energy K transforms according to

K =
m

2

(
L

2π

)2 N∑

i=1

(
dθi
dt

)2

≈
∫ 2π

0

dθ
ρ (θ)

2

(
d

dt
Φ
(
θ0i (t) , t

))2

=

∫ 2π

0

dθ
ρ (θ)

2
(∂tΦ + v (θ) ∂θΦ)

2 , (4.13)
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where we introduced the conformal factor ρ (θ) = n (θ) ·mL2/(2π)2 with
the density n (θ) = N/(v (θ) T ). For an homogeneous system the potential
energy V transforms to

V =
m

2

N∑

i,j=1

fijδθiδθj =

N−1∑

k=0

m

2
D(k)2|Φ′

k|2

=

N−1∑

k=0

N∑

n,m=1
θn=

2π
L
n

L2

(2π)2
m

2N
D(k)2e−ik(θn−θm)Φ(θn)Φ(θm)

≈
∫ 2π

0

dθ
ρ (θ)

2
(iD(−i∂θ)Φ(θ))2 , (4.14)

where D (θ, k) = c (θ) k+O (k3) is the dispersion relation of the Coulomb
chain. Assuming a slowly varying v (θ), we can now formulate the La-
grangian for the ion system in the laboratory frame in the continuum
limit

L =

∫
dθ
ρ (θ)

2

[(
∂tΦ̂ + v (θ) ∂θΦ̂

)2
−
(
iD (θ,−i∂θ) Φ̂

)2]
. (4.15)

This scalar field satisfying a linear dispersion relation at low wavenumbers
with sound velocity

(c (θ))2 =
2 · n (θ)
m

(
2π

L

)3
e2

4πǫ0
(4.16)

for nearest-neighbor interactions, following from the actual form of the
matrix fij given in Eq. (A.4), is analogous to a massless scalar field
in a black hole spacetime as first shown in [Unr81]. Its quanta cannot
escape a supersonic region with v (θ) > c (θ) like photons trapped inside a
black hole. The horizon of this analog model is located at c (θH) = v (θH)
with θH ≈ σvminT . Following [Unr81], pairs of Hawking particles are
emitted close to the black hole horizon with a black body distribution at
the Hawking temperature

kBTH
~

=
κ

2π
=

1

4πv

d

dθ

(
v2 − c2

)
|H =

3

4πT

g′′ (g−1 (θ))

g′ (g−1 (θ))

∣∣
θ=θH

. (4.17)

The first equality defines the surface gravity κ (see [Haw74, Unr81]), in
terms of the Hawking temperature. The second equality is derived in
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Figure 4.4: Dependence of the Hawking temperature TH on the discrete
mode frequencies ω(k) in the comoving frame. For nearest-neighbor inter-
actions, the variation with the wavenumber is not visible, for long range
Coulomb interactions variations are present. This is due to the nonlinear
dispersion. Note that we use a single Hawking temperature for the full
system. We use σvminT = 0.375, N = 1000. (red) Nearest-neighbor in-
teractions with e2/4πǫ0 =

1
2N

mL3

T 2 ; (black) Full Coulomb interactions with

e2/4πǫ0 =
1
2N

mL3

T 2 (see Appendix A.2).

reference [Unr81], the third one results from the explicit forms for v (θ)
and c (θ) for nearest-neighbor interactions.

In the case of long-range Coulomb interactions, the calculation of
the Hawking temperature TH (see Eq. (4.17)) is difficult because of the
non-linear dispersion relation at low wavenumbers. In order to estimate
the impact of this dispersion, let us introduce an effective wavenumber-
dependent Hawking temperature. Because the ion spacings are inhomo-
geneous, we use a local density approximation. At each angle θ we cal-
culate the local density n(θ) of the ions. We then extract a group veloc-
ity c(θ) from the analogous homogeneous system with constant density
and Nθ = [n(θ)] ions, where the square brackets denote rounding to the
nearest integer. The group velocity is calculated from the dispersion re-
lation at adjacent wavenumbers. With this method we calculate angle-
and wavenumber-dependent group velocities c(θ, k). By comparing c(θ, k)
with the ion velocities v(θ), we find for each wavenumber the black hole
horizon θH. The derivative of c in Eq. (4.17) is performed with respect
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to the ion number Nθ instead of the angle θ to get along with a single
rounding procedure Nθ = [n(θ)]. Thus, Eq. (4.17) is transformed into

kBTH (k)

~
=

1

2πT

g′′ (g−1 (θ))

g′ (g−1 (θ))

∣∣∣∣
θ=θH

·
(
1 +

NθH

g′ (g−1 (θ))2

∣∣∣∣
θ=θH

∂

∂Nθ
c (Nθ, k)

∣∣∣∣
Nθ=NθH

)

≈ 1

2πT

g′′ (g−1 (θ))

g′ (g−1 (θ))

(
1 +NθH

c (NθH + 1, k)− c (NθH , k)

g′ (g−1 (θ))2

)∣∣∣∣
θ=θH

.

(4.18)

The dependence of the Hawking temperature on the wavenumber is de-
picted in Fig. 4.4 for the parameters used in the analysis in Sec. 4.4.1.
For nearest-neighbor interactions, the variation with the wavenumber is
not visible, for long range Coulomb interactions variations are present.
This is due to the nonlinear dispersion relation. We make an arbitrary
choice and use one of these temperatures at small wavenumbers to ana-
lyze the whole system at all wavenumbers. In Sec. 4.4.1 we will discuss
how our results depend on this choice. Note that in the continuum limit
the dispersion relation for full Coulomb interactions becomes linear which
resolves the arbitrariness. Thus we find a single Hawking temperature for
the full system based on the form of the velocity profile.

4.3 Review

In this section we will give a short summary of previous works related to
our proposal (see [BFF+05b] for further details). In Sec. 4.3.1 we are de-
scribing a basic derivation of Hawking radiation with quantum field theory
in curved spacetime for systems with a strictly linear dispersion relation.
Secondly, we present a theoretical method that tests whether the expected
radiation has a thermal spectrum [Unr95, CJ98, JM99] for systems with
sublinear dispersion relations (see Sec. 4.3.2). Then we explain a pro-
posal, originally aiming at Bose Einstein Condensates [BFF+08, CFR+08,
MP09a], how to detect Hawking radiation in an experiment as quantum
correlations emerging between a supersonic and a subsonic region, i.e.,
between the inside and the outside of a black hole (see Sec. 4.3.3).
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4.3.1 Hawking radiation and Mode Conversion

In this section we will summarize the derivation of Hawking radiation for
a massless scalar field with a linear dispersion relation D (k) = ck in a
black hole analog spacetime, defined by a velocity profile v (θ) (see Eq.
(A.10) and Eq. (A.8)) and a density profile ρ (θ). This system is governed
by the Lagrangian

L =

∫
dθ
ρ (θ)

2

[(
∂tΦ̂ + v (θ) ∂θΦ̂

)2
− c2∂θΦ̂

2

]
. (4.19)

We will in the following assume ρ (θ) to be constant and work with the
field Ψ =

√
ρΦ. The correspondend classical field equation is

[
(∂t + ∂θv (t, θ)) (∂t + v (t, θ) ∂θ)− c2∂2θ

]
Ψ (t, θ) = 0. (4.20)

The solutions of this equation determine the notion of excitation modes
in the system and are of the form

Ψ (t, θ) =
∑

±

∫ ∞

0

dω
(
Ψ±

ω (t, θ) +H.c.
)

(4.21)

with Ψ±
ω (t, θ) = exp (±iωt) Ψω (θ) for a stationary spacetime. ω denotes

the frequency in the lab frame, it is related by ω = (v± c)k ·L/(2π) to the
frequency ±ck in the comoving frame. The solutions Ψω are normalized
with respect to the Klein-Gordon inner product

〈Ψω

∣∣Ψω′〉 = −i
2

∫ 2π

0

dθ [Ψ∗
ω (∂t + v∂θ) Ψω′ −Ψω′ (∂t + v∂θ)Ψ

∗
ω] . (4.22)

For each frequency ω we can find four independent modes Ψ±
ω /Ψ

±∗
ω . Com-

plex conjugation relates modes with a positive/negative sign of the Klein-
Gordon norm Nω = 〈Ψω

∣∣Ψω〉, corresponding to positive/negative fre-
quency modes or particles/anti-particles. Note that the frequency in the
comoving frame ±ck determines the sign of N . The index ± denotes
modes which are left-/rightmoving (up-/downstream) in the comoving
frame. Finally, the scalar field theory is quantized by expanding the field
operator in the modes (we drop the summation index ± now)

Ψ̂ =
∑

ω

(
âωΨω + â†ωΨ

∗
ω

)
(4.23)
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and postulating canonical bosonic commutation relations for the mode
operators âω

[âω, âω′ ] = 0,
[
â†ω, âω′

]
= δω,ω′ . (4.24)

The vacuum of the system is defined to be annihilated by all âω

âω
∣∣0〉 = 0, ∀ω. (4.25)

We want to study the following time dependent situation: At initial times,
called in, the black hole is not present, the vacuum state is denoted

∣∣in〉
with corresponding modes âinω . Then a black hole is created. At final times,
called out, the vacuum state of the system is

∣∣out〉 with corresponding
modes âoutω . We are here interested in the time evolution of the system
from initial to final times starting from the vacuum state of the system∣∣in〉. The result of this time evolution can be described by a Bogoliubov
transformation on the classical modes or the quantum mode operators

Ψout
ω =

∑

ω

(
αωω′Ψin

ω′ + βωω′Ψin∗
ω′

)
, (4.26)

âoutω =
∑

ω

(
α∗
ωω′ âinω′ − β∗

ωω′ â
in†
ω′

)
(4.27)

with the Bogoliubov coefficients αωω′ and βωω′ . For a static and continuous
system the frequency ω is conserved and the Bogoliubov coefficients are
diagonal, e.g., βωω′ = δω,ω′βω. The coefficients are related through |αω|2−
|βω|2 = 1. The particle content of the state

∣∣out〉 in terms of the state
∣∣in〉

is related to the Bogoliubov coefficients through

〈in
∣∣N̂out

ω

∣∣in〉 =
∑

ω′

|βωω′ |2 = |βω|2. (4.28)

Therefore, it is nonvanishing if the time evolution from initial to final times
mixes positive and negative frequency modes. In particular, the produc-
tion of Hawking particles can be understood as the evolution of initial
positive frequency modes into final negative frequency modes. The Bo-
goliubov coefficients of the inverse transformation have the same modulus
as the ones of the forward transformation

Ψin
ω =

∑

ω

(
α∗
ωω′Ψout

ω′ − βωω′Ψout∗
ω′

)
, (4.29)

âinω =
∑

ω

(
αωω′ âoutω′ − β∗

ωω′ â
out†
ω′

)
. (4.30)
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We will employ this relation to numerically determine the Bogoliubov
coefficients for the discrete case of ions on a ring.

In the following we will briefly summarize the analytical calculation of
the Bogoliubov coefficients for a continuous system with a strictly linear
dispersion relation. One can decompose the field operator at late time
into an upstream Ψ̂− and a downstream Ψ̂+ part

Ψ̂ = Ψ̂+ + Ψ̂−. (4.31)

The downstream part is not strongly affected by the black hole creation,
hence the particle creation in this part is negligible β+

ω = 0. This as-
sumes that the mixing between upstream and downstream parts is small
– otherwise we would have to include a grey-body factor, cf. [Haw74]. So
Hawking radiation is created by the upstream part only. It can further
be decomposed into modes Ψ−

ω,super inside the supersonic and Ψ−
ω,sub inside

the subsonic region. The decomposition of the field operators is finally

Ψ̂− = Ψ̂−
super + Ψ̂−

sub, (4.32)

Ψ̂−
super =

∫ ∞

0

dω
(
â−ω,superΨ

−
ω,supere

−iωt +H.c.
)
, (4.33)

Ψ̂−
sub =

∫ ∞

0

dω
(
â−†
ω,subΨ

−∗
ω,sube

−iωt +H.c.
)
. (4.34)

We have to find the regular in field after the horizon formation Ψ−
ω,in,

decompose it in terms of the out modes

Ψ−
ω,in (θ) = αωΨ

−
ω,sub (θ) + βωΨ

−
ω,super (θ) , (4.35)

and read off the Bogoliubov coefficients αω and βω. So in summary, we
calculated the time evolution of global upstream waves before the black
hole creation into upstream waves after the black hole creation on both
sides of the horizon. In the lab frame the resultant waves travel away from
the horizon on both sides.

The interesting Bogoliubov coefficient βω is found to be

|βω|2 =
1

exp
(

~ω
kBTH

)
− 1

(4.36)

with the Hawking temperature TH (see Eq. (4.17)). We summarize these
findings by stating that Hawking radiation emitted after the creation of a
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black hole has a thermal spectrum

〈in
∣∣N̂out

ω

∣∣in〉 =
∑

ω

1

exp
(

~ω
kBTH

)
− 1

. (4.37)

4.3.2 Scattering of Pulses

The derivation of Hawking radiation presented in the last Section 4.3.1
suggests calculating the Bogoliubov coefficients from the time evolution
of classical pulses scattering at the black hole horizon. It is numerically
advantageous to calculate the scattering process backwards in time. In the
following we will focus on the situation of a sublinar dispersion relation in
a continuum system as studied in [Unr95].

The calculation starts from a pulse with negative frequencies and small
positive wavenumbers at late times. This pulse is moving upstream and
is leftmoving in the comoving as well as in the lab frame. We then calcu-
late its history in time: It approaches the horizon and is reflected by it.
The reflected pulse mainly consists of two early-time upstream pulses, one
positive and one negative frequency pulse, at high absolute wavenumbers.
The positive/negative wavenumber pulse has negative/positive frequen-
cies in the comoving frame, i.e., both are upstream pulses. But they have
such a small group velocity - remember the sublinear dispersion relation
(see 4.3) - that they are dragged along with the ion background. So they
are rightmoving in the lab frame, while being leftmoving in the comoving
frame. These pulses can be determined due to frequency conservation for
a static system in the lab frame. Note that the sign of the frequency in
the comoving frame determines the sign of the Klein-Gordon norm (see
Eq. (4.22)) and thus the notion of particles versus anti-particles. There-
fore, the relation between the late-time negative frequency and early-time
positive frequency pulse is important for the particle producing Hawking
effect.

Now, we will explain this mode conversion with the help of this fre-
quency conservation and the dependence of the dispersion relation on the
local ion velocity. The frequency in the lab frame is

ωlab = vk
L

2π
±D(k), (4.38)

i.e., it is the Doppler shifted dispersion in the comoving frame ωcom =
±D(k). In Fig. 4.5 we depict the pulses at different times during the
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Figure 4.5: Schematical depiction of the dispersion relation for the scatter-
ing process of a final negative frequency pulse from the black hole horizon.
Negative/positive frequency modes are depicted with solid/dashed lines.
Upstream/downstream modes are depicted in red/green. The situation at
late times is presented in (a), at intermediate times, when the pulse hits
the horizon, in (b), and at early times in (c). Part (d) shows the situation
outside of the black hole for small ion velocities, for which we observe the
effect analogous to Bloch oscillations (see text).

simulation (a-c) on the dispersion relation in the stationary lab frame to-
gether with the initial pulse frequency ω0. For comparison the interested
reader can compare with Fig. 4.6 depicting the pulses in real space. We
are starting our discussion at late times (see Fig. 4.5(a)) with a single
pulse, upstream and with negative frequency. Its negative group velocity
in the lab frame means that it is leftmoving in the lab frame. When the
pulse is approaching the black hole horizon backwards in time the ion
velocity at the pulse increases. In comparing Fig. 4.5(a) and Fig. 4.5(b)
one can observe the blueshifting of the pulse. When the pulse reaches
the horizon, it is approximately at the minimum of the dispersion relation
(see Fig. 4.5(b)). Now the mode conversion occurs, which is restricted
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by the frequency conservation in the stationary lab frame. Apart from
the late-time pulse, three pulses are in agreement with frequency conser-
vation. One pulse is moving downstream at low negative wavenumbers
with negative frequencies. Thus, in the lab frame it is a fast rightmov-
ing pulse. The two other solutions are at high absolute wavenumbers
and are upstream, but slowly rightmoving in the lab frame. The posi-
tive/negative frequency contribution of the upstream pulse is located at
positive/negative wavenumbers. Backwards in time all three pulses travel
leftwards away from the horizon (see Fig 4.5(c)). Note that in [Unr95] the
downstream pulse is not observed in the actual dynamics.

From a comparison between the Klein-Gordon norms of the late-time
negative frequency pulse and the early-time positive frequency pulse the
Bogoliubov coefficients |βω|2 can be extracted. In the literature a differ-
ent approach is chosen, with the assumption that Hawking radiation is
thermal, i.e., that the Bogoliubov coefficient is given by Eq. (4.36), the
Klein-Gordon norm 4.22 of the early-time pulse is calculated from the late-
time pulse. The Klein-Gordon norm of the early-time positive frequency
pulse is

N+ =

∫
N+

k (t < 0)dk. (4.39)

It is compared with the prediction from the late-time pulse

N 0 =

∫ N 0
k (t = 0)

exp
(

~ω
kTH

)
− 1

dk. (4.40)

Either the norms are compared in total or frequency-wise with the help
of the expression dk = dk

dω
dω, i.e., by division with the pulse velocities in

the lab frame. One can compare the early-time positive frequency pulse

Ñ+
k =

Nk(t < 0)

vmin − ck
(4.41)

with the prediction from the late-time negative frequency pulse

Ñ 0
k =

Nk(t = 0)

vmin − ck

1

exp
(

~ωk

kBT

)
− 1

, (4.42)

and the prediction from the early-time negative frequency pulse

Ñ−
k =

Nk(t < 0)

vmin − ck
exp

(
− ~ωk

kBT

)
. (4.43)
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In [Unr95] the thermal hypothesis is confirmed using both the integrated
and the modewise comparison.

In [CJ98, JM99] a discretized hydrodynamic system is treated with
the same method. On a lattice the dispersion relation is naturally sub-
linear. Since the lattice is moving, the frequency in the lab frame is not
conserved anymore. It is shown numerically exact and with analytical
approximations (WKB theory) that the mechanism of mode conversion
described in [Unr95] persists in this scenario. Even the Bogoliubov coef-
ficients extracted from the comparison of early-time and late-time modes
agree with the predictions for a continuum system with strictly linear dis-
persion relation (see Eq. (4.36)). The existence of a downstream pulse is
not reported in [CJ98, JM99], too.

For a discrete and finite system with N particles on a system of size L
a finite number of wavenumbers exists

k ∈
{
−(N ′ − 2)π

L
,−(N ′ − 4)π

L
, . . . ,

N ′π

L

}
(4.44)

with the renormalized ion number

N ′ = N
(2π)/T

v
. (4.45)

N ′ appears because the local ion spacing is not L/N , but a(θ) = L/N ′ =
L/N · v(θ)T/(2π) in the inhomogeneous system. This Brillouin zone is
already visualized in Fig. 4.5. In this system a symmetry under combined
translations in space and time survives,

i→ i+ 1 (4.46)

t→ t+ T/N (4.47)

(see Eq. (4.2)). In a homogeneous part of the system this symmetry im-
plies that the state of the system is invariant under the combined trans-
formation

k → k +
2π

L
N ′n, (4.48)

ω → ω +
2π

T
Nn (4.49)

for any integer n.
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We use this transformation to explain an effect described in [CJ98,
JM99] analogous to Bloch oscillations. The two high wavenumber solu-
tions of the frequency conservation condition can lie outside the Brillouin
zone. Then we find the solutions by looking at the frequencies ω0±2πN/T ,
depicted in Fig. 4.5(d). Thus, the early-time pulses are instead located on
the downstream branch of the frequency condition. The positive/negative
frequency pulse is located at high positive/negative wavenumbers (see Fig.
4.5(d)).

4.3.3 Correlations

The Hawking effect produces pairs of particles propagating away from the
horizon in opposite directions, one outside the black hole (the Hawking
particle), and one inside the black hole (its infalling partner). Taking
advantage of this, it has been proposed to detect Hawking radiation via
correlation measurements (see [BFF+08]), which reveal the entanglement
between the two Hawking partners. In [BFF+08, CFR+08, MP09a] the
density-density cross-correlation of phonons on both sides of the horizon
produced through the Hawking process in a sonic black hole built up with
a Bose-Einstein condensate (BEC) is studied [GAC+00, GAC+01, FF03].
In a quasi one-dimensional weakly interacting BEC in the hydrodynamical
approximation the sound propagation is described by

L =

∫
dθ

K
2

[
(∂tΦ+ v (θ) ∂θΦ)

2 − c2∂θΦ
2
]
. (4.50)

This is manifestly the same as Eq. (4.19) apart from the actual form of the
conformal factor K, which if constant does not affect the dynamics appart
from a rescaling of the fields. So the propagation of phonons in a BEC,
i.e., phase/density excitations, and the propagation of phonons in a ring
of ions, i.e., displacements of ions from their equilibrium position, are de-
scribed by the same physics, and therefore share similar behaviors. Thus,
the analysis performed in [BFF+08] can be translated into the context of
ion rings.

The general equal-time two-point correlator 〈Ψ̂(θ)Ψ̂(θ′)〉 in 1+1 di-
mensional space-times is given by [BD82]

〈Ψ̂(θ)Ψ̂(θ′)〉 = − lim
t′→t

~

4π
log [(U(θ, t)− U(θ′, t′)) (V (θ, t)− V (θ′, t′))] .

(4.51)
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This is the stationary correlator of a massless minimally coupled quantum
scalar field in 1 spatial dimension. It exhibits a characteristic structure
with the logarithmic distance between the two points as the difference
between the null coordinates U and V [BD82]. The meaning of the null
coordinates is the following: the mode solution can always be written in
the form ∼ e−iωU for upstream modes and ∼ e−iωV for downstream modes.
The modes propagating upstream (downstream) move along space-time
trajectories that keep the V (U) coordinates constant. For example, if the
system is at rest and homogeneous, the analog spacetime is the Minkowskii
(flat) one, and the Kruskal coordinates reduces to the familiar U = t+θ/c,
V = t − θ/c, that define the standard light- (sound-) cones. As already
pointed out in [BFF+08] using these as Kruskal coordinates, one is able
to recover the correct behavior of the density-density correlator in one
dimension for a homogeneous BEC scaling as the inverse squared of the
distance between the two points. If the system is more complicated (i.e.,
non-homogeneous or moving), the mode propagation is different, and the
associated null coordinates will display distortion.

Eq. (4.51) applies to all conformally invariant theories in 1+1 dimen-
sional spacetimes (which are always conformally flat). In the present case,
the theory we are dealing with is not conformally invariant for the pres-
ence of the conformal factor K in the action. Nevertheless, assuming that
K varies smoothly over the system, the correlator can be approximated
using Eq. (4.51) also in the present case by

〈Φ̂(θ)Φ̂(θ′)〉 = − lim
t′→t

~

4π

1√
K(θ)K(θ′)

log [(U(θ, t)− U(θ′, t′)) (V (θ, t)− V (θ′, t′))] , (4.52)

where the 1/
√
K(θ)K(θ′) term follows from a rescaling of the field, and

terms containing derivatives of K are neglected.
Let us move to the evaluation of this correlator in the presence of

Hawking radiation. Since the modes responsible for the emission Hawking
radiation are the upstream modes Ψ̂−, we will focus on the upstream sector
of Eq. (4.51) only. The equal-time two-point correlator in the presence of
a black hole horizon is given by [BD82]

〈Φ̂−(θ)Φ̂−(θ′)〉 = − lim
t′→t

~

4π

1√
K(θ)K(θ′)

log (U(θ, t)− U(θ′, t′)) . (4.53)

The downstream part of the correlator remains unaffected even in the
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presence of a horizon, i.e., V still reads t − θ/c. The only modes which
get distorted by the presence of the horizon are the upstream ones which
become far away from the horizon [Unr81, BFF+05a, BFF05, BFF+05b]

U(θ, t)in/out = ±e−κ(t+ θ
c(θ)−v(θ)

) (4.54)

for the interior (+) and the exterior (-) region of the black hole. They
suffer the typical exponential distortion of the upstream modes due to the
presence of a black hole horizon [BD82, Unr81] (discarding transients).
The exponential distortion follows from the wave equation for a linearized
velocity profile at the horizon. κ is the surface gravity on the sonic horizon
which is proportional to the Hawking temperature (see Eq. (4.17)). It is
worth emphasizing that the form of the modes (4.54) is universal for any
black hole horizon formation, independent of the details of its formation.
This is the origin for the universal behavior of Hawking radiation.

The momentum-momentum correlator

〈δp̂−(θ)δp̂−(θ′)〉 (4.55)

can be obtained from Eq. (4.53). The conformal factor Kmust be replaced
with the conformal factor from the Lagrangian of ions on a ring (see Eq.
(4.19)). With the relation

δp̂− =
L

2π
m(∂t + v∂θ)Φ̂

− (4.56)

one gets

〈δp̂−(θ)δp̂−(θ′)〉 = ~m

16π

1

[c (θ)− v (θ)] [c (θ′)− v (θ′)]√
c(θ)c(θ′)

n(θ)n(θ′)

κ2

cosh2
[
κ
2

(
θ

c(θ)−v(θ)
− θ′

c(θ′)−v(θ′)

)] . (4.57)

This correlator has the typical form associated to the Hawking effect. The
correlations are scaling with the square of the Hawking temperature. For
θ and θ′ on opposite sides of the sonic horizon, c (θ) − v (θ) and c (θ′) −
v (θ′) have opposite sign. Therefore, the momentum-momentum cross-
correlations are negative. They exhibit a peculiar peak along a straight
line for θ = c(θ)−v(θ)

c(θ′)−v(θ′)
θ′ ∝ θ′. These cross-correlations correspond to the

two entangled Hawking particles propagating in opposite directions as
they move apart from the horizon.
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4.4 Simulations for Ion Rings

We are now returning to the discussion of the discrete ion chain. In this
section we are presenting the results of our simulations and are compar-
ing them with the predictions and expectations from Sec. 4.3. We are
pursuing two routes of simulations: First we simulate the scattering of
pulses on the black hole horizon in Sec. 4.4.1. From the result we can
deduce the Bogoliubov coefficients and theoretically confirm the thermal
hypothesis (see Sec. 4.3.2). A second series of simulations presented in
Sec. 4.4.2 is analyzing the emergence of correlations between the inside
and the outside of a black hole after its creation (see Sec. 4.3.3). These
correlations demonstrate the pair creation mechanism of Hawking radi-
ation and are closely related to the emergence of entanglement between
the inside and the outside of a black hole. In contrast to the scattering
analysis, these simulations also act as direct proposal for an experiment
as further discussed in Sec. 4.5.

4.4.1 Scattering of Pulses

Our numerical results for the propagation of a final pulse backwards in
time in the discrete system of phonons on an ion ring are presented in the
following. We first introduce the quantities necessary for this analysis. If
the phononic excitations are localized in the flat subsonic region with con-
stant ion velocity vmin, the excitations δθi(t) and δθ̇i(t) can be expressed as
modes δθk(t) and δθ̇k(t) with wavenumber k, where the dot represents the
time derivative in the comoving frame. Due to the finite system size only
discrete wavenumbers appear (see Eqs. (4.44) and (4.45)) and thus the
dispersion relation is also discrete. The positive and negative frequency
part of these excitations are defined by

δθ±k (t) =
1

2

(
δθk(t)± iδθ̇k(t)/ωk

)
, (4.58)

δθ̇±k (t) =
1

2

(
δθ̇k(t)∓ iωkδθk(t)

)
. (4.59)

These relations follow from the spatial behavior δθ (θ) ∼ exp
(
ik θ

2π
L
)
in

regions of constant ion velocity v (θ) = v [Unr95]. The analysis of the
particle production requires us to use the Klein-Gordon norm for these
modes. In our special case the Klein-Gordon norm defined in Eq. (4.22)
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becomes up to a constant

N =
∑

k,±

Nk (4.60)

with

N±
k = δθ̇±∗

k δθ±k − δθ±∗
k δθ̇±k . (4.61)

We are now describing the numerical calculation of the Bogoliubov coeffi-
cients with the method presented in Sec. 4.3.2. In summary, we are calcu-
lating the history of a negative frequency pulse on the upstream branch of
the dispersion relation that travels away from the horizon. Back in time it
scatters off the horizon and originates from several pulses. The early-time
positive frequency pulse and the late-time negative frequency pulse are
related through the Bogoliubov coefficients.

We start from the final pulses

δθsk (0) = k · e−( k−2πs
40π )

2

, s = 1, . . . , 20, (4.62)

centered at different wavenumbers k to test different frequency ranges. We
calculate its history with Newton’s equations of motion given in Appendix
A.3 (see Eq. (A.11)) by using an iterative differential equation solver.
From frequency conservation in the lab frame we expect three pulses on
the upstream branch of the dispersion relation [Unr95, CJ98, JM99] (see
Sec. 4.3.2).

Before coming to the simulation results, we will discuss the param-
eter regime used in this section. The ratio between the typical pulse
frequency ω in the comoving frame and the Hawking temperature is of
order ~ω/kBTH ∼ 10 (see also Fig. 4.4). In [MP09b] the deviations from
thermality have been examined based on the quantity

ωmax = max
k>0

(D(k)− vkL/2π) . (4.63)

Here ωmax takes the following values: ωmax = 290/T for nearest-neighbor
interactions only (Fig. 4.8a), ωmax = 610/T for full Coulomb interactions
(Fig. 4.8b). The surface gravity for the former case is κ = 65/T , for
the latter κ = 82/T (see Fig. 4.4), thus the ratios are ωmax/κ = 4.5
and ωmax/κ = 7.4. This regime is identified as the regime of small de-
viations from thermality in [MP09b]. This prediction applies to systems
with nearest-neighbor interactions only. One of the main results of our
paper is to consider also the long range Coulomb interactions for which
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Figure 4.6: Ion displacement |δθi(t)/(2π)| during propagation backwards
in time starting from the final wavefunction in Eq. (4.62) with s = 5.
One late-time pulse and three (two of which overlapp) early-time pulses
are present (see text). Two early-time pulses have large absolute mo-
menta (blue dashed lines), one early-time pulse has small momentum
(green straight lines). We use σvminT = 0.375 and N = 1000. For (a)
and (b) e2/4πǫ0 = 1.2591

2N
mL3

T 2 , for (c) and (d) e2/4πǫ0 = 2.0004
2N

mL3

T 2 (see
Appendix A.2). (a) and (c) use lab frame angles θ, (b) and (d) use ion
indices i (see text for description of scattering process).

the deviations from a linear dispersion relation at small wavenumbers are
significant in a finite system.

Our results agree mainly with those of references [Unr95, CJ98, JM99]
as shown in Fig. 4.7. First, we observe quantitative devisions, whose or-
der of magnitude agrees with the uncertainties in calculating the Hawking
temperature. Second, we find a previously undescribed downstream pulse
at small negative frequencies. But before discussing the detailed analysis
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Figure 4.7: Klein-Gordon norm Nk of the phonon pulses for propa-
gation backwards in time starting from the final wavefunction in Eq.
(4.62) with s = 5. With a comparison of these pulses we test the
thermal hypothesis. We use σvminT = 2π · 0.375, and N = 1000 (see
Appendix A.2). The final negative frequency pulses are depicted in
green, the initial negative frequency pulses in blue (dash-dotted line),
and the initial positive frequency pulses in red (dashed line). We de-
pict the discrete norm distributions/dispersion relation as a continuous
curve here. (a) Final (t = 0) and initial (t = −0.67T ) norm distribution
of δθk(t); e

2/4πǫ0 = 1.2591/(2N) · mL3T−2. (b) Final (t = 0) and ini-
tial (t = −0.51T ) norm distribution of δθk(t) showing Bloch oscillation;
e2/4πǫ0 = 2.0004/(2N) ·mL3T−2 [HRF+10].

of the scattering process, we will repeat the description of the mode con-
version from Sec. 4.3.2, but this time illustrated in real space with the
simulation results from the special case of the ion ring (see Fig. 4.6).

We begin with the normal scenario of sufficiently large ion velocities
(see Figs. 4.6(a)-(b) and 4.7(a)). We observe all three early-time pulses
which are in agreement with frequency conservation. Two pulses are lo-
cated on the upstream branch at high absolute wavenumbers (red and blue
lines in Fig. 4.7(a)). But at these wavenumbers they have such a small
group velocity in the comoving frame that they are moving rightwards
in the lab frame (blue dashed lines in Figs. 4.6(a)-(b)). A third pulse
is located on the downstream branch of the dispersion relation at small
negative wavenumbers (blue line in Fig. 4.7(a)). Its group velocity is large
both in the comoving frame and in the lab frame. This time evolution is
depicted in Fig. 4.6(a) in the lab frame and in Fig. 4.6(b) in the comoving
frame. The two upstream and the one downstream pulse can clearly be
identified in the comoving frame. In the lab frame the downstream pulse
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is quickly moving rightwards, the two upstream pulses are slowly moving
rightwards.

A different situation arises for sufficiently small ion velocities (see Figs.
4.6(c)-(d) and 4.7(b)). In this case, all three early-time pulses are moving
downstream. This time evolution is depicted in Fig. 4.6(c) in the lab frame
and in Fig. 4.6(d) in the comoving frame. In the comoving frame we can
now observe the three downstream pulses, one fast pulse which is the one
at low wavenumbers (green lines) and the two interesting slow pulses (red
dashed lines) which are still located at high absolute wavenumbers. In
the lab frame the two pulses at high absolute wavenumbers are travelling
faster than in the normal case.

The spectral analysis in Fig. 4.7 confirms these explanations. We
find the two previously mentioned high wavenumber pulses. For small ion
velocities the effect analogous to Bloch oscillations is observed. Then the
main incoming pulses have wavenumbers with opposite signs. In addition
we observe the weak downstream pulse with small negative wavenumbers
that is not desribed in the literature. We find that its magnitude depends
on the strongly on how the fringes of the pulse in outside the flat subsonic
region are treated. Therefore we suggest that the presence of this pulse
could be a consequence of the finite initial and final excitation probability
of ions outside the flat subsonic region.

We further compare the Klein-Gordon norm of the positive frequency
early-time pulse with the prediction for thermal radiation (see Sec. 4.3.2
and [Unr95, JM99]). We calculate the Hawking temperature according to
Eq. (4.18). If only nearest-neighbor Coulomb interactions are considered,
the relative difference between these norms is lower than ǫ = 0.01 for
N = 1000 ions. For the long range Coulomb interactions a conservative
estimate yields ǫ ≤ 0.2. The latter result holds for any arbitrary choice
for the Hawking temperature at the wavenumbers k = 2π/L · 4 . . . 6. The
bound on ǫ agrees with the differences between analysis based on the group
and the phase velocity of the phonons (see Sec. 4.2.2 and Eq. (4.10)).

We also perform the analogous spectrally dissolved comparison (see
Sec. 4.3.2 and [Unr95]), comparing the early-time positive frequency pulse
with the prediction based on the thermal hypothesis. Only discrete fre-
quencies appear in the system because only discrete wavenumbers are
present. Therefore, it is in general not possible to exactly match the
frequencies of the pulses. Especially, we cannot perform a thermal fit.
Thus, we look at the two frequencies in the early-time pulses closest to
the frequencies in the late-time pulse. We compare the early-time posi-
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Figure 4.8: Comparison of spectrally resolved Klein-Gordon norms Ñ 0
k

(late-time negative frequency pulse) at t = 0 with Ñ+
k (early-time posi-

tive frequency pulse) and Ñ−
k (early-time negative frequency pulse) (see

Sec. 4.3.2) as a function of the lab frame frequencies at t = −2T af-
ter propagation backwards in time starting from the final wavefunction
in Eq. (4.62) with s = 5. We use σvminT = 0.375, N = 1000. (a)
Nearest-neighbor interactions at t = −2T with e2/4πǫ0 =

1
2N

mL3

T 2 ; (b) Full

Coulomb interactions at t = −0.75T with e2/4πǫ0 =
1
2N

mL3

T 2 (see Appendix
A.2).

tive frequency pulse Ñ+
k with the predictions for it based on the late-time

negative frequency pulse Ñ 0
k and based on the early-time negative fre-

quency pulse Ñ−
k (see (4.41)-(4.43)). The result of this analysis is shown

in Fig. 4.8(a) for nearest-neighbor interactions and in Fig. 4.8(b) for full
Coulomb interactions. For this analysis we choose the Hawking tempera-
ture at k = 2π/L · 5 (see Eq. (4.18)), but similar results are obtained for
the adjacent wavenumbers). This analysis again confirms the thermal hy-
pothesis to the extend possible. The accuracy of our analysis is restricted
by the discreteness of the system and the nonlinearity of the dispersion
relation at small wavenumbers.

We summarize the findings of this section: Hawking radiation with a
thermal spectrum is emitted from a black hole horizon on an ion ring,
even for a finite system with a logarithmically diverging group velocity at
low wavenumbers due to long-range interactions (see Fig. 4.3).
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Figure 4.9: Momentum-momentum correlations Cij(t) at time t = 0.5T
with real space lab frame positions. Starting from homogeneously spaced
ions with temperature T0 = 0 a black hole region is created in the small
time interval τ = 0.05T . The dashed lines point to the signature cor-
responding to the emission of pairs of Hawking phonons. We consider
N = 1000 ions, and σvminT = 2π · 0.25. (a) Nearest-neighbor inter-
actions with e2/4πǫ0 = 1.127

2N
mL3

T 2 ; (b) Full Coulomb interactions with

e2/4πǫ0 =
0.2453
2N

mL3

T 2 [HRF+10] (see Appendix A.2).

4.4.2 Correlations

For an experimental proof of Hawking radiation on ion rings, we propose
to observe the emission of Hawking radiation following the creation of a
black hole horizon (see Sec. 4.5). We propose to measure the emitted
phonons or the emerging correlations between the subsonic and the su-
personic region (see [BFF+08, CFR+08, MP09a]). The latter is discussed
in Sec. 4.3.3, in this section we are presenting simulation results for ion
rings on the emerging correlations. We compare our results to the an-
alytical findings for a continuum system with linear dispersion relation
derived in Eq. (4.57) [BFF+08]. In the quantum regime the emergent
cross-correlations display the generation of entanglement. We study its
properties, especially to analyze the crossover from the quantum to the
classical Hawking effect.

Discrete System

We propose the experiment to start from the ground/thermal state of the
excitation around homogeneously spaced ions at rest with temperature
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T0. Then the system is accelerated with a constant force which does not
change the quantum state of the system defined relative to the equilibrium
positions. Subsequently, a supersonic region is created in the small time
interval τ . This is done by reducing the subsonic fluid velocity vmin in
a Gaussian way, while leaving the average rotation velocity constant (see
Appendix A.2 and Eq. (A.9)). We reduce excitations created at the white
hole horizon at θ/2π ≈ 1 − σvminT by a wider transition region at this
horizon. In an experiment the magnitude and velocity of these excitations
can be watched through careful measurements.

We are analyzing the momentum-momentum correlations

Cij = 〈δp̂iδp̂j〉 · T/(~m). (4.64)

In the continuum limit these momenta correspond to the time derivative
of the scalar field Φ̂

δp̂i ∼ (∂t + v(θ)∂θ) Φ̂(θ, t). (4.65)

The dynamics of the momentum-momentum correlations are given by the
dynamics of the covariance matrix (see Eq. (A.13)). In Sec. 4.5.1 we are
explaining how these correlations Cij can be measured in an experiment.

Fig. 4.9 shows the simulation results for Cij . It displays a fixed time
after the black hole formation starting from the ground state, i.e., T0 = 0.
Correlations between the inside and the outside of the black hole are cre-
ated close to the black hole horizon and are moving away from it as ex-
pected. As stated earlier these correlations correspond to the pairs of
Hawking particles. We interpret their pure existence as a signature for
Hawking radiation. Fig. 4.9(a) shows the simulation for interactions be-
tween neighboring ions only, Fig. 4.9(b) for long range Coulomb inter-
actions. The correlations behave similarly in both cases (see discussion
below). They can still be observed for initial temperatures two orders of
magnitude above the Hawking temperature [BFF+08, CFR+08, MP09a]
as shown in Fig. 4.10. In Sec. 4.4.2 we find that the Hawking effect is still
quantum at such initial temperatures (see Fig. 4.14). In contrast to the
entanglement, the cross-correlations actually remain present at arbitrarily
large initial temperatures [FCB+10] (note Γ ∝ T0 for kBT0 ≫ ωk, see Eq.
(A.18)).

The most significant correlation signal (i), i.e., the line of negative
cross-correlations, demonstrates a basic property of Hawking radiation,
it corresponds to two upstream phonons, one inside and one outside the
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Figure 4.10: Momentum-momentum correlations Cij(t) for initial temper-
ature T0 = 102TH at time t = 0.5T with real space lab frame positions.
We consider N = 1000 ions, σvminT = 2π · 0.25, e2/4πǫ0 = 0.2453

2N
mL3

T 2 , and
τ = 0.05T . Full Coulomb interactions are considered (compare with Fig.
4.9).

black hole. An additional correlation feature (ii) is fully inside the black
hole, corresponding to a pair of upstream and downstream phonons inside
the black hole. The features (i) and (ii) have already been reported for
analog black holes in a BEC (see [BFF+08]). The propagation velocity
of these correlations c(θ) ± v(θ) depends on the group velocity, i.e., the
dispersion relation, and the ion velocity. The angle of the cross-correlation
signature (i) is determined by the ratio of the phonon velocities inside and
outside of the black hole (c(θ)− v(θ)) / (c(θ′)− v(θ′)). The dashed lines
in Fig. 4.9 show the predictions for the direction of the cross-correlation
signal (see Sec. 4.3.3).

In contrast to Fig. 4.9, which is very similar to black hole analogues in
a BEC [BFF+08], the correlation plot for full Coulomb interactions in Fig.
4.9(b) displays a more complicated structure. The cross-correlation signal,
is broader and there are additional lines of oscillating correlations. With
higher resolution and/or for larger Hawking temperatures these effects
can also be observed for nearest-neighbor interactions. We attribute these
changes to the more complicated and sublinear dispersion relation.

Even though the precise determination of the correlations for a nonlin-
ear dispersion relation is a rather complicated issue (see, e.g., [SU10]), we
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Figure 4.11: Schematic depiction of the pulse propagation on an ion ring.
The left graph depicts an initial Gaussian pulse profile, the right graph
the dispersed pulse after time t. Trails of oscillations are following the
dispersed pulse.

may obtain a qualitative understanding by means of the following simple
picture. Since group and phase velocity nearly coincide at small wavenum-
bers, the correlations are created near the horizon as a nice 1/ cosh2-pulse
as in the case of a linear dispersion relation (see Eq. (4.57)).

However, as this pulse propagates away from the horizon, the non-
linear dispersion relation deforms it. For a fixed t′, θ′, the two-point func-
tion 〈δp̂(t, θ)δp̂(t′, θ′)〉 obeys the same wave equation as δp̂(t, θ) itself. In
a homogeneous region of a stationary spacetime this is the same as for the
field Ψ (see Eq. (4.20)).

{
[∂t + ∂θv] [∂t + v∂θ]− [iD (−i∂θ)]2

}
〈δp̂(t, θ)δp̂(t′, θ′)〉 = 0. (4.66)

Since modes with larger k propagate slower than those with smaller k, a
pulse with an initial 1/ cosh2-shape will be deformed during the time evo-
lution similar to Fig. 4.11. The main pulse (global maximum) becomes
broader and oscillations develop, trailing the main pulse (local minima
and maxima), which are caused by the slower modes with short wave-
lengths. This deformation applies to the outgoing Hawking radiation and
the infalling partners in the same way as both are moving upstream. In a
finite system the deviations from a linear dispersion are significantly larger
for full Coulomb interactions than for nearest-neighbor interactions. As
a result, this simple picture explains the difference between Figs. 4.9(a)
and 4.9(b).
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Comparison with Continuum System

In Sec. 4.3.3 we have calculated and analyzed the cross-correlation sig-
nal for a continuum system with strictly linear dispersion relation. We
observe these correlations also for our discrete system with sublinear dis-
persion relation as shown in Fig. 4.9. In this Section we are quantitatively
comparing the simulation results for ion rings with the analytical results
for a continuous system, focussing on the peak magnitude of the cross-
correlations (see Eq. (4.57)).

We perform this comparison for varying Hawking temperatures. It is
tuned by changing the widths of the horizon region γ1 (see Eq. (A.8)) keep-
ing constant the other parameters. The comparison is shown for nearest-
neighbor interactions in Fig. 4.12(a) and for full Coulomb interactions in
Fig. 4.12(b), where the dots represent the simulated peak magnitude for
the ion ring and the curve represents the analytic peak magnitude for the
continuum system with a linear dispersion relation.

At small Hawking temperatures, the results agree very well for nearest-
neighbor interactions, also for full Coulomb interactions the agreement is
quite good for moderate Hawking temperatures. The deviation at large
Hawking temperatures is caused by the discreteness of the system. For
large Hawking temperatures the horizon region, which almost completely
determines the properties of Hawking radiation, is small and contains only
a few particles. Then the discreteness of the system becomes relevant.
In the limit of very large Hawking temperatures the peak height should
mainly depend on the lattice spacing [FCB+10].

Entanglement Generation

In this section we are discussing the creation of entanglement between the
inside and the outside of a black hole following its creation. Entanglement
is unique to quantum processes. Therefore, the existence of entanglement
proves that one can observe the quantum version of the Hawking effect
with our proposal. In contrast, correlations between the inside and the
outside of the black hole are present both for initial thermal states T0 ≫ TH
in the classical regime and for initial quantum states T0 = 0 [FCB+10]. So
we analyze the crossover between classical and quantum Hawking radia-
tion (stimulated versus spontaneous emission). Furthermore, our analysis
emphasizes the importance we assigned to the cross-correlations. The
emerging entanglement can be measured on two routes, either by measur-
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Figure 4.12: Peak Height Cij(t) of the cross-correlation signature in the
momentum-momentum correlations (see Fig. 4.9) as a function of the
Hawking temperature TH. The dots are simulation results for a discrete
system with nearest-neighbor interactions only, N = 1000 ions, σvminT =
2π·0.25, and τ = 0.05T . γ1 is varied to get different Hawking temperatures
TH. h = 2π~ is Planck’s constant. (a) Nearest-neighbor interactions with
e2/4πǫ0 = 1.127

2N
mL3

T 2 and 0.003̄ < γ1 < 0.1; (b) Full Coulomb interactions

with e2/4πǫ0 =
0.2453
2N

mL3

T 2 , and 0.005 < γ1 < 0.1 (see Appendix A.2).

ing the covariance matrix through a measurement of correlation in the ion
displacements (see Sec. 4.5.1) or by swapping the entanglement from the
motional to the internal degrees of freedom of the ions [RCB05].

We are now briefly introducing the relevant entanglement measures
before we present numerical results for the ion system. The covariance
matrix Γ (see Eq. (4.8)) can be calculated (see Appendix A.3) and mea-
sured (see Sec. 4.5) for the ion system in harmonic approximation (see
Eq. (4.5)). It gives access to two entanglement measures: the entropy of
entanglement and the logarithmic negativity.

We consider a system with density matrix ρ divided into subsystems A
and B. The entropy of entanglement is defined for a bipartite pure state.
It is the Von-Neumann entropy of the reduced density matrix ρA of one
subsystem A [BBP+96]

S(ρ) = −tr (ρA log2 ρA) . (4.67)

The state ρ is a product state for S(ρ) = 0. As an entanglement measure
S cannot increase under local operations and classical communications
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Figure 4.13: (a) Time evolution of the entropy of entanglement S(Γ) for
different Hawking temperatures TH with full Coulomb interactions (same
parameters as Fig. 4.12(b)). (b) Rate of increase of the entropy of en-
tanglement dS(Γ)/dt as a function of the Hawking temperature TH. Full
Coulomb interactions (red dashed line, same parameters as Fig. 4.12(b)),
and nearest-neighbor interactions (black straight line, same parameters
as Fig. 4.12(a)). The linear increase in entanglement is caused by the
constant emission of entangled Hawking phonons.

(LOCC). For pure Gaussian states S(ρ) can efficiently be calculated from
the covariance matrix Γ [VW02, BR03, WGK+04]. It is given by

S(Γ) =
N∑

n=1

(
λ2n log2 λ

2
n − (λ2n − 1) log2

(
λ2n − 1

))
(4.68)

with the symplectic eigenvalues λn, n = 1, . . . , N of the covariance matrix
Γ. They are the eigenvalues of iσΓ with the symplectic matrix

σ =
N⊕

n=1

(
0 1
−1 0

)
, (4.69)

which exchanges position and momentum of each mode.
We can also use the logarithmic negativity, which is an entanglement

monotone, i.e., it does not decrease under LOCC [VW02]. In contrast
to the entropy of entanglement, it can be calculated efficiently from the
covariance matrix even for mixed states. It is defined as the logarithm of
the trace-norm of the partial transpose of the density matrix

N(ρ) = log2‖ρTa‖ (4.70)
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with ‖M‖ =
√
M †M . The covariance matrix ΓTa of the partial transpose

of ρ, i.e., ρTa , follows from the covariance matrix Γ of ρ by multiplying with
−1 all matrix entries of Γ which contain exactly one momentum operator
of subsystem A. Let λ̃k, k = 1, . . . , N denote the symplectic spectrum of
ΓTa . Then the logarithmic negativity is

N(Γ) = −
N∑

n=1
2λ̃n<1

log2

(
2λ̃n

)
. (4.71)

A vanishing logarithmic negativity does not mean that the system is not
entangled, but it means that such systems cannot be purified to maximally
entangled states.

Now, we analyze the entanglement properties for black holes on ion
rings. Using the entropy of entanglement we study how the entanglement
is generated between the inside and the outside of a black hole starting
from the ground state (T0 = 0) at initial times. The entropy of a black
hole is more fundamental than the logarithmic negativity, but it is only
defined for pure states. Thus, we have to compare the whole supersonic
with the whole subsonic region. On a ring this means that one cannot
determine at which horizon the entanglement is created.

In Fig. 4.13(a) we find a linear increase of the entropy of entanglement
in time after an initial period (t ∼ 0.2T in our case). This linear increase
corresponds to the constant emission of Hawking radiation from a black
hole. We have plotted the rate of this increase in Fig. 4.13(b). We find
for nearest-neighbor interactions a linear dependence of the entropy of
entanglement on the Hawking temperature of the black hole. For full
Coulomb interactions we find a similar behavior.

The logarithmic negativity gives access to the entanglement developing
for systems with finite initial temperatures T0 > 0. The entanglement
between two small regions adjacent to the black hole is presented in Fig.
4.14. The initial entanglement between the regions depends on the system
temperature: For quantum systems at T0 = 0 entanglement is present,
for classical systems T0 → ∞ it cannot be detected. The entanglement
is increasing linearly in time for sufficiently small T0. This behavior is
already described above for the entropy of entanglement (see Fig. 4.13(a)).

However, the logarithmic negativity allows further observations. For
initial temperatures T0 more than two orders of magnitude above the
Hawking temperature TH, no entanglement generation is visible in the
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Figure 4.14: Time evolution of the logarithmic negativity N of a region
with 0.2N ions (N = 1000) adjacent to the horizon for different initial
temperatures T0. The linear increase in entanglement is caused by the
constant emission of entangled Hawking phonons. Full Coulomb interac-
tions considered (same parameters as Fig. 4.9(b)).

logarithmic negativity. In contrast, the cross-correlation signal remains
present for arbitrarily high initial temperatures. We observe here the
transition from the quantum to the classical Hawking effect. We can
conclude that for the initial temperatures T0 < T c

0 ≈ 100TH (N = 1000)
the observed Hawking effect is quantum, whereas one would naively expect
this transition at T c

0 ≈ TH. T
c
0 /TH is increasing with the number of ions,

taking, for example, N = 100 ions and e2/4πǫ0 = 0.6/(2N) · (mL3)/T 2)
we find T c

0 ≈ TH ≈ 24. T c
0/TH is approximately proportional to the largest

mode frequency of the system, which is sublinear in in N .

This might be understood with the following argument: As described
in Sec. 4.3.2 Hawking radiation emerges from large wavenumbers before
being emitted at small wavenumbers. The frequency related to these large
wavenumbers is about N -times (number of ions) higher than the smallest
frequency in the system. Along this line, the Hawking effect remains
quantum for initial temperatures comparable to these highest frequencies
of the system at large wavenumbers.

In Fig. 4.14 a saturation in the logarithmic negativity at later times
is observed. This is in agreement with the fact that Hawking radiation
is constantly emitted. After fully penetrating the small regions adjacent
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to the horizon, no additional entanglement can develop between these
regions.

4.5 Experimental Realization

So far we have studied the appearance of Hawking radiation on ion rings.
We have demonstrated that the emitted radiation has a thermal spectrum
with a geometrically justified Hawking temperature (see Sec. 4.4.1), and
that it is created in pairs (see Sec. 4.4.2). We complete our analysis in
this section by describing an experimental setup which will allow for the
observation of Hawking radiation on an ion ring.

First, we present a suitable parameter regime for an experiment. The
main condition on the experimental parameters is that the ion velocity
must be approximately equal to the phonon velocity. This condition leads
to the requirement e2/4πǫ0 ≈ 0.25/ (2N)mL3/T 2. For N = 1000 singly
charged 9Be ions with an average spacing of L/N = 2µm the rotation
frequency of the ions would be ωrot = 2π × 120kHz. ωrot represents
the smallest mode frequency of the system. For vmin = (2π × 0.83̄)/T ,
γ1 = 0.02, and σvminT = 2π · 0.25 the Hawking temperature is kBTH/~ ≈
5/T ≈ 2π × 95kHz. If the initial temperature is two orders of magnitude
above the Hawking temperature T0 . 100TH, we show explicitly in Sec.
4.4.2 that the cross-correlation signature of Hawking radiation remains
present (see Fig. 4.10) and we find in Sec. 4.4.2 that the Hawking radiation
remains a quantum effect. Thus, it is not necessary to perform ground
state cooling of all vibrational modes of the ions in an experiment.

Note that it has been demonstrated long ago how to trap ions in
quadrupole ring traps [DP64, Chu69, DJA+88] and measure their arrange-
ment [BKW92, WKB+92, SSH01]. The ideas of these experiments can be
combined with modern cooling techniques applied to ions in linear Paul
traps or in surface traps [EMK+03, HHJ+10]. Thus, the proposed exper-
iment will allow to measure signatures of Hawking radiation for acoustic
black holes with parameters and temperatures which can be reached in
current experiments.

The general idea of the actual measurement process is the following.
The Hawking effect is encoded in the motional degrees of freedom of the
ions, which are described in this chapter with the ion displacements δθi
and can be viewed as phonic modes. A different degree of freedom for ions
is their internal state, here we address two hyperfine states of the ions.
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Lasers couple the motional degrees of freedom to the two relevant internal
states. In this way, the information on the Hawking effect is transfered to
the internal states. The occupation of the internal states can be read out
by fluorescence imaging.

In Sec. 4.5.1 we first propose a measurement sequence for the cross-
correlation signature. Then we discuss a proposal to directly measure the
Hawking phonons in Sec. 4.5.2. The proposal in Sec. 4.5.1 allows to
determine any part of the covariance matrix (see Eq. (4.8)). Thus, it
can be used to determine the emerging entanglement between the inside
and the outside of the black hole (see Sec. 4.4.2). Note that it has been
proposed earlier how to detect entanglement in the motional degrees of
ions [RCB05]. The basic mechanism of all proposals is the coupling of the
ion displacements to their internal levels with lasers.

4.5.1 Measurement of Ion Displacements

In this section we discuss how the cross-correlation signal analyzed in
Sec. 4.4.2 can be detected in an experiment. We propose to measure
correlations in the ion displacements by coupling the motional degrees of
freedom of the ions to their internal states.

First, we explain how to relate the momentum-momentum correlations
we discussed (see Eq. (4.64)) to experimentally accessible correlations in
the ion displacement and analyze how accurately the latter should be
measured. To this aim we rewrite Eq. (4.56) for a continuum system in a
region of constant flow as

δp̂(θ) =
L

2π
mc(θ)n(θ)

∂θΦ̂(θ, t)

n(θ)
. (4.72)

We can thus measure the momentum-momentum correlations by spatial
derivatives of the ion displacements

〈(
δθ̂i − δθ̂i+∆

)(
δθ̂j − δθ̂j+∆

)〉
=

(
2π

mL

)2
∆2

ninjcicj
〈δp̂iδp̂j〉. (4.73)

The analysis shown in Fig. 4.12(b) confirms that we can use Eq. (4.57)
to get the order of magnitude of the momentum-momentum correlations
for a finite ion ring. Thus, we can estimate the magnitude of the cross-
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correlation signature as

〈(
δθ̂i − δθ̂i+∆

)(
δθ̂j − δθ̂j+∆

)〉
≈
(
2π

L

)2
~T

m

π3∆2

N3

(kBTH/~)
2

(ci − vi)(cj − vj)
,

(4.74)
where we used ni ≈ nj ≈ N/(2π) and ci ≈ cj ≈ (2π)/T . Therefore,
the angle-angle correlations must be detected in an experiment with the
accuracy

ǫ := ∆〈δθ̂iδθ̂j〉 =
(
2π

L

)2
~T

m

π3∆2

4N3

(kBTH/~)
2

(ci − vi)(cj − vj)
. (4.75)

In the following we are describing a setup to detect the angle-angle cor-
relations of the ions with sufficient accuracy. We propose to illuminate
the ion ring at two positions. The lasers should be focussed on one ion
inside the supersonic and one ion inside the subsonic region on the ring.
At each position a laser beam couples two internal levels

∣∣g〉 and
∣∣e〉 of the

ions with the transition energy ωI . The lasers should fullfill the resonance
conditions

ω = ωI + kv
L

2π
(4.76)

relating their frequencies and wavenumbers, which takes into account the
Doppler shift kv. The ion traverses the pulse beam in the time T/N
which is much shorter than the time scale T = 2π/ωrot of phonons at
small wavenumbers. Thus, we can neglect the ion motion for the further
analysis. After going to the frame rotating with ω0 and applying the
rotating wave approximation the dipolar coupling Hamiltonian [WMI+98]
of one illuminated ion becomes

Hdip = ~Ω
(
σ+e

ikL
2π

δθ̂ +H.c.
)
, (4.77)

where Ω is the Rabi frequency of the laser transition. Note that the ions
remain in the Lamb-Dicke limit

√
~

mNωrot
k ≪ 2π (4.78)

during the experiment, i.e., kLδθ̂ ≪ 4π2.
We propose to prepare the internal state of each ion in the superpo-

sition (
∣∣g〉 +

∣∣e〉)/
√
2 before the experiment. After the creation of the
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Figure 4.15: Correlations 〈(δθ̂i− δθ̂i+50)(δθ̂j − δθ̂j+50)〉 ·m/(~T ) ·L2/(2π)2

at time t = 0.6T with real space lab frame positions. These correlations
are analougous to the momentum-momentum correlations shown in Fig.
4.9b. We consider N = 1000 ions, σvminT = 2π ·0.25, e2/4πǫ0 = 0.2453

2N
mL3

T 2 ,
and τ = 0.05T . Full Coulomb interactions are considered.

black hole and the illumination with the lasers the probability that the
two measured ions are in the states

∣∣gg〉 or
∣∣ee〉

P
(
δθ̂1, δθ̂2

)
=

1

2
+

(
L

2π

)2

sin2 (2Ωt)
k2

2
〈δθ̂1δθ̂2〉 (4.79)

is measured through a repetition of the experiment. We propose to use
the Rabi frequency 2Ωt = π/2. If the measurement is repeated M times,
the standard deviation of the average number of binomially distributed
events P is

∆P =

√
P (1− P )

M
≈ 1

2
√
M
. (4.80)

It should be smaller than the required accuracy of the signal size and thus

M >

(
2π

L

)4

k−4ǫ−2 ≈
(mωrot

~k

)2 [ 2N3

∆2π4

(ci − vi)(cj − vj)

(kBTH/~)2

]2
(4.81)

measurements are necessary.
We are now calculating M for the example of N = 1000 9Be ions,

discussed in the beginning of this Sec. 4.5. We propose to use the λ =



4.5. Experimental Realization 111

313nm transition in 9Be [MMK+95]. We have checked that the cross-
correlations remain clearly visible for the resolution ∆ = 50 (see Fig.
4.15). In this case M > 1.1 · 105 measurements are required. This basic
measurement proposal can certainly be improved by employing additional
techniques, e.g., using interferences with additional lasers. But we do not
propose further experimental setups here since these should be adopted
to specific implementations of our proposal.

The accuracy of the classical equilibrium positions of the ions must
satisfy |∆θ0i |2 <

√
ǫ, such that it does not influence the cross-correlation

signal. Inaccurate equilibrium positions can be caused by inaccurate exter-
nal forces (see Appendix A.1) during the black hole formation. Assuming

that the external force is F̃i(t) = (1+ γ)Fi(t) (see Eq. (A.3)) with γ ≪ 1,
the deviation in the classical positions fullfills the equation

L

2π
m
d2∆θi
dt2

= γFi(t). (4.82)

Integrating Eg. 4.82, we can estimate

|∆θi|
γ

<

∣∣∣∣θ
0
i (τ)− θ0i (0)−

dθ0i (0)

dt
τ

∣∣∣∣ +
τ 2

2

2π

L

|F c
i |
m

≈ |σvminT − 2πσ|+ τ 2

2

2π

L

e2

4πǫ0m

N2

L2
(vmax − vmin)

π2

6
(4.83)

For τ = 0.05T we get |∆θi| < 2π · 0.25γ, thus the accuracy γ <
√
ǫ/(2π ·

0.25) ≈ 5 · 10−6 is required for the external forces.

4.5.2 Measurement of Hawking Phonons

The measurement scheme described in the previous section requires the
accurate control of the ion acceleration during the creation of the black
hole (see Eq. (4.83)). Here we propose a scheme to avoid this difficulty
(see also [Sch06]). If the number of ions in the supersonic region (1−2σ)N
is small, the displacement of the ions due to the creation of the black hole
will be small compared to the equilibrium motion of the ions. Then the
creation of the black hole is adiabatic. In this case the measurement of
cross-correlations is not possible. Instead, we describe in this subsection
how to directly measure the emitted Hawking phonons outside of the black
hole.

The following setup is studied: After the black hole formation in the
small time interval τ , Hawking phonons are emitted at the black hole
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horizon. We propose to detect these phonons by coupling the oscillation
of the ions to their internal state with a laser. The laser drives a transition
between two internal states

∣∣a〉 and
∣∣b〉 of the ions, which are prepared

in the state
∣∣a〉. It illuminates Ñ ions outside of the black hole and is

following the motion of these ions for the time interval tm. Since tm
determines the spectral width of the laser, it must be large compared to
the inverse Hawking temperature tm ≫ ~/(kBTH). The laser frequency ω
should fullfill the resonance condition

ω = ωI + ωp0 + kv
L

2π
, (4.84)

which takes into account the transition frequency of the ions ωI , the
Doppler shift kv, and the relevant phonon frequency ωp0. After going
to the frame rotating with ωI and ωp0 and applying the rotating wave
approximation the dipolar coupling Hamiltonian [WMI+98] in the Lamb-
Dicke limit (see Eq. (4.78)) becomes

Hdip =
∑

j,p

(
~Ωp

2
σ+
j ape

i(p+k)Lj/N +H.c.

)
+
∑

p

~ (ωp − ωp0) a
†
pap, (4.85)

where the sums extend over the illuminated ions j and the relevant phonon
modes p. k denotes the wavenumber of the laser and

Ωp = −iΩk
√

2~

mωp

(4.86)

are the effective Rabi frequencies with the bare Rabi frequency Ω. We
describe here the coupling of the phonon modes to a sideband transition.
In the limit of a laser pulse with small spectral width Ñ ≪ Ntm/T we

can introduce the spin Σ = Ñ/2 operator Σ+ =
∑

j exp (−ikLj/N) σ+
j /2

and transform it into a bosonic field b† with the Holstein-Primakoff trans-
formation

Σ+ = b†
√

2Σ− b†b ≈ b†
√
Ñ (4.87)

For 〈b†b〉 ≈ 〈a†pap〉 . kBTH/(~ωrot) ≪ Ñ (see Eq. (4.89)), we can use

Σ+ ∼
√
Ñb†. The expectation value 〈b†b〉 gives the number of ions in the

state
∣∣b〉. So the coupling of the relevant phonon modes to the illuminated

ions can be described by the Hamiltonian

Hdip = ~

√
Ñ
∑

p

(
Ωpb

†ap +H.c.
)
+
∑

p

~(ωp − ωp0)a
†
pap. (4.88)
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The number of excited ions after their illumination is

〈b†b〉tM =
∑

p

|Ωp|2∑
q |Ωq|2

sin2



√∑

q

|Ωq|2tm


 〈a†pap〉0 (4.89)

with the assumption of large Rabi frequencies
√
ÑΩp0 ≫ ωp0. Thus,

the number of ions is proportional to the number of phonons around the
mode ωp0. The standard deviation of the phonon number measurement is
approximately

σm ≈

√
〈(∆b†b)2〉tm

M
≈ 〈∆b†b〉tm√

M
.

kBTH

~ωrot

√
M
. (4.90)

Now, we are presenting an example that satisfies the requirements of
this measurement proposal. We consider N = 105 singly charged 9Be ions
with ion spacing L/N = 2µm and average rotation frequency ωrot = 2π×
1.2kHz (e2/4πǫ0 ≈ 0.7/ (2N)mL3/T 2). The black hole region contains
(1 − 2σ)N = 0.007N and the horizon region 2γ1N = 0.004N ions. The
angular velocity in the subsonic region is vmin = 2π × 0.99/T and in the
supersonic region vmax = 2π × 2.4/T . The Hawking temperature in this
system is kBTH/~ ≈ 106/T ≈ 2π × 20kHz. In the small time interval
τ = 0.05T of the black hole creation, the ions are normally traversing the
angle ∆θ ≈ 2π×0.05, which is large compared to the size of the black hole
region. For the measurement we propose to illuminate Ñ = 200 ions for
the time tM = T/4. In this case M = 100 repetitions of the experiment
are sufficient.

4.6 Conclusion

In summary, we have discussed in this chapter the details of a recent pro-
posal to observe the Hawking effect with ions rotating on a ring [HRF+10].
We have described how to create an analog black hole spacetime in this sys-
tem (see Sec. 4.2). The horizon emits Hawking radiation with a thermal
spectrum (see Sec. 4.4.1). We have analyzed the emergence of correlations
and entanglement between the inside and the outside of a black hole after
its creation (see Sec. 4.4.2). These correlations are a signature for the
pair creation mechanism of Hawking radiation.
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With this work we have deepened our analysis of the emerging entan-
glement (see Sec. 4.4.2). We cannot observe the creation of entanglement
at too high initial temperatures. The generated cross-correlations, instead,
remain present at arbitrarily high initial temperatures. Thus, we find the
transition from the quantum to the classical Hawking effect (spontaneous
versus stimulated emission).

Nevertheless, current technology allows to measure the quantum Hawk-
ing effect in an experiment. We have presented a detailed discussion of
realistic measurement techniques. It is possible to directly measure the
cross-correlation signal (see Sec. 4.5.1) or the emitted Hawking phonons
(see Sec. 4.5.2).

To conclude, we expect ring traps to be extremely useful for future
quantum simulations. They offer great opportunities, especially for study-
ing translationally invariant systems.



Chapter 5

Conclusion and Outlook

In this thesis we have presented three proposals for quantum simulations
of dynamical systems with neutral atoms in optical lattices and ions in
electrodynamic traps. These setups with great potential for future quan-
tum simulations and quantum computation have complementary strengths
and weaknesses: On the one hand, it is relatively simple to prepare op-
tical lattices with more than a thousand atoms [BDZ08, LSA+07], but it
is challenging to control more than ten ions in the quantum regime. On
the other hand, single ions can be manipulated very efficiently in exper-
iments [WMI+98], but it is challenging to address single sites in optical
lattices. Recent developments like surface traps for ions [CBB+05] and
single atom microscopy in optical lattices could reduce these differences
[SWE+10, BGP+09].

In chapter 2 we discussed possibilities for measuring Anderson local-
ization in optical lattices by creating an additional disordered potential
[SPL10]. Recently, this task was achieved [BJZ+08, RDF+08, DZR+10].
We have proposed alternative schemes in this thesis, in which a frozen
species of particles generates the disorder potential for a mobile species
[GC05, PVC05]. These proposals allow the control over the correlations
within the disorder potential [HCR07] and possibly the observation of
disorder-induced phases in the strongly-interacting regime [HDR10]. How-
ever, the recently developed atom microscopes could be used to generate
disorder potentials with an even greater control and flexibility [SWE+10,
BGP+09].

We further studied the quantum simulation of dissipative systems in
chapter 3. Here we observe that phase transitions in the system are re-
flected in the decoherent dynamics [HC11]. We believe that engineering
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decoherent evolutions will enrich the field of quantum simulations and
quantum computations by magnifying system properties or stabilizing in-
teresting quantum states [VWC09, KBD+08].

In chapter 4 we contribute to the field of analog gravity and have
proposed the measurement of Hawking radiation from acoustic black holes
on rotating ions trapped on a ring geometry. Several proposals for the
measurement of Hawking radiation already exist [BN09]. However, the
Hawking effect has not been clearly measured in the quantum regime,
yet. We have shown that the unprecedented experimental control over
trapped ions allows to realize Hawking radiation [HRF+10] and to study
the emergence of entanglement between the inside and the outside of the
black hole [HSR+11]. Thus, clear signatures for the quantum Hawking
effect could be found with ion rings.



Appendix A

Ion Ring System

A.1 External Forces

In this Appendix we present the detailed form of the external forces ap-
pearing in the general Hamiltonian (4.1) and the harmonic Hamiltonian
Eq. (4.5). These forces are chosen to enforce the imposed equilibrium
motion of the ions θ0i (t) in Eq. (4.2).

The Coulomb force on the ith ion tangential to the ring is given by

F c
i (θ1(t), . . . , θN (t)) =

e2

4πǫ0

∑

j 6=i

F c (θi(t)− θj(t)) (A.1)

with

F c(∆θ) = π2sign(sin(∆θ/2))
cos(∆θ/2)

L2 sin(∆θ/2)2
, (A.2)

where θi(t) gives the ion position at time t. The classical equations of
motion are now mL/(2π)θ̈i(t) = F c

i (t)+F
e(θi(t)). We determine the local

external force F e from this equation such that it guarantees the imposed
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equilibrium trajectories of the ions

F e(θ, t) =

[
L

2πT 2

]
g′′vmin

(
g−1(θ)

)

+

[
L

2πT

]
2
∂g′vmin

∂v

(
g−1(θ)

)
· dv
dt

(t)

+

[
L

2π

]
∂2gvmin

∂v2
(
g−1(θ)

)
·
[
dv

dt
(t)

]2

+
∂gvmin

∂v

(
g−1(θ)

)
· d

2v

dt2
(t)

+

N−1∑

i=1

F c

(
θ − gvmin

(g−1(θ) +
i

N
)

)
. (A.3)

This force is time-independent if the parameter vmin is time-independent.
In harmonic approximation (see Eq. (4.5)) the Coulomb force and the

external force are encoded in the force matrix F = (fij)
(
L

2π

)2

fij(t) = f c
ij(t) + δijf

e
i (t). (A.4)

The contribution from the Coulomb force is

f c
ij(t) =

e2

4πǫ0
·
{
f c
(
θ0i (t)− θ0j (t)

)
i 6= j

−∑k 6=i f
c (θ0i (t)− θ0k(t)) i = j

(A.5)

with

f c (∆θ) = π3

∣∣∣∣
1 + cos(∆θ/2)2

sin(∆θ/2)3

∣∣∣∣. (A.6)

The contribution from the diagonal external force is

f e
i (t) =

m

g′
(

i
N
+ t

T

)
{[

L

2πT 2

]
g′′′vmin

(
i

N
+
t

T

)

+2

[
L

2πT

]
∂g′′vmin

∂vmin

(
i

N
+
t

T

)
· dv
dt

(t)

+

[
L

2π

]
∂2g′vmin

∂vmin
2

(
i

N
+
t

T

)
·
[
dv

dt
(t)

]2

+
∂g′vmin

∂vmin

(
i

N
+
t

T

)
· d

2v

dt2
(t)

}

+
e2

4πǫ0
·
∑

j 6=i

f c
(
θ0i (t)− θ0j (t)

)
[
1− f ′

(
j
N
+ t
)

f ′
(

i
N
+ t
)
]
. (A.7)
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A.2 Velocity Profile

The classical equilibrium positions of the ions, thus their velocity profile,
are imposed by the function g as specified in Eq. (4.2). We make the
choice

g′(x)

T
=





vmin 0 ≤ x ≤ σ − γ1

β + αh
(

x−σ
γ1

)
−γ1 < x− σ < γ1

vmax σ + γ1 ≤ x ≤ 1− σ − γ2

β − αh
(

x−1+σ
γ2

)
−γ2 < x− (1− σ) < γ2

vmin 1− σ + γ2 ≤ x ≤ 1

(A.8)

with α = (vmax − vmin) /2 and β = (vmax + vmin) /2 and h(s) = 15/8s −
5/4s3 + 3/8s5. We use g(0) = 0 to determine the equilibrium positions of
the ions. In the supersonic region σvminT . θ . 2π−σvminT the constant
angular ion velocity is vmax (see Eq. (4.4)) and in the complementary
subsonic region its constant value is v (θ) = vmin. Thus, the black hole
horizon is located close to θH = σvminT . This stepwise definition has the
advantage that the velocity profile is flat inside and outside of the horizon,
that the width of both regions can be adjusted, and that the width of the
horizon regions can be adjusted. This flexibility is useful for the detection
of correlation patterns in Sec. 4.4.2. Also this profile must be sufficently
continuous to generate a physically allowed equilibrium motion.

In a part of this paper we dynamically create a black hole metric from
a flat metric. We choose to reduce the velocity in the subsonic region from
2π/T at t = 0, corresponding to homogeneously spaced ions, down to vmin

at t≫ τ according to

vmin(t) = vmin +

(
2π

T
− vmin

)
exp

[
−
(
t

τ

)2
]
. (A.9)

We choose a Gaussian profile to guarantee ∂v
∂t
(t = 0) = 0. In this case,

the velocity profile becomes (compare with Eq. (4.3))

v(θ, t) =
g′vmin

(g−1 (θ))

T
+
∂gvmin

∂vmin

(
g−1 (θ)

)
· dvmin

dt
(t). (A.10)
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A.3 Equations of Motion and Equilibrium

State

The quasi-free quantum dynamics of the harmonic system (4.5) are gov-
erned by the classical linear equations of motion for the first (see Eq. (4.7))
and second moments (see Eq (4.8)). The equations for the first moments
can be written

∂

∂t
〈ξ̂i〉t =

∑

j

Gij(t)〈ξ̂j〉t (A.11)

with the matrix G = (Gij)

G =

(
0

(
2π
L

)2 · 1
m(

L
2π

)2F 0

)
. (A.12)

The dynamics for the second moments are governed by the equation

∂

∂t
Γ(t) = G(t) · Γ(t) + Γ(t) · G(t)T . (A.13)

We determine the thermal state with temperature T0 of homogeneously
spaced ions at rest by a mode decomposition of the system. The Fourier
transform O diagonalizes the system (4.5)

δθ̃k =
N∑

i=1

Okiδθ̂i, δp̃k =
N∑

i=1

OT
kiδp̂i (A.14)

to

H =

N∑

k=1

[
δp̃2i
2m

+
m

2
ω2
kδθ̃

2

k

(
L

2π

)2
]

(A.15)

The mode frequencies are

ω2
kδkl =

(
2π

L

)2 (
OfOT

)
kl
. (A.16)

According to the Bose-Einstein statistic each mode is on average occupied
by

〈n̂k〉 =
1

exp
(

~ω
kBT0

)
− 1

(A.17)
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phonons. In equilibrium the first moments vanish 〈ξ̂i〉 = 0 due to the par-
ity symmetry of the harmonic Hamiltonian (4.5). The covariance matrix
at temperature T0 is given by

〈δθ̂iδθ̂j〉 =
(
2π

L

)2
~

m

N∑

k=1

OT
ik

〈n̂k〉+ 1
2

ωk

Okj,

〈δp̂iδp̂j〉 = ~m

N∑

k=1

Oikωk

(
〈n̂k〉+

1

2

)
OT

kj,

〈δθ̂iδp̂j〉 = 0. (A.18)
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Appendix B

Ion Ring Stability Analysis

In this Appendix we describe a stability analysis of our system. After a
brief introduction to the method, we show results of the numerical simula-
tions and put them into the context of previous works [GAC+00]. Finally,
we show that the observed instabilities are not important for our proposal.

The solution of explicit linear differential equations like Eq. (A.11)
can be written

〈ξ̂i〉t =
∑

j

Uij(t)〈ξ̂j〉t (B.1)

with the monodromy matrix U(t) satisfying the initial condition U(0) = 1

and the dynamics
∂tU(t) = G(t) ·U(t). (B.2)

If the system is periodic G(t+ T ) = G(t), Floquet theorem states

U(t) = X(t) · eRt (B.3)

with the periodic matrix X(t+T ) = X(t) and the constant matrix R (see
e.g., [Flo83]). Therefore, the stability of the motion is determined by the
eigenvalue of the matrix U(T ) = exp (RT ) with the largest magnitude.
We denote this magnitude by µ, the dynamics are unstable for µ > 1. The
monodromy matrix U does not only describe the first moments (see Eq.
(B.1)), but also the evolution of the covariance matrix (see Eq. (A.13))

Γ(t) = U(t)Γ(0)UT (t) = (U(t)⊗U(t)) Γ(0). (B.4)

In our case the periodicity with period T is not the highest symmetry. The
system is also invariant under combined translations in time and space (see
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Figure B.1: log (µ− 1) for N = 100 ions, and σvminT = 2π · 0.25. In this
stability diagram values of log (µ− 1) close to zero represent stable sys-
tems. (a) Only nearest-neighbor interactions considered; (b) Full Coulomb
interactions considered.

Eq. 4.46). Thus U(T ) follows from U(T/N)

U(T ) = (T ·U(T/N))N , (B.5)

where T is the index translation matrix.
The results of the numerical stability analysis are shown in Fig. B.1(a)

for nearest-neighbor interactions and in Fig. B.1(b) for full Coulomb in-
teractions as a function of (cT/(2π))2 = 2Ne2/(4πǫ0) · T 2/(mL3) and
vminT/(2π). For σvminT = 2π × 0.25, c2 is the mean of the squares of the
two sound velocities (see Eq. (4.16)) on the ion ring. The analysis shows
a distinction between three parameter regions. If the system is supersonic
on the whole ring (at small c2) the system is mostly stable with stripes of
instabilities. If the system is subsonic on the whole ring (at large c2) the
system is always stable. In the interesting intermediate regime a subsonic
region coexists with a supersonic region on the ion ring, here the stability
analysis is most complex. In this case the system is unstable apart from
stripes of stability that bunch up in the central region which is most in-
teresting for experiments. So we find that the appearance of instabilities
is closely related to the presence of a black hole horizon. The structure
of the instabilities is very similar to the result of the stability analysis in
[GAC+00]. Black hole laser instabilities [Cor99] may contribute to these
behavior. They occur in the presence of two horizon when particles bounce
between the horizons and enhance themselves.
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Figure B.2: Largest eigenvalue of U†(t)U(t) at time steps t=nT. This
quantity is an upper bound of observables. We consider N = 1000
ions, σvminT = 2π · 0.25, and τ = 0.05T . We compare the sta-
ble system e2/4πǫ0 = 0.2453

2N
mL3

T 2 (green dots) with the unstable system

e2/4πǫ0 =
0.2446
2N

mL3

T 2 (blue squares). Full Coulomb interactions are consid-
ered.

This stability analysis detects exponential instabilities. We show now
that these exponential instabilities are not important for the proposed
experiment. The increase of the experimental quantities is bounded by
the maximal magnitude ν of the eigenvalues of (U†(T ))n(U(T ))n for n =
1, 2, . . . . ν is shown in Fig. B.2 for an exponentially stable and an expo-
nentially unstable system. The exponential instability becomes dominant
for t > 5T . Therefore, it does not have a consequence for the proposed
experiment performed during t . T .
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P. Zoller, Quantum states and phases in driven open quantum
systems with cold atoms, Nature Physics 4, 878 (2008).

[DP64] J. Drees and W.Z. Paul, Beschleunigung von Elektronen in
einem Plasmabetatron, Z. Phys. 180, 340 (1964).

[DTD+09] A.J. Daley, J.M. Taylor, S. Diehl, M. Baranov, and P. Zoller,
Atomic Three-Body Loss as a Dynamical Three-Body Inter-
action, Phys. Rev. Lett. 102, 040402 (2009).

[DTM+10] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller, Dy-
namical Phase Transitions and Instabilities in Open Atomic
Many-Body Systems, Phys. Rev. Lett. 105, 015702 (2010).

[DWP90] D.H. Dunlap, H.-L. Wu, P.W. Phillips, Absence of localization
in a random-dimer model, Phys. Rev. Lett. 65, 88 (1990).

[DYD+10] S. Diehl, W. Yi, A.J. Daley, and P. Zoller, Dissipation-
Induced d-Wave Pairing of Fermionic Atoms in an Optical
Lattice, Phys. Rev. Lett. 105, 227001 (2010).



Bibliography 131

[DZR+10] B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori,
M. Modugno, G. Modugno, and M. Inguscio, Delocalization
of a disordered bosonic system by repulsive interactions, Na-
ture Physics 6, 354 (2010).

[DZS+03] B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewen-
stein, Atomic Bose and Anderson Glasses in Optical Lattices,
Phys. Rev. Lett. 91, 080403 (2003).

[EMK+03] J. Eschner, G. Morigi, F. Kaler, and R. Blatt, Laser cooling
of trapped ions, J. Opt. Soc. Am. B 20, 5 (2003).

[FCB+10] A. Fabbri, I. Carusotto, R. Balbinot, and A. Recati, Den-
sity correlations and analog dynamical Casimir emission of
Bogoliubov phonons in modulated atomic Bose-Einstein con-
densates, Eur. Phys. J. D 56, 391 (2010).

[Fey82] R.P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[FF03] P.O. Fedichev and U.R. Fischer, Gibbons-Hawking Effect
in the Sonic de Sitter Space-Time of an Expanding Bose-
Einstein-Condensed Gas, Phys. Rev. Lett. 91, 240407 (2003).

[FFG+05] C. Fort, L. Fallani, V. Guarrera, J.E. Lye, M. Modugno, D.S.
Wiersma, and M. Inguscio, Effect of Optical Disorder and
Single Defects on the Expansion of a Bose-Einstein Conden-
sate in a One-Dimensional Waveguide, Phys. Rev. Lett. 95,
170410 (2005).

[FFI08] L. Fallani, C. Fort, and M. Inguscio, Bose-Einstein conden-
sates in disordered potentials, Adv. At. Mol. Opt. Phys. 56,
119 (2008).

[FLG+06] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio,
Ultracold Atoms in a Disordered Crystal of Light: Towards a
Bose Glass, Phys. Rev. Lett. 98, 130404 (2007).

[Flo83] G. Floquet, Sur les équations différentielles linéaires à coef-
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[SU05] R. Schützhold and W.G. Unruh, Hawking Radiation in an
Electromagnetic Waveguide?, Phys. Rev. Lett 95, 031301
(2005).
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lot from Benni and Serena about analog black holes and am very thankful
for the intense and fruitful discussions with them.

I would especially like to thank all the people that stimulated me sci-
entifically and privately at the MPQ. In random order I want to mention:
Toby Cubitt, Norbert Schuch, Tassilo Keilmann, Juan-Jose Garcia-Ripoll,
Valentin Murg, Geza Giedke, Mari-Carmen Banuls, Henning Christ, Maria
Eckholt-Perotti, Christine Muschik, Verena Maier, Oliver Buerschaper,
Dominik Bauer, Matthias Lechner, Diego Porras, Fernando Pastawski,
Veronika Lechner, Eric Kessler, Heike Schwager, Matteo Rizzi, Leonardo
Mazza, Anika Pflanzer, Michael Lubasch, and Tobias Schätz. Unfortu-



144 Acknowledgments

nately, there would not be enough space to prize their contributions in
depths.

I have received the most important motivation for my thesis from
my officemates: Toby Cubitt, Maria Eckholt-Perotti, Christine Muschik,
Leonardo Mazza, and Anika Pflanzer. I will always remember discussing
about cycling with Toby, dancing with Christine, eating Italian dinner and
watching movies with Leonardo, and last but certainly not least talking
with Anika and Maria.

Despite the help of all these people, finishing my PhD was only possi-
ble with the support of my family. I thank my parents for their helping
hands and my sister Birte for always listening to me.

I gratefully acknowledge funding from the Nano Systems Intitative
Munich.


	Introduction
	Anderson Localization
	Introduction
	System and Method
	Independent Preparation
	System and Method
	Ground-State Localization
	Dynamical Localization
	Transport Properties

	Dynamical Doping
	System and Method
	Dynamical Localization

	Experimental Realization
	Conclusion

	Decoherence Dynamics
	Introduction
	System and Method
	Lindblad Master Equation
	Covariance Matrix Formalism
	Translationally invariant Hamiltonians
	Jordan-Wigner Transformation

	Exactly solvable quadratic Systems
	Steady States
	Asymptotic Decoherence Rate
	Ground State Variance

	Quantum XY Chain
	Analytical Results
	Numerical Simulations

	Non-exactly solvable System
	Experimental Realization
	Conclusion

	Hawking Radiation
	Introduction
	Ion Ring System
	Discrete Ion System
	Continuum Limit

	Review
	Hawking radiation and Mode Conversion
	Scattering of Pulses
	Correlations

	Simulations for Ion Rings
	Scattering of Pulses
	Correlations

	Experimental Realization
	Measurement of Ion Displacements
	Measurement of Hawking Phonons

	Conclusion

	Conclusion and Outlook
	Ion Ring System
	External Forces
	Velocity Profile
	Equations of Motion and Equilibrium State

	Ion Ring Stability Analysis
	Bibliography
	Acknowledgments

