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Abstract—Bidirectional relaying is a promising approach to
improve the performance in wireless networks such as sensor,
ad-hoc, and even cellular systems. Bidirectional relaying applies
to three-node networks, where a relay establishes a bidirectional
communication between two other nodes using a decode-and-
forward protocol. First, the two nodes transmit their messages
to the relay which decodes them. Then, the relay broadcasts a re-
encoded message in such a way that both nodes can decode their
intended message using their own message as side information.
We consider uncertainty in the channel state information (CSI)
and assume that all nodes only know that the channel over
which the transmission takes place is from a pre-specified set
of channels. In this work, we concentrate on the second phase,
which is called the compound bidirectional broadcast channel.
We present a robust coding strategy which enables reliable
communication under channel uncertainty and show that this
strategy actually achieves the compound capacity. Further, we
analyze scenarios where either the receivers or the transmitter
have perfect CSI. We show that CSI at the receivers does not
affect the maximal achievable rates, while CSI at the transmitter
improves the capacity region. A numerical example and a game-
theoretic interpretation complete this work.

Index Terms—Relay, channel uncertainty, information rates,
robustness, wireless networks.

I. INTRODUCTION

UTURE wireless communication systems will provide

services that make great demands on throughput and cov-
erage. For cellular systems this is a challenging task especially
at the cell edges. Relays provide a promising approach to meet
performance targets and are currently being intensively dis-
cussed by the Third Generation Partnership Program’s Long-
Term Evolution Advanced (3GPP LTE-Advanced) group. In
this work, we consider the bidirectional relay channel, which
is specified by a three-node network where a half-duplex relay
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Fig. 1. Multiple access (MAC) and bidirectional broadcast (BBC) phase of

the bidirectional relay channel.

node establishes a bidirectional communication between the
two other nodes.

There exist several strategies which are usually classified
by the processing at the relay node, namely the amplify-and-
forward strategy [1], [2], the compress-and-forward strategy
[3], [4], and the decode-and-forward strategy [1], [5]. Here, we
consider a spectrally efficient two-phase decode-and-forward
protocol where cooperation between the encoders of nodes 1
and 2 is not allowed, cf. Fig. 1.

In the initial multiple access phase both nodes transmit their
messages to the relay node. Since we assume the relay to
decode the messages, we end up with the classical multiple
access channel (MAC). Consequently, if the rates are chosen
within the corresponding capacity region, it is reasonable to
assume that the relay can successfully decode both messages
so that it has perfect knowledge about the two messages the
two nodes want to exchange.

Since each node knows its own transmitted message, in
the succeeding broadcast phase it only remains for the relay
to broadcast a re-encoded composition which allows each
node to decode the message it is intended to receive using
the message that it transmitted in the previous phase as side
information. Note that due to the available side information
at the receiving nodes this channel differs from the clas-
sical broadcast channel, e.g., see [6], [7] for the multiple-
input multiple-output broadcast channel. To emphasize the
difference, the channel considered here is called bidirectional
broadcast channel (BBC). We derived the optimal coding
strategy for discrete memoryless channels with finite alphabets
for perfect channel state information (CSI) at all nodes in [5].
There it is shown that the achievable rates for both users may
differ even though both nodes receive the same codeword from
the relay. The side information available at the receiving nodes
creates this important difference between the optimal coding
approach and the XOR coding approach [8] and the broadcast
of a common message.

This shows that for the decode-and-forward strategy the
two phases may be separated. The consequence is that we
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have to distribute the available spectral resources between
the two phases, which can be easily done in the time or
frequency domain. As a result, we have to scale the achievable
rate regions accordingly. The achievable rate region for the
bidirectional relay channel is given by the intersection of the
corresponding capacity regions for the MAC and the BBC
phase. How to optimally divide the available resources among
both phases is beyond the scope of this work. For a detailed
discussion we refer to [9].

To date, bidirectional relaying has been analyzed under the
assumption of perfect channel state information (CSI) at all
nodes. However, due to the nature of the wireless channel,
uncertainty in the channel state information is a ubiquitous
phenomenon in practical systems. The traditional and most
popular approach to mitigate the channel uncertainty is based
on channel estimation. But there are other approaches to treat
the problem of reliable communication under channel uncer-
tainty. A survey can be found in [10]. For example, a robust
power allocation for multi-antenna transmission using a game-
theoretic approach is given in [11]. In [12] the performance of
zero-forcing precoding and detection techniques under channel
uncertainties is evaluated. A robust transceiver design based
on convex optimization methods for the downlink in multiuser
systems is presented in [13]. Clearly, these are only specific
approaches and it seems natural to treat this problem from a
more general point of view to gain insights to the best possible
approach under channel uncertainty.

A well accepted model for channel uncertainty is to assume
that the exact channel realization is not known to the nodes;
rather, it is assumed that it is only known that a realization be-
longs to a pre-specified set of channels. If this channel remains
fixed during the whole transmission of a codeword, this corre-
sponds to the concept of the compound channel [14]-[16]. It
seems worthwhile to study this model of channel uncertainty
from an optimal coding perspective to gain an understanding
of how robust coding strategies should be designed. This
is especially important to know for wireless systems, which
make strict demands on the quality of service. As an example,
one can think of wireless control applications where certain
rates have to be guaranteed regardless of the current channel
realization. For such applications most performance measures,
for example the ergodic capacity, are not appropriate, since
they characterize rates which are only achievable on average.
Rather, a performance measure is needed which characterizes
the guaranteed rates. The concept of the compound channel is
an attractive model which allows one to treat such problems
from a general point of view and to obtain bounds on the
maximal achievable rates. Moreover, this concept allows one
to assess the resulting gain based on an improvement in the
channel state information. This makes it possible to consider
the trade-off between the contribution of CSI and the effort
which would be needed to improve it, e.g., by using better or
longer training sequences.

The analysis of bidirectional relaying for compound chan-
nels is not only relevant in itself since it yields results for
bidirectional relaying in common communication scenarios as
flat fading channels, but also since these results constitute the
basis for further analysis of more complex uncertainty models
as arbitrarily varying channels where the channel may vary
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during the transmission from symbol to symbol in an unknown
and arbitrary manner as for example in fast fading channels.
Bidirectional relaying is extended to this model of uncertainty
in [17]. Moreover, it constitutes the basis for the analysis of
multi-user settings in uncoordinated wireless networks where
the receiving nodes are confronted with unknown varying
interference [18].

As observed, the two phases of the decode-and-forward
protocol decouple so that it suffices to analyze both phases
under channel uncertainty separately. Since the compound
MAC is well understood [19], [20], we concentrate on the
BBC phase in this work. In Section II we briefly motivate
and introduce the compound channel as a model for channel
uncertainty and state some preliminaries in Section III. In
Section IV we present a universal coding strategy, which
allows one to communicate reliably in the case of channel
uncertainty. In Sections V and VI, we discuss the cases of
partial CSI, where either the receivers or the transmitter have
perfect information about the channel state. It is shown that
CSI at the receivers (CSIR) does not effect the maximal
achievable rates, while CSI at the transmitter (CSIT) can be
exploited to improve the capacity region. Then we present a
numerical example which illustrates the gain in the capacity
region based on available CSIT and give a short game-
theoretic interpretation in Section VII. Finally, we end with
a conclusion in Section VIIIL.

Notation

Discrete random variables are denoted by capital letters
and their corresponding realizations and ranges by lower case
letters and calligraphic letters respectively; N and R denote
the set of natural and non-negative real numbers; Ex|[] is the
expectation with respect to X; P(-) denotes the set of all
probability distributions; (-)¢ is the complement of a set.

The mutual information [21, p. 21] between the input
random variable X and the output random variable Y is
denoted by I(X;Y). To emphasize the dependency of the
mutual information on the input distribution p and the channel
W we also write I(X;Y) = I(p, W) interchangeably.

II. BIDIRECTIONAL BROADCAST CHANNEL UNDER
CHANNEL UNCERTAINTY

As a motivation we briefly recall the case where all nodes
exactly know the channel over which the transmission takes
place. For perfect CSI the capacity region and optimal coding
strategy for the BBC with discrete memoryless channels and
finite alphabets are known [5]. The capacity region can be
characterized in terms of mutual information and is the set of
all rate pairs (Rr1, Rr2) € Ri which satisfy

RRI < I(X,Y1|U) and RR2 < I(X,Y2|U), (1)

where X denotes the input random variable, Y}, the output ran-
dom variable at node k, k = 1,2, and U an auxiliary random
variable which describes a possible time-sharing operation.
This result can be extended to Gaussian channels with a mean
input power constraint for the case of multiple transmit and
receive antennas as done in [22] and further analyzed in [23].

Remark 1: The necessity of the time-sharing variable U
in (1) indicates that there are some rate pairs which are
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only achievable by time-sharing between two other rate pairs.
Especially in the case where the set of input distributions is not
convex, the use of the time-sharing variable is beneficial and
improves the achievable rates. Knowledge of such properties
of the capacity region is indispensable for further cross-layer
designs.

Perfect CSI, especially on the transmitter side, is a challeng-
ing task in wireless systems, so in general we are confronted
with channel uncertainty, which should be taken into account
if one designs wireless systems. We assume that the trans-
mission takes place over a channel which is unknown to the
transmitter and the receivers. It is only known to the nodes
that this channel is from a pre-specified set of channels S and
remains fixed during the whole transmission of a codeword.
No restrictions are imposed on the set S. Since S can be
arbitrary, it includes, in particular, the case of infinitely many
channels. Accordingly, this constitutes an appropriate model
for common communication scenarios, for example flat fading
channels.

Let X and )y, & = 1,2, be finite input and output
sets. Then for a fixed s € S and for input and output
sequences =" € X" and y; € Vi, k = 1,2, of length
n, the discrete memoryless broadcast channel is given by
WE (T ygla") = TTimy We (i y2.lai).

Definition 1: The discrete memoryless compound broad-
cast channel is the family {W&" X" = P x
Vi) }nenses. We simply denote the compound broadcast
channel by S.

Since we do not allow any cooperation between the receiv-
ing nodes, it is sufficient to consider the marginal transition
probabilities W27 (yj|2") = [TiZ; Wi.s(ykilzi), k = 1,2,
only. Thereby, W}, s denotes the channel between the relay
and node k for channel realization s € S.

III. PRELIMINARIES

In this work we use the concept of types and typical
sequences from Csiszar and Korner [21], which will be a
crucial technique to prove our results. We say a sequence
™ € X™ is p-typical with constant & or simply rypical if
|LN(alz™) — p(a)] < & for all @ € X and, in addition,
N(a|z™) =0 if p(a) = 0. Here, N(a|x”) denotes the number
of indices ¢ such that x; = a, ¢ = 1,...,n. The set of
typical sequences is denoted by 7,%. For W : & — P(Y)
a sequence y" € Y™ is called W- typzcal under the condition
2" € X" if |IN(a,bla",y") — LN(ala™)W(bla)| < o
for all b € Y and, in addition, N(a,b|z", y™) 0 if
W (bla) 0. The set of such sequences is denoted by

w.s(z"). Further, we denote the probability of all typical
sequences by p®"(T)%) = 3. T, p®"(z™). The notation
extends to W -typical sequences in apéelf-explanatory way, i.e.,
WEN T (@) 2") = X ey (o) W (y"]a"). More-
over, we need the following lemmas which give us exponential
rates of convergence for typical sequences.

Lemma 1: For every § > 0 and every p € P(A) the
following

with ¢ = 57— always holds for all n € N.
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Proof: The proof can be found in [24, Lemma III.1.3]

and is therefore omitted. |

Lemma 2: For every § > 0 and every ™ € A", W : A —
P(B) the following

W®n(TVT&75(l‘ 1)\.A||B\2—n062

") =1 (n+ 3)

with ¢ = 51— always holds for all n € N.
Proof: The proof follows [24, Lemma II1.1.3] and can be
found in Appendix A. [ ]

The next lemma relates typical sequences generated by
different distributions to the same output distribution and plays
a crucial role especially in the proof of the optimal coding
strategy for the case of CSIT in Section VI.

Lemma 3: Let p,p € P(A) be input distributions, W, W :
A — P(B), and q,¢§ € P(B) the corresponding output
distributions. Further, let & € (0, gz ). Then for every
n € N and all 2" € 735 and z" € 75 it holds

¢ (TR 5(3") < (n+ DIAIBI—n TGN =2 =0() | (49)
¥ (Ti5(2™)) < (n+ 1)MAIBl=nUEW)=e() =00 (4p)

with universal ©(d),(9)
limg\o 7,/}(5) =
Proof: The proof can be found in Appendix B. [ ]

We consider the standard model with a block code of arbi-
trary but sufficient fixed length n. Let My, := {1,2, ..., MIE")}
be the message set of node k, £ = 1,2, which is also
known at the relay node. Further, we use the abbreviation
M= Ml X Mz.

Definition 2: A (M™, M{™ n)-code for the compound
BBC consists of one universal encoder at the relay node
™ : M — X™ and universal decoders at nodes 1 and 2 given
by the decoding sets D(l) C Y7 and D( )‘m C Y& for all
my € My and my € M2 For given my € M at node 1 the
decoding sets have to be disjoint, i.e., Dnlilml Dgilml =0
for My # mag, and similarly for given my € My at node 2 the
decoding sets have to be disjoint, i.e., szlm ijzlm =0
for ml 7é mi.

This allows us to define the average probabilities of error
for channel realization s € S as

> 0 and lim5\0<p((5)

(n)

M ST wENDS) ) e m),  (sa)
‘M| meM

pst = e > WEN((DR) )l (m))  (5b)
‘M| meM

at nodes l and 2, respectively. Further, we define ,u,(cn) =

supsesuks, k=1,2.

Definition 3: A rate pair (Rg1, Rr2) € R? is said to be
achievable for the compound BBC if there is a sequence of
(M{", Mg, n)-codes such that liminf Llog M{" > Rey

(n)

and lim inf L logM( " > Rpi whlle ,ug S = 0as n—

0. The set of all achievable rate pairs is the capacity region
of the compound BBC and is denoted by Cgpc.

Remark 2: The definitions require that we have to find
codes such that p{™, u{™ — 0 as n — oo for all channels in
the set S simultaneously. This means the codes are universal

with respect to the channel realization.
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IV. UNIVERSAL STRATEGY

Now we are in a position to present the universal strategy for
the second phase of the decode-and-forward protocol which
overcomes the channel uncertainty at the transmitter and the
receivers. But, first, we prove an outer bound of the capacity
region which gives us an intuition to what is at best possible
for the compound BBC.

Lemma 4: Any given sequence of (M (n) , M, (") 1)-codes
(n)  (n)

with p4;, s~ — O must satisfy
1 n) _ .
—long( ) < 1n£](p, Wa s |U) + o(n®), (6a)
n se
1 n) _ .
—log MS™ < inf I(p, Wy 4|U) + o(n°) (6b)
n seS

for joint probability distributions

{g(w)p(e|u)Ws(y1, y2|2)} ses-

Proof: From [5] we know that for a specific channel
realization s € S the rates are bounded from above by
LH(M,) < I(X;|U) + € = I(p, Wi, |U) + €™ and
LH(M) < I(X;Ya|U) + €5 = I(p, Wa,s|U) + €5 where
™ e —5 0 as n — oc. Since the rates have to be achievable
for all s € S simultaneously, it follows immediately that for
the compound BBC with channel uncertainty at the transmitter
and the receivers the rates are bounded from above by the
infimum of the mutual information terms as stated in (6). This
proves the lemma. ]

Next, we consider the case where the compound channel has
finitely many elements and derive the corresponding capacity
region in Section IV-A. Using this result we are able to solve
the general case of an arbitrary, not necessarily finite, index
set in Section IV-B, which is the more relevant case since
it covers communication scenarios as for example flat fading
channels.

A. Finite Compound Channel

In this section we restrict S to be finite and present a
universal strategy which actually achieves the rates stated in
(6) under this condition. Therefore we need the following
lemma which shows the existence of such a strategy whose
probability of error is arbitrarily small.

Lemma 5: Let the index set S = {1,...,S} denote a
finite compound BBC. For any block length n € N input
distribution D, and Rr1 < minizl,___,s I(p, Wl,z) —Z, Rpa <
%, 7> 0, there is a (MM, Mg(n), n)-
code where the probability of error ;L,(fn) atnode k, k= 1,2,
averaged over all codebooks is bounded from above by!

minz 1,..., S I(pa W2 7.)

EX”[ ]<S(n+1)|XHyk|2 ned?
o DR
I
* 1 — (n 4 1)I¥12-nco? (7)
Withc:ﬁ'

Proof: For given distribution p®™(z™) and 6 > 0 let
7;;‘5 denote the set of typical sequences on X". We restrict

'Without loss of generality we can assume that Rgz > 0, k = 1,2, since
the rate Rgj = O is always achievable.

2987

the possible inputs to this subset and define the new input
distribution

P®n($n) : n (3
(™) = P it € Ty (8)
0 else.

Let 7 > 0 and set the rates Rry := min;—y .. s I(p,W1;)— %
and Rry := mini—1 s 1(p,Wa;) — 5. Then we generate
M M™ independent codewords X™(m), one for each m =
(m1,ma) € My X Ms, of length n with M{™ := |2nfx |
and M{™ := |2nBx | according to p™. This implies that all
generated random codewords X™(m) € T,'s almost surely.

Next, we specify the decoding sets of nodes 1 and 2 in
detail. They are given by (9a) and (9b), at the top of the next
page, where X" := {X"(ml,mg)}1<ml<M(n> 1<ma <™ SO
that the decoding sets depend on all generated codewords.
The definition of the decoding sets is motivated as follows.
The first part in (9a) ensures that for given m = (mq, ms2)
the decoding sets for node 1 are mostly defined by all output
sequences that are Wi s-typical under the input X™(mq, ms)
for all channel realizations s € S. The second part excludes
all such output sequences that are W ,-typical to another
input X™(my,j) with j # mg so that the decoding sets are
unambiguously defined. Clearly, the decoding sets in (9b) are
motivated accordingly.

When 2"(m) with m = (my, ma) has been sent, and y}
and y3 have been received at nodes 1 and 2, the decoder at
node 1 is in error if either y}* is not in Ul 1 Ty, (2™ (m))

or if y™ is in Uz:l 1.@',6(I (mq,2)) with g ;é ma, cf.
(9a). The error events at node 2 are defined in an analogous
way.

In the following we present the analysis of the probability of
error for node 1, the analysis for node 2 follows accordingly
using the same arguments. For a given channel realization
s € S the union bound yields for average probability of error

") < Pe(ll)s P€(12)S with (10a) and (10b) (see top of next
page).

Next, we average over all codebooks and show that
Exn [MYQ ] <Exn [Pe(,ll)s + P! 2)3] can be bounded uniformly
in s from above by a term Wthh decreases exponentially fast
for increasing block length n. For fixed s € & we get for
(10a), see (11) on the next page, with ¢ = ﬁ where the first
inequality follows from the monotonicity of the probability
and the last one from Lemma 2, cf. (3). For the second error
event (10b) we have (12) on the next page, where the last
equality follows from the fact that X™ is an iid sequence.
Next, we compute the expectations. For the inner expectation
we get (13), see next page, where ¢ = ﬁ and ¢, denotes
the output distribution generated by p and W ,. The second
equality follows from (8) and the last inequality follows from
Lemma 1, cf. (2). Since X"™(mq,j) € T" almost surely, we
can apply Lemma 3, more precisely (4b) and obtain for the
second expectation

Excn s i) 65" (Tiy 00 (X7 (m1,9)) ) |
< (n_|_ 1)|X\D’ll2—71(1(177W1,i)—80(5)—11’(5)) (14)

s arwy)- From (12)-(14) we get (15),
Since M{™ |27Rxi| and Rgy =

for 6 € (0

see next page.
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M™ g
D (x™) ~:(UTV$1 s m))n ( U U Wy (X7 (m1,)) )
i J;'f:mz =
M™
D’I(”llemg n = (UTVT&Z ,0 m ) ( U UTWQ 5 j7m2))) (9b)
37577112 '
(1) 1 ®n 5 n n c n
PQRe= o 22 W (U T s (X )| 0m) (10a)
meM i=1
) 1 Mg s
Pe(72),s = M Wﬁgsn( U TVT[L/I,,i75(Xn(m1>J'))‘Xn(mlymz)) (10b)
mem j=1 i=1
JFmM2
1 o .
B P = o 2 B [WE (U T o (X7 00)) X7 0m)) |
meM =1
s
= ‘1—| Exn WF;L(HT‘?/LMC(X (m))|X”(m))}
meM i=1
< T 3 B [WER (T (Xm) | X)) |
meM
< (n+ 1) ¥Ilgnes® (11)
M™ g
IEX"[Pe(lQ)S]—|—1‘ Z Exn [W?Sn U UTV?/I §(X (ml,j))|X (m17m2)):|
meM j;:Tinil
1 IMz2| 5
ST 2 2 DB [WEL (T (X, X" ) )|
me/\/ljj?;i2 i=1
1 IM2| S
- ﬁ . ZEX" (m1 J)EX"(ml mz)[Wl(X): (Twl 5( (m1,j))\X"(m1,m2))} (12)
mGMj;é:nizz:I

Excomoma) [WEL (T 5 (X 0ma, ) [X 7 (maymo) )| = 37 pm @)W (Toy (X" (ma, ) 0"
zneXxn

_ p®n(xn) ®n n n . n p®n(xn) ®n n n ; n

- p®n(7;7}5)W1,8 ( Wl,i7§(X (ml,j))|$ ) < p®n(7;r7l5)W17S ( Wl,i7§(X (ml’J))‘x )

e anexn

— 1 ®n n n - 1 ®n n n .
= r (T, (X" (1)) < T (T, s (X"(m1.3)))  013)

1)1xll

S
Exn[Py,] < (M. Zl g n(I(p,W1.0) = (8)=(6)) (15)
i=1
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min;—1,...
Ry

75[(;0, WLi) — % we have % < I(p,Wl,i) —
for all ¢ = . HS Iso that for (15) we obtain
X Y
Exn [Pe(,12)7s] S Sl((:;jjll))l—xuilﬂﬂ2 n( (6)_¢(6)) NeXt, we
set 6 € (0 T

s X thl‘) small enough to ensure that 7 <
T — (6) —1(0) so that with (11) we get

W) < Exen [P + Pi3

e,l,s e,2,

Exn[

bl

2_n
(16)

X[y
+1)‘X||y1\2—nc6 +Sl ( —|—1)| [|V1]

< (’I’L — (ﬂ+ 1)\X|2—nc62

with ¢ = Now, (16) allows us to bound the average

n)

S

212

probability of error /h for channel realization s € S. To

obtain an upper bound for ,ug ") we need the average BBC

Wiaw : S ZZ 1 Wi;. From the definition it is clear that

Wi av Z W1 i holds for all z =1, ..., 8 which implies that
" m = maxsecs M1 " < S/h o where ugﬁzv is the average
probability of error with respect to the average BBC so that
Exn [ugngv} =+ csExn [ugns)} due to the linearity of the
expectation. Finally, we obtain for the average probability of
error at node 1

Exn [1l™] < SExn [u{"),]

(n + 1)!X17l

1— (n+ 1)I¥I2—ned?
(17)

2 "%

< S(n + 1) X¥Ilgned® 4 g2

with ¢ = 211? as stated in (7). Similar reasoning leads for
the probability of error at node 2 to Exn[uén)] < S(n+
1)1X11V2lg—ned® 4 52%2*"5 which proves the
lemma. ]

The crucial point of this lemma is that the concept of
typical sequences from Csiszar and Korner [21] allows one
to establish bounds on the probability of error that decrease
exponentially fast for increasing block length. This property
will be important for the extension to the general case of an
arbitrary set S. However, this lemma together with Lemma
4 immediately leads to the capacity region of the finite
compound BBC, which is stated in the following corollary.

Corollary 1: The capacity region Cgpc of the finite com-
pound BBC § = {1,...,S} is the set of all rate pairs
(Rr1, Rro) € Ri satisfying

Rr1 < ‘—Hfins I(p, Wh,|U), (18a)

RRQ S ilIllinS I(p, Wgﬂ‘U) (18b)
for random variables (U, X,Y7,Y2) e U x X x Y4 x Vo and
joint probability distributions {q(u)p(x|u)Ws(y1, y2|)}ses-
Thereby, U is an auxiliary random variable and describes a
possible time-sharing operation. The cardinality of the range
of U can be bounded by U] < 2.

Proof: The universal coding strategy follows immediately
from Lemma 5 which states that all rate pairs (Rgr1, Rr2) €
R?  satisfying Rgy < ming—y  sI(p,Wi;), Rro <
min;—; s I(p, Wa;) are achievable with #gn)’ugn) — 0 as
n — o0o. The desired region (18) is determined by establishing
the convex hull by first introducing an auxiliary random
variable U and applying standard arguments. Similarly to [5]
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it follows from Fenchel-Bunt’s extension of Carathéodory’s
theorem [25] that any rate pair is achievable by time-sharing
between two rate pairs, i.e., || = 2 is enough.

The optimality of this strategy follows from Lemma 4. Since
the strategy from Lemma 5 already achieves these rate pairs,
the capacity region of the finite compound BBC is completely
characterized by the corollary. [ ]

B. Arbitrary Compound Channel

With the previous result we are able to establish the
capacity region for the compound BBC with an arbitrary set
S. Therefore we need the following two lemmas which are
slightly adapted from [14] to our scenario.

Lemma 6: Let X, Vi, k = 1,2, be given. For every integer
L > 2|V1|%|)2|? there is a compound broadcast channel Sy,
with at most (I 4 1)I*IP111Y2] elements such that for any W,
from S there is a channel W, from Sy, such that

(a) [Ws(y1,y2|z) — (yhyz\x)\ < D’lllyz

(b) Wi(y1,yelr) < 2MWs(y1,yzlw) for all z,y1,yo
(¢) For any p € P(X) it holds |I(p, Wy s) — I(p, Wi,s)| <
20Dl ( 223, k=12,
Proof: The proof is almost identical to Lemma 4 in [14]
and is therefore omitted. [ |

This lemma shows that we can approximate any given set
of channels S by a finite number of channels Sy, such that any
channel s € S is close in several senses to one of the new
constructed channels in Sy,. Further, from the next lemma we
see that if there is a "good" code for a channel, then the same
code can be used for all channels in a certain neighborhood
of this channel.

Lemma 7: Let W and W, be two channels and A a non-
negative number such that Wy (yy, ye|z) < 24W,(y1,y2|7)
for all z,y1,y2. Then any (an),MQ(n),n)-code for W is
also a (Ml(n),MQ(n),n)-code for W, with ,u,(cn) < 2”Aﬁ§€n),
k=1,2.

Proof: The proof is almost identical to Lemma 5 in [14]
and is therefore omitted. [ |

With these two lemmas and the result for the case of a finite
set, we are able to prove our main result which is the capacity
region of the compound BBC with an arbitrary set S.

Theorem 1: The capacity region Cggc of the compound
BBC S, where S can be any arbitrary set, is the set of all
rate pairs (Rr1, Rr2) € R? satisfying

< i <1
Rp1 < ;ggI(P’ W1slU), Rre < ;Ielgf(p, Wa s|U)

| for all x Y1, Y2

(19)

for random variables (U, X,Y1,Y2) € U x X x Y1 X Vs and
joint probability distributions {q(u)p(x|u)Ws(y1, y2|z)}ses-
Thereby, U is an auxiliary random variable and describes a
possible time-sharing operation. The cardinality of the range

of U can be bounded by || < 2.
Proof: We start with an approximation of the ar-
bitrary set of channels. Therefore we choose L >

2
max{ |y1|§|y2| 8|1 \TDJ2| }

Z > 2|0 ||Vs |(\y1\\y2 )z. For each W, from S we select a
W according to Lemma 6 and denote the set of approximated

channels by Sp. Since Sy has at most (L + 1)I%I1]13%]
elements, we know from Lemma 5 that if we choose Rg; <
miniegL I(p, Wl,i) - % and RR2 < miniGSL I(p7 WQJ) - %’

and large enough to ensure that
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7> 0, then there exists a (M\™, M{™ n)-code with M{™) =
|2nfik2 | and MQ(n) = [2"Fx | for Sy, with probability of error
for node k, k =1,2

(n 4 1)1X 1Y%l goni
— (TL + 1)|X|27nc(§2

(20)
with S, = (L + 1)I¥IP1I2l and ¢ = . For each W,

from S there exists a W, from Sy, such that W, (y1, y|z) <

2(v1121v212
2 2 W s(y1, yo|z) for all ,y1,ya so that from Lemma
7 the code for Sy, is also a code for S with

ﬁ’in) < SL(’I’L+ 1)\X\|yk‘2*nc62 + Sil

U < Sy (n 4 1) ¥l gn(est - 22l
(n + 1)1V

(n—l— 1)|X\2—n062
{lyllzLy2|27 sle\yz

n(z—2P1ve?
4 L

+Sil_ ). @21

Since L > max *1, we have RN
0 as n — oo. This means the code constructed for the
approximated channel is also a good code for the original
channel. It remains to show that the code achieves rates
arbitrarily close to the desired rates. From Lemma 6 we know
that |1(p, Wis) = I(p, W)l < 2001]I02|(22)3 < £,
k = 1,2 so that

inf T .
inf (P, Wh.s)

—7 < min I(p, Wy,s) —

22
seSL 2 ( )

which proves the achievability of the rates given in (19). The
optimality of the strategy follows similarly to Corollary 1 from
Lemma 4 which finally proves the theorem. ]

V. CSI AT THE RECEIVERS

Next, we consider the scenario where the receivers have
perfect CSI so that they can adapt their decoder to the specific
channel realization. Consequently, we now have a whole
family of decoders at nodes 1 and 2, one for each channel
realization s € S. Note that we still only have one universal
encoder at the relay due to the channel uncertainty at the
transmitter. The following theorem shows that CSIR does not
lead to an improved capacity region as long as the transmitter
merely knows the set of channels.

Theorem 2: The capacity region Cisk of the compound
BBC with CSIR is equal to the capacity region of the
compound BBC with channel uncertainty at all nodes, i.e.,
Ciac = Cc-

Proof: If we apply the coding strategy for channel
uncertainty at all nodes, cf. Theorem 1, it is clear that we
can achieve the same rate pairs if we have perfect CSI at the
receivers. Consequently, it remains to show that this strategy
is already optimal which means that no other rate pairs are
achievable. The reasoning is as follows. In our communication
scenario we have the following Markov chains (M7, Ms) —
X = Yy — M, and (My, M) — X — Y, — M, for
nodes 1 and 2, respectively, where M, k, k = 1,2 denotes the
decoded message. From the data processing inequality [21,
Lemma 3.11] it follows immediately that I((M;, My); M;) <
I(X;Ys) and I((My, My); Ma) < I(X;Y;) which shows that
the decoder does not effect the achievable rate. This permits
the proof of the optimality of the universal strategy similarly
to the case of channel uncertainty at all nodes, cf. Theorem 1.

|
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Remark 3: An intuitive explanation of why CSIR does not
lead to an improved capacity region is indicated in [16]. Even
if the channel used for the transmission is not known to
the receivers, it can be estimated with arbitrary accuracy by
the receivers. For sufficiently large block length n the part
"wasted" for the estimation is a negligible part of n, and goes
to zero as n — oo.

VI. CSI AT THE TRANSMITTER

Here, the transmitter has perfect CSI so that it can adapt
its encoder to the specific channel realization. Consequently,
we now have a whole family of encoders at the relay node
% M — X", one for each channel realization s € S. Note
that we still have universal decoding sets.

The following shows that CSIT leads to an improved
capacity region of the compound BBC, which is in contrast to
the previous discussed case of CSIR. The introduced concept
of types and typical sequences from Csiszar and Korner [21]
permits a proof of the capacity region which is quite similar to
the case of channel uncertainty at all nodes. Consequently, we
concentrate on the crucial points where the reasoning differs
from the derivation in Section IV. Similarly, we first present
an outer bound of the capacity region to get an intuition what
is at best possible with CSIT.

Lemma 8: Any given sequence of (M\™, M{™ n)-codes
(n)  (n)

with pg 7, by~ — 0 must satisfy
Dlog M{" < inf I(ps, Wro|0) +o(n”), 23
Llog M{™ < inf I(p,, Wa,|U) +o(n”)  (23b)
for joint probability distributions

{a(w)ps(alu) W, (y1, yolo) bses.
Proof: The proof of (23) is similar to the proof of Lemma
4 and therefore omitted for brevity. [ ]

Next, we present a universal strategy which actually
achieves the rates stated in the previous lemma. The crucial
point is to establish an upper bound on the probability of error
for the case of a finite set S similar to the one given in Lemma
5. Then the rest of the proof of the capacity region follows
accordingly.

Lemma 9: Let the index set S = {1,...,S} denote a
finite compound BBC with CSIT. For any block length
n € N, input distributions p;, i = 1,...,5, and Rg; <
ming—1,.. 5 I(ps, W1,i)— 5, Rrz < mins—1 . s I(p;, Wa;)— 73,
7> 0, there is a (M{™, M{™ , n)-code where the probability
of error uén) at node k, k = 1, 2, averaged over all codebooks
is bounded from above by

Exa ] < S(n+1)¥Ilgnes
2 (n+ l)lXHykl
1- (ﬂ + 1)‘X|2—nc62

ol

27'(1,

+ (24)

with ¢ = 211W

Proof: Since the transmitter can adapt its encoder to
the specific channel realization, we have a family of input
distributions p;, one for each ¢ € {1,...,S}. For each dis-
tribution p{"(z"), i = 1,...,5, and § > 0 let T 5 denote
the corresponding set of typical sequences on X™. We restrict
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the possible inputs to these subsets and define the new input
distributions

pe" (")

B ) if 2" € T" s,
(") = P pi,6 25)
0 else.
Let 7 > 0 and set the rates Rry := min;—1,.. s I(ps, W1:)—%
and Rrz := mini—; . sI(pi,Wa;) — 5. For each i €

{1,..,8} we generate M\™M{™ independent codewords

X(m), one for each m = (mq,mgz), of length n with
M™ = |27z | and M{™ = |2"Fx | according to p!'. This
implies that all generated random codewords X['(m) € 7, 5
almost surely, : = 1, ..., S.

Since for each channel realization s € S, the used ran-
dom codewords differ, the definitions of the decoding sets
of nodes 1 and 2 slightly change. See (26a) and (26b) at
the top of the next page, where X" := {X['}1<,<s and
Xln = {X;l(ml, m2)}1§ml§M1("),1§m2§JVI(") so that the
decoding sets depend on all generated codewords for all
channel realizations. Consequently, the corresponding error
events Pe(,11),s and Pé;{s at node 1 are now given by (27a)
and (27b), at the top of the next page.

We continue with the analysis of the probability of error
for node 1, again the analysis for node 2 follows accordingly
using the same arguments. As in Lemma 5 we average over all
codebooks and show that Exn [,ugns) ] <Exn [Pe(,ll),s + Pé;{s}
can be bounded uniformly in s from above by a term which
decreases exponentially fast for increasing block length n. The
derivation for Exn» [Pe(,ll),s} proceeds exactly as in Lemma 5
and leads to same upper bound, see (28) on the next page,

with ¢ = ﬁ, cf. also (11). The first steps of the derivation

for Exn [Pe(,12)7s] are similar to Lemma 5 up to (29), see next
page, where ¢, denotes the output distribution generated by
ps and W1y g, cf. also (13). The crucial point is that since for
each i € {1,...,S} we have a different input distribution p;,
the input distribution and channel may not coincide with the
output distribution. But nevertheless we can apply Lemma 3
since X"(mq,j) € T,: 5 almost surely and further this lemma
is also applicable if the distributions do not match, cf. (4a). We
obtain similarly to Lemma 5, (30) at the bottom of the next
page, for 6 € (0, W) The rest of the proof proceeds
exactly as in Lemma g so that we end up with the following
upper bound for the average probability of error at node k,
k=12,

Exn ™) < S(n + 1)|¥1Velg—nes?
(n + 1)1
1-— (ﬂ + 1)‘X|2—nc62

Lhl

+ 52 2 n (31)

with ¢ = ﬁ as stated in (24) which finally proves the
lemma. ]

With the previous Lemmas 8 and 9 we are now able to
establish the capacity region of the compound BBC with CSIT
for the cases of a finite set and an arbitrary set. The proofs
proceed exactly as in Section IV so that we omit them for
brevity.

Corollary 2: The capacity region Cipe of the finite com-
pound BBC § = {1, ..., S} with CSIT is the set of all rate
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Fig. 2. Capacity regions of a particular compound BBC with |X| = [V1| =
|[V2| =3 and S = {s1, s2} with channel uncertainty at all nodes and CSIT
in Fig. 2(a) and 2(b), respectively. The shaded area in Fig. 2(b) illustrates the
gain in the capacity region based on the available CSIT. The rate regions for
channel realizations s; (dashed line) and s (dashed-dotted line) are included
for convenience.

pairs (Rg1, Rrz) € R3 satisfying

Rr1 < 'PllinS I(p;, W1,4|U), (32a)

Rpro < i_HlliHS I(pi, Wa,4|U) (32b)
for random variables (U, X,Y1,Y2) € U x X x Y1 X Y5 and
joint probability distributions {q(u)ps(x|u)Ws(y1, y2|2) }ses-
The cardinality U can be bounded by || < 2. [ |

Theorem 3: The capacity region C§ser of the compound
BBC, where the set of channels can be arbitrary, is the set
of all rate pairs (Rgr1, Rr2) € Ri satisfying

Rry < irelgf(p57W17s U), Rr2< irelgf(p37W27s\U) (33)
for random variables (U, X,Y7,Y2) € U x X x Y1 X Y5 and
joint probability distributions {q(u)ps(x|u)Ws(y1, y2|2) }ses-
The cardinality U can be bounded by || < 2. [ |

VII. NUMERICAL EXAMPLE AND GAME-THEORETIC
INTERPRETATION

In this section we give a numerical example which illus-
trates how CSIT improves the capacity region of the com-
pound BBC. Therefore, let |X| = |Vi| = |V2| = 3 and
consider the particular set of channels & = {si,s2} with
two possible states. The marginal channels are given by the
following transition probability matrices

[0.5 0.2 0.3] [0.8 0.1 0.1]
Wi, =0 07 03] Wag =103 05 0.2
0.1 0.3 0.6] 0.1 0.1 0.8]
[0.5 0.3 0.2] [0.8 0.1 0.1]
Wig: =10 1 0 Was, == [0.3 04 0.3
0.1 0.8 0.1] 02 0.1 0.7]

Fig. 2 depicts the capacity regions Cpgc and Cgze of
this particular compound BBC for channel uncertainty at all
nodes and CSIT, respectively. How CSIT affects the maximal
achievable rates is shown in Fig. 2(b), where the shaded area
illustrates the gain in the capacity region due to the available
CSIT.
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s My g
D () = (U T a(x2em)) 0 (U U X7 (mi,j)) (262)
= J;'f:mz =
S (71)
Dy (X7 = (UTv’&Q,i,a( ) ( U UTWN y,mz))) (26b)
= .7'7577112 '
1 1 s c
I W?f((UTJ&“,(;(Xl ) \Xg(m) (27a)
| ‘ meM i=1
1 My s
P = e S WU U T s (X7 1, ) [ X2 Gma o) ) 27b)
| ‘ meM Jj=1 =
J#me2
S
Ex-[P),] = ﬁ Exor [WE (U T (X0 (m)) | X2 (m) ) | < (n+ 1) ¥PIg7nes (28)
meM i=1
o 1 [Ma| s .
Ee <y X 3 Y o [ (T, (6 m.9) @)

Similar to the single-user compound channel it is possi-
ble to analyze the compound BBC from a game-theoretic
perspective. Therefore, we assume that the nodes and nature
play a two-player zero-sum game [26], [27] with the mutual
information I as the payoff function as depicted in Fig. 3. This
is called a game against nature [28]. In this game, the set of
channels S corresponds to nature’s action space, and nature’s
aim is to establish the worst communication condition by
selecting s € S such that the mutual information is minimized.
The set of input distributions P(X’) corresponds to the action
space of the player. Clearly, the nodes want to maximize the
mutual information. For given p € P(X) and s € S the
outcome of the game is given by the following achievable
rate region

R(p,s) = {(Rr1, Rr2) € Ri : Ry < I(p, Whs),
Rra < I(p,Wa )}

Within this game against nature framework the game can
be played in two different ways. First, the player and nature
moves simultaneously without knowing the other’s choice.
And second, nature moves first so that the player is aware
of nature’s choice. In the single-user scenario, these two
types of the game lead to well-known maxmin and minmax
formulations for the outcome of the game. Since our scenario

(34)

deals with rate regions, cf. (34), we have a vector-valued
problem and the max and min expressions extend to the union
and intersection. Then, the outcomes of the game are

Cppc = ConvexHull( | ] () R(p,s)) (35)
pEP(X) s€S
and
Coor = ConvexHull( ﬂ U R(p, s)). (36)

SES peP(X)

We see that (35) and (36) are equivalent to the capacity
regions given in Theorem 1 and 3 and correspond therefore
to the cases of channel uncertainty at all nodes and CSIT,
respectively. Note that in the theorems the convex hull is es-
tablished by the time-sharing variable U. Moreover, it follows
immediately from (35) and (36) that Cggc C C%ICT which
agrees with the intuition that CSIT improves the capacity
region.

VIII. CONCLUSION

In practical wireless communication systems channel un-
certainty is a ubiquitous phenomenon. The question must be
asked if it is advantageous to improve the available channel
state information at the nodes or if the nodes should be left

Exp i) [0 (T o (X0 (m1,9)) )| <

(n+ 1)‘Xl|yl‘27'"'(1(171'vWI,i)7LP(5)7¢(5)) (30)
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Player chooses p Nature chooses s

@—, Transmission <—@

Set of distributions P(X) Set of channels S

I(p, Wh,s), I(p, W)

Fig. 3. Transmission as a game against nature.

with the uncertainty. The concept of the compound channel
allows us to derive robust coding strategies that are appro-
priate for wireless applications where certain rates have to be
guaranteed even in the case of channel uncertainty. Further, the
analysis shows the best possible rates that are achievable under
channel uncertainty. This allows us to assess if it is worthwhile
to improve the channel state information at the nodes, e.g., by
using longer training sequences or feedback. In particular, this
is important to know for the design of wireless networks.

In this work we address the bidirectional broadcast channel
and present robust coding strategies which guarantee certain
rates regardless of the current channel realization. These
immediately lead to a characterization of the capacity region
of the compound BBC which is an useful result since it consti-
tutes the basis for further analysis of multi-user settings under
more complex models of channel uncertainty and in uncoor-
dinated wireless networks. In particular, our results provides
valuable insights since for the general broadcast channel with
discrete channels and finite alphabets the capacity region for
compound channels is not known and, consequently, similar
results are not available. To date, only some special cases are
treated as for example the case where the transmitter and the
receivers have multiple antennas and the channels are degraded
[7] which is a quite different setting to the one we considered
here.

Furthermore, the analysis shows that CSIR does not improve
the capacity region if the transmitter merely knows the set
of channels, which is at first counter-intuitive. But at second
glance this becomes clear if one realizes that transmitted sym-
bols "wasted" for channel estimation are negligible for large
block lengths. Further, we show that CSIT can advantageously
be used to improve the capacity region since the transmitter
can adapt its encoder to the specific channel realization. The
game-theoretic interpretation of the compound BBC reveals
interesting generalizations, which keep the characteristics of
the single-user compound channel but includes now multi-user
effects. This is a nice property of the compound BBC, which
is not self-evident for multi-user scenarios.

APPENDIX

A. Proof of Lemma 2

We define Vynipn(bla) = p“”"p'ii"(g)’) for empirical
distributions pn(a) = ZN(alz") and pynyn(a,b) =
LN(a,blz",y") forall a € A,b € B. Then from [21, Lemma

2.6] we have W& (T (z™)|2™) < 27 P WVynianlWIpan) with

> penle)

ac AbeB

Vynjan (bla)

la
D(Vyn g |[W[per) = log

Viyn|zn (bla)
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™, a, b
=3 panyn(a,b)log I/Il;(b y)( (31) D(pan yn|[pan W).

ac AbeB

(37

Observe that 773 (™) has at most (n + 1)4I1Bl Veshells, cf.

also [21, Sec. 1.2], so that

WO (T (2")]a") < (n+ 1)MAIFI277P- - (38)
with D, = min{D(pgn yn||ps»W) : Fa €
Ab € B [pan yn(a,b) — pan(a)W(bla)] > 6}
From [21] we have’?  D(pgn yn|[pen W) >
73 (L [Pan g (@,0) = pon (@)W Gla)))? — so  that
D. > gilpenye(a,0) = per(@)W(bla)® = 555 for
all a € A, b € B. From this we have

W®n(7—n §C(xn)|xn) < (’I’L+ 1)|AHB|2—n052 (39)
with ¢ = m which proves the lemma. [ ]

B. Proof of Lemma 3
Let y" € T ,(2") where 2" € . Then we know from
[21, Lemma 2.6] that ¢®"(y") = 2~ ”( (pyn lD+H(Pyn)) with

pyn (b) = M Since D(py~||q) > 0 we have
Since y" € Tz (2") and " € T it follows from

[21, Lemma 210] that y”

ZbeB |pv”( ) —
2.7] implies

€ T4 and therewith
q(b)] < 24|18l < 1/2 so that [21, Lemma

- 21 A||B|6
— H(@)| < —2/A|1B|3log % — ol0)

with lima\o ©(0) = 0. If we combine (40) and (41), we obtain
q®n(yn) < 2 ) ©(9) and therewith

¢ (T S(3) < [T (@) |2 -

|H (py~) 41

©(8)) (42)

Since " € Tﬁ, it follows from [21, Lemma 2.13] that
‘ T ( )| < (n )|AHB|27L(H(W|p)+'¢)(§)) holds with uni-
versal ¥ (6) > 0 and lims\ o (6) = 0. Inserting this in (42)
we obtain
q®”(TVZ[;75(§7")) < (n+ 1)\AIIB\g—n(I(ﬁ7W)—so(5)—w(5))_
(43)
The  relation  ¢®"(Tyy 5(2")) < (n +
1) AlBlg=n(I(p,W) = (8)— vy follows immediately for
W = W and p = p which proves the lemma. [ |
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