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Behavior of the Quantization Operator for
Bandlimited, Nonoversampled Signals
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Abstract—The process of quantization generates a loss of in-
formation, and, thus, the original signal cannot be reconstructed
exactly from the quantized samples in general. However, it is
desirable to keep the error as small as possible. In this paper,
the quantization error is quantified in terms of several distortion
measures. All these measures employ the difference between the
original signal and the reconstructed signal, which is obtained by
bandlimited interpolation of the quantized samples. We assume
that the signals are bandlimited and that the samples are taken at
Nyquist rate. It is shown that for signals in the Paley–Wiener space
��

�

�
, the supremum of the reconstructed signal, and, hence, the

quantization error cannot be bounded in the sense that there exists
a bounded subset of ���

�
on which both quantities can increase

unboundedly. This unexpected behavior is due to the nonlinearity
of the quantization operator and the slow decay of the sinc func-
tion. The nonlinearity is essential for this behavior because every
linear operator that fulfills a certain property of the quantization
operator would otherwise have to be bounded. Furthermore, it
is proven that for a fixed signal the possible quantization error
increases as the quantization step size tends to zero. The treatment
of the quantization error in this paper is completely deterministic.

Index Terms—Analog-to-digital conversion, bandlimited signal,
quantization noise, Shannon sampling series, signal quantization.

I. INTRODUCTION

M ODERN signal processing is done nearly always with
digital processors. In order to process real world data,

which is represented by continuous-time real-valued signals, it
is necessary to convert these signals into a discrete-time signal
with only finitely many values. This discretization in time and
amplitude can most simply be done by the following two steps.
First, the signal is sampled equidistantly at least at Nyquist rate,
and, second, the samples are mapped to discrete values, ac-
cording to a certain quantization law. The whole procedure is
called analog-to-digital conversion.

Obviously, some information about the signal is irreversibly
lost in the quantization process and an exact recovery of the con-
tinuous-time signal is not possible in general. However, it is de-
sirable to have a high accuracy in the analog-to-digital conver-
sion. The accuracy can be measured by the quantization error

, where is the reconstructed signal, which is obtained
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from the quantized samples using a reconstruction process, for
example the Shannon sampling series.

In this paper, the signals are sampled at Nyquist rate. The op-
erator that maps to is called quantization operator. This op-
erator comprises the analog-to-digital conversion, i.e., sampling
at Nyquist rate and quantization, and the subsequent interpola-
tion by the Shannon sampling series. Obviously, the quantiza-
tion operator maps continuous-time signals to continuous-time
signals and is nonlinear. In this paper, we study the properties of
this quantization operator. In particular, we analyze whether the
quantization operator is a bounded operator or not. It turns out
that this depends on the signal space under consideration and the
quantization scheme. If the quantization operator is unbounded,
the quantization error cannot be bounded on bounded sets of
signals. This means there exists a set of signals with norm
smaller than some specific constant such that for any
there exists a signal for which the peak value of the quan-
tization error is larger than . Moreover, for fixed

, we analyze the behavior of the quantization error as the quan-
tization step size tends to zero. Surprisingly, there are signals in
the Paley–Wiener space , for which the quantization error
grows arbitrarily large as the quantization step size goes to zero.
A definition of the space follows in Section II.

Normally, the analysis of the quantization operator is done
for the space of bandlimited signals with finite energy. This is
the same space that Shannon considered when he introduced
the sampling theorem [1], [2] in communications. It has to be
mentioned that the sampling theorem was earlier published in
the mathematical literature by Whittaker [3] and independently
of Shannon in the engineering literature by Kotel’nikov [4] and
Raabe [5]. Since then several extensions of the sampling the-
orem have been made. For further details about the history of
sampling theory, we would like to refer the reader to the com-
prehensive paper [6].

Due to its high practical importance, the analysis of the quan-
tization error has gained a lot of attention in research. Often,
the quantization operation is modeled as additive white noise
[7], [8]. However, it turned out that this noise model is not al-
ways satisfactory, because it can lead to false predictions [9].
Experimental results confirm these problems [10]. It is obvious
that fundamental properties of analog-to-digital conversion are
not fully understood and that further research is necessary for a
better understanding.

Since quantization is a deterministic process it is interesting
to have a deterministic analysis in addition to the successfully
used statistical approaches. The deterministic analysis is diffi-
cult because of the nonlinear nature of the quantization oper-
ator, but it reveals some properties of the quantization process,
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which cannot be analyzed with the additive noise description of
the quantization.

There are numerous publications discussing the approxima-
tion error of sampling series in the presence of additive noise
in the samples [8], [11]. However, these publications do not
consider the deterministic nature of the quantization. Only few
publications treat the quantization error deterministically. One
is [12], where the quantization error is analyzed for absolutely
integrable bandlimited signals and certain nonbandlimited sig-
nals. Another paper is [13]. There the accuracy of analog to
digital converters with oversampling is analyzed for bandlim-
ited signals with finite energy. In [14] and [15], the interpo-
lation problem is analyzed for nonuniform quantized samples
and a subset of the bandlimited signals with finite energy. More-
over, oversampled analog to digital conversion in shift-invariant
spaces is treated in [16]; [17] discusses the effect of quantiza-
tion threshold uncertainties in pulse code modulation and
modulation analog to digital converters. An extensive account
on the history of quantization and the discussion of several de-
velopments can be found in [18].

In this paper, we restrict ourselves to uniform sampling at
Nyquist rate, and extend the analysis to larger signal spaces,
namely the Bernstein spaces , , and the
Paley–Wiener space . The analysis for is impor-
tant, because this space is larger than the commonly used

-space of signals with finite energy and because the
convergence behavior of sampling series for signals in is
closely related to the convergence behavior of sampling series
for bandlimited wide-sense stationary stochastic processes [19].

II. NOTATION AND PRELIMINARIES

As usual, , , denotes the space of all
th-power Lebesgue integrable functions on , with the usual

norm , and the space of all functions for which
the essential supremum norm is finite. Furthermore, ,

, is the space of all sequences such that the -norm
is finite, and denotes the space of bounded sequences

with the supremum norm .
Let denote the Fourier transform of a signal . For

, let be the set of all entire functions with the property
that for all there exists a constant with

for all . The Bernstein space
consists of all signals in , whose restriction to the real line is
in , . A signal in is called bandlimited to .
By the Paley–Wiener–Schwartz theorem, the Fourier transform
of a signal bandlimited to is supported in . For

, the Fourier transformation is defined in the classical and for
in the distributional sense. It is well known that

for . Hence, every signal in , , is
bounded on the real line.

For and , we denote by the
Paley–Wiener space of signals with a representation

, , for some . If

, then . The norm for ,
, is given by .

As a consequence of Parseval’s equality, we have
. Thus, is nothing else than the space of

bandlimited signals with finite energy. Furthermore, the Haus-
dorff–Young inequality leads to for ,

and Hölder’s inequality to
for . Moreover, it holds .
Obviously, every signal in , , is bounded on
the real line.

Example 1: The signal space is larger than the space
. A signal that is in , but not in

is given by .
As we can see from the above definitions, all signals in ,

, and in , , are defined on the
complex plane. However, in practical applications, the signals
are usually considered to be a function of a real variable, which
often represents the time. Since all signals in the above spaces
are analytical, they are uniquely determined by their values on
the real line. Therefore, we will not distinguish between signals
defined on the complex plane and signals defined on the real
axis in the following.

The nomenclature concerning the Bernstein and
Paley–Wiener spaces, we introduced so far, is not consistent in
the literature. Sometimes the space that we call Bernstein space
is called Paley–Wiener space [20]. We adhere to the notation
used in [21] by Higgins. For further details about the Bernstein
and Paley–Wiener spaces, we would like to refer the reader
to [21].

III. QUANTIZATION AND SIGNAL RECONSTRUCTION

In this paper, we consider real-valued signals that are ban-
dlimited to and the simple but frequently used uniform mid-
tread quantization, where each sample , , is quan-
tized to , depending on the quantization step size ,
according to the following rule:

denotes the largest integer smaller than or equal to . In
other words, if for some ,
then is set to . Furthermore, for , we denote by

the set of quantization thresholds.
This kind of quantization characteristic is depicted in Fig. 1. In
order to determine the quantization error, the quantized samples

are used to reconstruct an approximation

(1)

of the original signal [9], [16]. It is well known [8], [14] that
the series in (1) does not necessarily converge under arbitrary
bounded perturbations of the samples. However, the sequence
of quantized samples cannot be arbitrary, because it
is deterministically determined by the signal . In particular, we
will see that only finitely many quantized samples , ,
are different from zero, which implies that, for fixed and fixed
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Fig. 1. Quantization characteristic.

, the series in (1) does always converge for the signals that are
considered in this paper.

The reconstruction in (1) corresponds to the case where no
oversampling is used. If oversampling is applied with an over-
sampling factor , we have

as reconstruction formula, where is a certain reconstruction
kernel. Thus, with oversampling, better kernels than the sinc
kernel

can be used, and certain divergence phenomena such as in The-
orems 5 and 6 cannot occur. However, since oversampling is
not considered in this paper, the sinc kernel is the only possible
kernel.

We will analyze the series in (1) for signals in ,
and in . Throughout the paper, we assume that

is real-valued for simplicity. The results can be extended to the
complex-valued case if the quantization is applied separately
to the real and imaginary part of . All these signals have the
property that , i.e., for every signal in these
spaces and every there exists a such that

for all . As a consequence, we have
for all . Hence, the series in (1) has only finitely many
summands, which implies that for all .
According to these considerations, we see that (1) defines an
operator that maps signals , ,
and signals into signals . The operator
is the composition of the analog-to-digital conversion and the
subsequent interpolation by the Shannon sampling series. We
call the quantization operator.

The approximation can be decomposed into the original
signal and an additive quantization error signal , i.e.,

Of course, depends on the signal and the quantization
step size . Often, is treated as random noise signal, which

implies that its dependence on the signal is not heeded. In Re-
mark 5, we will discuss why this point of view is not permissible
in general.

It is possible to define several distortion measures, which
quantify the quantization error

for and , where denotes the usual
supremum norm, and

for . These distortion measures can be analyzed in
two different ways: The first way is to fix and analyze
their behavior for varying . This is done in Section V-C. The
second way is to fix and analyze their behavior for , as
is done in Section V-D.

IV. DISCONTINUITY OF THE QUANTIZATION OPERATOR

First of all, we analyze the continuity behavior of the quan-
tization operator . A precise characterization of all points
where is continuous and of all points where is discontin-
uous is given in Theorem 1 and 2, respectively. Both theorems
express what one would naturally expect: If at least the value of
one sample equals a quantization threshold, then the quantiza-
tion operator is discontinuous. Otherwise, it is continuous.

Theorem 1: The quantization operator , which
maps , , and , is continuous
for all signals with for all .

Proof: We only give the proof for the case
, because the proof for is analogous. Let be

arbitrary but fixed. Furthermore, let and a
sequence of signals in such that

. We have to show that . Since
for all , we have

, which implies that there is a such that
for all and all . Moreover, by

the Riemann–Lebesgue lemma there is a such that
for all . Using

we obtain for all and . Now,
let be the greatest natural number with . Then for
all it holds that

and

Consequently

(2)
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By assumption, for all , i.e., there is a
such that for all and all , but
since there is a such that for
all and all , we have for
all and all . It follows together with (2) that there
is a such that for all

and , and consequently for all
.

Theorem 2: The quantization operator , which
maps , , and , is discontin-
uous for all signals with for some .

Proof: We only consider the example where is given
by , with and
where is given by , ,
with , , for all . Thus, we have

, which shows that is discon-
tinuous at the point . This example shows how the proof has to
be done for general .

Remark 1: The discontinuity of the quantization operator
does not depend on the specific choice of the quantization law.
For example, it is irrelevant whether signal values in

or signal values in , ,
are mapped to .

V. FURTHER PROPERTIES OF THE QUANTIZATION OPERATOR

A very useful tool in the convergence analysis of the Shannon
sampling series is the Plancherel–Pólya Theorem [22], [23].

Theorem 3 (Plancherel–Pólya): Let . Then there
are two constants and , depending only
on , such that

(3)

for all .
We will use this theorem in the following analysis of the quan-

tization operator.

A. Boundedness of the Quantization Operator
for ,

In this section, we analyze the quantization operator for the
space , . We do not consider a single quantization
rule but a whole class of quantization rules. The quantization
scheme that was defined in Section III is included in this class.

In particular, we assume that the quantization thresholds
fulfill

Fig. 2. Nonuniform quantization.

Except for the quantization level , to which all quantizer
inputs in the interval are mapped, the quantization
levels can lie arbitrarily within the quantization
intervals, i.e.,

For , we define the operator

if
if for some ,
if for some , .

Furthermore, for , , we need the lengths

of the quantization intervals and the sets

.

Fig. 2 illustrates this quantization scheme. Using this general
quantization rule, the quantization operator is given by

(4)

Since the sum in (4) only has finitely many summands, it follows
that for any signal , .

Theorem 4: Let , . If

(5)

then there exists a constant that only depends on such
that

(6)

for all .

Remark 2:
Note that the condition (5) is equivalent to the condition that

and

Proof: Let and be arbitrary
but fixed. We bound from above. According to the
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Plancherel–Pólya inequality (3), which is applicable because
, we have

(7)

Since for all and
, we obtain for ,

(8)

Furthermore, (8) leads to

(9)

where (3) was used again. Inserting (9) into (7) gives

Remark 3: For the proof of Theorem 4 it was essential that
, because the application of the Plancherel–Pólya in-

equality requires .

Remark 4: Theorem 4 shows that ,
is a bounded operator if (5) is fulfilled, because (6) implies that
every bounded set is mapped into a bounded set. Since we have

, , for some constant ,
it follows that , , is also a bounded
operator if (5) is fulfilled.

Corollary 1: For every , the quantization operator
, , that was introduced in Section III is

bounded.
Proof: Let be arbitrary but fixed. For the

uniform quantization with quantization step size that was in-
troduced in Section III, we have , , , and

, , , as well as ,
, . Therefore

and Theorem 4 implies that is bounded.

B. Unboundedness of the Quantization Operator for

In Section V-A, it has been shown that the quantization oper-
ator , , is a bounded operator. Inter-
estingly, this is not true for : Although only finitely
many , , are different from zero, , and, hence,

can become arbitrarily large on the set
. This fact is expressed by Theorem 5. The de-

pendence of on is analyzed in Section V-C.

Theorem 5: Let be arbitrary. Then we have
for all and

Corollary 2: Let be arbitrary. Then we have

(10)

as well as

(11)

and

(12)

Proof of Corollary 2: Equation (10) follows directly from
Theorem 5 because for we have

Equation (11) and (12) follow from Theorem 5 and equation
(10), respectively, by using .

Remark 5: Corollary 2 shows that the peak value of the quan-
tization error can increase unboundedly for all even if

is bounded. From Theorem 5 and
, we see that the peak value of the quan-

tization noise as well as the -norm of its spectrum, i.e.,
the -norm of , is unbounded, despite .
Thus, cannot be modeled as random noise signal, which is
independent of .
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Proof of Theorem 5: If it follows directly from
the Riemann–Lebesgue lemma that , because only
finitely many values of , , are different from zero.
Since it follows that .

Let , , be arbitrary but fixed. For the rest of the
proof, we need to define the function

(13)

where and

.

has the property that . The proof thereof can
be found in the Appendix .

Let be arbitrary. Next, we choose such
that . Then the quantized samples of

are given by

because

for all . Note that because
. Furthermore, we obtain

and

which implies that .
Since , , was arbitrary, can become

arbitrarily large independently of , and it follows that

for all .

We have shown that and

for all , whereas

and
for and all .

Obviously, for every with , we have
, and as a consequence and

. Therefore, it is only interesting

to analyze with . We conjecture

that for all fixed, holds, i.e.,
that in Theorem 5 can be replaced by , arbitrary but
fixed.

Remark 6: In the proof of Theorem 5, the slow decay of the
sinc function was important to create the divergence. However,
this is not the only reason for divergence. The nonlinearity of the
quantization operator was also essential to construct the spe-
cific sequence of quantized samples , which was
used to prove the divergence. The following discussion further
illustrates why nonlinearity is important for the unboundedness
of the quantization operator. Let and be
arbitrary and consider the difference between and .
Since , it follows that the operator , where
denoted the identity operator, maps into . Further,
for all with we have ,
because . Thus

(14)

for all with . A simple scaling argu-
ment shows that every linear operator that
fulfills (14), i.e., for all with

, is a bounded operator. Thus, nonlinearity is a nec-
essary condition for an operator fulfilling (14) to be unbounded.

C. Behavior of the Quantization Operator
for and

Certainly, for all and all , we have
. On the other hand it is not obvious what

happens if tends to zero. Next, we will analyze how
and behave for fixed when

tends to zero. One could guess that the error gets
smaller for , because a finer quantization should give a
better representation of the signal. However, the quantization
operator is nonlinear, which will lead to a
unexpected behavior.

This fact is expressed by the following theorem.

Theorem 6: There is a signal , such that

Corollary 3: There is a signal , such that

as well as

and

Remark 7: From Theorem 6 and
, we see that the peak value of the

additive noise signal and the -norm of its spectrum
can increase unboundedly as tends to zero. This result is in
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contrast to the common model, where the quantization error
decreases as tends to zero [7].

Proof of Theorem 6: In order to construct the signal ,
we use the functions , which were defined in (13), as basic
building blocks. Next, a sequence of natural numbers
is inductively constructed. Let and ,

. Furthermore, let be the smallest natural number that is
larger than and fulfills

(15)

We define the signal

First, note that , because

Next, , , is analyzed. Let be arbitrary and
. For we have and

consequently . It follows that
, which implies that

. Thus, for , and

For with

we have for . For and
even, we have

and

because . Similarly it can be shown that for
and odd

holds. This implies that

and

Therefore, and
.

APPENDIX

PROOF OF

The Fourier coefficients , , of the Fejér kernel

are given by

.

Thus, , , and the Fourier
transformation of

is

As a consequence, we obtain

because and are -periodic and non-negative.
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