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Abstract

Preference elicitation is a fundamental problem in single-unit combinatorial
auctions, but it becomes prohibitive even for small instances of multi-unit
combinatorial auctions. The bidders cannot express their preferences exactly
as this would take a huge number of bids, typically leading to inefficient allo-
cations.

Hence, markets with economies of scale and scope require more compact and
yet expressive bidding languages. In this thesis, we propose an expressive bid-
ding language allowing bidders to describe the characteristics of their cost func-
tions. Bidders in these auctions can specify various discounts and markups,
and specify pricing rules as logical functions. Finding the optimal allocation
given these pricing rules is a strongly NP-hard optimization problem and we
propose a mixed integer program to solve it.

Based on field data, we introduce a multi-item cost function and provide ex-
tensive computational experiments to explore the computational burden and
the impact of different language features on the computational effort and total
spend of the auctioneer. In addition, we explore characteristics of the knowl-
edge representation of the bidding language.
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Zusammenfassung

Kombinatorische Auktionen bieten die Möglichkeit Synergieeffekte zu nutzen,
indem sie mehrere Güter in einer Auktion zusammenfassen. In einer kombi-
natorischen Auktion mit einer nicht trivialen Anzahl von Gütern ist allerdings
bereits das Abfragen der relevanten Wertigkeiten problematisch, da die Bieter
nicht so viele Einzelgebote abgeben können wie nötig wären, um die effiziente
Allokation sicher zu bestimmen. Dieses Problem verschärft sich weiter, wenn
pro Gut nicht nur eine Einheit versteigert wird, sondern auch Mengenrabatte
berücksichtigt werden sollen.

Daher benötigen derartige Märkte kompaktere, und dadurch beherrschbare,
aber dennoch erschöpfende Bietsprachen. In der vorliegenden Arbeit schla-
gen wir eine derartige Sprache vor, welche es den Bietern auf vielfältige
Weise erlaubt ihre Kostencharakteristika in kompakter und intuitiver Form
auszudrücken. Dazu können sie verschiedenartige Preismodifikatoren verwen-
den, welche ihrerseits von flexiblen und logisch kombinierbaren Bedingungen
abhängen. Diese Bedingungen können sich dabei sowohl auf die gekaufte
Menge als auch den erzielten Umsatz beziehen. Das Bestimmen der opti-
malen Allokation aus diesen komplexen Preisstrukturen ist erwiesenermaßen
NP vollständig, und von daher in der Berechnung potentiell sehr aufwändig.
Wir schlagen daher ein gemischt-ganzzahliges Optimierungsproblem vor, mit
dessen Hilfe diese berechnet werden kann.

Abschließend evaluieren wir unseren Ansatz mit Hilfe eines selbstentwickelten
Kostenmodells, dessen Charakteristika auf Echtdaten beruhen, welche wir in
Feldversuchen sammeln konnten. Als Hauptergebnis sondieren wir, welche
Problemgrößen in akzeptabler Zeit lösbar sind. Wir untersuchen dabei den
Einfluss verschiedener Elemente der Bietsprache auf Berechnungsaufwand und
Einsparungsmöglichkeiten gegenüber einfacheren Ansätzen.
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Chapter 1

Introduction

Procurement is one of the key activities in the supply chain and occupies a very
important role in the overall performance of a company. With margins dwin-
dling, due to increased competition in nearly all industries, it becomes even
more indispensable to firms to minimize their procurement cost by procuring
at the best prices.

Economies of scale and scope describe key characteristics of a supplier’s pro-
duction function that influence the prices on procurement markets. Whereas
economies of scale primarily refer to efficiencies associated with supply-side
changes, such as increasing or decreasing the scale of production of a single
product type, economies of scope refer to efficiencies associated with demand-
side changes, such as increasing or decreasing the scope of marketing and
distribution, of different types of products.

Auctions as an advanced mechanism for trading have successfully been used
and eased negotiation in many environments. One of their main features is the
ability to find prices that reflect the market situation closely by coordinating
the competition.

1.1 Motivation

Using auctions in procurement is therefore a logical step and simple split-award
auctions are regularly used in practice for multi-item, multi-unit negotiations.
There the best bidder gets a predefined larger share of the volume for a par-
ticular good and the second best bidder gets the remaining share. This is
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CHAPTER 1. INTRODUCTION

done to on the one hand assure supply if one supplier is unable to fulfill his
contract and on the other hand a minimal supplier pool in the long run. With
significant economies of scale, suppliers face a strategic problem in these auc-
tions. Since there is uncertainty about which quantity they will get awarded,
they might speculate and bid less aggressively based on the unit cost for the
smaller, more expensive, share. In other words, simple split award auctions do
not allow suppliers to adequately express economies of scale.

In the recent years, driven by the new possibilities of the Internet, a growing
literature is devoted to the design of optimization-based markets (aka. smart
markets) (Gallien and Wein 2005), and in particular to combinatorial auctions,
where bidders are allowed to submit bids on packages of discrete items (Cram-
ton et al. 2006). The promise of these mechanisms is that by allowing market
participants to reveal more comprehensive information about cost structures
or utility functions, this can drastically increase allocative efficiency and lead
to higher economic welfare. Unfortunately, the matching of complex preference
profiles typically leads to hard optimization problems. The literature in this
field is typically focused on multi-item but single-unit negotiations and respec-
tive auction formats do not easily extend to multi-unit markets with economies
of scale. While preference elicitation is already a fundamental problem for bid-
ders in single-unit combinatorial auctions, it becomes prohibitive in multi-unit
combinatorial auctions. Markets with economies of scale and scope require a
fundamentally different bidding language that allows to specify discount rules
rather than a huge number of multi-unit package bids.

So far two central types of volume discounts are discussed in the literature:
incremental discounts and total quantity discounts. Total quantity discounts
have been described as a discount policy, where the supplier has specified
a number of quantity intervals (aka. discount intervals), and the price per
unit for the entire quantity depends on the discount interval in which the
total amount ordered lies Goossens et al. (2007). In contrast, incremental
volume discounts describe a discount policy, where the discounts apply only to
the additional units above the threshold of the quantity interval. In business
practice, such discount policies are often also defined on spend or on spend and
quantity for one or more items. In addition, we will also allow for lump sum
discounts, defining a one time reverse payment on overall spend or quantity. So
far, optimization formulations only exist for incremental or for total quantity
discount bids, defined on quantity purchased.

2



1.2. CONTRIBUTIONS

1.2 Contributions

We have investigated the factors limiting the use of well understood combina-
torial auctions for a procurement setting. While the existing academic work
covers important requirements, many real-world cases demand for a more pow-
erful bidding language for practical applicability. In particular we focus on the
following question:

How can bidders manageably express their cost structures incorporating (dis-
)economies of scale and scope for use in a tractable procurement auction?

To answer this question, we did the following: We introduce a compact bidding
language for markets with economies of scale and scope, referred to as LESS.
Our bidding language allows for two different types of discounts, which have al-
ready been discussed in the literature: incremental and total quantity discount
bids. Our approach allows to handle both types of volume discounts, and we
have seen several applications, where different bidders submit different types
of volume discount bids. In addition to previous approaches, LESS allows for
lump sum discounts on total spend to model economies of scope and various
conditions on spend or quantity for the different discount types. As a result,
LESS is considerably more expressive than previous approaches and gives sup-
pliers high flexibility in specifying their offerings. Apart from expressiveness,
we introduce description length as an important criterion for bid languages,
since bidders cannot be expected to submit arbitrarily many parameters or
bids. We will see that there are considerable differences between bundle bids,
LESS bids with total quantity or with incremental volume discounts.

In this work, we will investigate the buyer’s problem, who needs to select quan-
tities from suppliers providing bids in LESS such that his costs are minimized
and his demand is satisfied. We will refer to this problem as the Supplier
Quantity Selection (SQS) problem and propose a respective mixed integer
program (MIP). Modeling matters and there are considerable differences in
the solution time depending on different model formulations. We will also
discuss additional allocation constraints as they are typically used for scenario
navigation.

Procurement managers need a clear understanding of which problem sizes they
can analyze in an interactive manner during the scenario analysis or in dynamic
auctions. Therefore, we will show that SQS is NP-complete, and report on an
extensive evaluation of the empirical hardness of the supplier quantity selection

3



CHAPTER 1. INTRODUCTION

problem. Similar analyses have recently been performed for the winner deter-
mination problem in combinatorial auctions by Leyton-Brown et al. (2009).
It is important that problem instances for the experimental evaluation mirror
real-world characteristics. We have introduced a multiproduct cost function for
markets with scale and scope economies and generated bids based on these
cost functions. LESS and the software framework used in this paper have al-
ready been used to support a number of high-stakes sourcing decisions with
an industry partner. The synthetic bids matched the characteristics of those
that we also found in the field. The experimental results show that realistic
problem sizes of the SQS problem can be solved to optimality in a matter of
minutes with IBM’s CPLEX (version 12) and Gurobi 3.0. (All results reported
are based on CPLEX.) We have also found that the shape of the underlying
cost function and the demand can have a significant impact on the runtime of
the problems and empirical evaluations need to be interpreted with care.

Previous work has only focused on the computational complexity of the win-
ner determination problem. The cost curves in our experimental evaluation
allowed us to compare the total cost achieved with LESS bids and different
types of volume discounts and bids for split-award auctions. While we do not
discuss mechanism design questions in our analysis, we assume a direct reve-
lation mechanism where bidders submit bids in a way that reflects their cost
curves as closely as possible. Even if bidding behavior in the lab or in the field
might be different, this result suggests that a richer bidding language can lead
to considerably lower cost and more efficient results in markets with economies
of scale and scope with LESS.

1.3 Structure of the Thesis

The thesis is organized as follows:

Chapter 2 gives an introduction into the fundamentals of multi-item and multi-
unit procurement auctions and motivates our approach. Chapter 3 introduces
our new bidding language and chapter 4 a MIP formulation to calculate the
optimal allocation. Chapter 5 explains the design of our simulations. It de-
scribes the economic environment, our a priori assumptions about the bidding
behavior and it defines and motivates the value model we created. In chapter
6 the results of our simulations are presented and chapter 7 finally draws con-
clusions and proposes some future research topics in this area. The Appendix
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contains an overview of the SPQR software platform used in our experiments
and contains additional results of the conducted experiments.
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Chapter 2

Combinatorial Auctions and
their Applicability to Multi-unit
Settings

Generally speaking, an auction is the process of trading items, where the goods
are first announced and then bids are collected and in the end some of the bids
are selected and realized. The difference between auctions and simple price
negotiations is the fixed set of rules, which is known to all participants in
advance.

In this chapter we will first give a short introduction into multi-unit and multi-
item auctions and their different forms in general. Then we will take a closer
look into combinatorial auctions as they are the theoretically very close to our
problem, and also investigate which problems exist that are limiting their use
in practical procurement settings. Part of this work has been published in
Schneider et al. (2010). Finally we will study existing approaches to similiar
problems.

2.1 Characterizations of Multi-item and

Multi-unit Auctions

In the most basic form an auction involves only copy of a single item. If
multiple identical instances of an item are sold at once the auction is called

7
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APPLICABILITY TO MULTI-UNIT SETTINGS

a multi-unit auction, and if multiple different items are involved, the action
is called a multi-item or combinatorial auction. Naturally there also exist
combinations of both types. Multi-item auctions are motivated by economies
of scope where the value of an item for the buyer depends on the combination of
items that he gets, and multi-unit auctions endorse economies of scale where
the value of the items depends on the number of copies of an item that is
traded.

If a single auctioneer sells goods or services to a competing set of bidders
the auction is called a forward auction or sell auction and if a set of bidders
competes for the right and duty to sell to a single auctioneer it is called a
reverse or buy auction.

If all bids in an auction have to be submitted blindly in advance the auction
is called a sealed-bid auction in contrast to an iterative auction where the bids
are collected in multiple rounds. In most cases there is some sort of feedback
mechanism guiding the bidders in between rounds.

2.2 Iterative Combinatorial Auctions

As outlined in chapter 1 combinatorial auctions are theoretically the mecha-
nism of choice for our setting. In practical applications though, they never got
accepted widely. As a first step we will therefore give a brief introduction into
combinatorial auctions and examine why they are not suitable for complex
procrement cases.

The typical process of an iterative combinatorial action (ICA) consists of the
steps of bid submission, bid evaluation (aka winner determination, market
clearing, or resource allocation) followed by feedback to the bidders, and is
repeated until the stopping rule is fulfilled. The feedback is typically given in
form of ask prices and the provisional allocation.

2.2.1 Bidding Languages

One of the most challenging parts of a multi-item combinatorial auction is the
propagation of information from the bidders to the auctioneer, namely a set
of pairs containing what the bidder wants and what he is willing to pay for
it. In the classic English Auction setting with only one good sold at a time it

8



2.2. ITERATIVE COMBINATORIAL AUCTIONS

reduces to the bidders announcing the amount they are willing to pay in order
to receive the item.

In combinatorial auctions as we have seen the bidders do not only have the
possibility to contemplate the entire set of individual items but also combina-
tions of items called bundles. For each of the 2i− 1 bundles the bidders now
must communicate the amount they are willing to pay to the auctioneer in the
worst case. In the literature this is called communication complexity and has
been an active field of research not only in the environment of auctions.

Research in Artificial Intelligence has long dealt with questions of adequate
knowledge representation and reasoning for a particular application domain.
The most important decision to be made is the expressivity of the knowledge
representation, where the optimal case is full expressivity, where all bundles
can be priced.

Definition 1 (Expressiveness). A bidding language is fully expressive if it can
express the valuation for all possible bundles.

Typically, there are two downsides, the more expressive languages are, the
harder it is to automatically derive inferences and the less understandable
they are to humans. With the use of advanced software for the guidance of the
bidders the understandability problem can be avoided to a certain amount.

On the other hand we know from information theory, that it is impossible to
find a truly compact (linear) representation of all bid amounts. The proof can
be read in Nisan (2006) and uses the fact that there are less than 2t strings of
bit length t.

In the case of combinatorial auctions the most basic languages are based the
boolean operations AND, OR and XOR. AND is commonly used to compose
the bundles out of the individual items, whereas the bundles itself then are
either connected with OR or XOR.

Definition 2 (XOR Bidding). The bidding language exclusive-OR (XOR) al-
lows bidders to submit multiple sets of items that are paired with the amount
he is willing to pay for this set. The auctioneer then is allowed to select at
most one the item sets.

Definition 3 (OR Bidding). The bidding language additive-OR (OR) allows
bidders to submit multiple sets of items that are paired with the amount he
is willing to pay for this set. The auctioneer then is allowed to select any
combination of sets that have no item in common.

9
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APPLICABILITY TO MULTI-UNIT SETTINGS

The resulting OR and XOR bidding languages have in contrast to their sim-
ilar composition very distinct characteristics. The OR bidding language for
example is easier to understand for the bidders but it is not fully expressive.
This follows from the fact that a bundle price cannot be lower than the sum
of the prices of the items it is composed of.

2.2.2 Winner Determination

Given the private bidder valuations for all possible bundles, the efficient allo-
cation can be found by solving the Winner Determination Problem (WDP).
WDP can be formulated as a binary program using the decision variables xi(S)
which indicate whether the bid of the bidder i for the bundle S belongs to the
allocation:

Let K = {1, . . . ,m} denote the set of items indexed by k and I = {1, . . . , n}
denote the set of bidders indexed by i with private valuations vi(S) ≥ 0,
vi(∅) = 0 for bundles S ⊆ K. In addition we assume free disposal: If S ⊂ T
then vi(S) ≤ vi(T ).

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0, 1} ∀i, S

(WDP)

The first set of constraints guarantees that any bidder can win at most one
bundle, which is only relevant for the XOR bidding language. The XOR lan-
guage is used because it is fully expressive compared to the OR language which
allows a bidder to win more than one bid. Subadditive valuations, where a
bundle is worth less than the sum of individual items, cannot be expressed us-
ing the OR bidding language. The second set of constraints ensures that each
item is only allocated once. Much research has focused on solving the winner
determination problem, which is known to be NP-hard Park and Rothkopf
(2005); Rothkopf et al. (1998); Sandholm (1999).

Having determined the winning bids, the auctioneer needs to decide what the
winners should pay. A simple approach is for bidders to pay the amount of
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their bids. However, this creates incentives for bidders to shade their bids and
might ultimately lead to strategic complexity, i.e., to speculation and inefficient
allocations.

2.2.2.1 Pricing

The VCG auction is a generalization of the Vickrey auction for multiple hetero-
geneous goods. In this auction bidders have a dominant strategy of reporting
their true valuations vi(S) on all bundles S to the auctioneer, who then deter-
mines the allocation and respective Vickrey prices. The VCG design charges
the bidders the opportunity costs of the items they win, rather than their bid
prices.

A difficulty in the combinatorial (multi-item) case is that the opportunity costs
that every bidder has to be pay, cannot be expressed as the sum of the (second
best) item bids. Given X∗−j as the optimal allocation excluding bidder j the
price paid by a winning bidder j on bundle S is calculated as

pj(S) =
∑
S⊆K

vj(S)xj(S)− (
∑
S⊆K

∑
i∈I

vi(S)x∗i (S)−
∑
S⊆K

∑
i∈I

vi(S)x∗−j(S))

This requires to find X∗−j for each winner, a problem that is as difficult as the
WDP.

Although it has a simple dominant strategy, VCG design suffers from a number
of practical problems since its outcome can be outside of the core Ausubel and
Milgrom (2006b); Rothkopf (2007). The revenue can decrease as more bidders
are added or as some bidders raise their bids, and can be unacceptably low or
even zero. The VCG mechanism is susceptible to shill bidding and collusion.

Formally, let N denote the set of all bidders I and the auctioneer with i ∈ N ,
and M ⊆ N be a coalition of bidders with the auctioneer. Let w(M) denote
the coalitional value for a subset M , equal to the value of the WDP with all
bidders i ∈ M involved. (N,w) is the coalitional game derived from trade
between the seller and bidders. Core payoffs π are then defined as follows:

Core(N,w) = {π ≥ 0|
∑
i∈N

πi = w(N),
∑
i∈M

πi ≥ w(M) ∀M ⊂ N}
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This means, there should be no coalition M ⊂ N , which can make a coun-
teroffer that leaves themselves and the seller at least as well as the currently
winning coalition. In their seminal paper, Bikhchandani and Ostroy (2002)
show that there is an equivalence between the core of the coalitional game and
the competitive equilibrium for single-sided auctions.

Definition 4 (Competitive Equilibrium, CE Parkes (2006)). Prices P, and
allocation X∗ are in competitive equilibrium if allocation X∗ maximizes the
payoff of every bidder and the auctioneer revenue given prices P. The alloca-
tion X∗ is said to be supported by prices P in CE.

Bikhchandani and Ostroy (2002) show that X∗ is supported in CE by some
set of prices P if and only if X∗ is an efficient allocation. Although CE always
exist, they possibly require non-linear and non-anonymous prices. Prices are
linear if the price of a bundle is equal to the sum of prices of its items, and
prices are anonymous if prices are equal for every bidder. Non-anonymous ask
prices are also called personalized prices. Following three types of ask prices
are usually discussed:

1. a set of linear anonymous prices P = {p(k)}

2. a set of non-linear anonymous prices P = {p(S)}

3. a set of non-linear personalized prices P = {pi(S)}

Generating minimal CE prices is desirable, since it usually imposes incentive
compatibility of the auction design.

Definition 5 (Minimal CE Prices Parkes (2006)). Minimal CE Prices mini-
mize the auctioneer revenue Π(X∗,P) on an efficient allocation X∗ across all
CE prices which support it.

Minimal CE prices are not necessarily unique. One way to derive minimal CE
prices could be to use the duals of the WDP. Unfortunately, WDP is a binary
program, and the solution will not be integral in most cases if solved as an
LP relaxation. Therefore, the duals will not be minimal and over-estimate the
value of the items.
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2.2.3 Non-Linear Personalized Price Auctions

By adding constraints for each set partition of items and each bidder to the
WDP the formulation can be strengthened, so that the integrality constraints
on all variables can be omitted but the solution is still always integral. Such
a formulation describes every feasible solution to an integer problem, and is
solvable with linear programming. Personalized non-linear CE prices can be
derived from the dual strengthened problem as described in Bikhchandani and
Ostroy (2002).We will refer to this formulation as NLPPA WDP.

From duality theory follows that the complementary slackness conditions must
hold in the case of optimality. It has been shown that these are equal to the
CE conditions, stating that every buyer receives a bundle out of his demand
set Di(P) and the auctioneer selects the revenue maximizing allocation.

Definition 6 (Demand Set). The demand set Di(P) of a bidder i includes all
bundles which maximize a bidder’s payoff πi at the given prices P:

Di(P) = {S : πi(S,P) ≥ max
T⊆K

πi(T,P), πi(S,P) ≥ 0, S ⊆ K}

Complementary slackness provides us with an optimality condition, which also
serves as a termination rule for NLPPAs. If bidders follow the straightforward
strategy then terminating the auction when each active bidder receives a bun-
dle in a revenue-maximizing allocation will result in the efficient outcome. Note
that a demand set can include the empty bundle. Additionally, the starting
prices must represent a feasible dual solution de Vries et al. (2007). A trivial
solution is to use zero prices for all bundles.

Individual NLPPA formats have different rules of selecting bundles and bidders
whose prices are increased. The Ascending Proxy Auction has been suggested
in the context of the US FCC spectrum auction design Ausubel et al. (2006);
Ausubel and Milgrom (2006a). It is similar to iBundle(3), but the use of proxy
agents is mandatory, which essentially lead to a sealed-bid auction format.
Since this is the main difference compared to iBundle(3), we will only discuss
iBundle in the following.

The iBundle auction calculates a provisional revenue maximizing alloca-
tion at the end of every round and increases the prices based on the bids
of non-winning (unhappy) bidders. Parkes and Ungar (2000) suggest three
different versions of iBundle: iBundle(2) with anonymous prices, iBundle(3)
with personalized prices, and iBundle(d) which starts with anonymous prices
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and switches to personalized prices for agents which submit bids for disjoint
bundles. We will restrict our analysis to iBundle(2) and iBundle(3) for the
questions of this paper.

The dVSV auction de Vries et al. (2007) design differs from iBundle in that
it does not compute a provisional allocation in every round but increases prices
for a minimally undersupplied set of bidders.

Definition 7 (Minimally undersupplied set of bidders). A set of bidders is
minimally undersupplied if in no efficient allocation each bidders receive a
bundle from his demand set, and removing one of the bidders forfeits this
property.

Similar to iBundle(3), it maintains non-linear personalized prices and increases
the prices for all agents in a minimally undersupplied set based on their bids
of the last round.

2.2.4 Ascending Vickrey Auctions

iBundle(3) and dVSV result in minimal CE prices. Minimal CE prices and
VCG payments typically differ. Bikhchandani and Ostroy (2002) show that the
bidders are substitutes condition (BSC) is necessary and sufficient to support
VCG payments in competitive equilibrium.

Definition 8 (Bidders are Substitutes Condition, BSC). The BSC condition
requires

w(N)− w(N \M) ≥
∑
i∈M

[w(N)− w(N \ i)],∀M ⊆ N

If BSC fails, the VCG payments are not supported in any price equilibrium
and truthful bidding is not an equilibrium strategy. A bidder’s payment in
the VCG mechanism is always less than or equal to the payment by a bidder
at any CE price. Even though the BSC condition is sufficient for VCG prices
to be supported in CE, Ausubel and Milgrom (2006a) show that a slightly
stronger bidder submodularity condition (BSM) is required for an ascending
auction to implement VCG payments.
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Definition 9 (Bidder Submodularity Condition, BSM). BSM requires that for
all M ⊆M ′ ⊆ N and all i ∈ N there is

w(M ∪ {i})− w(M) ≥ w(M ′ ∪ {i})− w(M ′)

de Vries et al. (2007) show that under BSM their primal-dual auction yields
VCG payments. When the BSM condition does not hold, the property brakes
down and a straightforward strategy is likely to lead a bidder to pay more than
the VCG price for the winning bundle Dunford et al. (2007). de Vries et al.
(2007) also show that when at least one bidder has a non-substitutes valuation
an ascending CA cannot implement the VCG outcome. BSM is often not given
in realistic value models as the ones provided by CATS Leyton-Brown et al.
(2000).

The CreditDebit Auction by Mishra and Parkes (2007) is an extension
to the dVSV design which achieves the VCG outcome for general valuations.
It introduces the concept of universal competitive equilibrium (UCE) prices,
which are CE prices for the main economy as well as for every marginal econ-
omy, where a single buyer is excluded. Their auction terminates as soon as
UCE prices are reached and VCG payments are determined either as one-time
discounts dynamically during the auction. The authors show that truthful
bidding is an ex post Nash equilibrium in these auctions. This is not a contra-
diction with the previous paragraph, since the bidders do not always pay their
bids but can receive discounts. The auction, however, shares the central prob-
lem of the VCG auction: if buyer submodularity is not given, the outcomes
might not be in the core.

2.2.5 Linear Price Auctions

Though we have seen that linear prices do not support the efficient allocation
in all cases, they are the widespread in practical use, and therefore we include
two of them here.

The Combinatorial Clock Auction (CC auction) described in Porter
et al. (2003) utilizes anonymous linear prices called item clock prices. In each
round bidders express the quantities desired on the bundles at the current
prices. As long as demand exceeds supply for at least one item (each item is
counted only once for each bidder) the price clock “ticks” upwards for those
items (the item prices are increased by a fixed price increment), and the auc-
tion moves on to the next round. If there is no excess demand and no excess

15



CHAPTER 2. COMBINATORIAL AUCTIONS AND THEIR
APPLICABILITY TO MULTI-UNIT SETTINGS

supply, the items are allocated corresponding to the last round bids and the
auction terminates. If there is no excess demand but there is excess supply
(all active bidders on some item did not resubmit their bids in the last round),
the auctioneer solves the winner determination problem considering all bids
submitted during the auction runtime. If the computed allocation does not
displace any bids from the last round, the auction terminates with this alloca-
tion, otherwise the prices of the respective items are increased and the auction
continues.

The ALPS (Approximate Linear PriceS) design Bichler et al. (2009) is based
on the Resource Allocation Design (RAD) proposed by Kwasnica et al. (2005)
and uses anonymous linear ask prices which are derived from the restricted
dual of the LP relaxation of the WDP Rassenti et al. (1982). The termination
rule of the RAD auction has been improved in ALPS to prevent premature
auction termination. Furthermore, the ask price calculation better minimizes
and balances the prices. In a modified version ALPSm , all bids submitted in
an auction remain active throughout the auction. This rule had a significant
positive impact on efficiency in experimental evaluations. In the following, we
will only consider the results of ALPSm and the Combinatorial Clock auction
to provide a comparison to NLPPAs.

2.2.6 Problems

Clearly, NLPPAs can be considered a fundamental contribution to the combi-
natorial auction theory, as they describe iterative auction designs that are fully
efficient. However, they are based on a number of assumptions. In particu-
lar, straightforward bidding might not hold in practical settings where bidders
have bounded rationality, given that bidders don’t know, whether the submod-
ularity condition holds, and there is a huge number of bundles a bidder has
to deal with. Recent experimental work has actually shown that bidders did
not follow a pure best-response strategy, even in simple settings with only a
few items Scheffel et al. (2010). It is also important to note that, if one of the
bidders deviates from his best-response strategy in a Nash equilibrium, a Nash
equilibrium strategy is also not necessarily a best response for other bidders
any more. For the reasons outlined above, it is likely that not all bidders will
follow a straightforward bidding strategy.

Therefore, it is important to understand their performance in case of non-
straightforward bidding strategies, when bidders either cannot follow such a
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strategy for computational or cognitive reasons, or deliberately choose another
strategy.

2.2.7 Evaluation

Laboratory experiments are very costly and typically restricted to a small num-
ber of treatments and sessions. Therefore, the robustness of NLPPAs against
different types of bidding behavior can best be analyzed in computational ex-
periments.

2.2.7.1 Setup of Numerical Simulations

Our simulation environment consists of three main components. A value model
defines valuations of all bundles for each bidder. A bidding agent implements
a bidding strategy adhering to the given value model and to the restrictions
of the specific auction design. An auction processor implements the auction
logic, enforces auction protocol rules, and calculates allocations and ask prices.

Different implementations of value models, bidding agents (i.e., strategies)
and auction processors can be combined, which allows performing sensitivity
analysis by running a set of simulations while changing only one component
and preserving all other parameters.

For the comparison of auction formats, we use a set of focus variables, such as
allocative efficiency, revenue distribution, and speed of convergence measured
by number of auction rounds. We believe that the number of rounds is the
most relevant number to represent the auction duration, since the absolute
time will heavily depend on computational capacities of bidders and speed of
communication. We use allocative efficiency (or simply efficiency) as a primary
measure to benchmark auction designs. It is measured as the ratio of the total
valuation of the resulting allocation X to the total valuation of an efficient
allocation X∗ Kwasnica et al. (2005):

E(X) =

∑
i∈I

vi(
⋃
S⊆K:xi(S)=1 S)∑

i∈I
vi(
⋃
S⊆K:x∗i (S)=1 S)
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The term
∑

i∈I vi(
⋃
S⊆K:xi(S)=1 S) can be simplified to

∑
i∈I

∑
S⊆K

xi(S)vi(S) in

case of the XOR bidding language, since at most one bundle per bidder can
be allocated.

Similarly, we measure the revenue distribution which shows how the overall
economic gain is distributed between the auctioneer and bidders. Given the
resulting allocation X and the bid prices {bi(S)}, the auctioneer’s revenue
share is measured as the ratio of the auctioneer’s income to the total sum of
valuations of an efficient allocation X∗:

R(X) =

∑
S⊆K

∑
i∈I

xi(S)bi(S)∑
i∈I

vi(
⋃
S⊆K:x∗i (S)=1 S)

In order to compare different settings, we will sometimes also plot auctioneer
revenue as % of the revenue in the VCG outcome. The cumulative bidders’
revenue share is E(X)−R(X). Note that it is possible for two auction outcomes
with equal efficiency to have significantly different auctioneer revenues. In the
following, we will briefly discuss the value models and behavioral assumptions
in our bidding agents.

2.2.7.2 Value Models

Since there are hardly any real-world CA data sets available, we have based our
research on the Combinatorial Auctions Test Suite (CATS) value models that
have been widely used for the evaluation of WDP algorithms Leyton-Brown
et al. (2000). In the following, we will describe a value model as a function
that generates realistic, economically motivated combinatorial valuations on
all possible bundles for every bidder.

In the Real Estate 3x3 value model, the items sold in the auction are the
real estate lots k, which have valuations vk drawn from the same normal dis-
tribution for each bidder. Adjacency relationships between two pieces of land l
and m (elm) are created randomly for all bidders. Edge weights rlm ∈ [0, 1] are
generated for each bidder and used to determine bundle valuations of adjacent
pieces of land:

v(S) = (1 +
∑

elm:l,m∈S

rlm)
∑
k∈S

vk
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We use the Real Estate 3x3 value model with 9 lots and normally distributed
individual item valuations with a mean of 10 and a variance of 2. There is a
90% probability of a vertical or horizontal edge, and an 80% probability of a
diagonal edge. Edge weights have a mean of 0.5 and a variance of 0.3. Unless
explicitly stated (Section 2.2.8.5), all auction experiments with the Real Estate
value model are conducted with 5 bidders.

The Transportation value model models a nearly planar transportation
graph in Cartesian coordinates, where each bidder is interested in securing
a path between two randomly selected vertices (cities). The items traded are
edges (routes) of the graph. Parameters for the Transportation value model
are the number of items (edges) m and graph density ρ, which defines an av-
erage number of edges per city, and is used to calculate the number of vertices
as (m ∗ 2)/ρ. The bidder’s valuation for a path is defined by the Euclidean
distance between two nodes multiplied by a random number, drawn from a
uniform distribution. We consider the Transportation value model with 25
edges, 15 vertices, and 15 bidders. Every bidder had interest in 16 different
bundles on average.

The Pairwise Synergy value model from An et al. (2005) is defined by a
set of valuations of individual items {vk} with k ∈ K and a matrix of pairwise
item synergies {synk,l : k, l ∈ K, synk,l = synl,k, synk,k = 0}. The valuation of
a bundle S is then calculated as

v(S) =

|S|∑
k=1

vk +
1

|S| − 1

|S|∑
k=1

|S|∑
l=k+1

synk,l(vk + vl)

A synergy value of 0 corresponds to completely independent items, and the
synergy value of 1 means that the bundle valuation is twice as high as the
sum of the individual item valuations. The model is very generic, as it allows
different types of synergistic valuations, but it was also used to model certain
types of transportation auctions An et al. (2005). In this paper, we use the
Pairwise Synergy value model with 7 items, where item valuations are drawn
for each auction independently from a uniform distribution between 4 and 12.
The synergy values are drawn from a uniform distribution between 1.5 and
2.0. We tested lower synergy values, but found little difference in the results.
All auctions with Pairwise Synergy value model have 5 bidders.

In the Real Estate and Pairwise Synergy value models bidders were interested
in a maximum bundle size of 3, because in these value models large bund-
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les are always valued over small ones. This is also motivated by real-world
observations An et al. (2005). Without this limitation, the auction usually
degenerates into a scenario with a single winner for the bundle containing all
items. In the Transportation value model bidders were not restricted in bundle
size.

The value models describe very different processes for the generation of valua-
tions. Some have small bundles only, some have small and large bundles, and
also the way how synergies are determined is different.

For the numerical experiments all valuations for all bidders need to be gen-
erated and in each round all bundles need to be sorted by payoff. This leads
to substantial computation time and puts a practical limit on the size of the
value model, which can be simulated. For example, a single CreditDebit auc-
tion with the Real Estate value model took up to two hours due to the high
number of auction rounds.

2.2.7.3 Behavioral Assumptions and Bidding Agents

Theoretical models provide arguments for straightforward bidding in NLPPAs.
In an auction with private valuations, however, when the bidders do not know
whether the bidder submodularity holds, and therefore can decide to shade
their bids. There are also cognitive barriers for the straightforward strategy,
since bidders need to determine their demand set for an exponential number
of possible bundle bids in each round.

It is useful to look at empirical observations and the behavioral literature to
derive hypotheses on bidding strategies in NLPPAs. Unfortunately, so far,
there have only been a few lab experiments using NLPPAs and we do not
know of any applications in the field. Chen and Takeuchi (2009) compared the
VCG auction and iBEA in experiments where humans competed against arti-
ficial bidders. Bidders were significantly more likely to bid on packages with
a high temporary profit, but did not follow the pure straightforward strat-
egy. More recently, Scheffel et al. (2010) conducted experiments comparing
iBundle, ALPS, Combinatorial Clock, and the VCG auction. Again, bidders
in the iBundle auction did not follow the straightforward strategy, even though
they were provided with a decision support tool that helped them select their
demand set. There was, however, a high likelihood to bid on one of the best 10
bundles based on their payoff in the current round. Bidder idiosyncrasies and
mixed strategies such as in trembling-hand perfect equilibria Selten (1975) are
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possible explanations of these findings. Unfortunately, behavioral models of
bidding in multi-item auctions are rare Plott and Salmon (2002).

We have developed a number of bidding agents that are motivated by different
conjectures about the behavior of bidders in NLPPAs. These agents implement
a bidding strategy adhering to the given value model and to the restrictions
of a specific auction format.

The straightforward bidder is motivated by the theory. He always bids his
demand set which maximizes his surplus if it were to win one of its bids at the
current prices. Obviously, the results of auctions with straightforward bidders
shall achieve the outcomes predicted by the theory.

From lab experiments, we know that bidders do not always follow the straight-
forward strategy due to cognitive reasons and simple errors. The forgetful
agent follows the straightforward strategy, but “forgets” to submit 10% of his
bids in each round. These 10% are determined randomly and independently
for every round. Similarly we also modeled a heuristic bidder. This agent
randomly selects 5 out of his 20 best bundles based on his payoff in a round.

Sometimes bidders in the lab try to increase their chances of winning by bid-
ding on many bundles, which can be explained by risk aversion. The powerset
bidder evaluates all possible bundles in each round, and submits bids for bund-
les which are profitable given current prices. We have limitedthis bidder to 10
bundles with the highest payoff in each round, which is based on the obser-
vation that bidders typically do not bid on many bundle bids in an auction
round Scheffel et al. (2010).

Typically, in our settings these 10 bundles will have up to 20 % difference in
payoff at the beginning of the auction given equal start prices.

The NLPPAs, which we study in this work, terminate as soon as the new
provisional allocation includes bids from all active bidders. This termination
rule may motivate collusive bidders to submit more then just the demand set
in the first round in the hope that a suitable allocation is found early and the
auction terminates before the prices rise. The level bidder models a dishonest
strategy that tries to exploit this idea. We modify the straightforward bidder
by lowering valuations of his best l bundles and setting all of them equal to the
valuation of the lth best bundle. In our simulations, we have used l = 10. Note
that proxy bidding agents cannot prevent bidders from adopting this strategy.

If a bidder is restricted in time during the auction, he might select his most
valuable bundles a priori, and stick to this selection throughout the auction.
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This preselect agent selects his 20 most valuable bundles and follows the
straightforward strategy, only using the preselected bundles. Again, a proxy
cannot detect or prevent this strategy.

To ensure comparability between auction formats, we use a fixed minimum in-
crement of 1 and integer valuations for all valuations. Under these conditions,
NLPPAs always terminate with an efficient solution given straightforward bid-
ding de Vries et al. (2007).

2.2.8 Results

This section describes the results of simulations in terms of efficiency, revenue
distribution and the number of auction rounds. Unless explicitly stated other-
wise, each auction setup was repeated 50 times with different random seeds for
value models and, where appropriate, bidding agents. Overall, we provide the
results of an extensive experimental design with more than 25,000 auctions.

ICA Format Credit- dVSV iBundle iBundle ALPSm Clock VCG
Bidding Agent Debit (3) (2) truth
Straightforward Efficiency in % 100.00 100.00 100.00 99.90 98.64 95.16 100.00

Rev. Auctioneer in % 83.45 84.57 84.61 83.88 84.09 87.05 83.17
Rev. all bidders in % 16.55 15.43 15.39 16.01 14.55 8.10 16.83
Rounds 139.96 137.90 151.28 149.26 72.56 28.76 1.00

Forgetful Efficiency in % 99.92 99.78 100.00 99.92 98.64 96.35
10% chance to Rev. Auctioneer in % 81.73 85.28 84.73 83.88 84.11 88.02
forget each bid Rev. all bidders in % 18.19 14.51 15.27 16.03 14.54 8.30

Rounds 550.54 545.30 329.68 237.20 72.26 29.52

Level10 Efficiency in % 90.00 90.05 89.71 90.12 91.12 86.67
Rev. Auctioneer in % 72.10 72.29 72.34 71.55 72.25 76.46
Rev. all bidders in % 18.12 17.97 17.58 18.72 19.01 10.30
Rounds 82.38 82.00 133.22 130.96 128.88 26.06

Powerset10 Efficiency in % 90.50 89.67 98.48 99.20 99.57 97.27
10 best bundles Rev. Auctioneer in % 23.10 71.53 82.93 82.14 87.65 94.09
selected Rev. all bidders in % 67.33 18.22 15.55 17.02 11.91 3.20
in each round Rounds 1525.44 1519.58 979.18 283.46 24.94 25.30

Preselect20 Efficiency in % 98.24 98.24 98.24 97.56 91.51 92.07
20 best bundles Rev. Auctioneer in % 76.26 79.55 79.27 78.69 76.35 84.65

Rev. all bidders in % 21.94 18.64 18.92 18.79 15.07 7.39
Rounds 147.18 141.32 146.34 145.62 61.76 28.32

Heuristic Efficiency in % 76.09 73.68 98.94 97.51 99.29 98.18
5 random Rev. Auctioneer in % 22.11 52.16 82.03 83.55 87.88 94.19
bundles out Rev. all bidders in % 54.07 21.56 16.88 14.02 11.40 4.00
of 20 best Rounds 3183.12 3058.88 1860.88 524.04 27.44 25.60

Table 2.1: Performance of iterative combinatorial auctions with differing Bidding
Agents for the Real Estate value model
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2.2.8.1 Analysis of Different Bidding Strategies

First we assume that all bidders in the auction use the same strategy and ana-
lyze the results for different value models and bidding strategies. In particular,
we want to investigate how different NLPPAs behave when the bidders deviate
from the straightforward strategy.

The average performance metrics are summarized in Table 2.1 for the Real
Estate, in Table 2.2 for the Pairwise Synergy, and in Table 2.3 for the Trans-
portation value models.

Interestingly, we found a similar pattern in the results for all value models.
We have also repeated the same tests with different instances of the Pairwise
Synergy value model, where the synergy level was lower and in some cases
negative (subadditive valuations), and with the Real Estate value model with
a maximum bundle size of four instead of three. These modifications led to
similar results.

ICA Format Credit- dVSV iBundle iBundle ALPSm Clock VCG
Bidding Agent Debit (3) (2) truth
Straightforward Efficiency in % 100.00 100.00 100.00 100.00 99.65 99.53 100.00

Rev. Auctioneer in % 89.63 90.53 90.46 90.47 89.81 92.83 89.60
Rev. all bidders in % 10.37 9.47 9.54 9.53 9.85 6.69 10.40
Rounds 204.44 202.96 154.96 154.82 68.70 31.68 1.00

Forgetful Efficiency in % 99.81 99.65 100.00 99.99 99.65 99.56
10% chance to Rev. Auctioneer in % 88.31 91.04 90.41 90.54 89.92 92.97
forget each bid Rev. all bidders in % 11.50 8.63 9.59 9.45 9.73 6.58

Rounds 715.40 712.26 333.48 243.32 68.60 31.86

Level10 Efficiency in % 98.40 98.41 98.48 98.47 97.21 94.46
Rev. Auctioneer in % 88.38 88.78 88.82 88.80 88.08 86.90
Rev. all bidders in % 10.03 9.64 9.67 9.68 9.14 7.59
Rounds 150.16 149.44 150.28 150.10 117.74 33.66

Powerset10 Efficiency in % 96.01 95.91 99.16 99.55 99.75 99.51
10 best bundles Rev. Auctioneer in % 35.82 87.06 89.01 89.98 92.28 98.19
selected Rev. all bidders in % 60.18 8.85 10.15 9.57 7.47 1.31
in each round Rounds 1353.50 1352.36 650.24 192.60 29.34 31.24

Preselect20 Efficiency in % 85.80 85.80 85.80 85.80 82.75 85.21
20 best bundles Rev. Auctioneer in % 79.47 79.91 79.97 79.98 77.07 82.30
preselected Rev. all bidders in % 6.35 5.90 5.84 5.84 5.70 2.91
before the auction Rounds 230.90 230.06 138.54 138.46 48.14 30.56

Heuristic Efficiency in % 85.33 85.40 98.70 98.15 99.40 99.35
5 random bundles Rev. Auctioneer in % 25.97 60.64 88.86 88.85 92.87 97.92
out of 20 best Rev. all bidders in % 59.37 24.78 9.84 9.30 6.53 1.41

Rounds 2551.94 2544.98 1261.50 338.50 31.86 31.34

Table 2.2: Performance of iterative combinatorial auctions with differing Bidding
Agents for the Pairwise Synergy value model

Only the Transportation value model was different with respect to its high
robustness against preselect bidding. The main reason is the low number of
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ICA Format Credit- dVSV iBundle iBundle ALPSm Clock VCG
Bidding Agent Debit (3) (2) truth
Straightforward Efficiency in % 100.00 100.00 100.00 99.99 99.55 99.48 100.00

Rev. Auctioneer in % 56.13 66.93 65.43 65.36 65.92 77.10 55.49
Rev. all bidders in % 43.87 33.07 34.57 34.63 33.60 22.41 44.51
Rounds 216.78 205.18 78.66 78.02 32.24 29.64 1.00

Forgetful Efficiency in % 99.47 99.60 99.93 99.97 99.55 99.58
10% chance to Rev. Auctioneer in % 51.38 67.88 65.55 65.81 65.92 77.10
forget each bid Rev. all bidders in % 48.10 31.76 34.35 34.15 33.60 22.48

Rounds 434.96 414.70 124.84 106.90 32.24 29.74

Level10 Efficiency in % 84.95 85.06 83.64 84.01 83.96 84.56
Rev. Auctioneer in % 23.13 26.56 26.36 26.30 27.65 37.05
Rev. all bidders in % 61.92 58.46 57.31 57.70 56.19 47.36
Rounds 60.56 56.06 40.14 39.38 19.62 14.02

Powerset10 Efficiency in % 91.33 91.73 97.28 97.26 99.78 97.39
10 best bundles Rev. Auctioneer in % 2.47 56.09 58.94 59.95 72.56 88.60
selected Rev. all bidders in % 88.80 35.52 38.19 37.20 27.18 8.82
in each round Rounds 312.56 311.36 154.06 93.36 19.80 25.00

Preselect20 Efficiency in % 99.80 99.80 99.80 99.80 99.52 99.24
20 best bundles Rev. Auctioneer in % 55.40 66.51 65.24 65.24 66.44 76.77
preselected Rev. all bidders in % 44.39 33.28 34.56 34.56 33.06 22.50
before the auction Rounds 217.24 205.62 78.64 78.12 32.56 29.88

Heuristic Efficiency in % 84.14 84.50 96.24 96.10 99.75 97.73
5 random bundles Rev. Auctioneer in % 6.06 54.98 59.04 59.59 73.82 88.35
out of 20 best Rev. all bidders in % 78.26 29.75 37.10 36.43 25.90 9.33

Rounds 789.24 788.24 268.62 158.12 21.20 25.08

Table 2.3: Performance of iterative combinatorial auctions with differing Bidding
Agents for the Transportation value model

bundles with significant competition, which is due to the underlying topology
of transportation networks and the fact that only a few bundles are of interest
to every bidder. For the same reason, the level bidders could successfully
collude and significantly increase their payoff.

Below we describe the main findings for every type of the bidding strategy, for
the case when all bidders in the auction follow it.

2.2.8.1.1 Straightforward Bidder Our computational experiments with
straightforward bidders and NLPPAs yielded outcomes in line with the theory.
All NLPPAs were efficient. iBundle(3) and dVSV achieved VCG outcomes
only when the BSC condition was satisfied. When BSC was not satisfied,
iBundle(3) and dVSV resulted in higher prices. In the Transportation value
model we could observe cases where the prices in NLPPAs were up to 250%
higher than in the VCG auction (see Figure 2.1), whereas in the Real Estate
and Pairwise Synergy value models, the price increase was low (see Figures 2.2
and 2.3).

The CreditDebit auction always resulted in VCG payoffs, as theory predicts.
iBundle(2) did not result in an efficient outcome for some instances, but these
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(a) Straightforward (b) Forgetful

Figure 2.1: Efficiency and revenue of iterative combinatorial auctions for the
Transportation value model
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(a) Straightforward (b) Forgetful

Figure 2.2: Efficiency and revenue of iterative combinatorial auctions for the Real
Estate 3x3 value model
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(a) Straightforward (b) Forgetful

Figure 2.3: Efficiency and revenue of iterative combinatorial auctions for the
Pairwise Synergy value model
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occasions were rare and the loss of efficiency generally very low. One reason
is, that iBundle(2) is efficient for superadditive valuations Parkes and Ungar
(2000), which is mostly the case in our value models.

In the linear-price auctions (ALPS and CC) the straightforward bidder was
less efficient than NLPPAs. Still, their efficiency was 95.16% and 98.64%
on average for the Real Estate value model, and even more than 99% for
the Pairwise Synergy and the Transportation value model. It is important
to note that with the straightforward bidder, we observed cases in ALPSm
and CC auctions, where efficiency was as low as 70%. If bidders follow the
straightforward strategy in ALPS and the CC auction, it can happen that they
do not reveal certain valuations that would be part of the efficient solution
Bichler et al. (2009). In the presence of activity rules, bidders are forced to
bid on more than just their demand set. This will have a positive effect on the
robustness of ALPSm format as we will see when we discuss powerset bidders.

2.2.8.1.2 Forgetful Bidder NLPPAs were fairly robust against forgetful
bidders, and the efficiency losses were low. Only the number of auction rounds
increased significantly across all value models. For example, the CreditDebit
auction took on average 139.96 auction rounds in the Real Estate value model
with straightforward bidders and 550.54 rounds with forgetful bidders. Inter-
estingly, the linear price auctions were hardly impacted at all compared to the
straightforward bidding strategy. Also the average number of auction rounds
remained almost the same.

2.2.8.1.3 Level Bidder As expected, the collusive level bidder causes an
efficiency loss. In the Real Estate value model efficiency dropped to around
90% in all auction formats and also the auctioneer revenue was not signifi-
cantly different (t-test, α = 0.05). In the Transportation value model, this
strategy was very successful. Here, the level bidder achieved a significantly
higher revenue than with a straightforward strategy, however, at the expense
of efficiency, which dropped to around 84% on average. For the Transportation
value model, the competition is focused on a small number of items or legs in
the transportation network and it is more likely that a valid allocation is found
earlier when all bidders follow the level bidding strategy.

In the CreditDebit auction the high bidder revenue caused by overestimated
price discounts due to the bid shading in the level strategy. In all auction
formats, however, there are also instances in which the auctioneer gained more
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and the bidders gained less compared to the straightforward bidding strategy.
This strategy works only in an expected sense if all bidders adhere to it. It
does not represent a stable equilibrium.

2.2.8.1.4 Powerset Bidder For the iBundle(2), iBundle(3), dVSV, and
the CreditDebit auction, this strategy led to a significant decrease in effi-
ciency (t-test, α = 0.05). For iBundle auctions the efficiency loss was lower
than for dVSV and the CreditDebit auctions. Apparently, the price calcula-
tion algorithm using minimally undersupplied set is less robust against non-
straightforward bidding.

In contrast, the efficiency and auctioneer revenue share of ALPS auctions was
equal or higher compared to the straightforward strategy in all value mod-
els. Simultaneously the number of rounds was significantly reduced. The CC
auction performed well in homogenous markets, modeled by Real Estate and
Pairwise Synergy value models. Typically, these linear-price auctions are used
with strong activity rules to encourage the revelation of many bundle prefer-
ences already in the early rounds of an auction, which might lead to a similar
strategy with bidders in the field.

2.2.8.1.5 Preselect Bidder The efficient solution cannot be found if it
includes the bundles which are omitted by the preselect bidder. In the Trans-
portation value model this had little effect on efficiency compared to straight-
forward bidding, since there is only a small number of interesting bundles for
every bidder. In other value models we could see a significant decrease in all
measurements.

2.2.8.1.6 Heuristic Bidder Heuristic bidder, who bids on ramdom 5 of
his 20 best bundles, causes significant efficiency losses in all NLPPAs. We
observed the highest efficiency losses for dVSV and the CreditDebit auction.
The reason for the low revenue of the CreditDebit auction is that discounts
are miscalculated if not all bundle bids are available at the end. In addition,
the more complex price update rule is less robust against non-straightforward
bidding.
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2.2.8.2 Sensitivity wrt. Straightforward Bidding

We have conducted another set of auctions using Real Estate and Transporta-
tion value models to measure the effect of one single bidder deviating from the
straightforward strategy, while the rest adheres to it. For each setting, we run
50 auctions using iBundle(3), iBundle(2) and ALPSm formats.

The results follow the same pattern over all three ICA formats and both value
models. The allocative efficiency was not impacted, except that already a
single level bidder reduced the efficiency significantly. The level bidder also
suffered highest revenue loss of 46% of his revenue, followed by the preselect
bider, who had just a minor loss of less then 5%. All other bidder types did not
change the auction outcome significantly. This indicates that the equilibrium,
which brings significant increase in revenue to level bidders when all bidders
follow this strategy, is not stable.

2.2.8.3 Threshold problem

The threshold problem is characterized by a situation where several local bid-
ders are competing against a global bidder. The local bidders are interested in
individual lots or small bundles, and the global bidder tries to win a larger set
of lots. A successful auction design shall help the local bidders to coordinate
their bids in order to win against the global bidder in case such an allocation
is efficient.

We analyzed different ICA designs with respect to the threshold problem using
the Real Estate value model with dedicated local bidder for each of the nine
lots and two global bidders. The valuations were selected such that they
impose a high competition between local and global bidders. In 20 selected
instances the efficient allocation included the nine local bidders and not the
global bidders and the allocation with global bidders was within 10% from
the optimal solution. We focused on the straightforward, the forgetful, the
heuristic, and the powerset10 bidder.

hhhhhhhhhhhBidding Agent

ICA Format
CreditDebit dVSV iBundle(3) iBundle(2) ALPSm Clock VCG

Straightforward 20 20 20 18 19 20 20
Forgetful 1 1 6 5 19 18
Powerset10 1 1 4 2 19 19
Heuristic 0 0 4 4 20 20

Table 2.4: Number of instances of the threshold problem in iterative combinatorial
auctions, where small bidders actually won
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As Table 2.4 illustrates, both linear and non-linear auction formats can solve
the threshold problem with straightforward bidding. If the bidders deviated
from straightforward bidding, the NLPPAs failed to solve the threshold prob-
lem in most cases. The reason is that the NLPPAs do not preserve information
about bids submitted in previous rounds. Only straightforward bidders al-
ways include old bids with updated prices since the demand set can only grow
throughout the auction given the NLPPA price update rule. Strong activity
rules, as suggested by Mishra and Parkes (2007), can be used to force bidders
to conform to the straightforward bidding strategy and improve performance
of NLPPAs in this situation. However such strong rules require the bidder
to evaluate and rank all bundles in advance and virtually transform the auc-
tion in to a sealed-bid format, thus eliminating the advantages of an iterative
preference elicitation process.

2.2.8.4 Speed of Convergence

The CC auction had the lowest number of auction rounds in all treatments.
On average, NLPPAs took three times as many rounds as linear-price based
auctions (Figure 2.4). In contrast to the theory that expects a lower number of
auction rounds in dVSV compared to iBundle(3), we observed a higher number
of rounds in dVSV. This happens because the minimally undersupplied set is
not unique and we used the smallest possible minimally undersupplied set
we found, which resulted in small price steps. For the same reason, non-
straightforward strategies caused the highest increase in rounds for dVSV and
CreditDebit auctions, compared to other formats. The speed of convergence
of these two formats can be improved by increasing prices on several disjunct
minimally undersupplied sets in every round.

2.2.8.5 Impact of Increasing Competition

Auctions are expected to yield more revenue if there is more competition. Table
2.5 presents results of different auction formats using the Real Estate value
model and a varying number of bidders. Each number represents an average
of 10 auctions with same setting and different random seeds for the value
model. We observed the expected behavior in NLPPAs and in the ALPSm
design. The average revenue share in the CC auctions decreased from 5 to 7
bidders. Linear price-based auctions and the iBundle design showed a lower
number of rounds with an increasing number of bidders. In contrast, the
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Figure 2.4: Rounds needed by iterative combinatorial auctions

dVSV and CreditDebit auctions showed a massive increase of rounds. This is
explained by different price update mechanisms. The iBundle design, which
increases prices for all unhappy bidders, will generally increase more prices
when the competition is higher. The dVSV and CreditDebit auctions, which
increase prices for a minimally undersupplied set of bidders, will be able to
find a smaller minimally undersupplied set (typically with only one bidder)
when the competition increases, and therefore increase prices for less bundles
in each round.

ICA Format Credit- dVSV iBundle iBundle ALPSm Clock VCG
Bidding Agent Debit (3) (2) truth
4 bidders Efficiency in % 99.74 100.00 100.00 100.00 96.69 95.88 100.00
BSC fulfilled Rev. Auctioneer in % 78.49 80.34 80.34 79.96 84.17 73.82 79.96
100 % Rev. all bidders in % 21.25 19.66 19.66 20.04 12.52 22.06 20.04

Rounds 195.84 201.46 83.40 83.40 35.66 103.06 1.00

5 bidders Efficiency in % 99.94 100.00 100.00 100.00 96.52 95.06 100.00
BSC fulfilled Rev. Auctioneer in % 84.48 84.94 84.94 83.16 88.09 77.27 83.16
90 % Rev. all bidders in % 15.46 15.06 15.06 16.84 8.43 17.79 16.84

Rounds 148.96 150.10 143.72 146.28 31.14 68.92 1.00

6 bidders Efficiency in % 99.91 100.00 100.00 100.00 94.74 97.06 100.00
BSC fulfilled Rev. Auctioneer in % 87.00 87.20 87.39 85.42 88.04 82.44 85.42
50 % Rev. all bidders in % 12.91 12.80 12.61 14.58 6.69 14.62 14.58

Rounds 132.58 133.42 207.10 209.62 30.68 61.86 1.00

7 bidders Efficiency in % 99.89 100.00 100.00 100.00 94.35 96.98 100.00
BSC fulfilled Rev. Auctioneer in % 88.29 88.61 88.79 86.38 87.94 84.45 86.38
40 % Rev. all bidders in % 11.59 11.39 11.21 13.62 6.41 12.54 13.62

Rounds 122.06 122.82 271.46 274.54 29.92 52.58 1.00

Table 2.5: Comparison of ICAs with differing competition levels

2.2.8.6 Impact of BSC

We have discussed that if BSM is satisfied, NLPPAs will lead to Vickrey prices.
Due to computational reasons, we have restricted ourselves to analyze the
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somewhat weaker BSC condition only. The results based on the Real Estate
value model, where the BSC condition was fulfilled in approximately half of
the randomly generated instances, and all agents were following the straight-
forward strategy are summarized in Tables 2.6 and 2.7, as well as Figure 2.5.
As expected, prices and consequently revenue were higher than the VCG out-
come in NLPPAs. For linear-price auctions, the impact was not significantly
different.

hhhhhhhhhhhhRevenue
ICA Format

iBundle(2) iBundle(3) dVSV CreditDebit Clock ALPSm

Min 98.86 100.00 100.00 100.00 102.40 86.68
Mean 99.87 100.00 100.00 100.00 107.51 97.25
Max 101.72 100.00 100.00 100.00 120.81 116.51

Table 2.6: Revenue in % to the VCG outcome, in the Real Estate value model with
BSC fulfilled

hhhhhhhhhhhhRevenue
ICA Format

iBundle(2) iBundle(3) dVSV CreditDebit Clock ALPSm

Min 96.55 100.52 100.52 100.00 95.71 84.56
Mean 102.48 103.31 103.30 100.00 111.39 98.61
Max 112.34 111.69 111.69 100.00 127.99 119.25

Table 2.7: Revenue in % to the VCG outcome, in the Real Estate value model with
BSC not fulfilled

Figure 2.5: Impact of BSC on prices for straightforward bidding with the Real
Estate value model

2.2.8.7 Summary

Interestingly, we had similar results regarding efficiency, auctioneer’s revenue
share, and auction rounds across all value models. Only the Transportation
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value model was different wrt. the high level of ask prices compared to the
VCG auction, and also its stability against preselect bidding. The main reason
was the low number of bundles with significant competition that is due to the
underlying topology of transportation networks. For the same reason, the level
bidders could successfully collude and significantly increase their payoff.

Linear price auctions were robust against all strategies, except the level strat-
egy, which assumes collusive behaviour and makes it difficult for any auctioneer
to select an efficient solution in general. NLPPAs were robust against forgetful
bidders, but at the expense of a high number of bidding rounds. There were
significant efficiency losses in NLPPAs with heuristic bidders, powerset, level,
and preselect bidders.

dVSV and CreditDebit auctions have a significantly lower efficiency than
iBundle(3) with heuristic and powerset bidders. The main difference between
these formats is the set of bidders, for which the ask prices are increased.
Increasing the ask prices on a minimally undersupplied set of bidders is less
robust against these strategies. Note that Proxy agents, which can be used to
enforce straightforward bidding Mishra and Parkes (2004), cannot detect and
prevent level and preselect bidding strategies.

2.2.8.8 Conclusion

NLPPAs such as iBundle(3), dVSV, iBEA, and CreditDebit auctions have
greatly advanced our understanding for the design of efficient auction mech-
anisms in the realm of private valuations. These formats are modeled after
well-known optimization algorithms that lead to efficient solutions, provided
that bidders follow the straightforward strategy.

Since these are exact algorithms, the auction generally requires many rounds,
where all 2m valuations of all losing bidders are elicited. Both the high num-
ber of auction rounds and the necessity of the straightforward bidding strat-
egy motivate the use of proxy agents, which need to be hosted by a trusted
third party, which essentially reduces the auction to a sealed-bid event for the
bidders. While there are incentives for bidders to follow the straightforward
strategy in these auctions, it is not always acceptable to use proxy agents, nor
can they prevent certain strategies, such as level bidding.

In contrast, linear price combinatorial auctions follow a more heuristic ap-
proach to find the optimal solution. While our results achieve high efficiency
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values on average, one can easily construct examples, where linear price CAs
cannot be efficient Bichler et al. (2009). There are a few remedies, such as the
proxy phase in the Clock-Proxy auction Ausubel et al. (2006) that addresses
these inefficiencies, but these designs have not yet been thoroughly analyzed
Blumrosen and Nisan (2005).

Linear-price designs suffer from the fact that they cannot be 100% efficient,
but they have shown to be more robust against many strategies and bear a few
advantages. The main advantage is the a linear number of prices needed. This
reduces the communication from the auctioneer to the bidders and presents a
guideline to help bidders find profitable items and bundles Kwon et al. (2005).
They also exhibit a low number of auction rounds compared to NLPPAs.

Overall we have seen that if bidders do not express their valuations correctely,
the performance of all auction formats suffers. Suboptimal bidding (with re-
spect to efficiency) may happen because of strategic considerations in some
cases but even if the bidders want to express their valuations correctely they
might fail because of the complexity to do so.

2.2.9 Applicability to Procurement Auctions

Multi-unit combinatorial auctions, will likely lead to economic inefficiencies for
procurement settings, as bidders can realistically only express a very small frac-
tion of their bids of interest. For a combinatorial auction with I items, a bidder
can already submit 2I−1 possible bids. If you also allow for k quantities of each
item, the number of possible bids grows even faster (φ(I, k) =

∑I−1
j=0 k

I−j(n
j

)
).

For example, with 10 items it would be possible to specify 1023 bids in a single-
unit combinatorial auction. However, with 6 allowable quantities for each item
the supplier can possibly specify more than 282 million bids. Clearly, bidders
will only be able to submit a small proportion of the possible bids of interest,
and the auctioneer will most likely not find the efficient, maybe not even a
feasible allocation.

There are two possible remedies: Either the auctioneer simplifies the auc-
tion and reduces the number of possibilities a bidder can bid on through pre-
bundling or other forms of simplification Milgrom (2009), or he provides a
more powerful bidding language that allows to describe his preferences in a
concise way.

35



CHAPTER 2. COMBINATORIAL AUCTIONS AND THEIR
APPLICABILITY TO MULTI-UNIT SETTINGS

2.3 Volume Discount Auctions

Volume discount bids allow for a compact representation of bids in markets
with economies of scale. These bid types define unit prices for specific volume
intervals as stepwise linear functions.

2.3.1 Bidding Languages

The earlier literature on supplier selection and volume discounts includes stud-
ies of various discounting schemes, such as unit discounts Silverson and Peter-
son (1979), inventory models with demand uncertainty and incremental quan-
tity discounts and carload quantity discounts Jucker and Rosenblatt (1985);
Lee and Rosenblatt (1986). Munson and Rosneblatt (1998) provide a per-
spective on discounts used in practice, while Chaudhry et al. (1993) discuss a
vendor selection model in the presence of price breaks.

Davenport and Kalagnanam (2000) were among the first authors to focus on
auctions with incremental volume discount bids. An application thereof has
been described in Hohner et al. (2003). Their bidding language requires suppli-
ers to specify continuous supply curves for each item. Eso et al. (2001) further
advance the ideas described in Davenport and Kalagnanam (2000) and allow
for discontinuities and decreasing slopes in the bids.

There has also been some work on total quantity discounts, where the unit price
starting at a particular quantity is charged for the entire quantity purchased,
not only for the units above the threshold quantity. Katz et al. (1994) discuss a
procurement decision support system and a respective mathematical program
with total quantity discounts. Crama et al. (2004) investigate a problem, where
a chemical company needs to purchase a number of ingredients from one or
more suppliers with a total quantity discount. Here, only one discount rate
is used for all ingredients. Crama et al. (2004) also need to decide how to
use the purchased ingredients to manufacture the desired quantities of the end
products, where there are alternative recipes, which is different to the problem
analyzed in this thesis.

2.3.2 Winner Determination

While the academic literature is still in its infancy, a number of companies such
as CombineNet, Emptoris, Iasta, and TradeExtension Gartner (2008) provide
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decision support systems allowing for various types of discounts and complex
bid types. These tools enable purchasing managers to explore different award
scenarios based on various operational or strategic side constraints. Respective
software vendors offer a wide variety of constraints among several dozens or
even hundreds of constraint classes Bichler et al. (2006).

The general problem has been discussed in Goossens et al. (2007). They pro-
vide an interesting contribution to the supplier selection problem with total
quantity discounts and a proof, showing that no polynomial-time approxima-
tion scheme with constant worst-case ratio exists for this supplier selection
problem and that the decision version is strongly NP-complete.

A complexity analysis of a similar allocation problem with linear demand curve
bids can be found in Sandholm and Suri (2001). These types of bids describe
piecewise linear unit-price functions of the demand and the authors argue that
they can approximate any function arbitrarily close. Note that also step unit-
price functionsm, as the ones that will be discussed in this paper, become
piecewise linear total cost functions. Dang and Jennings (2003) discussed
market clearing in multi-unit combinatorial auctions with supply function bids,
where suppliers specify quantities and prices for packages of items.

2.3.3 Open Issues

We have worked with a number of procurement managers in the past few years
to evalute why there is very little application. While the above academic work
covers important requirements, many real-world cases demand for a more com-
prehensive bidding language for practical applicability. In many applications,
some suppliers provide incremental volume discount bids, others total quantity
discount bids, or overall lump-sum discounts on total spend.

As outlined, in this work, we considerably extend the expressiveness of the
bidding languages discussed in the literature and propose a mixed integer pro-
gramming formulation to solve practically relevant problem sizes. In contrast
to previous work, we suggest a parametric multi-product cost function to gen-
erate realistic bids and analyze different discount policies based on cost and
description length.
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Chapter 3

The LESS Bidding Langue

3.1 Bidding Language

In this section, we will introduce a bidding language allowing to describe a
supplier’s cost function. We focus on markets with economies of scale and
scope, where bidders typically express discounts in order to reflect these eco-
nomic characteristics. A language in computer science and logic assigns a
semantic to a syntax. Bidding languages have been studied in the context of
combinatorial auctions Abrache et al. (2004); Boutilier and Hoos (2001); Nisan
(2006). However, this research typically focuses on multi-item, but single-unit
negotiations.

3.1.1 Description Length of Bidding Languages

There is a vast literature in Microeconomics and Econometrics on modeling and
estimation of multi-product cost functions. Such multi-product cost functions
describe the cost of production cs : RI → R as a function of the total quantity
produced in all products or items i ∈ I for a supplier s ∈ S. Depending
on industry and company specifics, different types and parametric shapes of
such cost functions can be found, sometimes explicitly given based on data
from cost accounting. A firm has economies of scale (i.e., is operating in
a downward sloping region of the average cost curve) if and only if it has
increasing returns to scale. Likewise, it has diseconomies of scale (is operating
in an upward sloping, convex region of the average cost curve) if and only if it
has decreasing returns to scale.
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Bidding languages should be expressive enough to allow for the description of
different shapes that multi-product cost functions can assume. At the same
time, the bidding language should allow to describe bids in a compact way
with only a few parameters. In general, expressivity of a bid language should
increase efficiency of economic mechanisms, since bidders are able to better
describe their preferences (Benisch et al., 2008; Sandholm, 2008). Combinato-
rial auctions allow bidders to express all types of synergies across items, but
the number of possible bids in large-scale combinatorial auctions is typically
beyond what human bidders can express. There is a number of articles on
the communication complexity of such auctions Nisan and Segal (2001). As
we have discussed in Section 2.2.9, this phenomenon becomes even worse with
multi-unit combinatorial auctions. Compact bidding languages, which allow
bidders to describe their preferences on multiple items and quantities as a
function, can alleviate this problem.

Research in Artificial Intelligence has long dealt with questions of adequate
knowledge representation and reasoning for a particular application domain.
The most important decision to be made, is the expressivity of the knowledge
representation. Typically, the more expressive languages are, the harder it is
to automatically derive inferences. In a general way, this has been shown for
formal languages, where regular languages (type-3) can be decided in linear
time, whereas the general class of recursively enumerable languages (type-0) re-
quire a Turing machine. In logic, the boolean satisfiability problem (SAT) is a
well-known NP-complete decision problem, whereas reasoning in propositional
Horn logic (HORNSAT) is P-complete. In contrast, satisfiability of first-order
Horn clauses is undecidable Sowa (2000). So, there is also a trade-off be-
tween the expressivity of a bidding language and the time to solve respective
allocation problems using different inference mechanisms.

The pricing rules introduced in the LESS bidding language could be described
as Horn clauses. In this paper, we will solve the allocation problem as an
MILP and not as a logic program, as MILPs are geared to optimization with
discrete and continuous variables, which is required in our case, while logic
programming has its strength when reasoning on discrete logic variables. There
is a substantial literature on the relationship between mixed integer linear
programs (MILPs) and logic programs. For example, (Chandru and Hooker,
1999) showed that many logical inference problems can be solved as a relaxed
linear program even though they are not Horn clauses.

We will address the hardness of the winner determination problem given an
LESS bidding language in the next section. For now, we want to concentrate
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on the expressiveness of a bidding language. Benisch et al. (2008) try to define
general notions of expressiveness of economic mechanisms. This is an impor-
tant new strand in the literature, as many of the strategic complexities and the
inefficiencies of popular auction mechanisms such as split-award auctions or
the simultaneous multi round auction (SMR) can be attributed to the limited
expressiveness of the bidding language used. A good example is the exposure
problem arising in SMR that can be solved by allowing for package bids in
combinatorial auctions (Cramton et al., 2006).

Milgrom (2009) also shows that in certain settings additional expressiveness
can give rise to additional unwanted equilibria and poor efficiency. There-
fore, he argues for simplified mechanisms with restricted message spaces and
shows that, if carefully designed, simplification can avoid unwanted equilibria,
without hurting efficiency. Finding good simplifications, however, is difficult
without a good understanding of the bidders’ valuations or cost functions.

Definition 10. A compact bidding language allows to define the bid price as
a function ps : RI → R of quantity for one or more items i ∈ I.

We will also use the term bid function for ps in this paper. Such a bid function
has a particular parametric form. Clearly, the most compact format would be
to reveal the parameters and the specification of the true total cost function in a
direct revelation mechanism to an auctioneer. For example, we will use a multi-
product cost function with eight parameters for the experimental evaluation
in section 5.1. The parametric shape of such cost functions might be non-
linear and different among suppliers and industries, which is just one of the
reasons, why the true specification of the function is typically not revealed
in practice. It is rather common to specify volume discounts or markups for
economies or diseconomies of scale. Such volume discounts can be formulated
as piecewise-defined linear functions, which approximate the underlying cost
curve. Therefore, such bids are typically an approximation of the underlying
cost function, even if bidders are willing to reveal their costs truthfully. Let us
now introduce description length as a measure for how compact bidders can
describe information about their preferences or their underlying cost function.

Definition 11. The description length of a bid consists of the bits to describe
the parameters of the bid function ps for a given maximum approximation
error, εmax, to the underlying utility or cost function.

Bidding languages should allow for a close approximation of wide-spread types
of cost functions, but the same time have a low description length. A bad
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approximation will make it difficult for the auctioneer to find an efficient al-
location. Multi-unit bundle bids in combinatorial auctions allow for close ap-
proximations, as they only specify discrete points but at the expense of a huge
number of bids required to describe a bidder’s costs.

3.1.2 The LESS Bidding Language

Existing bid types in the literature support specific types of either incremen-
tal volume discount or total quantity discounts, such as in Davenport and
Kalagnanam (2000) and Goossens et al. (2007). In contrast, bid languages
we observed in practice exhibit substantial structural variation across bidders.
Offers from suppliers can come in any combination of incremental or total
quantity discounts, depending on multiple conditions. To accommodate the
richness observed in practice one needs a language that allows for different
discount types, denoted Rd.

In case of diseconomies of scale, for example, when the volume awarded is be-
yond the production capacity of a supplier, he might want to charge respective
markups Rm to cover his increased per-unit costs. While markups are concep-
tually equivalent to volume discounts, we will use a separate notation Rm in
the next section, as they need to be modeled differently in our MIP.

In addition, we regularly observed lump sum discounts Rl, which describe
refunds of part of the total price. For example, if the volume purchased exceeds
a threshold, a supplier might be willing to reduce the overall payment by a
fixed amount Rl = $10, 000 on the total price. These lump sum discounts Rl

can also be defined on spend Sl or quantity Ql and are often used to describe
economies of scope.

In LESS, bidders should be able to express such different types of discounts.
Every supplier s ∈ S submits a base price Pi,s for every item i ∈ I and the
maximum quantity Ei,s he is willing to supply. In addition, he specifies volume
discounts d ∈ D, lump sum discounts l ∈ L, and markups m ∈ M to modify
the base price based on certain spend conditions. The total bid price function
ps : RI → R of a set of items I can be written as

ps(x1, ..., xI) =
∑
i∈I

Pi,sxi,s −
∑
d∈D

Rdyd1{Cd} +
∑
m∈M

Rmym1{Cm} −
∑
l∈L

Rl1{Cl}
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where Rd describes a volume discount per unit that is awarded on a quantity yd
if a spend condition Cd is true, e.g., after the quantity exceeds a certain lower
bound on quantity, Qd, or spend, Sd. Note that Qd and Sd can be defined on a
particular item provided by the supplier or also a set of items by this supplier.
We will use the term ”discount interval” and refer to spend conditions, which
define a unit price for a particular quantity interval. Volume discounts of a
specific bidder can be valid for the total quantity purchased (total quantity
discounts) or for the amount exceeding a pre-specified threshold (incremental
(volume) discounts). This also holds for markups Rm. Lump sum discounts
Rl are defined on overall spend or quantity, not on per unit.

Spend conditions (C) are an important language feature, which allow for much
flexibility. By allowing conditional discounts and markups with possibly mul-
tiple conditions, we are able to formalize all features of bids that have been
considered in the literature or we have encountered in practice. Spend condi-
tions can be defined on a set of items and be based on spend (S) or volume
(Q) purchased. For example, if spend on the items A and B is more than
$100,000, a supplier offers an lump sum discount of Rl = $4, 000. An elemen-
tary spend conditions C is treated as a literal in propositional logic such as
SA,B > 100, 000$ or QA > 2000. Composite spend conditions take the form of
a conjunction of m elementary conditions. So in general, a discount rule takes
the form of a Horn clause, with C1 ∧ C2... ∧ Ck =⇒ R. We limited discount
rules to Horn clauses, in order to keep the corresponding supplier quantity
selection problem of the auctioneer as concise as possible (see section 4.1).
Modeling disjunctions and conjunctions in the condition of such a discount
rule is possible as well, but rarely necessary as we found.

Definition 12 (Discount rule). A discount rule F is a Horn clause of the form
C1 ∧ C2... ∧ Ck =⇒ R, where

• Ck is a literal defined on spend levels or quantity levels for a set of items,
with k = {1, ..,K} being the set of respective spend conditions.

• R is a discount, i.e., a lump sum discount, an incremental volume dis-
count, a total quantity discount, or a respective markup.

The supplier is also able to specify disjunctive discount rules, i.e., two or more
rules cannot be active at the same time. For example, in case the supplier
purchases more than $10,000 from item A and B, there is a discount of $1.77.
Alternatively, if the supplier buys more than 5,000 units from item A, the
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discount is $1.02. Only one of these two discounts is eligible, and the auctioneer
will choose the discount that minimizes his total cost.

Definition 13. An LESS bid is a tuple (P, E, H, K), where

• P is a set of base unit prices for each item i ∈ I,

• E is a set of maximum quantities Ei,s that a supplier s can provide for
each item i ∈ I,

• H is a set of discount rules F ∈ H, and

• K is a set of disjunctions specified on the set of rules in H.

LESS provides expressiveness at low description length by allowing to express
step functions to describe the average unit costs of a supplier, or the respective
piecewise linear functions describing the total cost function cs(x).

Volume discounts of this sort are also referred to as second degree price dis-
crimination according to Pigou (1946). In LESS we ignore first or third degree
price differentiation, as these pricing policies differentiate among individual
buyers or buyer segments, and we focus on bids that are sent to a particular
buyer as a response to a request for quotation (RfQ) or in a reverse auction.
We will also ignore product differentiation, where suppliers submit information
on multiple qualitative attributes such as product attributes, terms of delivery
and payment that might differentiate one supplier from another. Often, these
attributes are standardized in an RfQ in order to avoid having to trade-off
multiple qualitative attributes and price. Bidding languages for configurable
and multi-attribute auctions have been discussed by Bichler and Kalagnanam
(2005). According to Bichler et al. (2002), who distinguish among three di-
mensions in a business-to-business procurement negotiation, LESS is suitable
for multi-item, multi-unit negotiations.
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Chapter 4

The Supplier and Quantity
Selection

In the following, we will investigate a buyer’s problem, who needs to select
quantities from each supplier providing bids in LESS such that his costs are
minimized and his demand is satisfied. We will refer to this problem as Supplier
Quantity Selection (SQS) problem and introduce a respective mixed integer
program in the following.

4.1 The Supplier Quantity Selection Problem

Formulation

We will first introduce some necessary notation. We will use uppercase letters
for parameters (table 4.2), lowercase letters for decision variables (table 4.1),
and calligraphic fonts for sets (table 4.3). Sets indexed by a member of another
set represent the subset of all elements that are relevant to the index.

45



CHAPTER 4. THE SUPPLIER AND QUANTITY SELECTION

min
∑
i∈I

∑
s∈S

Pi,sxi,s −
∑
d∈D

Rdyd +
∑
m∈M

Rmym −
∑
l∈L

Rlcl +
∑
k∈K

Rkck

s.t. ∑
S∈S

xi,s ≥ Wi ∀i ∈ I (1)

xi,s ≤ Ei,s ∀i ∈ I, (2)
∀s ∈ S∑

i∈Id
xi,sd −Ddcd ≥ yd ∀d ∈ D (3d)∑

i∈Im
xi,sm +Bcm −Dm ≤ ym +B ∀m ∈M (3m)

Bcd ≥ yd ∀d ∈ D (4d)∑
n∈Nd

jn −
∑
e∈Ēd

ce ≥ |Nd| cd ∀d ∈ D (5d)∑
n∈Nl

jn −
∑
e∈Ēl

ce ≥ |Nl| cl ∀l ∈ L (5l)

|Nm|−1 (
∑

n∈Nm

jn + 1)−
∑
e∈Ēm

ce ≤ cm + 1 ∀m ∈M (5m)

|Nk|−1 (
∑
n∈Nk

jn + 1)−
∑
e∈Ēk

ce ≤ ck + 1 ∀k ∈ K (5k)∑
i∈In

Pi,snxi,sn −
∑
d∈Dn

Rdyd +
∑

m∈Mn

Rmym ≥ Snjn ∀n ∈ N (6l, d)∑
i∈I

xi,sn ≥ Qnjn ∀n ∈ N (7l, d)∑
i∈I

xi,sn −Qn < Bjn ∀n ∈ N (8m, k)

xi,s, yd, ym ≥ 0 ∀i ∈ I,
∀s ∈ S,
∀d ∈ D,
∀m ∈M

cd, cm, cl, ck, jn ∈ {0, 1} ∀d ∈ D,
∀l ∈ L,
∀n ∈ N ,
∀m ∈M,
∀k ∈ K

The objective function minimizes the product of all base prices Pi,s and quan-
tities xi,s of item i purchased of supplier s, subtracts the sum of all discounts
Rd and lump sum discounts Rl, and adds the markups Rm and lump sum
markups k.

The first constraints (1) ensure that the demand Wi is fulfilled, and the second
set of constraints (2) that the amount purchased from a product i does not
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FORMULATION

Decision Variables
Varaible Description Range Occurrence
xi,s Amount of item i bought from supplier s ∈ N0 |S| ∗ |I|
yd Amount active in discount d ∈ N0 |D|
ym Amount active in markup m ∈ N0 |M|
cd Indicator for discount d ∈ {0, 1} |D|
cm Indicator for markup m ∈ {0, 1} |M|
cl Indicator for overall dicount l ∈ {0, 1} |L|
jn Indicator for condition n ∈ {0, 1} |N |

Table 4.1: List of Variables in SQS

exceed the maximum quantity Fi,s provided by each supplier of each quantity.
The constraint sets (3d) and (3m) determine the relevant volume yd or ym, for
which the discount or markup resp. is defined, and B is a sufficiently large
number. For example, if Dd = 0, then (3d) defines a total quantity discount,
where yd = xi,s, otherwise, Dd is set to the threshold, after which the volume
discount is valid, as such describing an incremental volume yd = xi,s − Dd.
Typically, the discount intervals and markups hold for a single item, but they
can also be defined on multiple items i ∈ Id.

Parameters
Parameter Description
Pi,s Base price for item i form supplier s
Rd Amount (price decrease) of discount d
Rm Amount (price increase) of markup m
Rl Amount (lump sum payment) of lump sum discount l
Rk Amount (lump sum payment) of lump sum markup k
Wi Demand (want) for item i
Fi,s Quantitiy that supplier s can provide of item i
Dd Displacement for discount d
Dm Displacement for markup m
Sn Minimal spend for spend condition n
Qn Minimal quantity for spend condition n
B Big (enough) number

Table 4.2: List of Parameters in SQS

For each discount rule, we introduce a binary variable cd, cl, and cm. Such
decision variables are determined based on spend conditions, which we define
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in constraint sets (6-8). Constraint (4) makes sure that a discount is only
provided (yi,s > 0) if the respective binary variable for this discount, cd, is
true. Constraint sets (5d), (5l), and (5m) make sure that if a particular set
of spend conditions is given (jn = 1), which are a precondition for a discount,
markup, or lump sum discount, then also the respective binary variable cd, cl,
or cm is true. |Nd|, |Nm|, and |Nl| describe the number of conditions that need
to be true for the respective binary variable to become true. These constraints
also allow to specify sets of rules Ē ⊂ D ∪M∪L ∪ K, which cannot be active
at the same time as the respective rule.

Sets
Set Description
S Set of all suppliers
I Set of all items
D Set of all discounts
M Set of all markups
L Set of all lump sum discounts
K Set of all lump sum markups
In Set off all items included in spend condition n
N Set off all spend conditions
Nd Set off all spend conditions necessary for discount d
Nm Set off all spend conditions necessary for markup m
Nl Set off all spend conditions necessary for lump sum discount l
Nk Set off all spend conditions necessary for lump sum markup+ k
Ēd Set off all pricing rules that disable discount d
Ēm Set off all pricing rules that disable markup m
Ēl Set off all pricing rules that disable lump sum discount l
Ēk Set off all pricing rules that disable lump sum markup k

Table 4.3: List of Sets in SQS

The final sets of constraints (6 - 8) models individual conditions on spend or
quantity that need to be fulfilled for a particular discount rule in constraint sets
(5). For example, constraint set (6 l,d) specifies a minimum spend condition
for volume discounts and lump sum discounts. In words, if the total cost
including markups and discounts (not considering other lump sum discounts)
exceeds Sn, then an additional lump sum discount will be granted. Constraint
set (7 l,d) determines a minimum quantity condition used in volume and lump
sum discounts. Constraint set (8 m) defines a minimum quantity condition for
a markup rule.
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Goossens et al. (2007) describe the problem of selecting a set of suppliers
that offer a variety of items using total quantity discounts. The problem is re-
ferred to as TQD. They have provided a polynomial reduction of 3-dimensional
matching, a well-known strongly NP-complete problem, to TQD. Showing
that SQS is NP-complete is straightforward, as it contains TQD as a special
case.

Theorem 1. The decision version of the SQS problem is strongly NP-
complete.

Here, we refer to TQD’ as the decision version of the more-for-less variant of
TQD, and SQS’ as the decision version of SQS. Any input for TQD’ can
be solved with SQS’, and a solution to SQS’ would solve TQD’. SQS’ is
obviously in NP since given a solution it suffices to check the constraints and
the value of the solution.

While this shows that SQS is at least as hard as TQD to solve, it is interesting
to understand how the increased expressiveness of LESS impacts the empirical
hardness of the problem. As is often the case, the formulation of the problem
matters, and there are significant differences in runtime depending on the
model formulation (Hooker, 2009).

4.2 Scenario Analysis

We will focus on scenario analysis as a typical use case. During scenario
analysis, procurement managers typically use additional side constraints to
explore different award scenarios. For example, a purchasing manager might
be interested in an optimal allocation with a maximum of 5 winners, or the
optimal allocation, where the spend on an individual supplier is limited to 1
million dollars due to certain risk considerations. An ex-post analysis based on
already submitted bids also allows to analyze the cost of a particular constraint
by comparing the objective value of respective scenarios.

We will now discuss a number of side constraints that are important for pro-
curement managers and used during the scenario analysis. Purchasing man-
agers want to set a lower and an upper bound for the quantity a supplier can
win overall (V l

s , V u
s ) in (9), or on a particular item (V l

i,s, V
u
i,s) in (10). Also,

they want to limit the overall spend per winner (T ls, T
u
s ) in (11). In constraint

sets (12 & 13) the maximum number of winners L is restricted.

49



CHAPTER 4. THE SUPPLIER AND QUANTITY SELECTION

V l
s ≤

∑
l∈I

xi,s ≤ V u
s ∀s ∈ S (9)

V l
i,s ≤ xi,s ≤ V u

i,s ∀i ∈ I, (10)
∀s ∈ S

T ls ≤
∑
i∈Is

Pi,sxi,s −
∑
d∈Ds

Rdyi,d +
∑

m∈Ms

Rmyi,m ≤ T us ∀s ∈ S (11)∑
i∈I xi,s ≤ Bas ∀s ∈ S (12)∑
s∈S

as ≤ L (13)

as ∈ {0, 1} ∀s ∈ S

The number of scenarios can be huge, and it would be interesting for pro-
curement managers to know, which side constraints have the biggest impact
on total cost. For linear programs such information is provided by the dual
variables of respective side constraints. Such dual information is not readily
available for mixed integer programs and IP duality is a notoriously difficult
topic Guzelsoy and Ralphs (2007); Williams (1996). One can, however, fix
the binary variables to their optimal values and resolve the MIP as a linear
program. The resulting duals can then provide useful shadow prices for con-
straints such as (1), (9), (10), and (11). It can also be helpful to include the
right-hand sides of certain constraints as variables, and ask whether there is an
award scenario that improves the total cost by a certain percentage. This can
be achieved by constraining the objective function value accordingly. Overall,
sensitivity analysis can provide valuable feedback for procurement managers
during scenario analysis.

Scenario analysis can be challenging for the procurement manager, as there
are many different side constraints one can explore. It would be very valuable
to have dual information available that indicates, which constraints are most
binding, i.e., have the largest impact on total cost. Unfortunately, SQS is
a mixed integer linear program. The integrality constraints transform the
problem from a convex to a non-convex optimization problem and the linear
dual problem might have an objective function value that is strictly smaller
than the objective function of the primal problem. In this case, the dual
variables will not provide useful information.

The OR literature has addressed the problem of finding dual price interpreta-
tions to integer programs and MIPs (Williams, 1996). The classic work in this
area is Gomory and Baumol (1960). They add additional constraints to the LP
relaxation of the MIP, which define linear combinations of existing constraints,
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until the solution results in an integer solution. The resulting dual values can
be imputed back to the original constraints from which they were derived.
However, these prices are not unique as they depend on the sequence of cuts
introduced to the formulation and difficult to interpret economically. Guzelsoy
and Ralphs (2007) provide an up-to-date survey of the literature in this field.
They also describe a practical approach to sensitivity analysis on right-hand
side variables, using warm-starting functionality in modern MIP solvers. The
solvers return lower bounds for the problem with a modified right hand side us-
ing the information gathered from the branching tree of the original problem
solved . We ran experiments with and without warm starting in the open-
source solver Symphony (https://projects.coin-or.org/SYMPHONY/), which
provides such functionality. However, the results were not stable enough to
report.

Apart from dual information on individual constraints, it can be helpful to
include the right-hand sides of certain constraints as variables, and ask whether
there is an award scenario that improves the total cost by a certain percentage.
This can be achieved by constraining the objective function value accordingly.

4.2.1 Price Feedback in LESS

There is a huge literature on competitive equilibrium prices in iterative combi-
natorial auctions (Parkes, 2006). Linear as well as non-linear pricing concepts
in this literature have been developed only for simple bundle bids and a winner
determination without additional side constraints. With more complex bid-
ding languages and multiple allocation constraints in SQS it is unclear, how
such ask prices could be derived in LESS. However, feedback information is
important in every indirect mechanism to help bidders improve their bids and
become winning in the next round.

Mechanism design questions or any game-theoretical analysis of iterative mech-
anisms with LESS is beyond the scope of this work. Nevertheless, price feed-
back can be derived based on the WDP. We suggest a single-dimensional ask
price by calculating the height of the lump sum discount, a bidder would have
had to provide, in order to become winning. For this, a bidder s can specify
a certain vector of desired quantities x1,s, ..., xI,s and the auctioneer responds
by a respective lump sum discount Rask

l . This lump sum discount can be cal-
culated by resolving the MILP with a xi,s fixed to the amount that supplier
s wants to win on each item i ∈ I. This is similar in spirit to the winning
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levels described in Adomavicius and Gupta (2005) for combinatorial auctions,
although their calculation is different. Whether it is possible to perform sce-
nario analysis or derive respective ask prices in an interactive manner depends
on the time to solve realistic problem sizes. In the following, we will report on
experiments to analyze the empirical hardness of these problems.

52



Chapter 5

Experimental Setup

In this chapter we will introduce a valuation model called “CoP - Cost of
Production“ that generates instances that we will use in our experiments and
describe how we set the experiments up. We focused on the two main perfor-
mance meters we want to examine: the computation time dependent on the
problem size and the savings in spend versus simpler mechanisms.

5.1 Value Model ”Cost of Production“

The key component in an experiment with computational simulations is the
quality of the generated test data. As described by Leyton-Brown et al. (2000)
in their work about a test suite for combinatorial auctions “the lack of stan-
dardized, realistic test cases does not make it impossible to evaluate or com-
pare algorithms, it does make it difficult to know what magnitude of real-world
problems each algorithm is capable of solving, or what features of real-world
problems each algorithm is capable of exploiting“.

In their environment a test case consists of a set of bids for which the revenue
maximizing allocation shall be determined. In order to generate them they use
a model, called value model from here on, that provides a numerical value for
every possible bundle describing the value of it. This so called valuation can
then, depending on the assumed strategy of the bidders, translated into bids.
As them we will ”assume a sealed-bid incentive-compatible mechanism, where
the price offered [...] is equal to the bidders valuation.“ In a combinatorial
auctions setting, for every bundle and bidder a bid is placed with the bid price
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set to the valuation of the bidder. As we have seen in section 2.2.9 this would
lead to an unmanageable huge number of bids in our setting, and we want
to interpolate the cost function with fewer bids. Naturally the interpolation
method and quality have a big impact on the performance of the supplier and
quantity selection algorithm.

In order to make our value model realistic and close to business reality, we
derived it from the theory of cost of production in economics, as described
for example in Pindyck and Rubinfeld (2005). The cost of production is not
the only factor impacting the price of a good, but according to Kalecki (1991)
there are industries where the price is cost-determined.

5.1.1 Composition of Cost

The total cost describes the total economic cost of producing a given quantity
of an object. The graph of the cost of producing a given quantity of an object
is called a cost curve. There are several types of cost curves, which are all
related to each other. The most basic ones are total cost curves, plotting the
cost to produce a quantity of an object against the quantity produced. Average
total cost curves capture the relationship between the cost of producing one
copy of the object and the quantity that is produced. Finally marginal cost
curves are the first derivative of a total cost curve and represent the relation
between marginal (i.e., incremental) cost incurred and the quantity of output
produced.

The total cost is usually considered to be composed of fixed and variable cost.
In economics it is usually also differed between long and short run cost, but
for us only the short run cost is of interest, as it influences the prices directly.

5.1.1.1 Fixed Cost

Fixed costs differ from variable costs, as they are independent of the quantity
produced. They are not permanently fixed as sunk costs, but in relation to
the quantity of production for the relevant period. Consider the example of a
small logistics company where the cost of leasing a truck to deliver goods is
present independently of the amount of delivery done with it. As one can see
in figure 5.1 fixed costs lead to flat total costs and marginal costs that have
only a peak at the first unit but decreasing average total cost. Fixed costs that
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Figure 5.1: Total, average and marginal costs dependent on the number of units
purchased if only fixed costs of 1000 $ are present

can be spread against a bigger quantity are the primary sources of economies
of scale.

Figure 5.2: Total, average and marginal costs dependent on the number of units
purchased if only stepwise fixed costs of 200 $ are present

The assumption of costs that are fixed for all possible amounts is very narrow.
Therefore we included step costs, also called semi-fixed costs, that remain fixed
only over a range of units produced and increase to a higher level once a critical
level of output has been reached. In figure 5.2 it can be seen that the steps
are diminishing in the average cost perspective but not in the marginal cost
perspective. In our example, a second truck might be needed as the capacity
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of the first one is fully utilized.

5.1.1.2 Variable Cost

Variable costs on the other hand change, in proportion to the quantity that
is produced. In figure 5.3 we can see that linear variable costs on its own do
produce constant average and marginal cost. This can be interpolated easily
with a single price, both with incremental and total quantity discounts. In our
example this could be the cost for the fuel used, which is linear in the weight
of the truck.

Figure 5.3: Total, average and marginal costs dependent on the number of units
purchased if only variable costs of 1 $ are present

In economics literature Pindyck and Rubinfeld (2005) average cost is generally
thought to be U-shaped, because for low quantities the economies of scale
dominate until an optimal point from where the diseconomies of scale become
dominant.

In our example variable costs could relate to the costs of the labor needed for
handling the goods transported. For amounts that can be handled by regular
staff in time it is decreasing, but when the capacity is fully utilized the cost
is increasing because of the overtime work. Variable costs therefore have a
point from whereon they grow faster than linear with the amount purchased.
Together with fixed costs they combine to a U-shaped average cost function
as seen in figure 5.4. If there are not only superlinear variable cost present
but also stepwise fixed costs the average total cost gets ”W“-shaped as seen
in figure 5.5.
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Figure 5.4: Total, average and marginal costs dependent on the number of units
purchased if fixed costs of 1000 $ and superlinear variable costs are
present

Figure 5.5: Total, average and marginal costs dependent on the number of units
purchased if stepwise fixed costs of 200 $ and superlinear variable costs
are present

This makes the second derivative non-continuous and the approximation with
volume discounts hard. A possible way to avoid this, if the jumps in the cost
function are known, is to use lump sum markups.
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5.1.2 Parametrizable Cost Function

In order to generate simulation instances we need to define a function that
can on the one hand represent all the characteristics we have seen in the
previous section, and on the other hand it must be possible to parameterize
and repeatably randomize it.

5.1.2.1 Parametrizable Single Item Cost Function

We propose the following function to generate our instances with all available
parameters are summarized in table 5.1. Similar cost functions have been used
to estimate cost parameters of companies with multiple products or outputs
(Baumol, 1987; Evans and Heckman, 1984; Stewart, 2009) in economics.

ci,s(xi,s) = Bi,sdxi,s/zi,se+ αi,sxi,s + βi,s(xi,s/γi,s)
ρi,s

The first phenomenon we’ve seen are, possibly stepwise, fixed costs, which can
be distributed over an increasing number of goods for increasing demand, and
lead to decreasing average costs. This is modeled by the first element and
therefore parameter of the cost function Bi,s. This describes the item specific
stepwise fixed cost for item i,where z models the capacity bound, after which
an additional Bi,s of costs arise. Note, that with stepwise fixed costs present,
the cost function is not continuous any more.

Cost function Parameters
Parameter Description
Bi,s Item stepwise fixed cost of supplier s for item i
zi,s Capacity of production line for item i from supplier s
αi,s Linear variable cost of supplier s for item i
βi,s Slope of the nonlinear variable cost of supplier s for item i
γi,s Delay of the nonlinear variable cost of supplier s for item i
ρi,s Exponent of the nonlinear variable cost of supplier s for item i

Table 5.1: Single item cost function parameters

The second phenomenon is the, possibly non-linear, variable cost. We have
included αi,s describing the linear part of the variable costs, though this pa-
rameter is not by itself necessary in order to represent all the characteristics,
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because together with the fixed costs they allow different suppliers to be the
cheapest at different demand levels.

βi,s describes the slope of the nonlinear part of the variable costs for product
i and is also not indispensable but makes balancing between the fixed and
variable costs easier. ρi,s is the exponent of the nonlinear element in the cost
function, representing diseconomies of scale. The shape of the cost function
is very sensitive to this parameter and for values ≥ 1.3 it becomes dominant
even for moderate demand levels.

In practice we’ve seen the cost curves to be relatively flat and diseconomies of
scale to arise only for high demand levels but there quite sharp. In our cost
function this is made possible by γi,s which delays the effect of the nonlinear
part of the cost function. Problems instances with only a small flat proportion
of near minimal average costs are not only unrealistic but also atypically easy
to solve because large parts of the cost curves do not need to be considered.

5.1.2.2 Parametrizable Multi Item Cost Function

One of our key contributions is the possibility to include economies of scope and
therefore we also wanted to incorporate them into our experiments. The cost
function thereby must become a ”number of different good types”-dimensional
function, giving a cost for every possible combination of amounts of the goods.
There are two main sources of economies of scope, shared fixed costs, and
synergies(similarities) between items. Both can be added easily to the single
item cost function:

cs(x1, ..., xI) =

Asd
∑
i∈I

xi/Wie+
∑
i∈I

Bi,sdxi/zie+
∑
i∈I

βi,s(xi/γi,s)
ρ +

∑
i∈I

√
xi
∑
i 6=j

χi,j,sxj

As describes the fixed overhead cost of supplier s and χi,j,s is used to model
synergies between two products i and j. The term representing the synergies
is square rooted to make it a linear part of the cost function and can model
both economies and diseconomies of scope with negative and positives values
of χi,j,s. Table 5.2 gives a summary of all available parameters in the multi
item cost function.

Each of these parameters has to be chosen carefully in order not to degenerate
the resulting cost function.
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Cost function Parameters
Parameter Description
Ai,s Overhead cost of supplier s
Bi,s Item stepwise fixed cost of supplier s for item i
zi,s Capacity of production line for item i from supplier s
αi,s Linear variable cost of supplier s for item i
βi,s Factor of the nonlinear variable cost of supplier s for item i
γi,s Delay of the nonlinear variable cost of supplier s for item i
ρi,s Exponent of the nonlinear variable cost of supplier s for item i
χi,j,s Cross item cost synergy of supplier s for item i and j

Table 5.2: Multi item cost function parameters

5.1.2.3 Proposed Parametrization

Even the best parameterizable cost function will not generate meaningful test
instances if the parameters are not chosen carefully. For the related family of
knapsack problems it has been shown by Pisinger (2005) that the correlation
between the weight and the profit of an item has a big impact on the hardness
of the problem.

Figure 5.6: Cost function base case (not randomized)

The equivalence of this correlation in our setting would be the correlation
between the amount purchased and the costs for it. This maps to our obser-
vation, that instances where there is a large relatively flat area in the average
costs curves are harder. In figure 5.6 you can see the shape of the cost curve
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we used as a base case for our simulations. It includes all the properties we’ve
discussed in section 5.1.1 and features a large relatively flat area in the average
cost. In table 5.3 you can see which parameters were used to generate this cost
curve.

Variable Default value
Bi,s 5000.0
zi 33%
αi,s 20.0
βi,s 20.0
γi,s 60.0
ρ 15

Table 5.3: Parameters of the cost funtion in the proposed base case

On the other extreme instances that incorporate constant average costs are
trivial too, because then there are no payment modifiers needed to interpo-
late the cost curve and the formulation becomes a linear program without
integrality constraints.

5.1.2.4 Randomization

In order to generate random problem instances out of this parameterizable
cost function, the parameters need to be disturbed randomly. Here we need
to be careful to balance between generating instances with sufficient variation
and keeping the fundamental characteristics of the cost function.

The parameters for a randomized instance usually are drawn from a probability
distribution. By the central limit theorem, the sum of a number of random
variables with finite means and variances approaches a normal distribution as
the number of variables increases.

The prices for a product are affected by a large number of factors that clearly
have finite means and variances. Therefore we chose to draw all parameters
for the cost function of a specific instance from a normal distribution with the
mean being the base parameter as in table 5.3. The standard deviation was
set to values that gave a wide spectrum of shapes, but in average still yield a
“W”-shaped cost function and are summarized in table 5.4.

For every parameter there was a plausibility check added, which prevented
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inconsistent values and abolished the respecting instances. In figure 5.7 you
can see three examples of randomly parameterized cost functions.

Figure 5.7: Random instaces of the cost function for seeds 2,3 and 9

The similarity of the prices for equal amounts purchased from different sup-
pliers is another important factor that needs to be considered. For real world
products the prices from different suppliers are clearly correlated through sim-
ilar production standards and the market pressure nivellates disparities even
further.

In Leyton-Brown et al. (2002) the authors have shown that the number of
dominated bids is the key characteristic for the computational hardness of a
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Variable µ σitem σsupplier
Bi,s 5000.0 2500.0 500.0
zi 33% 25% 15%
αi,s 20.0 10.0 5.0
βi,s 20.0 10.0 5.0
γi,s 60.0 20.0 10.0
ρ 15 2.0 0.5

Table 5.4: Parameters of the cost funtion in the base (singe item) case

combinatorial auction instance, and many distributions proposed in the litera-
ture fail to generate a sufficient number of them. This leads to a misjudgment
of the problem size and interferes predictions of the running time. Analogously
to the dominated bids in Leyton-Brown et al. (2002) cost curves that are dom-
inated by other cost curves contain many payment modifiers that do not need
to be considered.

As seen in figure 5.7 the shapes of the cost functions for different seeds are
quite varying by design and a lot of them would be dominated if assigned to
the same item. Therefore we choose a two step process where we have drawn
the respective parameters for a cost curve per item. And in a second step
added additional variation for each supplier taking the realization of the initial
random variable as the mean of a new supplier-specific random variable. The
respective standard deviation values are shown in table 5.4 and three resulting
supplier specific cost curves are shown in figure 5.8.

The resulting cost curves together with the amount demanded already define
the optimal, meaning cost minimizing, solution of the problem. Translated into
a combinatorial auction instance, every possible combination of item amounts
requested would translate to a bid. The same would be possible in LESS by
specifying a payment modifier for every possible combination of item amounts
requested. This extreme approach clearly is a contradiction to our goal of
reducing the representation complexity for the bidders. Therefore the next
step will be to derive rules how simulated bidders could interpolate their cost
function with the possibilities LESS offers.
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Figure 5.8: Random instances of the cost function for seeds 2,3 and 9 and
different supplier realizations in dotted lines

5.2 Bid Generation

The bid generation describes the process of approximating the cost function
with LESS , similar to what has been described in ??. The resulting function
will be called bid interpolation function from here on.

Note, that in a real procurement auction suppliers might not want to reveal
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their true cost functions if it is not induced by the auction mechanism. For
combinatorial auctions this can be reached by a so called generalized vickey
auction for example as described in 2.2.2.1. Note further, that if the approx-
imation error gets large and the bid language does not allow to describe the
underlying cost function arbitrarily close, this might have an impact on the
bidding strategy and bidders might have an incentive to speculate.

The applicability or transformability of this mechanism to our problem would
be an interesting further work and is not examined in this thesis. A game
theoretical analysis only makes sense if we already have a working bidding
language and supplier selection process, and therefore we assume well behaving
bidders to evaluate the possible performance of our approach.

Accordingly we assume a direct revelation mechanism, where bidders try to re-
veal bids reflecting the underlying total cost function truthfully and as close as
possible without underbidding their costs. We analyze two treatments: Either
the number of discounts per item and the corresponding quantity intervals are
fixed, or the suppliers can supply an arbitrary number of intervals determined
by a predefined approximation error εmaxs .

5.2.1 Fixed Interval Bidding

Often in practical settings the boundaries of the price intervals are predefined
by the auction, as this only requires the bidders to submit a single number
per interval indicating the price valid in that interval. This also can be easily
implemented in a web form for example.

Predefining the intervals naturally limits the expressiveness of the bidding lan-
guage. In figure 5.9 you can see the bid interpolation functions of our standard
cost function without stepwise fixed costs using five equidistant intervals for
incremental and total quantity bids.

For total quantity bids, where the resulting interpolation function is piece-
wise linear in the intervals, one can see, that the bid interpolation function
overlaps with the cost function at the point of maximal average costs. As
total quantity bids describe a piecewise constant function in average costs this
point determines the minimal price at which the interpolation function never
lies below the cost function. As for total quantity discounts the price is valid
for the whole amount purchased, the resulting interpolation function intersects
the origin of the coordinate system in total costs, resulting in the typical saw

65



CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.9: Comparison of fixed interval bidding with 5 intervals

tooth shape. The approximation error increases with an increasing gradient of
the average cost curve.

With incremental bids on the other hand the price is valid only for the incre-
mental units and the total cost curve of the bid interpolation function dos not
incorporate any jumps. The resulting bid interpolation function is constant
on marginal costs and the approximation error depends on the gradient of the
marginal cost curve. As discussed in ?? the approximation error of incremental
bids is never greater than the approximation error of total quantity bids for
convex cost functions.

If the cost function itself does incorporate jumps, as generated by stepwise
fixed costs for example, this does no longer hold for all cases. The jumps in
total cost effects that the bid interpolation function for incremental bids does
no longer overlap with the cost function at the interval boundaries. Therefore
the approximation error can get arbitrarily big if a jump occurs close to an
interval boundary. Total quantity bids do not suffer from this effect but the
interpolation error also tends to increase with the presence of stepwise fixed
costs on a smaller scale.
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Figure 5.10: Comparison of fixed interval bidding with 5 intervals and stepwise
fixed costs

5.2.2 Fixed Approximation Error Bidding

The intention of LESS was to make it handle able for bidders to express their
cost function by reducing the number of priced needed. Therefore we investi-
gated the question how many priced are needed to express a cost function with
an bounded approximation error and which impact has this on computation
time and total spend.

To answer this question we implemented a simulated bidding agent that inter-
polates a given cost function with a given approximation error using as little
tiers as possible. It features greedy approach that generates maximally wide
intervals regarding the tolerable approximation error relative to the current
total costs, starting at a single item. In 5.11 you can see the resulting bid
approximation functions.

The large approximation errors for incremental bids with fixed intervals are
caused by disadvantageous interval boundaries. If bidders can define the price
breaks freely, as in LESS, a jump in the cost function can be interpolated with
an incremental markup followed by an incremental discount. The jump in
total cost translates to a spike in marginal costs, which can be interpolated
with an incremental interval of length 1.
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Figure 5.11: Comparison of fixed approximation error bidding with a maximum
error of 25%

For total quantity bidding the advantage of having freely settable price ranges
is not as outstanding but it allows the bidders to express their costs func-
tions as close as desired. For both discount types having freely settable price
ranges allows to interpolate any given cost function exactly by defining a price
individually for every possible quantity.
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5.2.2.1 Fixed Approximation Error Bidding with Lump Sum Mod-
ifiers

As pointed out in 5.1.1 jumps in the cost function cannot only be expressed as
a pair of an incremental discount and markup in LESS, but also by so called
lump sum markups. If lump sum markups are used to express jumps the net
cost function is convex again and incremental bidding reduces to piecewise
linear interpolation as described in ??.

Figure 5.12: Comparison of fixed approximation error bidding with a maximum
error of 25% without fixed costs

In figure 5.12 you can see the approximation of our standard cost function
where the fixed costs set to zero. This reflects the situation a bidder faces if
the fixed costs are already covered using lump sum markups. With no fixed
costs present the average costs are strictly increasing. Therefore there are for
incremental bidding only markups needed to describe the nonlinearity at high
amounts. For total quantity bidding the situation even improves more as the
apparent absence of fixed costs makes the total cost function go through the
origin of the coordinate system.
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Chapter 6

Experimental Results

In this chapter we will summarize the results of our simulation experiments.

6.1 Cost of Flexibility

Goossens et al. (2007) provided a tailor-made formulation for total quantity
discount bids, as well as computational results on randomly generated test
instances. In contrast, LESS provides bidders with more flexibility and allows
for other types of volume discounts and various spend conditions. Typically,
more flexibility and expressiveness comes at the cost of computational com-
plexity. It is interesting to see, if the expressiveness of LESS comes at a large
computational cost.

Therefore, in a first set of experiments, we used the synthetic bids, which were
kindly provided by Goossens et al. (2007) for a comparison. These experiments
are limited to bids with total quantity discounts only.

In their instances with 40 items, Goossens et al. (2007) generated an
upperbound-increase from one interval to the next, which was a random num-
ber between 10,000 and 50,000, while for instances with 100 items, the up-
perbound increase was a random number between 10,000 and 100,000. The
results of the formulation in Goossens et al. (2007) with a branch-and-cut ap-
proach and with the SQS formulation can be found in Tables 6.1 and 6.2. We
focus on the branch-and-cut results, since those provided the best results for
larger instances. Note that we have used CPLEX version 12.1, while Goossens

71



CHAPTER 6. EXPERIMENTAL RESULTS

SQS b&c Goossens b&c
Instances comp. time #nodes comp. time #nodes
S 10 40 3 0.08 9.3 0.09 0.3
S 10 40 5 0.17 16.4 0.15 10.9
S 10 100 3 0.13 5 0.12 0.2
S 10 100 5 1.13 31.1 0.55 3.2

S 20 40 3 0.16 10.9 0.12 0.5
S 20 40 5 0.87 36.7 0.50 4.7
S 20 100 3 0.49 17.1 0.34 2.1
S 20 100 5 2.40 32.1 1.17 2.1

S 50 40 3 0.79 34.6 0.51 2.7
S 50 40 5 5.87 102.9 2.99 16.5
S 50 100 3 2.45 28.0 1.45 2.1
S 50 100 5 21.67 94.8 10.45 14.7

R 10 40 3 0.07 6.7 0.09 2.1
R 10 40 5 1.10 85.5 0.59 30.5
R 10 100 3 0.22 7.2 0.14 2.6
R 10 100 5 3.814 70.8 1.50 31.7

R 20 40 3 0.29 18.7 0.29 9.5
R 20 40 5 3.76 138.5 1.81 68.5
R 20 100 3 1.41 25.9 0.83 8.1
R 20 100 5 29.75 274.9 6.81 70.1

R 50 40 3 2.01 71.3 1.67 81.6
R 50 40 5 26.90 346.5 14.18 140.9
R 50 100 3 12.75 91.9 8.84 43.8
R 50 100 5 451.84 996.0 61.71 216.8

Table 6.1: Comparison of SQS against the results by Goossens et al. (2007) (base
case)

et al. (2007) used version 8.1. Also, they used a Pentium IV 2 GHz computer
with 512 Mb RAM. Nevertheless, the comparison helps understand possible
penalties for a more expressive bidding language.
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SQS b&c Goossens b&c
Instances comp. time #nodes comp. time #nodes
S 10 40 3 0.05 6.2 0.14 0.4
S 10 40 5 0.16 12.6 0.49 23.2
S 10 100 3 0.09 2.1 0.29 6.8
S 10 100 5 1.05 26.4 2.48 66.5

S 20 40 3 0.12 8.9 0.45 5.2
S 20 40 5 0.87 31.9 4.42 148.7
S 20 100 3 0.44 11.1 2.08 43.4
S 20 100 5 2.08 28.8 11.47 164.2

S 50 40 3 0.61 19.4 8.90 261.9
S 50 40 5 6.02 100.6 147.56 2500.0
S 50 100 3 2.17 20.4 28.42 523.7
S 50 100 5 21.02 84.7 271.80 3006.0

R 10 40 3 0.07 6.3 0.10 0.1
R 10 40 5 0.71 40.7 0.67 18.5
R 10 100 3 0.19 7.5 0.17 0.2
R 10 100 5 3.19 51.5 2.49 42.6

R 20 40 3 0.24 12.8 0.60 15.9
R 20 40 5 2.64 80.7 3.55 89.8
R 20 100 3 1.07 21 1.85 17.6
R 20 100 5 31.38 322 25.09 434.8

R 50 40 3 1.65 49.1 35.16 1196.8
R 50 40 5 21.82 298.7 169.82 1511.1
R 50 100 3 10.78 68.6 274.82 6035.4
R 50 100 5 400.68 1064.3 2036.07 17577.4

Table 6.2: Comparison of SQS against the results in Goossens et al. (2007) (more
for less)

Interestingly, much larger instances could be solved to optimality with this set
of bids in seconds, and the differences in runtime between the results reported
by Goossens et al. (2007) and the results of SQS were small. The results for
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the base case in Table 6.1 where a bit slower, while the results for the more-
for-less scenario in Table 6.2 were actually faster. The more-for-less scenario
aimed for optimal solutions with free disposal of additional quantity, while the
base case did not.

Obviously, the structure of the bids has a significant impact on the runtime.
The bids generated based on our multi-product cost function were considerably
harder to solve. We assume that smooth cost functions generate a lot of
solutions with similar objective function value, a type of symmetry problem.
The structured instances in Goossens et al. (2007) include economies of scale,
where intervals with more quantity have lower prices than intervals with less
quantity, whereas the cost functions in our paper also include diseconomies of
scale. Also the demand can make a difference. If the demand is increased,
runtimes can increase, because there are more possible quantities to purchase.

In summary, the predictive quality of such runtime experiments depends on the
structure of the bids and the respective scale economies in a market. Overall,
our analysis reveals that surprisingly large instances can be solved to optimality
with these types of bids.
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6.2 Value Model Cost of Production

In our main experiments we used the value model COP to generate instances as
described in chapter 5.1. We used these instances to evaluate Less and SQS
with respect to the computational and communicational burden as well as
the possible savings in spend relative to a split award auction. Computation
time is central if SQS is to be solved in an interactive analysis of different
award scenarios during the scenario analysis. The bid evaluation should not
take more than a minute, as this allows exploring different side constraints in
an interactive manner. In this section, we have therefore set a time limit of
60 seconds and reported the current best solution for not proven optimal or
suboptimal instances.

6.2.1 Single Item Instances

In the first set of experiments we generated instances as outlined in section
5.1.2.4 with a single item in order to evaluate the impact of scale economies in
isolation. In table 6.3 the parameters of the runs are summarized.

Variable Values
Number of suppliers 2, 8, 32, 64
Number of items 1
Number of price intervals 4, 8
Acceptable approximation error 1%, 25%
Seed 1-30

Table 6.3: Parameters of the single item runs

6.2.1.1 DescriptionLength

We have discussed in section 3.1.1 that apart from the expressiveness of a
bid language, the description length matters. 6.1 shows how the number of
intervals in the SQS formulation increases with a decreasing maximal absolute
approximation error εmaxs . The required number of discount intervals is much
higher for total quantity bids.

The large number of intervals needed to describe a cost function with a low
approximation error can make bidding impractical. Note that in an incentive
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Figure 6.1: Description length comparison of incremental vs. total quantity bids in
LESS for 32 supplier instances of the base case

compatible mechanism such as the Vickrey-Clarke-Groves mechanism, bidding
truthfully might not be a dominant strategy, unless the bidding language allows
describing the underlying cost function close enough with a realistic number
of bids.

Figure 6.2: Comparison of number of price intervals for different incremental and
total quantity bidding policies for 30 single item CoP instances

In figure 6.2 we have plotted the resulting number of price intervals for the
parameters used in our simulations. The boxes show the number of intervals
that were generated as described in section 5.2.
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For incremental bidding the necessary number of price intervals was always
below ten even with an approximation error of 1 %. For total quantity bidding
on the other hand, even an approximation error of 25 % demanded around 20
price intervals. This shows, the burden for the bidders to communicate their
cost function nearly exactly is only manageable using incremental bids in these
settings.

6.2.1.2 Computational Burden

In figures 6.3, 6.4 and 6.5 one can see a comparison of the computation time
needed to solve SQS for instances with 2, 8 and 64 suppliers and for different
bidding policies.

Figure 6.3: Comparison of computation time for different incremental and total
quantity bidding policies for 30 single item CoP instances with 2
suppliers

The number of intervals greatly influences the expected computation time for
SQS, which can be clearly seen in our results. All instances except the ones
with total quantity bids and an approximation error limiting bidding policy
could be solved to proven optimality within 60 seconds. With an allowed
approximation error of 25 % only a few instances timed out, whereas with an
allowed approximation error of 1% and at least 8 suppliers more than half of
the instances timed out.

The instances with a fixed number of price intervals could all be solved to
optimality in less than 20 seconds. At four price levels total quantity instances
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Figure 6.4: Comparison of computation time for different incremental and total
quantity bidding policies for 30 single item CoP instances with 8
suppliers

took less time on average but at 8 price intervals some total quantity instance
took more than 10 times as long as the respective incremental instances.

Figure 6.5: Comparison of computation time for different incremental and total
quantity bidding policies for 30 single item CoP instances with 64
suppliers

Overall one can say that the usage of incremental bids, of predefining a fixed
number of price intervals, makes scenario navigation possible for auctions
where big quantities of only one good are auctioned.
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6.2.1.3 Spend Comparison

The optimality that is mentioned in the previous section relates to the MIP
formulation for SQS, and even an 100 % optimal solution can only be as good
as the bids that were submitted. For real world uses the spend, the total
amount that the auctioneer has to pay in order to get the demanded quanti-
ties, is the most important benchmark. In real world cases the most common
approach is to use an split award auction. Therefore we used simulated suppli-
ers submitting two price quotes for each item at 30% and 70% of the volume
in a split award auction as the point of reference.

Figure 6.6: Comparison of spend relative to an split award auction for different
incremental and total quantity bidding policies for 30 single item CoP
instances with 2 suppliers

In figures 6.6 and 6.7 the spend that resulted from using Less and SQS with
the different bidding policies against a split award auction.

It is very outstanding, that the spend of all incremental auctions was nearly
equal. The average spend of the instances with an allowed approximation error
25 % was 0.027 % higher than the one resulting from an allowed approximation
error of 1%. Even if only 4 fixes intervals were used the spend was only 0.45
percent higher. Total quantity bids showed similar results for the bidding
policies with an approximation error bound. For fixed price intervals the results
have been not so good. In the worst case and only 4 intervals available the
spend was even higher than with a simple split award auction. This did only
happen for a low number of suppliers as there are few alternative solutions,
and the optimal solution can be blocked by a bad cost approximation.
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Figure 6.7: Comparison of spend relative to an split award auction for different
incremental and total quantity bidding policies for 30 single item CoP
instances with 64 suppliers

6.2.2 Single Item Instances with Lump Sum Discounts
and Markups

In Less suppliers have the option to define so called lump sum discounts
and markups, that are a one time payment. These lump sum discounts and
markups can be interpreted as a direct way to communicate jumps in the cost
function, as illustrated in section 5.2.2.1. In practice the bidders will only very
seldom be able and or willing to communicate this information so this is more
of theoretical value.

In figure 6.8 one can see, that the use of lump sum markups to indicate the
jumps in the cost function makes computing SQS faster, and all instances
could be solved in less than a second. Figure 6.9 shows the spend if bidders
use lump sum markups. For all error bound bidding policies the spend was
within less than 0.1 % of the optimum. With incremental bids 4 price intervals
were also sufficient to get close to the optimal spend, and also total quantity
bids profited a lot.
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Figure 6.8: Comparison of computation time for different incremental and total
quantity bidding policies for 30 single item CoP instances with 64
suppliers

Figure 6.9: Comparison of spend relative to a split award auction for different
incremental and total quantity bidding policies using lump sum
discounts and markups for 30 single item CoP instances

6.2.3 Multi Item Instances - Realistic Problems

Finally, we will discuss the impact of the different discount policies on the
total cost of the purchasing organization when auctioning multiple items at
once. This is the most realistic but also most challenging scenario for the
bidding language and supplier selection. In contrast to the single item cases
where we focused on elaborating effects scale economies on bidding and supplier
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selection, we tried here to explore the applicability of Less and SQS for realistic
multi item instances.

Again, we assume a direct revelation mechanism, and bidders submit their
bid in a way that approximates their true costs as close as possible, either
restricted by the number of intervals or a predefined approximation error. We
simulated suppliers submitting two price quotes for each item at 30% and 70%
of the volume in a split-award auction using the value model cost of production
with parameters outlined as 5.1.2.4. The same suppliers also submit bids in
an auction with only total quantity discount bids, and in an auction with only
incremental volume discount bids. For the latter two auction types, we also
distinguished settings with a fixed set of 5 intervals, or an approximation error
ε of 1.0 %.

The results are summarized in Table 6.4. Each row summarizes the result of
a particular volume discount auction relative to the cost of the split-award
auction in percentage values after 5, 10, 20, 60, 120, and 500 seconds. All
reported numbers are average numbers for 30 instances solved.

A spend greater than the one that could be realized by an split award auction
can be a result of two factors, either the interpolation error is too big or the
current integer solution is too far away from the optimum. Therefore we have
then analyzed the proven optimality of these instances, and the MIP gap after
5, 10, 20, 60, 120 and 500 seconds can be found in 6.5. A value of −1.000
means that the best bound found so far is still ≤ 0, and there is no meaningful
MIP gap reported by the solver.

As one can see the incremental instances with 5 intervals were not solved to
optimality, while the instances with total quantity discounts could be solved
to optimality even for larger instances with 30 suppliers and 10 items in 2
minutes. So the MIP gap of the incremental volume discount bids was always
higher, when the number of intervals was limited to five. With a limit on the
approximation error ε to 1%, the number of intervals grows up to more than 80
intervals per item in case of total quantity discount bids, but only up to around
30 intervals in case of volume discount bids. Interestingly, the instances with
only incremental volume discount bids are still harder to solve and the MIP
gap is typically larger. So, the structure of the problems with total quantity
discounts allows for larger problems to be solved.

We will now take a look at the spend with a fixed number of 5 intervals. If the
MIP gap is high, then also the spend with total quantity discount bids and
incremental volume discount bids can be much worse than with simple split
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Spend in % of split awards with time limit
Suppliers Items 5s 10s 20s 60s 120s 500s
Total quantity 5 intervals
10 10 101.13 100.94 100.94 100.02 100.94 100.94
10 30 101.22 101.22 101.22 101.58 101.22 101.22
10 50 102.28 102.20 102.19 102.45 102.19 102.19
30 10 101.44 101.44 101.44 101.44 101.44 101.44
30 30 102.75 102.59 102.57 103.80 102.56 102.56
30 50 102.79 102.69 102.48 102.74 102.27 102.27
Incremental 5 intervals
10 10 93.65 93.47 93.49 93.27 93.45 93.46
10 30 97.31 95.50 94.67 94.84 94.48 94.40
10 50 103.54 100.72 96.70 95.87 95.62 95.46
30 10 96.76 94.86 94.37 92.63 94.28 94.21
30 30 109.45 109.09 105.02 97.81 95.97 95.62
30 50 115.53 113.37 107.40 103.07 97.98 95.85
Total quantity ε = 1.0
10 10 93.59 93.60 93.60 93.52 93.25 87.89
10 30 29311.83 95.37 95.37 95.77 95.36 95.17
10 50 31571.88 29585.34 96.65 97.44 96.64 96.64
30 10 117653.66 97.36 97.34 96.49 97.36 96.96
30 30 92869.85 92869.85 92869.85 102.60 102.30 102.29
30 50 82807.65 83589.52 83589.52 92582.93 103.08 103.08
Incremental ε = 1.0
10 10 87.72 87.73 86.35 86.09 86.27 86.15
10 30 374.71 132.40 94.47 90.68 88.08 87.69
10 50 450.39 335.86 123.02 95.08 89.94 89.19
30 10 930.91 184.22 96.96 89.46 87.88 87.29
30 30 1449.13 1277.17 1350.74 162.00 103.73 90.97
30 50 1675.84 1433.83 1333.95 696.10 150.84 94.08

Table 6.4: Comparison of spend relative to a split award auciton

award auctions. Therefore, we will mainly look at the column with 500s, where
the MIP gap was low. Interestingly, in the setting with total quantity bids and
5 intervals, the spend achieved was higher than that of split award auctions,
although the smaller instances could be solved to optimality. The reason for
this is the bad approximation. In contrast, incremental volume discount bids
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Optimality with time limit
Suppliers Items Prices 5s 10s 20s 60s 120s 500s
Total quantity, 5 intervals
10 10 5 1.000 1.000 1.000 1.000 1.000 1.000
10 30 5 1.000 1.000 1.000 1.000 1.000 1.000
10 50 5 0.997 0.998 0.999 0.999 1.000 1.000
30 10 5 1.000 1.000 1.000 1.000 1.000 1.000
30 30 5 0.993 0.996 0.997 0.998 0.998 0.998
30 50 5 0.989 0.991 0.993 0.996 0.996 0.997
Incremental, 5 intervals
10 10 5 0.937 0.944 0.947 0.963 0.958 0.965
10 30 5 0.890 0.909 0.919 0.927 0.923 0.926
10 50 5 0.844 0.867 0.904 0.918 0.916 0.920
30 10 5 0.887 0.909 0.916 0.925 0.921 0.927
30 30 5 0.438 0.765 0.802 0.877 0.881 0.889
30 50 5 0.319 0.512 0.765 0.804 0.840 0.866
Total quantity ε < 1.0
10 10 80.41 0.636 0.680 0.725 0.775 0.812 0.868
10 30 77.36 -1.000 0.509 0.558 0.638 0.681 0.758
10 50 76.65 -1.000 -1.000 0.496 0.582 0.615 0.699
30 10 80.41 -1.000 0.515 0.584 0.646 0.693 0.760
30 30 77.36 -1.000 -1.000 -1.000 0.493 0.529 0.621
30 50 76.92 -1.000 -1.000 -1.000 0.000 0.441 0.549
Incremental ε < 1.0
10 10 28.20 0.595 0.811 0.880 0.937 0.911 0.946
10 30 25.28 -1.000 0.219 0.375 0.412 0.538 0.597
10 50 24.58 -1.000 -1.000 0.328 0.438 0.499 0.576
30 10 28.20 -1.000 -1.000 -1.000 -1.000 0.096 0.168
30 30 25.22 -1.000 -1.000 -1.000 -1.000 -1.000 0.108
30 50 24.52 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

Table 6.5: Proven optimality of the solutions in table 6.4

achieved a lower total cost compared to split award auctions for all problem
sizes already after 120 seconds. This was the case, even though the problems
could not be solved to optimality within 500 seconds.

In situations, where the approximation error ε was limited to 1%, total quantity
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discount bids led to cost savings after 500 seconds compared to split-award
auctions. Larger instances with 30 suppliers and 30 items led to a large MIP
gap even after 500 seconds and the results were worse than those of a split
award auction. Also in this setting, the incremental volume discounts led to
lower total cost compared to split-award auctions for all problem sizes, but
also compared to total quantity discount bids after 500 seconds.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

We have suggested a bidding language for markets with economies of scale and
scope and a respective MIP to solve the resulting supplier quantity selection
(SQS) problem. We try to easy the problematic bidding complexity, induced by
the huge number of possible bid combinations, for the bidders in a combintorial
auction. This problem we’ve shown, by numerical simulations, to be a limiting
factor of the performance of combinatorial auctions in general. This gets even
worse in procurement settings.

The proposed bidding language is considerably more expressive than what has
been discussed in the literature so far and includes incremental volume dis-
counts, total quantity discounts, lump sum discounts, and a variety of spend
conditions defined on spend and quantity of selected items. While both, in-
cremental volume discount bids and total quantity discount bids, have been
described in the literature and are used in procurement practice, there has not
been a thorough comparison among those discount policies as of yet. This is
the first paper, to use different types of cost functions to generate bids, which
allowed us to analyze not only computation times, but also total spend of
different discount policies.

Our results show that that realistic problem sizes can be solved in a matter
of minutes, but that big multi item problems with only incremental volume
discount bids are harder to solve than those with only total quantity discount
bids. On the other hand if a supplier wants to approximate his true cost
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function with total quantity discount bids closely, this leads to a much larger
and number of discount intervals.

There were several situations, where the results of simple split-award auctions
with simple price quotes lead to lower total cost than those of more advanced
bidding languages. The reason is either a bad approximation of the costs or the
inability to find the cost-minimal solution within an acceptable response time.
For example, if suppliers only used a few total quantity discount intervals, this
led to much higher total cost for the buyer. However, we have also shown that
significant savings can be achieved with compact bidding languages compared
to split award auctions, if bidders are able to approximate their cost functions
well. Even though big instances with few incremental price intervals could not
be proven to be optimal, the resulting costs were always lower than the ones
resulting of a split award auction.

In summary, a procurement manager needs to take care that the bidding lan-
guage provides enough flexibility so that bidders can describe their cost struc-
tures arbitrarily close. At the same time bids should have low description
length, such that suppliers are only forced to specify a few parameters and not
hundreds of numbers. Also, a procurement manager should make sure that
the number of bids in an application is such that he can expect to solve the
problem instances to optimality. The results of our analysis should provide a
better understanding under which circumstances compact bidding languages
should be used in procurement practice. Mechanism design questions have
been outside the scope of this paper, and remain fruitful questions for future
research in this area.

While the bid language leads to much flexibility for the suppliers in specify-
ing discounts in a compact format, it also incurs computational complexity
on the buyer’s side. Practical applications span a wide range of possible com-
putational time requirements ranging from demanding interactive uses such
as scenario analysis, and dynamic reverse auctions where acceptable compu-
tational times may be in the scale of minutes, to less demanding cases such
as multiple round negotiations where runtimes in hours, often days, may be
tolerable. We have analyzed the empirical hardness of SQS and the time to
solve various problem sizes in order to understand the impact of different types
of constraints and discounts on the runtime with a focus on interactive appli-
cations such as scenario analysis.

The results provide an understanding under which circumstances such expres-
sive bidding languages can be used in procurement practice. We have also
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analyzed the potential impact of such bidding languages on the total spend
of the purchasing manager, if bidders reveal their costs truthfully, and found
that the cost savings depend on the parameters of the cost function and the
bidding language used.

7.2 Outlook

Our main goal was to improve the performance of procurement auctions by
giving the suppliers a better possiblity to express their costs, and the therby
lowering the costs for the buyer, together with provinding a better understand-
ing of the scenario. With our computational experiments we haven shown the
feasibility of our aproach in priciple, but real events always incorporate human
bidders, and therefore a verification of our results by lab experiments remains
an important open issue.

Mechanism design questions have been out of the scope of this work and we
have assumed extremely well behaving bidders, which clearly is a very strong
assumption. A game theoretical analysis of the proposed mechanism could
therefore provide valueable insights how bidders might behave in such a pro-
curement event.

The capability of the bidders to express their cost, is crucial as we have seen,
and could greatly benefit from a visual representation of their bids. The use
of total quantity bidding is still dominating in real procment events, as they
seem to appear easier to grasp in textual form. Already a very simple plot of
the resulting costs, as for example as in section 5.2, could help in promoting
the use of incremental discounts in our opinion, as they would demonstrate
the resulting jumps in the cost function.

In iterative combinatorial auctions the bidders gain feedback in between rounds
by the form of ask prices and can improve their bids accordingly. In practical
settings further guidance of the bidders is necessary as Scheffel et al. (2010)
have shown in their analysis of linear price auctions and therein also importance
of bidder decision support. For combinatorial auctions we have seen that
the simpler linear price auctions can perform very good, in contrast to their
theoretical limitations.

In section 4.2.1 we have suggested a simple price feedback based on a lump
sum discount request. It remains an interesting question if such a very simple
feedback, that has the advantage of a very easy and fast comprehensiveness,
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could guide the buyers accordingly in an iterative action based on Less and
SQS.
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