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Abstract

The aim of this thesis is to study neutrino-driven core collapse supernovae by means of three-
dimensional computer simulations. The computing time needed for the simulations is signifi-
cantly reduced by using an overlapping grid technique called the “Yin-Yang” grid for spatial
discretization of the computational domain in spherical coordinates which also avoids grid singu-
larities in angular direction. The hydrodynamical neutron star kick mechanism and the mixing
of elements in the stellar envelope are investigated. My results provide new insights into the
connection of the neutron star’s peculiar motion and the distribution of elements observed in su-
pernova ejecta. The results are compared with those of previous works and current observations
of supernova remnants.





Zusammenfassung

Ziel dieser Arbeit ist das Studium von neutrino-getriebenen Gravitationskollaps-Supernovae mit
Hilfe dreidimensionaler hydrodynamischer Simulationen, Die dafür benötigte Rechenzeit kann
erheblich reduziert werden, wenn man ein Yin-Yang-Gitter zur Diskretisierung des Rechengebi-
ets verwendet. Dabei handelt es sich um ein überlappendes Rechengitter in Kugelkoordinaten,
das keine Gittersingularitäten in beiden Winkelkoordinaten aufweist. Unter Verwendung dieser
Methode wurde sowohl der hydrodynamische Mechanismus untersucht, der für die Entstehung
der Eigenbewegung von Neutronensternen diskutiert wird, als auch Mischvorgänge in Super-
novahüllen studiert. Meine Rechnungen sagen voraus, dass die Eigenbewegung des Neutronen-
sterns und die räumliche Verteilung der bei der Explosion ausgeschleuderten Elemente korreliert
sind. Die Ergebnisse werden mit denen früherer Arbeiten und mit Boebachtungsdaten von
Supernova-Überesten verglichen.
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Chapter 1

Motivation

A core-collpase supernova explosion (CCSN) is one of the most interesting astrophysical phe-
nomena. It presents the final stage of massive stars larger than approximately 8M⊙, where
M⊙ is the solar mass. It involves highly complicated physics length scales, ranging from the
stellar radius (∼ 1013 cm) down to the microscopic scale, and timescales stretching from hours
to milliseconds. Tremendous amounts of gravitational binding energy of the order of 1053 erg
are released by the explosion within a timescale of seconds only. Most of the energy is carried
away by numerous neutrinos streaming out from the explosion site. Nucleosysthesis processes
which occur during the explosion are an important source of heavy elements (elements heavier
than oxygen) in our universe. Once the star explodes these heavy elements are ejected and later
mixed into the interstellar medium. Ultimately, these elements pollute molecular clouds which
are the sites for star formation. The next generation of stars then form with some metals whose
presence slightly changes the way how a star evolves. CCSNe are not only important for galac-
tic chemical evolution and stellar evolution, but are also important for the origin of elements
required for life forms on Earth. Asymmetric CCSNe are thought to be interesting sources of
gravitational wave emission, too. It is obvious that studying such events could provide us with a
better understanding of many physics areas, such as nuclear physics, neutrino physics, element
synthesis, turbulent mixing, and general relativity. Despite the fact that the basic concepts of
how CCSNe explode have been studied for five decades already, astrophysicists still have not
been able to reach a final conclusion regarding the explosion mechanism.

1.1 Need for Multi-dimensional Models

Numerical simulations of stellar core collapse and the subsequent explosion of a massive star
have shown that a successful explosion cannot be acheived when assuming spherical symmetry
(e.g., Rampp & Janka 2000; Buras et al. 2003; Thompson et al. 2003; Buras et al. 2006) except
for the case of . 10 M⊙ progenitors (Kitaura et al. 2006). Thus, multi-dimensional effects must
play an important role for the explosion mechanism. During the past decade astrophysicists
have been performing simulations of CCSNe mainly in two dimensions enforcing axisymmetry.
They have found multi-dimensional hydrodynamic instabilities developing in their models which
seem to play a crucial role for understanding CCSN explosions. Nevertheless, they have not yet
been able to decipher the mystery completely. Naturally, the question arises what happens
in a full three dimensional simulation, particularly as observations also show very complex
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Figure 1.1: The Crab nebula (left) and the zoom-in picture (right) taken by the Hubble Space Telescope
(HST). Credit: NASA/ESA, J. Hester and A. Loll (Arizona State University), the Hubble
Heritage Team (STScI/AURA), and W. P. Blair (JHU).

three-dimensional structures in supernova (SN) ejecta, e.g., in the Crab nebula (Figure 1.1), the
remnant of a SN explosion from the year 1054. The overall geometry of the ejecta is of oval
shape. The three-dimensional structure is thought to be a prolate spheroid (Trimble 1973). The
filaments contain ejected material from the explosion consisting of hydrogen, helium, carbon,
oxygen, nitrogen, iron, and neon. Obviously, large scale mixing occured by hydrodynamic
instabilities of elements synthesized during the explosion and those present in the envelope of
the progenitor’s star. Therefore, modelling the collapse and explosion of massive stars ultimately
requires computations in three spatial dimensions.

1.2 Computational Challenge

Since a star is best described with a spherical coordinate system we focused on modelling CCSNe
using spherical polar coordinates. In a 3D finite-volume hydrodynamic simulation employing
spherical polar coordinates (r, θ, φ) the computational volume is spatially discretized into Nr

spherical shells, where each shell is discritized by a latitude-logitude grid of Nθ and Nφ zones in
θ and φ direction, respectively. The coordinate center of each grid cell is then given by

ri = R0 + i · ∆r

2
for 1 ≤ i ≤ Nr, (1.1)

θj = θ0 + j · ∆θ

2
for 1 ≤ j ≤ Nθ, (1.2)

φk = φ0 + k · ∆φ

2
for 1 ≤ k ≤ Nφ, (1.3)
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where R0 and ∆r are the inner radius of the grid boundary and grid spacing in the radial
direction, respectively. The colatitude θ ranges from θ = 0 to θ = π corresponding to the
north and south pole, respectively. The azimuth φ covers φ = 0 to φ = 2π. By choosing
logarithmicallly spaced radial grid one automatically achieves very high spatial resolution at
small radii while the total number of radial grid zones remains fairly small compared to a grid in
Cartesian coordinates. For example, in this work we use 400 logarithmically spaced radial grid
zones to cover the central part of the star to the radius of ∼ 2 × 109 cm. The spatial resolution
near the inner radial grid boundary is approximately 30 m. If one were to use a cube of Cartesian
grid, one needs a grid of the order of 1018 grid zones which would be impossible using the current
supercomputing power. However, the spherical polar grid comprises of grid lines which converge
towards the north and south pole. This implies a severe restriction of the time step size for any
hydrodynamic code using explicit time discretization due to the Courant-Friedrichs-Levy (CFL)
condition, which is referred to as the so-called “pole problem”. In addition, boundary conditions
that have to be imposed at the coordinate symmetry axis (θ = 0, π) flaw the simulations by
causing undesired numerical artifacts near the axis which can be observed in 2D axisymmetric
simulations, as e.g., finger-like flow features (Kifonidis et al. 2003). For 3D flows, the coordinate
axis represents a coordinate singularity that almost unavoidably will leave its mark on the flow
near or when crossing the axis.

An easy workaround which helps easing the time step restriction can be realized by omitting
a small cone at the poles from the computational volume, e.g., setting θ0 = 5◦. This causes
already a quite substantial gain in the time step size at the cost of losing only ≈ 0.4% of the 4π
solid angle. However, it does not solve the problem of axes artifacts, since boundary conditions
in θ-direction are still required.

There have also been attempts to construct a new type of grid which avoids the pole problem.
However, it is not possible to construct a single grid that can cover the entire 4π surface of a
sphere, is orthogonal, and at the same time does not contain any coordinate singularity except
at the origin. Multi-patch grids and overlapping (or overset) grids are employed. Such grids
are widely used in the field of computational fluid dynamics, where complex grid structures are
common. For flows possessing an approximate global spherical symmetry, the “cubed sphere”
grid (Ronchi et al. 1996) has been developed and is currently applied to several astrophysical
problems (Koldoba et al. 2002; Romanova et al. 2003; Zink et al. 2008; Fragile et al. 2009, e.g.).
It is an overset grid consisting of six identical patches covering a solid angle of 4π steradians. The
“Yin-Yang” grid which is used in this thesis has the latter property, too, but up to now it has
not been applied to astrophysical problems. The Yin-Yang grid was introduced by Kageyama
& Sato (2004). It consists of two overlapping grid patches named “Yin” and “Yang” grid. In
comparison with other types of overset grids in spherical geometry, the Yin-Yang grid geometry
is simple, as both the Yin and the Yang grid consist of a part of a usual spherical polar grid. The
transformation of coordinates and vector components between the two patches is straightforward
and symmetric, thus allowing for an easy and straightforward implementation of the grid into
a 3D code already employing spherical polar coordinates. The Yin-Yang grid is successfully
used on massively parallel supercomputers in the field of geophysical science for simulations of
mantle convection and the geodynamo. In these applications the thermal convection equation
and the magnetohydrodynamic (MHD) equations are solved on the Yin-Yang grid using a second-
order accurate finite difference method. Here, we also adopt the Yin-Yang grid, and use it for
astrophysically relevant (finite-volume) hydrodynamic simulations for the first time.
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1.2.1 Outline of thesis

The thesis is structured as follows. In Section 2, we start by discussing historical and modern
observations of supernovae, following by the classification of supernova types and the current
picture of the core collapse supernova theory. In Section 3, we describe numerical techniques
and the computer code used in the thesis. We presents results from test simulations to verify
the viability of the computer code in Section 4. We also discuss the efficiency and performance
of the new grid technique in comparison with the usual spherical polar grid. In Section 5, we
report on the results obtained from three-dimensional simulations studying the hydrodynamical
neutron star kick mechanism. In Section 6, results from long-time three-dimensional simulations
studying mixing of elements in the envelope of the progenitor star are discussed. Finally, we
summarize our findings in Section 7.



Chapter 2

Core Collapse Supernova

2.1 Historical Supernovae 1

Âh�ø�	×£1x5ùÅÂªê?}Ë:0L&°4Jø
Ù	8B�¶c4ÙøNÜ��ç�?�ÂÉª�=ò	�{
Äå�@��=K"���¤�

th
r’
rn
t].
r].
th
d.
ry
9]
s;
d
al

en
he
d,

he
ng

,
ed
 a
s

n.
 a

7,
d
m

�

w²E+E

“In the second year of the Zhongping reign period, the 10th month, on the day
Guihai [7 December, AD 185], a ’guest star’ emerged from the middle of the asterism
Nanmen [Southern Gate]. It seemed to be as large as half a yan [bamboo mat]. It
displayed the five colors, and xi [pleasure] and nu [anger]. It decreased gradually in
size and in brightness. In the sixth month of the next year [5 July to 2 August 186] it
disappeared. According to the standard prognostication this means military action.
In the sixth year of the same reign period [AD 189] Metropolitan Commandant Yuan

Shao wiped out the eunuchs; an officer Wu Kuang of the General-in-Chief attacked
and killed He Miao, the Chariot and Horse General, and several thousand people
were killed.”

says the first recorded supernova by mankind in Houhanshu, the official history of the Later
Han Dynasty (AD 23-220) (Chin & Huang 1994). The term “guest start” was used as at that
time, the time long before the word “supernova” was invented, yet, the record is informative
enough for modern scientists to be able to identify the object RCW86 as a prime candidate for
the supernova remnant (SNR) of this historical supernova (Stephenson & Green 2002). This
suddenly appeared guest star was remarkably bright, bright enought to see with naked eyes, and
it remained for several months before its shining light died out. Such an event is quite rare as
within the next several hundred years there were only two more events, SN386 and SN393.

Later on, in 1006, the brightest supernova recorded was observed. It could possibly be
seen even during the daytime. The radio source PKS1459-41 was associated as the remnant of
SN1006 only in 1965 (Gardner & Milne 1965). The supernova of AD 1054 is also a very well-
known supernova thanks to its associated remnant, the Crab Nebula. It is even more interesting
in particular since later one of the first pulsars to be discovered was found at the center of the

1This section is based on the book by Marschall (1988), “The Supernova Story”.
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Crab Nebula (Staelin & Reifenstein 1968). Over a hundred year later another supernova was
seen in 1181, however, with several magnitudes dimmer than the previous one.

In 1572, Tycho Brahe, a Danish astronomer, observed a supernova in the constellation of
Cassiopeia. Although he was not the first to observe the supernova his observation was conducted
with great precision. Tycho’s supernova was visible as long as 18 months. Another supernova,
although dimmer than Tycho’s supernova, visible to naked eyes was spotted in 1604 in the
constellation of Ophiuchus. Johannes Kepler, who was the assistant of Brahe, was among the
discoverers of this supernova. Kepler conducted systematic observations and published a book
which later on helped marking his name on the supernova of 1604. Kepler’s supernova is, as
recorded, the last supernova within our Galaxy observed from the Earth.

Also in the seventeenth century a galactic supernova exploded in the direction of the constel-
lation Cassiopeia known nowadays as the Cassiopeia A (Cas A) supernova. However, it appeared
to be much dimmer than previous galactic supernovae due to obscuration by dust cloud. There-
fore, it was not identified as a supernova at that time, although there exists evidences that it
might have been observed by John Flamsteed and identified as a star of sixth magnitude. In-
ferred by the expansion velocity of the Cas A SNR its explosion epoch is estimated to be about
1667 (Hughes 1980). The Cas A remnant is also an extremely bright radio source on the sky. Up
to now, the youngest known galactic supernova is the one which occurred around 1870. It also
was not observed since it exploded near the galactic center hidden behind optically opaque gas
clouds. Instead, it was discovered as a SNR by radio observation in 1984, only (Green & Gull
1984). The remnant is named G1.9+0.3. The age of this supernova is estimated by combining
radio images with X-ray images from the Chandra X-ray satellite of different epochs.

2.2 Modern supernova observation

In the last section, we focused mainly on SNe that exploded inside our own galaxy since as-
tronomers in the past relied only on observations by eye or ground-based optical telescopes.
Nowadays, new instruments, both ground-based and space-based, allow astronomers to detect
SN events at much larger distances. Up until now, they have detected ∼5000 extragalactic SNR
2 with hundreds of new detection every year. Moreover, the detection rate is likely to increase
in the future when more SN survey projects are operative.

One of the most important SN observation was the detection of SN 1987A, which is a CCSN
explosion in the Large Magellanic Cloud (LMC), a nearby (∼ 50 kpc) satellite galaxy of the
Milky Way. Being the closest directly observed SN explosion since SN1604, the Kepler’s SN, it
is the one studied in most detail up to now. Moreover, it is so far the only SN that astronomers
were able to detect neutrino emission associated with the explosion as predicted by CCSN theory.
Astronomers also expect to eventually detect the neutron star remnant formed in this particular
SN.

2.3 Supernova Classification

According to the classification system widely used nowadays, SNe are classified into two types
based on the absence (Type I) or presence (Type II) of hydrogen lines in their optical spectra

2According to the list of SNe published at http://www.cbat.eps.harvard.edu/lists/Supernovae.html by the
Central Bureau for Astronomical Telegrams (CBAT).
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Figure 2.1: Diagram of supernova classification (from Turatto (2003)).

(Minkowski 1941). Later, as observational techniques and instruments had improved yielding
high quality spectra and SN surveys reveal more events, more features can be noticed and the
spectra can be subdivided further into several subclasses (See, e.g., Filippenko 1997; Turatto
2003, for detailed reviews).

Figure 2.1 shows a diagram of SNe classification. Type I SNe are divided into three subclasses
SNe Ia, Ib, and Ic. The spectra of type Ia show an absorption feature at around λ6150Å which
is the blueshifted Si II λ6355Å line which is not present in type Ib and Ic spectra. The spectra of
type Ib can be distinguished from type Ic by strong He I lines, in particular the He I λ5876Å line.
Spectra of different types of SNe are shown in figure 2.2. On the other hand, the light curves of
type II SNe provide a criterium to subdivide them into two subclasses, i.e., II-P and II-L. Type
II-P SNe exhibit a pause in the decline of the luminosity shortly after maximum, thus forming
a “plateau” in their lightcurve. In contrast to type II-P, type II-L SNe show a “linear” decline
of the luminosity after the maximum without interruption (See figure 2.3). There are also some
peculiar SNe. For example, type IIb SNe are found to have spectra which look similar to type
II at early time but later on become similar to type Ib/c (Woosley et al. 1987). In addition,
Schlegel (1990) proposed the type II-n, a new subclass of type II SNe. The letter “n” stands for
“narrow” since type II-n SNe display narrow emission lines which are thought to be produced
by the interaction of the SN ejecta with circumstellar material (most likely resulting from how
mass loss by a stellar wind).

So far we have discussed only the classification of SNe based on their observed spectra and
lightcurves. However, SNe can also be classified based on the underlying physical processes
that cause the explosions. Baade & Zwicky (1934a) proposed the idea that a SN is powered
by the release of a tremendous amount of gravitational binding energy when the progenitor
star transforms into a neutron star which is considerably less massive and simultaneously ejects
most of its mass into a rapidly expanding (∼ 1000 km s−1) into a SNR (Baade & Zwicky 1934b).
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Figure 2.2: Spectra of four different types of supernovae at early time (∼ 1 week). Figure from Filippenko
(1997).
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Figure 2.3: Schematic light curves of SNe Ia, Ib, II-L, II-P and SN 1987A. Figure from Wheeler (1990).

Another idea for the cause of a SN explosion was suggested by Hoyle & Fowler (1960). They
proposed that the energy release by the thermonuclear explosion of a degenerate star can also
drive a SN. Thus, based on these two physical processes, SNe can also be classified into two
(theoretical) types, i.e., thermonuclear SNe and CCSNe.

According to present knowledge, type Ia SNe result from the thermonuclear explosion of
degenerate C/O white dwarfs. It is certain that an isolated white dwarf is not able to explode
on its own. Thus, for an explosion to occur the white dwarf must gain mass from a companion
star in a binary system. Once the mass of the white dwarf approaches the Chandrasekhar
mass limit (Mch), matter inside the white dwarf ignites resulting in a thermonuclear supersonic
detonation or a subsonic deflagration flame. The thermonuclear runaway completely disrupts the
star leaving no compact remnant behind. However, as no progenitor system has been observed
up to now, the nature of such binary systems is still unknown. The donor star can either be a
main sequence star or a white dwarf. Reviews on explosion models of type Ia SNe can be found
in Hillebrandt & Niemeyer (2000) and Livio (2000).

The remaining classes, i.e.,SNe type Ib, Ic, and II are thought to be core collapse supernovae.
The differences in their spectra originate from differences in the progenitor stars and their
evolution. The progenitors of type Ib/c SNe must have lost thier hydrogen envelope during the
evolution either stellar wind or mass exchange with a companion star (Wheeler & Levreault
1985; Woosley & Eastman 1997). In addition, for type Ic SNe, the progenitors must also have
lost a substantial amount of the helium envelope. The progenitors of type II-P and II-L SNe
differ only in the mass of their hydrogen envelope at the time of the explosion (Chevalier 1984).
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Figure 2.4: Schematic representation of the evolutionary stages from stellar core collapse through the
onset of the supernova explosion to the neutrino-driven wind during the neutrino-cooling
phase of the proto-neutron star (PNS). The panels display the dynamical conditions in their
upper half, with arrows representing velocity vectors. The nuclear composition as well as
the nuclear and weak processes are indicated in the lower half of each panel. The horizontal
axis gives mass information. MCh means the Chandrasekhar mass and Mhc the mass of the
subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron
star radius, and neutrinosphere, respectively. The PNS has maximum densities ρ above the
saturation density of nuclear matter (ρ0). Figures and description from Janka et al. (2007)
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Table 1 Evolution of a 15-solar-mass star.

Stage Timescale Fuel or Ash or Temperature Density Luminosity Neutrino

product product (109 K) (gm cm−3) (solar units) losses

(solar units)

Hydrogen 11 Myr H He 0.035 5.8 28,000 1,800
Helium 2.0 Myr He C, O 0.18 1,390 44,000 1,900

Carbon 2000 yr C Ne, Mg 0.81 2.8×105 72,000 3.7×105

Neon 0.7 yr Ne O, Mg 1.6 1.2×107 75,000 1.4×108

Oxygen 2.6 yr O, Mg Si, S, Ar, Ca 1.9 8.8×106 75,000 9.1×108

Silicon 18 d Si, S, Ar, Ca Fe, Ni, Cr, Ti, . . . 3.3 4.8×107 75,000 1.3×1011

Iron core ∼1 s Fe, Ni, Cr, Ti, . . . Neutron star >7.1 >7.3×109 75,000 >3.6×1015

collapse∗

∗ The pre-supernova star is defined by the time at which the contraction speed anywhere in the iron core reaches 1,000 km s−1 .

Table 2.1: Evolution of a 15-solar-mass star (from Woosley & Janka (2005)).

2.4 Core Collapse Supernovae Theory 3

CCSNe are the final stage of massive stars with masses larger than approximately 8 M⊙. Here
we will only discuss briefly the evolution of these stars shortly prior to the onset of core collapse.
More details on the evolution of massive stars can be found in the review by Young & Arnett
(2004). The structure of a massive star at the end of its life resembles an onion-shell like structure
with elements of successively higher mass number being located incresingly closer towards the
core. Stars with masses around 8–10 M⊙ end up with a O/Ne/Mg core after nuclear fusion
reactions have ceased in their cores. However, burning can continue inside stars with masses
higher than 10 M⊙. Elements inside the cores of these stars are converted into Fe-group elements,
hence Fe-core, before nuclear reactions halt since the binding energy per nucleon peaks near 56Fe,
i.e., conversion into heavier elements would be endothermic. Since we only study core collapse
models of 15 M⊙ and 20 M⊙ here we will not further discuss O/Ne/Mg cores. A summary of
the burning stages of a 15 M⊙ star is shown in Table 2.1. As the star loses pressure support
when nuclear burning seizes inside its core, it begins to contract and heat up in the same way as
during earlier evolutionary stages. The still burning Si shell layer dumps its products onto the
Fe-core. Therefore, the mass of the Fe-core grows until it approaches the Chandrasekhar mass
limit (Chandrasekhar 1939)

Mch ≃ 5.8Y 2
e M⊙. (2.1)

At this stage, the pressure support provided by the degenerate and now also highly relativistic
electrons inside the core is only marginal, i.e., it is no longer sufficient to stabilize the core
against radial pulsations as the adiabatic index of the core matter approaches the critical value
of Γ = 4/3. Consequently, the core begins to collapse.

Initially the core collapses homologously. Furthermore electron captures on free protons of
nuclei

p + e− −→ n + νe

occur inside the core reducing the lepton number, and therefore reducing also Mch. The released
neutrinos stream freely out of the core carrying energy with them. In addition, the Fe-group

3(See also, e.g., Bethe 1990; Hillebrandt 1994; Mezzacappa 2005; Kotake et al. 2006; Janka et al. 2007, for
reviews)
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nuclei in the core can be photodisintegrated by enegetic photons consuming parts of the core’s
internal energy. These processes accelerate the collapse. At densities ρ & 3 × 1012 g cm−3 the
neutrino diffusion time scale becomes larger than the collapse timescale, τdiff > τcoll. Thus
neutrinos are trapped inside the core. The Fe-core has now separated into a homologously
and subsonically collapsing inner core and a supersonically falling outer core (Müller 1998)
since the free-fall velocity increases with radius but the local sound speed, which is inversely
proportional to the density, decreases with radius. The collapse continues until the central
density of the core reaches nuclear matter density, where incompressibility of matter strongly
increases. Consequently, infalling mass shells are stopped successively generating pressure waves
in the inner core. The pressure waves propagate outwards and turn into a shock wave when
they reach the sonic point.

If the shock wave were to propagate all the way through the still supersonically infalling
material, a supernova explosion would be the result. This scenario is called a “prompt” explosion.
However, this is not the case as suggested by many numerical simulations (see Janka et al. 2007,
and references therein). The shock wave loses a huge amount of its energy by photodisintegrating
infalling material into free nucleons. The dissociation of infalling heavy nuclei which consist
mainly of Fe group nuclei costs approximately 8.8 MeV per nucleon. This corresponds to an
energy of ∼ 1.7× 1051 erg for dissociating 0.1M⊙ of infalling matter. Furthermore, free protons
capture electrons generating electron neutrinos which stream freely outwards carrying energy
with them. Eventually, the shock wave is unable to propagate further outwards and stalls.
An important question then arises. How can we observe supernova explosions if the prompt
mechanism fails to explode the star? Consequently, there must be a process (or processes)
which supplies energy to the shock wave allowing it to continue its propagation and finally to
eject the stellar envelope. We refer to this process as the shock revival mechanism.

Currently, the most favourable shock revival mechanism relies on neutrino heating process.
Colgate & White (1966) proposed that if the vast amount of neutrinos (∼ 1057) emitted by
the newly formed PNS, which is initially very hot and not yet completely deleptonized due to
neutrino trapping, could deposit a small fraction of energy (∼ 1%) by the reactions

νe + n −→ e− + p

ν̄e + p −→ e+ + n

in the region behind the stalled SN shockwave, the stalled shock can be revived leading to a
successful explosion. However, neutrino cooling competes with neutrino heating in the region
behind the stalled shock. Cooling by neutrino emission is more effective than heating in the
region above the neutrinosphere, defined as the surface where the optical depth of neutrinos
is close to 1, and inside the gain radius, defined as the radius where the cooling and heating
rates are equal. Above the gain radius matter experiences a net heating. The success of the
neutrino-driven explosion lies crucially in the competition between cooling and heating. Mod-
elling accurately the neutrino-matter interactions is a challenge. In addition, multi-dimensional
effects make the story even more complicated. Since the heating is more efficient near the gain
radius than directly behind the stalled shock a negative entropy gradient establishes in this
region, which makes the layer convectively unstable. The neutrino-driven convection generates
hot high-entropy bubbles which rise, and deposit energy behind the shock. This process en-
hances the heating efficiency behind the stalled shock. Note that the advection timescale, which
depends on the size of the gain region and the infall velocity of accreting matter, and heating
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timescale play an important role here. If the infall velocity is too high or the gain region is
too narrow, the matter might not be heated sufficiently long enough and is advected through
the gain radius before buoyancy forces can drive it outward again. There is also a convectively
unstable layer inside the PNS. However, its role in aiding the explosion may be somewhat less
important than the so-called “hot-bubble” region (Janka & Müller 1996) since it does not seem
to enhance the neutrino luminosity by a large factor (Buras et al. 2006). Recently, another type
of instability was discovered which also aids the explosion. The instability is named “Standing
Accretion Shock Instability” (SASI; Blondin et al. 2003; Foglizzo & Tagger 2000; Foglizzo 2002).
The stalled shock accreting the infalling matter is found to be unstable against non-radial per-
turbations. Linear analysis shows that the ℓ = 1, 2 (dipole and quadrupole) modes have the
fastest growth rates. The shock surface thus begins to pulsate which increases the time matter
stays in the net heating region, thereby enhancing the heating efficiency.
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Chapter 3

Numerical Techniques

3.1 Governing Equations

The fluid or gas in our study is assumed to be inviscid and compressible, and thus described by
the Euler equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1)

∂ρu

∂t
+ ∇ · (u ⊗ (ρu)) + ∇p = 0, (3.2)

∂ρe

∂t
+ ∇ · (u(ρe + p)) = 0, (3.3)

where ρ is the density, u the fluid velocity, p the pressure, e = u2/2+ ǫ the specific total energy,
and ǫ the specific internal energy. The equations are written in conservation form representing
the conservation of mass, momentum, and energy, respectively. For an astrophysical application,
self-gravity of the fluid often plays an important role and must be included as source terms on
the right hand side of the momentum and energy conservation equations. The two equations
then take the form

∂ρu

∂t
+ ∇ · (u ⊗ (ρu)) + ∇p = −ρ∇Φ, (3.4)

∂ρe

∂t
+ ∇ · (u(ρe + p)) = −ρu · ∇Φ, (3.5)

where Φ is the gravitational potential. This gravitational potential is determined by the den-
sity distribution and therefore is time-dependent. The gravitational potential is solved via the
Poisson equation

∇2Φ = 4πGρ (3.6)

where G is the gravitational constant. Equations (3.1), (3.4), and (3.5) are the principal equa-
tions in our calculation. However, in general, additional source terms can be present on the right
hand sides of the momentum and energy equation. In particular, for a core-collapse supernova
explosion simulation powered by the neutrino mechanism, one needs to take into account the
momentum and energy change of matter due to interactions with neutrinos. As a result the
terms QM and (QE + u · QM) are added to the right hand side of the momentum and energy
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equation, respectively. The final ingredient in solving this set of equations is the equation of
state (EoS), which describes the relation between state variables, e.g., the fluid pressure p as a
function of ρ and e.

The Euler equations with self-gravity in spherical coordinates take the form

∂ρ

∂t
+

1

r2

∂

∂r
(r2[ρur]) +

1

r sin θ

∂

∂θ
(sin θ[ρuθ]) +

1

r sin θ

∂

∂φ
[ρuφ] = 0, (3.7)

∂ρur

∂t
+

1

r2

∂

∂r
(r2[ρu2

r]) +
1

r sin θ

∂

∂θ
(sin θ[ρuruθ]) +

1

r sin θ

∂

∂φ
[ρuruφ]

+

{

−ρu2
θ

r
−

ρu2
φ

r

}

+
∂p

∂r
= −ρ

∂Φ

∂r
, (3.8)

∂ρuθ

∂t
+

1

r2

∂

∂r
(r2[ρuruθ]) +

1

r sin θ

∂

∂θ
(sin θ[ρu2

θ]) +
1

r sin θ

∂

∂φ
[ρuθuφ]

+

{

ρuruθ

r
−

ρu2
φ cos θ

r sin θ

}

+
1

r

∂p

∂θ
= −ρ

r

∂Φ

∂θ
, (3.9)

∂ρuφ

∂t
+

1

r2

∂

∂r
(r2[ρuruφ]) +

1

r sin θ

∂

∂θ
(sin θ[ρuθuφ]) +

1

r sin θ

∂

∂φ
[ρu2

φ]

+

{

ρuruφ

r
+

ρuθuφ cos θ

r sin θ

}

+
1

r sin θ

∂p

∂φ
= − ρ

r sin θ

∂Φ

∂φ
, (3.10)

∂ρe

∂t
+

1

r2

∂

∂r
(r2[ur(ρe + p)]) +

1

r sin θ

∂

∂θ
(sin θ[uθ(ρe + p)]) +

1

r sin θ

∂

∂φ
[uφ(ρe + p)]

= −ρ

(

ur
∂Φ

∂r
+

uθ

r

∂Φ

∂θ
+

uφ

r sin θ

∂Φ

∂φ

)

. (3.11)

Note that the terms in curly brackets, called fictitious forces, arise since we employ a curvilinear
coordinate system.

Solving these nonlinear hyperbolic partial differential equations we employ the finite volume
method where the computational domain is discretized into volume elements or cells. Our com-
puter code, PROMETHEUS, developed by Bruce Fryxell and Ewald Müller (Fryxell et al. 1991;
Müller et al. 1991a,b), is an explicit finite-volume Eulerian hydrodynamic code which integrates
the equations of multidimensional hydrodynamics using the piecewise parabolic method (PPM;
Collela & Woodward 1984) for the reconstruction scheme and the dimensional splitting method
of Strang (1968) to treat the multi-dimensionality of the problem. The Riemann solver used in
the code is based on the Riemann solver for real gases of Colella & Glaz (1985). Inside grid cells
with strong grid-aligned shocks fluxes computed from the Riemann solver are replaced by the
AUSM+ fluxes of Liou (1996) in order to prevent odd-even decoupling (Quirk 1994).

3.2 The Yin-Yang Grid

3.2.1 Grid Geometry and Transformations

The Yin-Yang grid configuration is shown in Fig. 3.1. Both the Yin and the Yang grid are
simply a part of a usual spherical polar grid and are identical in geometry. The angular domain
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Figure 3.1: An axis-free Yin-Yang grid configuration plotted on a spherical surface. Both the Yin (red)
and Yang (blue) grid are the low latitude part of the normal spherical polar grid and are
identical in geometry. The Yang grid is obtained from the Yin grid by two rotations, and
vice versa.
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Figure 3.2: A Mercator projection of an overlap region of the Yin-Yang grid. In case of bi-linear inter-
polation, four neighboring values of the underlying grid (red) will be used to determine the
zone-centered value of a ghost zone in the grid on top (blue). The interpolation coefficients
are determined by the relative distances, denoted by black lines, between the interpolation
point (diamond) and the four neighboring points (crosses).

of each grid patch is given by

θ =

[

π

4
− δ,

3π

4
+ δ

]

∩ φ =

[

−3π

4
− δ,

3π

4
+ δ

]

(3.12)

where θ and φ are the colatitude and azimuth, respectively. Note that it is necessary to add
at least one extra buffer grid zone to both angular directions in order to ensure an appropriate
overlap of the grids. The angular width δ of this buffer zone depends on the grid resolution,
i.e., δ ≡ ∆θ = ∆φ, where for simplicity we assumed equal angular spacing in θ- and φ-direction.
The angular domain is hereby extended by 2δ in both angular directions. The Yin and Yang
grid are patched together in a specific manner forming a spherical shell with a small overlapping
region covering approximately 6% of a sphere’s surface. Stacking up Yin-Yang shells in radial
direction results in a 3D grid that is identical to the usual spherical polar grid in radial direction.
It is obvious that, unlike in the case of the spherical polar grid, the problematic high latitude
sections of the sphere are avoided, and the angular zoning is almost equidistant.

The Cartesian coordinates

(x(n), y(n), z(n)) = (r sin θ(n) cos φ(n), r sin θ(n) sinφ(n), r cos θ(n)) (3.13)

corresponding to the Yin grid, denoted by a superscript (n), and the Cartesian coordinates

(x(e), y(e), z(e)) = (r sin θ(e) cos φ(e), r sin θ(e) sinφ(e), r cos θ(e)) (3.14)

corresponding to the Yang grid, denoted by a superscript (e), are related to each other through
the transformation





x(e)

y(e)

z(e)



 = M





x(n)

y(n)

z(n)



 (3.15)
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where

M =





−1 0 0
0 0 1
0 1 0



 . (3.16)

This Yin-Yang coordinate transformation can also be considered as two subsequent rotations.
Accordingly, the transformation matrix M can be written as Rx(90◦)Rz(180◦), where Rx and
Rz are the transformation matrices of rotations by 90◦ around the x-axis and by 180◦ around
the z-axis in counterclockwise direction, respectively. For the inverse transformation matrix
M−1 = M holds.

The relation between the spherical coordinates of the Yin and Yang grid patches can be
derived directly from the transformation matrix M . Because the Yin-Yang coordinate transfor-
mation involves only rotations, it implies that the radial coordinate is identical on the Yin and
the Yang grid. The angular coordinates transform as

θ(e) = arccos
(

sin θ(n) sinφ(n)
)

, (3.17)

φ(e) = arctan

(

cos θ(n)

− sin θ(n) cos φ(n)

)

. (3.18)

Note that the inverse transformation has the same form as (3.17) and (3.18) but exchanging the
(grid) superscripts.

Vector components in spherical coordinates transform according to







v
(e)
r

v
(e)
θ

v
(e)
φ






= P







v
(n)
r

v
(n)
θ

v
(n)
φ






(3.19)

where

P =





1 0 0

0 − sinφ(e) sinφ(n) − cos φ(n)/ sin θ(e)

0 cos φ(n)/ sin θ(e) − sinφ(e) sinφ(n)



 (3.20)

is the vector transformation matrix. When switching (grid) superscripts (e) and (n) in matrix
P , the inverse vector transformation matrix is obtained. For a detailed derivation of the trans-
formation matrix P , we refer to section 3 of Kageyama & Sato (2004). Note that the vector
transformation matrix P is singular at sin θ(e) = 0, but this singular point is rectifiable. In
practice, one can always decompose vectors into their Cartesian components and perform the
corresponding transformation.

3.2.2 Implementation

Firstly, the Yin-Yang grid needs to be constructed. Since both the Yin and the Yang grid are
part of a spherical polar grid an analogous spatial discretization in angular direction can be
used. For example, using the discretization formulae (1.2) and (1.3), the θ and φ coordinates of
the zone center of an angular zone (j, k) of a Yin-Yang grid, having Nθ zones in θ-direction and
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Nφ zones in φ-direction, are given by

θj = θmin + j · ∆θ

2
for 1 ≤ j ≤ Nθ, (3.21)

φk = φmin + k · ∆φ

2
for 1 ≤ k ≤ Nφ, (3.22)

where

∆θ =
θmax − θmin

Nθ

, (3.23)

∆φ =
φmax − φmin

Nφ

(3.24)

are the respective angular grid spacings.
The range of values for the colatitude θ and the azimuth angle φ are as given in (3.12), and

for simplicity we set ∆θ = ∆φ. In radial direction no modification is required. The geometric
property of the Yin-Yang grid allows us to make use of the coordinate arrays ri, θj , and φk twice
by enforcing the same grid resolution for both grid patches. This approach avoids doubling the
coordinate arrays.

Only simple modifications are needed concerning the data and program structure. Arrays
with three spatial indices, e.g., i, j, and k, need an extra grid index, say, l. For example, the
array for the density field will be ρ(i, j, k, l) instead of ρ(i, j, k). As a consequence any triple
loop running over indices i, j, and k in the program becomes a fourfold loop over i, j, k, and
l instead. Otherwise, the Yin-Yang grid allows one to exploit without any further modification
any already implemented finite-volume scheme in spherical coordinates to solve the equations
of hydrodynamics.

Different from the spherical polar grid, the Yin-Yang grid requires no boundary conditions in
angular directions. Each grid patch communicates with its neighboring patch using information
from ghost zones that is obtained by interpolation of data between internal grid zones of the
neighboring grid patch. Interpolation is only required in the two angular coordinates as the radial
part of the Yin-Yang grid is identical to that of a spherical polar grid. It is straightforward
to determine the corresponding interpolation coefficients. The mapping of vector quantities
between the Yin and Yang grid patches requires an additional step. After interpolating the
vector components they must be transformed according to the transformation given in Eq. (3.19)
from the Yin to the Yang angular coordinate system, and vice versa.

We tested two interpolation procedures. In the first one all primitive state variables (density,
velocity, energy, pressure, temperature, abundances) are interpolated ignoring the resulting small
thermodynamic inconsistencies. In the second procedure, we only interpolate the conserved
quantities (density, momentum, total energy, and abundances), and compute the velocity and the
remaining thermodynamic state variables consistently via the equation of state. Both procedures
produce very similar results which differ at the level of the discretization errors. As the second
procedure is more consistent we use it as the standard one in our code.

An example of overlapping situations which are encountered when using a Yin-Yang grid is
shown in Fig. 3.2. For simplicity, we use bi-linear interpolation in order to prevent unwanted
oscillation. Because the grid patches are fixed in both angular directions the interpolation
coefficients for each ghost zone need to be calculated only once per simulation at the initialization
step. After initialization, the coefficient map is stored in an array for later usage. Moreover, the
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symmetry property of the Yin-Yang transformation allows one to make use of the interpolation
coefficients twice for both grids.

Because the Yin-Yang grid is an overlapping grid integral quantities such as the total mass or
total energy on the computational domain cannot be obtained by just summing local quantities
from every grid cells. Doing so will result in counting the contributions in the overlapping
region twice. To circumvent this problem, weights are given to each grid zone during the
summation. Suppose a grid zone has an overlapping volume fraction α the cell will receive a
weight w = 1.0 − 0.5α. Zones in the non-overlapping region receive the weight of 1.0, i.e., the
entire zone contributes to the integral while, on the other hand, zones that are fully contained
within the overlapping region have a weight 0.5. The volume fraction α does not depend on the
radial coordinate and can be thought of as an area fraction since the grid patches are not offset
in radial direction. Prior to the area integration, one needs to determine for each zone interface
of the underlying grid the points where the interface is intersected by the boundary lines of the
other grid, e.g., points on the Yin grid intersected by the boundary lines of the Yang grid. The
intersection points can be determined using the Yin-Yang coordinate transformation in (3.17)
and (3.18), respectively. The integration in the overlapping area is then carried out using the
trapezoidal method. This procedure is also described in Peng et al. (2006). Once the area or
volume fraction α is calculated, the weights for each cell are obtained easily. Note that these
weights need to be calculated only at the initialization step, and are stored for later usage in
a coefficient map w(j, k), where j and k are the indices referring to the θ and φ coordinates,
respectively. The coefficient map can be applied to both grids without any modification. Using
the above described approach, the volume or surface area of the grids can be calculated with an
accuracy up to machine precision.

3.3 Self-gravity Solver

The 3D Newtonian gravitational potential is computed from Poisson’s equation in its integral
form using an expansion into spherical harmonics as described in Müller & Steinmetz (1995).
Because the algorithm of these authors is based on a (single) spherical polar grid the density on
the Yin-Yang sphere has to be interpolated onto an auxiliary spherical polar grid. The interpola-
tion used is first-order accurate, and due to the simplicity of the Yin-Yang grid configuration has
to be performed only in the two angular dimensions. Concerning the resolution of the auxiliary
grid, it is natural to employ the same grid resolution as that used for the Yin-Yang grid in all
three spatial dimensions. The orientation of the auxiliary grid can be chosen freely in principle.
However, it is convenient to align it with one of the two grid patches (the Yin-grid in our case).
Once the density is interpolated onto the auxiliary spherical grid we compute the gravitational
potential, as suggested by Müller & Steinmetz (1995), at zone interfaces instead of at zone cen-
ters on both the Yin and Yang grid. The gravitational acceleration at zone centers can then
be obtained by central differencing the potential. Note that the interpolation coefficients for
the density need to be calculated only once per simulation, because both the auxiliary grid and
the Yin-Yang grid are fixed in angular directions. In addition, all angular weights, Legendre
polynomials, and their integrals required for the calculation of the gravitational potential are
stored after the initialization step for later usage.

It is also possible to directly calculate the gravitational acceleration at zone centers. The
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gravitational potential is given by (see Eqs. (5), (6) and (7) in Müller & Steinmetz (1995))

Φ(r, θ, φ) = −G
∞
∑

l=0

4π

2l + 1

l
∑

m=−l

Y lm(θ, φ)

(

1

rl+1
C lm(r) + rlDlm(r)

)

(3.25)

with

C lm(r) =

∫

4π

d Ω′Y lm∗(θ′, φ′)

r
∫

0

dr′r′l+2ρ(r′, θ′, φ′) , (3.26)

Dlm(r) =

∫

4π

d Ω′Y lm∗(θ′, φ′)

∞
∫

r

dr′r′1−lρ(r′, θ′, φ′) , (3.27)

where Y lm and Y lm∗ are the spherical harmonics and their complex conjugates, ρ is the density,
and d Ω ≡ sin θ dθ dφ. The gravitational acceleration in radial direction is then

∂

∂r
Φ(r, θ, φ) =

−G
∞
∑

l=0

4π

2l + 1

l
∑

m=−l

Y lm(θ, φ)
d

dr

(

1

rl+1
C lm(r) + rlDlm(r)

)

. (3.28)

Writing the radial derivative in Eq. (3.28) as

d

dr

(

1

rl+1
C lm(r) + rlDlm(r)

)

=
1

rl+1

d

dr
C lm(r) − l + 1

r
· 1

rl+1
C lm(r)

+ rl d

dr
Dlm(r) +

l

r
· rlDlm(r) , (3.29)

and noticing that the first and third term on the right hand side of this expression cancel each
other because of the identities

d

dx

x
∫

0

f(x′)dx′ = f(x) (3.30)

and

d

dx

∞
∫

x

f(x′)dx′ = −f(x) (3.31)

the gravitational acceleration in radial direction becomes

∂

∂r
Φ(r, θ, φ) = − G

∞
∑

l=0

4π

2l + 1

l
∑

m=−l

Y lm(θ, φ)

(

− l + 1

r
· 1

rl+1
C lm(r) +

l

r
· rlDlm(r)

)

. (3.32)

The corresponding expressions for the gravitational acceleration in the two angular directions
are easy to obtain since the spherical harmonics Y lm are the only angular-dependent terms in
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Eq. (3.25). Therefore, we only need to consider the partial derivatives of the spherical harmonics
with respect to the θ and φ coordinates. As the spherical harmonics are given by

Y lm(θ, φ) = N lmP lm(cos θ)eimφ , (3.33)

where N lm is the normalization constant and P lm the associated Legendre polynomial, one finds

∂

∂θ
Y lm(θ, φ) = N lmeimφ d

dθ
P lm(cos θ) (3.34)

and
∂

∂φ
Y lm(θ, φ) = imY lm(θ, φ). (3.35)

The derivatives of the associated Legendre polynomials are easily obtained using the recurrence
formula

(x2 − 1)
d

dx
Pm

l (x) = lxPm
l (x) − (l + m)Pm

l−1(x) . (3.36)

Thus, one finds for the gravitational acceleration in the angular directions

1

r

∂

∂θ
Φ(r, θ, φ) = −G

r

∞
∑

l=0

4π

2l + 1

l
∑

m=−l

N lmeimφ d

dθ
P lm(cos θ)

(

1
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C lm(r) + rlDlm(r)

)

(3.37)

and

1

r sin θ

∂

∂φ
Φ(r, θ, φ) = − G

r sin θ

∞
∑

l=0

4π

2l + 1

l
∑

m=−l

imY lm(θ, φ)

(

1

rl+1
C lm(r) + rlDlm(r)

)

. (3.38)

Obviously, the expressions for three components of the gravitational acceleration (see Eqs. (3.32),
(3.37), and (3.38)) are similar to that for the gravitational potential itself (see Eq. (3.25)).
Hence, besides computing derivatives of Legendre polynomials, our extended Poisson solver can
provide without much additional effort both the gravitational potential and the corresponding
acceleration.

Usage of the analytic expressions for the gravitational acceleration avoids the errors arising
from the numerical differentiation of the gravitational potential. However, tests show that the
results obtained using either the gravitational potential computed with the “standard” Pois-
son solver and subsequent numerical differentiation or directly the gravitational acceleration
provided by the extended Poisson solver differ only very slightly (see next chapter). Thus, we
decided to stick to the “standard” Poisson solver in our simulations and compute the gravita-
tional acceleration by numerical differentiation, as it requires no modification of our code.

3.4 Additional Physics

We divided our simulations into two phases: the explosion simulation and the long-time shock
propagation simulation. Each phase is treated with a different set of additional physics as
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necessary to follow the evolution. The explosion phase considers the supernova evolution starting
from approximately 10-15 ms after bounce until 1.4 s after bounce. At this stage, the supernova
shockwave locates roughly at 15000 km. The long-time simulation is then a continuation from
1.4 s after bounce until the supernova shock reaches the surface of the progenitor’s star which is
roughly at the radius of 3.3 × 1013 cm.

3.4.1 Explosion Simulation

In our supernova simulations, we employ the tabulated EoS of Janka & Müller (1996) to de-
scribe the stellar fluid. It includes arbitarily degenerate and arbitarily relativistic electrons and
positrons, photons, and four predefined nuclear species (n, p, α, and a representative Fe-group
nucleus) in nuclear statistical equilibrium. The dense inner core of the proto-neutron star (PNS)
is excised and replaced by a point mass at the coordinate origin. The cooling of the PNS is then
prescribed by neutrino emission properties as boundary condition at the inner grid boundary.
The contraction of the PNS is mimicked by a contracting inner grid boundary and a radial grid
movement. “Ray-by-ray” neutrino transport and neutrino-matter interactions are approximated
as in Scheck et al. (2006) by radial integration of the one-dimensional (spherical), grey transport
equation for all angular grid directions (θ,φ) independently. This approach allows for angular
variations of the neutrino fluxes. We take into account the dominant general relativistic effects
by replacing the monopole term of the Newtonian gravitational potential by the potential de-
scribed in Scheck et al. (2006) and Arcones et al. (2007). The code treats advection of nuclear
species by employing the Consistent Multi-fluid Advection (CMA) scheme of Plewa & Müller
(1999).

In addition, to follow approximately the explosive nucleosynthesis, we solve a small alpha-
reactions network, similar to the network described in Kifonidis et al. (2003), consisting of the
10 α-nuclei: 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 40Ca, 44Ti, 56Ni, and an additional tracer nucleus
(discarding 32S, 36Ar, 48Cr, and 52Fe). The two gaps between 28Si - 40Ca and 44Ti - 56Ni are
bridged by combining the intermediate reactions steps and taking the slowest reaction rate of the
intermediate reaction. The tracer nucleus is produced via the reaction 44Ti(3α,γ)56Ni within
grid cells whose electron fraction Ye is below 0.49. This allows us to keep track of element
formation in neutron-rich regions. The network is solved within grid cells whose temperature is
within the range of 108 K – 8 × 109 K. We assume that all nuclei are photo-disintegrated into
α-particles at temperatures above 8 × 109 K. We also neglect feedback from the network to the
EOS and the hydrodynamic flow.

3.4.2 Long-time Shock Propagation Simulation

To follow the propagation of the SN shock wave until very late time, we map our computed data
at the end of the explosion phase onto a new computational grid. We neglected the neutrino
transport as it becomes unimportant, but still consider nucleosysthesis and Newtonian self-
gravity. The EoS used for this simulation is based on the tabulated EoS by Timmes & Swesty
(2000). It considers contributions of an arbitarily degenerate and relativistic electron-positron
gas and a photon gas. It also considers the contribution of ideal Boltzmann gases consisting of
12 nuclear species: n, p, 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 40Ca, 44Ti, 56Ni. During the course
of the simulation, we move the inner grid boundary out to a new radius whenever the radius of
the inner grid boundary becomes less than 2% of the minimum shock radius reducing the total
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number of radial grid zones. Moving the inner grid boundary to a larger radius helps relaxing
the restrictive CFL timestep and allows us to follow the evolution to very late time (∼hours or
days) with reasonable computational time.
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Chapter 4

Test Suites

In this chapter, we present results from tests to ensure that the Yin-Yang grid is working properly
together with the hydrodynamic and self-gravity parts of the code.

4.1 Sod Shock Tube

The first problem of our test suite is the planar Sod shock tube problem, a classical hydrody-
namic test problem (Sod 1978). We simulated this (1D Cartesian) flow problem using spherical
coordinates and the Yin-Yang grid. The initial state consists of two constant states given by

(ρ, p, vx) =

{

(1.0, 1.0, 0.0) if x(n) > 0.4 cm

(0.125, 0.1, 0.0) if x(n) ≤ 0.4 cm
, (4.1)

where ρ, p, and vx are the density, pressure and the velocity in x-direction of the fluid, re-
spectively. Note again that the superscript n and e refer to coordinates on the Yin and Yang
grid, respectively. We assume the fluid to obey an ideal gas equation of state with an adiabatic
index γ = 1.4. The surface separating the two constant states is a plane orthogonal to the
x-axis located at x(n) = 0.4 cm, the (positive) x-axis corresponding to a radial ray with angular
coordinates θ(n) = π/2 and φ(n) = 0. Thus, this 1D planar Sod shock tube problem invokes all
three spherical velocity components vr, vθ, and vφ when simulating the flow in spherical polar
coordinates. This allows us to test both the scalar and vector transformations as well as the
interpolation between the Yin and Yang grid patches. The simulation was carried out on an
equidistant Yin-Yang grid of 400 (r) × 92 (θ) × 272 (φ) × 2 zones (i.e., with an angular resolu-
tion of one degree; see Eq.(3.12)). In radial direction the computational domain ranges from
r = 0.05 cm to r = 1.0 cm. We impose a zero-gradient boundary condition at both edges of the
radial domain.

The solution of the shock tube problem is well-known. We compare our results with the
solution calculated using an exact Riemann solver (Toro 1997). For comparison, data are re-
sampled along the x-direction with a spacing ∆x = 0.002 cm. Fig. 4.1 shows one dimensional
profiles of ρ, p, vx, and e (specific internal energy), respectively, along the x-direction at z(n) =
0.25 cm and y(n) = 0 cm (dashed-dotted line in Fig. 4.2) at different times. Our results agree
very well with the solution obtained with the exact Riemann solver. The grid resolution is
sufficiently high to give a sharp shock front and contact discontinuity while the rarefaction wave
is smooth. The shock position is correct at all time throughout the simulation. The re-sampled
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Figure 4.1: One dimensional profiles of density ρ, pressure p, velocity in x-direction vx, and specific

internal energy e are shown along the x-direction at z(n) = 0.25 cm and y(n) = 0 cm (dashed-
dotted line in Fig. 4.2) for the shock tube simulation at every 0.1 s. Open and filled symbols
represent data points on the Yin and Yang grid, respectively. Solid lines give the distributions
calculated with an exact Riemann solver.
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Figure 4.2: Snapshot of density contours in the meridional plane φ(n) = 0 at t = 0.15 s for the shock tube
test problem. Dashed lines mark the Yin-Yang grid boundary, while the dotted circular curves
represent the inner and outer radial boundary of the computational domain, respectively.
The one dimensional profiles shown in Fig. 4.1 are re-sampled along the dashed-dotted line
at z(n) = 0.25 cm.
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Figure 4.3: Color maps of the tangential velocity defined by

√

(v
(n)
y )2 + (v

(n)
z )2 in the meridional plane

φ(n) = 0 resulting from the (1D Cartesian) shock tube problem. The snapshots are computed
using the Yin-Yang grid (left) and a standard spherical polar grid (right) at a time t = 0.15 s.
On the left panel, red and blue lines mark the boundaries of the Yin and the Yang grid patches,
respectively. On the right panel, the two red circles show the inner and outer boundary in
the radial direction of the standard spherical polar grid. The labels at the color bars give the
tangential velocity in units of cm/s. The color range is limited to 0.05 cm/s to emphasize the
smallness of the tangential velocity far from the outer radial grid boundary.
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data yield an accuracy of approximately 6% on average for shock positions. The shock wave
and the contact discontinuity propagate smoothly across the Yin-Yang boundary located at
x(n) = 0.25 cm without any noticeable effect by the existence of the boundary. To illustrate
this behavior, Fig. 4.2 shows lines of constant density in the meridional plane φ(n) = 0 at time
t = 0.15 s. The isocontours are nearly perfectly straight lines perpendicular to the x-axis that
are unaffected by the Yin-Yang boundary (dashed line). The contour lines are slightly bent near
the outer radial edge of the computational domain due to the zero-gradient boundary condition
we have imposed there.

In order to firmly demonstrate that the Yin-Yang boundary does not cause numerical ar-
tifacts, we also computed this shock tube problem with a standard spherical polar grid using
the same radial and angular resolution as for the Yin-Yang grid described above, i.e., 400 (r) ×
180(θ) × 360 (φ). We imposed reflecting boundary conditions in θ-direction and periodic ones
in φ-direction. Fig. 4.3 shows a comparison of the results obtained with both simulations. The

two panels give the tangential velocity, defined as

√

(v
(n)
y )2 + (v

(n)
z )2, in the meridional plane

φ(n) = 0 at time t = 0.15 s for the Yin-Yang grid (left), and the standard spherical polar grid
(right), respectively. This velocity component should remain exactly zero because of the cho-
sen initial conditions. Thus, it is a sensitive indicator whether the Yin-Yang boundary works
properly, which obviously is indeed the case as the left panel of Fig. 4.3 shows no hint of the
location of that boundary. The modulus of the tangential velocity does nowhere exceed a value
of 0.05 cm/s or approximately 5% of the shock velocity (in x-direction) except near the outer
radial edge of the grids, where the boundary condition causes larger numerical errors. Note
that nonzero tangential velocities are encountered on both the Yin-Yang grid and the standard
spherical polar grid in the same grid regions at the same level. We thus conclude that they are
the result of numerical errors that unavoidably occur when propagating a planar shock across a
spherical polar grid, be it a standard one or a Yin-Yang grid.

4.2 Taylor-Sedov Explosion

As a second test for our code we consider the Taylor-Sedov explosion problem. We set up the
initial state for the problem by mapping a spherically symmetric analytic solution (Landau &
Lifshitz 1959) onto the computational grid. We choose the parameters of the problem to mimic
a supernova explosion in an interstellar medium. Because the shock wave resulting from the
explosion is spherically symmetric with respect to the center of the explosion, we assume the
explosion center to be located at the point (x(n), y(n), z(n)) = (7.0, 0.0, 2.5) × 1019 cm. Hence,
this second test problem also involves a non-zero flux of mass, momentum, and energy across
the Yin-Yang boundary, and as the previous shock tube test, it probes whether that boundary
causes any numerical artifacts.

The initial shock radius is r0 = 2.9625× 1019 cm corresponding to a time texp = 0.34× 1011 s
past the onset of the explosion, and the explosion energy was set to E0 = 1051 erg. The ambient
medium into which the shock wave is propagating is at rest. It has a constant density ρb =
10−25 g/cm3, and a constant pressure pb = 1.4 × 10−13 erg/cm3. The fluid is described by an
ideal gas equation of state with an adiabatic index γ = 5/3, resulting in a density jump across
the shock front of (γ + 1)/(γ − 1) = 4. We use a grid resolution of 400 × 92 × 272 × 2 zones,
a computational domain covering the radial interval r = [0.5, 15.] × 1019 cm, and employ a
zero-gradient boundary condition at both the inner and the outer radial boundary.
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Figure 4.4: Distributions of density (top), pressure (middle) and radial velocity (bottom) versus radius

from the explosion center (located at (x(n), y(n), z(n)) = (7.0, 0.0, 2.5)×1019 cm for the Taylor-
Sedov explosion problem plotted at every 1011 s. Open symbols are data points from the Yin
grid, while filled symbols represent sampled data from the Yang grid. The solid lines give
the corresponding analytic solution. The data are re-sampled along the dashed-dotted line
shown in Fig. 4.5.
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Figure 4.5: Lines of constant density in the meridional plane φ(n) = 0 obtained from our simulation of a
Taylor-Sedov explosion. The snapshot is taken at a simulation time tsim = 2.0× 1011 s which
corresponds to an explosion time texp ≈ 2.34 × 1011 s. The dashed lines mark the Yin-Yang
boundary, while the two dotted circles represent the inner and outer radial boundary of the
computational domain, respectively. The data presented in Fig. 4.4 are re-sampled along the
dashed-dotted line .
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Figure 4.6: Evolution of the mass within the overlap region for the Taylor-Sedov test case computed on

the Yin grid, Movlp
n minus the mass computed on the Yang grid, Movlp

e , divided by the sum
of these two masses. The dashed, dotted and solid lines give the solutions computed on a
grid of 400× 32× 92× 2 zones, (i.e., 3◦ angular resolution), 400× 92× 272× 2 zones (i.e., 1◦

angular resolution), and 400× 182× 542× 2 zones (i.e., 0.5◦ angular resolution), respectively.

Our results are shown together with the analytic solution in Fig. 4.4. We have re-sampled
our data and calculated radial profiles of the density ρ, pressure p, and radial velocity vr along a
line in z-direction through the explosion center using a uniform radial spacing ∆r = 1018 cm. As
one can see the numerical results agree very well with the analytic solution. All flow quantities
are smooth across the Yin-Yang boundary, i.e., the shock wave passes that boundary without
any noticeable numerical artifact. Due to the finite resolution the density jump across the shock
front is slightly smaller in the simulation than the analytic value of four. However, the shock
front is sharp throughout the whole simulation, and it propagates with the correct speed. One
distinct feature of the Taylor-Sedov solution is its spherical symmetry. To illustrate that the
Yin-Yang grid does not destroy this symmetry of the solution, we show a set of lines of constant
density in the meridional plane φ(n) = 0 in Fig. 4.5. We also marked the line (dashed-dotted)
along which the data given in Fig. 4.4 are re-sampled. The contour lines, all of which are almost
perfectly circular, are drawn at a simulation time tsim = 2.0×1011 s (i.e., time step number 1276)
corresponding to an explosion time texp ≈ 2.34 × 1011 s.

We further studied how the solution differs in the region where the Yin and Yang grid overlap.
To this end we compare the total mass within the overlap region computed on the Yin and the
Yang grid, respectively. Fig. 4.6 shows the evolution of the relative mass difference, i.e., the
mass within the overlap region computed on the Yin grid, Movlp

n minus the mass computed on
the Yang grid, Movlp

e , divided by the sum of these two masses. We calculated this quantity
for three different (angular) grids with 400 × 32 × 92 × 2 zones (i.e., 3◦ angular resolution),
400× 92× 272× 2 zones (i.e., 1◦ angular resolution), and 400× 182× 542× 2 (i.e., 0.5◦ angular
resolution), respectively. For all three grid resolutions the relative mass difference has a value of
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Figure 4.7: Surfaces of constant density in 3D (left) and 2D (right; meridional cut at φ(n) = 0) resulting
from the simulation of the Rayleigh-Taylor instability described in the text at t = 2.85 s.
Contour lines on the Yin grid are shown using the blue-yellow colors while contour lines on
the Yang grid are displayed using the white-black colors.

about 10−4. Although its evolution with time is different in case of the 3◦ simulation (because
the coarse angular grid causes large errors when mapping the analytic initial data onto the grid
which determine the further evolution), Fig. 4.6 shows that for an angular resolution better than
1◦ the relative mass difference behaves similarly, its maximum value decreasing from 2.1× 10−4

at 1◦ angular resolution to 1.5 × 10−4 at 0.5◦ angular resolution.

4.3 Rayleigh-Taylor Instability

We also simulated a single mode Rayleigh-Taylor instability (RTI) on a Yin-Yang sphere. The
initial configuration consists of a spherical shell of a heavier fluid of density ρH = 2 g/cm3 that is
supported against a constant gravitational field g = 1 cm/s2 pointing in negative radial direction
by a spherical shell of a lighter fluid of density ρL = 1 g/cm3. The boundary between the two
fluid shells is initially located at a radius r = 0.5 cm. To balance the gravitational force, the
initial (radial) pressure distribution is set to

P (r) =

{

P0 + gρH (1.0 − r) if r ≥ 0.5 cm
P (r = 0.5) + gρL (0.5 − r) if r < 0.5 cm

(4.2)

where P0 = 1 erg/cm3. A radial velocity varying in angular direction as the spherical harmonics
Y m

l (θ, φ) with l = 3 and m = 2 is used to perturb the initial configuration. The amplitude of the
velocity perturbation is 2.5% of the local sound speed cs(r). Hence, the initial radial velocity is
given by

vr(r, θ, φ) = −0.025 × cs(r)Y 2
3 (θ, φ). (4.3)
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Figure 4.8: Position of the heads of the RTI bubbles versus time. Red symbols (circles, triangles, and
squares) show data from the Yin grid, while blue symbols (diamonds) represent data on the
Yang grid.

The spherical harmonics Y m
l (θ, φ) are connected with the associated Legendre polynomials Pm

l

via the expression

Y m
l (θ, φ) =

√

(l − m)!

(l + m)!
Pm

l (cos θ)eimφ . (4.4)

The perturbation mode (l, m) = (3, 2) yields a maximum radial velocity in the directions

(θ, φ) = {(π − α, 0), (π − α, π), (α, π/2), (α,−π/2)} , (4.5)

where α ≡ arccos(
√

3/3). The remaining two velocity components of the perturbation mode are
set equal to 0. The fluids are described by an ideal gas equation of state with an adiabatic index
γ = 1.4. The simulation is carried out on a Yin-Yang grid of 400×92×272×2 zones. To keep the
fluid in hydrostatic equilibrium, a zero-gradient boundary condition is used for both the inner
and outer boundary in radial direction. The inner radial boundary is located at r = 0.1 cm.

A snapshot of the resulting density distribution obtained with the Yin-Yang grid is displayed
in Fig. 4.7 at epoch t = 2.85 s. The left panel shows color coded contour lines in 3D, and the right
one a meridional cut at φ(n) = 0. The contour lines are drawn using different color tables for
the Yin and Yang grid, respectively. Four distinct bubbles of rising low density fluid (Yin: blue;
Yang: bright gray) are clearly visible that reflect the initial perturbation mode (l, m) = (3, 2).
High density fluid (Yin: yellow/red; Yang: dark gray/black) sinks down and settles at the inner
part of the sphere. One can also notice Kelvin-Helmholtz instabilities developing at the surface
of the bubbles. This is particularly obvious in the meridional cut (right panel). One of the RTI
bubbles is within the Yang grid, while the three others reside on the Yin grid. It is obvious that
the bubbles are distributed symmetrically following the perturbation pattern regardless of the
grid patch. The 2D contour lines shown in the right panel of Fig. 4.7 emphasize this fact.

The RTI bubbles grow with nearly the same growth rate in all four (perturbation) directions,
as can also be seen from Fig. 4.8 that displays the position of each bubble’s head versus time.
The four curves lie exactly on top of each other during the phase of linear growth. There are
slight discrepancies between the four curves in the non-linear regime, because the linear grid
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Component
Prolate spheroid Sphere

Poisson solver extended Poisson solver Poisson solver extended Poisson solver
r̂ 4.821 × 10−4 4.698 × 10−4 1.598 × 10−2 1.557 × 10−2

θ̂ 6.134 × 10−2 2.592 × 10−2 1.67 × 10−2 1.67 × 10−2

φ̂ 1.245 × 10−2 2.435 × 10−3 1.655 × 10−2 1.655 × 10−2

Table 4.1: Mean errors in the gravitational acceleration.

resolution in angular direction is slightly non-equidistant (due to its θ dependence). Two curves
from the Yin grid coincide perfectly since they represent the two bubbles that lie symmetrically
above and below the equator in the Yin grid. The results confirm that the Yin-Yang grid does
not favor any angular direction on the sphere. Since our aim was only to demonstrate this
important fact, we do not further analyze the growth rate of the RTI.

4.4 Gravitational Potential of Homogeneous Spheroids

We investigate the accuracy of our gravity solver by calculating the gravitational potential of
homogeneous spheroids. We consider two homogeneous self-gravitating configurations: a prolate
spheroid with an axis ratio of 0.7, and a sphere. The configurations have a constant density
ρ = 1 g/cm3, and are embedded into a homogeneous background of much lower density ρb =
10−20 g/cm3 in order to minimize the background’s contribution to the gravitational potential.
The semi-major axis of the spheroid aligns with the x-axis, while its center is placed at the origin
of the Yin-Yang grid. To provide a more difficult test for our multipole based gravity solver, we
shift the center of the sphere off the origin of the computational grid by more than one sphere
radius.

The analytical form of the gravitational potential for both type of configurations are known.
The solution for the prolate spheroid can be found in chapter 3 of Chandrasekhar (1969), and
the sphere’s potential can be easily calculated. Fig. 4.9 shows contour lines of the gravitational
potential for both cases in the meridional plane φ(n) = 0. The potential is calculated on a grid
of 400 × 92 × 272 × 2 zones with L = 15, where L is the number of spherical harmonics taken
into account (see section 3.3). The contour lines are smooth across the Yin-Yang boundary for
both the prolate spheroid and the sphere.

Concerning the convergence behavior of the solver, we consider various grid resolutions and
a number of spherical harmonics ranging up to L = 25 for this convergence test. The grid
resolutions used in the test are 400 × 92 × 272 × 2 zones, 400 × 47 × 137 × 2 zones, 200 × 92 ×
272 × 2 zones, and 200 × 47 × 137 × 2 zones, respectively. The maximum and mean error of
the gravitational potential are given as a function of L for both considered configurations in
the middle and right panels of Fig. 4.9, respectively. Both errors show a convergence behavior
with higher grid resolution, and tend to saturate at large values of L. This behavior is similar
to what is described in Müller & Steinmetz (1995). In addition, for lower grid resolution the
accuracy saturates at a lower number of spherical harmonics compared to calculations with a
higher grid resolution. This is expected since higher order terms in the multipole expansion are
not well represented on grids of lower angular resolution.

We also tested our extended Poisson solver discussed in section 3.3. In Table 4.1 we compare
the mean errors in the components of the gravitational acceleration for both the prolate spheroid
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Figure 4.9: Contour lines of the gravitational potential (left column) for two homogeneous self-gravitating
configurations: a prolate spheroid (top row) with an axis ratio of 0.7, and a sphere (bottom
row). The configurations are indicated by the dark-gray shaded areas. Dashed lines show
the Yin-Yang boundary, while dotted lines indicate the outer radial boundary of the com-
putational grid. The middle and right columns give the maximum and mean error of the
numerically calculated gravitational potential for different grid resolutions as a function of the
number of spherical harmonics used in our multipole gravity solver. The solid, dotted, dashed,
and dashed-dotted lines in both columns correspond to a grid resolution of 400×92×272×2
zones , 400 × 47 × 137 × 2 zones, 200 × 92 × 272 × 2 zones, and 200 × 47 × 137 × 2 zones,
respectively.
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Figure 4.10: Relative change of the central density of a non-rotating (nearly) equilibrium polytrope as a
function of time.

and the sphere test case computed with the numerically differentiated gravitational potential
given in Eq. (3.25) with those obtained from the analytic expression given in Eqs. (3.32), (3.37),
and (3.38), respectively. We used a grid of 400 × 92 × 272 × 2 zones and L = 15 for this
comparison.

For the prolate spheroid test case the “analytically” obtained accelerations exhibit a smaller
mean error, especially for the θ- and φ-component of the gravitational acceleration. This results
from a strong decrease of the maximum error, which is large in regions where the angular
components of the gravitational acceleration approach zero, i.e.,near the major and minor axes
of the prolate spheroid. However, in these regions the accelerations in θ and φ-direction are
orders of magnitude smaller than the radial component. Thus, they contribute only a tiny
fraction to the total acceleration. In the sphere test case both variants of the extended Poisson
solver produce similar mean errors. Based on these results we conclude that the extended
Poisson solver, which provides the gravitational acceleration using analytic expressions, works
properly. Moreover, it gives a slightly more accurate gravitational acceleration, as it does not
involve numerically differencing the gravitational potential. Nevertheless, for the reasons stated
in section 3.3, we prefer to use the Poisson solver of Müller & Steinmetz (1995) in our simulations.

4.5 Self-gravitating Polytropes

Using our Yin-Yang grid based hydro-code we have also considered self-gravitating, non-rotating
and rotating equilibrium polytropes. Both kinds of polytropes provide another test of the Poisson
solver, and a test of how well our hydrodynamics code can keep a self-gravitating configuration
in hydrostatic and stationary equilibrium, respectively. In addition, the rotating polytrope
also serves to test the proper working of the Yin-Yang boundary treatment, as it involves a
considerable and systematic flow of mass, momentum and energy flux across that boundary due
to the polytrope’s rotation.

The polytropes have a polytropic index n = 1, a polytropic constant κ = 1.455 × 105, and
a central density of ρc = 7.905 × 1014 g/cm3. For our test runs we interpolated equilibrium
polytropes calculated with the method of Eriguchi & Müller (1985) onto a Yin-Yang sphere,
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Figure 4.11: Density (top) and radial velocity (bottom) of a non-rotating n = 1 equilibrium polytrope as
a function of radius after t = 10ms of “evolution”. In the top panel, the solid line shows the
initial density profile. Red circles and blue triangles correspond to data from the Yin and
the Yang grid, respectively.

Figure 4.12: Same as Fig. 4.10 but for a rotating polytrope. The solid and dashed curves show the relative

variation of the density along an equatorial ray (θ(n) = π/2; φ(n) = 0) and along the pole
(θ(n) = 0), respectively.
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Figure 4.13: Density (upper panel) and radial velocity (lower panel) of a n = 1 rotating polytrope in
stationary equilibrium as a function of radius after t = 10ms of “evolution”. In both panels
the solid and dashed lines show the profiles along an equatorial ray (θ(n) = π/2, φ(n) = 0)
and along the pole (θ(n) = 0), respectively. Red circles and blue triangles in the upper panel
correspond to data from the Yin and the Yang grid, respectively. In the lower panel, we
show in addition time averaged (over the interval t = [9, 10]ms) velocity profiles along the
equatorial ray (dotted) and the pole (dashed-dotted).
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and simulated their dynamic evolution (occurring as the interpolated configuration is not in
perfect hydrostatic equilibrium). The central region (r < 1 km) of the polytrope is cut out and
replaced by a corresponding point mass to allow for a larger time step.

We use an artificial atmosphere technique to handle those regions of the computational grid
that lie outside the (rotating, i.e., non-spherical) polytrope. The density in the atmosphere is
set equal to a value ρatm = 10−10ρc, where ρc is the central density of the polytrope. Here,
atmosphere denotes any grid zone whose density is less than the cut-off density ρcut−off =
10−7ρmax. Furthermore, for all zones in the atmosphere the velocity is set to zero in order to
keep the atmosphere quiet. This procedure is applied at the end of every time step throughout
the simulation. A zero-gradient boundary condition is imposed at the outer radial boundary,
and a reflecting boundary condition at the inner one. The polytrope’s evolution is followed for
10 ms corresponding to approximately 10 dynamic time scales in order to check how well the
initial approximate equilibrium configuration is maintained by the Yin-Yang code.

For the non-rotating polytrope, we employ a grid of 400 × 20 × 56 × 2 zones. Note that
we are able to use a relatively low angular resolution compared to the other tests, because the
problem has spherical symmetry. Our results show that the polytrope stays perfectly spherically
symmetric throughout the simulation, and that the non-radial velocities inside the polytrope
remain zero. This demonstrates that the Yin-Yang grid is able to preserve the initial spherical
symmetry. Fig. 4.10 shows the evolution of the central density (more precisely of the density of
the innermost radial zone at r = 1 km), which exhibits oscillations with an amplitude of the order
of 10−4 without any sign of a systematic trend. Comparing the initial radial distributions of the
density (Fig. 4.11, upper panel) and the radial velocity (Fig. 4.11, lower panel) of the polytrope
with those after 10 ms of evolution, we find no significant deviations. Relative changes in the
density profile are of the order of 10−4, comparable to the size of the fluctuations of the central
density. Only for zones near the edge of the polytrope the deviations can reach a level of up to
20%, in particular in the zone next to the atmosphere. The figure also shows that data points
from the Yin and the Yang grid lie on top of each other confirming that the code preserves the
initial spherical symmetry of the polytrope very well. Except for the zones at the polytrope’s
surface, where the radial velocity is fluctuating at a level of approximately 2 × 108 cm/s, the
radial velocities are less than 106 cm/s (i.e., less than 0.1% of the local sound speed). Thus, we
conclude that a non-rotating (n = 1) equilibrium polytrope is correctly handled by our Yin-Yang
hydro-code.

The rotating polytrope needs a higher grid resolution in θ-direction, as it is no longer spher-
ically symmetric. Thus, we used a grid resolution of 400×92×272×2 zones for this simulation.
The initial oblate equilibrium configuration has an axis ratio of 0.7. We, again, evolve the con-
figuration for 10 ms to test the correct treatment of the situation by our Yin-Yang hydro-code.

Fig. 4.12 shows the relative variation of the central density as a function of time along
an equatorial ray (θ(n) = π/2; φ(n) = 0) and along the pole (θ(n) = 0), respectively. One
also recognizes a slight systematic trend in the behavior of the density fluctuation, which is
steeper along the equator than at the pole. However, in both cases the relative increase of the
central density is very small (∼ 10−3). The initial radial density profiles along the pole and
the equator do not show any significant change during the 10 ms of evolution we have simulated
with the Yin-Yang code (Fig. 4.13, upper panel). The axis ratio has slightly increased to a
value of 0.719. The radial velocities (Fig. 4.13, lower panel) are larger than in the non-rotating
case by about an order of magnitude, because it is obviously more difficult to keep a rotating
polytrope in equilibrium than a non-rotating (spherically symmetric) one. We again find the
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Figure 4.14: Evolution of the relative mass loss, (M − M0)/M0, where M0 is the initial total mass, for
the Taylor-Sedov test simulated on four different (angular) grids with 400×32×92×2 zones
(i.e., 3◦ angular resolution; dashed line), 400×47×137×2 zones (i.e., 2◦ angular resolution;
dashed-dotted line), 400 × 92 × 272 × 2 zones (i.e., 1◦ angular resolution; dotted line), and
400 × 182 × 542 × 2 zones (i.e., 0.5◦ angular resolution; solid line), respectively.

largest radial velocities (a few times 108 cm/s) near the surface of the polytrope, especially along
the equator. However, these velocities vary with time. When averaged over time (in the time
interval t = [9, 10] ms) the profiles become flatter and the velocities smaller. This confirms that
the polytrope is oscillating around its equilibrium configuration.

4.6 Conservation problem

The Yin-Yang grid has a disadvantage common with other types of overlapping grids (see, e.g.,
Chesshire & Henshaw 1994; Wang 1995; Wu et al. 2007). The communication via interpolation
between the two grid patches does not guarantee conservation of conserved quantities even
though the finite-volume difference scheme employed on each grid patch is conservative. Non-
conservation occurs when a flow across the Yin-Yang boundary is present. This is the case
in most of our tests except for the simulation of the non-rotating polytrope that involves only
radial flow.

Nevertheless, we are still able to obtain sufficiently good results for all the test simulations
discussed in the previous section. The degree of non-conservation is highly problem dependent.
A simulation involving a considerable and systematic flow across the Yin-Yang boundary, as
e.g., in the case of the rotating polytrope, will result in a larger degree of non-conservation. We
observe that the total mass increases by 0.07% within 10 ms (or about ten dynamical timescales)
in the case of the rotating polytrope. For the Taylor-Sedov test case, which is the cleanest test
case in this respect (as it involves, e.g.,no boundary effects like the shock tube, and e.g.,no
artificial atmosphere like the rotating polytrope), we find a mass loss of the order of 10−5, only.
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Figure 4.15: Illustration of the Yin-Yang grid overlap configuration, where PQRS is a grid zone at the
boundary of the Yang grid (blue) which overlaps with the underlying grid zone ABCD of
the Yin grid (red). Fluxes referring to the Yin and the Yang grid are denoted by f and g,
respectively.

As Fig. 4.14 demonstrates this mass loss can be reduced by using a higher angular resolution.
Conservation of conserved scalar quantities can be obtained to machine precision by applying

the algorithm described in detail in Peng et al. (2006), and summarized below. According to
this algorithm scalar fluxes at the outer edges of boundary zones of both the Yin and the Yang
grid are replaced by scalar fluxes computed using only “interior” fluxes from adjacent grid zones.

As an illustration, consider the Yin-Yang grid overlap configuration in Fig. 4.15, where PQRS
is a grid zone at the boundary of the Yang grid (blue) which overlaps with the underlying grid
zone ABCD of the Yin grid (red). Fluxes referring to the Yin and the Yang grid are denoted
by f and g, respectively.

The boundary flux gPQ of the Yang grid is replaced by the flux

fPQ = fFQ + fPF , (4.6)

where fFQ and fPF are the fluxes through the segments FQ and PF , respectively.
The flux fFQ in Eq.(4.6) is calculated using information from zone ABCD. The evolution

of a scalar quantity ξABCD of zone ABCD is given by

ξt+∆t
ABCD = ξt

ABCD + (fAB − fCD + fBC − fAD). (4.7)

Similarly, for the fraction of the zone ABCD defined by the polygon ABFED one has,

ξt+∆t
ABFED = ξt

ABFED + (fAB − fCD
DE

CD
+ fBC

BF

BC
− fAD − fEF ). (4.8)

Assuming a piecewise constant state within the zone ABCD, Eqs.(4.7) and (4.8) lead to

α(ξt+∆t
ABCD − ξt

ABCD) = ξt+∆t
ABFED − ξt

ABFED (4.9)
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Computational domain Angular grid resolution Gain factor

full 4π sphere 3◦ 26
2◦ 40
1◦ 80

sphere except for a cone
of 5◦ half opening angle 1◦ 7
cut-out at both poles

Table 4.2: Expected gain factor when using the Yin-Yang grid.

where α is the overlapping volume fraction (area) described in section 3. Therefore,

α(fAB − fCD + fBC − fAD) = fAB − fCD
DE

CD
+ fBC

BF

BC
− fAD − fEF (4.10)

Note that the flux fEF is the only unknown in Eq.(4.10). Since the intersection points E and F
are already known from the step to calculate the volume fraction α, the lengths of all segments
can be obtained. The flux fFQ is then given by

fFQ = fEF
FQ

EF
. (4.11)

After obtaining the still missing flux fPF in Eq.(4.6) by a similar procedure, the scalar quantity
ξPQRS of the boundary zone PQRS is updated according to

ξt+∆t
PQRS = ξt

PQRS + (gQR − gPS + gRS − fPQ). (4.12)

This procedure is then repeated to update all boundary grid zones.
After implementing the above algorithm we are able to conserve mass and total energy up

to machine precision. However, the conservation of momentum is more complicated since the
momentum equations in spherical coordinates involve not only flux (i.e.,divergence) terms but
also source terms (due to the presence of fictitious and pressure forces), and due to the “mixing”
of momentum components as the Yin and Yang grid patches are rotated relative to each other
(see Fig. 4.15).

As we have not yet devised and implemented a corresponding momentum conservation al-
gorithm, momentum is not yet perfectly conserved in our code. For that reason we also refrain
from using the scalar conservation algorithm described above, since in some simulations (e.g., in
the Taylor-Sedov explosion simulation) we encountered a negative internal energy in some zones
due to the inconsistency arising from the perfect conservation of mass and total energy on one
hand and the imperfect conservation of momentum on the other hand. In our test runs the
momentum violation is small, e.g., amounting to 0.24% (0.03%) angular momentum loss in the
case of the rotating polytrope for a grid with three (one) degree angular resolution.

4.7 Performance and Efficiency

One of the main purposes in implementing the Yin-Yang grid is to ease the severe restriction
imposed on the size of the time step for any explicit hydrodynamics scheme by the CFL condition
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in the polar regions of 3D simulations using a grid in spherical polar coordinates. In most
applications the size of the time step is restricted most strongly by the size of the zones in
φ-direction, which is smaller than the size in θ-direction by the factor sin θ assuming an equal
angular resolution δ ≡ ∆θ = ∆φ in both angular directions.

For a spherical polar grid the factor sin θ implies (assuming zone centered variables) a mini-
mum zone size

dsph
φ ≡ δ sin(δ/2)

(in radians) in φ-direction for the first zone next to the pole. Typically, sin(δ/2) ≈ 10−2. On
the other hand, applying the Yin-Yang grid yields

dY Y
φ ≡ δ sin(π/4 − δ/2)

for the size of the smallest zone in φ-direction, which is typically about 0.7. Hence, for the
Yin-Yang grid the smallest zone size in azimuthal direction is larger by the ratio

dY Y
φ

dsph
φ

=
sin(π/4 − δ/2)

sin(δ/2)
(4.13)

compared to the spherical polar grid.
Table 4.2 gives the value of this ratio for grids of various angular resolution, and various

computational domains. These numbers provide an estimate of the gain in computation time
one can expect when using the Yin-Yang grid instead of the spherical polar grid.

However, the gain factor calculated from the relative grid spacings does not determine the
gain in the size of the time step, as the latter is given in a more complicated way by the CFL
condition

∆tCFL < C
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)−1

, (4.14)

where C, vr, vθ, vφ, and cs are the Courant factor, the flow velocities in radial, colatitude and
azimuthal direction, and the local sound speed, respectively. The CFL condition shows that the
increase in the size of the CFL time step is somewhat smaller than implied by the gain factor
resulting from the ratio of the sizes of the smallest zones of the Yin-Yang grid and the spherical
polar grid. In addition, the increase of the time step is problem dependent.

Besides the performance gain due to the increased size of the CFL time step, the Yin-Yang
grid also requires less computational zones to cover the full sphere, and thus less computational
time. For an angular resolution δ the spherical polar grid needs

(π/δ) × (2π/δ)

zones to cover the full sphere, while the Yin-Yang grid requires only

(π/2δ + 2) × (3π/2δ + 2) × 2

zones. Hence, up to 25% fewer computational zones are required. The gain depends only weakly
on angular resolution and is problem independent.
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However, employing the Yin-Yang grid also requires some extra amount of computation
compared to the spherical polar grid (see Sec. 3.2.2). In the following we only consider the extra
costs of calculations during the actual simulation, but not the extra costs arising during the
initialization, since these are negligible. We emphasize again that there are two major extra
sets of calculations necessary when applying the Yin-Yang grid. The first set concerns the
interpolation of the ghost zone values that are needed for the communication between the Yin
and Yang grid patches. The second set arises from the interpolation of the density onto the
auxiliary spherical polar grid grid and the interpolation of the gravitational potential back from
the auxiliary grid onto the Yin-Yang grid. Exploiting the algorithms described in Sec. 3, the
computational cost for both parts is almost negligible compared to the total computing time.
Interpolation of the ghost zone values requires only 2.3% of the total computing time per cycle
in simulations with self-gravity, while the interpolation of density and gravitational potential
performed within the gravity solver accounts for 1.5% of the computing time needed for the
gravity solver. This corresponds to approximately 0.3% of the computing time per cycle.

To obtain actual numbers for the gain, we performed several timing tests including simula-
tions with and without self-gravity using four different grid resolutions. The tests were carried
on an IBM Power6 using a single processor. According to these tests the computing time per
cycle for the Yin-Yang grid averaged over five cycles is approximately 15% and 20% smaller
than for the spherical polar grid for simulations without self-gravity and with 2◦ and 1◦ angular
resolution, respectively. For simulations including self-gravity, the gain factor decreases by 3%
approximately.

Concerning the gain from the less restrictive CFL condition, we consider the case of the
rotating polytrope since the size of the time step does not vary much throughout the simulation.
For an angular resolution of 1◦, we find a gain of approximately a factor of 63 when using the
same Courant number both for the Yin-Yang grid and the spherical polar grid.
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Chapter 5

Hydrodynamical Neutron Star Kicks

in 3D

Young neutron stars (NSs) possess mean space velocities around 400 km s−1, much larger than
those of their progenitor stars, implying that they are accelerated during their birth in a su-
pernova (SN) explosion (e.g., Faucher-Giguère & Kaspi 2006; Hobbs et al. 2005; Arzoumanian
et al. 2002). Moreover, alignment of the NS spin and kick was inferred for the Crab and Vela
pulsars (Kaplan et al. 2008; Ng & Romani 2007) and several other young pulsars (see Wang
et al. 2006, and references therein) from comparisons of the direction of proper motion with
the projected rotation axis as determined from the symmetry axis of the pulsar wind nebula
on X-ray images. The same conclusion was drawn for samples of radio pulsars from the linear
polarization of the pulses, whose position angle reflects the spin direction (Johnston et al. 2005;
Rankin 2007). However, the Crab and Vela pulsars may not be good cases for determining
misalignments because they are moving at smaller speeds than the average pulsar population,
and therefore the unknown velocity of the progenitor implies a bigger uncertainty. On the other
hand, also the radio data do not seem to make a clear case for a general alignment of spin and
kick directions in the reference frame of the progenitor’s motion (Johnston et al. 2007).

Analysing the observational information, in particular the characteristics of NS binaries,
Lai et al. (2001) concluded that the NSs received their kicks most probably at the time of
the SN explosion. A large variety of mechanisms for natal kicks has been proposed, either by
hydrodynamical effects linked to large-scale asymmetries of the SN explosion (e.g., Herant 1995;
Burrows & Hayes 1996; Janka & Müller 1994; Thompson 2000; Scheck et al. 2004, 2006) or by
anisotropic neutrino emission from the nascent NS (e.g., Chugai 1984; Burrows & Woosley 1986;
Socrates et al. 2005). However, it is very difficult to produce even only a one-percent global
dipole asymmetry of the neutrino emission, which is needed for a kick of 300 km s−1. For this to
be possible one has to invoke controversial assumptions like very strong global dipolar magnetic
fields inside the NS (& 1016 G; e.g., Arras & Lai 1999), arguable neutrino properties (e.g., sterile
neutrinos, large neutrino magnetic moments; e.g., Fuller et al. 2003), or unsettled mechanisms
to create strong emission asymmetries in the neutrinospheric region (e.g., Socrates et al. 2005).

On the basis of 2D SN models Scheck et al. (2004, 2006) argued that the standing accretion
shock instability (SASI; Blondin et al. 2003; Foglizzo & Tagger 2000; Foglizzo 2002), which grows
after shock stagnation and the beginning SN explosion causing large global non-radial asymmetry
of the accretion flow to the NS can lead to kicks of typically several hundred km s−1 and even more
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than 1000 km s−1 if the dipole (ℓ = 1) component of the flow and matter distribution asymmetry
is sufficiently strong. Blondin & Mezzacappa (2007) showed in idealized, stationary-accretion
setups that SASI spiral modes may also have the potential to generate pulsar spin periods
consistent with observations. In this chapter we present the first simulations of SN explosions
from core bounce to ∼1.5 s later that confirm the potential of SASI-induced asymmetries to
produce typical NS kicks in the more realistic 3D environment of collapsing stellar cores.

5.1 Grid and Simulation Setup

In this section, we only discuss the grid geometry and how the simulations are set up. Additional
physics treatments used in these simulations are already discussed in details in Section 3.4.

5.1.1 Explosion Simulation

We employed the axis-free overlapping “Yin-Yang” grid in spherical polar coordinates described
in Section 3.2 and Wongwathanarat et al. (2010). Our standard grid configuration consists of
400(r)×47(θ)×137(φ)×2 grid cells corresponding to an angular resolution of 2◦ and covering the
full 4π solid angle. The lower angular resolution grid configuration consists of 400(r) × 20(θ) ×
56(φ) × 2 corresponding to an angular resolution of 5◦. The radial grid has a constant spacing
of 0.03 km up to r ≈ 100 km. Beyond this radius the radial grid is logarithmically spaced. The
outer grid boundary Rob is at 18000 km, which is sufficient to prevent the SN shock from leaving
the computational domain during the simulated time. Hydrostatic equilibrium is assumed at
the inner grid boundary Rib, while a free outflow boundary condition is imposed at the outer
grid boundary.

We have investigated two 15M⊙ and a 20M⊙ progenitor models: W15, L15, and N20.
The W15 model is based on the non-rotating 15M⊙ progenitor s15s7b2 of Woosley & Weaver
(1995), and the L15 model is based on a star evolved by Limongi et al. (2000). The N20
progenitor was computed by Shigeyama & Nomoto (1990). The two 15 M⊙ progenitor models
were followed through collapse to 15 ms after bounce with the Prometheus-Vertex code in
one dimension (A. Marek and R. Buras, private communication). Using the same code, the N20
progenitor was followed only until 11 ms after bounce. To break spherical symmetry, random
seed perturbations of 0.1% are imposed on the radial velocity (vr) field. Explosions with chosen
energy are artificially initiated by imposing suitable values of the neutrino luminosities at the
inner radial grid boundary. Neutrinos streaming into the computational volume through the
boundary interact with matter and deposit energy. Finally, the shock wave is revived leading to
a successful explosion.

5.1.2 Long-time Simulation

At the end of the explosion simulations, data are mapped onto another computational grid whose
radial inner and outer boundary are placed at 500 km and 3.3 × 108 km, i.e.,near the stellar
surface. At the inner grid boundary we employed a spherically symmetric neutrino-driven wind
inflow because this wind is still present when we stopped the simulations of the explosion phase.
Since the inflow is spherically symmetric it will not affect the anisotropic distribution of the
ejecta that we would like to investigate. The hydrodynamic inflow quantities are acquired from
the angular averaged flow properties at 500 km at the mapping time. We kept the inflow profile
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Table 5.1: Explosion and NS properties for all of our simulated models at the end of the explosion phase
(1.3 s or 1.4 s after bounce).

Model
Mns texp Eexp vns ans vns,ν vlong ⋆

ns along ⋆
ns Jns,46 αsk Tspin

[M⊙] [ms] [B] [km/s] [km/s2] [km/s] [km/s] [km/s2] [g cm2/s] [◦] [ms]
W15-1 1.37 246 1.12 331 175 3 528 47 1.51 117 652
W15-2 1.37 248 1.13 405 144 1 575 49 1.56 58 632
W15-3 1.36 250 1.11 266 126 1 - - 1.13 105 864
W15-4 1.38 272 0.94 262 136 4 - - 1.27 43 785
W15-5-lr 1.40 270 0.97 128 72 1 - - 2.29 141 440
L15-1 1.58 421 1.13 161 66 5 230 20 1.89 148 604
L15-2 1.51 381 1.74 78 3 1 96 4 1.04 62 1041
L15-3 1.62 477 0.84 31 0 1 - - 1.55 123 750
L15-4-lr 1.70 703 0.55 146 152 4 - - 1.64 100 743
N20-1-lr 1.53 348 0.83 175 62 30 - - 2.81 155 393

⋆ The NS velocity and acceleration given in the eighth and ninth column with the superscript “long”

are computed at 3.3 or 3.4 s after bounce in our long-time simulations.

constant for another 2 s of the evolution time and applied a free outflow boundary condition
afterwards. The outer boundary condition remains a free outflow boundary condition at all
times. Keeping the angular grid resolution unchanged and increasing the number of radial zones
our computational grid consists of 1200(r)× 47(θ)× 137(φ)× 2 grid cells. The radial resolution
corresponds approximately to ∆r/r of 0.01.

5.2 Computed Models

We have computed, in total, 10 models, for which we varied the initial seed perturbation pattern
or the neutrino luminosities and thus the resulting explosion energy. The evolution is followed
until 1.3 s after bounce for the W15 and N20 progenitor models, while the L15 model is simulated
until 1.4 s postbounce. Our models W15-1,W15-2, and W15-3 differ only by the initial seed
perturbations. Models which are simulated using the lower angular grid resolution (5◦) are
denoted with the suffix “lr” after their model names. In addition, models W15-1, W15-2, L15-1,
and L15-2 are evolved beyond 1.3 s after bounce by means of our long-time simulations until the
SN shock leaves the computational domain.

5.3 Neutron star kicks

5.3.1 Simulation results

Figure 5.3 shows snapshots of our results from model W15-2 at four different epochs: 140,
248, 515 ms, and 1.3 s after bounce. The delayed explosion is triggered by neutrino heating
around the NS. At ∼ 100 ms, small Rayleigh-Taylor mushrooms grow from the imposed seed
perturbation in the convectively unstable layer between the forming PNS and the SN shock.
These high-entropy bubbles start rising, merge, sinking, and rising again. Consequently, these
bubbles grow in angular size. Aided by convective overturn and the SASI the explosion sets in



60 5.3. NEUTRON STAR KICKS

Figure 5.1: Time evolution of the SN explosion energy Eexp (top) and of the average shock radius Rs for
models W15-1, W15-2, L15-1, and L15-2. Since models W15-1 and W15-2 differ only in the
initial random seed perturbations of the radial velocity field, the results for these models are
essentially identical and the short-dashed and solid lines lie on top of each other. Despite the
similarity of the global parameters, both models develop different explosion asymmetries and
neutron star kicks (see Table 5.1 and Fig. 5.2).
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Figure 5.2: Time evolution of NS velocity vns (top-left), angular momentum Jns (bottom-left), latitudi-
nal (top-right) and azimuthal (middle-right) angles of the NS kick vector, θkick and φkick,
respectively, and the angle αsk between the NS spin and kick directions (bottom-right).

at 248 ms postbounce. For identifying the explosion epoch, we calculated the explosion energy
Eexp as the sum of the total (i.e., internal plus kinetic plus gravitational) energy for all grid
cells where this energy is positive. We can then define the explosion time texp as the moment
at which the computed explosion energy exceeds 1048 erg. Figure 5.1 shows the time evolution
of the explosion energy and the average SN shock radius. The figure shows that the explosion
time roughly corresponds to the time when the average shock radius exceeds 400-500 km. At
this time, the NS starts accelerating and its velocity starts growing as can be seen in Figure 5.2
where we show the time evolution of the NS kick velocity vns, NS angular momentum Jns, lateral
and longitudinal angles of the kick direction (θkick and φkick, respectively), and the angle αsk

between spin and kick directions. The calculation of Jns will be addressed in Section 5.3.6. A
cross-sectional view of the entropy distribution clearly shows dipolar asymmetry with, dense
low-entropy material concentrated more on the hemisphere where the kick vector lies (Fig. 5.3,
third row). At a later stage, the ejecta undergo mainly radial expansion and all structures freeze
in. An entropy slice shows the spherically symmetric neutrino-driven wind embedded within
the anisotropic wind-termination shock. On the side where the explosion is stronger, which is
visible by higher entropy behind the SN shock and faster expansion (upper left in last row of
Fig. 5.3), the wind is shocked to higher entropies since it passes the termination shock at larger
radii.

Table 5.1 summarizes the explosion and NS properties which we computed in a post-processing
step for all models after the end of the simulations. The NS mass Mns is defined by the baryonic
mass enclosed by the NS radius Rns, which is the radius where the density is 1011 g/cm3. In
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Figure 5.3: Entropy-isosurfaces (left) of the SN shock (grey) and the high-entropy bubbles (green), and
entropy distribution in a cross-sectional plane (right) at t =140 ms,248 ms,515 ms and 1.3 s for
model W15-2. Small Rayleigh-Taylor mushrooms start growing at ∼ 100 ms (first row). The
rising high-entropy bubbles merge and form even larger bubbles by the time the explosion
sets in (second row). The NS starts accelerating due to the asymmetric distribution of the
ejecta, and the acceleration reaches its maximum at ∼ 500 ms (third row). At this epoch, the
ejecta show a clear dipolar distribution with more dense low-entropy material concentrated
in the hemisphere containing the kick direction. The NS kick direction has already settled
and its projection onto the xz-plane is shown by the white arrows pointing to the lower right.
The last row shows the entropy structure at the end of the simulation. Spherically symmetric
neutrino-driven wind material is visible in green color inside the region enclosed by the wind
termination shock.
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Figure 5.4: Long-time evolution of the NS velocity for models W15-1, W15-2, L15-1, and L15-2, respec-
tively. The NS in model W15-2 is accelerated to 575 km/s. Note also the saturation of the
velocity curves for model L15-1 and L15-2.

estimating the NS recoil velocities, we assume conservation of linear momentum of the system.
Since the NS in our simulations is excised it cannot move when it absorbs momentum from
surrounding gas as if it had an infinite inertial mass (like a wall reflecting a bouncing ball). Nev-
ertheless, following Scheck et al. (2006), the NS velocity vns can be estimated from the negative
of the total linear momentum of the ejecta gas as

vns(t) = −Pgas(t)/Mns(t) , (5.1)

where Pgas =
∫ Rob

Rns
dV ρv.

In our simulations, we find NS kick velocities ranging from ∼ 30 km s−1 (L15-3) to ∼
400 km s−1 (W15-2) at 1.3 s (1.4 s) after bounce. The NS acceleration ans can then be com-
puted by differentiating the NS velocity calculated from Eq. (5.1) and is also given in Table 5.1.
Note that the NS velocity at 1.3 s (1.4 s) after bounce is not the final one since the NS is still
accelerating, except for models with low kick velocity (L15-2 and L15-3). Therefore, we also
give the NS velocity and acceleration at 3.3 s (3.4 s) after bounce (denoted with the superscript
“long” in the seventh and eighth column of Table 5.1) for the models of our long-time simu-
lations. Although these simulations extend to a much later times we do not compute the NS
velocity beyond 3.3 s (3.4 s) after bounce, because of the inner grid boundary is moved out dur-
ing the simulations and because of the free outflow boundary condition whereby anisotropic
momentum flow across the inner grid boundary which has to be accounted for may occur. We
find that the NS in model W15-2 is accelerated to a velocity of 575 km s−1, and we show the
time evolution of the NS velocity from 15 ms after bounce to 3.3 s (3.4 s) after bounce for models
W15-1, W15-2, L15-1, and L15-2 in Fig. 5.4.

Figure 5.5 illustrates the morphology of the SN shock and of the high-entropy bubbles. It
shows entropy-isosurfaces at 1.3 s for model W15-2 which possesses the highest NS kick velocity.
The ray-casting image of the density distribution (middle panel) corresponding roughly to a
density projection onto the plane normal to the kick and spin vector, shows dense clumps of
matter concentrated mostly in the direction of NS motion. Moreover, the NS position is clearly
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Figure 5.5: Entropy-isosurfaces of the SN shock and the high-entropy bubbles (left), ray-casting image of
the density (middle), and entropy distribution in a cross-sectional plane through the center
(right) at t = 1.3 s after bounce for model W15-2. The outer boundaries coincide with
the shock surface, the viewing direction is normal to the plane of the NS kick and spin
vectors, which also define the plane for the entropy slice. The kick and spin directions are
indicated by the white and black arrows, respectively, in the middle figure. The NS location
is marked by a black cross in the right plot and is clearly displaced from the geometrical
center of the expanding shock. The SN shock has an average radius of 13000 km (a length
of 5000 km is given by a yardstick below the middle image) but shows a pronounced dipolar
deformation, which is clearly visible from the color asymmetry of the postshock gas between
the lower right (weaker shock with minimum radius of 11000 km) and upper left (stronger
shock with maximum radius of 15000 km) directions. The middle plot corresponds roughly to
the projection of the density distribution on a plane perpendicular to the line of sight. Dilute
bubble regions are light-colored in white and yellow, while dense clumps appear more intense
in reddish and bluish hues. The blue circle around the NS represents the dense inner region
of the spherically symmetric neutrino-driven wind. This wind is visible in green in the right

image and is bounded by the aspherical wind termination shock. The wind is shocked to
higher entropies on the left side, where it passes the termination shock at larger radii because
of the faster expansion of the preceding SN ejecta.
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Figure 5.6: Same as Figure 5.5 but for models W15-1 and L15-2. The SN shock has an average radius
of 13000 km and 14000 km for models W15-1 and L15-2, respectively. The NS is clearly
displaced from the geometrical center of the expanding shock. The kick vector is pointing to
the lower left direction for model W15-1, while the NS does not show any clear displacement
and remains roughly at the center for model L15-2, which has a small kick velocity compared
to model W15-1.
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Figure 5.7: Time evolution of the NS acceleration of model W15-2 computed as the negative derivative
of the total linear momentum of the gas surrounding the NS by assuming momentum conser-
vation (red; denoted as “mom.consv.”), and from the integration of hydrodynamical forces
acting on the sphere with radius 1.3Rns around the PNS (black; denoted as “total”). Also
shown are contributions from each term in Eq. (5.2), corresponding to momentum transfers
by downflows (light blue), outflows (green), anisotropic pressure forces (purple), and gravi-
tational attraction from asymmetric ejecta (blue). The latter effect clearly dominates over
long parts of the evolution. Shown in the right panel are the corresponding NS velocity for
all three components and the magnitude of the total NS velocity. Note that the two lines in
each of these panels lie on top of each other.

displaced from the geometrical center of the ejecta. The same effect is shown in Figure 5.6 for
model W15-1 (top panel). Looking at the density distribution of the ejecta it is obvious that the
kick vectors always point towards the direction with the highest concentration of dense clumps.
However, this effect cannot be seen in the case of model L15-2, because it possesses only a
fairly small kick velocity compared to model W15-1 or W15-2. The shock expansion in model
L15-2 is equally strong in all directions driven by hot bubbles that have nearly the same size.
Correspondingly, the wind-termination shock shows relatively little deformation. Note that
although there is a visible mass concentration in the kick direction, the opposite hemisphere
contains clumps as well, though less strongly concentrated.

5.3.2 Kick mechanism: theory and toy models

The NS acceleration associated with asymmetric SN explosions is achieved by hydrodynamic
and gravitational forces. This will be detailed below. The acceleration proceeds in three steps:

(1) When violent convective mass flows and SASI sloshing motions conspire to stir the post-
shock layer, an anisotropy of the mass-energy distribution around the PNS is created. Con-
vective downdrafts, channelling gas accreted through the stalled shock into the neutrino-
heating region, get deflected to feed an asymmetric pattern of high-entropy bubbles. The
energy-loaded bubbles are created, disappear again, and reappear in a quasi-chaotic way to
become smaller or larger, absorbing less or more neutrino energy. This stochastic bubble
formation, however, does not cause an appreciable recoil of the NS (see Figure 5.2).

(2) When the explosion sets in, the shock and postshock gas begin to expand aspherically,
driven by the asymmetric inflation of the bubbles. The ejecta gas therefore gains radial
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momentum and its c.o.m. begins to shift away from the coordinate origin (Figs. 5.3, 5.5
and 5.6, right panels): The ejecta shell acquires a net linear momentum because of different
strengths of the explosion in different directions. The initial energy and mass asymmetry is
thus converted to a momentum asymmetry by the conversion of thermal to kinetic energy
through hydrodynamical forces. When the expansion timescale becomes shorter than the
timescale of lateral mixing, the asymmetric ejecta structures freeze in.

(3) Because of linear momentum conservation, the NS must receive the negative of the total
momentum of the anisotropically expanding ejecta mass. Hydrodynamic pressure forces
alone cannot achieve the NS acceleration (Scheck et al. 2006). As long as accretion down-
drafts reach the NS, momentum is transferred by asymmetric gas flows. Stronger accretion
on the weaker side of the blast and more mass loss in the neutrino-driven wind on the other
side can cause a recoil opposite to the main explosion direction. However, the largest kick
contribution, which continues even after accretion has ended and the wind has become
spherical (Fig. 5.2), results from the gravitational pull of the anisotropic shell of ejecta
(Scheck et al. 2006).

To elaborate on this point and to check our estimation of the NS recoil velocity computed
from Eq. (5.1), we have also performed an analysis of the different contributions to the NS kick
by considering the forces acting on a sphere of radius r0 = 1.3Rns. Following Scheck et al. (2006)
the time-derivative of the NS momentum can be deduced from the Euler equations as

Ṗns ≈ −
∮

r=r0

P dS −
∮

r=r0

ρvvr dS +

∫

r>r0

GMns
r

r3
dm. (5.2)

Consequently, the NS acceleration is ans = Ṗns/Mns and the NS velocity vns(t) =
∫ t

0 dt′ ans(t
′).

The first term in Eq. (5.2) accounts for the variation of pressure across the sphere with radius
r0. The second term is the flux of momentum flowing through that sphere. This term can be
decomposed into a downflow and an outflow for the sign of the radial velocity vr being negative

or positive, respectively. The third term is the contribution from the long-range gravitational
force acting on the NS due to the anisotropic mass distribution outside the sphere. Note that
a change of the radius of evaluation in a range around r0 = 1.3Rns leads to variation of the
weights of the different forces but gives the same result for the inferred effect.

Figure 5.7 compares ans and vns calculated by the two different methods: the requirement of
total momentum conservation (Eq. (5.1)) and the integration of the responsible hydrodynamical
and gravitational forces in Eq. (5.2). Both the NS acceleration and velocity show excellent
agreement between the two methods. At around 200-300 ms postbounce, both the force by the
anisotropic pressure distribution and the gravitational pull account for the total acceleration on
significant levels. However, at later stages, the gravitational force term starts to dominate and
therefore contributes most importantly to the final NS velocity. We also find that in 3D models
the direct hydrodynamical momentum transfer by downflows and outflows to the NS is much
less important than in 2D. While in 2D the toroidal nature of all structures due to the existence
of the symmetry axis favors the formation of large hemispheric differences with inflow to the NS
dominating in one hemisphere and outflow in the other (corresponding to an ℓ = 1 geometry),
the 3D downflow and outflow pattern is characterized by higher multipoles. The momentum
transfer by inflows thus compensates the opposite one by outflows on smaller angular scales. The
gravitational drag by the asymmetric ejecta distribution is therefore the dominant mediator of



68 5.3. NEUTRON STAR KICKS

the NS acceleration in a time-integrated sense, although it is not necessarily the only important
effect, in particular not during the very early phase of the NS recoil and not in 2D.

Why can our models produce kick velocities of ∼500 km s−1, possibly even much beyond, by a
hydrodynamical mechanism, while this appeared to be highly disfavored even for a dipolar ejecta
asymmetry in an analysis of 2D explosion simulations by Janka & Müller (1994)? The crucial
difference results from the fact that Janka & Müller (1994) discussed the kicks as originating from
an impulsive event, happening during a short period of a few hundred milliseconds around the
onset of the explosion. In their estimates they therefore considered the momentum asymmetry of
the ejecta shell during this early phase, assuming that the kick is over when the accretion ends.
In contrast, in the scenario discussed here the NS acceleration is a long-duration phenomenon,
which continues for several seconds, promoted by the long-range gravitational force.

5.3.3 Analytic estimates of the kick magnitude1

Order-of-magnitude estimates of the kick velocities that can be expected by explosion asymme-
tries acting on the NS through anisotropic gravitational forces can be obtained by considering
two different, simple situations (similar considerations were also published by Nordhaus et al.
2010).

In the first case we assume a hemispheric asymmetry of the mass distribution, in which
the expanding, spherical ejecta shell contains an extra clump-like mass ∆m in one hemisphere,
while a corresponding mass deficiency exists in the other hemisphere. The shell with radius rs

expands with a constant velocity of vs, beginning at a radius ri. If the NS is displaced by a
distance s from the center of the shell (s = 0 at t = 0), the gravitational forces lead to a NS
velocity vns = ṡ via an acceleration ans = s̈ given by

s̈ =
dvns

dt
= G∆m

[

1

(rs − s)2
+

1

(rs + s)2

]

. (5.3)

Using rs = ri + vst and assuming s ≪ rs at all times, the integration of Eq. (5.3) from t = 0 to
t = ∞ yields:

vns ≈
2G∆m

rivs
≈ 2700

km

s

∆m−3

ri,7vs,8
, (5.4)

where ∆m is normalized by 10−3 M⊙, ri by 107 cm, and vs by 108 cm s−1. A 10−3 M⊙ hemispheric
asymmetry of a shell expanding with a constant velocity of 1000 km s−1 can thus drag the NS to a
velocity of 2700 km s−1. Ejecta asymmetries can therefore very effectively mediate a long-lasting
pull on the NS, which is accelerated in the direction of the higher mass concentration. According
to Eq. (5.4) the kick becomes larger for a lower expansion velocity, because the gravitational
drag from the asymmetric ejecta shell then acts for a longer time. While a value of 108 cm s−1

is at the lower end, an anisotropy of 10−3 M⊙ means an asymmetry of the mass distribution of
.1% in a shell which typically contains 10−1 M⊙ or more at the interesting times. Note that
the first-order terms s/rs cancel in Eq. (5.3), i.e., the NS recoil is affected by the NS motion
and displacement from the explosion center only at the level of second-order correction terms of
s/rs ≪ 1.

In the second case we do not consider a hemispheric mass difference but a difference of the
expansion velocity of clumps ∆m in the ejecta shell in both hemispheres. This means that we

1The analysis in this subsection is due to Hans-Thomas Janka, but is included here to explain the NS kick
results.



CHAPTER 5. HYDRODYNAMICAL NEUTRON STAR KICKS IN 3D 69

assume that these clumps propagate away from the center of the blast according to rs,1 = ri+vs,1t
and rs,2 = ri + vs,2t with vs,1 < vs,2. Taking s to be again the displacement of the NS from the
blast center, the compact remnant in this situation experiences a gravitational acceleration

s̈ =
dvns

dt
= G∆m

[

1

(rs,1 − s)2
− 1

(rs,2 + s)2

]

. (5.5)

To lowest order in s/rs ≪ 1 time integration from 0 to ∞ leads to

vns ≈
G∆m

ri

vs,2 − vs,1

vs,1 vs,2
≈ G∆m

ri

∆vs

v̄2
s

≈ 1300
km

s

∆m−3

ri,7 v̄s,8

∆vs

v̄s
, (5.6)

where we have introduced the definitions ∆vs = vs,2 − vs,1 and v̄s =
√

vs,1vs,2. In the last
expression we have again normalized ∆m by 10−3 M⊙, ri by 107 cm, and v̄s by 108 cm s−1. The
acceleration is opposite to the faster expanding hemisphere, i.e. it is opposite to the direction
of the strongest explosion, and of the same order of magnitude as the result given in Eq. (5.4),
if we assume a velocity asymmetry of 100%, ∆vs/v̄s ∼ 1. Since this is on a very extreme
assumption, and ∆vs/v̄s < 0.5 seems more realistic, a velocity asymmetry according to Eq. (5.5)
is less efficient in accelerating the NS than the mass asymmetry in Eq. (5.3). The first-order
correction term in s/rs ≪ 1, which we have suppressed when going from Eq. (5.5) to Eq. (5.6),

reads dv
(1)
ns /dt = 2G∆ms(r−3

s,1 + r−3
s,2 ). It is not necessarily small compared to the leading term

dv
(0)
ns /dt = G∆ms(r−2

s,1 − r−2
s,2 ), but the corresponding acceleration amplifies the effect of the

zeroth-order term, because the displacement by the kick brings the NS closer to the attracting
slower parts of the ejecta.

A closer inspection of Eqs. (5.4) and (5.6) clarifies the meaning and implications of the non-
impulsive nature of the described recoil mechanism. The instantaneous linear momentum carried
by clumps with asymmetric masses or velocities, Pgas ∼ 2∆mvs ≈ 4 × 1038 ∆m−3vs,8 g cm s−1,
is orders of magnitude smaller than the momentum associated with the estimated possible NS
kick, Pns = Mns,1.5 vns,8 ≈ 3 × 1041 g cm s−1 with Mns,1.5 = Mns/1.5 M⊙. No efficient recoil of
the NS can thus be achieved by just tapping the instantaneous momentum of the clumps at any
time, even if the outward motion of the clumps is brought to a complete halt. Exactly this was
the problem with hydrodynamical kicks as impulsive events, which were therefore ruled out as
origin of large NS velocities by Janka & Müller (1994) even in cases with extreme asymmetry.
Instead, for strong kicks it is necessary to maintain the momentum of the dense clumps in the
ejecta shell. The corresponding continuous clump acceleration can happen by hydrodynamical
forces, by which internal ejecta energy is converted to kinetic energy. This requires that the
ejecta do not expand ballistically yet and thus limit the radial scales and time intervals that can
contribute to the pulsar kick. While the clumps are hydrodynamically coupled to the energetic
environment they are embedded in, they transfer momentum and energy to the NS through
their long-range gravitational drag. The energy thus pumped into the motion of the NS can
become quite significant, Ek,ns = 1

2Mnsv
2
ns ∼ 1049Mns,1.5v

2
ns,8 erg. This, however, is still a small

fraction of the ∼1051 erg of a normal SN explosion.
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Figure 5.8: Time evolution of the normalized spherical harmonic expansion coefficients for different (ℓ,m)
modes computed for the column mass density of models W15-2 (top) and L15-2 (bottom),
respectively. The polar axis of the coordinate system chosen for the expansion is aligned with
the final NS kick direction. Note the dominance of the (ℓ,m) = (1, 0) mode for model W15-2
with the highest kick velocity, while this dominance is absent for model L15-2.
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5.3.4 Mode analysis

We perform a mode analysis of the column mass density of the gas in the layer between the NS
surface and the SN shock, D(θ, φ) =

∫ Rs

Rns
dr ρ(r), by decomposing it in spherical harmonics as

D(θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

cm
ℓ Y m

ℓ (θ, φ), (5.7)

where cm
ℓ are the expansion coefficients and the spherical harmonics Y m

ℓ can be written in terms
of the associated Legendre polynomials Pm

ℓ as

Y m
ℓ (θ, φ) = Km

ℓ Pm
ℓ (cos θ)eimφ, (5.8)

with

Km
ℓ =

√

2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
. (5.9)

Multiplying Eq. (5.7) by the complex conjugate of the spherical harmonic, Y m∗

ℓ , and integrating
over the solid angle, the expansion coefficients can be written as

cm
ℓ =

∫ 2π

0
dφ

∫ π

0
dθ sin θ D(θ, φ)Y m∗

ℓ (θ, φ). (5.10)

We chose the coordinate system for the expansion such that the polar axis is aligned with the
NS kick direction. Before performing the integration of Eq. 5.10, we interpolated, using bi-
linear interpolation, the surface density computed on the Yin-Yang grid into the new coordinate
system. Figure 5.8 shows the resulting expansion coefficients of different (ℓ, m) modes versus
time for models W15-2 and L15-2, respectively. The (ℓ, m) = (1, 0) mode clearly dominates
after 0.4 s postbounce in the case of model W15-2, while this behaviour is absent in model
L15-2. The amplitude of the (ℓ, m) = (1, 0) mode reaches its maximum at around 500 ms after
bounce, approximately at the same time when the NS acceleration reaches its maximum value
(Fig. 5.7). This provides a strong support for our proposed kick mechanism since it shows that
larger dipolar mass asymmetry results in a larger NS recoil velocity.

The same analysis performed for the surface mass density Σ(θ, φ) =
∫ Rs

Rns
dr r2ρ(r) yields the

same conclusion. We observe a clear dominance of the (ℓ, m) = (1, 0) mode for model W15-2
but not for model L15-2. However, as the surface mass density is less suited to quantify the
mass asymmetry behind the SN shock, we chose to present the analysis of the column mass
density instead. The surface mass density reflects more the morphology of the ejecta and of the
SN shock because of the r2 weighting. As shown in Fig. 5.6 the explosion is stronger in the
direction opposite to the NS kick direction, and the SN shock has reached a larger radius in
that direction. Integrating the density with the r2 weighting ends up giving too much weight in
the layer near the SN shock and therefore completely dominates the contribution of small dense
clumps at smaller radii.

5.3.5 Contribution by anisotropic neutrino emission

We do not expect any significant contribution to the NS kick by anisotropic neutrino emission,
because most of the neutrino energy is radiated from the spherically symmetric neutrinosphere.
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Figure 5.9: Entropy distribution (left) plotted in a cross-sectional plane containing the NS kick velocity
vNS due to the anisotropic mass distribution and mass flows, and the NS kick velocity vNS,ν

due to anisotropic neutrino emission for model N20-1-lr at 611 ms postbounce. A length scale
of 1000 km is given by a yardstick in the lower left corner of the figure. The NS is clearly
displaced in the direction of vns. The arrows representing vns and vns,ν are scaled according to
their magnitudes, which are 175 km/s and 30 km/s, respectively. Obviously, vns,ν contributes
only little to the final NS kick velocity. The time evolution of vns,ν and of the angle αkν

between vns and vns,ν are shown in the right panel. Note that vns,ν is pointing roughly in
opposite direction of vns.
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Following Scheck et al. (2006), we calculated the correction to the NS velocity due to anisotropic
neutrino momentum vns,ν as the negative of the integrated neutrino momentum divided by the
NS mass, −Pν/Mns. The neutrino momentum is given by

Pν(t) =

∫

Rib<r<Rob

pν r̂ dV +

∫ t

0
dt

∮

r=Rob

pνc r̂ dS (5.11)

where pν = Fν/c2 is the neutrino momentum density, Fν is the neutrino energy flux, c is the
speed of light, and r̂ is the unit vector in radial direction. In our case, since we apply the
ray-by-ray neutrino transport only the radial component of the neutrino momentum exists. The
first term integrates the total neutrino momentum on the grid, while the second term accounts
for the time-integrated neutrino momentum flux leaving the computational domain at time t.

The computed vns,ν for all models are also presented in Table 5.1. The data clearly show that
vns,ν makes only a tiny correction to the final NS kick velocity and can therefore be considered
as negligible for all models except model N20-1-lr whose vns,ν is approximately 17% of vns.
Figure 5.9 shows a slice of the entropy distribution for model N20-1-lr at 611 ms after bounce.
The slice plane is normal to the a plane spanned by vns and vns,ν . The time evolution of vns,ν and
its angle αkν with respect to the vns are also shown in the right panel of Fig. 5.9. The velocity
vns,ν starts rising significantly between 0.4 s-0.6 s postbounce, as during this period there exists
a long-lasting downflow funnel (present in the z−direction in Fig 5.9) and the ejecta show a
particularly strong dipolar asymmetry. The neutrino emission is stronger in the direction to the
upper left resulting in a recoil velocity in the opposite direction. Moreover, the NS recoil velocity
vns,ν is directed nearly opposite to the recoil direction. Nevertheless, vns,ν is still significantly
smaller than vns, especially when taking into account that the long-ranged gravitational pull is
still acting on the NS and accelerating it, while the neutrino luminosities have already decayed
substantially resulting in the saturation of vns,ν . Though the the SN shock surface remains
relatively spherical, the NS is clearly displaced from the geometrical center to the upper left
direction along vns.

Including the NS motion is unlikely to change our results. This was concluded by Scheck
et al. (2006) from tests where the gas surrounding the NS in the grid center was allowed to move
with (−vns) by applying a Galilei transformation.

5.3.6 Neutron star spins

Tests confirmed very good linear momentum conservation of our code, while angular momentum
is more difficult to conserve, e.g., when a rotating gas mass is in rapid coherent motion across
large distances on the grid. We therefore estimate the NS angular momentum Jns as the negative
of the angular momentum of the exterior gas, but by considering only the volume between Rns

and ro = 500 km and adding to this the angular momentum that is carried by the gas flux into
or out of this sphere:

Jns(t) = −
(∫ ro

Rns

dV ρj(t) + Ao

∫ t

0
dt′ (ρjvr) |ro

)

, (5.12)

where j is the specific angular momentum and Ao = 4πr2
o. This assumes that the asymmetric gas

mass outside of ro does not exert any important torque on the gas mass below ro. Accordingly,
we see Jns(t) asymptoting (see Fig. 5.2) when accretion on the NS ends (around 0.6 s–0.8 s after
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bounce). At this time the asymmetric downdrafts of cool gas present between rising bubbles
of high-entropy, neutrino-heated matter (Figure 5.5, left and right panels) do not reach down
below 500 km, but are replaced by the spherically symmetric neutrino-driven wind around the
NS (green region in the right panel of Figure 5.5). Assuming Jns = |Jns| = const after the end
of our simulations (at t ≈ 1.4 s p.b.), we obtain a rough estimate of the final NS spin period
from Tspin = 2πIns/Jns by considering a rigidly rotating, homogeneous sphere of mass Mns, i.e.,
Ins = 2

5MnsR
2
ns, with a final radius of Rns = 12 km. We find NS spin periods in the range of

∼ 400 ms-1000 ms. In addition, our results do not show any alignment/misalignment of the NS
kick and spin directions.



Chapter 6

Element Distribution in Supernova

Ejecta

6.1 Connection with Neutron Star Kick

At the onset of collapse nickel inside the core of the progenitor star is photo-disintegrated
into alpha particles. It is only after the explosion sets in that nickel is formed once again by
silicon burning in a thin shell due to compression and heating by the outwards propagating
SN shockwave. Since the shock strength is stronger in the direction opposite to the NS kick
direction we expect more nickel to be formed in the hemisphere opposite to the direction of NS
motion. Figure 6.1 shows the nickel mass per solid angle in a cross-sectional plane normal to the
NS kick direction for model W15-2 at 365 ms and 515 ms after bounce. The left panel, at 350 ms
postbounce, demonstrates that more nickel is formed in the direction opposite to the NS kick
vector indicated by the black arrow pointing to the right. We plotted the time evolution of the
total mass of all nuclei considered in our nuclear burning network for model W15-2 in Figure 6.2.
At around 450-500 ms after bounce we observe saturation of the total nickel mass produced in
our simulation (black line in Figure 6.2) indicating that nickel formation ends then. At this
stage, some fraction of the newly synthesized nickel is concentrated into downflows present in

Table 6.1: Hemispheric element distribution and total nickel mass

Model
4He [M⊙] 12C [10−1 M⊙] 16O [10−1 M⊙] 20Ne [10−2 M⊙] 24Mg [10−2 M⊙]

north south north south north south north south north south
W15-1 2.78 2.66 1.18 1.10 3.68 3.75 8.90 8.49 2.41 2.85
W15-2 2.78 2.65 1.16 1.12 3.43 3.84 8.67 8.49 2.16 2.86
L15-1 2.39 2.34 0.90 0.87 2.77 2.89 5.00 5.06 2.12 2.49
L15-2 2.40 2.39 0.89 0.87 2.85 2.79 5.21 4.88 2.47 2.42

Model
28Si [10−2 M⊙] 40Ca [10−2 M⊙] 44Ti [10−3 M⊙] 56Ni [10−2 M⊙] tracer [10−2 M⊙] Total
north south north south north south north south north south 56Ni [M⊙]

W15-1 1.88 2.92 1.33 4.81 0.68 2.43 1.26 4.28 2.23 6.08 0.055-0.139
W15-2 1.74 2.83 1.27 4.66 0.81 2.17 1.37 4.09 2.22 6.27 0.055-0.139
L15-1 1.75 2.33 1.76 2.47 1.49 2.40 1.34 1.87 4.78 7.20 0.032-0.152
L15-2 2.13 2.15 2.54 2.74 2.32 2.55 1.81 1.89 8.68 9.74 0.037-0.221
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Figure 6.1: Nickel mass per solid angle plotted in a cross-sectional plane containing the NS kick direction
for model W15-2 at 365 ms (left) and 515 ms (right) postbounce. The red colored regions
show that more nickel is formed in the direction opposite to the NS kick direction, which is
shown by the black arrows pointing to the right. Length scales are given by yardsticks at the
lower left corner of each panel.

Figure 6.2: Time evolution of the total mass of nuclei considered in the nuclear burning network for model
W15-2 during the explosion phase (15 ms - 1.3 s after bounce). Note that the computational
domain contains only a part of the oxygen-neon-magnesium layer of the progenitor star.
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Figure 6.3: Semi-transparent isosurfaces of constant nickel mass of 3× 1026 g at the time when all nucle-
osysthesis has seized in our simulations. These times are shown in the top left corner of each
panel along with the model name. The orange vectors represent the NS kick direction and
are scaled by the corresponding NS kick velocities (96 km s−1 and 575 km s−1 for the shortest
and the longest vector, respectively) . In the top two panels showing models W15-1 (left) and
W15-2 (right), the nickel mass is that is contained in the “northern” and “southern” hemi-
spheres defined by the NS kick direction is clearly different. In contrast, models L15-1 (lower
left) and L15-2 (lower right) with lower NS kick velocities do not show any clear distinction
in their nickel distribution.
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Figure 6.4: Maps of the integrated nickel mass along radial rays for models W15-1, W15-2, L15-1, and
L15-2, respectively. Red crosses indicate the NS kick direction while white plus signs mark the
direction opposite to the kick direction. White lines separate the sphere into two hemispheres
with the kick direction pointing to the north pole. The nickel mass contained within the
two hemispheres is clearly different for models W15-1 and W15-2 (upper panels), where more
nickel is found in the hemisphere opposite to the NS kick direction. The onesidedness of the
nickel distribution is not seen for model L15-1 and L15-2 (lower panels), which have smaller
kick velocities.
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between the diluted high-entropy bubbles which are rising and pushing outwards. The remaining
nickel is concentrated into small clumps. Nevertheless, the flow dynamics does not affect the
overall distribution of nickel. More nickel still remains in the hemisphere opposite to the NS
kick direction.

Although nickel systhesis already stops during the explosion simulations, we continue the
nucleosynthesis calculation in our long-time simulations until all nucleosynthesis has finished
completely (i.e.,no grid zone fulfils our nuclear burning criteria anymore), which approximately
happens at ∼100-300 s postbounce depending on the simulated model. We show the nickel mass
distribution at this stage in Fig. 6.3. To this end we define a new spherical coordinate system
for each of our models where the NS kick direction is pointing towards the north pole. In this
coordinate system, we identify the hemisphere that the NS kick vector is pointing to as the
“northern” hemisphere and the hemisphere opposite to the NS kick vector as the “southern”
hemisphere. We rotate the new coordinate system such that the NS kick vectors shown by orange
colored vectors are pointing directly upwards. The lengths of the NS kick vectors are scaled to
the corresponding final NS kick velocities provided in Table 5.1. The two top panels show results
from models W15-1 and W15-2 which possess rather high NS kick velocities noticable by long
NS kick vectors. For these two models, the nickel mass distribution shows a clear contrast with
very little nickel mass contained in the northern hemisphere, i.e.,most of the of nickel mass
resides in the southern hemisphere opposite to the NS kick direction. The lower two panels
give the nickel mass distributions for models L15-1 and L15-2 which both have lower NS kick
velocities. These two models do not show distinct differences between the nickel mass in the
northern and the southern hemisphere.

Looking only at an isosurface as in Fig. 6.3 could be misleading since the shape of the surface
may strongly depend on the chosen value for which the surface is drawn. Therefore we confirm
our finding by calculating also the integrated nickel mass along radial rays. Figure 6.4 shows
maps of the integrated nickel mass along radial rays for models W15-1, W15-2, L15-1, and L15-2,
respectively. The integrated nickel mass is defined as

M ray
Ni (θ, φ) =

∫ Rob

Rib

ρ(r, θ, φ)XNi(r, θ, φ)∆Ω dr (6.1)

where

∆Ω = ∆φ

[

cos (θ − ∆θ

2
) − cos (θ +

∆θ

2
)

]

(6.2)

is the solid angle covered by each radial ray. On this map, the NS kick direction is marked by
a red cross, while the opposite direction is indicated by a white plus sign. The white solid line
represents the equator separating the northern and southern hemisphere. For models W15-1
and W15-2, the nickel is concentrated in the southern hemisphere. This onesidedness cannot be
seen in the maps for models L15-1 and L15-2 which both show a nearly isotropic distribution of
the nickel mass.

In addition, we also calculated and compared the total mass of every element included in
our alpha-reaction network in the northern and southern hemisphere (see Table 6.1). We are
able to separate the nuclear species into two groups based on whether the species shows clearly
a hemispherically asymmetric distribution or not. It turns out that nickel is not the only species
which shows an asymmetric distribution but also silicon, calcium, titanium, and the tracer

nucleus are clearly more abundant in the southern hemisphere than in the northern hemisphere
for models W15-1 and W15-2. On the other hand, helium, carbon, oxygen, neon, and magnesium
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do not show a clear hemispheric contrast. Note that although oxygen and magnesium are also
formed asymmetrically due to stronger SN shock strength in the direction opposite to the NS
kick, the asymmetries are obscured by the unperturbed spherically symmetric distribution of
oxygen and magnesium inside the progenitor star. Because of the total mass is conserved,
we observe helium, carbon, and neon to be concentrated more in the northern hemisphere,
since more of these elements are consumed in the nuclear burning processes in the southern
hemisphere. In the last column of Table 6.1, we also give the range of the total nickel mass
produced in our simulations. The lower limit represents only the contribution from 56Ni, while
the upper limit gives the total 56Ni plus tracer mass. We introduce these lower and upper limits
to the total nickel mass because we are aware that only an approximative neutrino transport is
included in our calculations, which therefore cannot give an extremely accurate electron fraction
Ye. Thus, it is possible that a fraction of the tracer nucleus might actually be produced as nickel
instead, if we were to consider a more accurate neutrino transport.

6.2 Supernova Shock Propagation and Element Distribution

In this section, we discuss the dynamics of the SN shock as it travels through the undisturbed
envelope of the progenitor star as well as the propagation of heavy elements formed during the
explosion at the inner core. Figure 6.5 shows snapshots of the nickel mass per solid angle for
model W15-2 in a cross-sectional plane at six different epochs starting from its formation until
it reaches the edge of the hydrogen shell. The nickel mass per solid angle is defined for each grid
zone as

MΩ,Ni(r, θ, φ) = ρ(r, θ, φ)XNi(r, θ, φ)∆R (6.3)

where

∆R =
(r + ∆r/2)3 − (r − ∆r/2)3

3
, (6.4)

and ∆r is the radial grid resolution. The position of the SN shock is given by the solid black
curve and the coordinate center is shown by the black cross. Length scales are given at the
lower left corner of each panel, and the postbounce time at the top left corner. After nickel is
formed in a thin layer behind the SN shock and clumps into smaller structures some hundred
milliseconds later, it is mixed into the rising high-entropy bubbles while moving through the
oxygen-neon-magnesium shell. The mass distribution of nickel at this epoch closely resembles
the structure of the high-entropy bubbles (left column, middle row in Figure 6.5). The SN shock
still shows the deformation acquired at the time of the explosion when it reaches the helium
layer of the progenitor star. Figure 6.6 shows the mass distribution of helium, oxygen, and
silicon as well as nickel at this epoch for model W15-2. In addition to the location of the SN
shock shown (solid black line), we also show the carbon-helium composition interface by a red
line corresponding to a helium mass fraction of 0.9. In the top left panel, the shock wave has
swept up some of the mass within the carbon-helium transitional layer and compressed it into a
thin but very high density layer as shown by the red region in the upper left corner of the figure.
Alpha particles left inside the ejecta are visible as the dark blue region inside the SN shock.
Note that although there is a vast amount of helium in the helium layer outside the red circle
in Figure 6.6, it appears to contain only a small amount of helium mass (dark blue) because
the figure only shows a tiny fraction of the thick helium layer and because the density is lower
than in the layer swept up by the shock wave shown in dark red. The figure also shows a thick
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Figure 6.5: Nickel mass per solid angle plotted in a cross-sectional plane at different times for model W15-
2. The SN shock radius is marked by the black line. Length scales are given at the bottom
left corner of each panel. Nickel is formed in a thin shock-heated layer which fragments
into clumps as the hot high-entropy bubbles push the ejecta outwards. At a later time the
ejected nickel is mixed inside the high-entropy bubbles (left middle). Nickel is decelerated
and slightly compressed as it propagates deep into the helium layer of the progenitor star.
The shock becomes more and more spherical at this phase. Nickel eventually crashes onto
the thick helium wall formed due to the deceleration when the shock enters the hydrogen
envelope. It cannot penetrate through the helium wall and is compressed into a very thin
layer visible in the bottom left panel. Triggered by hydrodynamic instabilities nickel shows
finger-like structures as it travels through the hydrogen shell (bottom right).
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Figure 6.6: Snapshots of the mass per solid angle of different chemical species for model W15-2 at the
time when the SN shock is crossing the carbon-helium compostion interface. The shock
radius is outlined by the black line, while the red line marks the radius where the helium
mass fraction is equal to 0.9 representing the composition interface. The shock sweeps up
helium in the transitional layer forming a moon crescent shape of dense material (upper left
corner, upper left panel). The oxygen core appears as a thick shell surronding the ejected
material represented by silicon and nickel in the bottom two panels.
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Figure 6.7: Snapshots of the mass per solid angle of different chemical species for model W15-2 at the
time which the dense helium wall has formed due to the deceleration of the ejecta in the hy-
drogen envelope of the progenitor star. Hydrodynamic instabilites triggered by the unsteady
propagation of the SN shock have already developed and are visible in the top left panel. The
oxygen shell and the ejected silicon have already crashed onto the dense helium wall and are
compressed into a very thin layer. The ejected nickel which is trailing behind still covers a
wide radial region because it has not yet reached the helium wall.
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Figure 6.8: Snapshots of the mass per solid angle of different chemical species for model W15-2 at the
end of the simulation, approximately 16.5 hrs after bounce. The ejecta are now concentrated
into numerous small clumps due to the action of hydrodynamic instabilities. The nickel
distribution displays finger-like structures (bottom right).
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Figure 6.9: Ray-casting image of the helium mass fraction at approximately 16.5 hrs after bounce showing
the hydrodynamic instabilities in three dimensions triggered at the helium-hydrogen compo-
sition interface by the SN shock propagation. The length scale is given at lower right corner
of the figure.

layer of oxygen (upper right panel), still surrounding the silicon and nickel synthesized during
the explosion.

As the SN shock enters and propagates through the thick layer of helium it is decelerated,
which is reflected by the fact that the deformed shock wave becomes more and more spherical
(right column, middle row in Figure 6.5). The ejected nickel material is also slowed down,
which is now compressed into a thinner structure than at much earlier time. Once the SN shock
reaches the helium-hydrogen composition interface and propagates into the hydrogen envelope
it is drasticallly decelerated as it sweeps up a lot of material. The SN shock becomes completely
spherical at this time. The swept up helium layer is compressed into a very thin, very dense
helium “wall” which later prevents other nuclear species from penetrating through. Triggered
by the propagation of the SN shock hydrodynamic instabilities start developing at this helium
wall. This is shown for model W15-2 in Figure 6.7, where the helium wall is visible in the top
left panel. At this time, oxygen and silicon have already crashed onto this helium wall, and
they thus are concentrated into very thin layers. On the other hand, the nickel ejecta has not
reached the thick helium wall yet. Therefore, nickel is still spread out radially much more than
oxygen and silicon. Nonetheless, as shown in the lower left panel of Figure 6.5, the nickel ejecta
eventually reaches the thick helium wall and is compressed into a very thin structure, too. The
final snapshot of the time evolution shows that Rayleigh-Taylor instabilities grow as indicated by
the finger-like structures, in the nickel mass distribution. In addition, we show the distribution
of helium, oxygen, and silicon at this epoch for model W15-2 in Figure 6.8. As the instabilities
develop and grow the helium wall is fragmented into many small helium clumps. Oxygen and
silicon are also concentrated into small clumps, but the number is much less than that of the
helium clumps.
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Figure 6.10: Ray-casting images of the mass per solid angle of different chemical species at 16.5 hrs after
bounce. The figure shows numerous clumps of helium and oxygen, while the number of
silicon and nickel clumps is much less.
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Figure 6.11: Same as Figure 6.5 but for model L15-1. The nickel mass distribution develops a bipolar
structure although no jet mechanism was invoked.
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So far we have shown only two-dimensional slices plotting the mass per solid angle of each
nuclear species at different times of the evolution without giving details about how the structures
look in three dimensions. Figure 6.9 shows a ray-casting image of the helium mass fraction
at approximately 16 hrs after bounce, the time which at instabilities develop at the helium-
hydrogen composition interface for model W15-2 . The figure shows numerous Rayleigh-Taylor
fingers of high helium mass fraction (in orange and dark red) penetrating into the hydrogen shell.
Figure 6.10 illustrates ray-casting images of the mass per solid angle for helium, oxygen, silicon,
and nickel for model W15-2. The figure can be interpreted as showing the mass distribution
projected onto a plane normal to the viewing direction. The figure reveals even more small
helium clumps than what were shown in a two-dimensional slice in Figure 6.8. The number of
oxygen clumps appears to be much less than those of helium. Finally, the number of silicon and
nickel clumps is only of the order of ten.

We have also investigated the dynamical evolution for model L15-1 which has a different
progenitor star than model W15-2. Figure 6.11 gives the nickel mass per solid angle in a cross-
sectional plane at different epochs. We do not find any significant difference in the dynamical
evolution of this model compared to model W15-2. Moreover, simulations of models W15-1 and
L15-2 yield similar results, too.

6.3 Distribution in Mass Coordinate and Velocity Space

Figure 6.12 shows the normalized mass distribution of different nuclear species plotted versus
mass coordinate M(r) (left column) and radial velocity (right column) for all models. The
distributions are calculated just before the SN shockwave leaves the computational domain.
In the left column, one can notice that a small amount (of the order of ∼1%) of nickel and
the tracer nucleus (blue and black curves), representing heavy elements synthesized during the
explosion, are able to penetrate into the hydrogen envelope and nearly reach the stellar surface.
On the other hand, hydrogen is mixed deep into the inner part of the ejecta as can be seen
by the smooth decline of the dark green curve between approximately M(r) ≈ 7 − 8M⊙ and
M(r) ≈ 2M⊙.

The right column shows that nickel is accelerated to radial velocities of about 4000 km s−1

for all models except for model L15-2 where the nickel even reaches a velocity of approximately
5500 km s−1. The differences in the velocity distributions can be directly related to the different
explosion energy of the models. Models W15-1, W15-2, and L15-1 all develop an explosion energy
of approximately 1.12×1051 erg, while model L15-2 has a higher explosion energy of 1.74×1051

erg. The explosion energy is defined as the sum of internal, kinetic, and gravitational energy
for all zones where this quantity is positive. Since the shock wave is propagating ballistically
at late times the kinetic energy dominates over the internal and gravitational energy by orders
of magnitude. Therefore, we can approximately equate the explosion energy to the kinetic
energy. Consequently, the radial velocity scales with the square root of the explosion energy.
The normalized mass versus radial velocity curves for all nuclear species should shift to a higher
radial velocity by a factor of

√

1.74/1.12 ≈ 1.25 for model L15-2 with respect to all other models,
which indeed is the case.
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Figure 6.12: Normalized mass distribution of different nuclear species versus mass coordinate (left col-
umn) and radial velocity (right column) at the time when the SN shock wave is about to
leave the computational domain for all models. Nickel is able to penetrate into the hydrogen
envelope for all cases with a velocity ranging from approximately 4000 km s−1 to 5500 km s−1.
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6.4 Comparison with Previous Work

In comparison with the recent work by Hammer et al. (2010), who also simulated self-consistently
the evolution in three dimensions of the neutrino-driven SN explosion starting from shortly after
bounce until hours later, we find several differences. Firstly and most importantly, we consider
15 M⊙ red supergiant stars while Hammer et al. (2010) considered a 15 M⊙ blue supergiant. A
blue supergiant star has a much more compact structure compared with a red supergiant star of
the same mass. Our computational domain extends out to 3.3× 1013 cm while in Hammer et al.
(2010) the star has a radius of 3.9 × 1012 cm only, approximately a factor of 10 smaller than
in our case. Consequently, in their simulations they observed large nickel bullets penetrating
carbon, oxygen, and helium shells with large velocities deep into the hydrogen envelope of the
star. In contrast, we find that our nickel clumps suffer a longer deceleration by drag forces and
thus are not able to break out of the thick helium shell. Once the Rayleigh-Taylor instabilities
grow at the helium-hydrogen interface mixing nickel is transported into the hydrogen envelope.

The second difference is how the explosion phase was followed. Hammer et al. (2010) used
the three dimensional explosion model calculated by Scheck et al. (2006). The explosion model
was followed until only 0.5 s when the explosion energy has not yet saturated, and the explosion
yields an explosion energy of only 0.6 × 1051 erg. They then artificially boosted the explosion
energy up to 1 × 1051 erg. On the other hand, our explosion models follow the evolution
until approximately 1.4 s after bounce, when the explosion energy is very close to saturation.
Moreover, we included an alpha-reaction nuclear network in our calculations while they did not.

Another difference is the computational grid employed for the simulation. In Hammer et al.
(2010) the computational grid did not cover the full sphere. A small cone of 5.8◦ half opening
angle was cut out near the polar axis to relax the CFL timestep condition. Thus they had to
assume a reflecting boundary condition near the polar axis, which however did not create any
obvious numerical artifact to the hydrodynamical flow. We confirmed this result by repeating
the three dimensional simulation of Hammer et al. (2010) with our axis-free Yin-Yang grid.

Recently Joggerst et al. (2010) investigated three different 15 M⊙ progenitors: one blue
supergiant and two red supergiant stars. The explosions were initiated with a spherical piston
instead of a more realistic physics treatment (as in our case based on the assumed viability of
the neutrino-heating mechanism). They also focused on the comparison between results from
2D and 3D simulations, similar to what was discussed in Hammer et al. (2010), and found that
instabilities initially grow faster in 3D than in 2D, in agreement with Hammer et al. (2010).
However, clumps of heavy elements are not able to penetrate through shells of lighter elements
as seen in Hammer et al. (2010).

6.5 Comparison with current observations

Since we calculate only a small set of simulations it is not possible to compare our results directly
to any individual SNR in particular. Thus, in this section, we only discuss the implications of
our findings for observations in general.

6.5.1 Neutron star kicks and heavy elements distributions

First of all, we find a connection between the distribution of some heavy elements synthesized
during the explosion and the direction of the neutron star recoil. As already discussed in
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Figure 6.13: Optical image of the central region of Puppis A in [OIII] λ5007, showing proper motions
of the O-rich filaments and RXJ0822-4300. The arrows indicate proper-motion vectors for
∼1000 yr, and the ellipse shows the 90% confidence contour for the expansion center. (This
is a wider field version of Fig. 1 from Winkler et al. (1988) overlaid on a more recent CCD
image.) The circle marked NS shows the present position for the presumed neutron star,
RX J0822-4300, and the attached vector indicates its motion over 1000 yr at the rate we have
measured. Backward extrapolation of its present motion (thin line) passes well within the
error ellipse for the expansion center of the O-rich filaments. Figure and description from
Winkler & Petre (2007).
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Section 6.1, the explosion strength is stronger in the direction opposite to the neutron star
kick direction for cases where the neutron star kick velocity exceeds several hundred km s−1.
Therefore, we find elements heavier than 28Si concentrated more in the hemisphere opposite to
the neutron star kick direction. This hemispheric asymmetry cannot be destroyed during the
subsequent evolution of the explosion, e.g.,when the SN shock propagates through the stellar
envelope or after the SN shock breaks out to the interstellar medium.

Our results which are based on the hydrodynamical neutron star kick mechansim lead to the
opposite conclusion to what is predicted if anisotropic neutrino emission is responsible for the
neutron star kick. In the latter case, the explosion strength is stronger in the same direction
as the neutron star’s motion. This leads to higher concentration of heavy elements in the same
direction as the neutron star recoil. Therefore, combining observations of hemispheric asym-
metries of heavy elements and neutron star’s proper motion provides a direct way to constrain
the neutron star kick mechanism. There are only a few SNRs for which both detailed spatial
distributions of heavy elements in the remnants and the neutron star’s proper motion can be
deduced from observations. An excellent example is the Puppis A SNR.

Puppis A is a galactic “oxygen-rich” SNR (Winkler & Kirshner 1985) which has Cas A as the
prototype (Kirshner & Chevalier 1977; Chevalier & Kirshner 1978). The shock wave is observed
to interact with a complex system of interstellar clouds. Using Chandra observations combined
with laboratory simulations of cloud-shock interaction, the estimated onset of the cloud-shock
interaction is 2000-4000 yr ago (Hwang et al. 2005; Klein et al. 2003). The compact object
RX J0822-4300 is associated with the Puppis A remnant (Petre et al. 1996) and is observed
to travel with a velocity of ∼ 1600 km s−1 (Winkler & Petre 2007). Hui & Becker (2006)
found a lower velocity of ∼ 1100 km s−1, which however can still be considered as a very high
neutron star kick velocity. Figure 6.13 shows the spatial distribution of fast-moving O-rich
filaments/knots observed in the Puppis A SNR. These structures have been found only in the
northeastern region of the remnant. They are believed to be the relics of an asymmetric SN
explosion, and not contaminated by the interstellar medium (Winkler & Kirshner 1985; Winkler
et al. 1988). The proper motion vector of the compact object RX J0822-4300 is pointing to
the southwest direction, opposite to the concentration of O-rich filaments/knots (see Fig 6.13).
This is very similar to what we observe in our model W15-2 with the highest neutron star kick
velocity of 575 km s−1. More recent observations using combined XMM-Newton and Chandra
data show X-ray emission from O-rich filaments/knots (Katsuda et al. 2008, 2010). These X-ray
emitting filaments/knots are coincident with O-rich knots with high velocities found in optical
observations. These observations oppose the anisotropic neutrino emission model for the neutron
star kick and favor the hydrodynamical mechanism. However, Petre et al. (1982) pointed out
the possibility that the O-rich knots can well be explained with a complicated structure of the
interstellar medium surrounding Puppis A. More detailed observations are needed to confirm
that the asymmetry of the O-rich filaments/knots originates from the SN explosion itself, not
from inhomogenieties in the interstellar medium.

Another example is the Cas A SNR. The compact object of Cas A SNR has a velocity of
∼ 350 km s−1 (e.g., Fesen et al. 2006). DeLaney et al. (2010) and Isensee et al. (2010) derived
the three-dimensional structure of Cas A. Rest et al. (2010) confirms the asymmetry of the Cas A
SN explosion, in accordance with previous observations (e.g., Hughes et al. 2000; Willingale et al.
2002). These asymmetries are believed to be intrinsic to the explosion itself, and not arising
from the interaction with the circumstellar medium. The remnant shows a bipolar structure of
Fe-rich outflows in the southeast and northwest direction. The northwest outflow is found to
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orient almost in opposite direction to the derived proper motion of the central compact object
(Rest et al. 2010). More detailed observations regarding the connection between the neutron
star’s motion and distributions of elements in Cas A are upcoming (Satterfield et al. 2011).

6.5.2 Mixing of elements in stellar envelopes

There is ample evidence of large-scale mixing of elements in the stellar envelope of the progenitor
of SN 1987A (see, e.g., Arnett et al. 1989, for a review). Besides SN1987A, also observations of
other CCSNe indicate large-scale mixing throughout the envelope (see, e.g., Wang & Wheeler
2008). Using one-dimensional radiation hydrodynamic calculations, modelling of the light curve
of SN 1987A suggests that a substantial amount of Ni should be mixed outward to the H/He inter-
face, and H should be mixed inward into the He core (Woosley 1988; Shigeyama & Nomoto 1990;
Blinnikov et al. 2000; Utrobin 2004). The theoretical light curves of Utrobin et al. (1995) require
the presence of a high-velocity Ni clump (∼4700 km s−1). High-velocity dense knots/filaments,
e.g., as those observed in Puppis A also provide strong evidence of mixing processes. These ob-
servations can be explained by our simulations, where we find extensive mixing at the H/He
interface resulting from hydrodynamic instabilities triggered by the non-steady propagation of
the SN shock wave. Figure 6.10 shows dense clumps similar to those observed, which also possess
high-velocities of the order of a few thousand km s−1 (see Figure 6.12).
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Chapter 7

Summary and outlook

During the past decade one-dimensional CCSNe simulations have failed to deliver a successful
explosion, suggesting that multi-dimensional effect must play an important role in understanding
the explosion mechanism. Although two-dimensional simulations already revealed the impor-
tance of multi-dimensional fluid instabilities concerning the explosion mechanism, astrophysicists
yearn for three-dimensional CCSNe simulations. To this end, the goal of this work is to study
CCSNe by means of three-dimensional simulations relying on the viability of the neutrino-driven
explosion mechanism.

CCSNe simulations in three dimensions are computationally very demanding, especially
when using the spherical coordinate system. By employing the usual latitude-longitude grid
for spatial discretization of the computational domain in angular directions, one encounters
the so-called “pole problem” since the coordinate lines converge at the north and south pole
of the sphere resulting in extremely small grid zones, and therefore an extremely small time
step for the simulation. To avoid this problem, we adopt and implement an overlapping grid
technique called the “Yin-Yang” grid into the computer program, Prometheus. The Yin-Yang
grid helps resolving the pole-problem by getting rid of the high-latitude parts of the sphere and
thus allows for a much larger time step. The time step gain can be as large as a factor of 40
for a simulation with 2◦ angular resolution, and factors of several hundred for higher angular
resolutions. Moreover, it has an advantage over other overlapping grid techniques in spherical
coordinates due to its simple geometry allowing it to be implemented relatively easily. The code
is tested by standard hydrodynamic test problems such as Sod’s shock tube problem and the
Taylor-Sedov blast wave problem as well as some astrophysically relevant problems, e.g., the
Rayleigh-Taylor instability and the evolution of rotating polytropes in three dimensions. We
found a conservation problem, common for overlapping grid techniques if only interpolation is
used for communication of data between neighbouring grids. Conservation for scalar conserved
quantities (density and total energy) can be ensured with an additional step of flux calculation.
However, we are still not able to ensure conservation for vector quantities, i.e.,momentum, using
the same scheme. Nevertheless, results show very good agreement with known solutions and the
conservation problem does not destroy the viability of the code for CCSNe simulations.

Using the newly developed code, we performed a series of three-dimensional CCSNe simu-
lations. We started the simulations at a time shortly after the formation of the SN shock wave
(∼ 15 ms after core bounce). The shock wave stalls at a radius of around 100-200 km and is
later revived by neutrino energy deposition in the post shock layers. First, we focus on studying
the hydrodynamical neutron star kick mechanism. Young neutron stars are observed to possess
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average space velocities around 400 km s−1. In some rare cases, the neutron star kick velocity
can exceed a thousand km s−1. Results from our simulations show that these high velocities of
the neutron star can be naturally obtained. The highest neutron star velocity found in one of our
models is ∼ 600 km s−1. This high velocity resulted mainly from the long-lasting gravitational
drag forces exerted on the neutron star by dense clumps of matter distributed asymmetrically in
the ejecta. Our results are in agreement with results of two-dimensional simulations performed
by Scheck et al. (2006). We also found a connection between the neutron star kick direction and
the distributions of heavy elements in the SN ejecta. In cases where the neutron star possesses
a kick velocity of the order of several hundred km s−1, the explosion strength is stronger in the
direction opposite to the neutron star’s motion. This results in higher concentration of heavy
elements, synthesized by explosive nuclear burning during the explosion, in the hemisphere op-
posite to the neutron star kick direction. This is just opposite to what is predicted by neutrino
kicks due to anisotropic emission. Therefore, combined observations of distributions of elements
in SNRs and neutron star’s proper motion can provide a direct way to constrain the neutron star
kick mechanism. Evidence has already been accumulated in the case of the Puppis A and Cas A
SNRs. Observations of these SNRs revealed neutron stars moving in the opposite direction of
concentration of dense fast-moving O-rich filaments/knots. Nevertheless, more observations are
needed to confirm such conclusions.

We also study the mixing of elements in the stellar envelope as the SN shock wave propagates
outwards by performing long-time simulations. We followed the SN evolution until the shock
wave breaks out of the progenitor star. We found (additional to the ones in the neutrino-heated
hot bubble deep inside the star) hydrodynamic instabilities developing at the H/He interface
triggered by the non-steady propagation of the SN shock wave. This leads to fragmentation
of the onion-skin like compositional structure of the progenitor star into small dense clumps,
and to extensive mixing of elements as suggested by one-dimensional light curve modelling of,
e.g.,SN 1987A. Some of the clumps are moving with high velocities exceeding ∼ 3500 km s−1.

Still, more work is left to be done. So far, we have investigated only a small set of three-
dimensional models, as due to high demand of computing time for a three-dimensional CCSN
simulation, we are not able to cover a wide range of parameter space. A larger set of simulations
covering a wider range of explosion energies and a larger variety of progenitor models are needed
to confirm our findings and to gain further insight.
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