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Science is like sex: sometimes something useful comes out,
but that is not the reason we are doing it.

Richard P Feynman (1918 — 1988)



ABSTRACT

In this work denaturation transitions of nucleic acids and bio-polymers in and out of
equilibrium are studied theoretically. First, the over-stretching transition of DNA is
modeled successfully by a three-state model, which allows to disentangle effects of the
stacking energy of base pairs and the loop free energy. Second, the thermodynamics
of RNA folding is studied: A marked dependence on the parameterization of loops,
which are a common theme in folded RNA structures, and on salt concentration is
found. Including these effects yields perfect agreement with experimental data. Third,
coarse grained Brownian dynamics simulations of homopolymers reveal the influence
of cohesive strength and chain length on internal friction. The existence of two distinct
globular phases is shown.

Diese Arbeit behandelt Denaturierungsiibergdnge von Nukleinsduren und Biopolyme-
ren im Gleichgewicht und Nichtgleichgewicht. Zunéchst wird der Uberdehnungsiiber-
gang bei DNA durch ein Dreizustandsmodell erfolgreich beschrieben, welches es er-
moglicht die Einfliisse der Stapelwechselwirkung von Basenpaaren und der Schlei-
fenentropie zu trennen. Im Anschluss wird der Einfluss der Parametrisierung von
Schleifen, ein hiufig auftretendes Motiv in RNA-Strukturen, und der Salzkonzentra-
tion auf die Thermodynamik von RNA untersucht. Die Bertiicksichtigung dieser Effekte
liefert hervorragende Ubereinstimmung mit experimentellen Daten. SchlieRlich wird
mit Hilfe von Brown’sche-Dynamik-Simulationen gezeigt, dass die interne Reibung bei
Homopolymeren von der Kettenldnge und den Kohisionskrédften abhidngt. Des Weite-
ren konnen im Polymerglobul zwei Phasen unterschieden werden.
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CHAPTER 1

INTRODUCTION AND OUTLINE

The double helix is indeed a remarkable
molecule. Modern man is perhaps 50000
years old, civilization has existed for scarcely
10000 years and the United States for only
just over 200 years; but DNA and RNA have
been around for at least several billion years.
All that time the double helix has been there,
and active, and yet we are the first creatures
on Earth to become aware of its existence [9].

Francis Crick (1916 — 2004)

In 1869 Johann Friedrich Miescher discovered a substance in pus cells, which he
termed nuclein and about which he wrote “Wir haben vielmehr hier Korper sui gene-
ris, mit keiner jetzt bekannten Gruppe vergleichbar.” [10]. He analyzed the nuclein’s
elementary composition and already stated that it has to be a “at least four basic
acid” [11]. It turned out that Miescher was the first to get a glimpse on the molecules
that determine our lives: deoxyribonucleic acid — DNA - and ribonucleic acid — RNA.

Yet there was a gap of 75 years between the discovery of DNA and the realization
of its role for inheritance. Avery, MacLeod, and McCarty [12] showed that DNA is
responsible for the transformation of bacteria and hence carries genetic information.
Later, Hershey and Chase [13] corroborated this thesis by demonstrating that DNA is
the genetic material of viruses.

“We wish to suggest a structure for the salt of deoxyribose nucleic acid.” — with these
words James D. Watson and Francis H. C. Crick announced the discovery of the fa-
mous double helix in their seminal paper in 1953 [14]. The revelation of the struc-
ture of DNA finally solved the puzzle of how our hereditary material is encoded and
replicated. Since then, scientists from all disciplines have striven to enhance our un-
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Figure 1.1.: The chemical structure of the two Watson-Crick base pairs is shown. The sugar
phosphate backbone on either side connects the bases on each strand. The bases are recognized
as the nitrogen containing ring compounds near the helix axis. Complementary bases establish
hydrogen bonds - three hydrogen bonds in a CG pair, two for AT — which leads to the formation
of the double helix.

derstanding of nucleic acids and to employ this knowledge in research and biotechno-
logical applications.

1.1. Nucleic acids - versatile bio-polymers

Nucleic acids are linear chain-like molecules that are made up of four different types
of monomers - the nucleotides. A nucleotide consists of three different parts: a phos-
phoric acid, a five-carbon sugar, and a nitrogen containing ring compound generally
referred to as a base [15]. For DNA, there are four different bases, namely cytosine (C),
guanine (G), adenine (A), and thymine (T), which are linked to the sugar, see fig. 1.1.
DNA and RNA differ in only two respects: while the sugar in DNA is deoxyribose and
thymine is the fourth base, RNA contains ribose and features uracil (U) instead of
thymine. In the present work, these differences between DNA and RNA are of minor
importance and most of the results obtained are valid for both. With the nucleotides
as the basic building blocks, a nucleic acid can be polymerized by linking the sugar of
one nucleotide to the phosphate of another. Nucleic acids occur in a huge variety of
lengths starting from small oligonucleotides consisting of less than a dozen bases up to
huge molecules containing several million bases as, for instance, the DNA in a human
chromosome [16]. By arranging the four bases in different ways specific sequences
can be designed. The purpose of the sequence is twofold. First, it serves as the storage
of genetic information and, second, it determines the three-dimensional structure the
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Figure 1.2.: The all atom structure and a schematic image of two nucleic acids are shown. In
the schematic schemes, the sugar phosphate backbone is recognized as the thick blue ribbon,
while bases are depicted as plates. Images were generated with VMD [20]. (a) NMR structure
of a 16 base pair DNA oligomer [21, PDB: 1SS7]: the two DNA strands intertwine and form
the famous double helix. Complementary bases on the opposite strands form Watson-Crick
base pairs via hydrogen bonding. The helical structure is further stabilized by the stacking
interaction between two neighboring base pairs lying on top of each other. (b) Crystal structure
of yeast tRNA-phe obtained by X-ray diffraction [22, PDB: 119V]: this single stranded RNA
consists of 76 bases and assumes an L-shaped structure typical for transfer RNA. The molecule
interacts with itself featuring helical sections and loops with unbound bases.

molecule will fold into and hence its functionality. While DNA mainly acts as a genetic
information storage, RNA accomplishes numerous tasks and may act as an information
carrier, catalyst, or regulator for protein expression [15, 17]. For example, messenger
RNA (mRNA) serves as a blueprint into which the genetic information in the DNA is
transcribed. In the ribosome, mRNA is translated into proteins, where the amino acids
— the individual building blocks of proteins — are delivered by a transfer RNA (tRNA).
The ribosome itself contains yet another type of RNA, ribosomal RNA (rRNA), which
catalyses protein synthesis. Further, RNA regulates protein expression in the form of
riboswitches, which are able to sense the presence of certain metabolites [18], or as
small interfering RNA (siRNA) molecules that bind to mRNA and initiate its degrada-
tion [19]. All these abilities of nucleic acids are brought about by the structure of the
molecule, which is encoded in the very sequence written in a four letter alphabet.
The most important interaction, which guides the molecule towards its structure, is
the specific pairing inducing the famous Watson-Crick base pairs: cytosine and guanine
on the one hand as well as adenine and thymine/uracil on the other hand. The binding
between the bases is brought about by hydrogen bonds - three for CG and two for
AT/AU, see fig. 1.1. It is base pairing that causes two complementary nucleic acid
strands to hybridize and to form the well known double helix, which is observed in
siRNA or double stranded DNA (dsDNA), see fig. 1.2a. However, a single strand may
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Figure 1.3.: Illustration of coarse graining DNA. On the left, a 16 base pair long DNA molecule
solvated in water is shown. In a molecular dynamics simulation all atoms (~ 10000) would
be considered. After coarse graining this system, the water molecules are no longer modeled
explicitly and two consecutive base pairs (~ 100 atoms) are represented by a single bead as de-
picted on the right. A Brownian dynamics simulation of this bead spring model would require
to consider only eight monomers; the effect of the solvent would be included by introducing a
fluctuating random force acting on the beads. Therefore, coarse graining allows to study larger
length scales and longer time scales.

also interact with itself and form intricate structures, which are, for instance, found in
riboswitches, rRNA, or tRNA, see fig. 1.2b.

The structure of nucleic acids may be decomposed into three hierarchy levels. The
primary structure is the mere sequence of bases along the chain. Base pairing leads to
the secondary structure, which — on an abstract level — can be viewed as a list of all
base pairs. The tertiary structure is the complete three-dimensional configuration and
contains the positions of all atoms.

1.2. A physicists view on bio-polymers

Physicists try to understand complex systems by focusing on their essentials and by
comprehending them from first principles. Experimentally this can be achieved by
investigating idealized systems in a very controlled setup. Theory complements exper-
iments and aims to explain reality by models, which comprise equations and simula-
tions that can be checked against experimental data.

To describe bio-polymer systems theoretically an abundance of degrees of freedom
has to be dealt with: for instance, to study the movement of tRNA through the ribo-
some several million atoms were simulated [23]. But not always so much detail is
necessary to understand nature, which leads to main idea of the powerful concept of
coarse graining: the deliberate procedure of neglecting irrelevant degrees of freedom.
A possible first step of coarse graining nucleic acids is illustrated in fig. 1.3: Instead
of describing the positions of all atoms of the DNA and the surrounding water, one
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represents several base pairs by a single bead and desists from modeling water ex-
plicitly. Various levels of coarse graining exist and successfully describe experiments.
For example, in molecular dynamics simulations typically all atoms of the bio-polymer
and the solvent are considered (left hand side of fig. 1.3), but quantum effects are
neglected [24]. Further simplification leads to bead-spring models, where solvent
molecules are omitted and successive monomers are represented by a single bead
(right hand side of fig. 1.3), which allows to study larger systems on a longer time
scale [25]. Apart from simulations, bio-polymers can be investigated analytically. To
describe the elastic properties, DNA can be modeled as a semiflexible rod [26]. Push-
ing coarse graining to its extremes, phenomena as complex as the melting of double
stranded DNA can be described by discrete models; within the Poland-Scheraga theory,
a single variable, which is either 1 or 0, indicates whether or not two bases are paired
without considering the three-dimensional conformation of the molecule [27, 28]. In
this work, we employ various levels of coarse graining ranging from simulations of
bead-spring models to discrete models that can be treated analytically.

Bio-polymers belong to the class of soft matter systems since they are easily de-
formed by thermal fluctuations as typical energies are of the order of the thermal
energy. These materials are particularly interesting as they constitute model systems
for many physical fields and phenomena - e. g. statistical mechanics, (non-) equilib-
rium thermodynamics, stochastic dynamics, critical phenomena, phase transitions, or
glasses — where models and concepts may be tested against experiments. Quantum
effects are generally unimportant and classical theories may be employed. Soft matter
and bio-physics is a rich and active field of research being relevant for our understand-
ing of life and for many biotechnological applications. This work tries to contribute to
this scientific community and to enhance our knowledge in the area of bio-polymers.

1.3. Outline of this work

The aim of this thesis is to give an extensive picture of the statistical mechanics and
the denaturation transitions associated with the secondary structure of nucleic acids.
In chapters 2, 3, and 4 we develop a theory for equilibrium properties of nucleic acids.
Only secondary structure interactions are considered, whereas the tertiary structure is
neglected. This approximation relies on the idea of hierarchical folding proposed by
Tinoco and Bustamante [29], who claim that given a sequence, the secondary struc-
ture forms independently of the tertiary structure. In chapter 5 we shift our focus to
dynamical aspects and assume a more general point of view by considering homopoly-
mers without specific base pairing interactions.

Double stranded DNA is known to exhibit a highly cooperative over-stretching tran-
sition when subject to a tensile force [30]. This gave rise to a still ongoing and con-
troversial debate whether this over-stretching transition produces a distinct DNA state
or not. In chapter 2 we introduce a three-state model for a single DNA chain under
tension that distinguishes between native B-DNA, over-stretched S-DNA, and dena-
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tured segments [3]. We show that the existence of S-DNA sensitively depends on the
model parameters and suggest that the stability of the S-state is very susceptible to
experimental conditions. Further, by fitting to experimental data our approach allows
to extract the loop exponent, which characterizes the entropy of denatured loops, and
the stacking interaction independent from each other. Finally, we establish a global
phase diagram in the force-temperature plane.

Upon approaching the denaturation transition of double stranded nucleic acids,
molten loops proliferate and inter-strand base pairing abates. This leads to an in-
teresting and biotechnologically extremely relevant question: Do secondary structure
elements form in the single strands inside loops or not? To answer this question we
characterize the thermodynamic behavior of single stranded nucleic acids, which oc-
cur in molten DNA loops and particularly in the form of RNA, such as tRNA, rRNA,
or mRNA. In chapter 3 we analytically calculate the partition function, determine
the phase diagram, and find non-universal critical exponents, which depend on the
loop exponent [1]. For the case of denaturation of double stranded nucleic acids, we
demonstrate that inter-strand base pairing is always in competition with intra-strand
base pairing if the sequence allows intra-strand base pairing [5]. These findings have
important implications on theory and software development, which aim to predict the
stability of nucleic acid compounds.

In chapters 2 and 3 sequence effects are neglected. However, the structure of nucleic
acids and hence their functioning is mainly controlled by the specific Watson-Crick
base pairing between C and G and between A and T/U. In addition, the stability of
nucleic acids is strongly influenced by the salt concentration of the solution. While for
DNA numerous corrections of the base pairing free energies due to varying salt con-
centrations exist, analogous results for the salt dependence of RNA energy parameters
are very sparse. In chapter 4 we derive salt dependent free energies for base pairing
and loops [4]. We include a logarithmic loop entropy characterized by the loop ex-
ponent and demonstrate that also the non-critical behavior sensitively depends on the
loop exponent [1]. Subsequently we consider thermal and force induced denaturation
of RNA and observe excellent agreement between our results and experimental data.
We show that for a proper description of RNA melting and stretching, both salt and
loop entropy effects are needed. We derive the phase diagram in the three-dimensional
phase space spanned by temperature, external stretching force, and salt concentration.

In chapter 5 we assume a more general point of view by omitting the specific
base pairing interactions and study dynamical and non-equilibrium properties of ho-
mopolymeric globules by means of Brownian dynamics simulations of bead-spring
polymers [6]. We find a marked dependence of the internal dynamics on the chain
length as well as on the cohesive force and observe a transition from liquid-like to
solid-like globules [6, 7]. While monomers are quite mobile inside the globule in the
liquid phase, the dynamics are very slow in the solid phase. The results in this chap-
ter have implications for many systems as conformational dynamics of polymers play
a crucial role in biological systems and biotechnological applications: transcription,
translocation, and translation of RNA impose huge conformational changes on the
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molecule and require to consider the dynamics of folding and unfolding. DNA pack-
ing in the chromosome or accessing genes for transcription involves rearrangement
and reorganization of the molecule. Further, proteins experience many intermediate
structures along their way towards the folded state and the adsorption behavior of
polymers to surfaces depends on their configuration [8].

In chapter 6 we summarize the main results of this work and give an outlook for
future studies.






CHAPTER 2

THREE-STATE MODEL FOR THE
OVER-STRETCHING TRANSITION OF DNA

2.1. Introduction

2.1.1. Motivation

DNA continuously stays in focus of polymer scientists due to its unique mechanical
and structural properties. In particular the possibility to trigger phase transforma-
tions in this one-dimensional system has intrigued theorists from different areas [27].
In fact, the thermal denaturation or melting transition of DNA was shown to cor-
respond to a true phase transition, brought about by a logarithmic contribution to
the configurational entropy of molten loops or bubbles, S ~ —¢lnn, as a function
of the loop size n [28]. The value of the exponent ¢ is crucial since it determines
the resulting transition characteristics. For ¢ = 3/2, the value for a phantom chain
without self-avoidance, the transition is continuous, while self-avoidance increases ¢é
slightly beyond the threshold ¢ = 2 above which the transition becomes discontinu-
ous [28, 31]. A distinct mechanism for transforming DNA involves the application of
an extensional force. For forces around F ~ 65 pN DNA displays a highly coopera-
tive transition and its contour length increases by a factor of roughly 1.7 to 2.1 over
a narrow force range [30, 32, 33]. These experiments sparked a still ongoing de-
bate on whether this over-stretching transition produces a distinct DNA state, named
S-DNA, or merely the denatured state under external tension. According to the first
view S-DNA is a highly stretched state with paired bases but disrupted base stack-
ing [34-40]. In the other view the over-stretched state consists of two non-interacting
strands [41-44]. Evidence for the existence of a distinct S-state comes from theoretical
models [34, 36], molecular dynamics simulations [37-40] and from AFM experiments
of Rief et al. [45-47] where in addition to the over-stretching transition a second
weak transition at forces between 150 pN and 300 pN is discerned, which has been
interpreted as a force induced melting of the S-state. The critical force of both tran-
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sitions depends on the actual sequence [46] and the salt concentration [48], but the
interpretation of the second transition is complicated by the occurrence of pronounced
hysteresis effects that depend on various parameters such as pulling velocity, salt con-
centration, or presence of co-solutes such as cisplatin [46, 47]. On the other hand,
support for the view according to which S-DNA is not a distinct state comes from theo-
retical models [41, 42], simulations [49] and recent experiments by Shokri et al. [43]
and van Mameren et al. [44].

Apart from simulations [37-40], existing theoretical works that grapple with exper-
imental force traces or DNA melting fall into three categories with increasing com-
putational complexity, for reviews see refs. [50-52]. In the first group are Ising-like
models for DNA under tension which give excellent fitting of the over-stretching transi-
tion but by construction cannot yield the denaturing transition [42, 53-55]. The work
of Marko [56] is similar but employs a continuous axial strain variable. In the second
group are models that include a logarithmic entropy contribution of molten loops in
the spirit of the classical model by Poland and Scheraga [28] [31, 36, 57-62]. This
gives rise to effectively long-ranged interactions between base pairs (bp) and thus to
a true phase transition. The third group consists of models which explicitly consider
two strands [63-68]. Those models thereby account for the configurational entropy
of loops — at the cost of considerable calculational efforts — and correspond to loop
exponents ¢ = d/2 in the absence of self-avoidance effects, where the dimensional-
ity of the model is d = 3 for ref. [64-66] and 1 for ref. [67, 68]. All these above
mentioned works consider only two different base states (paired versus unpaired)
and thus do not allow to distinguish between B-DNA, S-DNA, and denatured bases.
Recently, three-state models were introduced that yield very good fits of experimen-
tal force traces at ambient temperatures. However, in previous analytic treatments
of such three-state models [34, 69], the loop entropy was neglected and therefore
the temperature-induced denaturation in the absence of force cannot be properly ob-
tained, while the loop entropy was included in a simulation study where most attention
was given to dynamic effects [36].

2.1.2. Outline

In this chapter we combine the Poland-Scheraga formalism with a three-state transfer
matrix approach which enables us to include three distinct local base pairing states and
at the same time to correctly account for long-ranged interactions due to the config-
urational entropy of molten DNA bubbles. Our approach thus allows for a consistent
description of thermal denaturation and the force induced BS-transition within one
framework and yields the global phase diagram in the force-temperature plane. We
derive a closed form expression for the partition function of three-state DNA under ten-
sion. This allows to systematically investigate the full parameter range characterizing
the three states and the DNA response to temperature and external force. In our model
we allow for the existence of S-DNA but stress that the actual occurrence of S-DNA is
governed by the model parameters. By assuming such a general point of view, our

10
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work is able to shed new light on the question of the existence of S-DNA. The extensi-
ble worm-like chain model is employed for the stretching response of each state. The
loop exponent is found to have quite drastic effects on the force extension curve. For
realistic parameters for the stacking energy, the experimental force extension curves
are fitted best for small loop exponents 0 < ¢ < 1, hinting that the DNA in the ex-
periments contained nicks. Loop exponents ¢ > 1, which give rise to a genuine phase
transition, are not compatible with experimental force distance curves. Under exter-
nal force, the effects of stacking energy and loop exponent are largely decoupled, since
the stacking energy only determines the cooperativity of the BS-transition while the
loop exponent influences the second SM-transition found at higher forces. This allows
to disentangle these two parameters, in contrast to the denaturation transition at zero
force where the effects of these two parameters are essentially convoluted. The precise
value of ¢ is important also from a practical point of view, as it impacts the kinetics
of DNA melting [36, 70], which is omnipresent in biological and bio-technological
processes.

2.2. Three-state model

Double-stranded DNA is modeled as a one-dimensional chain with bases or segments
that can be in three different states, namely paired and in the native B-state, in the
paired stretched S-state, or in the molten M-state. The free energy of a region of n
segments in the same state reads

Gi(n,F)=n g(F) = &;m kg TInn"°, (2.1)
with i =B, S, M. The force F dependent contribution
gi(F) =g + g™ "(F) + g{""“(F) (2.2)

is split into three parts. g? is a constant that accounts for the base pairing as well as
the difference of reference states of the worm-like stretching energy, cf. appendix A.1
eq. (A.1). The stacking energy of neighboring bases in the same state is absorbed
into g?, too, so that the stacking energy will appear explicitly only as an interfa-
cial energy V;; between two regions which are in a different state. The second term
giStretCh(F ) = —F2[,/(2x;) takes into account stretching along the contour with I; and
k; the segmental contour length and the elastic stretch modulus. Finally, g/""“(F) is
the free energy of a worm-like chain (WLC) in the Gibbs ensemble (constant force F),
based on the heuristic relation between the force F and the projected extension x [26]
FNVC(x)E,; /kgT = (1 —x/(nli))_2/4+x/(nli) —1/4 where &; is the persistence length
and n the number of segments. The Gibbs free energy nngLC(F ) of a stretch of n
segments is extensive in n and follows via integration, see appendix A.1. We note
that this is only valid if the persistence length is smaller than the contour length of
a region, &; < nl;, which is a plausible assumption because of the high domain wall

11
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energies. Likewise, the decoupling of the free energy into contour stretching elas-
ticity and worm-like chain elasticity is only approximate [71, 72] but quite accurate
for our parameter values [73]: For small force, WLC bending fluctuations dominate
and the contour extensibility is negligible, while contour stretching sets in only when
the WLC is almost completely straightened out. The last term in eq. (2.1) is the log-
arithmic configurational entropy of a molten loop (i = M), characterized by an ex-
ponent ¢ [1, 31, 58], see appendix A.3. The exponent is ¢ = 3/2 for an ideal poly-
mer [74] and 2.1 for a self avoiding loop with two attached helices [31, 75]. If the
DNA loop contains a nick the exponent is reduced to ¢ = 0 for an ideal polymer and
0.092 for a self avoiding polymer [31]. We consider the simple case ¢ = 0, where
transfer matrix methods can be used to yield results in the canonical ensemble with a
fixed number of segments N [34], as well as the case of finite ¢ where we introduce a
modified Poland-Scheraga method to obtain results in the grand canonical ensemble.
Intra-strand base pairing in molten loops, i.e. the interaction of a single strand with
itself, is not considered here. We will come back to this point in chapter 3.

2.3. Partition functions

2.3.1. Modified Poland-Scheraga approach for ¢ # 0

The molecule is viewed as an alternating sequence of different regions each character-
ized by grand canonical partition functions. Various techniques for going back to the
canonical ensemble are discussed below. The canonical partition function of a stretch
of n segments all in state i =B, S, or M is

Q;(n) = exp(=fG;(n)), (2.3)

where 8 = (kg T)! is the inverse thermal energy. The grand canonical partition func-
tions are defined as Z; = Zflo:l 2"Q;(n) with z = exp(fu) the fugacity and u the
chemical potential. The grand canonical partition function of the whole DNA chain,

which contains an arbitrary number of consecutive B, S, and M stretches reads

o0
Z= Z VT (MpgVps)Mps - v = v - (1 — MpgVps) ™ "Mps - v, 2.9
k=0

see fig. 2.1, with the matrices in this Poland-Scheraga approach given by

Zg 0 O 0 e Ples e Flu 1
Mps=| 0 Z5 0 |, Vpg=|ePs» 0 ePlu| y=|1](25)
0 0 2Zy e Pws e=Flus 0 1

and where 1 is the unity matrix. The energies V;; are the interfacial energies to have
neighboring segments in different states and are dominated by unfavorable base pair
un-stacking. The diagonal elements of Vg are zero which ensures that two neighbor-
ing regions are not of the same type and thus prevents double counting. The explicit
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2.3. Partition functions

AN =B-DNA ([IT11] = s-DNa = denatured DNA
AT+ NV U -+ AVTIIVAR + VR -

Figure 2.1.: Illustration of the calculation of the grand canonical partition function: The three
different pictograms denote the grand canonical partition functions. The sum depicts the first
terms of the sum in eq. (2.4).

form of Z is given in appendix A.2, see eq. (A.2). The partition function in eq. (2.4) is
general and useful for testing arbitrary models for the three DNA states as given by the
different Z;. This approach is also easily generalized to higher numbers of different
states. Using the parameterization eq. (2.1) for vanishing loop exponent ¢ = 0 the
partition functions of the different regions are given by

IS Ze_ﬁgi
.= n . —_—
Z ;z QM =———5-, (2.6)
for ze P& < 1,i =B, S, M. Insertion into eq. (2.4) yields
a2 + a,2% + asz°®
Zg=— 2 > 2.7)

a,+ asz + agz® + a;z°

which is a rational function of the fugacity z, whose coefficients a; — determined by
egs. (2.4) and (2.6) — are smooth functions of the force F and the temperature T. For
¢ # 0 the partition function of a molten stretch is modified to

Zy = ianM(n) = iz" (e—/ng)” nl = Li.(ze Fam) | (2.8)

z =
n=1 n=1

for ze P8m < 1, where Li,(x) = 22021 x"n¢ for x < 1 is the polylogarithm [76] and
exhibits a branch point at x = 1, see appendix A.4. The functional form of the grand
canonical partition function for ¢ # 0 reads

_ boz+ byz% + byLi:(2/2;,) + bazLiz(z/2,) + baz?Liz(z/21)
0= bs + bgz + b;2% + bgzLis(2/2p) + boz?Liz(z/2,)

> (2.9)

where z, = eP& denotes the position of the branch point and the coefficients b;,
determined by egs. (2.4), (2.6) and (2.8), are smooth functions of F and T.

The grand canonical ensemble where N, the total number of segments fluctuates,
does not properly describe a DNA chain of fixed length. We therefore have to in-
vestigate the back-transformation into the canonical ensemble where the number of
segments N is fixed. For the back-transformation there are three options:

13



2. Three-state model for the over-stretching transition of DNA

Calculus of residues route

The grand-canonical partition function Z(z) = Zi,ozl zN Q(N) can be viewed as a Lau-
rent series, the coefficients of which are the canonical partition functions Q(N) deter-
mined exactly by

2mi

1 Z(2)
O(N)= — ] s (2.10)

The contour C = z5e?™¢, 0 < t < 1, is a circle in the complex plane around the

origin with all singularities of Z(z) lying outside. This complex contour integral can
be evaluated using calculus of residues [77] which becomes technically involved for
large N and thus limits the practical relevance of this route.
Legendre transformation route
The canonical Gibbs free energy

G(N)=—kgTIn Q(N) (2.11)
and the grand potential

®(u)=—-kgTIn Z(z), (2.12)
are related via a Legendre transformation

GIN)=2(u(N))+N-u(N) . (2.13)

The chemical potential u as a function of the segment number N is obtained by invert-
ing the relation

N(u)=-— . (2.14)

Let us briefly review the origin of egs. (2.13) and (2.14) in the present context. Chang-
ing the integration variable in eq. (2.10) from z to y = kyT lnz, the complex path
integral can be transformed into

Q(N) — J e—ﬁq’(u)—ﬁNNd‘u ~ e_[jé(Usp(N))_ﬁN“sp(N) S (2.15)

with the contour ¢’ = ug + 27mit/f, 0 < t < 1 and yy = kgT Inz,. The integral in
eqg. (2.15) has been approximated by the method of steepest descent, where the con-
tour C’ is deformed such that it passes through the saddle point Usp [77] determined
by equation (2.14). If ®(z) features singularities, deformation of the contour C’ re-
quires extra care. In the present case the presence of a pole z, = exp(Su,) of Z(z)
produces no problem as ug, < U, holds, meaning that the deformed contour does not
enclose the pole singularity. This is different for the branch point singularity u;,, where
we will encounter the case w, < ug, for large ¢ > 2.
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2.3. Partition functions

Dominating singularity route

For large systems, i.e. N > 1, one approximately has —In Q(N) ~ N Inzg4, where the
dominant singularity z4 = exp(f3uq) is the singularity — in the general case a pole or a
branch point — of Z(z) which has the smallest modulus. One thus finds

G(N)=kgTNInz, . (2.16)

This easily follows from eq. (2.10): In the limit of N > 1 the integral can be approx-
imated by expanding Z(z) around z4 and deforming C to a Hankel contour, which
encircles z4, see appendix A.5 [78, 79]. For the case where N(u) « (ug — u)~%,
a > 0, this can be understood also in the context of a Legendre transform. As
N = —9%/du one has & o« (uq — 1)~ *"! and therefore the first term of eq. (2.13)
scales like ®(u(N)) oc N1=/%, Thus, the second term Nu(N) o« Nug — N'™V% o« Nuy
is dominant. Since the saddle point behaves as ug, = u(N) — uq for N — oo, it follows
that the dominating singularity expression eq. (2.16) equals the Legendre transform,
eq. (2.13), in the thermodynamic limit N — oo.

2.3.2. Transfer matrix approach for ¢ =0

For ¢ = 0 only interactions between nearest neighbors are present and straight transfer
matrix techniques are applicable. We introduce N spin variablesi,, n =1,...,N, which
can have the values i, = B, S, M. The energetics are given by the Hamiltonian

N N-1
H(iy, iy, oin) = D810+ D, Virin (2.17)
n=1 n=1

where g; andV; ;  are the previously introduced parameters for the segment and in-
terfacial free energies. The canonical partition function of the molecule can be written
as

Q(N) = Z e PHGLbin) = T pN=1pp Ly | (2.18)

where we introduced the transfer matrix T = MryVy and

e—ﬁgB 0 0 1 e—ﬁVBs e—ﬁVBM 1
My = 0 e Pss 0 V= | e PVes 1 e PV | y=1[1
0 0 e Pam e P o= BVus 1 1
(2.19)
Q(N) is readily calculated by diagonalizing T
3
Q(N) =v"-UDN U My -v = v -DV oy Z v v L (2.20)

=1
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2. Three-state model for the over-stretching transition of DNA

where D = U™!TU is a diagonal matrix with eigenvalues x;, the columns of U are the
right eigenvectors of T, vlT = vT.U and v, = U !Mpy-v. By virtue of the Perron-
Frobenius theorem one eigenvalue x,,, is larger than the other eigenvalues and thus
the free energy is in the thermodynamic limit dominated by x,,, and reads

G=-kgTInQ(N)~ —kgTN Inx,,y - (2.21)

The transfer matrix eigenvalues x; and the poles z,; of Z;_, eq. (2.7) are related via
x; = 1/z, ;. Therefore, the free energies from the transfer matrix approach, eq. (2.21),
and from the Poland-Scheraga approach for ¢ = 0, using the dominating singularity
approximation eq. (2.16), are identical in the limit N — oo. Clearly, for ¢ # 0 the
modified Poland-Scheraga approach yields new physics that deviates from the transfer
matrix results.

Although not pursued here, the transfer matrix approach allows to calculate corre-
lators. For example the probability p,,;(k, m) of a denatured region with k consecutive
molten base pairs starting at base m is given by

pu(k,m) = QIN) " IwT - T 2(PT + PgT)(Py T) (PR T 4+ PsT)TV %=1 Mypp - v

(2.22)
The P;-matrices, which project a segment onto a certain state, are defined as
1 00 0 00O 0 00O
P,=[0 0 0|, Ps=|0 1 0|,and Py=[0 0 0 (2.23)
0 0 O 0 0O 0 01

2.4. Force extension curves

The central quantity is G(F, T, N ), the Gibbs free energy of a DNA chain with N base
pairs, subject to a force F and temperature T. From G(F, T, N ), obtained via the Legen-
dre transform, eq. (2.13), the dominating singularity, eq. (2.16), or the exact transfer
matrix partition function, eq. (2.20), we can calculate observables by performing ap-
propriate derivatives. The number of segments in state i = B, S, M is obtained by

G
N, = — , (2.24)
98i|rN,F
The force extension curve is readily calculated via
ag 0G dg; WLC
x(F)=—— =- — = N; (x;"=(F)+Fl;/x; (2.25)
OF |1y i:BZ,S:,M dg; OF i:;s:,M ( )

where x}NLC(F ) is the stretching response of a worm-like chain and given explicitly in
appendix A.1, eq. (A.1).
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2.4. Force extension curves

2.4.1. Vanishing loop entropy, ¢ =0

In this section we compare the prediction for vanishing loop exponent ¢ = 0 to ex-
perimental data and obtain estimates of the various parameters. We also demonstrate
the equivalence of the grand canonical and canonical ensembles even for small chain
length N.

In order to reduce the number of free fitting parameters we extract as many reason-
able values from literature as possible. For the helical rise, the stretch modulus, and
the persistence length of B-DNA we use Iy = 3.4 A, k3 = 1 nN, and &g = 48 nm [80].
For the M-state, which is essentially single stranded DNA (ssDNA), ab initio calcula-
tions yield Iy = 7.1 A and ky; = 2-9.4nN [81], where ) is valid for small forces
F < 400 pN and the factor 2 accounts for the presence of two ssDNA strands. Our
value for the stretch modulus is considerably larger than previous experimental fit
estimates [30, 82], which might be related to the fact that experimental estimates
depend crucially on the model used to account for conformational fluctuation effects;
however, the actual value of k), is of minor importance for the stretching response as
will be discussed later. The persistence length of ssDNA is given by &y ~ 3 nm [83].
It turns out that the quality of the fit as well as the values of the other fit parameters
are not very sensitive to the exact value of the persistence length £g and the stretch
modulus kg of the S-state as long as 10 nm < &g < 50 nm and kg is of the order of k.
Therefore we set £g = 25 nm, which is an intermediate value between the persistence
lengths of ssDNA and B-DNA, and kg = k; = 2-9.4 nN [34]. The segment length of
the S-state I will be a fit parameter.

The chemical potentials g?, i = B, S, M, account for the free energy of base pairing
and, since we set the interaction energies between neighboring segments of the same
type to zero, V;; = 0, also for the free energy gain due to base pair stacking [84]. They
also correct for the fact that the reference state of the three different WLCs, which is
x = 0 in the Helmholtz ensemble (constant extension x), cf. eq. (A.1), is not the same
as contour and persistence lengths differ for B-, S-, and molten M-DNA. We choose
gg = 0 and treat gg and gl(\),[ as fitting parameters. Each of these parameters controls
a distinct feature of the force-extension curve: The chemical potentials g? determine
the critical forces, the segment lengths [; affect the maximal extensions of each state
and the off-diagonal Vj; control the cooperativity of the transitions. In appendix A.6
we summarize all parameter values that are used. We stress that our approach not
necessarily implies the existence but merely allows for the possibility of observing
three distinct states. The actual occurrence of the disputed S-state depends on the
values of the parameters after fitting and is not presupposed in the model.

Force extension curve

In fig. 2.2 force extension curves based on three different levels of approximation are
compared, using the same parameters that we extracted from DNA stretching data as
will be detailed below. It turns out that the force extension curve obtained via the
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2. Three-state model for the over-stretching transition of DNA
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Figure 2.2.: Comparison of force extension curves obtained by different methods for ¢ = 0.
The curve obtained via the exact transfer matrix calculation eq. (2.20) is already for N = 2 ac-
curately reproduced by the approximate Legendre transformation eq. (2.13). The dominating
singularity method, egs. (2.16) or — equivalently — (2.21), is strictly valid in the thermody-
namic limit but agrees with the Legendre transform already for a modest value of N = 10. The
units of the abscissa is extension per base pair (bp). Parameters for A-DNA in the absence of
DDP are used, see appendix A.6.

Legendre transformation route eq. (2.13) (dashed line) is a very good approximation
of the results obtained from the exact transfer matrix results eq. (2.20) (dotted line)
already for N = 2. For N = 10 and larger virtually no differences between these
two approaches are detectable. The deviations from the dominating singularity route,
eq. (2.16) (solid line), which gives a result independent of N, are somewhat larger. But
one sees that already the Legendre transform for N = 10 (dash-dotted line) matches
the dominating singularity result very closely. Therefore the use of the dominating
singularity, eq. (2.16), or the largest transfer matrix eigenvalue, eq. (2.21), is a very
good approximation already for oligonucleotides and will be used in the rest of this
work.

In fig. 2.3 experimental stretching curves of A-DNA with and without DDP (cisplatin)
are presented [47]. When B-DNA is converted into S-DNA or M-DNA the base stacking
is interrupted which gives rise to an interfacial energy between B and S as well as
between B and M of the order of the stacking energy [37, 38]. For untreated DNA, we
use the value Vg = Vg = Vi = Vyp = 1.2- 10720 J. Later we will show that variations
down to 0.8-1072°J do not change the resulting curves much. Vg is presumably
small as the stabilizing stacking interactions are already disrupted [34], we thus set
Vsm = Vms = O for the fits in fig. 2.3 — but we will come back to the issue of a non-zero
Vsum later on. Cisplatin is thought to disrupt the stacking interaction between successive
base pairs and thereby to reduce the cooperativity of the BS-transition. We incorporate
this fact by setting all interfacial energies to zero, V;; = 0, for DDP treated DNA. The
three remaining undetermined parameters (lg, gg, g&) have distinct consequences
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Figure 2.3.: Bottom panel: Force extension curve of double-stranded A-DNA with and without
DDP Symbols denote experimental data [47], lines are fits with the three-state model for ¢ = 0.
The main difference between the two curves is the lack of cooperativity in the BS-transition
in the presence of DDB which we take into account by choosing vanishing interaction energies
V;j =0, i,j =B,S,M. Top panel: Fraction N;/N of segments in the different states as follows
from eq. (2.24) in the absence of DDP

on the force-extension curve. The segment length [g and the chemical potential gg
determine the position of the BS-plateau with respect to the polymer extension and
applied force, respectively, while the chemical potential g& controls the force at which
the second transition appears. Fitting to experimental data is thus straightforward
and yields for untreated A-DNA Ig = 6.1 A, gg =1.6-10720, gf\),l =2.4-1072°J and
for A-DNA in the presence of DDP (cisplatin) Ig = 6.0 A, gg =1.2-1072 ], gl?/[ =
2.8-1072J, see fig. 2.3. We also fit the number of monomers N and allow for an
overall shift along the x-axis. The main difference between the two stretching curves
is the cooperativity of the BS-transition, which is controlled by the interfacial energies
Vps and Vg Note that, although the over-stretching transition is quite sharp for DNA
without DDB it is not a phase transition in the strict statistical mechanics sense. A
true phase transition arises only for ¢ > 1, as will be shown in the next section. The
fitted value of gl(\),I is about two times larger than typical binding energies [84] for pure
DNA. As a possible explanation, we note that the force extension curve of DNA without
DDP exhibits pronounced hysteresis (especially at higher force), which will increase
the apparent binding energy due to dissipation effects [69]. Any statements as to
the stability of S-DNA based on our fitting procedures are thus tentative. However,
such complications are apparently absent in the presence of DDP [47] which rules out
kinetic effects as the reason for our relatively high fit values of g& and the stability of
S-DNA. Cisplatin most likely stabilizes base pairs due to cross-linking and thus shifts
the subtle balance between B-, S-, and M-DNA. Therefore, the relative stability of B-,
S-, and M-DNA is sensitively influenced by co-solute effects. We note that even with
¢ = 0 a good fit of the data is possible. In the top panel of fig. 2.3 we show the
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2. Three-state model for the over-stretching transition of DNA
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fraction of segments in B-, S-, and M-states for untreated A-DNA. There is a balanced
distribution of bases in all three states across the full force range, in agreement with
previous results [34].

Different parameters of the model are linked to certain features of the force exten-
sion curve. Fig. 2.4 illustrates how the chemical potentials g? influence the transition
forces. Lowering gg leads to a decreasing plateau force of the BS-transition as the free
energy difference between B- and S-states (gg(F) — gg(F)) decreases, see eq. (2.2).
At the same time the force of the SM-transition increases as the free energy difference
between S- and M-states (gy(F) — gs(F)) increases. The segment lengths [; affect the
maximal extensions between which the transitions occur. This can be seen in fig. 2.5,
where [g is varied. The effect of changing lg is twofold. First, increasing lg elon-
gates the BS-plateau. As a side effect a larger [g stabilizes the S-state as g‘SNLC(F ) is
lowered. This can be concluded from eq. (A.1) in appendix A.l. Thus, increasing Ig
shifts the equilibrium towards the S-state and has the same effects as decreasing g(s),
cf. fig. 2.4. The off-diagonal entries V;; of the interaction matrix determine the cooper-
ativity of the transitions, see fig. 2.6. Lowering Vg (dotted, dashed, and dash-dotted
lines) smoothes the BS-transition and renders it less cooperative, which has been ob-

20



2.4. Force extension curves

400 ‘ —
I — Vs =1.2-1072°J ]
300 [ - Vpg =0.8-1070J s
F—— Vgs=0.4-10"2J i
i Vs =0 |

1

[ gy =1.2:1072)

Force F / pN
N
S
S

1

\
L1

0.3 0.5 0.7
Extension x / (nm/bp)

Figure 2.6.: The interfacial energies V;; determine the cooperativity of the transitions. The
solid line shows the force extension curve of A-DNA without DDP. The other force extension
curves are obtained by varying Vg or Vg while keeping all other parameters constant. De-
creasing Vpg renders the BS-transition less cooperative. Vg has similar effects on the melting
transition: Increasing Vg, from its original value 0 to 1.2-1072° J (dotted blue curve) sharpens
the denaturation transition.

served in the experiments by Krautbauer et al. [47] for A-DNA with DDB cf. fig. 2.3.
The influence of the stretch modulus on force extension curves is quite moderate, see
fig. 2.7. The solid line shows the force extension curve for A-DNA without DDP. The
dashed and the dotted line show the data with ky; = 40 nN and ky; = 9.4 nN, respec-
tively, while keeping all other parameters unchanged. One observes that changing
by a factor 4 results in deviations of the extension by just a few percent even at ex-
treme forces F = 400 pN. The dash-dotted line shows a force extension trace where
Ks = kK = 1.6nN, and Ig = [y = 0.59 nm are used, which are the typical experi-
mental values for two parallel ssDNA strands [30]. With this choice of parameters
the force cannot discriminate between the S- and M-state anymore — the two states are
degenerate. Therefore we have to set the chemical potentials equal, fit them again and
obtain g = gy = 1.6-1072° J. Consequently, the shoulder indicating a denaturation
transition does not appear in the force extension curve in contrast to the other curves
shown.

2.4.2. Non-vanishing loop entropy, ¢ # 0

We now turn to non-zero loop exponents ¢ # 0 and in specific try to estimate ¢ from
the experimental stretching data. The partition function Z;, in eq. (2.9) exhibits
two types of singularities. First, simple poles at z = z,;, which are the zeros of the
denominator of eq. (2.9) and which are determined as the roots of the equation

bs + bez + bz
bgz + bgzz

=Lis(z/2) . (2.26)
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Figure 2.7.: The influence of the stretch modulus on force extension curves is quite moderate.
The solid line shows the force extension curve of A-DNA without DDP The dashed and the
dotted line show data with xy; = 40 nN and «y; = 9.4 nN, respectively, while keeping all other
parameters unchanged. The dash-dotted line shows a force extension trace where kg = Ky, =
1.6nN and lg = [y = 0.59 nm are used, which are the typical experimental values for two
parallel ssDNA [30]. With this choice of parameters the force cannot discriminate between the
S- and M-state anymore and the shoulder characterizing the SM-transition is not present.

Second, a branch point that occurs at
2 =gz, =ePtu (2.27)

The singularity with the smallest modulus is the dominant one [27, 78], and we define
the critical force F. as the force where both equations, eq. (2.26) and (2.27), hold
simultaneously. For ¢ < 1 the dominant singularity is always given by the pole z,
and thus no phase transition is possible. For 1 < ¢ < 2 a continuous phase transition
occurs. By expanding eq. (2.26) around F, one can show that all derivatives of the
free energy up to order n are continuous, where n € N is defined as the largest integer
with n < (¢ — 1)7! [31]. For instance, ¢ = 3/2 leads to a kink in the force extension
curve. For & = 1.2, this leads to a kink in x”/(F). If ¢ > 2, the transition becomes
first order and the force extension curve exhibits a discontinuity at F = F... In fig. 2.8a
we plot force extension curves for different values of the loop exponent ¢ with all
other parameters fixed at the values fitted for untreated DNA. It is seen that finite
¢ leads to changes of the force extension curves only at rather elevated forces. In
order to see whether a finite ¢ improves the comparison with the experiment and
whether it is possible to extract the value of ¢ from the data, we in fig. 2.8b compare
the untreated DNA data with a few different model calculations for which we keep
the parameters g, gg, 31(\)/1> Vis, Vau fixed at the values used for the fit with ¢ = 0 in
fig. 2.3. Allowing for finite ¢ but fixing a zero domain wall energy between S- and
M-regions, Vg, = 0, leads to an optimal exponent ¢ = 0.6 and slightly improves the fit
to the data which show the onset of a plateau at a force of about 100 pN. The same
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Figure 2.8.: Various force-extension curves of the three-state model with fit parameters for
A-DNA without DDP. (a) Lower panel: Force extension curves for different values of the loop
exponent ¢, showing no phase transition (¢ < 1), a continuous (1 < ¢ < 2), or a first order
phase transition (¢ > 2). The critical forces are denoted by open circles. The inset is a magnifi-
cation of the region around the transition. Upper panel: Fraction of bases in the three states for
¢ = 3/2. The critical transition, above which all bases are in the molten M-state, is discerned
as a kink in the curves. (b) Comparison of experimental data (circles) and theory for ¢ # O.
The curve for ¢ = 0 and Vg, = 0, already shown in fig. 2.3, is obtained by fitting [g, gg, gl‘\),[ to
the experimental data, the values of which are kept fixed for all curves shown. The curve for
Vou = 0 and ¢ = 0.6 results by fitting ¢ and slightly improves the fit quality. The curve ¢ =0
and Vg = 1.1-1072! J is obtained by fitting V). The curve for Vg, = 1.1-1072! Jand ¢ = 0.3
is obtained by fitting ¢ and keeping Vg, fixed. The inset shows the first derivative of x(F) and
illustrates that increasing ¢ leads to a growing asymmetry around the transition region.
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2. Three-state model for the over-stretching transition of DNA
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effect, however, can be produced by fixing ¢ = 0 and allowing for a finite Vg);, which
yields the optimal value of Vg = 1.1-1072! J. Finally, fixing Vg = 1.1-1072! J and
optimizing ¢ yields in this case ¢ = 0.3 and perfect agreement with the experimental
data. However, the significance of this improvement is not high, as the experimental
data are quite noisy and possibly plagued by kinetic effects. What the various curves
illustrate quite clearly, however, is that a non-zero exponent ¢ leads to modifications
of the stretching curves that are similar to the effects of a non-vanishing domain wall
energy Vgy. Although Vg, should be considerably smaller than Vg or Vi, a finite
value of Vg = 1.1-1072! J as found in the fit is reasonable and cannot be ruled
out on general grounds. The maximal value of ¢ is obtained for vanishing Vg and
amounts to about ¢ = 0.6. A value of ¢ = 2.1, which would be expected based on
the entropy of internal DNA loops [31], on the other hand does not seem compatible
with the experimental data, as follows from fig. 2.8a. This might have to do with the
presence of nicks. Nicks in the DNA drastically change the topology of loops and result
in a reduced loop exponent which is ¢ = 0 for an ideal polymer and 0.092 for a self
avoiding polymer [31]. Therefore, the low value of ¢ we extract from experimental
data might be a signature of nicked DNA. Additional effects such as salt or co-solute
binding to loops are also important. Therefore ¢ can be viewed as a heuristic parameter
accounting for such non-universal effects as well. We note in passing that ¢ only
slightly affects the BS-transition, as seen in fig. 2.8a.

2.5. Finite temperature effects

The temperature dependence of all parameters is chosen such that the force extension
curves at T = 20 °C that were discussed up to now remain unchanged. The persistence
lengths are modeled as £,(T) = &;-(T/293 K)~!. The S-state free energy is split into
enthalpic and entropic parts as gg(T) = 14(hg — Tsg) where we use hg = 7.14-10720 J
and sg = 1.88-10722 J/K from Clausen-Schaumann et al. [46]. The correction factor
Tg = 0.98 accounts for slight differences in the experimental setups and is determined
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such that gg(T = 20 °C) equals the previously fitted value. The molten state energy
gl(\)/[(T) = (hy— Tsyy) is also chosen such that gl?,[(T = 20 °C) agrees with the previous fit
value and that the resulting denaturing temperature in the absence of force agrees with
experimental data. Assuming a melting temperature of T. = 348 K for A-DNA [85], we
obtain g (T)=1.5-10"1J—T-4.2.1072* J/K for ¢ = 0 and g9 (T) = 1.6-1071? J -
T-4.6-10722J/K for ¢ = 3/2. In fig. 2.9 we plot a few representative stretching
curves for different temperatures. It is seen that increasing temperature lowers the
BS-plateau and makes this transition less cooperative. Differences between ¢ = 0 and
¢ = 3/2 are only observed at elevated forces, where for ¢ = 3/2 one encounters a
singularity characterized by a kink in the extension curves.

For ¢ > 1 the critical force F, is defined as the force where the pole and the branch
point coincide and eqgs. (2.26) and (2.27) are simultaneously satisfied. The phase
boundary in the force-temperature plane is thus defined by

b5 + b6Zb + b7Zt2)

bgzb + bgzg

=0 (2.28)

where b; and z;, depend on T and F and {; = Li;(1) is the Riemann zeta function. The
phase boundary F.(T) for ¢ = 3/2 is shown in fig. 2.10 and agrees qualitatively with
the experimental data of ref. [41]. For exponents ¢ < 1 no true phase transition exists.
We therefore define crossover forces as the force at which half of the segments are in
the molten state or in the B-state, i.e. Nyy/N = 1/2 or Ng/N = 1/2. In fig. 2.10 we
show these lines for both ¢ = 0 and ¢ = 3/2. Note that the parameters for the ¢ = 0
case are adjusted so that Nj;/N = 1/2 at T = 348 K and F = 0. The broken lines on
which Ny/N = 1/2 for ¢ = 0 and ¢ = 3/2 are virtually the same, showing again that
loop entropy is irrelevant for the BS-transition. The S-state is populated in the area
between the N /N = 1/2 and Ny;/N = 1/2 lines, which for T > 330 K almost coalesce,
meaning that at elevated temperatures the S-state is largely irrelevant. Force-induced
re-entrance at constant temperature is found in agreement with previous two-state
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Figure 2.11.: Fraction of segments in the B-state, N3/N, as a function of temperature for
different loop exponents ¢ = 0, 1.5, 2.1 and for finite BS interfacial energy Vg = Vgy =
1.2-10720J (bold lines) and for Vyg = Vi), = O (thin lines). Circles indicate the positions of
the phase transition. For all curves parameters for A-DNA without DDP are used, gl?/[(T) =
1.5-107°J—-T-4.2-107*J/K for ¢ = 0 and g (T) = 1.6-107"J — T-4.6-107>* J/K for
¢>0.

models [58, 64]. Re-entrance at constant force as found for a Gaussian model [58] is
not reproduced, in agreement with results for a non-extensible chain [64].

As we have shown so far, a non-zero loop exponent ¢ only slightly improves the
fit of the experimental stretching data and the optimal value found is less than unity.
This at first sight seems at conflict with recent theoretical work that argued that a loop
exponent larger than ¢ = 2 is needed in order to produce denaturation curves (at zero
force) that resemble experimental curves in terms of the steepness or cooperativity of
the transition [31]. To look into this issue, we plot in fig. 2.11 the fraction of native
base pairs, N3 /N as a function of temperature for zero force and different parameters.
As soon as the domain-wall energies Vg and Vg, are finite, the transition is quite
abrupt, even for vanishing exponent ¢. Therefore even loop exponents ¢ < 1 yield
melting curves which are consistent with experimental data, where melting occurs
over a range of the order of 10 K [85, 86].

2.6. Conclusions

The fact that the domain-wall energy due to the disruption of base pair stacking and
the loop entropy embodied in the exponent ¢, give rise to similar trends and sharpen
the melting transition has been realized and discussed before [36, 86]. The present
three-state model and the simultaneous description of experimental data, where the
denaturation is induced by application of force and by temperature allows to disen-
tangle the influence of these two important effects. By the application of a force, the
de-stacking and the loop formation possibly occur subsequently, allowing to fit both
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parameters separately. As our main finding, we see that for a finite domain-wall energy
Ves = Vgm > O, the additional influence of the loop exponent on the force stretching
curves and the denaturation curves is small. In fact, the optimal value for ¢ turns out to
be of the order of ¢ ~ 0.3-0.6, even if we choose a vanishing value Vgy; = 0. This esti-
mate for ¢ is smaller than previous estimates. One reason for this might be nicks in the
DNA. So it would be highly desirable to redo stretching experiments with un-nicked
DNA with which the value of ¢ under tension could be determined. In the next chapter
we will show that — if the sequence allows — secondary structure formation in molten
loops significantly alter the denaturation transition and a pronounced sequence depen-
dence should be observed. In our approach we allow for an intermediate S-state, but
do not enforce its existence — it rather emerges as a result of the values of the fitting
parameters. The second transition at high forces of about F ~ 200 pN which is seen
in the experimental data used in this work, inevitably leads via the fitting within our
three-state model to this intermediate S-DNA state. But we stress that the occurrence
of such an intermediate S-state depends on the fine-tuning of all model parameters
involved, which suggests that in experiments the S-state stability also sensitively de-
pends on the precise conditions. One drawback of the current model is that sequence
effects are not taken into account. This means that our fitted parameters have to be
interpreted as coarse-grained quantities, which average over sequence disorder. Cal-
culations with explicit sequences have been done for short DNA strands but should in
the future be doable for longer DNA as well.
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CHAPTER 3

SECONDARY STRUCTURES OF HOMOPOLYMERIC
SINGLE-STRANDED NUCLEIC ACIDS

3.1. Introduction

3.1.1. Motivation

In the previous chapter only double stranded nucleic acids have been considered and
base pairing within the same strand was not allowed. However, base pairing within sin-
gle stranded nucleic acids is known to be vital for their structure and functioning [17].
Therefore, we will now turn to single stranded nucleic acids and in particular to RNA.
Theory on folding of single stranded nucleic acids vastly relies on the idea of hierar-
chical folding proposed by Tinoco et al. [29, 87], who claim that given a sequence
(the primary structure), the secondary structure (the list of all base pairs) forms inde-
pendently of the tertiary structure (the overall three-dimensional arrangement of all
atoms). This is in contrast to the protein folding problem, which in general does not
feature these well separated energy scales between the different structural levels and
hence is more involved [88]. The idea of hierarchical folding therefore suggests to
solely focus on the secondary structure, and to neglect the tertiary structure. This con-
stitutes a major simplification and enables to calculate partition functions exactly and
to predict the secondary structure formed by a given RNA sequence. In 1968 de Gennes
[89] was the first to calculate the partition function of an ideal homopolymeric RNA
chain by using a propagator formalism and solving the partition function by means of
a singularity analysis of the generating functions. Due to his real space approach for
an ideal polymer, the loop exponent was ¢ = 3/2. Like in the previous chapter, the
loop exponent c characterizes the logarithmic entropy contribution oc Inm™° of a loop
of length m. Ten years later, Waterman and Smith [90] devised a recursion relation
appropriate for the partition function of folded RNA, which now lies at the heart of
most RNA secondary structure and free energy prediction algorithms currently used.
Subsequently, several theoretical models were developed to study RNA and DNA: those
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3. Secondary structures of homopolymeric single-stranded nucleic acids

were focused on melting [1, 91, 92], stretching [3, 50, 58, 93-95], unzipping [96],
translocation [97], salt influence [4, 57, 98, 99], pseudoknots [100, 101], and the
influence of the loop exponent [1, 3, 86, 102]. In this context, an interesting question
in connection with the melting of double stranded DNA (dsDNA) arises: Do secondary
structure elements form in the single strands inside denatured dsDNA loops or not?
Formation of such secondary structures in dsDNA loops would mean that inter-strand
base pairing between the two strands — being responsible for the assembly of the dou-
ble helix — is in competition with intra-strand pairing, where bases of the same strand
interact. This question is not only important for the thermal melting of dsDNA but
also for DNA transcription, DNA replication and the force-induced overstretching tran-
sition of DNA [15, 45]. Theory for single strand nucleic acids is accompanied and
inspired by the advance of single molecule techniques [30, 45, 103-106], which allow
to study single chains of nucleic acids under tension and varying solution conditions
and thereby yield unprecedented insights into the behavior and folding properties of
these essential molecules.

3.1.2. Outline

In this chapter, the influence of the loop exponent ¢ on the behavior of RNA subject to
varying temperature and external force is studied. Since all results obtained for RNA
are also valid for DNA on our relative primitive level of modeling, we will mostly ex-
plicitly refer to RNA in this chapter but note that in principle all our results carry over
to single stranded DNA molecules, as well. We neglect sequence effects and consider
a long homopolymeric, single stranded RNA molecule. A closed form expression for
the partition function is derived, which allows to study the thermodynamic behavior
in detail. The phase diagram in the force-temperature plane is obtained. We find that
the existence of a temperature induced phase transition crucially depends on the value
of the loop exponent c: at vanishing force a melting transition is possible only for the
limited range of loop exponents 2 < ¢ < 2.479. ¢ ~ 2.1 is a typical exponent that char-
acterizes the entropy of loops usually encountered in RNA structures — hairpin loops,
internal loops, multi-loops with three or more emerging helices. That means that RNA
molecules can experience a transition between a folded and an unfolded state. This
is relevant for structure formation in DNA or RNA single strands and can in principle
be tested in double laser trap force clamp experiments [107]. Our findings also have
implications for the denaturation of double helical nucleotides (e.g. dsDNA). Since
intra-strand and inter-strand base pairing competes, secondary structure formation of
the single strands inside denatured regions of the duplex has to be taken into account
in a complete theory of dsDNA melting. In the case where intra- and inter-strand base
pairing occurs with the same weight, the classical Poland-Scheraga mechanism for the
melting of a DNA duplex is augmented by our transition, as the Poland-Scheraga the-
ory is only valid in the case where no intra-strand base pairing is possible; in chapter 2
the case where no intra-strand pairing is possible has been considered. Some simple
arguments in the case where intra-strand pairing is possible suggest that the loop ex-
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Figure 3.1.: Schematic representation of the secondary structure of an RNA molecule. Dots
represent one base, i.e. cytosine, guanine, adenine, or uracil. Solid lines denote the sugar-
phosphate backbone bonds, broken lines base pairs, and thick gray lines the non-nested back-
bone bonds, which are counted by the variable M, here M = 11. The thick arrows to either
side illustrate the force F applied to the 5’- and 3’-end.

ponent governing the entropy of inter-strand loops is renormalized due to intra-strand
secondary structure formation and takes on an effective universal value that only de-
pends on whether the inter-strand loops are symmetric (consisting of two strands of
the same length) or asymmetric. The resulting duplex melting transition is universal
and turns out to be strongly discontinuous in the first, symmetric case, and on the
border between continuous and discontinuous in the second, asymmetric case. In the
case when both intra- and inter-strand base pairing is possible, but inter-strand base
pairs are slightly stronger than intra-strand base pairs, the situation is more complex.
All these effects can be studied experimentally. We make explicit suggestions for ds-
DNA sequences, with which the formation of intra-strand secondary structures inside
inter-strand loops can be selectively inhibited or favored.

3.2. Model for homopolymeric RNA

Single stranded RNA is modeled as a one-dimensional chain. RNA folding can be
separated into three steps, which occur subsequently and do not influence each other
to a fairly good approximation. This idea of the RNA folding process is known as
hierarchical folding [29, 87]. The primary structure of RNA is the mere sequence of
the four bases cytosine (C), guanine (G), adenine (A), and uracil (U). Due to base
pairing, i.e. either the specific interaction of C with G or the interaction of A with
U, the secondary structure is formed leading to helices and loops as the structural
building blocks of an RNA secondary structure, see fig. 3.1. Only after the secondary
structure has formed tertiary contacts arise. Pseudoknots [108, 109], helix stacking
— the interaction of two helices emerging from the same loop — and base triples [110]
as well as the overall three-dimensional arrangement of the molecule are considered
as parts of the tertiary structure. The main assumption of hierarchical folding is that
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3. Secondary structures of homopolymeric single-stranded nucleic acids

Figure 3.2.: The arc diagram is a representation of the secondary structure depicted in fig. 3.1.
A dot represents one base. Solid lines denote the backbone bonds and thick gray lines the
non-nested backbone bonds. Dashed arcs denote hydrogen bonds between two bases. A pseu-
doknot (dotted arc) is recognized here as crossing arcs. If no pseudoknots are present the
structure is hierarchical, meaning that substructures are either nested or juxtaposed.

the tertiary structure formation operates only on already existing secondary structure
elements [29, 87]. Although cases are known where this approximation breaks down,
it generally constitutes a valid starting point [111].

On an abstract level, the secondary structure is given by the list of all base pairs
present in the molecule with the constraint that a base can be part of at most one pair.
Since pseudoknots are not allowed, we have for any two base pairs (i,j) and (k,1)
withi<j,k<l,andi <keitheri <k<l<jori<j<k<I[101]. This imposes a
hierarchical order on the base pairs meaning that two base pairs are either nested and
part of the same substructure or are independent and part of different substructures,
fig. 3.2. Base pairs are stabilized by two different interactions. First, by hydrogen
bonds between complementary bases and, second, by the stacking interaction between
neighboring base pairs, which are accounted for by the sequence independent — we

are considering homopolymeric RNA — parameters g}}llb and g}sltaCk, respectively. A helix

with h base pairs consequently has the free energy h(g}}llb + g;taCk) - gfltad‘ + g}il, where

g}i1 is a helix initiation free energy. Therefore, the hydrogen bonding and the stacking

interaction can be combined to yield the binding energy per base pair € = —(glilb +
gﬁtad‘), which we define to be positive. & can be measured experimentally by duplex

hybridization [112] and contains the binding free energies as well as the extensive
part of configurational polymer entropy. Here, we describe the binding free energy by
a single, sequence independent parameter [1]

w = exp(e/(kpT)), (3.1

where w is the statistical weight of a bound base pair, T is the absolute temperature,
and kg the Boltzmann constant. Further, the stacking interaction appears as an addi-
tional contribution to the helix initiation free energy and we define g}‘;“it = gli1 — glsltad‘.
This is a model for homopolymeric RNA, which can be realized experimentally with
synthetic alternating sequences [AU]y /o or [GC]y/,. It has also been argued this ho-
mopolymeric model describes random RNA above the glass transition [113].

The non-extensive contribution of the free energy of a loop is given by

G = —kgTlnm™* (3.2)
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3.3. Partition functions

Figure 3.3.: Ilustration of the recursion scheme for the canonical partition function in
egs. (3.3) and (4.11). Boxes denote partition functions of substrands (the range is given by
the subindices). The numbers inside a box give the number of non-nested backbone bonds. To
calculate the partition function of a strand ranging from i through j + 1 consider the partition
function of a strand ranging from i through j and add base number j + 1, which may (right
term in first row) or may not (left term in first row) establish a base pair with base number k.
In the second row Q0 11 is calculated by closing structures with m non-nested bonds with a
hydrogen bond (dashed line). For homopolymeric RNA, the sequence dependence drops out
and only the lengths of the substrands, N =j—i,n=k—1—i, N —n=j+1—k, need to be
considered, see eq. (3.3).

and describes the entropy difference between an unconstrained polymer and a looped
polymer. The loop exponent ¢ is ¢jgeq = 3/2 for an ideal polymer and cgpyy = dv =~
1.76 for an isolated self avoiding loop with v ~ 0.588 in d = 3 dimensions [74],
see also appendix A.3. However, helices, which emerge from the loop, increase c
even further. In the asymptotic limit of long helical sections renormalization group
predicts ¢; = dv + 0; — Lo for a loop with [ emerging helices [75, 102], where 0; =
el(2—1)/16+€21(1—2)(81 —21)/512+ O(e®) in an € = 4 — d expansion. One obtains
¢; = 2.06 for terminal, ¢, = 2.14 for internal loops and ¢, = 2.16 for a loop with four
emerging helices. For larger [ the e expansion prediction for ¢; becomes unreliable.
One sees that the variation of ¢ over different loop topologies that appear in the native
structures of RNA is quite small, which justifies our usage of the same exponent ¢ for
loops of all topologies that occur in a given RNA secondary structure in the following.

3.3. Partition functions

3.3.1. Canonical partition function

As we neglect pseudoknots, only hierarchical structures are present, which allows to
write down a recursion relation for the partition function. Further, as we consider
homopolymers and omit sequence effects by using a constant base pairing weight w,

the system is translationally invariant. Hence, the canonical partition function QMJ of
a strand ranging from base i at the 5-end through j at the 3’-end depends only on
the total number of segments N = j — i and on the number of non-nested backbone
bonds M. A non-nested bond is defined as a backbone bond, which is neither part of
a helix nor part of a loop. It is outside all secondary structure elements and therefore
contributes to the extension, which couples to an external stretching force and which
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3. Secondary structures of homopolymeric single-stranded nucleic acids

can be observed for example in force spectroscopy experiments [1, 95, 97], see figs. 3.1
and 3.2. The recursion relations for Q% can be written as

M+1
Qi1 ——Vf(vf(M ) { ZQ Qe n} (3.3a)

and

(3.3b)

Q0 Ni 2Qu_,_yexp(=Grte(m — 2)/(ksT))
Nomo & v(m) (m+2)

and is illustrated in fig. 3.3. The Heaviside step function is @(m) = 0 if m < 0 and
©(m) =1 if m > 0. Eq. (3.3a) describes the elongation of an RNA structure by either
adding an unpaired base (first term) or by adding an arbitrary substrand Q?\,_n that is
terminated by a helix. Eq. (3.3b) constructs Q?V—n by closing structures with m non-
nested bonds, summed up in Qy_,_,, by a base pair. v¢(M) denotes the number of
configurations of a free chain with M links and can be completely eliminated from the
recursion relation by introducing the rescaled partition function Q% = Q% Jve(M). We
set glmt = 0 for computational simplicity and combine eqgs. (3.3a) and (3.3b), which
leads to the final recursion relation

TOTRTIIN S
QMH =M +w —p N2 (3.4)
N+1 N 7] (m+2)

with the boundary conditions Qj =1, Q’R’,I =0forM >N,N <0, or M <0. The ther-
modynamic limit of an infinitely long RNA chain is described by the canonical Gibbs
ensemble, which is characterized by a fixed number of segments N, but a fluctuating
number of non-nested backbone bonds M. Therefore, we introduce the unrestricted
partition function

[e8)

Zy(s)= > My, (3.5)

M=0

which contains the influence of an external force F via the statistical weight s of a non-
nested backbone bond. For RNA with no force applied to the ends, one has s = 1. We
model the RNA backbone elasticity by the freely jointed chain (FJC) model, where the
weight of a non-nested backbone bond subject to an external force is given by [114]

sinh(BFb)
_ d de —BFbgcos® _ “ "~ Tss/ 3.6
T an ¢J € BFby (3.6)

here, we introduced the inverse thermal energy 8 = (kg T)~* and the Kuhn length b,,.
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Figure 3.4.: Structure of the grand canonical partition function Z(z,s) according to egs. (3.7)
and (3.11). The grand canonical partition function of the Gibbs ensemble is a sum over all
numbers of non-nested backbone bonds (thick gray lines) with statistical weight sz. Between
two adjacent backbone bonds can be either a single nucleotide (dot), with statistical weight 1,
or a structure with weight Z,, whose first and last base are paired. The white squares serve as
wildcards for either possibility and have the statistical weight x(w,z). Thin black lines depict
backbone bonds that are part of a helix or loop and have statistical weight z.

3.3.2. Grand canonical partition function

For studying the phase transition and the critical behavior, it is useful to introduce the
generating function or grand canonical partition function

Z(z,s)= i 2N Zy(s) = i i stMQ]I‘V/[ , (3.7)
N=0 N=0M=0

where z = exp(f3 u) is the fugacity of a segment. Performing the weighted double sum
Yove 1 2om—_12"sM on both sides of eq. (3.4) yields

(s2) ' Z=(s2)""+ Z+ ((s2) '+ 2)(x — 1), (3.8)
which can be solved and one obtains the generating function

Z __Kwsz) 3.9
(z,5) = 1—szx(w,2) (3.9

Here we have defined x(w,z) = 1+ Z,(w, 2) as the grand canonical partition function
of RNA structures with zero non-nested backbone bonds, i. e. structures which consist
of just one nucleotide or structures where the terminal bases are paired,

N QM

_ N
Kw,2) =1+ Z,(w,2)=1+wz NZ“V[Z Z MM+2) < (3.10)
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Eq. (3.9) has an instructive interpretation, which becomes clear by expanding the
fraction in a geometric series

Z(z,s)= Z sM MM+ — Z(l + 2,)- (sz(1+ Zb))M , (3.11)
M=0 M=0

where sz is the statistical weight for a backbone segment which is not nested. Between
two adjacent segments we have the possibility to put either a single nucleotide (with
statistical weight 1) or a structure whose first and last bases are paired (with statistical
weight Z;). See fig. 3.4 for an illustration.

In order to determine the function x(w, z), we compare the coefficients of the power
series in s in egs. (3.7) and (3.11) and obtain zMxM*! = 3'° = 2NQM. The lower
summation index is due to exchanging the summations in eq. (3.7) bearing in mind
that Q% = 0 for M > N. This identity can be inserted into eq. (3.10) and yields the
equation

w
k(w,2)

which determines x(w,z). Li.(zx) = 2310:1 z™k™/m€, for zx < 1, is the polyloga-
rithm [76], see appendix A.4. We introduce

k(w,z)—1= Li.(zx(w,2)), (3.12)

h(k,2) = %LiC(ZK) (3.13)

and rewrite eq. (3.12) as k — 1 = h(x,z). Eq. (3.12) has at most two positive and
real solutions as can be seen from fig. 3.5, where we plot the two sides of eq. (3.12).
k(w,z) is a continuous, monotonically increasing function of z with x(w,0) = 1 as
follows from eq. (3.10). Therefore, only the smallest positive root of eq. (3.12) yields
the correct k(w,2). For z — 0 there is always a positive and real solution for x(w, 2).
Increasing gz increases x(w, z) until eventually, at 2 = z;, the real solution for x(w, z)
vanishes. Thus, k(w,z) has a branch point at z = z;,. Depending on the value of the
loop exponent c, the polylogarithm Li.(zx) and h(k,z) (a) are divergent for ¢ < 1,
(b) are finite, but feature a diverging slope for 1 < ¢ < 2, or (c) have a finite value and
derivative for 2 < ¢ at zk = 1, see fig. 3.5. This will become important later, when the
existence of phase transitions is studied.

3.3.3. Back-transform to canonical ensemble

Since the thermodynamic limit N — oo is defined in the canonical Gibbs ensemble,
we now demonstrate how to obtain Zy(s), eq. (3.5), from Z(z,s), eq. (3.9). For large
systems, N > 1, the canonical partition function is given by the dominant singular-
ity z4(s) of Z(z,s), which is defined as the singularity which is nearest to the origin
in the complex z-plane, see eq. (2.16) and appendix A.5 [3, 78, 79]. In particular if
Z(z,5) ~ K(s)(24(s) — )~ “ with K(s) independent of z, we obtain

Zn(s) ~ 27N (SIN K (s) 27%(s)/T(a) , (3.14)
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(b)

(0

Figure 3.5.: Graphical solution of
the equations, which determine
x(w,z2), 2, 2, The functions x —
1 (dashed line) and h(k,z) (solid
lines), eq. (3.13), are plotted for
w = 10 and different values of
the fugacity z and the loop expo-
nent ¢, (a) ¢ = 0.9 (b) ¢ = 3/2
(¢) ¢ = 2.1. Points at which both
curves intersect are solutions of
eq. (3.12) and determine k(w, 2).
In case of two positive solutions
the smaller yields the correct so-
lution as k(w,z) is to be a con-
tinuous, monotonically increas-
ing function of z with x(w,0) =
1, eq. (3.10). Points at which
both curves are adjacent to each
other (open circles) determine
the branch point z,. Points at
which zx = 1 (dots) determine
the position of the pole z, in the
absence of force, s = 1.
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3. Secondary structures of homopolymeric single-stranded nucleic acids

where I'(a) is the gamma function [115]. Therefore, the Gibbs free energy reads to
leading order

G/(kgT)=—InZy ~Nlnz4(s)+ (1 —a)InN . (3.15)

In fact, Z(z,s) features two relevant singularities. First, the branch point z,(w)
of k(w,z), which is independent of s, and second a simple pole z,(w,s), where the
denominator of Z(z,s) vanishes, see eq. (3.9). Depending on which singularity has the
smallest modulus, the molecule can be in different phases. In the following sections it
will turn out that the low temperature, compact or folded phase is associated with zy,
whereas the high temperature, extended or unfolded phase is characterized by z,.

Let us consider the branch point first. It can be seen from fig. 3.5, that for z < gz,
at least one real solution of eq. (3.12) exists, where the smaller solution determines
k(w,2). Right at z = z;, the two solutions merge and the slope of h at the tangent point
is h'(x,2,) = 0h(k,2,)/dx = 1. This yields the equation for the position of the branch
point singularity z,(w), which is a function of w only,

k(w,2p)? = wLi,_; (z,k(W, 2,)) — wLi (z,k (W, 2p)) . (3.16)

The behavior of k(w, z) in the vicinity of the branch point can be obtained by expand-
ing eq. (3.12) for 2 — 2, and z,x(w,2) < 1

2y — 2

/
k(w,2) ~ Ky — ( )1 2Kb(l — szpkp)? (3.17)

Zp

where we used the short notation «y, = x(w, 2;,) and defined

2wli._(zpx 1/2 K
- ( c—1(2pKp) ) b (3.18)

wLic_y(2pkp,) — WLic_1(2pKp,) — 2K7 (1 —szpkp)*

Due to the exponent 1/2 in the above equation, the function x(w,g) exhibits a first
order branch point at z = 2z, and the grand canonical partition function, eq. (3.9),
scales as

Kp 2y —2 1/2
Z(z,5) ~ . ( ) K, . (3.19)
1 — SZpKp Zh

Together with eq. (3.14), we obtain the following scaling for the canonical partition
function

Zn(s) ~ 2z, NN 732K, VAT (3.20)

which leads to a logarithmic N-contribution with universal prefactor 3/2 to the free
energy G = —kg T In Zy, in accord with the findings of de Gennes [89]. It will turn out
that eq. (3.20) describes the low temperature or folded phase of the system.
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3.4. Thermodynamics of homopolymeric RNA

Now let us consider the pole singularity z,, of the grand canonical partition function.
2z,(w,s) is a function of w and s and is given by the zero of the denominator of Z(z,s)
in eq. (3.9),

szpk(w,zp) =1. (3.21)

The position of the pole can be evaluated in a closed form expression by plugging
eq. (3.21) into eq. (3.12) and solving the resulting quadratic equation for z. One
obtains

2 : -1
z,(w,s) = N (1 +4/14+ 4WL1C(1/S)) s (3.22a)
K(w,2,) = % (1 +4/1 +4wLic(1/s)) . (3.22b)

The behavior of x(w,z) in the vicinity of the pole can be obtained by expanding

eq. (3.12) for z — 2, z,k(w,2,) =1/s <1, and ¢ > 2

2, —2% wLi._1(1/s)

kK(w,2) ~K, — K s 3.23
(w,2) b 7P z, Ky(2x,—1) ( )
where we used the short notation k, = k(w, z,) and introduced
2K§ —Kp —wLi._1(1/s)
K, = . (3.24)
2k, —1
Therefore, the grand canonical partition function scales as
Zp, — 2\ -1
Z(z,5) ~ ( ) K, (3.25)

Zp
and together with eq. (3.14) we obtain the scaling of the canonical partition function

Zy(s) ~ z;NK

b (3.26)

Later we will see, that eq. (3.26) describes the denatured high temperature phase of
the system. In contrast to the branch point phase, eq. (3.20), no logarithmic contribu-
tion to the free energy is present.

3.4. Thermodynamics of homopolymeric RNA

The two singularities z,(w) and z,(w, s) are smooth functions of external variables such
as temperature T or force F, which enter via the weight of a base pair w, eq. (3.1), and
the weight of a non-nested backbone bond s, eq. (3.6). As the system is described by
the singularity, which is closest to the origin, a phase transition associated with a true
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3. Secondary structures of homopolymeric single-stranded nucleic acids

singularity in the free energy, eq. (3.15), is possible if these two singularities cross. For
that purpose let us shortly review the three constitutive equations egs. (3.12),(3.16),
and (3.21). As observed earlier, the smallest positive root of eq. (3.12) yields the
function k(w, z). The simultaneous solution of egs. (3.12) and (3.16) yields the branch
point z,(w), whereas the simultaneous solution of egs. (3.12) and (3.21) yields the
pole zp(w,s), which can be expressed in a closed form, see eq. (3.22).

3.4.1. Critical point and existence of a phase transition

The critical fugacity z. and thus the phase transition is defined as the point where the
branch point and the pole coincide

Zc = zb(Wc) = zp(Wc,sc) ) (327)

which means that all three egs. (3.12),(3.16), and (3.21) have to hold simultaneously,
see fig. 3.6. Assuming that a pair (w,,s,) exists so that eq. (3.27) is true, this can be
evaluated further by plugging egs. (3.22) into eq. (3.16) and we obtain

Lic—l(l/sc) - Lic(]-/sc)
(Lic—l(l/sc) - 2Lic(1/5c))2 .

This constitutes a closed form relation between w, and s, or, by employing egs. (3.1)
and (3.6), the critical temperature T, and force F.. The melting temperature Ty, is
defined as the critical temperature at zero force.

The order of the branch point exactly at T = T,, and zero force, s = 1, is calculated
by expanding eq. (3.12) in powers of z/z.—1 and x(w, 2)/k.— 1 while keeping w = w,
fixed. For vanishing force k. = 1/z. and we obtain

W, = (3.28)

> (3.29)

Ke [Ze.—2\1/(c-1)
k(w,2) ~ Kk, — — ( < )

Kc,T 2

where we used

i) e (3.30)

Ker= (F(l —¢)

Thus, the asymptotic behavior of the generating function at T = T, and zero force is

Z.— 2\ —1/(c-1)
c ) (3.31)

2(2,5) ~ Kz (
C
and we obtain the modified scaling of the canonical partition function right at the
melting point temperature
Zy(s =1) ~ g7 NN@ /(DR /T(1/(c - 1)). (3.32)

We see that the loop statistics are crucial and enter via the loop exponent ¢, which
gives rise to non-universal critical behavior.
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3.4. Thermodynamics of homopolymeric RNA

® Point where zx = 1
O Point with slope 1
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'
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(b) K

Figure 3.6.: Illustration of the graphical solution of egs. (3.12),(3.16), and (3.21) at the phase
transition. The solid line sketches h(k), eq. (3.13), the dashed line the function k — 1. The
open dots denote points where the conditions for the branch point are met: Curves have
common points, eq. (3.12), and curves are tangent to each in these points, eq. (3.16). The
black dots denote points where szx = 1, eq. (3.21). If the black dot lies on the dashed curve
the conditions for a pole are met, egs. (3.12) and (3.21). For a given temperature T and
force F the fugacity z is increased from z = 0 to the value where either egs. (3.12) and (3.16)
hold (open dot on dashed line, folded phase) or egs. (3.12) and (3.21) hold (black dot on
dashed line, unfolded phase). (a) Hlustration of the thermal phase transition at zero force,
s = 1. For low temperatures the branch point is dominant. Upon increasing the temperature,
i.e. decreasing w, the branch point and the pole approach each other until they eventually
coincide at the melting temperature T = T,,, and cause a phase transition. For T > T, there is
no real branch point anymore and the pole is dominant. (b) Illustration of the force induced
phase transition at a temperature T < Ty,. For small forces the branch point is dominant. Upon
increasing the force, i. e. increasing s, the point where zx = 1/s (black dot) moves towards the
branch point. As the branch point is independent of the force, see egs. (3.12) and (3.16), no
observable depends on F as long as F < F,. At F = F, the branch point and the pole coincide
and a phase transition occurs. For F > F, the pole is dominant and the force dependence of
the observables sets in.
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3. Secondary structures of homopolymeric single-stranded nucleic acids

For finite force, s > 1, the branch point is first order and the scaling of the generating
function at the critical point reads

2z, —2\~1/2K
Z(z,5) ~ ( e (3.33)
Z. s
with
weli._»(1/s) —w.Li._1(1/s) — 2K(2: 1/2
¢F = ( : ) > (3.34)
2w Li._;(1/s)
leading to the canonical partition function
Zy(s) ~ 2. NNTVPK g /(s (3.35)

with a scaling independent of the loop exponent c. Note that eq. (3.33) scales as
(z. —2)” Y2 in contrast to eq. (3.19), which leads to the different scaling of Zy(s) in
eq. (3.35) when compared to eq. (3.20). In the rest of this section we compare thermal
and force induced phase transitions and in particular determine the parameter range
in which a phase transition is possible.

Thermal phase transition

First, we consider the thermal phase transition without external force, i.e. fors = 1. In
this case the polylogarithm reduces to the Riemann zeta function, Li.(1) = .. Since
s =1, we find that z;, < 2, as long as k(w, z) has a real, positive branch point. This is
due to the fact that z,x(w,z,) < 1 (see fig. 3.5), z,x(w,z,) = 1, and that zx(w,z) is a
monotonically increasing function of 2, see eq. (3.10).

No thermal phase transition for ¢ < 2 For ¢ < 2 the function x(w, z) always features
a branch point since h’'(k) — oo for k — 1/z. This ensures that for every w a g, is
found, where h(k, 2;,) is tangent to k — 1, see figs. 3.5a and 3.5b. As the branch point
is always dominant, we find the universal scaling

G/(kgT) =Nlnz, +3/2InN (3.36)

for all temperatures and no phase transition is possible. The RNA chain is always in
the folded phase.

No thermal phase transition for ¢ > ¢* ~ 2.479 For ¢ > 2 the function h(x,z) and
its derivative are finite for zxk = 1. A sufficient condition for a branch point to exist is
that the slope of h is greater than 1 for zx = 1, see filled circles in fig. 3.5¢c, and hence

ZW(CC—I - 2Cc) ; 1.
1+ 4144w,

W (k(w,2p),2,) = (3.37)
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3.4. Thermodynamics of homopolymeric RNA

This can be achieved always for large enough w as long as the numerator is positive.
On the other hand, for ¢ > ¢* &~ 2.479, where c* is the root of

{ero1— 20+ =0, (3.38)

no branch point exists since the numerator in eq. (3.37) is negative. That means
that for ¢ > ¢* the pole z,(w,s) is always the dominant singularity of Z(z,s) and the
molecule is always in the unfolded state.

Thermal phase transition for 2 < ¢ < c¢* at w=w, Only for 2 < ¢ < ¢* a thermal
phase transition is possible. For w > w,, see eq. (3.28), the molecule is in the folded
phase governed by the branch point singularity ,, which is determined by egs. (3.12)
and (3.16). Decreasing w, i. e. increasing the temperature, causes the branch point and
the pole to approach each other. At the critical point w,, eq. (3.28), both singularities
coincide and a phase transition occurs. For higher temperatures, w < w,, the RNA is
unfolded and described by the pole z,, eq. (3.22). See fig. 3.6a for an illustration. It
will turn out that the temperature induced phase transition at zero force is very weak
and that, in fact, the order of the phase transition is n, where n is the integer with
(c—=2)'-1<n<(c—2)"1.

Force induced phase transition

For the force induced phase transition the situation is slightly different as the position
of the pole z, depends on the force, which enters via the weight of a non-nested
backbone bond s, eq. (3.22). In contrast, the branch point 2, does not depend on s
and hence is constant, egs. (3.12) and (3.16). Therefore, the branch point z, and the
critical point z, coincide and z; can be determined exactly by the relation z, = z. =
2p(We,5.) = const.

No force induced phase transition if w <w.(s=1) or ¢>c¢" If the molecule is
already in the unfolded phase, which can be due to high temperature, w < w,, or due
to the non-existence of a branch point, ¢ > ¢*, a force induced phase transition is not
possible. In these cases the pole always dominates the system, regardless of the value
of the applied force.

Force induced phase transition if w>w.(s=1) and ¢ <c¢* A system below the
melting temperature, w > w.(s = 1), is in the folded phase at zero force, s = 1.
For small forces, i.e. s < s., the system is described by the branch point singular-
ity 2z, which is independent of s and hence does not depend on the force, egs. (3.12)
and (3.16) and fig. 3.6b. However, as the pole z,(w,s) is a monotonically decreasing
function of s, the branch point and the pole will eventually coincide at s = s. and a
phase transition occurs. The critical force fugacity s. is defined as the root of eq. (3.28)
for fixed w. For s > s, the pole is the dominant singularity and governs the system.
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Note that in contrast to the thermal phase transition, a force induced phase transition
is possible even for ¢ < 2.

3.4.2. Global phase diagrams

Eq. (3.28) determines the phase diagram. In fig. 3.7a we show the phase transition
between the folded and unfolded states of a homopolymeric RNA in the w-s plane
for a few different values of the loop exponent ¢ that correspond to an ideal polymer,
¢ = 3/2, and values between ¢ = 2.1 and ¢ = 2.3 as they are argued to be relevant for
terminal and internal loops of varying topology including the effects of self-avoidance.
Below the transition lines in fig. 3.7a, the chain is in the unfolded (extended) state,
above the line in the folded (compact) state. With growing loop exponent, the extent
of the folded phase shrinks. In fact, w.(s,c) diverges for ¢ — c*, where ¢* ~ 2.479,
cf. eq. (3.38). Thus, for ¢ > c* only the unfolded phase is present, as observed earlier
in the restricted case of zero force, s = 1 [1]. On the other hand, the critical line for
¢ — 2 and s = 1 goes down to zero, w.(s = 1) — 0 for ¢ — 2, which indicates that if
no external force is applied to the molecule, there is only the folded phase for ¢ < 2
and hence no thermal phase transition is possible. However, applying a sufficient force
can drive the molecule into the unfolded state, as derived earlier. Concluding, only
for 2 < ¢ < ¢* a thermal phase transition, denoted by the filled circles in fig. 3.7a, is
possible. A force induced phase transition is possible whenever ¢ < ¢* and w > w,.
For small force and ¢ > 2, eq. (3.28) can be expanded around s = 1 and yields the
universal asymptotic locus of the phase transition

ri2—c)

T2 P (3:39)

we(s) ~we(s =1)+(1—s) >

In fig. 3.7b we show the critical line w (s, ¢) for two different values of s as a func-
tion of the loop exponent c. In the absence of an external pulling force, i.e. for s =1
(solid line), the transition line only occurs in the limited range 2 < ¢ < ¢* ~ 2.479.
It is seen that for loop exponents around the relevant value of ¢ ~ 2.1, the critical
base pairing weight is quite small and of the order of w. ~ 0.1. A base pairing weight
smaller than unity corresponds to a repulsive base pairing free energy that is unfavor-
able. This at first sight paradoxical result, which means that the folded phase forms
even when the extensive part of the base pairing free energy is repulsive, reflects the
fact that the folded state contains a lot of topological entropy because of the different
secondary structures. The dotted line shows the melting transition for a duplex DNA
chain according to the classical two-state Poland-Scheraga theory, which only consid-
ers inter-strand but no intra-strand base pairing, given by the equation [3, 28], see
appendix B.1,

WS =1/(1+2,). (3.40)
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Figure 3.7.: (a) Phase diagram
of homopolymeric RNA in the
w-s plane for different values
of the loop exponent ¢ =
1.5, 2.1, 2.16, 2.3 featuring an
unfolded phase (bottom right)
and a folded phase (top left).
For ¢ = ¢* ~ 2.479, the phase
boundary approaches s = 1 and
the melting point w.(s = 1) di-
verges; therefore only the un-
folded phase exists for ¢ > c*. For
¢ < 2, there is no melting transi-
tion at zero force as w.(s = 1) =
0. Thus if no force is applied,
the system is always in the folded
phase regardless of the temper-
ature. The molecule can be de-
natured, though, by applying an
external force even for ¢ < 2,
as can be seen from the phase
boundary for ¢ = 1.5. The dots
denote the thermal denaturation
transition point w.(s = 1) in the
absence of an external force for
c=2.1,2.16, 2.3. (b) Phase di-
agram in the w-c plane. With
zero force, s = 1 (solid line),
the weight w. drops to zero for
¢ — 2 and diverges as ¢ —
c* & 2.479. For finite force, s >
1 (dotted line), a phase transi-
tion is possible, even for ¢ < 2.
The dotted line denotes the two-
state Poland-Scheraga prediction
for the melting of a nucleotide
duplex in the absence of intra-
strand base pairing, eq. (3.40).
(c) Phase diagram in the F-T
plane for ¢ = 2.3. Below the
phase boundary the folded state
is present, above the unfolded
phase. Re-entrance at constant
force is observed, as reported by
Miiller [116].
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The crossing of the Poland-Scheraga duplex melting line eq. (3.40) and the folding
transition line eq. (3.28) occurs at the threshold loop exponent

=217, (3.41)

This means that for typical loop exponents for RNA loops around ¢ ~ 2.1, the melting
of a nucleotide duplex that can form inter-strand as well as intra-strand base pairs
occurs at a substantially higher temperature since secondary structures arise in the
two single strands of a denatured region of the duplex. The consequences for the
theoretical description of systems, where single stranded nucleic acids occur, including
DNA transcription, denaturation bubbles in dsDNA, untwisting of nucleic acids [35],
and translocation [97] will be briefly discussed in section 3.5. For ¢ > ¢** the Poland-
Scheraga melting occurs at a higher temperature than our unfolding transition, which
at first sight seems surprising. This finding can be rationalized by the fact that in our
present model, even the unfolded state is characterized by pronounced base pairing,
whereas the unfolded state of the Poland-Scheraga model exhibits no base pairing at
all [3].

The phase diagram, eq. (3.28), can also be displayed in the F-T plane by virtue
of egs. (3.1) and (3.6) and is shown in fig. 3.7c. Here, re-entrance at constant force
becomes visible, in line with previous predictions by Miiller [116]. Expanding eq. (3.6)
we obtain s(F) ~ 1+ (b F/(kgT))?/6, for F — 0. Eq. (3.39) yields the scaling of the
critical force close to the melting temperature as

F.oc (T — T)VZ9 (3.42)

which depends on the loop exponent ¢ and deviates from the predictions by Miiller
[116], who found a universal exponent 1/2. We attribute this deviation to the use of
slightly different models as Miiller used a non-zero cooperativity parameter.

3.4.3. Thermodynamic quantities and critical exponents

We now consider the thermodynamic and critical behavior of various quantities. An
arbitrary extensive quantity Y with the conjugated field f is obtained from the grand
potential & = —kp T In Z via differentiation with respect to f and the chemical poten-
tial u held constant

v = od
of u
To evaluate the behavior of Y in the thermodynamic limit, N — oo, one sets u — uyq,
where g is defined as the chemical potential, at which N(u) = —9®/d u diverges, i. e.
N(u) — oo for u — uy. Another route to obtain Y is to conduct the calculation in the
canonical ensemble, i.e. N = const, and to use the dominating singularity [3], where
2g Jdlnzy
= — =kyTN ,
of P of

(3.43)

Y (3.44)
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Figure 3.8.: Fraction of bound bases as a function of temperature for w = exp(e/(kzT)) and
various ¢ = 0.8, 1.5, 2.1, 2.3 at zero force, s = 1. A genuine phase transition is observed only
for ¢ = 2.3 (indicated by the dot) since for ¢ S 2.195 the critical weight of a hydrogen bond
is w, < 1, which can only be obtained for ¢ < 0 amounting to a repulsive interaction. For
¢ < 2 no thermal phase transition can be observed at all. The inset shows the third derivative
0" =d30/dT? for ¢ = 2.3, which reveals the phase transition.

see eqg. (3.15). In fact, for N — oo egs. (3.43) and (3.44) are equivalent and g4 is
associated with the dominating singularity of Z(z,s), namely z4 = exp(fuq), which
will be shown now. The Gibbs free energy G and the grand potential & are interrelated
via a Legendre transform

GIN)=®+ u(N)N . (3.45)
Therefore,
ol o (G- o
Y =kgTN nzg 09| _9(¢G-2) _ ou
of of |n o2f  |ne f |e
0% Odp| 09 (3.46)
ou 7 of |l Of " ’ ’

where the two final expressions are evaluated at yu = u4. While performing derivatives
of the dominant singularity and of the function x(w,2) is straightforward for z, and
Kp, see eq. (3.22), one has to employ implicit differentiation of eq. (3.16) to obtain the
derivative of z;, and k7, see appendix B.2. For the latter case it turns out that eq. (3.43)
is more convenient to work with.

Fraction of bound bases

The fraction of paired bases is

N dlnw

(3.47)
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We obtain
2L, (zpx(w, 2
_ 2Li(a(w,,)) 3.48)
Lic_q (zpx(w, 2))
in the folded phase (T < T., F < F.) and
1
0=1— (3.49)

V1+4wLi.(1/s)

in the unfolded phase (T > T, F > F.). In fig. 3.8 the temperature dependence and
in fig. 3.9 the force dependence of 6 is shown. The singularity at the critical point of
the thermal phase transition for zero force, s = 1, is very weak and becomes visible
in the n™ derivative, with n being the integer with (c —2)™' =1 <n < (c —2)7!, see
appendix B.3. The n" derivative exhibits a cusp, see inset of fig. 3.9,

d"e(T)

drn

which is characterized by the critical exponent Ay = (¢ —2)™! —n for T < T, and

Ar =1for T > T, see appendix B.3. The force induced phase transition is continuous,
too, yet it exhibits a kink in (F)

o« |T — Tml’lT + const , (3.50)

6(F) o |F — F.|*" 4 const, (3.51)

which is characterized by the exponents Ay = 0 for F < F. and Ay = 1 for F >
F.. We note that for T — oo, i.e. w — 1, a finite fraction of bases are still paired.
This indicates that models as ours, which solely focus on secondary structures, tend
to underestimate the entropy of the completely unfolded state, where no base pairs
remain. The situation is different for the force induced phase transition where 6 — 0
for F — oo.

Specific heat

The specific heat is defined as
kyT 02T InZy
TN aT?
One observes that the specific heat in fig. 3.10 exhibits only a very weak dependence
on the loop exponent, which stands in marked contrast to the findings for the short
explicit sequence of tRNA-phe, see the following chapter 4 [1, 4], where a pronounced
dependence of the heat capacity on c is observed. The non-analyticity of 6, eq. (3.50),
translates into a divergence of the n™ derivative of the specific heat at the melting
temperature
d"c(T)
drm
with the critical exponent y =n—(3—c¢)/(c—2)forT < T,and y =1for T > T,,.
This singularity is illustrated in the inset of fig. 3.10 for ¢ = 2.3.

(3.52)

o« |T — Tpy|™* + const, (3.53)
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Figure 3.9.: Fraction of bound
bases as a function of force for
various w and c. The phase tran-
sition is visible as a kink in the
curves and indicated by a dot.
(a) ¢ 2.1 and varying w
2,4,10. (b) w = 4 and varying
c=0.8,1.5,2.1,2.3.

Figure 3.10.: Specific heat as
a function of temperature for
different loop exponents c
0.8, 2.3. The non-critical behav-
ior of the heat capacity curve de-
pends on the loop exponent only
marginally. However, the exis-
tence and position of the critical
point (indicated by the dot) and
the critical behavior depend on c.
The inset depicts the third deriva-
tive of the specific heat, C"” =
d®c/dT?® for ¢ = 2.3 revealing
the phase transition.
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3. Secondary structures of homopolymeric single-stranded nucleic acids

Fraction of non-nested backbone bonds

The fraction of non-nested backbone bonds is obtained by

_10Inzy (3.54)
T N Jlns )
and is
7=0 (3.55)
in the folded phase, as z;, does not depend on s, and reads
2wli,_1(1/s

1+ 4wLi (1/s)+ /1 + 4wLi (1/s)

in the unfolded phase. For T — oo the fraction of non-nested backbone bonds assumes
a finite value smaller than one, which again indicates that the denatured phase in our
model features pronounced base pairing. However, for large force F — oo leads to
T — 1. As can be seen nicely in fig. 3.11 both 7(T) and 7(F) feature a kink at the
critical point.

Force extension curve

The force extension curve is closely related to the fraction of non-nested backbone
bonds 7. The extension per monomer is given by

kBT 8 anN _ kBT 3 anN 3 Ins

N OF N 0dlns OF
= by, 7 (coth(BFby) — 1/(BFby)) = byt L(BFby,), (3.57)

x(F)=

Since the Langevin function £ is smooth, the critical behavior of x(F) is governed
by the behavior of the fraction of non-nested bonds 7. As can be seen in fig. 3.12a,
the stretching behavior of a freely jointed chain, which is described by the Langevin
function, is approached as the base pairing weight decreases, otherwise pronounced
deviations are seen in the stretching curves. Also, a finite stretching force to unravel
the folded state is needed.

3.5. Implications for DNA melting

How do the previous results impact on the theoretical description of the denatura-
tion of double stranded nucleic acid systems, particularly DNA melting? When dou-
ble stranded DNA approaches the denaturation transition, more and more inter-strand
base pairs break up and inter-strand loops proliferate. In the traditional theories based
on the Poland-Scheraga model [27, 28] as our three-state model in chapter 2, the pos-
sibility of intra-strand base pairing is not considered. These models are thus accurate
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nested backbone bonds as a func-
tion of temperature for ¢ = 2.3.
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3. Secondary structures of homopolymeric single-stranded nucleic acids

Figure 3.12.: Force extension
curve as a function of force for
various w and c. The phase tran-
sition is indicated by dots and
occurs at zero extension and a
finite threshold force needed to
unfold the compact folded struc-
ture. (a) ¢ = 2.1 and varying
w = exp(e/kgT) = 2, 4, 10, 50.
(b) w = 50 and varying ¢ =

L)

|

Force F / (kg T/b)

0.8,1.5,2.1,2.3. Additionally 1.0
the force extension curve of a
freely jointed chain is plotted, (a)
which is the limiting form for
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for duplexes formed between strands with sequences [AG]y/, and [TC]y ,, where in-
deed base pairs (between A and T and between G and C) can only form between the
two strands, not within one strand, cf. fig. 3.13b. For the case of duplexes formed by
two strands with the sequence [AT]y/, or [GC]y/,, both intra- and inter-strand base
pairs can form and have identical statistical weights, , cf. fig. 3.13a. In this case, the
model presented in this chapter describes duplex melting. In fig. 3.7b we already saw
that intra-strand base pairing leads to increased transition temperatures compared to
the two-state Poland-Scheraga model.

The above sequence examples are prototypes for the two extreme cases for zero
intra-strand base pairing weight and for equal intra- and inter-strand base pairing
weight. Intermediate values for the relative interaction strengths between bases on
different strands and on the same strand can be achieved experimentally, for exam-
ple, by [ATT]y 3 and its complementary sequence [AAT]y/3, in which case 2/3 of the
intra-strand base pairs can be of the Watson-Crick type and which would effectively
lead to a lower weight of intra-strand base pairs. In naturally occurring DNA a simi-
lar situation might be present above the glass transition where, for certain sequences,
self-hybridization in a single strand is possible to a certain extent [113]. The weights
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Figure 3.13.: Illustration of a double stranded DNA molecule near the melting transition. (a) If
intra-strand base pairing is possible, in inter-strand loops the vast majority of bases will form
intra-strand secondary structure elements. (b) If the sequence does not favor intra-strand base
pairs inter-strand loops without secondary structure will form. (c) Illustration of an asymmetric
loop. In all graphs, the thick gray lines denote the non-nested backbone bonds counted by the
variables M, M’ in eq. (3.58).

of inter-strand and intra-strand base pairs can also be changed by applying an external
force or torque on the duplex, for instance in the setup by Léger et al. [35]. We expect
the weight of inter-strand base pairs to decrease when the duplex is untwisted. This
might lead to denatured regions in the duplex, where secondary structure can form if
the sequence allows. We speculate that subsequent pulling first leads to the denatu-
ration of the intra-strand secondary structures, whose signature would be a threshold
force around 1 pN - 10 pN [4, 93], see fig. 3.12, followed by the over-stretching tran-
sition of DNA [3]. According to our previous arguments a marked dependence on the
sequence should be observed. The full calculation of this system is cumbersome and
not shown here.

To gain a more direct understanding of the effects of intra-strand base pairing on
duplex melting, let us now consider the statistical weight of a single inter-strand loop,
where secondary structure formation in the two single strands is possible. Explicitly,
we assume the intra-strand base pairing weight w to be above the critical value w.. so
that we have essentially folded single strands. For instance, w > w, regardless of the
temperature for ¢ = 2.1 and attractive base pairing interaction € = kyT lnw > 0, see
eq. (3.28). The statistical weight of a denatured region of the double strand, which
is N base pairs long, where no inter-strand pairs are present, and where intra-strand
secondary structures may form, as depicted in fig. 3.13a, is given by

QN el

: 3.58
(M +M +4) (558

ZDNA § M+M +4
M,M’'=

¢ ~ 2.1 is the loop exponent describing inter-strand loops in DNA, M + M’ + 4 counts
the number of non-nested back-bones that contribute to the loop entropy, and Q% is
given by eq. (3.4). The denominator in eq. (3.58) amounts to an effective interaction
between the two strands as the expectation value of M depends on M’ and vice versa.
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3. Secondary structures of homopolymeric single-stranded nucleic acids

The asymptotic behavior of ZY™* can be estimated by establishing two inequalities.
The first is
N N
ZRNA <5t TSMAN ST SM QN ez VN (3.59)
M=0 M'=0

where the scaling is due to egs. (3.5) and (3.20) as the branch point is dominant if
w > w,... The upper scaling boundary is obtained by factorizing eq. (3.58) and therefore
removing the effective interaction, but retaining the loop entropy for each individual
strand

N _M+2AM N _M'+2/M’
sME2QN sME2QY

ZDNA > _ _xz 2NNT3 (3.60)
N Mz:;) (M +2)F &2 (M'+2)F P
We thus conclude that
ZWA oz 2NN (3.61)

to leading order and the bare inter-strand loop exponent ¢ is replaced by an effective
renormalized exponent with the value ¢’ = 3. The last equality in eq. (3.60) follows
from the dominant singularity analysis of the generating function

oo N AM
Q 1
ZVDNA(y :222 z M,N N __ Li- ,2)) —sz . (3.62
(z,8) =52 NZOM:OS Z T+2F  x(w.z) i:(szx(w,2)) —sz. ( )

Z m(z,s) features the same singularities as Z(z,s), see eq. (3.9), where the branch
point z, of k(w,z) is dominant.

To estimate the size of the DNA loop, which is the number of non-nested bonds of
the two secondary structures, at zero force, s = 1, we calculate

(M+M) 1 i O 4 QN QY
- DNA / 14
N NZGNA (M+M' +4)
1 3 NAM AM’ (ZN(S:D)Z
SJTENAM;_ (M + M")QM QY ZZTWZO, (3.63)
,M’'=0

as each of the secondary structures is assumed to be in the folded phase and 7 = 0
for N — oo and w > w,, see eq. (3.55). Eq. (3.63) shows that in a duplex loop, the
vast majority of bases form intra-strand secondary structure elements. As Z I]\?NA x N3,
see eq. (3.61), the effective loop exponent of a duplex loop is fixed at the universal
value ¢ = 3, and the thermal melting transition of DNA would be rendered first order
according to the classic result of Poland and Scheraga [27, 28]. There are 2N ways of
constructing an asymmetric inter-strand loop [60], where the number of bases in the
lower and the upper part of a loop is not required to be identical, see fig. 3.13c for an
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illustration. This additional factor changes the scaling to Zy™* oc N2 and thus changes
the effective loop exponent of a duplex loop to ¢ = 2, right at the threshold between
continuous and discontinuous transitions. We add that these results are obtained with
the assumption that the inter- and intra-strand base pairing weights are such, that the
perturbative treatment of the duplex within the Poland-Scheraga model with loops
that are decorated with secondary structures on the single strands, is valid.

As a main result, the effective inter-strand loop exponent is renormalized and takes
on universal values, depending on whether one allows for asymmetric loops or not.
The formation of intra-strand secondary structure influences the melting temperature
and has implications for the determination base pairing free energy parameters [84,
112] and other biotechnological applications where DNA melting and hybridization
is involved. Thus, intra-strand interaction might be important to include in software
packages predicting the stability of nucleic acids based on a Poland-Scheraga scheme.
Algorithms for cofolding of multiple nucleic acids already account for this [117-119].

3.6. Conclusions

The partition function of RNA secondary structures has been evaluated including arbi-
trary pairing topologies in the absence of pseudoknots, including the configurational
entropy of loops in the form of the loop length dependent term gfonf = —kgTIlnm™°.
Exact expressions for the fraction of paired bases, the heat capacity, and the force ex-
tension curves are derived in the presence of an external pulling force. The observed
thermal phase transition is very weak and of higher order, the force induced transition
is found to be second order. The critical behavior and the critical exponents are found
to depend on the loop exponent c. A temperature induced melting transition is only
possible for 2 < ¢ < ¢* & 2.479. Our results have consequences on the denaturation
of double stranded DNA molecules, in particular when intra-strand base pairs as well
as inter-strand base pairs can form. In this case, the native double strand is in com-
petition with intra-strand base pairing effecting the secondary structures discussed in
this chapter. Future directions will include loop exponents, that depend on the num-
ber of helices emerging from a given loop, treatment of pseudoknots, and cofolding
nucleic acids to study the influence of intra-strand interactions during double strand
denaturation.
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CHAPTER 4

SEQUENCE AND SALT EFFECTS ON
RNA FOLDING AND STRETCHING

4.1. Introduction

4.1.1. Motivation

So far, only sequence independent properties of nucleic acids have been studied. Yet,
it is the very sequence encoded in the four different bases, which induces the intrigu-
ing structural and functional properties of nucleic acids. RNA has multiple functions:
beyond being an information carrier it has regulatory and catalytic abilities [17].
Comprehending how RNA folds and what influences the folding process are key ques-
tions [87]. Thus, the reliable prediction of RNA structure and stability under various
conditions is crucial for our understanding of the functioning of RNA and nucleic acid
constructs in general [120, 121].

The influence of temperature and solution conditions on RNA folding stays in the
interest of experimental groups. Traditionally the thermal melting of RNA was mon-
itored via differential scanning calometry or UV spectroscopy for the bulk ensem-
ble [112, 122-124]. More recently, single molecule pulling and unzipping experi-
ments have been used to unveil the influence of different solution conditions and even
determine energy parameters [125-127].

On the theoretical side RNA denaturation is modeled on various levels of coarse
graining. By focusing on the secondary structure, namely the base pairs (bp), and
omitting tertiary interactions equilibrium folding and unfolding can be modeled very
successfully [1, 5, 92-94, 97, 116, 118, 128-130]. In chapters 2 and 3 we have shown
that — if a logarithmic contribution to the loop entropy is included — homopolymeric
nucleic acids, where sequence effects are neglected, feature a genuine phase transition,
which can be induced by temperature or force [1, 5, 116]. However, the specific
sequence influences the stretching response of a molecule, which has been shown
by Gerland et al. [94, 131]. More detailed insights can be obtained by simulations,
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4. Sequence and salt effects on RNA folding and stretching

which are numerically quite costly, though, when compared to models focusing only
on secondary structure. Coarse grained, Go-like simulations of short RNA hairpins
allow to analyze the dynamics of the folding and unfolding process [132, 133]. Ion
specific effects are studied by performing molecular dynamics [134] or coarse grained
simulations [98, 135, 136]. To our knowledge, the salt dependence of denaturation
transitions of RNA has not been studied yet.

While for DNA numerous corrections of the base pairing free energies due to varying
salt concentrations exist, see refs. [57, 137] and references therein, analogous results
for the salt dependence of RNA energy parameters are sparse [98]. However, molecu-
lar biology and biotechnological applications depend on the reliable prediction of RNA
stability for different solution conditions.

4.1.2. Outline

In this chapter we extend the formalism of chapter 3 and develop a theory that al-
lows to include all these effects — sequence, salt dependence, logarithmic loop entropy,
stretching force — and demonstrate that all are necessary to obtain a complete pic-
ture of the thermodynamics of the secondary structure of RNA. Neglecting tertiary
interactions, we again use a recursion relation, which allows to correctly account for
logarithmic free energy contributions due to the configurational entropy of loops [1].
To include the influence of monovalent salt on RNA stability we model the RNA back-
bone as charged polymers interacting via a Debye-Hiickel potential and give heuristic
formulas for the modification of the loop free energy as well as of the base pairing
and stacking free energy parameters. Debye-Hiickel is a linear theory, yet we allow for
the non-linear effects brought about by counterion condensation using Manning’s con-
cept [138]. The backbone elasticity of single stranded RNA (ssRNA) is described by
the freely jointed chain (FJC) model. Our approach allows for a complete description
of the behavior of RNA in the three-dimensional phase space spanned by tempera-
ture, salt concentration, and external stretching force. We find that for an improved
description of RNA melting curves one needs to include both salt effects and loop en-
tropy. Only the combined usage of these two contributions enables to predict the shift
of the melting temperature (due to salt) and the cooperativity (due to logarithmic loop
entropy), which is illustrated in the case of tRNA-phe. As an independent check we
consider the force induced unfolding of the P5ab RNA hairpin and observe excellent
agreement with experimental values with no fitting parameters. The influence of salt
is illustrated by melting curves and force extension traces for various salt concentra-
tions. For the P5ab hairpin the phase diagram is determined and slices through the
three-dimensional phase space are shown.
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4.2. Free energy parameterization of secondary structures

Like in chapter 3 we employ the idea of hierarchical folding. Since the main point
is the influence of the sequence, the loop entropy, and the salt concentration on the
secondary structure, we again neglect tertiary interactions, see section 3.2.

Given a set of base pairs the secondary structure consists of helices and loops as
the basic structural units, cf. fig. 3.1 on page 31. Since pseudoknots are neglected
a nucleotide can be attributed to exactly one subunit. The free energy of a certain
secondary structure is then given by the sum of the free energy contributions of the
individual structural subunits as we will detail now.

4.2.1. Free energy of a loop

We model the free energy of a loop consisting of m backbone bonds, see fig. 3.1, with
gl(m) — glconf(m) + glsalt(m) + glinit ) 4.1)

The first term is the loop entropy difference between an unconstrained polymer and a
ring-like polymer, which characterized by the loop exponent ¢ [1, 75, 102]

Geom(m) = —kgTlnm™©, (4.2)

with kg the Boltzmann constant and T the absolute temperature. ¢ denotes the loop
exponent, which has been discussed in section 3.2 and appendix A.3. We assume
a constant loop exponent ¢ = 2.1 in this work and only compare with the case of
vanishing loop entropy characterized by ¢ = 0.

The second term in eq. (4.1) describes the free energy difference between a charged
ring of length ml and a straight rod of the same length due to electrostatic interac-
tions, with [ = 6.4 A the length of one ssRNA backbone bond [136]. The electrostatics
are modeled on the Debye-Hiickel level [140]

Gl (m) = kg Tlp(mlg)T2

) l | Kkmlg 1 kmlg 2
X | In(kmlg) — In(7/2) + v — Tle 1/2, 3/2 ) (7)
1 (xkmlg > 1 3/3 kmlg 2
+§( 7T ) 2Fa| 1) é ’( 27 )

(1 — exp(—xmlg) + kmlg (0, Kmlss))} , 4.3)

+

SS

with I = 6(2) /(kgT4meye,) the Bjerrum length, which in water has a value of roughly

7A k1= \/ eoekgT/ (2NAeSI ) the Debye screening length, ¢, the vacuum dielectric
constant, &, &~ 80 the relative dielectric constant of water [141], 1 =1/ 2(paza2 + pczf)
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4. Sequence and salt effects on RNA folding and stretching

Figure 4.1.: (a) Free energy of a
loop as a function of the num-
ber of segments m for different
loop exponents ¢ = 0, 1.5, 2.1
(lines) and for NaCl concentra-
tion p = 1 M. Symbols denote
experimental values for various
types of loops (hairpin, bulge, in-
ternal) for p = 1M NaCl [136,
139]. G is obtained by fit-
ting G(m), eq. (4.1), to the ex- 0 5 10 15
perimental data for ¢ = 2.1 and

p = 1M. The same salt con- (a
centration is used for plotting the

curves with ¢ = 0, 1.5. (b) Salt
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the ionic strength, p,/p. and z,/z. the concentration and the valency of the anions/ca-
tions, N, the Avogadro constant, e, the elementary charge, y ~ 0.58 Euler’s constant,
I'(a, x) the incomplete gamma function, and ,F, the generalized hypergeometric func-

tions [115]. To estimate the line charge density 7, = —n/l, we employ Manning’s
counterion condensation theory [138] predicting
n= min(]-: lss/(lBZC)) . (44)

Eq. (4.3) amounts to a ground state approximation of the electrostatic contribution to
the free energy of a loop. This is rationalized by the fact that the electrostatic inter-
action is screened and decays exponentially over the Debye length, which is roughly
x~!1 = 1 nm for 100 mM salt solution. However, typical distances between bases in
a loop are of the order of the helix diameter d = 2 nm or larger. Therefore, we ex-
pect electrostatic interactions to be basically independent of the global configuration
of a loop, which justifies both the ground state approximation and our additive ansatz,
where ion effects and conformational contributions decouple, see eq. (4.1). In the
appendix, see eq. (B.5), we give an interpolation formula for eq. (4.3) involving no
hypergeometrical functions.
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4.2. Free energy parameterization of secondary structures

The last term in eq. (4.1) is the loop initiation free energy gli“it. As we are employing
a logarithmic loop entropy, eq. (4.2), we cannot use the standard literature value for
gli“it, which was optimized for a different loop parameterization [112, 122]. Therefore,
a new value G™" is obtained by fitting G,(m), given by eq. (4.1), to experimental data
using ¢ = 2.1 in gfonf(m) and the salt concentration p =1 M in gfa“(m), see fig. 4.1a.
On this plot, we show experimentally determined free energies for terminal, internal
and bulge loops as a function of the loop size. The differences between different loop
types are quite small. Therefore, we do not distinguish between those loop types in
the thgory and consequently fit a single parameter glinit to the data, which turns out to
be G™* = 1.9 keal/mol for T = 300K, see appendix B.6. In fig. 4.1a the fitted G,(m)
for the loop exponent ¢ = 2.1 is depicted by the solid line; the other lines illustrate the
effect of different loop exponents on the loop free energy according to eq. (4.1) using

the same value for glinit. In fig. 4.1b the salt dependence of G;(m) is depicted.

4.2.2. Free energy of a helix

The free energy of a helix
gh — g}sltack + g}ilnit + g}tlerrn + glslalt (4.5)

depends on the sequence {b;}, which consists of the four nucleotides b; = C,G, A, U.
The stacking free energy gffack is based on experimentally determined parameters
incorporating the base pairing free energy as well as the stacking free energy be-
tween neighboring base pairs. In the standard notation, gfltaCk[(bi, b;), (bit1,bj-1)]
is the contribution of the two neighboring, stacked base pairs (b;, b;) and (b;11,b;_1)
to Qﬁmk. The explicit values for the enthalpic and entropic parts are given in ap-
pendix B.6. We use the expanded nearest neighbor model [112, 122] to calculate the
base pairing and stacking contributions of a helical section ranging from base pair (i, j)

through (i + h, j — h) and obtain

h
G = D & [(bis-1, bjowa): (i bjw)] (4.6)
/=1

The initiation and termination free energies in eq. (4.5) take into account weaker
pairing energies of AU or GU base pairs at the ends of the helix. We use the standard
literature values for g}ilnit and g;f—rm [112, 122] and summarize the explicit values in
appendix B.6.

Increasing the salt concentration increases the stability of a helix: First, counterions
condense on the negatively charged backbone and reduce the electrostatic repulsion
and, second, the diffuse counterion cloud surrounding the charged molecule screens
the interaction. We model the two strands of a helix as two parallel rods at distance

d = 2nm interacting via a Debye-Hiickel potential characterized by the screening
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4. Sequence and salt effects on RNA folding and stretching

length x~1. The electrostatic interaction energy per nucleotide with the other strand

is given by
© exp(—xy/ d? +2z2)
-0 1V d? + 22

lys = 3.4 A is the helical rise per base pair of double-stranded RNA (dsRNA) and
Ky(xd) is the zeroth order modified Bessel function of the second kind. Again, we
employ Manning’s theory [138] to calculate the line charge density T4, = —1/l4,, With
1n =min(1,l4;/(Iz2.)). The reference state for the salt correction of the pairing free en-
ergy is at temperature T = 300 K with monovalent salt concentration p = 1 000mM,
as the experimental pairing free energies gfltad‘ were determined at this concentration.
The free energy shift for a helix with h nucleotides due to electrostatic interactions is

then

gP(p) = kg T3 1y 1y dz = 2kg T75 14 [ Ko(kd) . (4.7)

G = h(gP"(p) — g2 (1000 mM)) . (4.8)

The use of Debye-Hiickel theory to incorporate salt effects enables to include the
overall dependence on temperature and salt concentration but involves several ap-
proximations. First, we are using Manning’s counterion condensation theory to obtain
the actual line charge density of ssSRNA and dsRNA [138]. However, Manning con-
densation is known to underestimate the line charge at increasing salt concentration
and therefore favors the bound state [142]. Second, when calculating the electro-
static energy of a loop we effectively use a ground state approximation and neglect
conformational fluctuation effects. Third, when two ssRNA strands come together to
form a helix the line charge density increases for the distance between two bases de-
creases. The salt dependence of the work to decrease the distance between two bases
from I, = 6.4 A to Iy, = 3.4 A is neglected. This approximation favors the unbound
state. Therefore, it is very important to validate the model we employ, which we do
by detailed comparison with experimental data. From the favorable comparison with
experiments we tentatively conclude that the various errors partially cancel and the
resulting expression for the salt influence is quite accurate. We would like to point out
that after determining glin“ in eq. (4.1) no further fitting is done and only standard
literature values are used.

Our theory is able to consider variations of the salt concentration as well as of the
temperature, which makes it suitable to study RNA melting at various salt concentra-
tions in a consistent way. However, since our approach is solely based on mean field
theory it might break down in the case of multivalent ions, where correlations become
important. Also, ion specific effects, which are important for the divalent ions such as
Mg?* [143], are not considered in our approach.

4.2.3. Response of the molecule to an external stretching force

In atomic force microscope or optical tweezers experiments it is possible to apply a
stretching force F to the two terminal bases of the molecule. We model the stretching
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4.3. Partition function

response of the M non-nested backbone bonds, see fig. 3.1, with the freely jointed
chain (FJC) model. A non-nested bond is defined as a backbone bond, which is neither
part of a helix nor part of a loop. It is outside all secondary structure elements and
therefore contributes to the extension observed in force spectroscopy experiments. The
force dependent contribution to the free energy per non-nested monomer is given by

sinh(f b F) )

BboF 9

l
g’ =G /M =—kT-=In (
bSS

where 8 =1/(kgT) is the inverse thermal energy and by, = 1.9 nm is the Kuhn length
of ssRNA [93] (we used the Kuhn length of ssDNA as the corresponding ssRNA data is

not known to us). The stretching response of one non-nested monomer to an external
force is then given by

d glljJC

FIC(R) = _
x(F) iF

=[x L(BFbgs) = L5 (coth(BFby) +1/(BFby)) (4.10)

L is the Langevin function. Electrostatic effects on the stretching response are consid-
ered to be small and hence are neglected [26, 71].

4.3. Partition function

So far we showed how to calculate the free energy of one given secondary structure.
The next step is to enumerate all possible secondary structures in order to obtain
the partition function, which allows to study the thermodynamics of the system. We
extend our theory for homopolymeric RNA in chapter 3, eq. (3.3), and include se-
quence effects as well as a more elaborate helix parameterization. In our notation, the
canonical partition function inv[_ of a sub-strand from base i at the 5-end through j
at the 3’-end depends on the number of non-nested backbone bonds M [1, 95, 97],
see fig. 3.1. Neglecting tertiary interactions — and in particular pseudoknots — the
recursion relations for QﬁVIJ can be written as

j_Nloo
vei(M +1) P
M+1 _ 't M M 0
ij+1 = M Qi,j + E : Qi,k—le,j+1 (4.11a)
vi(M) k=i+M+1

and

(j_k_Nloop)/Z

0 _ (k,j+1)
Qpjt1 = Z exp(_ﬁgh(k+h,j+1—h))

h=1
j—k—1-2h
" exp(—BG(m+2))
X Qi Vf(;n) . (4.11b)
m=1
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4. Sequence and salt effects on RNA folding and stretching

An illustration of the recursion relation is depicted in fig. 3.3 on page 33. Eq. (4.11a)
describes elongation of an RNA structure by either adding an unpaired base (first term)
or by adding an arbitrary sub-strand Qg,j 41 that is terminated by a helix. Eq. (??)
constructs Qg’j 41 by closing structures with m non-nested bonds, which are summed
up in Q' , thj—h by a helix of length h. Nj,,, = 3 is the minimum number of bases in a
terminal loop. v¢{(M) denotes the number of configurations of a free chain with M links
and drops out by introducing the rescaled partition function Qﬁwj = Q{”J /v¢(M) and will

not be considered further. ghg’;ﬁﬂl_m is the free energy of a helix beginning with

base pair (k, j + 1) and ending with base pair (k + h, j + 1 — h) according to eq. (4.5).
Gi(m+2) is the free energy of a loop consisting of m+2 segments as given by eq. (4.1).
G and G, contain all interactions discussed in the previous section. Eq. (4.11) allows
to compute the partition function in polynomial time (O(N*)). Further, it is possible
to employ non-linear functions for G(m) and Gy (h); for instance, G;(m) is strongly
non-linear by virtue of egs. (4.2) and (4.3).

The unrestricted partition function of the entire RNA, where the number of non-
nested backbone bonds is allowed to fluctuate, is given by

N
Zy =) exp(—BgMIQY, (4.12)
M=0

and contains the influence of force via g?JC defined in eq. (4.9). The partition function
Zy contains all secondary structure interactions, but neglects pseudoknots and other
tertiary interactions. Although one might miss some details, this approximation is
known to work very well [29] and yields reliable predictions for the stability of single
stranded nucleic acid structures [144].

Using the same ideas, we determine the minimum free energy (mfe) and the mfe
structure. The mfe structure, is defined as the secondary structure, which gives the
largest contribution to the partition function. Since the mfe cannot be derived from the
partition function itself, it has to be determined from a slightly modified set of recur-
sion relations, where the main idea is to replace the sums in eq. (4.11) by maximum-
operators, see appendix B.4. The mfe structure is then obtained by backtracking the
steps that lead to the mfe.

4.4. Salt dependence of melting curves

In this section we calculate melting curves for different salt concentrations by applying
egs. (4.1) and (4.5), which include our novel salt dependent free energy parameter-
ization. In fig. 4.2 we compare experimental results [123, 124] with our predictions
for the heat capacity of yeast tRNA-phe; the sequence is given in appendix B.7. The
heat capacity is readily obtained by

d%kgT1InZy

C= TT , (4.13)
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o ol ]
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Heat capacity C / (kcal/(mol K))
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Figure 4.2.: Melting curve of the 76 bases long tRNA-phe of yeast; the predicted minimum free
energy structure at p = 1M, T = 300K, ¢ = 2.1 is shown and is identical to the experimen-
tally observed secondary structure, cf. fig. 1.2b. Symbols denote experimental melting curves
for NaCl concentrations p = 20 mM (squares) and 150 mM (circles) [123]. Our predictions
for different salt concentrations are depicted by the dashed (20 mM), dash-dotted (150 mM),
and solid (1 M) lines. The respective arrows indicate melting temperatures obtained by exper-
iments of another group [124]. The dotted line shows our prediction for p = 150 mM and
¢ = 0 and exemplifies that a non-zero loop exponent is responsible for rendering the transition
more cooperative, which is also observed experimentally; for 150 mM and ¢ = 0 the melting
temperature is at higher temperatures since the energy parameters are optimized for ¢ = 2.1.
The orange dash-dotted curve is the prediction of the Vienna package, which uses a linearized
multi-loop entropy corresponding to ¢ = 0 and p = 1 M. This is to be compared to our pre-
diction for ¢ = 2.1 and p = 1 M: while the melting temperatures are similar, the cooperativity,
i. e. the widths of the peaks are different due to different loop exponents.

where Zy; is the unrestricted partition function of the RNA at zero force, eq. (??). In all
our calculations, we use the same literature parameter set for the stacking and pairing

free energy gffad‘. No additional fit parameter enters except the loop initialization

free energy Qlinit, which is determined in fig. 4.1a from a separate experimental data
set. The salt dependence of the experimentally observed melting temperatures are
reproduced well, compare fig. 4.2. We also plot a melting curve for loop exponent
¢ = 0 and NaCl concentration p = 150 mM, which exhibits a far less cooperative
transition than observed in the corresponding curve with ¢ = 2.1. Finally, we compare
our prediction for p =1 M and ¢ = 2.1 with the prediction of RNAheat in the Vienna
Package [91], which uses a linearized multi-loop entropy amounting to ¢ = 0 in our
framework. The predicted melting temperatures are almost identical. However, the
widths of the peaks in both melting curves differ and the melting profile for c = 2.1 is
more peaked. Taking all these observations together leads to the conclusion that only a
combined use of logarithmic loop entropy (characterized by a non-zero loop exponent)
and salt dependent free energy corrections leads to a correct prediction of melting
curves. The additional features in the experimental data, e. g. the shoulder at lower
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4. Sequence and salt effects on RNA folding and stretching
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temperatures and the increased width of the experimental curves might be attributed
to tertiary structure rearrangements, which are not captured by our approach, or to
melting occurring in multiple stages.

4.5. Salt dependence of stretching curves

Apart from temperature, force is an important variable to study denaturation of RNA
molecules [93-95, 125, 132, 145-151]. In fig. 4.3 we show the salt dependence of
stretching curves for yeast tRNA-phe. The stretching curves have been obtained by
describing the behavior of the M non-nested backbone bonds, see fig. 3.1, with the
freely jointed chain (FJC) model, see eq. (4.10),

dlnZy dInZy 3ngC

——— =kgT—— ——— = Mx"(F 1
OF B agF‘JC OF X ( ): (4 4)

X(F) = kBT
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4.5. Salt dependence of stretching curves

Figure 4.4.: (a) Salt depen- 20
dence of stretching curves

of the 56 bases long RNA 15
hairpin P5ab [125] for dif-
ferent salt concentrations
P = 20mM, 150 mM, 1 M.
Increasing salt concentration
stabilizes the secondary structure 5
due to screening of the electro-
static interaction. The dotted
line is the force extension curve

of an FJC, eq. (4.10). (b) The
fraction of non-nested segments (a)
as a function of force. One ob-
serves that the unzipping of the
hairpin happens in two stages,
which is visible as a shoulder
for 5pN S F S 6pN-10pN
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where we used the definition of the number of non-nested backbone segments

0 anN

FJC ~°

M = —kBT
ogs

(4.15)

As for the melting curves one observes that increasing salt concentration stabilizes
the structure leading to higher unfolding forces. All curves converge in the large force
limit to a freely jointed chain of the length of the whole RNA molecule (N — 1),
where N = 76 is the number of bases in the chain. The deviation for small forces
from this theoretical prediction is due to the secondary structure of RNA, which is
present at small forces and which becomes disrupted at forces F 2 5 pN. In fig. 4.4a
we show the force extension curve of the P5ab hairpin [125]; the sequence is given
in appendix B.7. Apart from the salt dependence of the force extension curve one
observes that the unzipping of the helix happens in two stages. This is seen best by
considering the fraction of non-nested segments and its derivative, fig. 4.4b. The first
stage is a smooth unzipping of the first three base pairs up to the bulge loop visible
as a shoulder at F ~ 8pN in the derivative. The second stage is a sharp transition
where the rest of the hairpin is unzipped. In fig. 4.5 we show mfe predictions for the
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4. Sequence and salt effects on RNA folding and stretching

Figure 4.5.: Predicted minimum free energy structures of the
hairpin P5ab at different forces, see also appendix B.4. For
F < 5pN the hairpin is in the native state with all base pairs
intact. At F ~ 8 pN the first helix, consisting of three base pairs
: and bounded by the bulge loop, is ruptured. This causes the first
F ~ 8 pN¢ smooth transition. Forces F Z 14 pN lead to the unzipping of
: the whole hairpin in a very cooperative fashion.

F >14pN

secondary structure at different forces for p = 1 M NaCl. For F < 5 pN we correctly
predict the experimentally observed native state with all base pairs intact [125]. For
forces F ~ 8 pN an intermediate state appears, where the first three base pairs are
unzipped up to the bulge loop. Denaturation is observed for F 2 14 pN.

The native structure of the P5ab hairpin contains the stacked pairs gﬁ - bp(17,42)
and bp(18,41) [125]. For this stack, no free energy parameters are available and we
use the parameters for the stack 88, instead. However, other parameterizations for
this stack work equally well and reproduce the experimental transition force within
errors, see fig. 4.6.

4.6. Phase diagrams of the P5ab RNA hairpin

With the tools established in the previous sections we are now able to study phase
diagrams of RNA. We consider the P5ab hairpin, which is a well studied system [125,
131, 132, 152, 153]. In fig. 4.7b the phase diagram in the F-p plane is shown for
T = 298K, 300K, 320K and ¢ = 2.1. The phase boundary is defined as the force
where half of the helical section is unzipped. In particular we exclude the three un-
paired bases at the 5- and the four bases at the 3’-end, see fig. 4.5, and obtain the
condition M — 7 = (N — 7)/2 for the transition point. This position is depicted by an
arrow in fig. 4.7a. Below the phase boundary the hairpin is stable, above the molecule
is denatured and completely open. In fig. 4.7b we additionally include experimen-
tal results by Liphardt et al. [125] and observe a perfect match with our results. It
is important to note that this transition is not a phase transition in the strict statis-
tical mechanics sense, but just a crossover. A true phase transition is defined as a
non-analyticity of the free energy, which can only occur for an infinite system with
long-range interactions [1]; this has been studied in chapters 2 and 3. The three-
dimensional phase space we are considering is spanned by temperature, force, and
salt concentration. In figs. 4.8 and 4.9 we show slices in the F-T and in the T-p plane.
The phase boundary for the F-T plane is determined the same way as in the F-p plane,
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Figure 4.6.: The effect of different parameterizations for the free energy parameters for ii on
the denaturation curve is marginal. Here, the fraction of non-nested backbone bonds is plotted
against the force for the P5ab hairpin and T = 298K, p = 250mM, ¢ = 2.1. The solid line
is obtained with the parameters used in this chapter g5k iﬁ) = gotack SS) The dotted line

h h
is obtained by using g;tad‘ ii) = gff“k EX), whereas the dashed line is for g;taCk ii) =0. All

three curves coincide and differ only at the transition exhibiting a slightly different transition
force, which is, however, identical to the experimentally observed force within errors [125].
The values of the free energy parameters are given in appendix B.6.

yet with varying temperature and fixed salt concentration. The phase boundary in the
T-p plane is determined differently: heat capacity curves as a function of temperature
are calculated for different salt concentrations. The position of the peaks in the heat
capacity curves (one is depicted by an arrow in fig. 4.9a determine the phase diagram
in fig. 4.9b. Therefore slight differences between the phase diagrams in figs. 4.7, 4.8
on the one hand and fig. 4.9 on the other hand may arise.

We observe that for large salt concentrations the denaturation forces and temper-
atures are rather independent of the salt concentration, see figs. 4.7 and 4.9. Only
when the Debye screening length k! is of the order of the typical length scales of
RNA, which is the case for p < 100 mM, a marked dependence on the salt concentra-
tion is observed.

4.7. Conclusions

We construct a theory for RNA folding and melting that includes the effects of mono-
valent salt, loop entropy, and stretching forces. Our theory is based on salt and tem-
perature dependent modifications of the free energies of RNA helices and loops that
include electrostatic interactions on the linear Debye-Hiickel level and conformational
fluctuation effects via the asymptotic, non-linear expression for the entropy of loop
formation. Decreasing salt concentration is shown to generally destabilize RNA folds
and to lower denaturation temperatures and forces. The predictions are in excellent
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4. Sequence and salt effects on RNA folding and stretching

Figure 4.7.: (a) Fraction of non-nested segments of the P5ab hairpin as a function of force
for different salt concentrations and constant temperature T = 298 K. The position of the
crossover, which is defined as the point where M —7 = (N —7)/2,i.e. M/N = 0.56 (indicated
by the arrow), determines the phase diagram. (b) Phase diagram of the P5ab hairpin in the F-p
plane for different temperatures T = 298 K, 300 K, 320 K. Below the curve the RNA is in the
hairpin phase, above the RNA is denatured and completely open. The symbol at p = 250 mM,
F = 13.3pN, and T = 298K denotes the experimental data by Liphardt et al. [125] and
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coincides perfectly with our prediction.
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Figure 4.8.: (a) Fraction of non-nested segments of the P5ab hairpin as a function of force
for different temperatures and constant salt concentration p = 250 mM. The position of the
crossover (arrow, M /N = 0.56) determines the phase boundary. With increasing temperature
a decrease of the denaturation force is observed. Above the melting temperature T, ~ 358 K
the molecule is always in the denatured state. (b) Phase diagram of the P5ab hairpin in the
F-T plane. Below the curve the RNA is in the native hairpin phase, above the RNA is denatured
and completely open. The symbol denotes experimental values [125].
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Figure 4.9.: (a) Heat capacity curves for different salt concentrations and constant tempera-
ture. The position of the peaks moves to the right with increasing salt concentration. The
positions of the peaks, denoted exemplarily for one curve by the arrow, determine the phase
diagram. (b) Phase diagram of the P5ab hairpin in the T-p plane. Below the curve the RNA is
in the native hairpin phase, above the RNA is denatured and completely open.
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agreement with experimental data as shown for two different scenarios, namely the
heat capacity curves for the thermal denaturation of tRNA-phe and the response of the
P5ab RNA hairpin to an external pulling force.

Due to the usage of the linear Debye-Hiickel approximation in conjunction with
the Manning condensation concept, our approach is limited to monovalent salt and
neglects ion-specific effects. Electrostatic nonlinear and correlation effects could in
principle be taken into account by more advanced modeling using variational ap-
proaches [142], while ion-specific effects could be straightforwardly included using
effective interactions between different ions and RNA bases [154]. More complex
phenomena involving multivalent ions such as Mg?* could in principle be modeled by
allowing for a few tertiary contacts, which is left for future studies.

We find that for a proper description of RNA melting curves, correct modeling of the
loop entropy is crucial. A non-zero loop exponent leads to an increased cooperativity
of the melting transition and thus makes the heat capacity curve narrower in good
agreement with experimental results. We conclude that for a correct description of
RNA denaturation thermodynamics both loop entropy and salt effects are important
and should be included in standard structure and melting curve prediction software.
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CHAPTER 5

REPTATION DYNAMICS IN POLYMER GLOBULES:
DIFFUSION VS. PULLING SIMULATIONS

5.1. Introduction

5.1.1. Motivation

The previous chapters covered equilibrium properties of nucleic acids. However, con-
formational dynamics of nucleic acids and polymers in general play a crucial role in
biological systems. For example, translocation of polymers such as RNA requires bond
breaking and drastic conformational rearrangements to accommodate the geometrical
constraints imposed by a pore [97, 155, 156]. Unfolding of biopolymers in force spec-
troscopy experiments induces huge conformational changes on the polymer [157],
which may occur in a dissipative fashion [158, 159]. RNA sequences known as ri-
boswitches also experience conformational changes upon binding of small metabo-
lites [160]. All of these transitions necessitate spatial rearrangements of the molecules
and reptational dynamics of polymers within a collapsed globule [161]. The time scale
on which these changes happen is influenced by the medium, particularly the solvent
viscosity, and by the polymer itself through internal interactions. Therefore, if one
desires to understand the dynamics of processes such as protein folding [162-165],
packing of DNA in the chromosome [166-169], polymer collapse [170-172], or ad-
sorption [8, 173, 174], all dissipation and viscous effects have to be considered [175].

While solvent effects are due to the viscosity of the medium, there are a number
of effects that together give rise to internal friction behavior. Local interactions such
as conformational transitions of backbone bonds [162, 176], entanglement effects
and excluded volume interactions in polymer systems, degrees of freedom orthogo-
nal to the reaction coordinate [177], and the breakage and reformation of cohesive
bonds [163, 178, 179] all lead to dissipation in systems out of equilibrium. For globu-
lar homopolymers, proteins in the molten globule phase [88], and disordered interme-
diates during protein folding [180], these effects manifest themselves as a rough free
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5. Reptation dynamics in polymer globules

energy landscape with many competing and intermediate states [181, 182]. The re-
sulting bond breakage and reformation is prevalent during the folding process, leading
directly to the concept of an effective internal viscosity [183-185]. There have been
a large number of coarse-grained simulation studies on the force induced unfolding
of proteins [186], globular polymers [170, 173, 187-189], and the diffusion of knots
along a stretched chain [190-192]. Cohesive interactions between polymer monomers
have been shown to lead to a phase transition from a liquid-like to a solid-like globule
for long enough chains [7, 193-200].

5.1.2. Outline

In this chapter we study the effect of internal friction on two model systems, which
both can be realized experimentally. We perform Brownian dynamics simulations on
a homopolymer. Attractive interactions are modeled with a Lennard-Jones potential,
where the cohesive strength ¢ is varied. First, we study the diffusion of an unknotted
globule, which forms on a polymer held at constant extension smaller than the con-
tour length. This simulation is conducted under equilibrium conditions and no exter-
nal forces are applied. For ¢ < ¢, where &, ~ 2.5kgT depending on the globule size,
normal diffusion of the globule is observed and characterized by the diffusivity D,
which is a direct measure of the internal viscosity since motion of the globule requires
internal rearrangements. We observe that the diffusion constant is proportional to the
reciprocal globule size Dg o< N !, The diffusion constant shows a marked dependence
on the cohesive strength ¢, as well. For € > ¢, no diffusion is observed on the simu-
lation time scales and the globule is stuck in a single conformation. This reflects the
change of the internal dynamics going from liquid-like (¢ < &) to solid-like (& > ¢,).
Support for this interpretation is given by our second set of simulations, where we
measured the dissipated work during stretching and unraveling the globule with a
finite velocity. This is the same setup as studied by us before, yet with significantly
longer chains and slower pulling velocities [183], and allows to study the liquid-solid
transition. Like in our equilibrium simulations, we observe two different regimes. For
large ¢ > g, the force extension curve is characterized by huge fluctuations, which
abruptly cease when ¢ < g,. These extreme fluctuations in the force extension curve
are present at small extensions and hence large globules. Pulling decreases the num-
ber of monomers inside the globule causing the fluctuations to vanish once N is below
a certain threshold. Therefore, reducing the number of monomers N in the globule
by stretching the chain drives the system from the solid into the liquid state. In the
liquid state we perform extensive simulations to obtain the internal viscosity. We show
that in the liquid regime the internal friction is extensive, meaning that the dissipated
work per monomer scales linearly with the chain length N and the pulling velocity v,
AW /N «x Nv. We also show that this scaling extends into size regimes beyond what
has been studied previously [183]. For the reptational dynamics this means that in the
liquid-like regime, a Rouse-type model with a local friction is valid. Clearly, internal
friction effects will dramatically influence the time scales of reptational dynamics. In
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the solid-like regime, no definite conclusion on the reptation mode is possible from the
simulations we performed.

5.2. Brownian dynamics

We model the homopolymer by N freely jointed beads of radius a interacting with
a potential U ({r™}), which depends on the set of the positions of the individual
beads {r™}. The position r@ of the i™ bead obeys the overdamped Langevin equa-
tion [201, 202]

or®

= 1oV, o UEr™D + uo fO(t), (5.1)

where uy, = 1/(6mnga) is the Stokes mobility of a sphere with radius a in a solvent
with viscosity ng. f (‘)(it) is the random force acting on the i™ bead. The components
of the random force fogl)(t), a=x, Y, 2, satisfy the Stokes-Einstein relation

2T

(O £7) 5:16ap8(t —t') (5.2)
and are unbiased ( foEi)(t)) = 0. Hydrodynamic interactions are neglected since we are
interested in the internal friction of the polymer caused by the monomer interactions.
We introduce dimensionless quantities and express energies in units of the thermal en-
ergy kg T, lengths in units of the bead radius a, and times in units of T = a?/(ugksT),
which is the characteristic diffusion time of a single bead. Using the dimensionless
quantities t = t/7, ¥ =r/a, f = f/(kgT/a), and U = U/(kgT) eq. (5.2) reads

or® . »
T Vo U{F™MD + FOD). (5.3)

For the Brownian dynamics simulation we use a discretized version of eq. (5.2) with
a time step At = 0.00057 and obtain the coordinates at time t = nAt [203]

FOn+1)=FOm) + (- UEFMD + FO(n)) AT (5.4)

and

FO() FD ) = 2 5.
(fa (n) fﬁ (Tl )>_ A 51]5a[3’5nn" (5.5)

5.3. Diffusivity of a globule along a periodic chain:
equilibrium simulations

In a preceding work, the internal viscosity 1 of a homopolymeric globule has been de-
termined by measuring the dissipated energy due to non-equilibrium pulling at finite
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5. Reptation dynamics in polymer globules

speed [183]. We showed that for moderate attractive interactions ¢ the internal fric-
tion is the dominant dissipative effect as long as the majority of the monomers are part
of the globule. However, as the globule is unraveled the size of the globule decreases
and more and more beads in the linker sections dissipate energy due to solvent fric-
tion. These effects had to be subtracted in order to obtain the internal globule friction.
Here, we introduce a new system, where we perform equilibrium simulations and the
size of the globule stays constant. We study the diffusive behavior of a globule that
forms on a chain, which is held at constant extension smaller than the contour length.
As motion of the globule necessitates internal rearrangements via reptation moves, the
diffusion constant of the globule is a measure of the internal friction. Therefore, the
microscopic internal dynamics inside the globule manifests itself as a macroscopic and
experimentally observable quantity: the diffusivity of the globule Dg; « 1/ng. This
system can be realized experimentally by studying a polymer held at constant exten-
sion in an optical or magnetic tweezers setup [107]. The cohesive force can be varied
by changing the solution conditions, whereas the size of the globule can be varied by
changing the trap distance.

5.3.1. Model
Description of the system

The diffusivity Dg of a globule on an extended chain is a measure of the viscosity ng
inside the globule since they are related via ng o< 1/Dg. To model this system we
consider a polymer held at a fixed extension L = 50a in the x-direction, which is
smaller than the contour length L. = 2a(N — 1) of the polymer. A globule will form
due to the attractive Lennard-Jones interaction between the monomers, see fig. 5.1. To
eliminate finite size effects we introduce periodic boundary conditions in x-direction,
which are implemented via the minimum image convention [204]: the components of
the vector pointing from r® to r) are given by

r@) =pr® rW; 1) = (¥ - rD 4+ 3L/2) mod L) —L/2 (5.6a)
(@) _ () _ O
LR S A (5.6b)

We use a box size L = 50a in all simulations. The potential energy has four contribu-
tions

U:Ub+Ur+ULJ+Utr' (57)

Uy, and U, are the bond potential acting between neighboring monomers. The back-
bone bonds are modeled by harmonic potentials

N-1
K ..
_ (ii+1) _ 2
Up =3 l_E:l(r 2a)”, (5.8)
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5.3. Diffusivity of a globule along a periodic chain: equilibrium simulations

Figure 5.1.: The diffusion of a glob-
ule on a stretched polymer is simu-
lated. The diffusivity Dg, the num-
ber of monomers N; inside the glob-
ule, the extension of the globule [;, and
the fluctuations of the linkers (stretched
part) depend on the cohesive strength ¢,
eq. (5.3.1). Snapshots at different times
for () € = 0.8 and (b) § = 2.09
are shown. To prevent motion of the
linkers and model a polymer held at
fixed extension the monomer i, in the
middle of the linkers (indicated by the
arrow) is trapped by a harmonic po-
tential, eq. (5.3.1). Periodic bound-
ary conditions in a box of length L us-
ing the minimum image convention are
employed to model an infinite polymer.
The color coding indicates the index of
a monomer along a chain.
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5. Reptation dynamics in polymer globules

with k = 200kg T /a? and r@) = |r()|  see eq. (4.11a). As periodic boundary condi-
tions are employed, the polymer forms a closed ring, which is achieved by connecting
the first and last monomer by

K
U, = E(r(Nl) —2a)%. (5.9)

The monomer cohesion and excluded volume interactions are modeled with a Lennard-
Jones potential

N i—-1 2a 12 2a 6
ULJ:gZZ((r(U)) _2(r(ij)) ) (5.10)

i=1 j=1

¢ = 0 models an ideal phantom chain without excluded volume interactions and at-
tractive interactions between the monomers. For ¢ > 0 the first term in eq. (5.3.1)
accounts for the repulsive excluded volume interaction at short separations, whereas
the second term is responsible for cohesion. For 0 < ¢ < g5 ~ 0.5 the polymer is in
the swollen state and no globule exists. Increasing ¢ above g causes the polymer to
collapse and a globule forms [7, 25, 170, 183, 193-200]. The position of the globule
transition ¢; depends on the system size [193]. For even larger values € > ¢, a solid
phase appears.

Uy, is an external trapping potential for individual monomers in the linker in order
to model e. g. optical tweezers. As we are interested in the motion of the globule and
not of the complete chain we have to prevent the linker from moving. The linker is the
stretched part that does not belong to the globule, fig. 5.1. Therefore, we introduce a
harmonic trap potential

K .
Uy = f(r(ltf) —~R)?, (5.11)

which is located at R and acts on bead i, that is in the middle of the linker, with
stiffness x,, = 10k T/a?. The trapped beads in the moment of the snapshots shown
in fig. 5.1 are indicated by arrows. The index of the trapped bead i, depends on the
position of the globule and which beads belong to the globule. The exact definition of
the globule is described in the next section. Due to globule motion the index of the
bead in the middle of the linker might change from i, at time t to i/ at some later
time t’. If this happens we update the x-coordinate of the trap position to the new
position R, (t") =R, (t)+2a D(iy, i ; N), eq. (4.11a), and the trapping force then acts
on bead i/ . This setup allows to study the diffusion of the globule along the x-axis.

The effect of using periodic boundary conditions rather than long linkers to each
side is fourfold. First, the simulation is sped up as the system is smaller. Second, the
globule is stabilized as the configurational space for the unfolded system is reduced as
only fluctuations up to a wavelength of the order of the simulation box are possible.
Third, motion of the globule as a whole without internal reptation is reduced. Fourth,
knots may not form as the polymer forms a closed ring.
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5.3. Diffusivity of a globule along a periodic chain: equilibrium simulations
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Figure 5.2.: The density profile of the globule depends on the cohesive strength €. The globule
is defined as a region where the monomer density is p > 5/a (indicated by the horizontal
dotted line). The density profiles correspond to the snapshots shown in fig. 5.1.

Definition of the globule

We partition the x-axis into bins of width [;, = 2a and measure the monomer density pj
inthe kM bin, k=1,...,L /1. The globule is defined as the region, where the monomer
density projected on the x-axis is pp > 5/a. In fig. 5.2 the density profiles of the
snapshots in fig. 5.1 are shown. If at the edge of the globule the density profile is not
monotonous and p; < 5/a, but p;_1, pry1 > 5/a, we account for such cases by adding
these bins to the globule, too. This ensures that we end up with a list of bins that are
connected. For small € < 1 and small N < 150 it is possible that — according to the
above definition — more than one globule exists or that the globule is smeared out over
the complete simulation box, however we will not consider simulations in which this
occurs. Such complications are never observed for £ > 1 or N > 150.

Definition of the index of the trapped bead

Let us first define the index of the bead i, which is at the right edge of the globule,
and the index of the bead i}, which is at the left edge of the globule. i, is obtained
by picking an arbitrary monomer inside the globule and moving along the chain with
increasing monomer index. i, is the largest index that is still in a bin belonging to the
globule. We also check for loops, which leave the globule and return again: If a loop
occurs, we add all monomers of the loop to the globule even if they lie in a bin outside
the globule. i is defined in the same way yet by decreasing the index. The index of the
central bead i, in the middle of the globule and the number of monomers N inside the
globule are defined as i, = (ij +i,)/2, Ng =i, — i+ 1if iy <i,and i. = (i; — N +1,)/2,
Ng =1,—i,+1ifi > i,. The index of the central bead i. yields the index of the trapped
bead i,, = i.+ N /2, which therefore depends on the motion of the globule, see fig. 5.1.

81



5. Reptation dynamics in polymer globules

Figure 5.3.: (a) The number of I é_ _‘6 o - To-—-——a--o
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5.3.2. Results
Number of monomers inside the globule

The number of monomers N inside the globule depends on the chain length N and
on the cohesive strength ¢, fig. 5.3a. Increasing ¢ increases N up to a limiting value
which is given by the root of

Ng® +(N = Ng) = L/(2a). (5.12)

Eq. (5.3.2) describes a spherical globule consisting of N; monomers with a tightly
stretched linker with N — N; monomers. As the limiting value of our simulations
coincides with the predicted value of eq. (5.3.2), as shown in fig. 5.3a, our definition
of the globule is justified. For large €, the linkers are tightened and stretched as the
energetic gain of a monomer joining the globule outweighs the entropy of a loosely
fluctuating linker. For small &, monomers are not tightly bound to the globule as can
be seen qualitatively from fig. 5.1. Therefore size fluctuations of the globule are more
substantial for small cohesive strengths and decrease upon increasing ¢, fig. 5.3b.
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5.3. Diffusivity of a globule along a periodic chain: equilibrium simulations

‘ ‘ ] Figure 5.4.: Trajectories of the
x-coordinate of the center of
the globule r(® for N = 200
and interaction strengths & =
1,1.25,2.5,2.81, eq. (5.3.2).
The smaller the attractive inter-
action between the monomers
the more mobile the globule is. If
¢ is large, the globule is frozen in
a single conformation and does
1.0 not move.

—
o
o

Globule center r'® / a

Ny My Ny Oy

0 0.5
Time t / (10%7)

Definition of the center of the globule

Since we are considering a ring-like polymer subject to periodic boundary conditions
in the x-direction, the center of mass of the globule has to be defined carefully. We
introduce the non-periodic polymer coordinates {# )}, which are not restricted to the
first simulation cell. They are defined recursively starting from the first monomer with
# =r® and

#UHD = p( 4 pli+D) (5.13)

for i > 1, where r*1 is given by eq. (4.11a). The center of the globule r(® is
calculated by using the non-periodic polymer coordinates, eq. (5.3.2),

+(6) —

1 G
—» 70, 5.14
N Z] (5.14)
Periodic boundary conditions may introduce jumps of the size of the box L in the
trajectory r(@(t). We remove those jumps by connecting the value of any quantity q(t)
at time t, which is subject to periodic boundary conditions, with the value q(t — At)
in the previous time step. This is done by recording q(t — At) + D(q(t),q(t — At); L)
instead of g(t). It is important to note that information is neither lost nor added by
applying this operation, since only multiples of the box size are added to the quantity.

Diffusivity of the globule

This setup enables us to study the motion of the globule in space in a fashion that is
coupled to its internal reptation dynamics. In fig. 5.4 trajectories of the x-coordinate of
the center of the globule r)(CG), eq. (5.3.2), is shown for N = 200 with various cohesive
strengths €. Fig. 5.4 demonstrates that the diffusivity decreases with increasing €. As
the monomers become more attractive it is more difficult for the globule to rearrange
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Figure 5.5.: The mean squared displacement (MSD) of the center of the globule for N =
200 and & = 1, 1.75, 2.5, 2.81 is calculated from the trajectories, fig. 5.4, using eq. (5.3.2).
Symbols denote the measured MSD from our simulations, lines the corresponding linear fits
for MSD(t) Z 10. For é < 2.5, the globule exhibits normal diffusion and the diffusivity Dg
decreases as ¢ increases. For § = 2.5, normal diffusive behavior is almost reached, whereas for
& = 2.81 the diffusion time scale is larger than the simulation time and hence no diffusion is
observed.

internally and hence to move. This effect is further accented by the increase in globule
size Ng, see fig. 5.3, which also decreases the mobility of the globule.

To quantify these observations we calculate the mean squared displacement (MSD)
of r}(cG). For normal diffusive behavior one expects the MSD to scale linearly with time
and to be characterized by the diffusion constant Dg

T
MSD(t) = {(r©@(6)—r®(0))?) = %f (rOt+¢)-r@())?dt’ = 2Dgt . (5.15)
0

MSD curves for N = 200 and various cohesive strengths are shown in fig. 5.5 on a
double logarithmic plot. The MSD curves are fitted with linear functions for MSD(t) 2
10 in order to obtain the diffusion constant D;. For small ¢ < g, normal diffusion
is observed with D; decreasing as ¢ increases. However, as can be seen in fig. 5.5
for N = 200 and € = 2.5, the normal diffusive regime only occurs at very long time
scales and for £ = 2.81 is barely reached on the time scales of our simulations. We
attribute this to a change of the internal dynamics of the globule. We speculate that,
while for small ¢ reptation is the dominant process for rearranging the globule, this
process is suppressed for ¢ > &,. Therefore, the only way for the globule to rearrange
might be to dissolve — at least partly — and refold into a different configuration. As
a consequence the time scale characterizing the internal dynamics for ¢ > &, should
become comparable to the time scale on which the globule dissolves. This dissolution
time scale is huge as it scales exponentially with éNg and is beyond our simulation
time. For that reason we observe only stuck globules for large cohesive strengths,
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5.4. Forced unfolding of globules: non-equilibrium simulations

which remain in a single conformation. The fitted diffusion constants are shown in
fig. 5.6 and compared with the ideal system, where internal friction is absent and
the globule and the linker move independently. The diffusivity of the ideal system is
estimated by the Rouse diffusion constant of Né monomers [201]

Dy = “‘;\II{?T (5.16)

G
N{, < Ng is the reduced number of monomers that actually have to move on average
when the globule is displaced by some distance x; the center of the N — N{ linker
monomers remains stationary. N/, can be estimated by continuing the linker through
the globule and subtracting the number of monomers, which belong to this linker, from
Ng, see fig. 5.7 for an illustration,

/ lG
NG:NG_(N_NG)L—Z .
G

(5.17)

In fig. 5.6a a pronounced dependence of the diffusion constant D on the globule size
Ng is observed. The diffusivity decreases as the internal interactions ¢ increase. This is
due to the coupling of the internal dynamics of the globule to the overall motion of the
globule, because in our simulation setup the linker is fixed and the globule can only
move if the chain reptates through the globule. Slowing down the internal dynamics
by increasing ¢ thus reduces the mobility of the globule. For small ¢ one observes
Dg ~ D, implying that internal friction is unimportant. However, increasing € causes
increasing deviations between the mobility of the globule and the ideal system until
finally D drops to zero as the liquid-solid transition is approached. To get rid of the
size dependence we show the rescaled diffusivity Dg/D,, in fig. 5.6b. For ¢ — 0O the
rescaled diffusivity approaches unity indicating that internal friction is unimportant.
The rescaled diffusivity exhibits, within error, no dependence on the size of the glob-
ule. Only as ¢ approaches the solid regime deviations between different system sizes
become observable. We conclude that the internal friction is extensive and scales with
the size of the globule

Dg ox 1/N(, (5.18)

as will be corroborated by our non-equilibrium simulations in section 5.4.

5.4. Forced unfolding of globules: non-equilibrium
simulations

5.4.1. Model

We now discuss the results of the previous section in the context of non-equilibrium
denaturation of homopolymeric globules [183]. In a distinct set of simulations, the
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Figure 5.6.: (a) Diffusion constant D of the center of the globule (open symbols) as ob-
tained from linear fits to the MSD curves, fig. 5.5. Dg decreases with increasing N and e¢.
At € = £, ~ 2.5 a transition of the internal dynamics occurs and the diffusion constant drops
to zero. Dg is compared to the ideal Rouse diffusion constant D, (solid symbols) of a globule
with Né monomers, egs. (5.3.2) and (5.3.2), which can move freely and independent of the
linkers. Therefore, D, is the diffusion constant of a system where internal friction is absent
and does not impede the motion of the globule. For small £ one observes D ~ D, and internal
friction is negligible. However, increasing ¢ slows down the internal dynamics and hence the
macroscopic motion of the globule. This causes deviations from the ideal system. (b) Rescaling
the diffusion constant of the center of the globule D;/D, removes the N dependence. Only
weak dependence on the system size is observable. Therefore the diffusion constant scales
as 1/N/, and the internal friction is extensive. By approaching the liquid-solid transition &, a
dependence on Nj sets in as &, depends on Ng.
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5.4. Forced unfolding of globules: non-equilibrium simulations

Figure 5.7.: Illustration of the concept and calculation of the reduced number of monomers N
in the globule. For a displacement of the globule by a distance x only a reduced number of
monomers have to move, here Né = 14 (shown in orange). Therefore, the linker is continued
through the globule and the monomers belonging to this linker are subtracted from N yielding
N, see eq. (5.3.2).

ends of a globule are trapped at rM(t) = —R(t) and r™N(¢) = R(t). The traps are
moved at constant speed R, (t) = Rg(min) + vt, with Rgcmi“) =aN/10 and R, = 0, up
to a maximal extension R&max) =a(N —1). The force acting on these terminal beads is
measured. The backbone bonds are modeled by a harmonic potential Uy, eq. (5.3.1).
Excluded volume and cohesive interactions are again modeled by a Lennard-Jones
potential Uy, eq. (5.3.1). Eq. (5.2) is used to integrate the Langevin equation. We no
longer employ periodic boundary conditions, however still prevent knot formation by
introducing a potential, which mimics two repulsive bars that extend from the first/last
bead to the left/right along the x-axis

S ((2a/p©) ~2(2a/p0)° +1) if p < 20 and || > R,

Uk ==
0 else,

(5.19)

. [ 2 N2
pW = r}(,l) + rz(l) . Uy does not affect the stretching response. Two different pro-
tocols are used to obtain the initial configurations to investigate the role of config-

urational history on the globule pulling response. We record force extension curves
for various chain lengths N = 50, 100, 200, 300, cohesive strengths 0 < & < 4.1,
and pulling velocities ¥ = v/(a/7) = 0.001, 0.0045, 0.01, 0.0225, 0.045 going signifi-
cantly beyond our previous work, where the largest system was N = 100, the slowest
velocity was ¥ = 0.0045, and only un-annealed initial configurations are used. For
each parameter set twenty stretching cycles are simulated.
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Figure 5.9.: Typical initial config-
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5.4. Forced unfolding of globules: non-equilibrium simulations

Annealed initial structures

Annealed initial structures are obtained by performing an equilibrium annealing sim-
ulation with cohesive strength € = 0.8 and fixed trap position R, = 0.1aN. Every
t = 200007 a structure is recorded, which is subsequently equilibrated for t = 100007
using the cohesive strength at which the pulling simulation is to be conducted. The
resulting structure is used as one initial configuration for the subsequent pulling cycle.
In fig. 5.8a the pulling protocol is illustrated and in fig. 5.9 typical initial configurations
are depicted.

Un-annealed initial structures

This set of initial structures is obtained by starting from an extended configuration
and moving the traps from Rgcmax) =a(N —1) toR, = 0.03aN. Typically, we observe
the formation of one globule for ¥ < 0.01 and the formation of two globules near the
traps for ¥ > 0.01, which merge at small extension, see snapshots in fig. 5.8b. Without
pausing, the traps are subsequently extended to Rgfmi“) = 0.1aN, where the actual
pulling cycle starts and force extension curves are recorded. During the preparation
the traps are moved with the same velocity v with which the force extension curve is
recorded, fig. 5.8b. For larger cohesive strengths ¢, non-equilibrium ordered structures
prevail as initial configurations for the subsequent pulling cycle, see fig. 5.9 for an
illustration. These structures might be of relevance when studying the dynamics and
packing of the DNA chromatin structure [166-168].

5.4.2. Liquid-solid transition

In fig. 5.10, averaged stretching curves of twenty pulling cycles for the set of annealed
structures are shown for various ¢ and ¥ = 0.001, N = 300. Beyond the globule
transition, £ > £; ~ 0.5 [25, 183, 193], a ¢ dependent force plateau is observed.
The plateau force F, increases as ¢ increases and is associated with the equilibrium
free energy per unit length of globule formation, Fy,a o ¢ — ¢ [183]. For larger
extensions x /L. ~ 0.8 a dip in the force extension curve appears, which is the signature
of two-state behavior characteristic of globule dissolution [159]. Once the globule is
disrupted, the force extension curve becomes independent of the cohesive strength ¢
and follows the trace of an extensible freely jointed chain (broken line)

x/L.=coth(2aF /(kgT)) + kg T/(2aF)+ F/(2ax) . (5.20)

A phantom chain (¢ = 0) coincides perfectly with eq. (5.4.2) indicating that pulling
happens under equilibrium conditions. The curve for § = 2.5 features a maximum at
x /L.~ 0.3, whose origin will be discussed in the next paragraph.

Fig. 5.11 shows force extension traces of the two sets of initial configurations for
N = 300, # = 0.001, and strong cohesive forces § = 2.08, 2.5, 2.91. The thick
curves depict the average of twenty pulling curves. The thin curves are examples
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Figure 5.10.: Force extension curves are shown for constant velocity # = 0.001, various cohe-
sive strengths, N = 300, and annealed initial configurations. The curves are averages of twenty
pulling cycles. Above the globule transition £ > &; &~ 0.5 a force plateau followed by a dip in
the force extension curve is observed. These two features indicate the existence of a globule
at small extensions and the dissolution of the globule at larger extensions. The broken line
depicts the theoretically expected force extension trace of an extensible freely jointed chain for
§=0, eq. (5.4.2). For § = 2.5 the averaged pulling curve exhibits a marked maximum at small
extensions due to large fluctuations in the individual force extension curves, which indicate
the onset slow internal dynamics, see fig. 5.11, where averaged and individual force extension
curves for £ > 2 are shown.

of individual curves for a given parameter set and different initial configurations. In
figs. 5.11a-c pulling curves starting from the set of un-annealed configurations are
shown. Increasing ¢ leads to an increasing plateau force as already observed [183],
see fig. 5.10. For £ > 2.5 some stronger fluctuations of the force are observed, but
the force extension traces are qualitatively similar to the curves for £ < 2.08. The
situation is vastly different for pulling curves starting from the set of annealed ini-
tial configurations, figs. 5.11d-f. Again, for small cohesive strengths & < 2.08 the
pulling curves are smooth and no strong fluctuations occur, cf. fig. 5.10. However,
increasing the cohesive strength further leads to pronounced fluctuations in the force
extension curve. This is due to a transition of the internal dynamics from liquid-like
to solid-like [7, 183, 195, 198-200, 205]. Since the un-annealed initial configurations
are rather ordered — especially for large ¢ — the globules are easily unwound without
inducing the pronounced fluctuations, which are observed for the annealed, rather
disordered initial configurations and & > &;. The liquid-solid transition occurs for the
un-annealed structures, too, but has no signature in the pulling setup.

The dependence of the liquid-solid transition on the globule size N is illustrated
in fig. 5.12. There, the force is plotted versus the number of monomers N inside the
globule. Ny is calculated via eq. (5.3.2) using the extension x of the polymer instead of
L. One notices that the huge fluctuations cease once the globule is below a certain size,
which depends on ¢. This feature is independent of the chain length as curves with
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Figure 5.11.: Typical pulling curves for N = 300 and # = 0.001 with (a-c) un-annealed and
(d-f) annealed structures as initial configurations. The thin lines are individual force extension
traces, whereas the thick black line is the average of twenty pulling curves. The un-annealed
structures exhibit rather smooth pulling curves and no qualitative difference between different
cohesive strengths ¢ is observed. However, the annealed structures feature marked fluctuations
above a certain threshold ¢, which cease as the globule size decreases. We attribute these
fluctuations to a liquid-solid transition, which dramatically changes the internal dynamics. This
liquid-solid transition occurs in the un-annealed structures, too, but shows no clear signature
in the pulling curves as those structures are rather ordered and hence are easily unwound.
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Figure 5.12.: The internal dynamics and the position of the liquid-solid transition depend on
the number of monomers N, eq. (5.3.2), inside the globule and the cohesive strength €. Here,
averaged force extension curves in the vicinity of the liquid-solid transition are shown for
the annealed set of initial configurations. The solid state and the slow internal dynamics are
recognized as huge fluctuations in the pulling force, which lead to the peak in the averaged
curve. Once Ng is below a certain threshold (&~ 100 for § = 2.91, ~ 140 for § = 2.5) the
fluctuations cease and the globule is driven into the liquid state, which is recognized as the
collapse of the curves at the transition for different N and equal ¢. The dependence of the
liquid-solid transition on N will be shown more explicitly in ref. [7].

equal ¢ but different N coincide at the transition, but solely depends on Ng [7, 193-
200]. The cohesive strength &, at which this liquid-solid transition occurs depends on
the size of the globule N, but is independent of the pulling velocity within the range
of velocities studied. In fig. 5.13 we see that even with the highest pulling velocity
no large fluctuations in the force extension curve are induced and the globule remains
in the liquid phase for & = 2.08. Therefore, it is not a mere non-equilibrium pulling
feature but an indication of a change in the internal dynamics. The transition observed
here is the same transition that induces the abrupt change of the globule diffusivity,
fig. 5.6, since both the equilibrium globule diffusion and the non-equilibrium pulling
simulations are ultimately related to the time scale describing the motion of monomers
inside the globule.

5.4.3. Internal friction

Dissipated energy scales linearly with the velocity below
the liquid-solid transition

For small ¢ < g, the internal dynamics are fast and monomers are mobile inside the
globule. Therefore, no significant difference between the two different sets of initial
configurations is observed.
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Figure 5.13.: Averaged pulling curves for various pulling velocities with N = 300, £ = 2.08,
and annealed initial configurations. The friction force increases with increasing pulling ve-
locity. The curves with the slowest pulling velocities ¥ = 0.001, 0.0045 almost coincide, in-
dicating that one has reached nearly the equilibrium pulling limit. The dotted curve is one
individual pulling curve for ¥ = 0.045. The inset illustrates the definition of the dissipated
work, eq. (5.4.3), which is the shaded area between the two curves.

In fig. 5.13 pulling curves for various pulling velocities v are shown. We observe that
even for a cohesive strength as large as £ = 2.08 and polymers as long as N = 300,
the two slowest pulling curves ¥ = 0.001, 0.0045 almost coincide. This indicates
that force extension curves for # = 0.001 are already very good approximations for
equilibrium curves. Increasing velocity leads to increasing energy dissipation. There
are two major mechanisms leading to dissipation: solvent friction and internal friction.
These dissipation mechanisms dominate at different parts of the pulling curve. For
small extensions, when most of the monomers are part of the globule, internal friction
dominates. Towards the end of the curve, the globule is markedly smaller and the
solvent friction term dominates the pulling curve. The dissipated work AW (v, ¢) is
defined as [183]

AW(v,e) =W (v,e) — Wq(e), (5.21)

where the work done by one trap is generally defined as

Rg(max)

W= —J F(x)dx , (5.22)

Rg(min)

see inset of fig. 5.13 for an illustration. The equilibrium work W,,(¢) is obtained from
extrapolating W(v,¢) to v — 0.

In fig. 5.14 we show the dissipated work AW as a function of the velocity v for N =
300 and various ¢ obtained from the pulling curves. Below the liquid-solid transition
£ < &, ~ 2.5 the dissipated work scales linearly with v, which is elucidated further
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5. Reptation dynamics in polymer globules

Figure 5.14.: Dissipated work per
monomer AW/N as a function
of the pulling velocity v for
N = 300 and different cohe-
sive strengths ¢ starting from the
(a) annealed and the (b) un-
annealed set of initial configu-
rations. Symbols depict simula-
tion data, lines show linear fits to
the data, see eq. (5.4.3). Below Z
the globule transition, § < &; ~ 0 —
0.5, the curves collapse and the
attractive forces become almost
negligible. Below the liquid-solid
transition, £ < £ ~ 2.5, our sim-
ulations are carried out in the lin-
ear response regime as the curves
are linear in v in the whole range
of velocities studied. Above the
liquid-solid transition the linear
scaling breaks down. AW is
slightly lower for the simulations
starting from the un-annealed set
of initial configurations as the
globule might not be completely 0 o= L —L— —L— ‘
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in fig. 5.15, where AW /v is plotted. Therefore, our simulations are conducted in the
experimentally relevant linear response regime. Above the liquid-solid transition this
scaling breaks down. Further, we observe that below the globule transition, £ < é; ~
0.5, the dissipated work is almost independent of the cohesive strength. For the curves
starting from the un-annealed set of initial configurations, fig. 5.15b, the dissipated
work is virtually independent of the cohesive strength as long as £ < 0.8. As curves
with € = 0 (phantom chain) and 0 < & < 0.8 (with self avoidance) coincide, monomer-
monomer attraction and topological constraints, e. g. entanglements, are negligible for
small values of the cohesive strength. This effect is less pronounced in the simulations
starting with the annealed set of initial configurations, where topology starts to play a
role even for small £. Knots, which might arise due to bond crossing, are not observed
in our simulations. The fluctuations of the dissipated work reveal again the liquid-solid
transition. In fig. 5.16 the sample standard deviation

oaw = VE/(k—1) V{AW2 — (AW)?) (5.23)

94



5.4. Forced unfolding of globules: non-equilibrium simulations

2800 T T 2300 amncaled
- R e
2 i —Oé=0 —vé=125 |
= | — 0 E=04 —0£=2.08 i
—0£=0.6 —X =25
L X -
S 20| o —iecE
= N X ]
= | x .
o I %
(] -
i 100 ?' o]
g ﬁ .
5 IR N I R I R [ N R
0 0.01 0.02 0.03 0.04
@ Velocity v / (a/7)
a
r[;\ +\ ul_\ [ T LS I S S I O S
£ 400 | + N =300, un-annealed
2 - —noOF=0 —0§=2.08 |
< I —0£=0.8 —X§=25 ]
> 300 [x —vVE=125 —+&=41 A
4 - % AV -+ |
= 200 i ]
g B X +
"O - ,
2 100 | *
2 L N
B - Q .
R ——" & =
a 0 Q\ L1 [ B [ [ R
0 0.01 0.02 0.03 0.04

(b)

Velocity v / (a/7)

Figure 5.15.: Dissipated work per
monomer rescaled with pulling
velocity, AW /(Nv), as a func-
tion of the pulling velocity v for
N 300 and different cohe-
sive strengths ¢ starting from the
(a) annealed and the (b) un-
annealed set of initial configura-
tions. Symbols denote simulation
results, lines depict " as obtained
from linear fits, see eq. (5.4.3),
to the data, see fig. 5.14. For
€ < g, our simulations are car-
ried out in the linear response
regime as there is no v depen-
dence after rescaling. Above
the liquid-solid transition fluctu-
ations are huge, the linear scal-
ing in v breaks down, and sig-
nificant deviations from the lin-
ear fit occur. For § = 0, 2.08 er-
ror bars indicate the standard de-
viations of the twenty measure-
ments of AW(v,e). The fluc-
tuations of the work necessary
to stretch the polymer are small
below the liquid-solid transition
and huge above; see fig. 5.16,
where the standard deviations
are plotted.

of k = 20 measurements of AW for # = 0.001 is plotted against €. For ¢ < &g, O poy /N
is independent of N and €. As one crosses from the liquid into the solid phase at & = &
the fluctuations increase. Fig. 5.16 clearly demonstrates that ¢, depends on the system
size N; explicitly, & ~ 4 for N = 50, & ~ 2.9 for N = 100, &, ~ 2.3 for N = 200, and

é,~ 2.1 for N = 300.

Friction force scales linearly with N and friction is extensive

We already observed that the internal friction and the dissipated work AW scale lin-
early with the velocity v. Therefore, we extract the velocity dependence and express
the friction force Fy, in terms of the friction coefficient I'(¢, N)

Fg(v,e,N)=F(v,&,N) — Fo((¢,N)=v I'(g,N),

(5.24)

95



5. Reptation dynamics in polymer globules

3 . _ —~ L L L L L L ]
F'1g1%re 5.16.: The standardeef = 10 ————— 5 =0.001¢ ]
viation per monomer o sy /N o = .| o gannealed o
the dissipated work, see fig. 5.14, < 10° O A 7 d
as obtained from twenty pulling 2 - QZ o J Al
cycles increases abruptly at the 2 10 o 9 :
S . . = | aogofa © © | i
liquid-solid transition. For & < S o= il e A
&, Oaw/N is independent of I Lr 2 3 4 ]
the chain length N and small. g ON =50 i
. . = ON =100 A
The fluctuations of the dis- ¢ AN =200 o
sipated work increases signifi- 2 [0 N =300 QA g o ol
cantly when ¢ > g, where g OO 1 9 3 4

decreases for increasing N. The
data is obtained from simulations
with ¥ = 0.001 and annealed ini-
tial configurations.

Cohesive strength ¢ / (kzT)

where Fq is the equilibrium force extension curve. Analogous to the Stokes friction of
a sphere, we define the friction coefficient to scale like [183]

I'(e,N) x ng(e)aN! , (5.25)

where ng(¢€) is the internal viscosity, which depends on ¢. The exponent y describes
the friction mechanism at work during unraveling the globule. Two limits can be
distinguished: first, if y = 0 the friction force is independent of the globule size Ng
and only a finite number of monomers, which does not scale with N, contribute to
dissipation. We term this case local, intensive friction. This scenario does not seem
compatible with a reptation mechanism, where the entire chain would have to move
through the globule. Second, y = 1 describes the situation, where a finite fraction of
the globule, that is proportional to Ng, or even the entire chain rearranges and hence
contributes to the friction force. We term this case global, extensive friction and this
scenario would be equivalent to reptation. Integrating the friction force, eq. (5.4.3),
yields the scaling of the dissipated work

AW(v,e) = — f Fe(v,e,N)dx < nga®N"* 1y, (5.26)

where we assume Ng ~ (L. — 2R,)/(2a). In fig. 5.17 AW /(N?v) is plotted and all
curves with equal € < g, coincide. This implies that the dissipated energy per monomer
AW /N is extensive, y = 1, meaning that a finite fraction of the globule rearranges
during pulling and not only the few monomers, which are about to be pulled out of
the globule. Again, this scaling behavior breaks down above the liquid-solid transition
and beyond the linear response regime.
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Figure 5.17.: Rescaled dissipated work per monomer AW /(N2v) as a function of the pulling
velocity v for different N and cohesive strengths ¢ starting from the annealed set of initial
configurations. Curves with equal ¢ and different N collapse for ¢ < €. This shows that the
dissipated work per monomer is an extensive function and AW oc N2v. Again, this scaling
behavior breaks down above the liquid-solid transition.

Internal viscosity

To compare the internal viscosity quantitatively we fit functions linear in v to the
dissipated work,

AW(v,e)=T(e,N) v, (5.27)

with I'(e,N) o ng(¢)N""!. As can be seen in fig. 5.14, AW o v for all velocities
studied if ¢ < &;,. Consequently we include all velocity data to fit the linear function.
However, for € > &, a marked deviation from linear behavior is observed. There, we fit
only to the slowest velocities, where the data still scales linearly with v. The relative
excess viscosity

ne(e)  [(e,N) _ AW(e)
—  _1== 1= _
n6(0) I'(0,N) AW(0)

is shown in fig. 5.18 for annealed and un-annealed initial configurations. This way
the numerical prefactors in eq. (5.4.3) are eliminated and we are able to compare all
different sets of parameters. The excess viscosities coincide for different N, which in-
dicates that all I'(¢, N) exhibit the same N dependence. In fig. 5.18a we additionally
plot the excess viscosities as obtained from the equilibrium globule diffusion simula-
tions 1ng(e)/ng(0) —1 = Dy/Dg(e) — 1, see fig. 5.6b. The excess viscosity from the
equilibrium simulations is slightly lower which might be due to underestimating D,
eq. (5.3.2), or additional dissipative mechanisms in the non-equilibrium pulling simu-
lations: sometimes it may happen that the whole globule is pulled through the solvent
as an entanglement is not resolved quickly enough, which causes additional dissipa-
tion. We also compare our data to the effective friction constant of a particle diffusing

(5.28)
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in a periodic potential U, = 0¢/2cos(nx/(2a)) with amplitude O¢. 6 is a scaling fac-
tor for the amplitude of the corrugated and may be viewed as a fitting parameter. This
potential mimics the energy landscape the globule experiences if it is translated along
the x-axis. The solution of this one-dimensional diffusion problem yields an effective
viscosity [181]

np(g) 2 Oe
@) (2kBT) (5:29)

for times larger than the typical time during which the particle is trapped in one min-
imum, t > texp(0e/(kgT)). I, (2) is the zeroth order modified Bessel function with
the asymptotic limits I (z) ~ 1+22/4 forz < 1 and I, (z) ~ €*/v/27z forz > 1 [115].
As can be seen from figs. 5.18 the rescaled internal viscosity, eq. (5.4.3), is reproduced
very well by the simple scaling prediction eq. (5.4.3) for 6 = 1. Our results com-
pare excellently to our previous results where smaller globules N < 100 have been
considered [183].

In summary, we have observed two different dynamical regimes: a solid-like regime,
characterized by huge fluctuations in the force extension trace, and a liquid-like regime.
The position ¢ of the transition between these two regimes depends on the size of the
globule N;; and the cohesive strength ¢, cf. figs. 5.12 and 5.16. In the liquid regime we
have shown that the dissipated work per monomer is extensive and a finite fraction of
the globule contributes to the internal friction, fig. 5.17. Further, by rescaling the in-
ternal viscosity we showed that the dependence of the internal friction on the cohesive
strength ¢ is described very well by the diffusion of a single particle in a corrugated po-
tential. We extended our previous results [183] to significantly larger systems and are
able to show that — below the liquid-solid transition — the history, i. e. the preparation
of the initial structures, does not influence the scaling results, see fig. 5.18.

5.5. Conclusions

We have shown that two dynamic regimes exist for a collapsed homopolymer depend-
ing on the cohesive strength ¢ and the size of the globule N;. For small ¢ < & and
small N the monomers inside the globule are rather mobile and the chain is in a liquid
state. The internal friction is studied by considering the diffusion of a globule along
an extended chain and obtaining the dissipated work from non-equilibrium stretching
simulations in the linear response regime. We find that the internal friction is exten-
sive and thus scales linearly with N;. The internal friction increases as ¢ increases
until the liquid-solid transition is reached. The signature of the solid state is Dg = 0
for the equilibrium globule diffusion setup and huge fluctuations in the force extension
curves for the non-equilibrium pulling setup. The solid state is characterized by very
slow internal dynamics. This has implications for protein folding, since our results
suggest that a quick collapse of a large hydrophobic core of the protein may result
in a kinetically trapped and misfolded protein, which would not be able to fold into
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Figure 5.18.: Rescaled excess
viscosity  mg(e)/ng(0) — 1,
eq. (5.4.3), as a function of
the cohesive strength & for
(a), (¢) annealed (b), (d) un-
annealed initial configurations.
The viscosity ng(e) is obtained
from linear fits to the dissipated
work as a function of the ve-
locity v. As the data points for
different N coincide, all '(e,N)
exhibit the same N dependence.
The solid line is the prediction
of the excess viscosity of a
Brownian particle in a sinusoidal
potential, see eq. (5.4.3). In
(a), (c¢) the excess viscosity
as obtained from our equilib-
rium simulations, see fig. 5.6b,
N6(€)/nc(0) —1=Dy/Dg(e) — 1
is shown. The liquid-solid
transition is recognized as the
deviation of the simulation
results from the simple scaling
relation eq. (5.4.3).
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the native structure due to very slow internal dynamics for too large cohesive energies.
The system can be driven into the liquid state by removing monomers from the globule
through chain extension.
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CHAPTER 6

SUMMARY AND OUTLOOK

In this work the statistical mechanics of nucleic acids and bio-polymers have been
studied. We demonstrated that coarse graining is an excellent tool both to study the
thermodynamics of these systems and to improve theories, on which many biotechno-
logical applications rely.

In chapter 2, we introduced a three-state model for double stranded DNA under
tension that distinguishes between native B-DNA, overstretched S-DNA, and molten
M-segments. At the same time it correctly accounts for the entropy of molten loops,
characterized by the exponent ¢ in the asymptotic expression S ~ —¢lnm for the
entropy of a inter-strand loop of length m. Force extension curves were exactly derived
employing a generalized Poland-Scheraga approach and compared to experimental
data. We simultaneously fitted to force-extension data at room temperature and to
the denaturation phase transition at zero force and were able to establish a global
phase diagram in the force-temperature plane. Under a stretching force, the effects of
the stacking energy, entering as a domain-wall energy between paired and unpaired
bases, and the loop entropy are disentangled. Therefore we could estimate the loop
exponent ¢ independently from the precise value of the stacking energy. The fitted
value for ¢ turned out to be small, suggesting that nicks dominate the experimental
force extension traces of natural DNA.

In chapter 3 we developed a theory for secondary structures in single stranded ho-
mopolymeric nucleic acids that accounts for the logarithmic entropy —clnm of loops
within one strand and allows to study chains under external force. In the thermo-
dynamic limit of a long strand, the chain displays a phase transition between a low
temperature / low force compact (folded) structure and a high temperature / high
force molten (unfolded) structure. The influence of ¢ on phase diagrams, critical ex-
ponents, melting, and force extension curves was derived analytically. For vanishing
pulling force, only for the limited range of loop exponents 2 < ¢ < 2.479 a melt-
ing transition is possible; for ¢ < 2 the chain is always in the folded phase and for
¢ 2 2.479 always in the unfolded phase. A force induced melting transition with
singular behavior is possible for all loop exponents ¢ S 2.479 and can be observed
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6. Summary and outlook

experimentally by single molecule force spectroscopy. We discussed the influence of
these findings on the hybridization or denaturation of double stranded nucleic acids.
The Poland-Scheraga model for nucleic acid duplex melting does not allow base pair-
ing between nucleotides on the same strand in denatured regions of the double strand.
If the sequence allows these intra-strand base pairs, we showed that for a realistic loop
exponent ¢ ~ 2.1 pronounced secondary structures appear inside the single strands.
This leads to a higher melting temperature of the duplex than predicted by the Poland-
Scheraga model. Further, these secondary structures renormalize the effective loop
exponent ¢, which characterizes the weight of a denatured region of the double strand.

In chapter 4 the theory of the previous chapter has been extended to correctly
account for sequence and salt effects. We calculated the folding free energies and
minimum free energy configurations for real sequences. Salt effects entered in two
ways: first, we derived salt induced modifications of the free energy parameters for
describing base pairing and, second, we included the electrostatic free energy for loop
formation. Both effects were modeled on the Debye-Hiickel level including counte-
rion condensation. We validated our theory for two different RNA sequences: For
tRNA-phe, the resultant heat capacity curves for thermal denaturation at various salt
concentrations accurately reproduce experimental results. For the P5ab RNA hair-
pin, we derived the global phase diagram in the three-dimensional space spanned by
temperature, stretching force, and salt concentration. Excellent agreement with the
experimentally determined critical unfolding force is obtained. We showed that for a
proper description of RNA melting and stretching, both salt and loop entropy effects
are needed.

In chapter 5 we studied the reptational dynamics of polymer globules by Brownian
dynamics simulations. Equilibrium simulations, where we investigated the diffusional
reptation in a globule, were compared with non-equilibrium simulations, where we
unfolded the globule by pulling the ends with prescribed velocity. A strong depen-
dence of the internal dynamics on the Lennard-Jones interaction strength & and the
globule size N is observed. We found two distinct dynamical regimes: a liquid-like
regime with fast internal dynamics and a solid-like regime with slow internal dynam-
ics. The position ¢, &~ 2.5kg T of the transition depends on Ng. We characterized these
regimes using diffusion and pulling simulations to explore each regime’s internal fric-
tion characteristics. In the liquid-like regime (¢ < &) a moderate dependence on ¢
is observed and the dissipation exhibits extensive scaling oc N;. The solid regime is
characterized by slow internal dynamics suppressing diffusion of the globule along the
chain and inducing huge fluctuations in the force extension curve.

As always, answers to questions evoke other — new and interesting — questions. We
saw that secondary structure formation inside denatured regions of double stranded
nucleic acids plays an important role and should exhibit marked sequence dependence.
The next logical step would be to extend existing theories for DNA melting — such as
the Poland-Scheraga model [27, 28] or the Peyrard-Bishop model [51] - to allow for
intra-strand base pairing. Experimentally the effect of intra-strand secondary structure
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formation might be studied with the setup of Léger et al. [35], who were able to apply
both torque and stretching force on DNA molecules.

The prediction of RNA structures from sequences and the design of sequences yield-
ing specific structures is an active field of research [110, 119]. The theory presented in
this work relies on hierarchical folding and on the secondary structure of RNA being in-
dependent of the tertiary structure. Although this is a very good starting point, it is the
interplay of secondary and tertiary structure, which ultimately shapes the molecule.
Therefore future work should include this by allowing for pseudoknots [206], specific
salt interactions [143], or by combining coarse grained secondary structure prediction
with all-atom molecular dynamics simulations.

Knowledge on the internal dynamics of proteins, nucleic acids, and other bio-poly-
mers is essential for understanding folding or processes, which involve structural re-
organization of molecules. Through our Brownian dynamics simulations we demon-
strated that force extension curves depend strongly on the — annealed or un-annealed —
structure of the polymer globule. The influence of structure may also be studied by
introducing specific interactions between monomers, which would compel the poly-
mer to assume a certain conformation. The dynamics inside solid-like globules have
been shown to be fundamentally different from the dynamics of liquid-like globules.
Therefore, it would be interesting to further explore the mechanisms, which lead to
this difference, how they influence bio-polymer systems, and how nature circumvents
the restrictions imposed by the slow dynamics.

The statistical mechanics of bio-polymers and bio-physics in general is a rich field
of research, where theorists and experimentalists closely interact. Theoreticians are
constantly devising new models, improving existing techniques, and employing per-
petually increasing simulation system sizes. Theoretical physics enables a close up
view of nature and of the mechanisms at work, which might not yet be accessible ex-
perimentally. On the other hand, experimentalists are able to grab and manipulate
single molecules, resolve molecular structures on an Angstrém scale, and observe dy-
namics faster than picoseconds. Experiments are our enhanced eyes, ears, and hands,
with which we can experience and manipulate the world, test theories, and discover
new phenomena.

This thesis is my contribution to this inspiring scientific community.
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APPENDIX A

APPENDIX — DNA

A.1. Gibbs free energy of a worm-like chain

To calculate the worm-like chain Gibbs free energy ngLC(F ), we first calculate the
Helmholtz free energy Hl‘.NLC(x) of a worm-like chain (WLC) in the fixed extension
ensemble (Helmholtz ensemble). After that we Legendre transform HIWLC(X) in order
to obtain G}NLC(F ), which is the thermodynamic potential of a WLC in the fixed force
ensemble (Gibbs ensemble). As we will see, G)""(F) is extensive with respect to the
chain’s contour length nl;, [; is the length of one segment, and thus we can define the
Gibbs free energy per segment g}""“(F) = G"**(F)/n. We introduce the dimensionless
variables

. ) . .
fi=-, R=rpr, Ame=mmeli o gme_gmelSi g,
nli nli nli

where &; is the persistence length of DNA in state i = B,S,M. The interpolation for-
mula of Marko and Siggia [26] for the force extension curve of the WLC

. 1 1
Fi (%)= +X - - A2
@)= sy th g (a2
is used to calculate the free energy in the Helmholtz ensemble
) * . 2(2%-3) .
AMC(x)= | F&)Hd%’ +H\C = ¥ + A7 (A.3)
0 ’ 4(x—-1) ’

PNIIV‘{)LC is a free energy offset that accounts for the fact that even in the absence of an
external force the free energies of chains consisting of B-, S-, or M-segments are not

the same. In fact, this constant is not easy to calculate but can be dropped in the
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following since it can be adsorbed into the free energy contributions g?, cf. eq. (2.2)
in the main text. Now, we invert eq. (A.1)

-1

9 7 3
%, (F)=1- 3 i 2+\/4—( 31—1) (A.4)
4F, 3
(2+\/4—(?—1) )

and perform a Legendre transformation to obtain the Gibbs free energy of a WLC in
the Gibbs ensemble

GMC(F) = AV'C(%,(F,)) — Fix,(F,) . (A.5)
Egs. (A.1) and (A.1) lead to

n_li
BE;
i (x (FBE)® (2% (FBE:) - 3)

g e(F) = % GVIC(FBEY) (A.6)

" PBE; 4(x; (FBE) — 1) —FBE&i%; (Fﬁii)) ;

with &;(F,) from eq. (A.1).

A.2. Explicit form of the grand canonical partition function
of the three-state model for DNA

In the main text the expression
o0
Z2= Z VT (MpgVps)Mps - v = v+ (1 — MpgVps) ™ "Mps - v , (A.7)
k=0

has been derived for the grand canonical partition function. The matrices are given by

Zz 0 0 0 e Pl e Flu 1
Mps=| 0 Z5 O |, Vpg=|ePs» 0 ePu| y=|1].(A8)
0 0 2Zy e BV o=BVus 0 1
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A.3. Origin of the logarithmic loop entropy

1 is the unity matrix. Evaluating eq. (A.2) yields the grand canonical partition function
of the three-state model

Z= [ZB + Zg+ 2y
+ (e PV 4 ePln) 2y 25 + (e PV e PVis) Zo 2y + (e PV e 7Flim) 2, 2,

+ (e—ﬁ(VBs""VSM) + e BVsm+Vis) + e B(Vup+Vas) + e B(Vem+Vus) + e B(Vus+Vsp)

+ e BWVsp+Vem) _ o=F(Vas+Vsp) _ oa=B(Vem+Vus) — e—ﬁ(VMB+VBM))ZBZSZM]
% |:1 _ e—ﬁ(VBs+VSB)ZBZS _ e—ﬁ(VSM+VMs)ZSZM _ e—ﬁ(VMB+VBM)ZMZB

-1
_ (e—ﬁ(VBs+VSM+VMB) + e—ﬁ(VBM"‘VMs“‘VSB)) ZBZSZMi| ,
(A.9)

which depends on the grand canonical partition functions Z; of the different regions.

A.3. Origin of the logarithmic loop entropy

In the simplest case a polymer can be described as an ideal random walk with step
length b in d = 3 dimensions. When speaking of polymers b is also called Kuhn
length. Let us first consider a one-dimensional random walk. The probability to be
after N steps at point x = nb is given by the binomial distribution

N!
(VA )/ = n)/2)!

N
— ( ) .p(N+n)/2 (1 _P)(N—n)/Z ,

P(X) .p(N-Hl)/Z_(]_ _p)(N—n)/Z (AlO)

(N +n)/2

where p = 1/2 is the probability to move to the right and (1 — p) the probability to
move to the left. By virtue of the central limit theorem the binomial distribution can
be approximated by the normal distribution if N is large

X2

1 1
P(x)~ ———e 2n$% | (A.11)

VNb22n

Now, we consider a random walk in three dimensions, where there are N /3 steps in
each spatial direction. Since the steps in each of the three directions are independent
from each other, the probability distribution for being at point R = (x, y,z) after N
steps is

P(R) = P(x)P(y)P(z) = 282 (A.12)

(szzn/3)3/2e
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The probability of a closed random walk, i. e. a loop, is the probability to return to the
origin after N steps

P(0) (A.13)

T (Nb22m/3)32

The entropy difference between an ideal polymer forming a loop and an unconstrained
polymer is therefore given by

ASjoop(N) = kg In P(0) ~ kg InN ¢, (A.14)

where we introduced the loop exponent ¢ = C;gqeq = d/2 = 3/2 [74].

If one considers self-avoiding polymers the loop exponent increases, Cgay = dv =~
1.76 with v ~ 0.588 in d = 3 dimensions [74]. Hence the entropic penalty for closing
a loop increases. However, helices emerging from the loop increase ¢ further. In the
asymptotic limit of long helical sections, renormalization group predicts é; = dv+o0;—
lo; for a loop with | emerging helices [75, 102] where o; = el(2 — 1)/16 + £21(1 —
2)(81—21)/5124+O(e®) in an € = 4—d expansion. One obtains ¢; = 2.06 for terminal
loops in hairpin structures, c, = 2.14 for internal loops and ¢4 = 2.16 for a loop with
four emerging helices [1].

The same analysis holds if one considers different topologies, namely peeling off
one strand from the other starting from a nick. In this case one can show that ¢ = 0
for an ideal polymer and ¢ = 0.092 for a self avoiding polymer [75, 102].

Application of force to loops also alters the value of the loop exponent, which has
been shown by Hanke et al. [58].

A.4. Polylogarithm

The polylogarithm or Jonquiére’s function is defined on the open unit disc in the com-
plex plane by the series [76, 115]

Li () = Z i—a . (A.15)
n=0

The polylogarithm for different values of a is depicted in fig. A.1. The definition of
the polylogarithm can be generalized by analytic continuation on the whole complex
plane. Li,(z) has two branch points with respect to z, namely z = 1 and z = &
(complex infinity). Note that Li, (1) = {, is the Riemann {-function.

By virtue of eq. (A.4) one can show that the derivative of Li,(z) is given by

d . 1 .
—Li,(2) = —Li,_1(2). (A.16)
dz Z
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|} — a=0.5 1
| ——a=1.5

Polylogarithm Li,(z)

Figure A.1.: Plot of the polylogarithm Li,(z) on the real axis for three different values of the
parameter a = 0.5, 1.5 and 2.5. The polylogarithm diverges at z =1 for a < 1. For a > 1 the

value of Li,(z = 1) < oo is finite. For a < 2 the polylogarithm possesses a divergent slope at
z=1.

The expansion of Li,(z) around 2z, = 1 for 2 ¢ [1, 00) is given by [76]
. 1 2
Lla(z):§a+ga—1(z_1)+E(ga—Z_ga—l)(Z_l) +...

+(1-2)"1(r1-a)+ %(1 —ar(1-a)(1-2)+...) (A17)

From this expansion or also from eq. (A.4), the limiting behavior of the polylogarithm
and its derivative at z = 1 can be deduced

o oo for0O<a<l,

limLi,(z) = (A.18)
z—1 , fora>1,

y dL' @) 00 fora <2, (A.19)
im —Li,(z) = .
z—1dz ¢ {qoq fora>2.

A.5. Singularity analysis of generating functions

In this appendix we are trying to shed some light on the general relationship between
the asymptotic expansion of a generating function f near its dominant singularities,
i.e. the singularities which are closest to the origin, and the asymptotic expansion of
the function’s coefficients f, in its series expansion f (z) = Y, f,2". It will turn out that
for n — oo the coefficients f,, are solely determined by the dominant singularities [78,
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Figure A.2.: The contours (a) Cy, (b) C; and (c) H(n) used for calculating the coefficients used
in the proof of proposition A.5.1. As the only singularity is located at z = 1 (denoted by the
dot) and since the integrand in eq. (A.5) vanishes for |z| — oo, the integration along these
three contours yields the same result.

79]. In statistical mechanics the generating function f is generally referred to as the
grand canonical partition function whereas the coefficients f, are referred to as the
canonical partition functions

Proposition A.5.1. Let a be an arbitrary complex number in C\ {0,—1,—-2,-3,...}.
The coefficient of 2" in

fE)=010-2)" (A.20)

admits for large n a full asymptotic expansion in descending powers of n. We will use
for the coefficient of 2" in a power series of a function f(z) the common notation f, =
[2™]f (2). The coefficient of 2™ behaves for large n like

n*1 > e
" ~ 1+ — 1, A.21
[ @)~ peos ( 2 (A21)
where ey is a polynomial in a of degree 2k. In particular
1
e =5a(a -1) (A.22)
1
ey zﬂa(a —1D)(a—2)Ba—-1) (A.23)

Proof. First, we express the coefficient f,, = [2"](1—2)~* as a complex contour integral
via Cauchy’s formula

1 (1—2)"¢

= 2_7'51 . ZZTIT’ (A24)

fa
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where C is a small enough contour around the origin, so that all singularities of f lie
outside. In our case the only singularity of f is located at z = 1. For instance we
can start with C = C, which is a positively oriented circle with radius 1/2 around the
origin, Cy = {z € C,|z| = 1/2}, see fig. A.2a. Next, we deform this contour into a
contour C; such, that it does not cross the half line %z > 1. C; consists of a large circle
with radius R > 1 and a notch that comes back near to the left of z = 1, cf. fig. A.2b.
The contribution of this large circle is of O(R™""%) and is therefore negligible for
R — o0. Thus, we let R tend to infinity and are left with an integral representation for
fn where C; has been replaced by a contour #, see fig. A.2c, that can be parameterized
as follows

Hn)=H (M+H (M) +H(n), (A.25)
with

H()={z€C,z=w—1, we[l,o0)} (A.26)

HY (M) ={z€C,z=w+ -, we[l,00)} (A.27)

H(W)={z€Cz=1-, ¢ €[-Z,2]}. (A.28)

The contour starts slightly below the positive real axis at 400, winds clockwise in a
semi-circle around z = 1 and ends at 400 slightly above the positive real axis. This
type of contour is also called Hankel contour.

Let us perform a change of variable

t
z2=1+— (A.29)
n

and the integral in eq. (A.5) reads now

na_l _ t —n—1
fo= 5 L{(_t) (1 + ;) de. (A.30)

Next, we perform the expansion

t\ -1
(1 + _) — e—(n+1)log(1+t/n)
n

. t2 -2t 3t*—20t3 +24¢2
=e 1+ + R
2n 24n?

(A.31)

Thus, the integrand in eq. (A.5) converges point-wise to (—t) %e~* for n — oo. To
exchange integration and execution of the limit we need to establish uniform conver-
gence. From basic calculus it is known that a point-wise convergent series of functions
converges uniformly on any bounded domain. Therefore we split the contour into two
parts, namely into a part where Rt > ty > 1 and a part where Rt < ty1. It is clear
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from egs. (A.5), (A.5), and (A.5) that for large enough t, and large enough n the error
that arises from neglecting the part with Rt > t, can be made arbitrarily small. Thus
we are left with a compact domain on which the series converges uniformly. Therefore
one may exchange the integration and the limit. The integral in eq. (A.5) reads now

- t2—2t 3t*—20t3 +24¢2
(—t) %t 1+ + +.... (A.32)
H

2n 24n?

Now we can use Hankel’s representation of the I'-function [115]

1 1

- _e\—Sa—t
O 27riL( t) e tdt . (A.33)

A term of the form t"/n® in the expansion induces, by Hankel’s formula, a term of the
form n™*/T'(a — r). Since
1

M= = e -2 -0 (439

the expansion in the above proposition follows. O

This can be generalized in a straight forward way to functions which do not possess
the simple form depicted in eq. (A.5.1). It will turn out that only the dominant sin-
gularities determine the behavior of the coefficients f,, = [2"]f(z) for n — oco. Let us
assume that S is the set of all singularities of the function f(z), i.e. C\ S is the maxi-
mal set on which f is holomorphic. A subset Sy is called set of dominant singularities
if and only if |z4] < |2| and |z4] = |2}], V24,2) € Sq and Vz € S\ S4. A singularity
24 € Sq is called dominant singularity. We will recover a result very similar to that of
the preceding proposition.

Like in the previous paragraph the prove of the following theorem relies on the
integration on Hankel-type paths. In fact weaker conditions than those used before
suffice and allow us to establish the asymptotics of the coefficients. For now let us
assume that there is only one dominant singularity.

Definition A.5.1. Given two numbers ¢ and R, withR > 1 and 0 < ¢ < 1/2, the open
domain A(¢,R) is defined as

A(p,R)=1{z€C, |z| <R, z#1, |arg(z —1)| > ¢}. (A.35)

Any domain is called A-domain if it is a A(¢,R) for some R and ¢, see fig. A.3. A
function is called A-analytic if it is analytic in some A-domain.

Let

M={(1-2)% aecC}. (A.36)
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Figure A.3.: Definition of the A-domain. Everything that is inside the solid line belongs to
A(¢,R) according to definition A.5.1. The dotted line denotes the integration contour which
is used in order to prove proposition A.5.2.

Proposition A.5.2. Let f(z) be an analytic function at 0, with a singularity at &, such
that f(2) can be continued to a domain of the form & - A, for a A-domain A, where
&+ A is the image of A by the mapping z — £z. Assume that there exist two functions
o, T, where o is a (finite) linear combination of functions in M and T € M, so that

f@)=0=/8)+0(t(2/8)) asz—EinEA,. (A.37)

Then, the coefficients of f (z) satisfy the asymptotic estimate

fa="1f(E)=E"0, +O(E™"T)), (A.38)

where 0, = [2"]0(2) has its coefficients determined by proposition A.5.1 and ©; = n% 1

if T(z) = (1 —2)~% In particular; if f(z) ~ K(§ —2)™%, where K € C is a constant, then

fu=["1f ) ~EE T (a) . (A.39)

Proof. The proof follows the idea of the proof of proposition A.5.1 and will not be
given here. O

Proposition A.5.2 can easily be generalized to the case where also logarithmic sin-
gularities appear. It may also be generalized to a finite number of isolated, dominant
singularities. In the case of multiple singularities, the separate contributions to the
coefficients of the generating function from each of the singularities, as given by the
basic singularity analysis process, is summed up [78, 79].
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A.6. Tables with model parameters of the three-state model
for DNA

Table A.1.: Parameters for stretching curves at temperature T = 293 K.

Parameter Symbol A-DNA A-DNA + DDP  Reference
segment length Iy 0.34 0.34 Wenner et al. [80]
(nm) I 0.61 0.60 fitted

Lu 0.71 0.71 Hugel et al. [81]
persistence length & 48 48 Wenner et al. [80]
(nm) Es 25 25 assumed

Em 3 3 Murphy et al. [83]
stretch modulus Kp 1.0 1.0 Wenner et al. [80]
(nN) Kg 2-9.4 2-94 Hugel et al. [81]

KM 2:9.4 2-9.4 Hugel et al. [81]
chemical potential gg 0.0 0.0 defined
(107200 g3 1.6 1.2 fitted

8w 2.4 2.8 fitted
interfacial energy Vg, Vss, Vi 0.0 0.0 incorporated in g?
(10720 ) Vas 1.2¢ 0.0 assumed

Vam 1.2¢ 0.0 assumed

Veu 0.0 0.0

“disrupt stacked base pairs [84]

Table A.2.: Temperature dependence of parameters for DNA without DDP. The enthalpy hy; and
entropy sy of the denatured state are determined by fixing the denaturation temperature T.
for zero force at T, = 348 K.

Parameter Symbol A-DNA Reference

persistence length ~ E(T)  48/(T/293K)

(nm) €(T)  25/(T/293K)

Em(T)  3/(T/293K)

chemical potential gA(T)=h,—Ts;

enthalpy hg 0.0

(10720 ) hg 7.04 Clausen-Schaumann et al. [46]
hy 15 fitforc=0
hy 16 fit for ¢ =3/2

entropy Sg 0.0

(10722 J/K) Ss 1.8¢ Clausen-Schaumann et al. [46]
Sm 4.2 fitforc=0
Sm 4.6 fit for ¢ =3/2

slightly rescaled
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APPENDIX — RNA

B.1. The classical two-state Poland-Scheraga model

The Poland-Scheraga model describes a linear molecule whose segments can be in
two different states, namely bound (B) or molten (M) [27, 28]. It is a special case of
the three-state model for DNA [3] and is obtained by omitting the S-state and setting
Zg = 0. The partition function of the two-state Poland-Scheraga model reads

Zp+ Zy + 2232y

ZP=(142y) ) (Z 21+ 2Z) - 1=

, (B.1)
k=0 1 - ZBZM
where
X 2w
Zy = Z(zw)k = (B.2)
= 1—2zw
and
0k
k=0

are the grand canonical partition functions of regions in the respective states [3] with
no applied force. Note that in eq. (B.1) the free energy of a molten region contains
no extensive part as unbound bases outside a loop are defined as the ground state
and hence all extensive parts accumulate in the free energy of bound B-segments € =
kg T Inw. Finally, the grand canonical partition function, eq. (B.1), reads

PS5 _ wz + (1 + wz)Lis(z)
1—wsz(1+Li(2)) °
The singularities are readily recognized as the branch point of the polylogarithm [115]

(B.4)

7o =1 (B.5)
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and the pole ng of the fraction in eq. (B.1), which is the root of the denominator
1=wz; (1 +Lie(2,°)) . (B.6)

The pole and the branch point coincide at the critical point, which therefore is given
by

whs = ) (B.7)

B.2. Derivatives of

In the main text we derived the three constitutive equations determining the thermo-
dynamic behavior of the system

k(w,z) =1+ LLic(zx(w,z)) (B.8a)
k(w,2)

K (w, 2,(w))? = wLi._; (2, (W) (w, z,(w))) — Wi, (zp,(w)x(w, 2,(w))) (B.8b)

szp(w,s)x(w,zp(w,s)) =1. (B.8¢c)

The function x(w,g) is the smallest positive root of eq. (4.11a). Derivatives of k
are obtained by implicit differentiation. To obtain the derivative of k with respect to
an arbitrary quantity one differentiates both sides of eq. (4.11a) with respect to this
quantity and solves for the desired derivative. Explicitly,

% _ wkLi,._;(2x) (B.9)
0z  z(k?+wli (zx) — wli,_;(2x)) '
oK _ LK) (B.10)
ow k2 +wli.(zx) — wLi._;(zx)

8_K __kw InzLi,_;(zx) + InwLi.(zx) . B.11)
oT T «2+wli.(zx)—wLi,_;(2K)

B.3. Expansion of the branch point for T < T

To obtain the critical behavior for T < Ty, at zero force, s = 1, we perform an asymp-
totic expansion of egs. (4.11a) and (4.11a) around the critical point, where the branch
point and the pole coincide. Thus, at the critical point all egs. (4.11a) have to hold
and we obtain the critical values exactly as

K, = % (1 +4/1 +4wgc) , (B.12a)
ze=2(1+/1+ 4w§c)_1 , (B.12b)

gc—l - Cc
W, =

ARSI (B.120
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As an ansatz for z,(T) and ,(T) we use a power series in d = w/w. — 1, where
w = exp(e/(kgT)) is the Boltzmann weight of a base pair. To simplify notation, we
define a = (¢ — 2)~! and write

2p/2. ~1+a;d +a,d®+ ...

+d%(ag + agrd + Aqiad® +...) + agq1d** 1+ ... (B.13a)
Kp/Ke~ 1+ byd +byd® +...
+d%(by + bgy1d + bgyod? +...) + bye_1d** 1+ ... (B.13b)

Plugging the ansatz (4.11c) into eqgs. (4.11a) and (4.11a) we can solve order by or-
der. To do so, the series representation of the polylogarithm Li,(x) around x =1 is
used [76]

1
Liv(x) ~ Cv - Cv—l(l - X) + E(C’V—Z - Cv—l)(x - 1)2 +...
F(1— ) (r(1 )+ %(1 (1 =v)(1—x) + ) . B14

We obtain the coefficients for z;

a; = _Cf; (B.15a)
gz
ay=—3—(20c—1—¢c) (B.15b)
c—1
& 2
az = — 5 (556_1 - 6Cc—lz:c + ZCC) (B]-SC)
c—1
4
az = ——(14¢% | — 2802 ¢ +208. 142 —5¢7) (B.15d)
c—1
5
a5=7 (42¢¢_; = 120871 {c + 13587142 = 7001 {¢ +147])  (B.15€)
c—1
a, =0 (B.150)
r(1-c)+T(2—c¢) 2 =3¢ gl +202\
o1 =7 Cen (_ IO i ) ®-159)
o (T1—c)+T(2-0))(¢%, +4(c —2)¢ 1L+ (5—3c)¢?)
a+2 — (C _ 2)4,?_1
2_ _34, ~ C +2§2 a+1
c—1 c—15¢ c
- B.15h
g ( r2- o0t ) (5150
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Aoy—1 = 0 (B].Sl)

We obtain the coefficients for ky,

b, =
1=z (B.16a)
gZ
) (o1 —¢0) (B.16b)
c—1
C3 )
by =2——(l._1—C.) (B.16¢)
c—l
b4_ (Cc 1 gc) (B16d)
c—1
2 4
b5—14§ (Ce—1—C0) (B.16¢e)
c—1
2 =38l +202\"
_ | 31 c—15c c
b= ( -0k, ) (B-160
, _Ta-o+r@—c( &, -3¢ 202\
ar Lo r2-c)l.
2 =301l +202\ 2 = (c—2) 18— 2
c—1 c—15c c c—1 c—15c c
(‘ r2— 0l ) D, (5-108)
b . Cc—l_CC _ ?-1_3§C—1CC+2§§ *
2T 2(c—22-T(2—- )t F(2-c)cq
x (2(c —2)T(1 = c)(Zeoq — 280 (82 +2(c —2)0—18 + (5= 3c)¢?)
+T(2—c)((c—3)8 ; +(c —3)(4c— N ¢,
— (3¢ —5)(4c — 9) 18>+ (3c — 5)(4c — 7)53)) (B.16h)
C lea=3ea 20 (G2 3Ll + 202\ .
P21 = " e o) ( M2 - o) ) (B.161)
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Remarkably, the expansion of the product z,k;}, yields
2Ky ~ 14 (ag + be)d* + (agsq + biay + beiq + a3 by )d*T +O(d*H?), (B.17)

meaning that all integer powers d", for n < a, vanish. n is the integer with (c —2)! —
1 <n < (c—2)7'. This fact renders the transition of high order when ¢ — 2 and thus
a — oo. For the fraction of bound bases this can be seen directly by expanding the low
temperature expression

Li
6 = 2.%(2—1”%) (B.18)
Llc—l(Zbe)

using egs. (B.3) and (B.3).

B.4. Minimum free energy structure prediction

The partition function involves the enumeration and contribution of all possible sec-
ondary structures and can be calculated exactly by the recursion relation eq. (4.11).
From the partition function QMJ the free energy of an RNA strand ranging from base i
through j with M non-nested backbone bonds can be calculated

Fi=—kgTInQY, . (B.19)

Another important quantity is the minimum free energy £ (mfe) associated with the
ground state structure, also called mfe structure. In analogy to the partition function
we define the mfe of a substrand ranging from base i through j with M non-nested
backbone segments as £ NJI RNA structure prediction relies on the assumption that the
native — experimentally observed — structure is given by the mfe structure. Following
the same idea of the recursive calculation of the partition function, see eq. (4.11), we
can determine the minimum free energy of a sequence by replacing the sums by the
min operator and obtain the recursion relations

M+1 — . M . M 0
0 . m
Eiin T o i1k {gkﬂ,j + %‘H} : (B.20b)

€ j+1 is the free energy of the base pair (k, j + 1). From the three-dimensional array
& ]‘g the mfe structure can now be obtained by a recursive backtracking algorithm. The
following pseudo code initiates the backtracking

E_buffer = oo0;
for( M = 0; M < N; M++ ){
if ( &y < E_buffer ){

E_buffer = & ;
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M_min = M;
}
}

backtrack (0, N, M_min);

The function backtrack(i, j, M) performs the next backtracking step and calls itself
recursively. Its pseudocode reads

backtrack (i, j, M){
/* Check if (i, j, M) is an allowed triple,
e.g. this includes
- M < j-1i
- i<j
- if M == 0 then base 1 and base j
must be complementary

If (i, j, M) is not allowed, then Q% == o0 */
if (&Y < 00){
if( M == 0 ){
/* i.e. base i and j are paired => add to list of
base pairs */
add_to_list_of_base_pairs(i, j);
E_buffer = oo;
/* Determine the size m_min of the loop closed
by the pair (i,j) =*/

for(m = 0; m < j-i; m++){
if ( 5§Lf¢ < &_buffer ){
E_buffer = SﬂLﬁd;
m_min = m;
}
}

/* Perform the next backtracking step */
backtrack(i+1, j-1, m_min);
X
else if( M > 0 ){
E_buffer = oo;
for( k = 0; k < j; k+t+t ){
/* Split the structure into two structures.
The left structure ranges from i through k-1
and has M-1 non-nested backbone bonds.
The right structure ranges from k through j
and has zero non-nested backbone bonds,
i.e. it is either a single base (k==j) or is
a closed structure terminated by the
pair (k,j) */
if (g + &, < E_buffer ){
E_buffer = Sﬁji + 52ﬁ
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}

}

}

k_min = k;
}
X
/* Perform next backtracking step
on the left substructure x*/
backtrack (i, k-1, M-1);
/* Perform next backtracking step
on the right substructure x/
if( k # j Ao
backtrack(k, j, 0);
b
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B.5. Interpolation formulas

In order to make our results more user-friendly we give interpolation formulas for the
salt corrections, which do not involve hypergeometric and Bessel functions as those
might not be available for every user.

The salt correction for the free energy of loops contains two generalized hypergeo-
metric functions

glsalt(m) = kg Tlg(mly)72 |:1n(1<mlss) —In(n/2)+7y

Kkmlg 1/9 1 kmlg )2

3/2 2
1 I\ ? l
L1 (xmls Py 1 sz, Kkmlgg
2 T 1 5 27
+ (1 — exp(—xmlg) + kmlI'(0, Kmlss))} . (B.21)
SS

The sum of the two hypergeometric functions is well approximated by interpolating
between the two asymptotic expansions for small and large argument

(12 (4 () e ) | () [52) ()

N 1 y4 B y3 N y2 _Z
y")6+1 36t 2472 2m2 2

2n

1 2T
+|11-— (log (—) - 1.96351) . (B.22)
(2{[)6 +1 y

The salt correction of the binding free energy of a base pair contains a modified
Bessel function of the second kind, eq. (4.8),

g}slalt/h — gEH(p) _ gEH(l M) , (B.23)
with
DH _ 2
gy (p)=2kgT 7l [5Ko(xd) . (B.24)

Eq. (B.5) is well approximated by the heuristic formula
bz — b3 ln(b4K)
1+ b5K ’

with the constants b; = 0.0315171, b, = 35.0754, b; = 1.62292, by = 1 nm, bs =
4.26381 nm.

G h kg Ti 1y Ly (bl + (B.25)
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B.6. Free energy parameters

The enthalpy h and entropy s parameters used in our calculations are taken from
reference [112, 122]. We summarize these parameters in the following tables. For
instance, the entries in the row UA and the column GC, hys gc and sya gc, give the
enthalpy and entropy contribution due to the stacking of the two neighboring base
pairs UA and GC, where U and C are located at the 5-end. The two bottom rows
contain the initiation and termination contribution to helices and loops. For instance,

the total free enthalpy of the triple helix terminated by a hairpin loop of length m = 6,
5'~CGA—
3/-GCU-

g — g;lmt + g}sltack + g}tlerm + glmn + glconf
__ 3,init init term term
=h" = Tsp™ + hegge + hooau — T(Sce,6c +Secav) +hy " — Tsy,

+h"M — Ts™ — kg TInm™® . (B.26)

loop, at 1 M NacCl is given by

Table B.1.: Enthalpy parameters for RNA [112, 122].

Enthalpy h / (kcal/mol)

AU UA CG GC GU UG
AU —6.82 —938 -11.40 -10.48 -3.21 -881
UA —7.69 —6.82 —12.44 —10.44 —6.99 —12.83
CG ~10.44 -10.48 -13.39 -10.64 -5.61 -—12.11
GC ~12.40 -11.40 -14.88 -13.39 —8.33 —12.59
GU -12.83 —-881 —12.59 -12.11 -13.47 —14.59
UG -6.99 —321 —-833 -561 -9.26 -13.47
pn/term 3.72 3.72 0.00 0.00 3.72 3.72
it 1.68 1.68 1.68 1.68 1.68 1.68

Table B.2.: Entropy parameters for RNA [112, 122].

Entropy s / (10~3kcal/(mol K))

AU UA CG GC GU UG

AU ~19.0 —26.7 —-295 —27.1 —86 —240
UA -205 -19.0 —325 -269 -19.3 —37.3
CG -269 —27.1 -32.7 -26.7 —13.5 —32.2
GC —325 -295 —369 —32.7 -21.9 —325
GU —37.3 —240 —325 —322 —449 —512
UG -19.3 -86 —21.9 —135 —30.8 —44.9
s;“?‘/te““ 10.5 10.5 0.0 0.0 10.5 10.5
snit —0.7 0.7 -0.7 -0.7 0.7 —-0.7
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B.7. Sequences

The sequence of yeast tRNA-phe reads [207]
GCGGAUUUAG CUCAGUUGGG AGAGCGCCAG ACUGAAGAUC UGGAGGUCCU
GUGUUCGAUC CACAGAAUUC GCACCA.

The sequence of the P5ab hairpin reads [125]
ACAGCCGUUC AGUACCAAGU CUCAGGGGAA ACUUUGAGAU GGGGUGCUGA CGGACA.
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