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Abstract

Polynomial ideals have been intensely studied by computer scientists. The method of
Buchberger allows to effectively solve the membership problem to which a variety of other
interesting problems can be reduced. Mayr and Meyer showed that these computations
are very expensive in the worst case. As a consequence, special ideal classes have to be
identified for which the membership problem can be solved more efficiently.

As previous results show, the complexity of the membership problem is mainly related
to the degrees of the representation problem and Gröbner bases. Thus the first part of the
thesis studies degree bounds for various ideal classes. The main contributions are upper
and lower bounds for Gröbner bases depending on the ideal dimension and some results
for toric ideals.

In the second part, these findings are applied to questions of complexity. The presen-
tation comprises an incremental space-efficient algorithm for the computation of Gröbner
bases, an algorithm in polylogarithmic space for the membership problem in toric ideals
and the space-efficient computation of the radicals of low-dimensional ideals.
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Introduction

In polynomial algebra, most questions are motivated by very basic operations. In the al-
gebraic theory, they might seem trivial themselves, but effective (and especially efficient)
solutions require deep knowledge of ring theory and related topics. Being viewed as the
abstraction per se, algebra is usually rather descriptive than manipulative, rather existen-
tial than constructive. The ambitious goal of computer algebra is to bridge two worlds
— the abstract world of algebra and the constructive world of computer science. The re-
sults are tremendous — while the methods are still generally applicable, using modern
computers allows for automation and computation in scales that were unthinkable before.

However, generality usually comes at a high cost: slowness. While domain-specific
methods will always win in production environments, general methods will play a crucial
role in prototyping environments. The largest such environment is obviously science itself.
Likewise, science has very high requirements to the used methods — rather in terms of
quality, flexibility, and scalability than in terms of throughput.

Beyond the actual computations, more work is necessary in the theoretical foundations.
With computer science being relatively young, many fundamental questions remain open.
These mostly evolve around the complexity of problems and their settlement involves
lower bounds just as well as upper bounds. While implementing a known algorithm more
efficiently may increase the running time by a factor of 10 or 100, finding a method of lower
complexity will make a difference in which instances are feasible or not. Lower bounds,
however, may show that the problem has to be reformulated or specialized for efficient
computations.

This is just how polynomial algebra defines itself. On the one hand it is a tool which
is widely used in other branches of scientific research, mainly mathematics and computer
science. Using Gröbner bases, one can do automated reasoning which is most suitable for
geometry, one can find global optima in polynomial systems or integral linear systems,
one can study properties of differential equations, compute reachable positions for robot
arms, and solve certain logical formulas. It is also used in other computational research,
e.g. for the computation of Frobenius numbers. On the other hand, polynomial algebra
approaches fundamental questions of complexity which then help re-factoring the compu-
tational tools. This includes the study of the membership problem complexity for various
ideal classes which will shed light on the structure of the problem and focus the research
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in two directions: finding better algorithms for ideal classes with low complexity and cat-
egorizing the ideals that occur in applications into the studied classes. Both will finally
contribute to increased efficiency.

This thesis deals with the second part — the complexity of problems. Previous research
mostly measured the complexity in the number of indeterminates in the ring and the de-
grees of the ideal generators. Mayr and Meyer showed in [33] that the membership prob-
lem is exponential space hard. Later, Kühnle and Mayr presented an algorithm [28] which
solves the problem in space which is exponential in the number of indeterminates. Both
proofs and thus the complexity of the membership problem are tightly connected to the
degrees of Gröbner bases. While [33] implies a double exponential lower degree bound
which was sharpened by Yap [44], a similar upper degree bound was proved by Dubé in
[12]. Also the representation degree is important in the algorithm by Kühnle and Mayr.
The lower bound for it is in [33]. The upper bound is much older and goes back to Her-
mann [19].

There has been some work on special ideal classes before. Various authors studied ho-
mogeneous and zero-dimensional ideals as well as toric ideals. While the membership
problem for homogeneous ideals can be solved in polynomial space [32], their Gröbner
bases also have double exponential degrees. For zero-dimensional ideals, the degrees of
Gröbner bases are known to be smaller by a magnitude. Already the famous theorem of
Bézout can be used for proving this in the homogeneous case. For the inhomogeneous
case, the proofs are slightly more involved and many of the bounds in literature are not
tight. While Caniglia et al. [6] give a degree bound which is not tight either, one of the in-
termediate results can be used for the proof of a tight single exponential bound as will be
shown later. While the representation degrees evolve in the same magnitude, the business
of tight bounds is even harder. The best bound known to the author is due to Dickenstein
et al. in [11] and probably not tight.

One of the large themes in this thesis is the dependence of the complexity on the ideal
dimension. This was started by Kratzer [24] who gave an algorithm for the membership
problem in space polynomial in the number of variables and exponential in the ideal di-
mension using a respective bound for the representation degree. In this thesis, upper and
lower bounds for Gröbner bases will be presented which are double exponential in the
ideal dimension. The proof is based on the construction by Dubé in [12]. These bounds
will be applied to an algorithm for the computation of the radical of an ideal by [30] achiev-
ing a space complexity which is exponential in the ideal dimension.

Furthermore, toric ideals will be analyzed. Starting from results by Sturmfels [42], sin-
gle exponential degree bounds for Gröbner bases and the representation problem will be
given. Moreover, a polylogarithmic algorithm for the membership problem will be de-
duced.

Finally, the space-efficient algorithm for the computation of Gröbner bases by Kühnle
and Mayr [28] will be improved. By adding a S-polynomial criterion, it will be made
adaptive such that it only achieves the worst case behavior for hard examples.

The thesis is divided in three parts. The first provides the theoretical background for the
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proofs and algorithms. Most of it is common knowledge in the field of computer algebra,
but it is included for the sake of completeness. Inexperienced readers, however, might
prefer to start off with a text book since there are few explanations for the interpretation
of the theorems. Starting off, chapter 1 introduces concepts of abstract algebra like rings,
ideals, modules and some of their properties. Chapter 2 focuses on rings of polynomials
and their ideals. Although Gröbner bases are introduced, the presentation is still rather
algebraic (i.e. most proofs will not use algorithms). There will be many definitions of the
ideal dimension, and connected tools like Hilbert polynomials, cone decompositions and
regular sequences are introduced. A dedicated section will cover toric ideals. In chapter 3,
several computational models and basic complexity results will be introduced. These are
Thue systems, Turing machines, Boolean circuits, and some results about space-efficient
methods, especially in linear algebra.

The second part covers degree bounds. It contains both new results and an overview
of the best known results. Chapter 4 will treat the representation problem, chapter 5 is
about the Gröbner basis degrees. Both cover various ideal classes, ranging from arbitrary
(polynomial) ideals via zero-dimensional ideals and arbitrary ideals parametrized by the
dimension to toric ideals. As mentioned before, the main contributions in this part are the
dimension-dependent bounds for Gröbner bases and the bounds for toric ideals.

Finally, the third part is about consequences of the degree bounds. All of the presented
results are contributions of this thesis (partly based on previous results). Chapter 6 ex-
plains an incremental space-efficient algorithm for the computation of Gröbner bases. In
chapter 7, the membership problem for toric ideals is solved in polylogarithmic space.
Last, but not least, chapter 8 analyzes an algorithm for the computation of radicals im-
proving the space-efficiency for low-dimensional ideals.

3





Part I.

Preliminaries





In the first part of this thesis, a mostly self-contained introduction into the theory of
Gröbner bases and the necessary algebraic foundations will be given. Moreover, funda-
mentals of the theory of computation will be treated. However, the objectives are neither
completeness nor comprehensive explanations. Readers not familiar with the topic might
prefer reading a textbook prior to this thesis. Good introductions to computational poly-
nomial algebra are available in [9] and [10] respectively [26] and [27], for abstract algebra
[13] provides a great reference.

The author considers most of the results in this part to be well-known and therefore
will only give spare references. Most of the results can be found in the above text books,
although the proofs might differ. Less known results will be cited to the best of the knowl-
edge of the author.
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1. Abstract Algebra

1.1. Vector Spaces

Vector spaces are introduced in every first year course. Due to the (more or less) wide-
spread terminology, the definitions and well-known results do not have to be repeated
in this thesis before they can be used. Thus, a good knowledge of linear algebra will be
assumed.

Still, some variants of Cramer’s rule for solving linear systems will be used that might
not be known to the reader. They will be stated and proved in this section.

Lemma 1.1 (Cramer’s Rule). Let A = (a1, . . . , an) be a (n−1)×n matrix over a field K of rank
n− 1. Then the one-dimensional kernel is generated by

n∑
i=1

(−1)i det(a1, . . . , ai−1, ai+1, . . . , an)ei

where ei denotes the i-th unit vector in Kn.

Proof. LetA′ ∈ Kn×n be the matrixA extended by the k-th row ofA for some k ∈ {1, . . . , n−

1}, i.e. A′ = (a′1, . . . , a
′
n) with a′i =

Ç
ai
ak,i

å
for ai = (a1,i, . . . , an−1,i)

T and i = 1, . . . , n. Then

obviously det(A′) = 0. Now calculate det(A′) expanding along the last row:

0 = det(A′) =
n∑
i=1

(−1)i+nak,i det(Ai) with Ai = (a1, . . . , ai−1, ai+1, . . . , an) for i = 1, . . . , n

Combining the equations for k = 1, . . . , n − 1 yields
∑n
i=1 ai(−1)i+n det(Ai) = 0 which

proves the claim.

Lemma 1.1 can be generalized to matrices of arbitrary rank. Actually, this formalizes the
standard way to solve underdetermined systems of linear equations while avoiding the
transformation into triangular form. Some special notation will be necessary.

Definition 1.2. Let v = (vi)i ∈ Kn be a vector and I ⊆ {1, . . . , n} a set of indices. Then vI
denotes the vector vI = (vi)i∈I ∈ K#I where #I denotes the cardinality of the set I . Also, let
supp(v) = {i ∈ {1, . . . , n} : vi 6= 0} denote the support of v.

Let A = (ai,j)i,j ∈ Km×n be a matrix and I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n} be sets of indices.
Then AI,J denotes the submatrix AI,J = (ai,j)i∈I,j∈J ∈ K#I×#J . Furthermore let

kerJ(AI,J) = {v ∈ Kn : AI,J · vJ = 0, supp(v) ⊆ J}.

9



1. Abstract Algebra

Lemma 1.3. Let A be an m×n matrix of rank r over K. Define B as the set of r× (r+1) matrices
AI,J of rank r with I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}. Then ker(A) =

∑
AI,J∈B kerJ(AI,J).

Proof. If m > r, then there is a r × n submatrix A′ of A with ker(A′) = ker(A). Thus it
suffices to consider the case m = r.

In this proof the abbreviationAJ = A{1,...,r},J will be used. Consider a quadratic subma-
trixAK ofAwith rank r for someK ⊆ {1, . . . , n}. Let B̃ be the set of r×(r+1) submatrices
AJ of A with J ⊇ K. Obviously those AJ have rank r, such that B̃ ⊆ B. The claim is that
ker(A) =

∑
AJ∈B̃ kerJ(AJ) which proves the statement.

Clearly dimK(ker(A)) = n−r. Since #B̃ = n−r and each kernel kerJ(AJ) is generated by
a single nonzero vector v(J), it suffices to show that these vectors are linearly independent.
Note supp(v(J)) ⊆ J and #(J \K) = 1. Thus, if v(J)

j 6= 0 for j ∈ J \ K for all AJ ∈
B̃, the vectors

¶
v(J) : AJ ∈ B̃

©
are linearly independent. According to lemma 1.1, v(J)

j =
det(AK) 6= 0 which completes the proof.

1.2. Rings

The best-known objects in algebra probably are groups and fields. In this thesis, the focus,
however, is on rings which are somewhat in between. One could — roughly speaking
— describe a ring as group with a second binary operation, the multiplication, or as field
without division. The following is a precise definition:

Definition 1.4. A set R with two binary operations + : R × R −→ R and · : R × R −→ R is a
ring iff

1. (R,+) is an Abelian group, i.e.

a) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R (associativity),

b) ∃0 ∈ R : a+ 0 = a = 0 + a for all a ∈ R (neutral element),

c) ∀a ∈ R ∃(−a) ∈ R : a+ (−a) = 0 = (−a) + a (inverse elements),

d) a+ b = b+ a for all a, b ∈ R (commutativity),

2. (R, ·) is a commutative monoid, i.e.

a) (a · b) · c = a · (b · c) for all a, b, c ∈ R (associativity),

b) a · 1 = a = 1 · a for all a ∈ R (neutral element),

c) a · b = b · a for all a, b ∈ R (commutativity), and

3. (a+ b) · c = a · c+ b · c for all a, b, c ∈ R (distributivity).

If there are no zero-divisors, i.e. a · b = 0 implies a = 0 or b = 0 for all a, b ∈ R, R is called
domain. R is said to be reduced if ak = 0 for any k ∈ N implies a = 0.

10



1.2. Rings

Note that this is not the most general definition of a ring. It might be more exact to call
R commutative ring with 1. However, since only commutative rings with 1 are treated here,
commutativity and neutral elements are included into the definition of a ring in order to
make the presentation more succinct.

The elements of rings which are not invertible are usually characterized as representa-
tion of irreducible factors. However, this is not possible in all rings.

Definition 1.5. Let R be a ring and r ∈ R. If there is r−1 ∈ R such that r−1r = 1, r is
called invertible or unit. r is called reducible if there are non-units a, b ∈ R such that r = ab.
Otherwise r is called irreducible. r = a1 · · · at is called factorization of r if a1, . . . , at ∈ R are
irreducible non-units.

Definition 1.6. A domainR is called factorial or unique factorization domain iff each non-unit
in R \ {0} has a unique factorization.

As usual, the multiplication sign will be omitted as in ab = a ·b if the context is clear. The
order of evaluation is PEMDAS, i.e. parentheses, exponentiation, multiplication, division,
addition, subtraction.

The natural functions on rings are homomorphism which respect the ring operations.

Definition 1.7. LetQ andR be rings with neutral elements 1Q ∈ Q and 1R ∈ R and ϕ : Q −→ R
be a function such that

1. ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ Q,

2. ϕ(a · b) = ϕ(a) · ϕ(b) for all a, b ∈ Q, and

3. ϕ(1Q) = 1R.

Then ϕ is a (ring) homomorphism. If ϕ is injective, it is called endomorphism or embedding,
if it is surjective, it is called epimorphism, and, if it is bijective, it is called isomorphism.

Note that usually one would write 1 = 1R = 1Q since it is clear from the context which
neutral element is referred to. Using homomorphisms, one can characterize the subrings
of a ring.

Corollary 1.8. Let R be a ring. Then Q ⊆ R is a ring iff it is image of a (ring) homomorphism, i.e.
iff there are a ring P and a homomorphism ϕ : P −→ R with

Q = im(ϕ) = {ϕ(r) : r ∈ P}.

In this case, Q is called subring of R.

Especially when working with polynomials, the concept of gradings will be very impor-
tant. It represents the ring as direct sum of sets that are assigned to an integer. Gradings
play a crucial role in termination proofs and in converting polynomial systems into linear
systems.

11



1. Abstract Algebra

Definition 1.9. Let R be a ring. Then (Rd)d∈Z is a grading of R iff the ring equals the (inner)
direct sum R = . . . ⊕ R−1 ⊕ R0 ⊕ R1 ⊕ . . ., i.e. each ring element is a finite sum of elements of
. . . , R−1, R0, R1, . . .. In this case, the ring R is called graded.

The elements ofRd are called homogeneous of degree d. By definition, each element 0 6= r ∈ R
can be written as finite sum r = rc + . . . + rd with c ≤ d ∈ Z and rk ∈ Rk for all k = c, . . . , d
and rc, rd 6= 0 where deg(r) = d is called the degree of r. The elements rc, . . . , cd are called
homogeneous components of r.

A set S ⊆ R is called homogeneous iff r ∈ S implies rk ∈ S for all k ∈ Z.

Example 1.10.

1. The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} form a factorial domain.

2. The sets of the form kZ = {ka : a ∈ Z} for k ≥ 2 are no rings since 1 /∈ kZ.

3. The natural numbers N = {0, 1, 2, . . .} are no ring since there are no inverse elements of the
positive numbers.

4. Any field K is a factorial domain.

5. The integers Z are a subring of the rational numbers Q =
{a
b : a ∈ Z, 0 6= b ∈ N

}
.

6. The set of invertible matrices over a field (A ∈ Kn×n with det(A) 6= 1 for a fixed n ≥ 2) is
no ring (in the above sense) since the multiplication is non-commutative.

In section 1.5, the ring of polynomials, another prominent example, will be defined and studied in
detail.

1.3. Modules

Modules are a generalization of vector spaces. Instead of being field elements, the scalars
are elements of a ring. As for rings, only the commutative case will be treated.

Definition 1.11. Let R be a ring. Then M is a module over R iff there are two operations
+ : M ×M −→M and · : R×M −→M such that

1. (M,+) is an Abelian group,

2. a · (b ·m) = (a · b) ·m for all a, b ∈ R,m ∈M (associativity),

3. (a+ b) ·m = a ·m+ b ·m for all a, b ∈ R,m ∈M (distributivity),

4. a(m+ n) = a ·m+ a · n for all a ∈ R,m, n ∈M (distributivity), and

5. 1 ·m = m for all m ∈M .

The natural functions on modules are very similar to ring homomorphisms.

12



1.3. Modules

Definition 1.12. Let M and N be modules over a ring R and ϕ : M −→ N be a function such
that

1. ϕ(m+ n) = ϕ(m) + ϕ(n) for all m,n ∈M and

2. ϕ(r ·m) = rϕ(m) for all r ∈ R,m ∈M .

Then ϕ is a (module) homomorphism.

Corollary 1.13. Let M be module over a ring R. Then N ⊆M is a module over R iff it is image of
a (module) homomorphism, i.e. iff there are a module L over R and a homomorphism ϕ : L −→M
with N = im(ϕ). In this case, N is called R-submodule of M .

An equivalent of the vector space dimension is the module length.

Definition 1.14. Let M be module over a ring R. Then the length of M is the supremum of the
lengths of chains of R-modules M0 ( . . . (Mt = M and denoted by lengthR(M) = t.

If the ring is clear from the context, length(M) will be written instead of lengthR(M).
Exact sequences are a very powerful tool in algebra. They are defined as sequences of

modules which are connected by homomorphisms with special properties.

Definition 1.15. Let
M0

ϕ1−→M1
ϕ2−→ . . .

ϕk−→Mk

be a sequence of homomorphisms ϕi on modules Mi. If im(ϕi−1) = ker(ϕi) for all i = 2, . . . , k,
the sequence is called exact. The sequence

0 −→M1
ϕ2−→M2

ϕ3−→M3 −→ 0

is called short sequence. It is exact iff ϕ2 is injective, ϕ3 is surjective, and im(ϕ2) = ker(ϕ3).

In the context of toric ideals, the following modules will be of particular interest.

Definition 1.16. Let N be a submodule of M over the ring R. If r ·m ∈ N implies m ∈ N for all
0 6= r ∈ R,m ∈M , N is called saturated R-submodule of M .

Example 1.17.

• For any ring R, Rn is a R-module with component-wise addition and scalar multiplication.

• Z
Ä
1, 3, 5

äT
and Z

Ä
1,−1, 3

äT
are saturated Z-submodules of Z3.

• N = Z
Ä
1, 3, 5

äT
+ Z

Ä
1,−1, 3

äT
is not a saturated Z-submodule of Z3 since

Ä
2, 2, 8

ä
∈ N

but
Ä
1, 1, 4

ä
/∈ N .
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1. Abstract Algebra

1.4. Ideals

Ideals are subsets of rings which can be characterized and represented in various ways,
the most common of which will be presented here. One could say that ideals are for rings
what normal subgroups are for groups. After the definitions, there will be some structure
theorems covering both the decomposition of ideals and the construction of new ideals.

Definition 1.18. A nonempty subset I of a ring R is called ideal iff

1. a+ b ∈ I for all a, b ∈ I and

2. r · a ∈ I for all r ∈ R, a ∈ I .

Corollary 1.19. Let R be a ring. Then I ⊆ R is an ideal iff I is a R-submodule of R.

The similarity to normal subgroup becomes obvious in the following characterization.

Corollary 1.20. Let R be a ring. A subset I of R is an ideal iff it is the kernel of a (ring) homomor-
phism, i.e. iff there are a ring Q and a homomorphism ϕ : R −→ Q such that

I = ker(ϕ) = {r ∈ R : ϕ(r) = 0}.

There are two equivalent ways to describe the ideal associated to a set of ring elements
— the inner method describes it as span of the elements, the outer method as intersection
of all ideals containing the elements. For computations, the inner method with a finite set
of generating elements will be preferred.

Definition 1.21. Let R be a ring and B be a subset of R. Then 〈B〉 is the smallest ideal containing
B, i.e.

〈B〉R =
⋂
I ideal
B⊆I⊆R

I =

{
s∑
i=1

aibi : s ∈ N, ai ∈ R, bi ∈ B for i = 1, . . . , s

}
.

If B = {b1, . . . , bs} is finite, it is called basis of 〈B〉R. If the ring R is clear from the context, the
simpler notation 〈B〉 will be preferred over 〈B〉R.

There are various possibilities to operate on ideals in order to produce new ideals. The
most important ones are listed in the following corollary.

Corollary 1.22. Let R be a ring and I, J ⊆ R ideals. Then

1. I ∩ J is an ideal.

2. I + J is an ideal.

3. I : J = {a ∈ R : a · J ⊆ I} is an ideal, the so-called ideal quotient of I and J .

4. I : J∞ =
¶
a ∈ R : a · Jk ⊆ I for some k ∈ N

©
is an ideal, the so-called saturation of I

w.r.t. J .

14



1.4. Ideals

5.
√
I =

¶
a ∈ R : ak ∈ I for some k ∈ Z

©
is an ideal, the so-called radical of I .

The union of two ideals is, in general, no ideal.

Example 1.23. Let I = 〈x〉 and J = 〈y〉 be ideals in the ring K[x, y]. Then I ∪ J is no ideal since
x, y ∈ I ∪ J but x+ y /∈ I ∪ J .

There are some classes of ideals worth mentioning. Some of these can be viewed as ele-
mentary ideals into which one can decompose other ideals (compare with simple groups).
Others have special properties which make computations easier as will be seen in the main
parts of the thesis.

Definition 1.24. Let R be a ring and I ⊆ R be an ideal.

1. I is called radical iff I =
√
I .

2. I is called maximal iff I 6= R and there is no ideal I ( J ( R.

3. I is called prime iff I 6= R and a · b ∈ I implies a ∈ I or b ∈ I .

4. I is called primary iff a · b ∈ I implies a ∈ I or bk ∈ I for some k ∈ N.

5. I is called principal iff I = 〈r〉 for some r ∈ R.

Moreover the ideals {0} and R are called trivial and all ideals {0} ( I ( R are called proper.

The following corollary explains the hierarchy of radical, primary, prime, and maximal
ideals and connects the ideal classes with the properties of their factor rings.

Corollary 1.25. Let I be an ideal in the ring R.

1. If I is maximal, it is prime, primary and radical.

2. If I is prime, it is primary and radical.

3. If I is primary,
√
I is prime.

4. Let R be a domain. Then R/I is a field iff I is maximal and R/I is a domain iff I is prime.

As mentioned before, finite generating sets are very important for computations. Most
of the theory therefore restricts to rings in which all ideals have a basis.

Definition 1.26. A ring R is called Noetherian iff each ideal I ⊆ R has a basis.

The use of this property will be demonstrated by the following lemma.

Lemma 1.27. Let I be a ideal in a Noetherian ring R. Then
√
I
k ⊆ I for some k ∈ N.

15



1. Abstract Algebra

Proof. Since R is Noetherian,
√
I has a basis B = {b1, . . . , bs}. By the definition of the

radical, bkii ∈ I for each i = 1, . . . , s and some ki ∈ N. Thus
√
I
k ⊆ I for k =

∑s
i=1 (ki − 1)+

1.

Given an ideal, it is desirable to decompose it into simpler parts. These simpler parts
turn out to be primary ideals. Their radicals (which are prime ideals by corollary 1.25)
play a vital role in connection with zero-divisors of the factor ring and thus deserve special
treatment.

Lemma 1.28. Let I be an ideal in a Noetherian ring R. Then there is a minimal primary decom-
position of I , i.e. there are primary ideals Q1, . . . , Qt such that

1. I = Q1 ∩ . . . ∩Qt and

2. t is minimal.

This decomposition also fulfills:

3. The intersection is irredundant, i.e. I ( Q1∩. . .∩Qk−1∩Qk+1∩. . .∩Qt for all k = 1, . . . , t.

4. The prime ideals
√
Q1, . . . ,

√
Qt are pairwise distinct.

Proof. See [9], §4.7.

This primary decomposition is not necessarily unique.

Corollary 1.29. Let I be an ideal in a Noetherian ring R with a minimal primary decomposition
I = Q1 ∩ . . . ∩Qt. Then a (not necessarily minimal) prime decomposition of the radical is given
by
√
I =
√
Q1 ∩ . . . ∩

√
Qt.

Example 1.30. (from [9], §4.7) Let I =
〈
x2, xy

〉
be an ideal in the ring K[x, y]. Then I =

〈x〉∩
〈
x2, xy, y2

〉
and I = 〈x〉∩

〈
x2, y

〉
are two distinct minimal primary decompositions. Applying

the radical yields the redundant prime decomposition
√
I = 〈x〉 ∩ 〈x, y〉.

Lemma 1.31. Let I and J be ideals in a Noetherian ring R. If I = Q1 ∩ . . . ∩Qt is a primary
decomposition of I , then

I : J∞ =
t⋂
i=1

J 6⊆
√
Qi

Qi.

Proof. First let f ∈ I : J∞ and consider any Qi with J 6⊆
√
Qi for i ∈ {1, . . . , t}. Then

f · Jk ⊆ I ⊆ Qi for some k ∈ N. Since Qi is primary, f ∈ Qi follows.
Now assume f ∈ ⋂J 6⊆√Qi Qi and choose k ∈ N such that Jk ⊆ Qi for all i = 1, . . . , t with

J ⊆
√
Qi. Then f · Jk ⊆ I and thus f ∈ I : J∞.
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1.4. Ideals

Definition 1.32. Let M be a module over a ring R. Then the annihilator of an element m ∈M is
the ideal

annR(m) = {r ∈ R : rm = 0}.

Definition 1.33. Let M be a module over a ring R. Then

assR(M) = {P ⊆ R : P prime ideal, P = annR(m) for some 0 6= m ∈M}

is the set of associated primes of M .

If I is an ideal in R, it is common to write assR(I) = assR(R/I) and call the elements
associated primes of I . In this context, annR(r) = I : r for all r ∈ R/I .

First note that primary ideals have exactly one associated prime.

Lemma 1.34. LetQ be a primary ideal in a Noetherian ringR and {0} 6= M ⊆ R/Q a non-empty
submodule. Then assR(M) =

{√
Q
}

.

Proof. Choose 0 6= m ∈M . Viewing m as element of R, annR(m) ·m ⊆ Q implies together
with Q primary and m /∈ Q that annR(m) ⊆

√
Q. On the other hand Q ·m ⊆ Q and hence

Q ⊆ annR(m). Thus, if annR(m) is prime, annR(m) =
√
Q and therefore assR(M) ⊆

{√
Q
}

.
For the converse inclusion, again choose 0 6= m ∈ M , assume

√
Q · m 6= 0, and let

{b1, . . . , bs} be a basis of
√
Q. Then there is some bk for k ∈ {1, . . . , s} such that bkm /∈ Q.

Since beii ∈ Q for some ei ∈ N and each i = 1, . . . , s, by induction there is a multiple n of
m with n 6= 0 and

√
Q · n = 0 which proves

√
Q ⊆ annR(n). By the above, annR(n) =

√
Q

and thus assR(M) =
√
Q.

Lemma 1.35. Let I be an ideal in a Noetherian domain R with a minimal primary decomposition
I = Q1 ∩ . . . ∩Qt. Then assR(I) =

{√
Q1, . . . ,

√
Qt
}

.

Proof. (from [13], §3.1 - §3.3) Given a minimal primary decomposition I = Q1 ∩ . . . ∩Qt
and k ∈ {1, . . . , t}, let Ik =

⋂
i 6=kQi. Since the decomposition is irredundant, Ik/I 6= {0}.

Observe assR(Ik/I) ⊆ assR(R/I). By the second isomorphism theorem,

Ik/I = Ik/(Ik ∩Qk) ∼= (Ik +Qk)/Qk.

Since Ik/I is non-empty, so is (Ik + Qk)/Qk and lemma 1.34 yields assR((Ik + Qk)/Qk) =√
Qk. By the isomorphism and Qk ⊆

√
Qk,
√
Qk ∈ assR(R/I) as desired.

For the converse, let I = Q1 ∩ . . . ∩Qt be a primary decomposition and consider the
canonical embedding R/I −→ M =

⊕t
i=1R/Qi. By lemma 1.34, assR(R/Qi) =

√
Qi

for i = 1, . . . , t. So it suffices to show assR(R/I) ⊆ ⋃t
i=1 assR(R/Qi). The proof is by

induction on t. The case t = 1 is trivial, so assume t > 1 and P ∈ assR(R/I) \ assR(R/Qt),
i.e. annR(m) = P for some 0 6= m ∈ R/I . Let n = n1 ⊕ . . . ⊕ nt ∈ M be the image
of m under the embedding. Then annR(n) = P and, since P is prime, Rn ∼= R/P is a
domain. Thus any non-zero multiple rn for r ∈ R has the annihilator annR(rn) = P and
cannot be contained in (the embedding in M of) R/Qt. Hence rn 6= 0 and annR(nt) ) P
imply r(n1 ⊕ . . . ⊕ nt−1) 6= 0, for all r ∈ R, and therefore P = annR(n1 ⊕ . . . ⊕ nt−1) ∈⋃t−1
i=1 assR(R/Qi).
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1. Abstract Algebra

The primary decomposition of an ideal also allows to decompose its factor ring.

Lemma 1.36. Let I be an ideal in a ring R and I = Q1 ∩ . . . ∩Qt be a minimal primary decom-
position of I . Then

R/I ∼= R/Q1 ⊕ . . .⊕R/Qt.

Proof. Consider the canonical homomorphisms R/I −→ R/Qi for i = 1, . . . , t. These are
obviously surjective since I ⊆ Qi for i = 1, . . . , t. On the other hand, f−g ∈ I iff f−g ∈ Qi
for all i = 1, . . . , t since the primary decomposition is minimal.

Example 1.37.

• In the ring of integers, the ideals are exactly the subsets of the form kZ. They are prime ideals
iff k is a prime and primary iff k is the power of a prime.

• (aZ) : (bZ) = a
gcd(a,b)Z.

• If I is an ideal in the ring R, I : I = R and I : R = I .

•
»
pe11 · · · p

es
s Z = p1 · · · psZ for primes p1, . . . , ps and integral exponents e1, . . . , es ≥ 1. The

primary decomposition of pe11 · · · pess Z is pe11 Z ∩ · · · ∩ pess Z.

• A field K has only two ideals, namely {0} and K. This is because all elements but 0 are
invertible.

1.5. Polynomials

Polynomials can be considered as generalization of the linear functions studied in linear
algebra. They form a ring which is the prototype of a purely transcendent extension of the
coefficient ring. In the following, only polynomials with commuting indeterminates will
be considered — just as all rings are assumed to be commutative.

The term polynomial actually is used for two slightly different objects, the abstract poly-
nomial and the induced polynomial function. However it will not be necessary to accen-
tuate this distinction too much for the purposes of this thesis.

Definition 1.38. Let R be a ring and M be monoid generated by a set B. Then an (abstract)
polynomial over M is a function

f : M −→ R,m 7→ fm

with finite support supp(f) = {m ∈M : fm 6= 0}. The set of all polynomials over M is denoted
byR[M ] orR[B]. It forms a ring with the operations (f+g)(m) = f(m)+g(m) and (f ·g)(m) =∑
m1,m2∈M
m1m2=m

f(m1) · g(m2) for all m ∈ M and f, g ∈ R[M ]. Note that, by definition, those sums

are finite. The elements of M are called monomials and the fm are called coefficients.
If there is a grading of the monoid M = (Md)d∈Z, this induces a grading of R[M ] by R[M ]d =
{f ∈ R[M ] : supp(f) ⊆Md}.
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1.5. Polynomials

The most common polynomials are those over the monoid generated by a set of (al-
gebraically independent) indeterminates X = {x1, . . . , xn}. In the following, the notion
polynomial will refer to elements of R[X]. All monomials have the form xα = xα1

1 · · ·xαnn
for some α ∈ Nn. Thus any polynomial f ∈ R[X] can be represented as

f =
∑
α∈Nn

fαx
α.

Here the sum sign is understood as separator. As mentioned above, any polynomial f ∈
R[X] induces a function by

f : Rn −→ R, (y1, . . . , yn) 7→
∑
α∈Nn

fαy
α.

In this case, the sum sign is the operator in R.
The polynomials over the monoid generated by

¶
x1, . . . , xn, x

−1
1 , . . . , x−1

n

©
are called

Laurent polynomials. They occur in the study of toric ideals.
This thesis will mainly be concerned with polynomial rings over fields. Still, the defini-

tions will be held general if this causes no extra work. As for notations, for any polynomial
f ∈ R[M ], the coefficient of a monomial m ∈M will by denoted by fm.

Definition 1.39. Let R[X] be a polynomial ring.

1. Let F ⊆ {xα ∈ R[X] : α ∈ Nn}. Then 〈F 〉 is called monomial ideal.

2. Let F ⊆
¶
xα − xβ ∈ R[X] : α, β ∈ Nn

©
. Then 〈F 〉 is called binomial ideal.

It was already mentioned that finite generating sets of ideals are very important for
computations. Thus it is nice to notice that polynomial rings over Noetherian rings are
Noetherian, again.

Theorem 1.40 (Hilbert Basis Theorem). LetR be a Noetherian ring. ThenR[X] is Noetherian.

Proof. See [13], §1.4.

Moreover, factorization in polynomial rings is unique.

Lemma 1.41 (Gauß’s Lemma). Let R be a factorial domain. Then the ring of polynomials R[X]
is factorial.

Proof. See [26], theorem 1.2.13.

Polynomials in one indeterminate play a special role. There are a couple of neat proper-
ties which make handling them about as easy as handling integers. The next few lemmas
collect the most important properties. The much more delicate task is to study multivari-
ate polynomials and how these properties generalize or do not generalize. Chapter 2 will
be dedicated to the resulting theory.
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1. Abstract Algebra

Lemma 1.42. Let K[x] be a ring of polynomials with one indeterminate x over a field K. Then for
any f, g ∈ K[x] with g 6= 0, there are a, r ∈ K[x] such that f = ag + r and deg(r) < deg(g).

Proof. Let f =
∑d
i=0 fix

i and g =
∑e
i=0 gix

i with fd 6= 0 6= ge. If d ≥ e, then f = fd
ge
xd−eg+ r

for some r ∈ K[x] with deg(r) < d. The claim now follows by induction on deg(f).

In general, domains that have the property of lemma 1.42 are called Euclidean. In these,
one can use the Euclidean algorithm for the calculation of the greatest common divisor.
Unfortunately, this is not possible for multivariate polynomials.

Lemma 1.43. Let K[x] be a ring of polynomials in one variable x over a field K. Then any ideal I
is principal.

Proof. Lemma 1.42 yields fs−1 = afs + r. Thus I = 〈f1, . . . , fs−2, fs, r〉. Since deg(r) <
deg(fs), iteration yields I = 〈f1, . . . , fs−2, h, 0〉 for h = gcd(fs−1, fs). By induction on the
number of generators, one obtains I = 〈gcd(f1, . . . , fs)〉.

Another consequence of the division algorithm is that, for polynomials over infinite
fields, the distinction between abstract polynomials and polynomial functions is unneces-
sary. This is true for multivariate polynomials as well.

Lemma 1.44. Let 0 6= f ∈ K[X] and S ⊆ K such that #S > deg(f). Then f(y1, . . . , yn) 6= 0
for some (y1, . . . , yn) ∈ Sn.

Proof. The proof is by induction on n. For any n ≥ 1, consider the polynomial f as element
of K(x1, . . . , xn−1)[xn]. Since this ring is univariate, lemma 1.42 yields that (xn − yn) | f
iff f(yn) = 0. Since #S > deg(f), there must be yn ∈ S such that (xn − yn) - f and
thus 0 6= f(yn) ∈ K[x1, . . . , xn−1]. By induction, there are (y1, . . . , yn−1) ∈ Sn−1 such that
f(y1, . . . , yn) 6= 0.

Corollary 1.45. Let K be an infinite field and f ∈ K[X] be a polynomial. Then f(y1, . . . , yn) = 0
for all (y1, . . . , yn) ∈ Kn iff f = 0.

There is an interesting relationship between ideals in the polynomial ring R[X] and spe-
cial subsets of Rn. These subsets are the sets of common zeros of the polynomials in the
ideals.

Definition 1.46. Let I be an ideal in R[X]. Then the corresponding variety is defined by

VR(I) = {y ∈ Rn : f(y) = 0 for all f ∈ I}.

Conversely, the ideal which annihilates a variety V is denoted by

IR[X](V ) = {f ∈ R[X] : f(y) = 0}.

IfR andR[X] are clear from the context, the shorter notations V(I) = VR(I) and I(V ) = IR[X](V )
will be preferred.
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Many ideal operations can be translated into the language of varieties.

Corollary 1.47. Let I and J be ideals in R[X]. Then

• I ⊆ J iff V(I) ⊇ V(J),

• V(I ∩ J) = V(I) ∪ V(J), and

• V(I + J) = V(I) ∩ V(J).

Consider a variety V(I) generated by an ideal I in R[X]. It is obvious that I ⊆ I(V(I)).
If R is reduced, fk(y) = 0 iff f(y) = 0 for all k > 0 and y ∈ Rn. Thus

√
I ⊆ I(V(I)). Could

I(V(I)) be even larger? The answer is yes and no — depending on R.

Example 1.48. Consider the radical ideal I =
〈
x2 + 1

〉
in the ring Q[x]. Since y2 + 1 > 0 for all

y ∈ Q, V(I) = ∅ and thus I(V(I)) = Q[x].

This result would not hold if the field of coefficients Q was replaced by C. This is gener-
alized by Hilbert’s Nullstellensatz.

Theorem 1.49 (Hilbert’s Nullstellensatz). Let I be an ideal in the polynomial ring K[X] over
an algebraically closed field K. Then I(V(I)) =

√
I .

Proof. See [9], §4.1.

In the following, some nice identities for polynomial ideals will be proved. They make
up the foundation for the application of Gröbner bases for the computation of basic ideal
operations.

Lemma 1.50 (cf. [30]). Let I and J be ideals in K[X] generated by polynomials f1, . . . , fs respec-
tively g1, . . . , gt. If x0 is a new indeterminate,

I ∩ J = 〈x0f1, . . . , x0fs, (1− x0)g1, . . . , (1− x0)gt〉 ∩K[X].

Proof. Let f ∈ I ∩J ⊆ K[X]. Then f =
∑s
i=1 aifi =

∑t
j=1 bjgj for ai, bj ∈ K[X], i = 1, . . . , s,

and j = 1, . . . , t. Hence f =
∑s
i=1 aix0fi +

∑t
j=1 bj(1− x0)gj .

Conversely, let f =
∑s
i=1 aix0fi +

∑t
j=1 bj(1− x0)gj ∈ K[X] for ai, bj ∈ K[X ∪ {x0}],

i = 1, . . . , s, and j = 1, . . . , t. Substituting x0 with 0 yields f =
∑t
j=1 b̃jgj ∈ J with

b̃j ∈ K[X] for j = 1, . . . , t and substituting x0 with 1 yields f =
∑s
i=1 ãifi ∈ I with

ãi ∈ K[X] for i = 1, . . . , s.

Lemma 1.51 (cf. [30]). Let I and J be ideals in K[X] and assume J is generated by polynomials
f1, . . . , fs. If x0 is a new indeterminate and g = f1 + x0f2 + . . . + xs−1

0 fs, I : J∞ = (I :
g∞) ∩K[X].
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Proof. If h ∈ I : J∞, then fkii h ∈ I for some ki ∈ N and each i = 1, . . . , s. Thus gkh ∈ I for
k =

∑s
i=1 (ki − 1) + 1.

For the opposite direction, assume h ∈ I : g∞, i.e. gkh ∈ I for some k ∈ N. Assume
i ∈ {1, . . . , s} is maximal such that fki h /∈ I . Therefore 0 ≡ gkh ≡ (f1 + x0f2 + . . . +
xi−1

0 fi)
kh mod I . Since h, f1, . . . , fs ∈ K[X] and I ⊆ K[X], comparing the coefficients of

x
(i−1)k
0 yields fki h ∈ I which contradicts the choice of i and proves the claim.

Lemma 1.52 (Rabinovich Trick, cf. [30]). Let I be an ideal in K[X] generated by polynomials
f1, . . . , fs and g ∈ K[X]. If x0 is a new indeterminate, I : g∞ = 〈f1, . . . , fs, 1− x0g〉 ∩K[X].

Proof. Let h ∈ I : g∞, i.e. gkh ∈ I . Then

h = (1 + x0g + . . .+ xk−1
0 gk−1)h(1− x0g) + xk0g

kh.

On the other hand, if h =
∑s
i=1 aifi + b(1 − x0g) for a1, . . . , as, b ∈ K[X ∪ {x0}], one

can substitute x0 with 1
g and then multiply with the common denominator. This yields

gkh =
∑s
i=1 ãifi for some k ∈ N and ã1, . . . , ãs ∈ K[X] and thus h ∈ I : g∞.

Example 1.53.

• Since any field K is Noetherian, such is K[X].

•
〈
x3 + x2 + 2x, x4 − x

〉
= 〈x〉 ⊆ K[x] is a principal ideal.

• 〈x1, x2〉 ⊆ K[x1, x2] is not principal.

1.6. Localization

Given a ring without zero-divisors, it is possible to make some of its elements invertible.
The original ring will be a subset of the new construct.

Definition 1.54. Let R be a domain and S ⊆ R be a set with S · S ⊆ S, 0 /∈ S and 1 ∈ S. Let
RS = (R×S)/∼ be the set of equivalence classes of pairs (r, s) ∈ R×S w.r.t. the relation (r1, s1) ∼
(r2, s2) iff r1s2 = r2s1 for all r1, r2 ∈ R and s1, s2 ∈ S. With addition and multiplication defined
by (r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2) and (r1, s1) · (r2, s2) = (r1r2, s1s2), RS forms a
domain which is called localization of R at S. R is embedded into RS by the homomorphism
ϕ : R −→ RS , r 7→ (r, 1). A pair (r, s) ∈ RS is also denoted by r

s or r · s−1. Moreover, if (Rd)d∈Z
is a grading of R, one can assign degrees to elements of RS by deg( rs) = deg(r) − deg(s) for all
r ∈ R, s ∈ S.

Note that RS is usually not graded since a decomposition into homogeneous compo-
nents might not be possible.

Definition 1.55. Let I be an ideal in a domainR and letRS be a localization ofR. Then IS denotes
the ideal IS = I ·RS generated by I in RS .
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Definition 1.56. If P is a prime ideal in a domain R, S = R \ P is multiplicatively closed. The
localization RS is called localization by the prime ideal P . This is often denoted by RP = RS .

Lemma 1.57. LetR be a domain. Then there is a unique minimal field K ⊇ R. It is called the field
of fractions of R and denoted by Q(R) = K.

Proof. Since R has no zero-divisors, S = R \ {0} is multiplicatively closed and RS is a
domain in which all non-zero elements are invertible. Thus K = RS is a field. Since any
field containing R must contain the inverse elements of all elements in R, RS is minimal
w.r.t. inclusion and unique (up to isomorphisms).

On localization of an ideal, the primary components with invertible elements disappear.

Lemma 1.58. Let I be an ideal in a domain R, I = Q1 ∩ . . . ∩Qt be the primary decomposition of
I , and consider any localization RS of R. Then

IS ∩R =
t⋂
i=1

Qi∩S=∅

Qi.

Proof. Let r ∈ IS ∩R and thus sr ∈ I for some s ∈ S. Let i = 1, . . . , t such that Qi ∩ S = ∅.
Since S is multiplicatively closed, sk /∈ Qi for each k ∈ N. Therefore Qi primary yields
r ∈ Qi.

Conversely, consider r ∈ ⋂Qi∩S=∅Qi. For any i ∈ {1, . . . , t} such that Qi ∩ S 6= ∅, let
si ∈ Qi ∩ S. Then r ·∏Qi∩S 6=∅ si ∈ I . Since

∏
Qi∩S 6=∅ si is invertible in RS , r ∈ IS ∩R.

Localization can also be used in order to proof the existence of elimination polynomials.

Lemma 1.59. Let f, g be polynomials in K[X] with gcd(f, g) = 1. Then 〈f, g〉∩K[X\{x}] 6= {0}
for each x ∈ X .

Proof. Choose x ∈ X , let U = X \ {x}, and consider the localization K(U)[x]. First let
h ∈ K(U)[x] be a common divisor of f and g in K(U)[x], i.e. h | f and h | g. Then hs | fs
and hs′ | gs′ in K[X] for some s, s′ ∈ K[U ]. Since gcdK[X](f, g) = 1, h ∈ K(U) and thus
gcdK(U)[x](f, g) = 1. Iterated application of lemma 1.42 yields a Bézout relation af + bg =
gcdK(U)[x](f, g) = 1 with a, b ∈ K(U)[x]. Multiplying with the common denominator 0 6=
s ∈ K[U ] of the coefficients of a and b, one obtains 0 6= saf + sbg = s ∈ 〈f, g〉 ∩K[U ].

Example 1.60.

• Let r ∈ R. Then S =
{
1, r, r2, . . .

}
is multiplicatively closed. One writes Rr = RS .
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1.7. Transcendence Degree

This section considers extensions of fields and provides means to measure their size.

Definition 1.61. Let L ⊇ K be fields and S ⊆ L. Then L is called field extension of K. Further-
more

K(S) =
⋂

K∪S⊆L′⊆L field

L′ =
ß
f

g
∈ L : f, g ∈ K[S], g 6= 0

™
= Q(K[S])

denotes the field that is obtained by the adjunction of the elements of S to K. If L = K(S) and S
is minimal, S is called transcendence basis of L over K.

The following definitions will be put into a slightly more general context. The objects of
interest will be a domain R over a subdomain Q. Then the field of fractions Q(R) is a field
extension of Q(Q).

Definition 1.62. Let Q ⊆ R be domains. A set S ⊆ R is called algebraically independent
over Q iff for any finite subset {s1, . . . , st} ⊆ S and any polynomial 0 6= h ∈ Q[x1, . . . , xt],
h(s1, . . . , st) 6= 0. A set S which is algebraically independent over Q is called maximal alge-
braically independent over Q iff none of the sets S ( S′ ⊆ R is algebraically independent over
Q.

Corollary 1.63. Let Q ⊆ R be domains. A set S ⊆ R is algebraically independent over Q iff
S ⊆ Q(R) is algebraically independent over Q(Q).

The algebraically independent sets behave as nicely as bases of vector spaces do. Espe-
cially, maximal algebraically independent sets all have the same cardinality.

Lemma 1.64. Let Q ⊆ R be domains. If B,B′ ⊆ R are (w.r.t. inclusion) maximal algebraically
independent sets over Q and b′ ∈ B′, then there is some b ∈ B such that (B′ \ {b′}) ∪ {b} is
maximal algebraically independent over Q.

Proof. (from [13], appendix A1) By corollary 1.63, one can assume that Q and R are fields
and thus factorial.

Let B = {b1, . . . , br} and B′ = {b′1, . . . , b′t}. By the maximality of B′, there are irreducible
polynomials 0 6= fk ∈ Q[xk, y1, . . . , yt] such that fk(bk, b′1, . . . , b

′
t) = 0 for k = 1, . . . , r.

Assume w.l.o.g. b′ = b′1. If none of the fk involves y1 (i.e. b′1), B ∪ {b′1} is algebraically
independent over Q which contradicts the maximality of B. Otherwise there was some
irreducible 0 6= f ∈ Q[x1, . . . , xr, y1] with degy1(f) > 0 and f(b1, . . . , br, b

′
1) = 0 and there-

fore relatively prime to f1, . . . , fr and one could use lemma 1.59 inductively in order to
eliminate the variables x1, . . . , xr from f, f1, . . . , fr and obtain a non-zero polynomial in
Q[y1, . . . , yt] which vanishes on b′1, . . . , b

′
t. This cannot be happen since B′ is algebraically

independent over Q.
Thus fk involves y1 for some k ∈ {1, . . . , r}. The claim is that (B′ \ {b′1}) ∪ {bk} is

maximal algebraically independent over Q. Assume for contradiction that there is some
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irreducible 0 6= f ∈ Q[xk, y2, . . . , yt] with f(bk, b
′
2, . . . , b

′
t) = 0. Now lemma 1.59 applied to

f and fk yields a non-zero polynomial in Q[y1, . . . , yt] with f(b′1, . . . , b
′
t) = 0. But this is a

contradiction since B′ is algebraically independent. The maximality of (B′ \ {b′1}) ∪ {bk}
follows from the maximality of B′.

Definition 1.65. Let Q ⊆ R be domains. Then the transcendence degree trdeg(R,Q) of R over Q
is the supremum of the cardinalities of subsets of R which are algebraically independent over Q. If
trdeg(R,Q) = 0, the extension is called algebraic, otherwise it is called transcendent.

Lemma 1.66. Let Q ⊆ R be domains. Then all subsets of R which are maximal algebraically
independent over Q have the same cardinality, namely trdeg(R,Q).

Proof. (from [13], appendix A1) Let B ⊆ R be maximal algebraically independent over Q
with minimal cardinality #B and assume there is B′ ⊆ R maximal algebraically indepen-
dent over Q with #B′ < #B and #(B ∩B′) maximal. If #(B ∩B′) = #B, B = B′ by the
maximality of B which contradicts #B′ > #B. If #(B ∩B′) < #B, choose b′ ∈ B′ \ B.
By lemma 1.64, there is some b ∈ B such that B̃ = (B′ \ {b′}) ∪ {b} is maximal alge-
braically independent overQ and #(B ∩ B̃) > #(B ∩B′). This contradicts the maximality
of #(B ∩B′) and finishes the proof.

This claim even can be strengthened to

Lemma 1.67. Let Q ⊆ R be domains. Then set S of algebraically independent sets of R over Q
has a matroid structure, i.e.

1. ∅ ∈ S,

2. If S ∈ S and S′ ⊆ S then S′ ∈ S, and

3. If S, S′ ∈ S and #S > #S′, then there is some s ∈ S \ S′ such that S′ ∪ {s} ∈ S.

Proof. This follows from lemma 1.64 and [37], §1.2.

Corollary 1.68. Let P ⊆ Q ⊆ R be domains. Then trdeg(R,P ) = trdeg(Q,P ) + trdeg(R,Q).

Example 1.69. The field of rational functions K(x1, . . . , xn) has transcendence degree n.

25





2. Polynomial Algebra

2.1. Monomial Orderings

For one indeterminate, there is only one well-ordering of the monomials which is compat-
ible with multiplication, namely xk ≺ xl iff k < l for all k, l ∈ N. Having more indetermi-
nates, there are plenty of choices. These will be employed by a couple of applications such
that the definition of a monomial ordering has to be kept general. However compatibility
with multiplication and well-orderedness are crucial for many proofs and algorithms, e.g.
Buchberger’s algorithm for computing Gröbner bases.

Definition 2.1. A total ordering ≺ of the monomials is called admissible iff

1. xα ≺ xβ implies xα+γ ≺ xβ+γ for all α, β, γ ∈ Nn and

2. 1 ≺ xα for all 0 6= α ∈ Nn.

Definition 2.2. Given a monomial ordering≺, the largest monomial in the support of a polynomial
f ∈ R[X] is called leading monomial and denoted by lm≺(f) = max≺(supp(f)). If lm≺(f) =
xα for α ∈ Nn, lc≺(f) = fα is the leading coefficient of f and lt≺(f) = fαx

α is the leading
term. If I ⊆ R[X] is an ideal, lm≺(I) denotes the ideal 〈lm(f) : f ∈ I〉.

If the monomial ordering is fixed, it will be omitted in the notation as in lm(f) = lm≺(f).

Lemma 2.3. Let ≺ be an admissible monomial ordering. Then ≺ is a well-ordering of the mono-
mials, i.e. any set of monomials has a smallest element w.r.t. ≺.

Proof. Consider a set S of monomials in the variables X . This set generates an ideal I
in Q[X]. Since this ring is Noetherian, I has a basis F ⊆ S. Moreover I is a monomial
ideal such that one can assume that F only contains monomials. Since F is finite and ≺ is
total, the set has a smallest element xα w.r.t. ≺. Since 1 is the smallest monomial and ≺ is
compatible with multiplication, xα is the smallest monomial in S.

If the ring R is ordered, e.g. R = Z or R = Q, the monomial ordering can be easily
extended to polynomials. For terms axα, bxβ ∈ R[X] with a 6= 0 6= b, axα ≺ bxβ iff xα ≺ xβ
or xα = xβ and a < b. For non-zero polynomials f, g ∈ R[X], f ≺ g iff lt≺(f) ≺ lt≺(g) or
lt≺(f) = lt≺(g) and f − lt≺(f) ≺ g − lt≺(g). Finally 0 ≺ f for all non-zero polynomials
0 6= f ∈ R[X].

If the ring R is not ordered, one can still extend the ordering to the support of polyno-
mials (respectively finite sets of monomials).

27



2. Polynomial Algebra

Lemma 2.4. Let R[X] be a polynomial ring and ≺ be an admissible ordering. Then there is an
induced well-ordering on the finite sets of monomials defined by

M ≺ N ⇔ max
≺

(M \N) ≺ max
≺

(N \M) for all finite M,N ⊆ {xα ∈ R[X] : α ∈ Nn}

and ∅ ≺M for all ∅ 6= M ⊆ {xα ∈ R[X] : α ∈ Nn}.

Proof. The ordering ≺ on the finite sets of monomials is clearly well-defined and total.
To see it is a well-ordering, consider (Mi)i∈I for an arbitrary index set I and finite Mi ⊆
{xα ∈ R[X] : α ∈ Nn} for all i ∈ I . If Mk = ∅ for some k ∈ I , Mk = min≺ {Mi : i ∈ I}.

Otherwise, since all sets are finite, there exists xαi = max≺(Mi) for all i ∈ I . Since ≺ is a
well-ordering, there is xβ = min≺ {xαi : i ∈ I}. The proof will be by induction on xβ (w.r.t.
≺), the smallest maximal element.

With the notation from above, define J =
¶
i ∈ I : max≺(Mi) = xβ

©
and Ni = Mi \

¶
xβ
©

for all i ∈ J . By the definition of the induced ordering, Mj ≺ Mi for all j ∈ J , i ∈
I \ J , and Mj ≺ Mi iff Nj ≺ Ni for all i, j ∈ J . Thus Mk = min≺ {Mi : i ∈ I} iff Nk =
min≺ {Ni : i ∈ J} for all k ∈ I . The maximal elements of (Ni)i∈J , however, are strictly
smaller than xβ . Thus, by induction, a minimal set Nk with k ∈ J exists which implies
Mk = min≺ {Mi : i ∈ I}.

Example 2.5. Define an ordering <lex on number vectors by α <lex β iff there is a 1 ≤ k ≤ n such
that αi = βi for all 1 ≤ i < k and αk < βk for all α, β ∈ Rn. Analogously define <rev by α <rev β
iff there is a 1 ≤ k ≤ n such that αi = βi for all k < i ≤ n and αk > βk for all α, β ∈ Rn.

• The lexicographic ordering ≺lex is defined by xα ≺lex x
β iff α <lex β. ≺lex is admissible.

• The reverse-lexicographic ordering ≺rev is defined by xα ≺rev x
β iff α <rev β. ≺rev is not

admissible.

• The graded reverse-lexicographic ordering ≺grl is defined by xα ≺grl x
β iff deg(xα) <

deg(xβ) or deg(xα) = deg(xβ) and xα ≺rev x
β . ≺grl is admissible.

• A weight matrix W ∈ Rn×n represents the monomial ordering ≺ defined by xα ≺ xβ iff
Wα <lex Wβ (note Wα,Wβ ∈ Rn).

2.2. Gröbner Bases

In a univariate polynomial ring, there is a well-known division algorithm which was
sketched in lemma 1.42. The generalization to multivariate polynomials is not completely
straightforward. Considering a fixed monomial ordering, a first try could be the following
definition:
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Definition 2.6. Given a polynomial h ∈ K[X] and a set of polynomials F , h is reducible w.r.t. F
iff there is a reductor f ∈ F such that lm(f) | xα for some xα ∈ supp(h). Then h′ = h− hαxα

lt(f) f

is called the reduct. The reduction is written as h F−→ h′. F−→
∗

is the transitive closure of F−→.
Otherwise h is called irreducible w.r.t. F .

Note that this definition is a little more general than in lemma 1.42 since not only the
leading term of h can be reduced but any of its terms. Thus, there might be very long
reduction sequences where the same term is reduced many times (with some other re-
ductions in between). Still, each sequence of reductions h = h0

F−→ h1
F−→ h2

F−→ . . .
terminates after a finite number of steps in an irreducible polynomial. This follows from
lemma 2.4 applied to {supp(hi) : i ∈ N}.

As noted before, ideals in polynomial rings with several indeterminates are — in general
— not principal. Hence a polynomial h might reduce to two different irreducible polyno-
mials, depending on the choice of the reductors. This behavior is obviously unwanted.

Example 2.7. Consider the basis F =
{
x2y − 1, xy2 − x

}
of an ideal I in the ring Q[x, y]. Then

the polynomial h = x2y2−y can be reduced by h x2y−1−→ 0, which proves h ∈ I , or by h xy2−x−→ x2−y,
which yields an irreducible non-zero reduct.

Looking at the univariate case, one notices that a division with remainder yields 0 iff the
dividend is a multiple of the divisor, i.e. the dividend is an element of the ideal generated
by the divisor. For multivariate ideals, the use of special bases is necessary to obtain a
similar result:

Definition 2.8. A basis G of an ideal I over a polynomial ring K[X] is called Gröbner basis iff
〈lm(G)〉 = lm(I).

Definition 2.9. Let I be an ideal in K[X]. Then the normal form of a polynomial h ∈ K[X]
w.r.t. the ideal I is defined as the unique polynomial nfI(h) = min≺(h + I) where f ≺ g iff
supp(f) ≺ supp(g) for all f, g ∈ K[X]. The set of all normal forms (w.r.t. I) is denoted by
NI = {nf(h) : h ∈ K[X]} and also called complement of I .

Note that ≺ is a partial ordering of the polynomials. One could define a total ordering
if K was ordered, but this is generally not the case and not needed for the uniqueness
of the normal form: assume there are f, g ∈ h + I , f 6= g with supp(f) = supp(g) =

min≺(supp(h + I)), then 0 6= f − g ∈ I . For xβ = lm(f − g), f − fβ
lc(f−g)(f − g) ∈ h + I

is a polynomial whose support is smaller than supp(f) = supp(g) which contradicts the
assumption.

Lemma 2.10. Let G be a Gröbner basis of the ideal I in the polynomial ring K[X]. Then h G−→
∗

nfI(h) for all h ∈ K[X] and nfI(h) is irreducible.
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Proof. Let h G−→
∗

h̃ for some h, h̃ ∈ K[X]. By definition of the reduction, h̃ ≺ h and thus
nfI(h) is irreducible. Since G is a Gröbner basis, h is reducible w.r.t. G iff it is reducible
w.r.t. I . Given any polynomial h ∈ K[X] with h 6= nfI(h), h I−→ nfI(h) and thus h is
reducible w.r.t. I and also w.r.t. G. By lemma 2.4, any reduction sequence of h terminates
(after a finite number of steps) in an irreducible polynomial, hence h G−→

∗
nfI(h).

Corollary 2.11. Let I be an ideal in K[X]. Then

1. nfI(f + g) = nfI(f) + nfI(g) for all f, g ∈ K[X].

2. nfI(f · g) = nfI(nfI(f) · nfI(g)) for all f, g ∈ K[X].

3. nfI(f) = 0 iff f ∈ I .

4. NI is a K-vector space.

5. (NI ,+, ∗) is a ring with multiplication f ∗ g = nfI(f · g).

6. I ⊕NI = K[X].

7. NI
∼= K[X]/I as K-vector space and as ring.

Gröbner bases can also be used to define a unique finite representation of an ideal, as-
suming a monomial ordering was fixed first. Therefore superfluous polynomials in the
basis have to be eliminated.

Definition 2.12. A Gröbner basis G of an ideal I in K[X] is called reduced iff

1. each polynomial g ∈ G is irreducible w.r.t. G \ {g} and

2. lc(g) = 1 for all g ∈ G.

Lemma 2.13. Each ideal I in K[X] has a unique reduced Gröbner basis G = {xα − nfI(x
α) ∈

K[X] : xα minimally reducible w.r.t. I}. Here xα ∈ K[X] is minimally reducible w.r.t. I if it is
reducible w.r.t. I but none of its proper divisors is reducible w.r.t. I .

Proof. First look at B = {xα ∈ K[X] : xα minimally reducible w.r.t. I}. For any monomial
xα ∈ K[X], xα ∈ lm(I) iff xα is reducible w.r.t. I . Thus 〈B〉 = lm(I) and, since K[X] is
Noetherian, the irredundant basis B is finite.

To show the existence of the Gröbner basis, choose G = {xα − nfI(x
α) ∈ K[X] :

xα minimally reducible w.r.t. I} as above and note 〈lm(G)〉 = 〈B〉 = lm(I) and #G =
#B < ∞. Thus G is a Gröbner basis of I . For any g ∈ G, g − lt(g) is irreducible w.r.t. G
and thus g is irreducible w.r.t. G \ {g}. Hence G is reduced.

For uniqueness, consider any reduced Gröbner basis G. By definition, B = lm(G) and
#B = #G. For any g ∈ G, g is irreducible w.r.t.G\{g} and therefore g− lt(g) is irreducible
w.r.t. G. Hence lt(g)− g = nfG(lt(g)) = nfI(lt(g)).
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The unique reduced Gröbner basis of an ideal generated by polynomials F will be de-
noted by GB≺(F ) respectively GB(F ) if ≺ is fixed.

For the computation of Gröbner bases, Buchberger came up with a criterion for Gröbner
bases in [5]. Basically, it says that, if a basis is not a Gröbner basis, this must be due to
some non-leading monomials of the basis elements which can become leading monomials
by cancellation. The important insight is that it suffices to consider cancellations between
two polynomials.

Definition 2.14. Let f, g ∈ K[X]. Then the S-polynomial of f and g is defined as

S(f, g) =
lt(g)

gcd(lm(f), lm(g))
f − lt(f)

gcd(lm(f), lm(g))
g.

Note that the leading terms of lt(g)
gcd(lm(f),lm(g))f and lt(f)

gcd(lm(f),lm(g))g are identical and there-
fore cancel out.

Lemma 2.15. Let I be an ideal in K[X], G = {g1, . . . , gt} a basis of I , and ≺ be an admissible
monomial ordering. Then G is a Gröbner basis of I w.r.t. ≺ iff

S(gk, gl) =
t∑
i=1

aigi for some ai ∈ K[X] with lm(aigi) � lm(S(gk, gl)) and i, k, l = 1, . . . , t.

Proof. See [9], §2.9.

One of the nice properties of Gröbner basis is that they allow to compute elimination
ideals. Here the lexicographic monomial ordering is necessary (actually, this could be
slightly generalized).

Theorem 2.16 (Elimination Theorem). Let I be an ideal in K[X] and G a Gröbner basis of I
w.r.t. to the lexicographic monomial ordering ≺ with x1 � . . . � xn. Then G ∩K[xk, . . . , xn] is a
Gröbner basis of I ∩K[xk, . . . , xn] for k = 1, . . . , n.

Proof. (cf. [9], §3.1) ObviouslyG∩K[xk, . . . , xn] ⊆ I∩K[xk, . . . , xn]. Moreover, a polynomial
f ∈ K[X] is contained in K[xk, . . . , xn] iff lm(f) ∈ K[xk, . . . , xn]. Hence

lm(G∩K[xk, . . . , xn]) = lm(G)∩K[xk, . . . , xn] = lm(I)∩K[xk, . . . , xn] = lm(I∩K[xk, . . . , xn])

proves the claim.

Given a basis of an ideal I in a polynomial ring K[X] and U ⊆ X , the very same basis
also generates the localized ideal I ·K(U)[X \U ]. The converse direction is not as easy and
requires the computation of a Gröbner basis.

Lemma 2.17. Let I be an ideal in ring K[X], U ⊆ X , and G = {g1, . . . , gt} ⊆ K[X] a Gröbner
w.r.t. a lexicographic monomial ordering≺ such that u ≺ x for all u ∈ U , x ∈ X \U . Furthermore
let hi = lc(gi) ∈ K[U ] be the leading coefficient of gi as polynomial in K(U)[X \U ] for i = 1, . . . , s
and h = lcm(h1, . . . , ht). Then (I ·K(U)[X \ U ]) ∩K[X] = 〈g1, . . . , gt〉 : h∞.
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Proof. 〈g1, . . . , gt〉 : h∞ ⊆ (I ·K(U)[X\U ])∩K[X] is obvious since h is invertible in K(U)[X\
U ]. For the opposite direction, let f ∈ (I ·K(U)[X \U ])∩K[X]. Since the leading monomial
of any polynomial gi ∈ K[X] w.r.t. ≺ equals the leading monomial of gi as element of
K(U)[X \ U ] up to a unit of K(U)[X \ U ] for i = 1, . . . , t, G is also a Gröbner basis of
I · K(U)[X \ U ]. Thus, in K(U)[X \ U ], f reduces to 0 w.r.t. G. Note that the leading
coefficients of g1, . . . , gt in K(U)[X \U ] are not invertible in K[X]. But there are e1, . . . , et ∈
N such that he11 · · ·h

et
t f reduces to 0 w.r.t. G in K[X].

2.3. Homogenization

Definition 2.18. Let f =
∑d
i=0 fi, fd 6= 0 be the decomposition into homogeneous components of

a polynomial f in R[X] and x0 be a new indeterminate. Then the homogenization of f is defined
by h0 = 0 and otherwise

hf = xd0f0 + xd−1
0 f1 + . . .+ fd.

hf is homogeneous of degree d inR[X0] forX0 = {x0, . . . , xn}. Given a set of polynomials S, hS =¶
hf : f ∈ S

©
. The converse operation, the substitution of x0 by 1, is called dehomogenization

and denoted by
dg(x1, . . . , xn) = g(1, x1, . . . , xn) for g ∈ R[X0].

The homogenization of an ideal I in R[X] is denoted by

hI =
¨
hf : f ∈ I

∂
.

Let f : g∞ denote the saturation of f ∈ R[X] w.r.t. g ∈ R[X], i.e. f : g∞ = h = f
gk

for
f = hgk such that g - h, k ∈ N, and h ∈ R[X]. Then d(hf) = f for any polynomial f ∈ R[X],
but h(dg) = g : x∞0 for a homogeneous polynomial g ∈ R[X0]. Moreover, all homogeneous
polynomials in hI have the form xk0 · hf with k ∈ N, f ∈ I .

Of course, the relation of homogenization, ideals, and Gröbner bases is of special interest
here. Unfortunately, the homogenization of the basis of an ideal does (in general) not
generate the homogenization of the ideal. However, the polynomials in the two ideals are
the same up to a power of the new variable.

Example 2.19. Consider the ideal I in K[x, y] generated by F =
{
x2 − y, x2 − 1

}
. Then y−1 ∈ I .

Now consider the homogenization of F w.r.t. t, i.e. hF =
{
x2 − yt, x2 − t2

}
, and let J =

¨
hF
∂
.

Then tk(y − t) ∈ J iff k ≥ 1.

Lemma 2.20. Let I = 〈f1, . . . , fs〉 be an ideal in R[X]. Then hI =
¨
hf1, . . . ,

hfs
∂

: x∞0 .

Proof. Since both hI and
¨
hf1, . . . ,

hfs
∂

are homogeneous, it suffices to reason about homo-
geneous polynomials.

If f ∈
¨
hf1, . . . ,

hfs
∂

: x∞0 is homogeneous, xk0f =
∑s
i=1 ai · hf i for some k ∈ N and

homogeneous ai ∈ R[X0] for i = 1, . . . , s. Thus df = d(xk0f) =
∑s
i=1

daifi ∈ I . Now
h(df) ∈ hI and h(df) | f imply f ∈ hI .
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For the converse, let f ∈ hI be homogeneous and thus df =
∑s
i=1 aifi ∈ I for some

ai ∈ R[X] and i = 1, . . . , s. Let d = max{deg(f),deg(aifi) : i = 1, . . . , s}. Hence

x
d−deg(f)
0 f = x

d−deg(df)
0 · h(df) =

s∑
i=1

x
d−deg(aifi)
0 · hai · hf i

and f ∈
¨
hf1, . . . ,

hfs
∂

: x∞0 .

Before considering Gröbner bases, it is necessary to specify how the monomial ordering
should behave on homogenization. It is most desirable that the monomial ordering of the
homogenization mirrors the original monomial ordering.

Definition 2.21. Let ≺ be a monomial ordering on R[X] and let ≺′ be the graded monomial
ordering on R[X0] defined by xα ≺′ xβ for α, β ∈ Nn+1 iff deg(xα) < deg(xβ) or deg(xα) =
deg(xβ) and dxα ≺ dxβ . Then ≺′ is called the homogenization of ≺ and also denoted by ≺.

Unless explicitly mentioned, the homogenization of the fixed monomial ordering on
R[X] will be used in R[X0].

Corollary 2.22. Let ≺ be an admissible monomial ordering on R[X]. Then its homogenization ≺
on R[X0] is admissible and dlm(f) = lm(df) for all homogeneous f ∈ R[X0].

Lemma 2.23. Let I be an ideal in R[X] and fix an admissible monomial ordering. Then lm(I) =
lm(hI) : x∞0 .

Proof. f ∈ I iff hf ∈ hI . Now lm(hf) = xk0 · lm(f) for some k ≥ 0 by corollary 2.22, which
proves the claim.

Lemma 2.24. Let I = 〈f1, . . . , fs〉 be an ideal in R[X] and ≺ be a monomial ordering on R[X].
Then any homogeneous Gröbner basis G of J =

¨
hf1, . . . ,

hf s
∂

w.r.t. the homogenization of ≺
yields a Gröbner basis dG of I .

Proof. By lemma 2.20, dG ⊆ dJ ⊆ I . Since J is homogeneous, it suffices to consider homo-
geneous polynomials and corollary 2.22 implies dlm(J) = lm(dJ). Thus

lm(I) = lm(d(J : x∞0 )) = lm(dJ) = dlm(J) = d〈lm(G)〉 =
¨
lm(dG)

∂
.

Note that applying the above lemma to a reduced Gröbner basis of J does not necessar-
ily generate a reduced Gröbner basis of I .

Example 2.25. Consider the ideal I =
〈
x3 − x, x2 − y3

〉
w.r.t. the lexicographic monomial order-

ing with x � y. The reduced Gröbner basis of
〈
x3 − xt2, x2t− y3

〉
is given byG = {x3−xt2, x2t−

y3, xy3 − xt3, y6 − y2t4} which dehomogenizes to dG =
{
x3 − x, x2 − y3, xy3 − x, y6 − y2

}
.

While dG is a Gröbner basis of I , x3 − x is superfluous and thus dG is not reduced.
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Many ideal classes are stable under homogenization.

Corollary 2.26. Let I be an ideal in R[X].

1. I is radical iff hI is radical.

2. I is prime iff hI is prime.

3. I is primary iff hI is primary.

4. I is principal iff hI is principal.

Example 2.27.

1. Let f1, . . . , fs be homogeneous polynomials in R[X]. Then I = 〈f1, . . . , fs〉 is a homoge-
neous set.

2. The reduced Gröbner basis of a homogeneous ideal I in K[X] contains only homogeneous
polynomials.

3. Let I be a homogeneous ideal and f be a homogeneous polynomial in K[X]. Then all reducts of
f w.r.t. I according to definition 2.6 (especially nfI(f)) are homogeneous of the same degree.

4. If I is a homogeneous ideal in R[X], the grading of R[X] induces a grading of the quotient
ring R[X]/I =

⊕
d∈N (R[X]d + I)/I ∼=

⊕
d∈NR[X]d/Id. The last congruence holds since

the map R[X]d/Id −→ (R[X]d + I)/I has a zero kernel for any d ∈ N.

2.4. Hilbert Function, Hilbert Polynomial, and Hilbert Series

The idea behind the Hilbert function is to make a quantitative analysis of an ideal us-
ing linear algebra, especially the vector space dimension. Since the ring K[X] is infinite-
dimensional, it is necessary to cut the ideal into slices. The canonical way is to use the
grading induced by the degrees of the polynomials. For inhomogeneous ideal, however,
some care has to be taken.

Let T be a linear subspace of K[X]. Then the elements of degree at most z are given by

T≤z = {f ∈ T : deg(f) ≤ z}.

The degree of freedom in degree exactly z then can be measured by the dimension of
Tz = T≤z/T≤z−1. With these definitions, the vector space T is isomorphic to the (inner)
direct sum

T ∼= T0 ⊕ T1 ⊕ T2 ⊕ . . . .

Remember that only finite sums belong to the space spanned by this infinite direct sum.
For a homogeneous vector space T , the definition can be slightly simplified since Tz is
isomorphic to Tz ∼= {f ∈ T : f homogeneous,deg(f) = z} ∪ {0}.
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Definition 2.28. Let T ⊆ K[X] be a K-vector space. Then

HFT (z) = dimK(Tz)

is the Hilbert function of T and

aHFT (z) = dimK(T≤z)

is the affine Hilbert function of T .

Note that this the definition of HFT works not only for homogeneous case and some-
times allows to unify the results. Actually, using one or the other Hilbert function barely
matters:

Corollary 2.29. Let T ⊆ K[X] be a K-vector space. Then HFT (z) = aHFT (z)− aHFT (z − 1) for
all z ∈ N.

So all values of HFT can be computed from aHFT and all values of aHFT except aHFT (0)
can be computed from HFT .

Lemma 2.30. Let I be an ideal in K[X] and fix an admissible monomial ordering. Then there is a
polynomial HPNI , called Hilbert polynomial, and some z0 ∈ N such that HPNI (z) = HFNI (z)
for all z ≥ z0. The smallest possible value of z0 is called (Castelnuovo-Mumford) regularity of
I and denoted by reg(I).

Proof. Since NI = Nlm(I) as K-vector spaces, this follows from [9], §9.2. An independent
proof can be derived from the results in section 2.5.

Analogously there is an affine Hilbert polynomial aHPNI (z) = aHFNI (z) for sufficiently
large z ∈ N.

Corollary 2.31. Let I be an ideal in K[X] and fix a monomial ordering. Then HFNI = HFNlm(I)
.

Usually, the Hilbert function of the quotient ring K[X]/I is considered instead of the
normal formsNI . Under certain conditions, this is equivalent. First, one has to think about
how to define (K[X]/I)≤z . There are two possibilities that come to mind: K[X]≤z/I≤z and
(K[X]≤z+I)/I . It turns out that both spaces are isomorphic since f−g ∈ I for f, g ∈ K[X]≤z
iff f − g ∈ I≤z . Thus it suffices to consider (K[X]/I)≤z = K[X]≤z/I≤z .

Now compare HPNI and HPK[X]/I . The first observation is (NI)≤z ⊆ (K[X]/I)≤z . But in
general, both sets differ since f might have lower degree than nfI(f). Yet fixing a graded
monomial ordering yields deg(nfI(f)) ≤ deg(f) for all f ∈ K[X] and thus an isomorphism
of (K[X]/I)≤z and (NI)≤z .

Corollary 2.32. Let I be an ideal in K[X] and fix a graded admissible monomial ordering≺. Then
HFNI = HFK[X]/I and HFK[X] = HFI + HFNI . Thus there is a Hilbert polynomial HPI which
agrees with HFI for sufficiently large parameters.
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Corollary 2.33. Let I be an ideal in K[X] and fix a graded admissible monomial ordering. Then
aHFK[X]/I = HFK[X0]/hI .

This corollary shows, that aHFK[X]/I (respectively HFK[X]/I ) is the same function for any
graded admissible monomial ordering.

For a homogeneous ideal I in K[X], one can replace an arbitrary admissible mono-
mial ordering ≺ by the graded admissible monomial ordering ≺′ defined by xα ≺′ xβ
iff deg(xα) < deg(xβ) or deg(xα) = deg(xβ) and xα ≺ xβ for xα, xβ ∈ K[X]. Then
nfI,≺′(f) = nfI,≺(f) for all homogeneous f ∈ K[X] and the Hilbert functions of NI,≺′

and NI,≺ agree. Thus the previous corollary holds for homogeneous ideals and arbitrary
admissible monomial orderings.

By lemma 1.36, the Hilbert function of a homogeneous ideal can be computed in parts
using a primary decomposition of the ideal.

Corollary 2.34. Let I be a homogeneous ideal in K[X] and I = Q1 ∩ . . . ∩Qt be a minimal
primary decomposition of I . Then

HFK[X]/I =
t∑
i=1

HFK[X]/Qi .

Note that the above does not generalize to inhomogeneous ideals with graded monomial
orderings straight forward. The projections of an element in K[X]/I to the rings K[X]/Qi
might all have lower degree than the element itself.

Example 2.35. Consider the ideal I =
〈
x2

1x2x4 − x1x2x5 − x1x3x4 + x3x5
〉

with minimal pri-
mary decomposition I = Q1 ∩ Q2 for Q1 = 〈x1x2 − x3〉 and Q2 = 〈x1x4 − x5〉 in the ring
K[x1, . . . , x5] with the graded reverse lexicographic ordering ≺ such that x1 � . . . � xn. Then the
polynomial f = x1x2x4 is irreducible w.r.t. I , but nfQ1(f) = x3x4 and nfQ2(f) = x4x5 have
lower degree.

Another encoding of the Hilbert function is the Hilbert series. It will be useful for com-
putations with regular sequences.

Definition 2.36. Let T ⊆ K[X] be a K-vector space. Then the Hilbert series of T is defined as

HST (y) =
∑
z≥0

HFT (z)yz.

Analogously
aHST (y) =

∑
z≥0

aHFT (z)yz.

Example 2.37.

1. The polynomial ring K[X] has the Hilbert function

HPK[X](z) = HFK[X](z) =

Ç
z + n− 1

n− 1

å
.
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2. Fix a graded admissible monomial ordering. Then, for any ideal I in K[X], HFI(z) =
HPI(z) iff HFNI (z) = HPNI (z) for any z ≥ 0 since K[X]≤z = I≤z ⊕ (NI)≤z .

3. Let R,S, T be homogeneous subspaces of K[X] and

0 −→ Rz −→ Sz −→ Tz −→ 0

be a short exact sequence for each z ≥ 0. Then

HSR(y)−HSS(y) + HST (y) = 0.

2.5. Cone Decompositions

Vector spaces T ⊆ K[X] that are generated by monomials — like (leading) monomial ideals
and sets of normal forms — can be nicely represented on a n-dimensional grid, by marking
all dots α ∈ Nn which represent a monomial xα ∈ T . Since T is assumed to be generated
by monomials, this representation is a bijection.

For counting dots in the grid respectively the dimension of subspaces of T , a finite repre-
sentation is desirable. While monomial ideals contain all multiples of their elements, sets
of normal forms contain no multiples of monomials which are not normal forms them-
selves. Thus, it is appropriate to combine the monomials to sets of a monomial and mul-
tiples of it. It is necessary to avoid overlaps by specifying the multiples belonging to the
set. Otherwise, counting would be hard and sets of normal forms could not even be repre-
sented.

In the following, the basic structures and theorems used in [12] are described. This
formalizes the idea which was sketched above in a general setting (allowing for certain
vector spaces which are not generated by monomials).

Definition 2.38. Let h ∈ K[X] and U ⊆ X . Then C = C(h, U) = h · K[U ] is the cone with
point h. Its degree is defined by deg(C) = deg(h) and its dimension by dim(C) = #U .

One of the advantages of working with cones is that their Hilbert functions can be easily
calculated.

Corollary 2.39. Let C be a cone in K[X]. If dim(C) = 0,

HFC(z) =

{
0 for z 6= deg(C)

1 for z = deg(C)
,

otherwise,

HFC(z) =

0 for z < deg(C)(z−deg(C)+dim(C)−1
dim(C)−1

)
for z ≥ deg(C)

.
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Note that in the above corollary the following definition of the binomial coefficients is
used:

HPC(z) =

Ç
z − deg(C) + dim(C)− 1

dim(C)− 1

å
=

(z − deg(C) + dim(C)− 1) · · · (z − deg(C) + 1)

(dim(C)− 1) · · · 1

Definition 2.40. Let T be a subspace of K[X]. If T = C(h1, U1) ⊕ . . . ⊕ C(ht, Ut), then
P = {C(h1, U1), . . . ,C(ht, Ut)} is called cone decomposition of T . The degree of a cone de-
composition refers to deg(P ) = max {deg(C) : C ∈ P}.

As already seen in the formulas for the Hilbert function of cones, it will be necessary to
distinguish cones of dimension 0.

Definition 2.41. Let P be a cone decomposition. Then P+ = {C ∈ P : dim(C) > 0}.

For computations with Hilbert functions, special cone decompositions are necessary.

Definition 2.42. Let T be a subspace of K[X]. A decomposition T = T1 ⊕ . . . ⊕ Tt is called
degree-compatible iff T≤z = (T1)≤z ⊕ . . .⊕ (Tt)≤z for all z ∈ N. A cone decomposition P of T
is called degree-compatible iff T =

⊕
C∈P C is a degree-compatible decomposition.

Corollary 2.43. Let T be a subspace of K[X] and P be a degree-compatible cone decomposition of
T . Then HFT =

∑
C∈P HFC and HPT =

∑
C∈P+ HPC .

Definition 2.44. Let T be a subspace of K[X] and P = {C(h1, U1), . . . ,C(ht, Ut)} be a cone
decomposition of T . Then P is called homogeneous iff h1, . . . , ht are homogeneous.

Corollary 2.45. Any homogeneous cone decomposition P of a subspace T of K[X] is degree-
compatible.

Definition 2.46. A cone decomposition P is q-standard for some q ∈ N if

• C ∈ P+ implies deg(C) ≥ q and

• for each C ∈ P+ and each q ≤ d ≤ deg(C), there exists a cone C ′ ∈ P with degree
deg(C ′) = d and dimension dim(C ′) ≥ dim(C).

Note that P is q-standard for all q ∈ N iff P+ = ∅. Otherwise it can be q-standard for
at most one q, namely the minimal degree of the cones in P+. Furthermore, the union of
q-standard decompositions is q-standard, again.

Definition 2.47. Let C = C(h, U) be a cone in K[X] with U = {u1, . . . , ut}. Then the fan of the
cone C is defined as

F(C) = {C(h, ∅)} ∪ {C(uih, {u1, . . . , ui} : i = 1, . . . , t)}.
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The fan is a way to split a cone into smaller cones. The direct sum of the cones in the fan
represents the original vector space, i.e. C =

⊕
C′∈F(C)C

′. Note that this decomposition is
homogeneous if C is homogeneous. The definition of the fan, however, is not unique since
it depends on the order of the elements of U . This will not matter in the following.

Lemma 2.48 (Dubé 1990). Every q-standard cone decomposition P of a vector space T in K[X]
may be refined into a (q + 1)-standard cone decomposition Q of T with deg(P ) ≤ deg(Q) and
deg(P+) ≤ deg(Q+). If P is degree-compatible respectively homogeneous, then Q is also degree-
compatible respectively homogeneous.

Proof. (from [12], lemma 3.1) By the previous remark about fans,

Q = {C ∈ P : deg(P ) 6= q} ∪
⋃

C∈P,deg(C)=q

F(C)

is a cone decomposition of the same vector space T . Note that, for any zero-dimensional
cone C, F(C) = {C}, so actually only the cones of positive dimension and minimal degree
q are replaced by their fans. It is easy to see that Q is (q + 1)-standard and the degree
bounds hold obviously. Since, for any cone C, HFC(z) =

∑
C′∈F(C) HFC′(z), Q is degree-

compatible if P is. Furthermore, the points of the cones of the fan are monomial multiples
of the original point. Thus Q inherits homogeneity and degree-compatibility from P .

Remember that the set of normal forms is spanned by monomials as vector space. In the
following, a cone decomposition of this set shall be computed. Thus one chooses mono-
mials as points of the cones. For any variable, one can split the space of normal forms into
two subspaces, namely the multiples of the variable and the polynomials avoiding the
variable. Since all monomials (and thus the generators of the space) are in one of both sets,
this splitting yields a direct decomposition. Moreover, the cone decomposition of the nor-
mal forms will be homogeneous. Last but not least, by avoiding a maximal independent
set (i.e. a set of variables of maximal cardinality whose subring has zero intersection with
the ideal) when choosing the variable, the cones of higher dimension will obtain smaller
degrees making the cone decomposition 0-standard.

In order to avoid computation with arbitrary polynomials, one can employ the fact
that the set of normal forms only depends on the leading monomials of an ideal. Thus
a Gröbner basis of the leading monomial ideal suffices for the computations. In the fol-
lowing, it will be assumed that the ideal is monomial.

For reading algorithm 1, note that for F ⊆ K[X] and g ∈ K[X], F : g is defined by
{f : g ∈ K[X] : f ∈ F}where f : g = f

gcd(f,g) for f, g ∈ K[X].
Postpone the proof of termination and correctness for a moment and first prove a central

property of the cone decompositions computed by Split (algorithm 1).

Lemma 2.49 (Dubé 1990). Fix any admissible monomial ordering in the polynomial ring K[X].
Let P = Split(h, U,G) for some monomial h ∈ K[X], U ⊆ X , and a monomial basis G of an
ideal I : h in K[X]. If C(g, U ′) ⊆ C(h, U)∩NI for some polynomial g ∈ K[X] and some U ′ ⊆ X ,
then C(h, S) ∈ P for some S ⊆ U with #S ≥ #U ′.
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Algorithm 1: Split(h, U,G)

Data: h monomial, U ⊆ X , G monomial basis of I : h
Result: Cone decomposition P of NI ∩C(h, U)
if 1 ∈ G then return ∅.
else if G ∩K[U ] = ∅ then return {C(h, U)}.
else

Choose S ⊆ U with G ∩K[S] = ∅ and maximal #S.
Choose xk ∈ U \ S.
return Split(h, U \ {xk}, G) ∪ Split(xkh, U,G : xk).

end

Proof. (from [12], lemma 4.6) First note that C(g, U ′) ⊆ C(h, U) implies h | g and U ′ ⊆ U .
Since divisors of irreducible polynomials are in NI , C(h, U ′) ⊆ C(h, U) ∩ NI and G ∩
K[U ′] = ∅.

The rest of the proof is by induction on #(U \ U ′). If U ′ = U , C(h, U) ∈ P which proves
the claim. Otherwise consider S ⊆ U of maximal cardinality such that G ∩ K[S] = ∅ and
xk ∈ U \ S as in Split. Since C(h, S) ⊆ C(h, U \ {xk}) ∩ NI , by induction the recursive
call Split(h, U \ {xk}, G) returns a cone C(h, S′) with #S′ ≥ #S ≥ #U ′ which proves
the claim.

Lemma 2.50 (Dubé 1990). Let h be a monomial in K[X] and fix any admissible monomial
ordering. If U ⊆ X and G is a monomial basis of a monomial ideal I : h in K[X], then
P = Split(h, U,G) is a homogeneous deg(h)-standard cone decomposition P of C(h, U) ∩NI .

Proof. (from [12], §4) First convince yourself of the termination of algorithm 1 and consider
the potential #U +

∑
g∈G deg(g). By the maximality of #S, some element of G contains

the variable xk and thus the potential is reduced in both recursive calls. Since the potential
can only obtain integral values and the recursion ends at latest for the potential 0, the
termination of Split is clear.

In the extreme cases 1 ∈ G and G ∩ K[U ] = ∅, Split obviously computes correct cone
decompositions of C(h, U)∩NI . Otherwise, S and xk can be chosen as stated and, for any
xk ∈ U , the equality C(h, U)∩NI = (C(h, U \ {xk})∩NI)⊕ (C(xkh, U)∩NI holds because
NI has a monomial basis. This leads to the two recursive calls in the algorithm. The only
thing to note is thatG : xk = {g : xk ∈ K[X] : g ∈ G} is a monomial basis of the ideal I : xk.

The cone decomposition is obviously homogeneous. Thus it remains to show that P
is deg(h)-standard. This can be done by induction on the number of recursions. If the
recursion terminates, the returned cone decomposition ∅ respectively {C(h, U)} is obvi-
ously deg(h)-standard. Otherwise assume by induction that P1 = Split(h, U \ {xk}, G)
and P2 = Split(xkh, U,G : xk) are deg(h)-standard respectively (deg(h) + 1)-standard
cone decompositions. It suffices to show that for each cone C ∈ P+

2 there is a cone
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C ′ ∈ P = P1 ∪ P2 with deg(C ′) = deg(h) and dim(C ′) ≥ dim(C). The existence of such a
cone is proved by lemma 2.49 applied to the cone C ⊆ C(h, U) ∩NI .

Example 2.51. Consider the monomial ideal I =
〈
x2
〉

in the ring K[x, y, z] and use Split in
order to compute a cone decomposition P of NI . Thus the algorithm has to be called with the pa-
rameters Split(1, {x, y, z},

{
x2
}
). Since none of the termination condition holds, the algorithm

chooses an independent set S = {y, z} of maximal cardinality and x ∈ {x, y, z} \ S. Then it
calls Split(1, {y, z},

{
x2
}
) and Split(x, {x, y, z}, {x}). The first call terminates returning

{C(1, {y, z})}. The second call chooses the same independent set S and the variable x and recurses
into Split(x, {y, z}, {x}) and Split(x2, {x, y, z}, {1}). These both calls terminate returning
{C(x, {y, z})} respectively ∅. Collecting the cones along the way yields the cone decomposition
P = {C(1, {y, z}),C(x, {y, z})} of NI .

Dubé found out that more restrictions were needed in order to be able to express the
Hilbert functions of cone decompositions nicely. While it was already granted that the
cones of small dimensions have rather low degrees, the actual distribution could vary
immensely. Since he was interested in a worst case bound, he refined the cone decom-
positions such that, in each degree, there was only one cone of positive dimension. The
resulting cone decomposition obtains the highest degree possible according to the defini-
tion of standard cone decompositions.

Definition 2.52. A q-standard cone decomposition P is q-exact if deg(C) 6= deg(C ′) for all
C 6= C ′ ∈ P+.

Since q-exact cone decompositions are also q-standard, the cones of higher degrees have
lower dimensions, i.e. C,C ′ ∈ P,deg(C) > deg(C ′) implies dim(C) ≤ dim(C ′).

The computation of exact cone decompositions is pretty easy — simply replace cones
which contradict the definition by their fans. The interesting part is the proof of the termi-
nation.

Note that algorithm 2 is a reformulation of SHIFT and EXACT in [12] and does essen-
tially the same.

Lemma 2.53 (Dubé 1990). Every q-standard cone decomposition P of a vector space T in K[X]
may be refined into a q-exact cone decomposition Q of T with deg(P ) ≤ deg(Q) and deg(P+) ≤
deg(Q+). If P is degree-compatible respectively homogeneous, then Q is also degree-compatible
respectively homogeneous.

Proof. (from [12], lemma 6.3) The claim is that Shift always terminates and returns a cone
decomposition Q = Shift(P ) with the desired properties. First consider correctness. It is
obvious from the code and the definition of the fan that S = {C ∈ Q+ : deg(C) = d} after
each while-loop. Since no cones with degree smaller than d are added to Q, in the end Q+

contains at most one cone per degree. Since a cone C with minimal dimension is chosen
from S, Q is q-standard at any time by induction. Hence it is q-exact on termination.
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Algorithm 2: Shift(P )

Data: q-standard cone decomposition P of T
Result: q-exact cone decomposition Q of T
Q← P
for d← q, . . . , deg(Q+) do

S ← {C ∈ Q+ : deg(C) = d}
while #S > 1 do

Choose C ∈ S with minimal dimension dim(C).
S ← S \ {C}
Q← Q \ {C} ∪ F(C)

end
end
return Q.

The proof of termination involves a potential function on Q. Let v ∈ Zn be the vec-
tor with entries vi = #{C ∈ Q+ : deg(C) ≥ d,dim(C) = n+ 1− i} − 1 for i = 1, . . . , n. It
counts the number of cones that still have to be processed grouped by their dimensions.
Within the for-loop, the first positive entry of v stays the same, as each fan F(C) contains
exactly one cone of dimension dim(C) and none with higher dimension. When d is in-
creased, the first positive entry of v decreases by 1 since Q is q-standard at any time.

Finally, deg(P ) ≤ deg(Q) and deg(P+) ≤ deg(Q+) are obvious from the construction
andQ is degree-compatible respectively homogeneous by the same reasoning as in lemma
2.48.

Example 2.54. Start with the cone decomposition P = {C(1, {y, z}),C(x, {y, z})} in the ring
K[x, y, z] and try to compute a 2-exact cone decomposition of the same vector space. First note
that P is 0-standard as it was computed by Split(1, {x, y, z},

{
x2
}
) in example 2.51. To make it

2-standard, employ lemma 2.48 and replace some of the cones by their fans. With

F(C(1, {y, z})) = {C(1, ∅),C(y, {y}),C(z, {y, z})},
F(C(x, {y, z})) = {C(x, ∅),C(xy, {y}),C(xz, {y, z})},

F(C(y, {y})) =
¶
C(y, ∅),C(y2, {y})

©
, and

F(C(z, {y, z})) =
¶
C(z, ∅),C(yz, {y}),C(z2, {y, z})

©
,

one obtains a 2-standard cone decomposition

Q = {C(1, ∅),C(x, ∅),C(xy, {y}),C(xz, {y, z}),C(y, ∅),
C(y2, {y}),C(z, ∅),C(yz, {y}),C(z2, {y, z})

©
.

Then the desired result is computed by Q̃ = Shift(Q). Since it is too large, only the positive
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cones are listed here.

Q̃+ =
¶
C(xz, {y, z}),C(z3, {y, z}),C(y2z2, {y}),C(xy4, {y}),C(y6, {y}),C(y6z, {y})

©
2.6. Ideal Dimension

The intuition of the ideal dimension comes from the variety of an ideal V(I). For a lot
of simple examples, it is clear which geometric dimension one would assign to V(I) (and
thus to I). However, an algebraic definition is necessary for computations.

Definition 2.55. Let R be a ring. Then the (Krull) dimension dim(R) of R is the supremum of
the lengths r of chains of prime ideals P0 ( P1 ( . . . ( Pr in R.

Definition 2.56. Let R be a ring and I ( R be an ideal. Then the (Krull) dimension dim(I) of
I is defined as the (Krull) dimension of the factor ring dim(I) = dim(R/I).

Corollary 2.57. Let R be a ring and I ⊆ J ( R be ideals. Then dim(I) ≥ dim(J).

The following corollary uses the fact that prime ideals P ⊇ I correspond to prime ideals
P ⊆ R/I .

Corollary 2.58. Let R be a ring and I ( R be an ideal. Then

dim(I) = sup {dim(P ) : I ⊆ P ⊆ R,P prime ideal}.

The dimension also can be defined in terms of the transcendence degree of the ring.
Since prime ideals are the only ideals whose factor ring is a domain, corollary 2.58 will be
used to compute the dimension of arbitrary ideals.

Theorem 2.59. IfR is a reduced, finitely generated domain over a field K, dim(R) = trdeg(R,K).
Moreover, all (w.r.t. inclusion) maximal chains of prime ideal have length dim(R).

Proof. See [13], §13.1.

Corollary 2.60. LetR be a reduced, finitely generated domain over a field K and P ( R be a prime
ideal. Then dim(P ) = trdeg(R/P,K).

Another closely related notion is the height of ideals.

Definition 2.61. Let P be a prime ideal in a ring R. Then the height ht(P ) is the number r of
strict inclusions in the longest chains of prime ideals P0 ( P1 ( . . . ( Pr ⊆ P .

Definition 2.62. Let I be an arbitrary ideal in R. Then ht(I) is the infimum of the heights of the
prime ideals containing I , or equivalently (by lemma 1.35) ht(I) = inf {ht(P ) : P ∈ ass(I)}.

Lemma 2.63. Let R be a reduced, finitely generated domain over a field K and I ( R be an ideal.
Then dim(I) = dim(R)− ht(I).
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Proof. By corollary 2.58 and the definition of the ideal height, it suffices to prove the lemma
for prime ideals.
R −→ R/I induces a bijection of the prime ideals containing I and the prime ideals in

R/I . If I is prime, there are a chain of prime ideals P0 ( . . . ( Pdim(I) ⊆ R/I in R/I and a
chain of prime ideals P ′0 ( . . . ( P ′ht(I) ⊆ I . Since these chains are maximal by assumption,
P0 = {0} and P ′ht(I) = I . This yields a chain of prime ideals P ′0 ( . . . ( P ′ht(I) = P0 + I (
. . . ( Pdim(I) + I of length ht(I) + dim(I) in R. The maximality of the chains in I and in
R/I implies the maximality of the chain w.r.t. inclusion in R. Now theorem 2.59 implies
dim(R) = ht(I) + dim(I).

Note that any polynomial ring over a field fulfills the conditions of theorem 2.59 and has
a finite dimension. Thus the above lemma holds. Moreover, one can give a slightly easier
characterization of the dimension for this special case.

Definition 2.64. Let I be an ideal in K[X] and U ⊆ X . Then U is called independent set w.r.t.
I iff I ∩K[U ] = {0}.

Lemma 2.65. Let I ( K[X] be an ideal. Then

dim(I) = max {#U : U ⊆ X,U independent set w.r.t. I}.

Proof. (from [25], lemma 1.3) By corollary 2.58, there is a prime ideal P ⊇ I with dim(P ) =
dim(I). By corollary 2.60 and since X is a transcendence basis of K(X), there is a subset
U ⊆ X of cardinality dim(P ) whose image in K[X]/P is algebraically independent. Hence
U is an independent set w.r.t. I ⊆ P of size dim(I).

Conversely, let U ⊆ X be independent w.r.t. I . Then S = K[U ] \ {0} is multiplicatively
closed and disjoint to I . Let I = Q1 ∩ . . . ∩Qt be a minimal primary decomposition of
I . Localization w.r.t. S yields a proper ideal IS ( K[X]S . Thus (Qk)S 6= K[X]S for some
k = 1, . . . , t. Hence

√
Qk ⊆ K[X] \ S, U is algebraically independent in K[X]/

√
Qk, and

dim(I) ≥ dim(
√
Qk) ≥ #U .

Unfortunately, the independent sets modulo an arbitrary ideal do not form a matroid
structure, as the following example explains.

Example 2.66. (from [25], example 1.4) Consider the ideal I = 〈xy, xz〉 in the ring K[x, y, z].
Then {x} and {y, z} are both maximal independent sets w.r.t. I , but their cardinalities differ.

The following corollary of lemma 2.65 and Hilbert’s Nullstellensatz (theorem 1.49) indi-
cates that the definition of the ideal dimension has a geometric interpretation.

Corollary 2.67. Let I ( K[X] be and ideal. Then dim(I) = dim(
√
I).

This motivates the definition of the dimension of a variety.

Definition 2.68. Let V 6= ∅ be a variety in Kn. Then the dimension of V is defined as dim(V ) =
dim(I(V )).
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Lemma 2.69 (Kredel, Weispfenning 1988). Let I ( K[X] be an ideal and fix an admissible
monomial ordering. Then dim(I) = dim(lm(I)).

Proof. (from [25], theorems 1.9 and 2.1, and [16], theorem 3.1) First assume I is prime
and choose a (w.r.t. inclusion) maximal independent set U w.r.t. lm(I). Since I is prime,
Q(K[X]/I) exists and, since K[U ] ⊆ Nlm(I) = NI , K(U) ⊆ Q(K[X]/I) is a field extension.
To make this explicit, note that lemma 1.58 and I prime imply Q(K[X]/I) = Q(K(U)[X \
U ]/(I ·K(U)[X \ U ])). Now look at the ideal I ·K(U)[X \ U ] in the ring K(U)[X \ U ]. The
leading monomials of this ideal are lm(I ·K(U)[X \U ]) = lm(I) : U∞. Since U is maximal,
xk ∈ lm(I) : U∞ for all x ∈ X \ U and some k ∈ N, NI·K(U)[X\U ] = Nlm(I·K(U)[X\U ]) is a
finite-dimensional vector space, and

dim(I) = trdeg(Q(K[X]/I),K) =

trdeg(Q(K[X]/I),K(U)) + trdeg(Q(K(U)/K)) = 0 + dim(lm(I)).

For arbitrary I , choose a prime ideal P ⊇ I with dim(P ) = dim(I). Then lm(P ) ⊇ lm(I)
and hence dim(lm(I)) ≥ dim(lm(P )) = dim(P ) = dim(I) by the above reasoning. The
converse inequality follows since U independent w.r.t. lm(I) implies U independent w.r.t.
I .

Having a couple of neat characterizations of the ideal dimension at hand, turn to the
dimension of the homogenization of an ideal next. Since this ideal is contained in a larger
ring, the more natural language is the one of the ideal height. This is expected to remain
the same on homogenization since the homogenization represents the ideal in a canonical
way.

Lemma 2.70. Let I ( K[X] be an ideal. Then ht(hI) = ht(I).

Proof. Since dim(K[X0]) = dim(K[X]) + 1, it is equivalent to prove dim(hI) = dim(I) + 1.
Recall that hI = spanK

¶
xk0 · hf : k ≥ 0, f ∈ I

©
. Thus U is an independent set w.r.t. I iff

U ∪ {x0} is an independent set w.r.t. hI .

Note that lemma 2.70 is not true for I = K[X] even if the height is defined in this case.
While ht(K[X]) = n, ht(hK[X]) = ht(K[X0]) = n+ 1.

Another characterization of the ideal dimension uses the Hilbert polynomial.

Lemma 2.71. Let I ( K[X] be an ideal and fix an arbitrary monomial ordering. Then

dim(I) = deg(HPNI ) + 1.

Here one defines deg(0) = −1.

Proof. By corollary 2.31 and lemma 2.69, it suffices to show dim(lm(I)) = deg(HPNlm(I)
)+1.

Now Nlm(I) is a finite union of monomial cones by lemma 2.50 and the degree of HPNlm(I)

equals the largest dimension of the cones. This cone yields an independent set w.r.t. lm(I)
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whose cardinality equals the cone dimension. On the other hand, if U is an independent
set w.r.t. lm(I), then C(1, U) ⊆ Nlm(I). By lemma 2.49, the cone decomposition of lm(U)
contains a cone of dimension at least #U and the claim follows.

Lemma 2.72. Let I be an ideal in K[X] and f ∈ K[X] such that I + 〈f〉 ( K[X]. If f is not
a zero-divisor in K[X]/I , then dim(I + 〈f〉) ≤ dim(I) − 1. If I and f are homogeneous, even
dim(I + 〈f〉) = dim(I)− 1.

Proof. (from [27], §5.6) Fix a graded monomial ordering, so, by lemma 2.71 and corollary
2.32, dim(I) = deg(HPK[X]/I) + 1. First note, that I≤z + 〈f〉≤z = (I + 〈f〉)≤z if I and f are
homogeneous and I≤z + 〈f〉≤z ⊆ (I + 〈f〉)≤z otherwise.

Consider the exact sequence

0→ ker(mf )≤z−d −→ (K[X]/I)≤z−d
mf−→ (K[X]/I)≤z −→ K[X]≤z/(I≤z + 〈f〉≤z)→ 0

where mf denotes the multiplication with f and d = deg(f). If f is not a zero-divisor in
K[X]/I , ker(mf ) = {0} and thus

dimK(K[X]≤z/(I≤z + 〈f〉≤z)) = dimK (K[X]/I)≤z − dimK (K[X]/I)≤z−d.

Since HPK[X]/I(z) = dimK (K[X]/I)≤z−dimK (K[X]/I)≤z−1, dimK(K/(I≤z+〈f〉≤z)) agrees
with a polynomial of degree deg(HPK[X]/I) for sufficiently large z. In the homogeneous
case, this yields deg(HPK[X]/(I+〈f〉)) = deg(HPK[X]/I)− 1, otherwise deg(HPK[X]/(I+〈f〉)) ≤
deg(HPK[X]/I)− 1.

Theorem 2.73 (Krull’s Principal Ideal Theorem). Let I = 〈f1, . . . , fs〉 be a proper ideal in a
ring R. Then ht(I) ≤ s.

Proof. See [13], §10.

2.7. Regular Sequences

Regular sequences appear in the study of exact sequences like those in lemma 2.72. A
regular sequence incrementally defines an ideal such that the no element is a zero-divisor
modulo the ideal of the previous generators. Just like in lemma 2.72 many calculations
with Hilbert functions and Hilbert polynomials simplify, especially in the homogeneous
case.

Definition 2.74. A sequence (g1, . . . , gt) of polynomials in R[X] is called regular iff

1. gk is no zero-divisor in R[X]/〈g1, . . . , gk−1〉 for k = 1, . . . , t and

2. 〈g1, . . . , gt〉 ( R[X].

The ideal I = 〈g1, . . . , gt〉 is called complete intersection.
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The length of a regular sequences is bounded by the number of indeterminates. This is
because lemma 2.72 and theorem 2.73 imply

Corollary 2.75. Let (g1, . . . , gt) be a regular sequence in K[X] and J = 〈g1, . . . , gt〉 ( K[X].
Then ht(J) = t. Moreover, any homogeneous sequence (g1, . . . , gt) in K[X] such that J =
〈g1, . . . , gt〉 ( K[X] and ht(J) = t is a regular sequence.

It is important to memorize that the order of regular sequences is important. This is
illustrated by the following example.

Example 2.76. (from [26], tutorial 33) It will be shown that (g1, g2, g3) = (x2 − x, xy − 1, xz)
is a regular sequence in the ring K[x, y, z] but its permutation (g′1, g

′
2, g
′
3) = (x2 − x, xz, xy − 1)

is not.
To show the first part, note that the second condition for regular sequences is fulfilled since〈
x2 − x, xy − 1, xz

〉
= 〈x− 1, y − 1, z〉 ( K[x, y, z]. To see the first condition, observe g1 =

x2 − x 6= 0, gcd(g1, g2) = gcd(x2 − x, xy − 1) = 1, and that 〈g1, g2〉 = 〈x− 1, y − 1〉 is prime.
However, g′2 = xz is a zero-divisor modulo 〈g′1〉 =

〈
x2 − x

〉
.

This can only happen in the affine case. In the homogeneous setting, regular sequences
behave much more nicely.

Lemma 2.77. Let (g1, . . . , gt) be a homogeneous sequence in the polynomial ring K[X] with de-
grees d1, . . . , dt, fix an arbitrary monomial ordering, and let J = 〈g1, . . . , gt〉. Iff (g1, . . . , gt) is
regular, NJ has the Hilbert series

HSNJ (y) =

∏t
i=1 (1− ydi)
(1− y)n

.

In this case, its Hilbert function HPNJ only depends on n, t, and d1, . . . , dt and the regularity is
reg(J) = d1 + . . .+ dt − n+ 1.

Proof. (from [27], §5.2B and §5.4B) The formula for HSNJ (y) = HSK[X]/J(y) will be proved
by induction on t. The base case t = 0 follows from the definition of the Hilbert series:

HSK[X](y) =
∑
z≥0

Ç
z + n− 1

n− 1

å
yz =

1

(1− y)n
.

The second equality can be shown by

1

z!
∂zy(1− y)−n |y=0=

n · (n+ 1) · · · (n+ z − 1)

z · · · 1
(1− y)−n−z |y=0=

Ç
z + n− 1

n− 1

å
.

For the induction step, consider the exact sequence

0→ ker(mgt) −→ K[X]/〈g1, . . . , gt−1〉
mgt−→ K[X]/〈g1, . . . , gt−1〉 −→ K[X]/〈g1, . . . , gt〉 → 0,
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where mgt denotes multiplication by gt. Now use the additivity of the Hilbert series on
exact sequences. The factor ydt appears since mgt increases the degree by dt.

ydtHSker(mgt )
(y)− ydtHSK[X]/〈g1,...,gt−1〉(y) + HSK[X]/〈g1,...,gt−1〉(y)−HSK[X]/〈g1,...,gt〉(y) = 0.

If (g1, . . . , gt) is regular, HSker(mgt )
= 0 and the formula for the Hilbert series follows by

solving the equation for HSK[X]/〈g1,...,gt〉(y) and applying the induction hypothesis. Since
HFNJ (z) is the coefficient of yz in the series expansion of HSNJ (y), it only depends on z, n,
t, and d1, . . . , dt.

For the regularity, define HSf (y) =
∑
z≥0 f(z)yz for a sequence (f(i))i∈N, let (∆f)(y) =

f(y)− f(y − 1) for all y ∈ N with f(z) = 0 for z < 0 and ∆qf = ∆∆q−1f . Then HS∆f (y) =
(1− y)HSf (y) for all y ∈ N follows. Also let

reg(f) = min {k ∈ N : ∃h ∈ Q[x] : f(y) = h(y) for all y ≥ k}.

Then reg(∆f) = reg(f) + 1. For f(z) = HFNJ (z), one obtains HS∆nf (y) =
∏t
i=1 (1− ydi)

and reg(J) = reg(f) = reg(∆nf) − n = deg(HS∆nf ) + 1 − n since (∆nf)(z) = 0 for
z > deg(HS∆nf ).

If (g1, . . . , gt) is not regular, let z be minimal such that ker(mgk)z 6= {0} for some 1 ≤ k ≤
t. Thus HFK[X]/〈g1,...,gt〉(z) is strictly larger than for a regular sequence and the formula for
the Hilbert series does not hold.

Corollary 2.78. Let (g1, . . . , gt) be a homogeneous regular sequence in the polynomial ring K[X].
Then, for any permutation σ of {1, . . . , t}, (gσ(1), . . . , gσ(t)) is a regular sequence.

It is well-known, that most sequences (g1, . . . , gt) of length t ≤ n are regular. But there is
a result which is even stronger and crucial to later proofs in this thesis. Given an arbitrary
ideal I of height r, one can ”approximate” I by a regular sequence of length r which
is completely contained in the ideal. As nice giveaway, the degrees of the sequence are
bounded by the degrees of arbitrary generators of I . The so-called unmixedness theorem
is essential for the proof given below.

Theorem 2.79 (Unmixedness Theorem). Let I be an ideal in K[X] generated by ht(I) polyno-
mials. Then ht(P ) = ht(I) for all associated primes P ∈ assK[X](I) of I .

Proof. See [13], §18.2.

Lemma 2.80. Let K be an infinite field and I ( K[X] be an ideal generated by polynomials
f1, . . . , fs with degrees d1 ≥ . . . ≥ ds such that ht(I) ≥ r. Then there are an injective map σ :
{1, . . . , r} −→ {1, . . . , s} and ak,i ∈ K such that

gk =
s∑

i=σ(k)

ak,ifi for k = 1, . . . , r

form a regular sequence, and deg(gk) ≤ dσ(k).
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Proof. (from [38], lemma 2.2) The proof is by induction on r. The case r = 0 is trivial, and
for r = 1, simply pick σ(1) maximal such that g1 = fσ(1) 6= 0.

Now let r > 1. By induction, there are a regular sequence (g1, . . . , gr−1) and a map σ
on {1, . . . , r − 1} of the stated form. Let J = 〈g1, . . . , gr−1〉 and assK[X](J) = {P1, . . . , Pt}
be the associated primes of J . The Unmixedness Theorem 2.79 implies that all associated
primes of J have the same height r − 1. Consider the vector spaces

Sk =

{
(b1, . . . , bs) ∈ Ks :

s∑
i=1

bifi ∈ Pk

}
for k = 1, . . . , t.

These must be proper subspaces since I cannot be contained in an ideal of height r − 1.
Since K is infinite, also S1 ∪ . . . ∪ St 6= Ks, and it is possible to choose

(b1, . . . , bs) ∈ Ks \ (S1 ∪ . . . ∪ St) .

Thus h =
∑s
i=1 bifi /∈ P1 ∪ . . . ∪ Pt. So h is no zero-divisor in K[X]/J by definition of

the associated primes. Furthermore, 〈g1, . . . , gr−1, h〉 ⊆ I ( K[X], which implies that
(g1, . . . , gr−1, h) is a regular sequence.

Now choose σ(r) maximal such that there is a polynomial gr =
∑s
i=σ(r) ar,ifi with ar,i ∈

K such that (g1, . . . , gr) is a regular sequence. Then deg(gr) ≤ dσ(r). Moreover ar,σ(r) 6= 0
by maximality of σ(r).

It remains to show that (the extended) σ is injective. Assume for contradiction that
σ(r) = σ(k) for some k = 1, . . . , r−1. Let h = ak,σ(k)gr−ar,σ(r)gk and consider the sequence
(g1, . . . , gr−1, h). Since h− ak,σ(k)gr ∈ 〈g1, . . . , gr−1〉 and ak,σ(k) 6= 0 as noted above, this is a
regular sequence in I , too. However h is a linear combination of only fσ(k)+1, . . . , fs which
contradicts the maximality of σ(r).

Actually, a homogeneous version of the above will be needed. The statement will be
slightly stricter since all permutations of homogeneous regular sequences are regular.

Lemma 2.81. Let K be an infinite field and I ( K[X] an ideal generated by homogeneous poly-
nomials f1, . . . , fs with degrees d1 ≥ . . . ≥ ds such that ht(I) ≥ r. Then there are a strictly
decreasing sequence s ≥ j1 > . . . > jr ≥ 1 and homogeneous ak,i ∈ K[X] such that

gk =
s∑

i=jk

ak,ifi for k = 1, . . . , r

form a homogeneous regular sequence, ht〈fjk , . . . , fs〉 = k and deg(gk) = djk .

Proof. The proof is by induction on r. The case r = 0 is trivial, and for r = 1, simply pick
j1 maximal such that g1 = fj1 6= 0. Then ht〈fj1 , . . . , fs〉 = 1.

Now let r > 1. By induction, there is a homogeneous regular sequence (g1, . . . , gr−1)
with gk ∈ Ijk = 〈fjk , . . . , fs〉 for k = 1, . . . , r − 1 and ht(Ijr−1) = r − 1. Thus there ex-
ists a maximal jr < jr−1 such that ht(Ijr) > r − 1. By lemma 2.72, ht(Ijr) = r. Let
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J = 〈g1, . . . , gr−1〉 and assK[X](J) = {P1, . . . , Pt} be the associated primes of J . The Un-
mixedness Theorem 2.79 implies that all associated primes of J have the same height r−1.

Let T =
∏s
i=jr K

(djr−di+n−1

n−1
) the vector space of coefficients of the homogeneous ar,i for

i = jr, . . . , s and consider the subspaces

Sk =

(bi,α)jr≤i≤s,|α|=djr−di ∈ T :
s∑

i=jr

Ñ ∑
|α|=djr−di

bi,αx
α

é
fi ∈ Pk

 for k = 1, . . . , t.

These must be proper subspaces since Ijr cannot be contained in an ideal of height r − 1.
Since K is infinite, also S1 ∪ . . . ∪ St 6= T , and it is possible to choose

(bi,α)i,α ∈ T \ (S1 ∪ . . . ∪ St) .

Thus ar,i =
∑
|α|=dr−di bi,αx

α for i = jr, . . . , s and gr =
∑s
i=jr ar,ifi define a homogeneous

polynomial gr /∈ P1 ∪ . . . ∪ Pt. So gr is no zero-divisor in K[X]/J by definition of the
associated primes. Furthermore, 〈g1, . . . , gr〉 ⊆ I ( K[X], which implies that (g1, . . . , gr) is
a regular sequence of the desired form.

These lemmas will be sufficient for theoretical purposes. For computations, however,
sparse regular sequences would be preferable as they are constructed in [14].

Lemma 2.82. Let I be an ideal in K[X] and f ∈ K[X]. Then f is a zero-divisor in K[X]/I iff hf
is a zero-divisor in K[X0]/hI .

Proof. Assume f is zero-divisor in K[X]/I . Then fg ∈ I for some g /∈ I and therefore
hf · hg = h(fg) ∈ hI and hg /∈ hI . Hence f is zero-divisor in K[X0]/hI .

Conversely, assume hf is zero-divisor in K[X0]/hI . Then hf · g ∈ hI for some g /∈ hI . Let
g = g0 + . . . + gd be the decomposition into homogeneous components. Then hf · gk ∈ hI
for all k = 0, . . . , d and gk /∈ hI for some k ∈ {0, . . . , d}. Therefore f · dgk = d(hf · gk) ∈ I and
dgk /∈ I . Hence f is zero-divisor in K[X0]/I .

Although regular sequences are tightly connected to the ideal height which does not
change on homogenization, the height of the homogenization of a regular sequence may
be quite different. This also means that the homogenization of a regular sequence is, in
general, no regular sequence.

Example 2.83. Consider the sequence given by gk = xt−k+1yk − ztk for k = 1, . . . , t in the
ring K[x, y, z1, . . . , zt]. This sequence is regular since gk has a monomial from K[zk] and zk does
not appear in g1, . . . , gk−1. The homogenization of the sequence w.r.t. a new variable z0, hgk =
xt−k+1yk − ztkz0, is not regular for t > 2. This is obvious since

¨
hg1, . . . ,

hgt
∂
⊆ 〈x, z0〉 and thus

ht
¨
hg1, . . . ,

hgt
∂
≤ 2.
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2.8. Degree of Varieties

If a variety of dimension r over an algebraically closed field is intersected with an affine
space of dimension n − r, the intersection generically contains a certain finite number of
points. This number is called the degree of the variety.

Example 2.84. In a ring K[x] over an algebraically closed field K, each radical ideal I is generated
by one square-free polynomial f ∈ K[x] of positive degree deg(f) ≥ 1. The corresponding variety
V(I) = V(f) is finite and contains exactly deg(f) points. Thus dim(I) = 0. The only affine space
of dimension 1 is K such that the degree of the variety is #V(I) = deg(f).

During the discussion of the ideal dimension it became apparent that one can define
the dimension on prime ideals and then lift the definition to arbitrary ideals. The same
approach will be used for the degree of varieties. First the definitions and results about
prime ideals have to be translated into the language of varieties. Begin with the equivalent
of prime ideals, the irreducible varieties.

Definition 2.85. Let V be a variety in Kn. V is called reducible if there are nonempty varieties
∅ 6= V1, V2 ( V such that V = V1 ∪ V2. Otherwise V is called irreducible.

Corollary 2.86. Let V be a variety in Kn. Then V is irreducible iff I(V ) is prime.

Thus it is possible to formulate the primary decomposition of lemma 1.28 for varieties.
Note that varieties correspond to radical ideals which in turn are decomposed into prime
ideals. The uniqueness of this decomposition follows from lemma 1.35.

Corollary 2.87. Let V be a variety in Kn. Then there is a unique (up to reordering) decomposition
V = V1 ∪ . . . ∪ Vt into irreducible varieties Vi 6= ∅ with Vi 6⊆ Vj for all 1 ≤ i 6= j ≤ t.

When dealing with ideals and varieties, there is a canonical way of defining a topology,
the so-called Zariski topology. In this topology, the closed sets are exactly the varieties, their
complements are the open sets.

Definition 2.88. Let V be an arbitrary subset of Kn. Then V denotes the smallest variety in Kn

containing V and is called Zariski closure of V .

The closures of projections are of special interest as they are related to elimination.

Theorem 2.89 (Closure Theorem). Let I be an ideal in K[X] and πS : Kn −→ Kk the projection
onto the coordinates indexed by S = {i1, . . . , ik}. Then

πS(V(I)) = V(I ∩K[xi1 , . . . , xik ]).

Proof. See [9], §3.2.

These notions suffice for the definition of the degree of a variety. The following is a
summary of results from [18]. The usage of (more general) constructible sets instead of
varieties, however, will be avoided.
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Definition 2.90. Let V ⊆ Kn be an irreducible variety of dimension r. Then the degree of V is
denoted by

deg(V ) = sup {#(V ∩A) : A ⊆ Kn affine subspace, dimK(A) = n− r,#(V ∩A) <∞}.

For an arbitrary variety V ⊆ Kn, let V = V1 ∪ . . . ∪ Vt be the decomposition into irreducible
components. Then deg(V ) =

∑t
i=1 deg(Vi).

Lemma 2.91. Let K be an algebraically closed field and ϕ : Kn −→ Kn be an affine linear map
and V be a variety in Kn. Then deg(ϕ(V )) ≤ deg(V ).

Proof. See [18], lemma 2.

Theorem 2.92 (Bézout’s Theorem). Let K be an algebraically closed field and V1 and V2 be
varieties in Kn. Then deg(V1 ∩ V2) ≤ deg(V1) · deg(V2).

Proof. See [18], theorem 1.

This can be used in order to bound the degree of a variety by the product of the degrees
of generators of the ideal. If the number of generators is large, one can do better. The proof
technique is very similar to lemma 2.80.

Lemma 2.93. Let K be an infinite field and I ( K[X] be an ideal generated by polynomi-
als f1, . . . , fs with degrees d1 ≥ . . . ≥ ds. Then there are an injective map σ : {1, . . . , r} −→
{1, . . . , s} and ak,i ∈ K such that

gk =
s∑

i=σ(k)

ak,ifi for k = 1, . . . , n+ 1

generate ideals Jk = 〈g1, . . . , gk〉 such that all minimal primes P ⊇ Jk with P 6⊇ I have height
ht(P ) ≥ k for k = 0, . . . , n+ 1. Moreover deg(gk) ≤ dσ(k) for k = 1, . . . , n+ 1.

Proof. (from [7], proposition 1.3) The proof is by induction on k. The case k = 0 is trivial.
Thus assume k ≥ 1 and let P1, . . . , Pt be the minimal primes over Jk−1. This is a finite set
since Pi ∈ ass(Jk−1) for all i = 1, . . . , t. Let S = {Pi : i = 1, . . . , t, Pi 6⊇ I}. By induction,
ht(P ) ≥ k − 1 for all P ∈ S.

Now construct gk ∈ I such that the minimal primes of Jk have height at least k. Consider
the vector spaces

TP =

{
(b1, . . . , bs) ∈ Ks :

s∑
i=1

bifi ∈ P
}

for P ∈ S.

These must be proper subspaces of Ks since I 6⊆ P for all P ∈ S. Since K is infinite and S
is finite, also

⋃
P∈S TP 6= Ks, and it is possible to choose

(b1, . . . , bs) ∈ Ks \
⋃
P∈S

TP .
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Thus h =
∑s
i=1 bifi /∈

⋃
P∈S P . Let Q1, . . . , Ql be the minimal primes over Jk−1 + 〈h〉.

Obviously Qi ⊇ Jk−1 for each i = 1, . . . , l. Assume Qi 6⊇ I for some i = 1, . . . , l and let P
be a minimal prime such that Jk−1 ⊆ P ⊆ Qi. Since P is minimal over Jk−1 and Qi 6⊇ I ,
P ∈ S. Hence h ∈ Qi \ P which implies ht(Qi) ≥ ht(P ) + 1 ≥ k.

Now choose σ(k) maximal such that there is a polynomial gk =
∑s
i=σ(k) ak,ifi with ak,i ∈

K such that all minimal primes P ⊇ Jk with P 6⊇ I have height ht(P ) ≥ k. Then deg(gk) ≤
dσ(k). Moreover ak,σ(k) 6= 0 by maximality of σ(k).

It remains to show that (the extended) σ is injective. Assume for contradiction that
σ(k) = σ(l) for some l = 1, . . . , k − 1. Let h = al,σ(l)gk − ak,σ(k)gl. Since ai,σ(i) 6= 0 for all
i = 1, . . . , k, 〈g1, . . . , gk−1, h〉 = Jk also fulfills the claim. However h is a linear combination
of only fσ(k)+1, . . . , fs which contradicts the maximality of σ(k).

This translates into the language of varieties as follows.

Corollary 2.94. Let K be an infinite field and f1, . . . , fs be polynomials in K[X] with degrees
d1 ≥ . . . ≥ ds. Then there are ak,i ∈ K such that

gk =
s∑
i=k

ak,ifi for k = 1, . . . , n+ 1

and V(f1, . . . , fs) = V(g1, . . . , gn+1) with deg(fk) ≤ dk for k = 1, . . . , n+ 1.

The following application to Bézout’s theorem is even slightly sharper.

Lemma 2.95. Let K be an algebraically closed field V ⊆ Kn be the variety of an ideal generated by
polynomials f1, . . . , fs of degrees d1 ≥ . . . ≥ ds. Then deg(V ) ≤ d1 · · · dµ for µ = min {n, s}.

Proof. For s ≤ n the claim is a direct consequence of theorem 2.92. Thus assume s > n. By
lemma 2.93, there is an ideal J = 〈g1, . . . , gn〉 ⊆ I with deg(gk) ≤ dk for k = 1, . . . , n such
that all minimal primes P ⊇ J with P 6⊇ I have height ht(P ) ≥ n. For such P , V(P ) is an
irreducible zero-dimensional variety, i.e. a single point and deg(V(P )) = 1.

Now let Q1, . . . , Qt] be the minimal primes over I = 〈f1, . . . , fs〉. Then deg(V(I)) =∑t
i=1 deg(V(Qi)). For each Qi, i = 1, . . . , t, there is a minimal prime J ⊆ Pi ⊆ Qi. Assume

Pi ( Qi for some i ∈ {1, . . . , t}. Then Pi 6⊇ I by the minimality of Qi and hence ht(Pi) = n
by the construction of J . Then ht(Pi) > ht(Qi) = n and Pi ( K[X] contradict each other.
HenceQ1, . . . , Qt are minimal over J , and there might by extraneous minimal primes over
J . This implies deg(V(I)) ≤ deg(V(J)) ≤ deg(V(g1)) · · · deg(V(gn)) ≤ d1 · · · dn.

Lemma 2.96. Let I ( K[X] be an ideal of height 1 and K be the algebraic closure of K. Then√
I = 〈f〉 for some f ∈ K[X] with deg(f) = deg(VK(I)).

Proof. Since ht(I) = 1, there is no ideal {0} ( J ( I . Therefore I must be principal, i.e.
I = 〈g〉 for some g ∈ K[X]. Then

√
I = 〈f〉 where f = g

gcd(g,g′) is the square-free part of g.
The degree of VK(f) is exactly deg(f).

53



2. Polynomial Algebra

2.9. Multiplicities

The algebraic equivalent of the degree of a variety is the multiplicity of an ideal. Bézout’s
theorem can be generalized to this setting providing sharp bounds for ideals that are not
radical. This field is covered in text books like [45], [13], [27], and [36] as well as the articles
[43], [2], and [22]. The interested reader, however, must cope with wildly varying notations
and definitions. In the following, confusion with the previous chapter shall be avoided.

Definition 2.97. Let I be an ideal in K[X] and fix a graded admissible monomial ordering. Then
the (Samuel) multiplicity of I is defined as mult(I) = deg(aHPK[X]/I)! · lc(aHPK[X]/I).

Remember, that aHFK[X]/I is the same function for any graded admissible monomial
ordering. Thus mult(I) is well-defined. Note that mult(I) is the leading coefficient of
aHPK[X]/I in the vector space basis

{(z
0

)
,
(z
1

)
,
(z
2

)
, . . .

}
of K[z].

Lemma 2.98. Let I ⊆ J ( K[X] be ideals of the same dimension. Then mult(I) ≥ mult(J).

Proof. Fix a graded admissible monomial ordering. If I ⊆ J , aHPK[X]/I(z) ≥ aHPK[X]/J(z)
for each z ∈ N. Since both ideals have the same dimension r, their Hilbert polynomials
have the same degree r − 1. Hence

lc(aHPK[X]/I(z)) = lim
z→∞

aHPK[X]/I(z)

zr−1
≥ lim

z→∞

aHPK[X]/J(z)

zr−1
= lc(aHPK[X]/J(z)).

Lemma 2.99. Let I be an ideal in K[X]. Then mult(I) = mult(hI).

Proof. Fix a graded admissible monomial ordering. Then aHPK[X]/I(z) = aHPK[X0]/hI(z) −
aHPK[X0]/hI(z − 1) by corollaries 2.33 and 2.29. If aHPK[X0]/hI(z) =

∑r
d=0 aiz

d, then

aHPK[X]/I(z) =
r∑

d=0

aiz
d −

r∑
d=0

ai(z − 1)d =
r∑

d=0

ai

d−1∑
i=0

Ç
d

i

å
zi

and

mult(I) = deg(aHPK[X]/I)! · lc(aHPK[X]/I) = (r − 1)! · ar
Ç

r

r − 1

å
=

= r! · ar = deg(aHPK[X0]/hI)! · lc(aHPK[X0]/hI) = mult(hI).

Note that some authors define the multiplicity of a homogeneous ideal I by mult(I) =
(deg(HPK[X]/I)! · lc(HPK[X]/I). The above lemma shows the equivalence of this definition.
However, the definition using HPK[X]/I does not make sense for zero-dimensional (non-
homogeneous) ideals because HPK[X]/I = 0 and deg(HPK[X]/I) = −1 in this case.
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By corollary 2.34, the multiplicity of a homogeneous ideal can be computed from the
primary decomposition. This corresponds to the definition of the degree of a reducible
variety.

Corollary 2.100. Let I be a homogeneous ideal in K[X] with minimal primary decomposition
I = Q1 ∩ . . . ∩Qt. Then

mult(I) =
t∑
i=1

dim(Qi)=dim(I)

mult(Qi).

This can be sharpened to the so-called associativity formula:

Lemma 2.101. Let I be a homogeneous ideal in K[X]. Then

mult(I) =
∑

P⊇I minimal prime

lengthK[X]P
(K[X]P /IP ) ·mult(P ).

Proof. See [43], §5.

This can be used to construct polynomials in an unmixed ideal.

Definition 2.102. An ideal I in a ring R is called unmixed iff all associated primes P ∈ assR(P )
have the same dimension dim(P ) = dim(I).

Lemma 2.103. Let I be a homogeneous unmixed ideal in K[X], P1, . . . , Pt the minimal primes
over I and fi ∈ Pi with deg(fi) ≤ mult(P ) for i = 1, . . . , t. Then g = fe11 · · · f

et
t ∈ I for

ei = length(K[X]Pi/IPi) and i = 1, . . . , t and deg(g) ≤ mult(I).

Proof. Since I is unmixed, all associated primes of I are minimal over I . Thus let I =
Q1 ∩ . . . ∩Qt be a primary decomposition of I and Pi =

√
Qi for i = 1, . . . , t be the minimal

primes. By lemma 1.58 and the unmixedness of I , IPi ∩K[X] = Qi follows for i = 1, . . . , t.
Since Pi ⊇ Qi ⊇ I , there is a one-to-one correspondence of the (K[X]Pi/IPi)-modules in
K[X]Pi/IPi = K[X]Pi/(Qi)Pi and the (K[X]/Qi)-modules in K[X]/Qi. For simplicity, the
latter will be considered. There is a chain of modules (K[X]/(Qi)) · fk ⊇ (K[X]/(Qi))f

k+1

for k = 0, 1, 2, . . . with equality iff fk ∈ Qi. By the definition of the module length, this
happens for some ei = k ≤ length(K[X]Pi/IPi). Then g = fe11 · · · f

et
t ∈ I = Q1 ∩ . . . ∩Qt.

Lemma 2.101 finally implies the bound for the degree.

The multiplicity of a homogeneous complete intersection are determined by the degree
sequence.

Lemma 2.104. Let I be an ideal in K[X] generated by a homogeneous regular sequence g1, . . . , gt
of degrees d1, . . . , dt. Then mult(I) = d1 · · · dt.
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Proof. The proof is by induction on t. The case t = 0 is trivial. Hence assume t ≥ 1 and
consider the exact sequence

0 −→ K[X]/〈g1, . . . , gt−1〉
mgt−→ K[X]/〈g1, . . . , gt−1〉 −→ K[X]/〈g1, . . . , gt〉 −→ 0

where mgt denotes multiplication by gt. This implies

aHPK[X]/〈g1,...,gt〉(z) = aHPK[X]/〈g1,...,gt−1〉(z)−
aHPK[X]/〈g1,...,gt−1〉(z − dt).

If aHPK[X]/〈g1,...,gt−1〉(z) =
∑r
d=0 aiz

d, then

aHPK[X]/〈g1,...,gt〉(z) =
r∑

d=0

aiz
d −

r∑
d=0

ai(z − dt)d =
r∑

d=0

ai

d−1∑
i=0

Ç
d

i

å
zidd−it

and

mult〈g1, . . . , gt〉 = deg(aHPK[X]/〈g1,...,gt〉)! · lc(aHPK[X]/〈g1,...,gt〉) =

=(r − 1)! · ar
Ç

r

r − 1

å
dt = dt · r! · ar =

=dt · deg(aHPK[X]/〈g1,...,gt−1〉)! · lc(aHPK[X]/〈g1,...,gt−1〉) =

=dt ·mult〈g1, . . . , gt−1〉.

One can also derive an exact formula for the multiplicity of the sum of two unmixed
ideals for the case the height of the sum of the ideals is the sum of the heights of the single
ideals. Since the notion of intersection multiplicity would be needed, this result will not be
stated exactly (cf. [22], theorem 2.8). Note that there will be no references to the theory of
multiplicities in the remaining thesis. It is included as impulse for researchers who want
to improve work that is presented in this thesis.

2.10. Toric Ideals

Toric ideals arise from algebraic approaches to integer linear programming. They are bi-
nomial ideals whose exponent vectors correspond to relations of a linear map.

Definition 2.105. Consider the homomorphism of free Z-modules

ϕ : Zn −→ Zm : (α1, . . . , αn)T 7→ α1v1 + . . .+ αnvn for v1, . . . , vn ∈ Zm

The toric ideal in K[X] corresponding to ϕ is

Iϕ = IM =
¨
xα

+ − xα− ∈ K[X] : α ∈M
∂
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where M = ker(ϕ) and, for k = 1, . . . , n,

α+
k =

®
αk for αk ≥ 0
0 for αk < 0

α−k =

®
0 for αk ≥ 0
−αk for αk < 0.

Furthermore define the vector α ∨ β by (α ∨ β)k = min {αk, βk} for α, β ∈ Nn.

So actually IM is defined by a submodule M of Zn which is saturated w.r.t. Zn. Since
the module Zn has no zero-divisors, the saturated submodules are exactly the submodules
that appear as kernels of homomorphisms and studying toric ideals is equivalent to con-
sidering arbitrary saturated submodules M of Zn and the corresponding ideals IM . The
latter point of view will be preferred in this thesis. The following lemma provides a vector
space basis for toric ideals.

Lemma 2.106 (Sturmfels 1996). Let IM be a toric ideal in K[X]. Then IM is generated as K-
vector space by F =

¶
xα − xβ ∈ K[X] : (α− β) ∈M

©
.

Proof. (from [42], lemma 4.1) By the definition of IM , any f ∈ IM can be written as poly-
nomial combination f =

∑s
i=1 ai(x

α+
i − xα

−
i ) with s ∈ N, αi ∈ M and ai ∈ K[X], for

i = 1, . . . , s. But ai =
∑
β∈Nn ai,βx

β with ai,β ∈ K, for i = 1, . . . , s and β ∈ Nn, and hence

f =
s∑
i=1

∑
β∈Nn

ai,β(xα
++β − xα−+β).

Here (α+ +β)− (α−+β) = α ∈M and thus f is a linear combination of elements of F .

Studying representations of members of toric ideals a little further is definitely worth-
while. Since the module M is closed under addition, one can compensate cancellations
by other elements of the binomial basis. Therefore each polynomial can be represented as
linear combination of binomial ideal members in which no cancellation occurs.

Lemma 2.107. Let IM be a toric ideal in K[X] and h ∈ IM be an arbitrary ideal member. Then
there is a representation

h =
s∑
i=1

ai(x
αi − xβi) with ai ∈ K, αi − βi ∈M,xαi , xβi ∈ supp(h) for i = 1, . . . , s.

Proof. By lemma 2.106, h is of the form h =
∑s
i=1 fi with fi = ai(x

αi − xβi),ai ∈ K, and
αi − βi ∈ M . Among all such representations choose one with minimal s. Obviously this
implies ai 6= 0 for i = 1, . . . , s.

Now assume that supp(fk) 6⊆ supp(h) for some k = 1, . . . , s. Then there is some xγ ∈
supp(fk) such that 0 = hγ =

∑
fi,γ 6=0 fi,γ . The goal is now to rewrite the sum of binomials fi

with fi,γ 6= 0 for i = 1, . . . , s. For fi,γ 6= 0, let xδi be the single monomial in supp(fi) \ {xγ},
observe fi,γ = −fi,δi , and define

gi = fi −
fi,γ
fk,γ

fk = fi,δi(x
δi − xδk)

57



2. Polynomial Algebra

such that
s∑
i=1
fi,γ 6=0

gi =
s∑
i=1
fi,γ 6=0

Ç
fi −

fi,γ
fk,γ

fk

å
=

s∑
i=1
fi,γ 6=0

fi.

Since γ − δi = ±(αi − βi) ∈M for fi,γ 6= 0, also

(δi − δk) = (γ − δk)− (γ − δi) ∈M

which shows that the gi are of the desired form. However gk = 0 such that

h =
s∑
i=1
fi,γ=0

fi +
s∑
i=1
fi,γ 6=0
i 6=k

gi

is a shorter representation which contradicts minimality of s and proves the claim.

Toric ideals can be characterized neatly. This can be very useful for proving that a given
ideal is toric.

Lemma 2.108 (Eisenbud, Sturmfels 1996). Let I be an ideal in K[X]. Then I is toric iff it is a
prime ideal generated by binomials.

Proof. (from [15], corollary 2.6) First assume I = Iϕ is toric. By definition, it is binomial.
Furthermore the module homomorphism ϕ : Zn −→ Zm extends to a homomorphism of
rings

ϕ̂ : K[X] −→ K[t1, . . . , tm, t
−1
1 , . . . , t−1

m ], xk 7→ tϕ(ek)

with the standard basis e1, . . . , en of Zn. The claim is that Iϕ = ker(ϕ̂) which implies
that Iϕ is prime. First of all, Iϕ is generated by xα − xβ ∈ Iϕ with α − β ∈ ker(ϕ) and
therefore ϕ̂(xα − xβ) = tϕ(α) − tϕ(β) = 0. Hence Iϕ ⊆ ker(ϕ̂). For the converse, choose
f =

∑s
i=1 fix

αi ∈ ker(ϕ̂) with fi 6= 0 for i = 1, . . . , s, i.e.
∑s
i=1 fix

ϕ(αi) = 0. Then for
each β ∈ Zm, the corresponding coefficient

∑
ϕ(αi)=β fi = 0 must vanish. If this sum is

non-empty, there must be at least two summands fk and fl. This means αk − αl ∈ ker(ϕ),
g = f − fk(xαk − xαl) ∈ f + Iϕ has strictly less terms than f , and g ∈ ker(ϕ̂). By induction,
f ∈ Iϕ which proves Iϕ = ker(ϕ̂).

Now assume I is a prime ideal in K[X] which is generated by the binomials F =¶
xαi − xβi ∈ K[X] : i = 1, . . . , s

©
and define M =

¶
α ∈ Zn : xα

+ − xα− ∈ I
©

. Obviously

IM ⊆ I , so define γi = αi−βi and thus xαi −xβi = xαi∨βi(xγ
+
i −xγ

−
i ). Since I is prime and

contains no monomials, xγ
+
i − xγ

−
i ∈ I follows. Hence IM = I .

In order to prove that I is toric it remains to show that M is a saturated submodule of
Zn. α ∈M implies kα ∈M for any k ∈ Z since xα

− − xα+ ∈ I and

xkα
+ − xkα− = (x(k−1)α+

+ x(k−2)α++α− + . . .+ x(k−1)α−)(xα
+ − xα−) ∈ I. (2.1)
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Furthermore, α, β ∈M implies xα
++β−−xα−+β+

= xβ
+

(xα
+−xα−)−xα+

(xβ
+−xβ−) ∈ I .

As above, it is possible to divide by common factors and thereby derive α − β = (α+ +
β−)− (α− + β+) ∈M . Hence M is a module.

It remains to show thatM is saturated w.r.t. Zn. Assume kα ∈M for some k ∈ Z, α ∈ Zn
and consider (2.1). Since I is generated by pure binomials, the sum of the coefficients of
each ideal member is 0. Since I is prime, one of the two factors in (2.1) must be in I .
Together one concludes α ∈M .

Lemma 2.108 tells that the module M = Zβ1 + . . . + Zβs ⊆ Zn is saturated w.r.t. Zn if〈
xβ

+
i − xβ

−
i : i = 1, . . . , s

〉
is a toric ideal. The converse implication is not true in general.

Example 2.109. Consider the ideal I =
〈
x2 − z, xy − z

〉
in the ring K[x, y, z]. The corresponding

module M = Z(2, 0,−1)T + Z(1, 1,−1)T = Z(1,−1, 0)T + Z(1, 1,−1)T is saturated. However,
x− y ∈ IM and x− y /∈ I show that I is not a toric ideal.
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3. Theory of Computation

3.1. Thue systems

Thue systems are a way to describe certain languages. Commutative Thue systems can be
viewed as different representation of binomial ideals and will be very useful later on.

Definition 3.1. LetX be a finite alphabet andX∗ =
⋃
i∈NX

i. Then a semi-Thue system consists
of a finite set of productions P = {li → ri : li, ri ∈ X∗, i = 1, . . . , s}. A word β ∈ X∗ is derived
from α ∈ X∗ w.r.t. P in one step iff α = δliε and β = δriε for some δ, ε ∈ X∗ and i = 1, . . . , s.
This is denoted by α→ β (P). The reflexive transitive closure of→ is denoted by ∗→. If α ∗→ β (P),
any sequence α = γ0 → γ1 → . . . → γt = β (P) is called derivation of β from α w.r.t. P . A
Thue system is a symmetric semi-Thue system, i.e.

(l→ r) ∈ P ⇔ (r → l) ∈ P.

In this case ∗→ constitutes an equivalence relation which is denoted by α ≡ β (P). Furthermore a
Thue system is called commutative iff all symbols commute, i.e.

∀x, y ∈ X : (xy → yx) ∈ P.

Speaking of a commutative Thue system generated by P , one understands that the rules
in P are supplemented to fulfill the above criteria.

One can easily define an ideal corresponding to a commutative Thue system by treating
the alphabet of the Thue system as indeterminates of a polynomial ideal.

Definition 3.2. Let P be a commutative Thue system over the alphabet X and denote by

IP = 〈l − r ∈ K[X] : (l→ r) ∈ P〉

the ideal corresponding toP in the polynomial ring K[X]. In the above formula, the words l, r ∈ X∗
are canonically interpreted as monomials over K[X].

In [33], Mayr and Meyer use this setting to prove a lower degree bound for the repre-
sentation problem of polynomial ideals, among others. The essential reduction is given
by

Lemma 3.3 (Mayr, Meyer 1982). Let P = {li → ri : li, ri ∈ X∗, i = 1, . . . , s} be a commutative
Thue system over X . For any words α, β ∈ X∗, α ≡ β (P) iff α − β ∈ IP . Then the minimal
degree d = max {deg(γi) : i = 0, . . . , t} of a derivation α = γ0 → . . . → γt = β (P) with
γi ∈ X∗ for i = 0, . . . , t equals the minimal degree d′ = max {deg(ai(li − ri)) : i = 1, . . . , s} of a
polynomial representation α− β =

∑s
i=1 ai(li − ri) with ai ∈ K[X].
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Proof. (from [33], lemma 3.1 and lemma 3.2) First assume there is a derivation α = γ0 →
. . . → γt = β with deg(γi) ≤ d for i = 0, . . . , t. For each i = 1, . . . , t, there is a production
lki → rki with ki ∈ {1, . . . , s} such that γi−1 = δilki and γi = δirki for some word δi ∈ X∗.
Then

α− β =
t∑
i=1

δi(lki − rki) with deg(δi(lki − rki)) ≤ d.

For the converse, assume α − β =
∑t
i=1 ciδi(lki − rki) ∈ IP for some 0 6= ci ∈ K, δi ∈ X∗,

ki ∈ {1, . . . , s}, and deg(δi(lki − rki)) ≤ d′ for i = 1, . . . , t. Consider the graph with ver-
tices V = {δilki , δirki : i = 1, . . . , t} and (directed) edges E = {(δilki , δirki) : i = 1, . . . , t} ∪
{(β, α)} whose weights are w(δilki , δirki) = ci for i = 1, . . . , t and w(β, α) = 1. Since any
path in this graph is a derivation in P whose degree is bounded by d′, it suffices to show
that α and β lie in a common (directed) cycle (repeated nodes are allowed). Since v ⊆ K[X],
one can calculate the sum

∑
(v,u)∈E

w(v, u)(v − u) =
t∑
i=1

ciδi(lki − rki) + (β − α) = 0. (3.1)

Now use induction on the number of edges in E. By (3.1) and since ci 6= 0 for all i =
1, . . . , t, no node has degree 1, so there must by a cycle C ⊆ E. Let 0 6= c = w(v0, u0) for
some (v0, u0) ∈ C. Then definew′(v, u) = w(v, u)−c for all (v, u) ∈ C andw′(v, u) = w(v, u)
otherwise. Moreover let E′ = {(v, u) ∈ E : w′(v, u) 6= 0}. Then (V,E′) is a graph with less
edges and, since C is a cycle,∑

(v,u)∈E′
w′(v, u) · (v − u) =

∑
(v,u)∈E

w(v, u) · (v − u)−
∑

(v,u)∈C
c · (v − u) = 0.

By induction, every edge must be contained in a cycle. Since one of the edges inE is (α, β),
α and β are in the same cycle which proves the claim.

Please note that this proof works for arbitrary fields, opposed to the original reasoning
by Mayr and Meyer which requires K = Q.

3.2. Turing Machines

The definitions of Turing machines in literature slightly differ, while the computing power
is the same for all of them (at least as far as computability is regarded, but essentially this
is true for complexity, too). The simplest variants of Turing machines only have one tape
which contains the input at first, serves as working space, and to which the output is writ-
ten in the end. This is somewhat impractical as far as space complexity measurements are
concerned. There are algorithms whose working space is smaller by magnitudes than the
length of the input. However, not being able to determine the exact space requirements, it
is common to use the O-notation. If only one tape is available, space consumption of O(n)
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in unavoidable where n denotes the length of the input. So it is impossible to distinguish
between algorithms that need linear working space and algorithms with sublinear (e.g.
logarithmic) working space using the O-notation and a one-tape Turing machine.

Instead of using more complicated notations for the complexity (and therefore longer
calculations), one can work with a three-tape Turing machine. Note that this is computa-
tionally equivalent and, moreover, a standard definition in complexity theory. The three
tapes have different capabilities and functions. The input tape contains the input at the
beginning and only allows for reading operations. The output tape only allows for writing-
operations and is empty at the start. The algorithm has to fill this tape with the answer
to the given problem (encoded in the input on the input tape). Finally, the third tape is
called working tape. It is general purpose, so reading and writing operations are allowed.
In the beginning, it is empty and in the end, its contents are ignored. However, the space
complexity of the algorithm is measured as the length of the part of the working-tape that
was touched by the algorithm.

Definition 3.4. Let Σ be an alphabet. A problem P is a function P : Σ∗ −→ Σ∗ which shall be
computed by an algorithm. The restriction of P to inputs w ∈ X∗ of length |w| = n is denoted by
Pn : Σn −→ Σ∗.

Definition 3.5. A Turing machine is described by an alphabet Σ, a set Q of states, an initial
state q0 ∈ Q, a final state f ∈ Q, and a (partial) transition function δ : (Q \ {f}) × Σ2 −→
Q× (Σ ∪ {ε})2 × {L,R}3.

Assume, the Turing machine is in state qk ∈ Q \ {f} after k steps and the three heads are at the
positions ik,j where j = 1 corresponds to the input tape, j = 2 to the working tape, and j = 3
to the output tape. Let ck,j ∈ Σ be the character on tape j at position ik,j . Then δ(qk, ck,1, ck,2)
describes the next transition. The first entry denotes the new state, the following two the values are
written at the current positions to the working respectively output tape (ε means that nothing is
written), and the remaining three entries describe the movements of the three heads (L for left, R
for right).

At the beginning, the Turing machine is in state q0 and all heads are at position i0,j = 0. If the
Turing machine reaches state qk = f , the computation stops. The output of the computation is the
content of the working tape after k steps. The length (or time) of the computation is k.

A Turing machine is called f(n)-space bounded if the working tape has length f(n) where n
denotes the length of the input tape. Such a Turing machine fails if the head of the working tape
moves beyond the limit of the tape.

Definition 3.6. A Turing machine computes a problem P iff for all words w ∈ Σ∗, the computa-
tion of the Turing machine with the input tape w stops without failure and outputs P (w).

Definition 3.7. SPACE(f(n)) is the class of all problems which can be computed by a c·f(n)-space
bounded Turing machine for some c ∈ N.

Lemma 3.8. The length of computation and output of any terminating f(n)-space bounded Turing
machine with f(n) ≥ log(n) is bounded by 2c·f(n) for some c ∈ N.
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Proof. If the Turing machine (Σ, Q, q0, f, δ) terminates, no configuration may be reached
twice. The number of configurations is bounded by the possible contents of the working
tape, the positions of the heads of the input and working tapes, and the state of the Turing
machine. This is bounded in order by

#Σf(n) · n · f(n) ·#Q = O(#Σf(n) · 2f(n) · 2log(f(n))) = 2O(f(n)).

3.3. Boolean Circuits

Just like Turing machines, Boolean circuits are a machine model. While Turing machines
are a standard model for sequential computations, Boolean circuits are used to describe
parallel computations.

Definition 3.9. A Boolean circuit C is a directed acyclic graph. The nodes with in-degree zero are
input nodes, the nodes with out-degree zero are output nodes and have in-degree one. The inner
nodes (also called gates) are labeled by the binary operations AND, OR, and the unary operation
NOT. The number of nodes is called size of the circuit and denoted by size(C), the longest path in
the graph (from an input node to an output node) is called depth and denoted by depth(C).

Since all gates are labeled by unary respectively binary operations, the in-degree of the
circuit is bounded (actually by 2) while the out-degree is arbitrary. The input of the circuit
is an assignment of Boolean values to the input nodes. The values of the gates are deter-
mined by the operations indicated by their labels applied to the values of their predecessor
nodes. The output nodes inherit the values of their predecessors. Since the graph is acyclic,
this recursive evaluation is well-defined and unique for given input values. By numbering
the n input and m output nodes, one can view C as a function C : {0, 1}n 7→ {0, 1}m. Since
the gates are viewed as independent processing units, the depth of the circuit is a measure
of the time the (parallel) evaluation takes.

Using a topological ordering, one can encode C in a straight-forward way as string in
{0, 1}∗. This string will be denoted by C. Note that |C| ≥ c · size(C) · log(size(C)) for some
c > 0 if the output depends on all input bits. This is because the representation of a node
index takes Θ(log(size(C))) bits.

Definition 3.10. A problem P is realized by a family of Boolean circuits (Cn)n∈N iff Cn(y) =
Pn(y) for all inputs y ∈ {0, 1}n of length n. Here Pn is assumed to have a fixed output length
(otherwise it must be padded to the maximal length).

Up to now, there is a big difference between Turing machines and families of Boolean
circuits. While the description of a Turing machine is finite, a family of Boolean circuits
can have an independent definition for each input length. This non-uniformity causes an
unbalance of the computing power when comparing space-bounded Turing machines and
depth-bounded circuits.
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Definition 3.11. A family of Boolean circuits (Cn)n∈N is SPACE(f(n))-uniform iff Cn can be
computed in SPACE(f(n)).

Definition 3.12. The class of all problems which can be realized by a family of SPACE(log(n))-
uniform Boolean circuits (Cn)n∈N with depth(Cn) = O(logk(n)) and size(Cn) = nO(1) is denoted
by NCk.

Be aware that the definitions of the class NCk in literature vary slightly. Sometimes,
uniformity is not required or a slightly different kind of uniformity is chosen.

Uniform Boolean circuits can be easily simulated by Turing machines. The depth of
the circuit, which is a measure of the parallel computation time, determines the space
requirements of the Turing machine.

Theorem 3.13 (Borodin 1977). Let (Cn)n∈N be a family of SPACE(f(n))-uniform Boolean cir-
cuits with depth(Cn) = O(f(n)) for some function f(n) ≥ log(n). Then (Cn)n∈N can be simu-
lated by a Turing machine in SPACE(f(n)).

Proof. (from [3], theorem 4) Since (Cn)n∈N is SPACE(f(n))-uniform, Cn (respectively any
bit of this string) can be computed in SPACE(f(n)). f(n) ≥ log(n) is necessary here be-
cause the length of the input n has to be determined.

Knowing this, the idea is to recursively evaluate the circuit using a fixed ordering of the
children of each node. In a straightforward implementation, one would store the index of
the node and the status of the evaluation at each level of the recursion. Since the status
of a recursion level is given by the return values of one or two recursive calls which can
be ”true”, ”false”, or ”unevaluated”, it only needs a constant number of bits. So the total
space consumption would be O(depth(Cn) log(size(Cn))).

This can be improved by only storing the node index of the current recursion level while
keeping the status of the recursion at each level. The address of the parent node can be
computed from the root of the recursion using the status entries at each recursion level.
This yields a space complexity of O(depth(Cn) + log(size(Cn))). Remembering that Cn
can be computed in SPACE(f(n)), one deduces that the size of the circuit is bounded by
size(Cn) ≤ 2c·f(n) for some c > 0. Thus one can simulate the family of circuits in space
O(f(n) + log(2c·f(n))) = O(f(n)).

Borodin’s simulation result will be used on a number of Boolean circuits. But before
more complex algorithms are considered, it is necessary to cover the basic ring operations.
Borodin et al. introduced the concept of well-endowed ring for this purpose [4].

Definition 3.14. Let R be a ring and α : R −→ N be a length function, i.e. α(a + b) ≤
max {α(a), α(b)}+ O(1) and α(a · b) ≤ α(a) + α(b) + O(log(max {α(a), α(b)})). Then Rn =

{r ∈ R : α(r) ≤ n}. (l, r) is a representation of (R,α) iff l : N −→ N and rn : {0, 1}l(n) −→ Rn
such that Rn ⊆ rn({0, 1}l(n)). It is called succinct iff l(n) = nO(1), i.e. all ring elements of length
n can be represented as strings of bitsize polynomial in n. The representation is uniform iff, for
arbitrary k ∈ N, a (l(n) + k)-bit representation of any element of Rn can be computed in NC1 (i.e.
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with depth O(log(l(n) + k))). If (R,α) has a succinct uniform representation such that addition is
in NC0 and multiplication is in NC1, the ring is called well-endowed.

The ring operations of well-endowed rings are fast enough such that the complexity of
the considered algorithms is not essentially influenced. Also many operations on the fields
of fractions can be computed efficiently. This yields to the following definition.

Definition 3.15. Let R be a well-endowed domain. Then its field of fractions Q(R) is also called
well-endowed.

First consider the integers. The input and output numbers are usually stored in the
binary representation. Sometimes, however, a redundant representation is preferable (cf.
[4]).

Definition 3.16. Choose p ≥ 2. For any n ∈ N, let (a0, . . . , an) ∈ {−(p− 1), . . . , (p− 1)}n+1

represent the number r(a0, . . . , an) =
∑n
i=0 aip

i. Since each coefficient ai uses space dlog(2p−1)e,
one defines l(n) = dlog(2p− 1)en and obtains a succinct uniform representation (l, r) of Z for the
length function α(k) = dlogp(|k|+ 1)e for all k ∈ Z. This representation is called balanced p-ary
representation.

Lemma 3.17. The addition of two integers in balanced p-ary representation is in NC0 for p ≥ 3.

Proof. (from [4], §2) The task is to add two integers which are represented by (a0, . . . , an)
and (b0, . . . , bn) with n ∈ N and ai, bi ∈ {−(p− 1), . . . , (p− 1)} for i = 0, . . . , n. Since
|ak|, |bk| ≤ p − 1 for all k = 0, . . . , n, |ak + bk| ≤ 2p − 2. Since p ≥ 3, there are xk, yk such
that ak + bk = xkp + yk and |xk| ≤ 1, |yk| ≤ p − 2. Thus (y0, y1 + x0, . . . , yn + xn−1, xn) is
a balanced p-ary representation of the sum which can be computed uniformly in constant
depth.

Lemma 3.18. The addition of n integers with n bits each in balanced p-ary representation is in
NC1 for p ≥ 3.

Proof. (from [4], §3) The key is to use a balanced tree representation of the arithmetic ex-
pression. The depth of the tree is O(log(n)) and each operation is in NC0 which yields a
circuit of depth O(log(n)). If 2e−1 < n ≤ 2e for some e ∈ N, one can call the input numbers
a2e , . . . , a2e+n−1 ∈ Z and let ak = 0 for k = 2e + n, . . . , 2e+1 − 1. A circuit computing
ak = a2k + a2k+1 for k = 1, . . . , 2e − 1 can certainly be constructed uniformly and a1 is the
sum of all input numbers.

Lemma 3.19. The multiplication of two integers in balanced p-ary representation is in NC1 for
p ≥ 3.

Proof. (from [4], §2) The product of two n-bit integers can be computed as the sum of n
integers with 2n bits each. Those integers are either 0 or a shift of one of the two input
numbers — depending on the respective bit of the other input number. Thus multiplica-
tion is in NC1.
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Lemma 3.20. The multiplication of n integers with n bits each in balanced p-ary representation is
in NC2 for p ≥ 3.

Proof. (from [4], §3) Again, use a balanced tree representation of the arithmetic expres-
sion with depth O(log(n)). Since each operation is in NC1 the whole circuit has depth
O(log2(n)).

Obviously, this non-standard representation requires efficient conversions.

Lemma 3.21. Conversion from binary to balanced 4-ary representation is in NC0 and conversion
from balanced 4-ary representation to binary representation is in NC1.

Proof. (from [4], §2) Starting with binary representation, the only thing that has to be done
is to group the bits in chunks of two and assign the proper sign. This is obviously in
NC0. For the converse, apply the technique of [29]. Let (a0, . . . , an) be the balanced 4-ary
representation and compute the standard 4-ary representation σ(b0, . . . , bn+1) with sign
σ ∈ {−1, 1} and coefficients bk ∈ {0, 1, 2, 3} for k = 0, . . . , n+ 1. The binary representation
is obtained by reinterpreting each digit as two bits.

In order to compute the sign σ, define the function vak(ck) which computes the carry-
over ck+1 ∈ {−1, 0, 1} such that bk = ak + ck − 4ck+1 ∈ {0, 1, 2, 3} for k = 0, . . . , n. This
can be implemented in NC0. Then σk+1 = (vak ◦ . . . ◦ va0)(0). Since the concatenation of
functions is associative and the functions have only finitely many values, one can compute
this concatenation as balanced binary tree and then plug in 0 in order to obtain the sign
σ = cn+1 in NC1. For the computation of the digits, the same technique can be used.

Independently, Chiu used the Chinese remainder representation and efficient conver-
sions to show that integer comparison can be realized efficiently.

Lemma 3.22 (Chiu 1995). The comparison of two integers in binary representation is in NC1.

Proof. See [8], §3.3.

The combination of these lemmas yields a comparison circuit for scalar products in NC1

using binary representation. Applying theorem 3.13, this can be simulated by a logspace-
bounded Turing machine. Since Chiu’s results about integer comparison is rather in-
volved, a direct proof of the corollary will be given here.

Corollary 3.23. Given vectors u, v, w ∈ Qn with q-bit entries, u · w < v · w can be decided by a
SPACE(log2(nq))-bounded Turing machine.

Proof. First consider the case u, v, w ∈ Nn. It was already shown that u · w and v · w can
be computed in NC1 and, by theorem 3.13, in SPACE(log(nq)). It remains to cover the
integer comparison. While it is rather involved to design a family of uniform circuits with
logarithmic depth, it is straight forward to program a Turing machine with logarithmic
space. Starting at the most significant bits, compare the bits of both numbers sequentially.
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It suffices to store the index of the bit which is currently compared which only requires
space O(log(n)). Since the numbers cannot be stored on the working tape, the required
bits are computed on demand.

If u, v, w ∈ Qn, first multiply each vector with the product of all denominators in u, v, w.
For each coefficient, these O(n) multiplications can be done by a family of circuits in NC2.
The bitsize of the input blows up by a factor of O(n) which can be neglected due to the
logarithm in the formula of the space complexity.

Borodin et al. also prove similar results for larger, derived rings. The following lemma
only lists some examples.

Lemma 3.24 (Borodin et al. 1983). Z, Z[X], and Zn,m are well-endowed rings.

Proof. See [4], §§2-3.

A rather surprising result of complexity theory is about solving systems of linear equa-
tions. Borodin et al. [4] constructed a family of Boolean circuits that solves various prob-
lems for linear systems over a well-endowed field in NC2.

Theorem 3.25 (Borodin et al. 1983). Let A ∈ Kn×n be a matrix over a well-endowed field. Then
the computation of its determinant, characteristic polynomial, rank, and adjoint matrix are in NC2.

Proof. See [4], corollary 4.3, proposition 2.1, and proposition 2.2.

The rank of a matrix can be determined from the characteristic polynomial since the
corank equals the exponent of the highest power of the indeterminate that divides the
characteristic polynomial. In order to compute the rank of a rectangular rational matrix,
multiply it with its transpose to obtain a square matrix with the same rank. Finally, the
adjoint matrix can be computed by a polynomial number of uniform determinant compu-
tations. Thus all these algorithms are in NC2. Again, applying theorem 3.13 yields space
bounded Turing machines for the respective problems.

Corollary 3.26. Let n ≥ m, A ∈ Kn×m a matrix over a well-endowed with q-bit numerators and
denominators. Then the computation of its rank and adjoint matrix, and, if n = m, its determinant
and characteristic polynomial are in SPACE(log2(nq)).
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As mentioned previously, Gröbner bases can be used to effectively solve problems in
polynomial rings, e.g. the membership problem. Thus a certain interest in the difficulty of
their computation is self-evident. Their size is of similar importance since the complexity
of most further computations will depend on it.

The degree of the Gröbner basis turned out to be an appropriate measure of both the
effort of computation and the size of Gröbner basis. Knowing the degree will suffice for
determining the complexity of the Gröbner basis computation and the further computa-
tions, as will be shown later.

The representation problem is more or less an explicit version of the membership prob-
lem. For an arbitrary ideal basis, the objective is to find a polynomial combination of the
basis elements which equals a given polynomial. Again it is possible to ask for a bound of
the degree of the representation. This makes the reduction of the representation problem
(and thus the ideal membership problem) to a system of linear equations possible.

In this part of the thesis, the focus is on degree bounds for Gröbner bases and the repre-
sentation problem. While the following two chapters list a lot of previously known results
for both problems, the contributions of the author are explored in detail and self-contained.
Both chapters are organized in sections which correspond to classes of ideals or — in the
case of radical membership — to a variant of the original problem. Formally, the problems
can be stated as

Problem (Representation Basis Degree). Given an ideal basis F ⊆ K[X], find lower and upper
bounds for the maximal degree R(h, F ) of a minimal representation of an ideal member h ∈ 〈F 〉,
i.e.

R(h, F ) = min

d ∈ N : h =
∑
f∈F

aff with af ∈ K[X], deg(aff) ≤ d for all f ∈ F

.
Problem (Gröbner Basis Degree). Given an ideal basis F ⊆ K[X], find lower and upper bounds
for the maximal degree G(F ) of polynomials in the reduced Gröbner basis (w.r.t. any monomial
ordering) of 〈F 〉, i.e.

G(F ) = max {deg(g) : g ∈ GB≺(F ),≺ admissible}.
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The representation degree has been studied in various situations and a couple of bounds
have been given by previous authors. The following is a comprehensive summary of the
tightest bounds that are known to the author at the time of writing. This means, that the
historic development of the bounds will not be analyzed. Besides the exposition of known
results, the chapter includes a single exponential lower bound for the representation de-
gree in toric ideals which is completely new.

4.1. Arbitrary Ideals

Long before the first people thought about computations in polynomial rings and Gröbner
bases were defined, mathematicians considered the representation problem. Already back
in 1926, Hermann proved a double exponential upper degree bound. The original proof
has flaws, but they have been resolved later on using the same basic idea.

Theorem 4.1 (Hermann 1926). Let I be an ideal in K[X] generated by a set of polynomials
F = {f1, . . . , fs} of maximal degree d and let h ∈ I . Then the representation degree is bounded by

R(h, F ) ≤ deg(h) + d+ (sd)2n .

Proof. The original proof in [19] is well-known to be incorrect. In the appendix of [33],
there is a self-contained proof of the result.

On the other hand, there is a well-known lower bound, also double exponential but with
smaller constants, which was first proved by Mayr and Meyer in [33] and later improved
by Yap.

Theorem 4.2 (Yap 1991). There are a family of ideals In ⊆ K[X] with n ∈ N, generated by
O(n) polynomials Fn of degrees bounded by d and polynomials hn ∈ In of degree 1 such that each
representation of h by Fn has degree at least

R(h, Fn) ≥ d2(1/2−ε)n for any ε > 0 and sufficiently large d, n ∈ N.

Proof. See [44], §8.

Summarizing, the situation is rather well understood for arbitrary polynomial ideals
with upper and lower bounds matching up to a factor of 2 in the highest exponent.
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4.2. Radical Membership

The following results also apply to arbitrary ideal and contrast the previous section in an
astonishing way. One might think that powers of a polynomial f ∈ K[X] will have higher
representation degrees since deg(fk) = k deg(f) for any k ∈ N. But just the opposite of
this expectation is true — at least in the worst case. There are many bounds for the radical
membership problem. Jelonek was able to remove a limitation of Kollár’s bound which
renders his result optimal in the use cases of this thesis.

Theorem 4.3 (Jelonek 2005). Let I be an ideal in K[X] generated by polynomials f1, . . . , fs of
degrees d1 ≥ . . . ≥ ds. Then

√
I
k
∈ I for some k ≤


d1 · · · ds if 1 ≤ s ≤ n
d1 · · · dn−1ds if 1 < n ≤ s
ds if n = 1

Proof. See [21], theorem 1.3. Note that the field does not have to be algebraically closed.

This can be seen by a standard reasoning which reduces fk
?
∈ I for given f ∈ K[X] and

k ∈ N to a system of linear equations which has a solution over the algebraic closure K iff
it is solvable over K.

The following example proves that the bound given in theorem 4.3 is tight.

Example 4.4 (Kollár 1988). (from [23], example 2.3) Consider the ideal I generated by the poly-
nomials xd11 , x1 − xd22 , . . . , xs−1 − xdss in K[X] for s ≤ n. It is well-known and easy to verify,
that xd1···dss ∈ I but xd1···ds−1

s /∈ I . This provides a matching lower bound for the exponent of the
radical membership problem. As generalization, note that, for any f ∈ I and k ≥ 1, (f + xs)

k ∈ I
iff xks ∈ I .

Due to the importance of this example, the implication is stated as theorem.

Theorem 4.5 (Kollár 1988). For any s ≤ n ∈ N and d, d1, . . . , ds ∈ N, there are an ideal I in
K[X] generated by polynomials f1, . . . , fs of degrees d1, . . . , ds and a polynomial h ∈

√
I of degree

d such that hk /∈ I for all k < d1 · · · ds.

4.3. Zero-Dimensional Ideals

Apart from arbitrary ideals, ideals of dimension 0 have been studied most intensely. They
appear in many applications on the one side and proved to be less complex on the other
side. Still the bounds for the representation problem of zero-dimensional ideals are not
tight. This is in contrast to the Gröbner basis degree as section 5.2 will show.
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Theorem 4.6 (Dickenstein, Fitchas, Giusti, Sessa 1991). Let I ( K[X] be a zero-dimensional
ideal generated by polynomials F = {f1, . . . , fs} of maximal degree d and let h ∈ I . Then the
representation degree is bounded by

R(h, F ) ≤ deg(h) + (nd)2n + dn + d.

Proof. See [11], corollary 3.4.

4.4. Complete Intersections

Complete intersections were introduced in section 2.7 as ideals which are generated by
regular sequences. Since these are defined as nicely behaving ideals in some sense, it
comes at no surprise that the representation degrees are low for such ideals.

Theorem 4.7 (Dickenstein, Fitchas, Giusti, Sessa 1991). Let I be a complete intersection ideal
in K[X] generated by polynomials F = {f1, . . . , fs} of maximal degree d and let h ∈ I . Then the
representation degree is bounded by

R(h, F ) ≤ deg(h) + ds.

Proof. See [11], theorem 5.1.

4.5. Dimension-Dependent Bounds

In his Bachelor’s thesis, Kratzer uses Bézout’s theorem and Kollár’s bound for the radical
membership in order to proof a representation bound depending on the ideal dimension.
As tool he uses an effective version of the well-known Noether normalization by Dicken-
stein, Fitchas, Guisti, and Sessa. Their proof will be revisited in the following in order to
obtain a slightly tighter bound.

Theorem 4.8 (Noether Normalization). Let K be an infinite field and I ( K[X] be an ideal of
dimension r generated by polynomials F = {f1, . . . , fs} of degrees d1 ≥ . . . ≥ ds. Then there is
an invertible linear change of coordinates

σ : K[X] −→ K[X], xi 7→ ai,1x1 + . . .+ ai,nxn with ai,j ∈ K for i, j = 1, . . . , n

such that {x1, . . . , xr} is a maximal independent set w.r.t. σ(I) and, for each i = r+1, . . . , n, there
is a polynomial hi ∈ σ(I)∩K[x1, . . . , xi] which is monic in xi, i.e. degxi(hi) = deg(hi) > 0. Then
σ(I) is said to be in Noether position. The degrees can be bounded by deg(hi) ≤ (d1 · · · dn−r)2.

Proof. (from [11], §1) By the definition of the ideal dimension, there is a w.r.t. I maximal
independent set of cardinality r = dim(I). Hence, permuting the variables with σ one can
assume σ(I) ∩K[x1, . . . , xr] = {0}. The rest of the construction is by induction.

75



4. Representation Degree

Let r < k ≤ n, assume there are hi ∈ σ(I) ∩ K[x1, . . . , xi] monic in xi for i = k +
1, . . . , n, and construct a polynomial hk ∈ σ(I) and an invertible change of coordinates
σ′ = σ̃ ◦ σ such that σ̃(hi) ∈ K[x1, . . . , xi] is monic in xi for i = k, . . . , n and {x1, . . . , xr} is
independent modulo σ′(I).

By lemma 2.80, there is a complete intersection J ⊆ I generated by polynomials g1, . . . ,
gn−r of degrees d1 ≥ . . . ≥ dn−r. Since dim(J) = dim(I) = r, {x1, . . . , xr} is a maximal
independent set w.r.t. σ(J) andK = σ(J)∩K[x1, . . . , xr, xk] 6= {0}. This implies ht(

√
K) =

ht(K) = 1 as ideal of K[x1, . . . , xr, xk]. Now let K be the algebraic closure of K. By the
closure theorem 2.89, π(VK(σ(J))) = VK(K) where π is the projection onto the coordinates
{1, . . . , r, k}. Applying lemma 2.91 and Bézout’s theorem 2.92,

deg(VK(K)) ≤ deg(VK(σ(J))) ≤ d1 · · · dn−r.

By lemma 2.96, there is 0 6= h ∈
√
K =

»
σ(J)∩K[x1, . . . , xr, xk] with deg(h) ≤ d1 · · · dn−r.

Since {x1, . . . , xr} is independent w.r.t. σ(J), degxk(h) > 0. Finally, by theorem 4.3, he ∈
σ(J) ⊆ σ(I) for some e ≤ d1 · · · dn−r. This yields hk = he ∈ σ(J) ∩ K[x1, . . . , xr, xk] with
deg(hk) ≤ (d1 · · · dn−r)2 and degxk(hk) > 0.

For the construction of σ̃, let h̃ be the homogeneous component of hk of highest degree.
Since h̃ 6= 0 is homogeneous and K is infinite, there are values y1, . . . , yr ∈ K such that
h̃(y1, . . . , yr, 1) 6= 0. Define σ̃ by σ̃(xi) = xi + yixk for i = 1, . . . , r and σ̃(xi) = xi for
i = r+ 1, . . . , n which certainly is invertible. Then σ̃(hi) ∈ K[x1, . . . , xi] for all i = k, . . . , n.
Moreover, degxk(h̃) = deg(h̃) shows that σ̃(hk) is monic in xk. Since degxi(hi) = deg(hi),
σ̃(xi) = xi for i = k + 1, . . . , n, and σ̃ preserves the total degree, σ̃(hi) is also monic in xi.

It remains to show that {1, . . . , xr} is independent w.r.t. σ′(I). Assume to the contrary
0 6= f ∈ σ′(I) ∩ K[x1, . . . , xr]. Then σ̃−1(f) ∈ σ(I). The inverse of the coordinate change
is defined by σ̃−1(xi) = xi for i 6= k and σ̃−1(xk) = xk −

∑r
i=1 yixi and hence σ̃−1(f) ∈

K[x1, . . . , xr]. This contradicts the assumption that {1, . . . , xr} is independent w.r.t. σ(I).

Note that the above result is a weak version of the Noether normalization. One can even
obtain monic polynomials hi ∈ σ(I) ∩K[x1, . . . , xr][xi] for i = r + 1, . . . , n.

Theorem 4.9 (Kratzer 2008). Let I be an ideal of dimension dim(I) = r in the polynomial ring
K[X] over an infinite field K, and let I be generated by polynomials F = {f1, . . . , fs} of maximal
degree d and h ∈ I . Then the representation degree is bounded by

R(h, F ) ≤ deg(h) +
(
d
Ä
(n+ 1) max

¶
deg(h), (n+ 2)2 (dµ + 1)µ+2

©
+ 1
än−r)2r

for µ = min {n, s}.

Proof. See [24], theorem 5.
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4.6. Toric Ideals

Theorem 4.10. There are a family of ideals Ir,n ⊆ K[X] with r ≤ n ∈ N, generated by O(n)
polynomials Fn of degrees bounded by d and polynomials hn ∈ In of degree 1 such that each
representation of h by Fr,n has degree at least

R(h, Fr,n) ≥ d2(1/2−ε)r for any ε > 0 and sufficiently large d, r, n ∈ N.

Proof. Let Fr be as defined in theorem 4.2 and Fr,n = Fr ∪ {xr+1, . . . , xn}. Then Ir,n, the
ideal generated by Fr,n in K[X], has dimension dim(Ir,n) ≤ r and the degree bound is
exactly as in theorem 4.2.

4.6. Toric Ideals

The lower bound for the representation degree in toric ideals is not surprising. The proof,
however, does not lack some kind of technical complexity. The approach is similar to
the construction by Mayr and Meyer [33] in using a commutative Thue system. Since
toric ideals are binomial by definition and commutative Thue systems also correspond to
binomial ideals, the approach seems to be particularly suited. Note that the commutative
Thue systems constructed by Mayr and Meyer are not toric. They use state variables to
force the production into a certain direction. Toric ideals, however, are prime and so state
variables factor out leaving much more flexibility for derivations. One main difficulty in
the construction as well as in the proof will be to show that the ideal corresponding to the
commutative Thue system is prime (and hence toric).

Instead of using state variables (or more general monomial factors) as canalization, it is
necessary to keep the number of occurrences of the single variables very low (only in one
or two productions). This diminishes the achieved degree bound by an order of magnitude
compared to the Mayr-Meyer construction. Despite of the lack of non-trivial upper bounds
for the representation degree, it seems unlikely that the presented bound can be improved
dramatically. The better understood situation of the Gröbner basis degree exhibits single
exponential upper and lower bounds which will be presented in section 5.4.

Example 4.11. Consider the commutative Thue system over the alphabet Xn = {x1, . . . , xn, y1,
. . . , yn, z1, . . . , zn}, which is given by the productions Pn:

1 ≡ x1y1 (I)

xdi ≡ xi+1yi+1 (i = 1, . . . , n− 1) (II)
yn ≡ zn (III)

zi+1y
d
i ≡ zdi (i = 1, . . . , n− 1) (IV)
z1 ≡ 1 (V)
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4. Representation Degree

The first, obvious remark is that yn and zn can be merged to one variable and z1 can be eliminated,
as well. This yields an ideal in 3n − 2 variables. For the proofs, however, the above, redundant
presentation will be beneficial. The following derivation will be of main interest:

Lemma 4.12. xn ≡ 1 (Pn)

Proof.

1
(I)
≡ xdn−1

1 yd
n−1

1

(II)
≡ xny

dn−1

1 yd
n−2

2 · · · yn
(III)
≡ xny

dn−1

1 yd
n−2

2 · · · ydn−1zn ≡
(IV)
≡ xnz

dn−1

1

(V)
≡ xn (Pn)

The claim is that there is no derivation of xn ≡ 1 with much lower degree. Unfortunately,
the derivation does not have strong uniqueness properties as derivations in the Mayr-Meyer ideals
have. But it is possible to predict the structure of certain derivations.

Lemma 4.13. Let a0 → a1 → . . .→ at be a derivation using rules (I), (II), (IV), (V). Then

degyk(at)− degyk(a0) =∑
j≥0

Ä
degxk+j (at)− degxk+j (a0)

ä
dj +

∑
j≥1

Ä
degzk+j (at)− degzk+j (a0)

ä
dj (4.1)

for k = 1, . . . , n.

Proof. The proof is by induction on the length of the derivation t. Obviously, the statement
is true for t = 0. For the induction step, assume the formula to be true for at−1 and consider
all allowed rules.

(I) The right-hand side of (4.1) only changes for k = 1 which is according to the change
of the exponent of y1.

(II, i) For k > i + 1 nothing changes. For k < i + 1 the changes of the exponents of xi and
xi+1 equal out. For k = i+ 1 the exponents of xi+1 and yi+1 both change by 1.

(IV, i) For k > i nothing changes. For k < i the changes of the exponents of zi and zi+1

equal out in (4.1). For k = i the exponents of yi and zi+1 change by d respectively 1
which is according to (4.1).

(V) None of the variables involved in (4.1) is changed.

Using this result, one can prove that all derivations of 1 ≡ xn (Pn) have exponentially high
degrees.
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4.6. Toric Ideals

Lemma 4.14. All derivations of xn ≡ 1 (Pn) have degree at least
∑n
i=0 d

i = dn+1−1
d−1 .

Proof. Consider a derivation 1 = a0 → a1 → . . . → at = xn and let k be minimal such
that ak−1 → ak is an application of rule (II) with i = n − 1. Since a0 = 1 and only rule (II)
with i = n − 1 involves xn, ak is the first word that contains xn. Remember that yn only
appears in rule (II) with i = n − 1 and rule (III). By the choice of k, yn is not needed by
any rule which is applied in the derivation a0 → . . .→ ak, so one can w.l.o.g. assume that
rule (III) is not applied in the first k steps of the derivation (otherwise one could move the
applications of rule (III) behind step k which does not change the degrees). Thus lemma
4.13 applies and yields

deg(ak) ≥ degxn(ak) +
n∑
i=1

degyi(ak) ≥ 1 +
n∑
i=1

di.

It remains to show that IPn is toric or, by lemma 2.108, that IPn is prime. The following lemma
will provide a strategy to simplify the ideal.

Lemma 4.15. Let I be an ideal in K[X], xn − h ∈ I for a polynomial h ∈ K[x1, . . . , xn−1] and
I ∩K[x1, . . . , xn−1] be prime. Then I is prime, too.

Proof. Let f = f1f2 ∈ I . Define the polynomial

f̃(x1, . . . , xn−1) = f(x1, . . . , xn−1, h(x1, . . . , xn−1))

and f̃1, f̃2 analogously. Thus f̃ = f̃1f̃2 with f̃ , f̃1, f̃2 ∈ K[x1, . . . , xn−1] and, since xn−h ∈ I ,
f − f̃ , f1 − f̃1, f2 − f̃2 ∈ I .

First assume deg(f̃1) ≥ 1 and deg(f̃2) ≥ 1. Since f̃ ∈ J = I ∩ K[x1, . . . , xn−1] and J is
prime, either f̃1 ∈ J or f̃2 ∈ J , which implies f1 ∈ I respectively f2 ∈ I .

If deg(f̃1) = 0, i.e. f̃1 is a non-zero constant, then f̃ = f̃1f̃2 ∈ J implies f̃2 ∈ J and thus
f2 ∈ I . The case deg(f̃2) = 0 is analogous.

Lastly, if f̃1 = 0 (or, analogously, f̃2 = 0), f1 ∈ I . Therefore I is prime.

Note that one obtains generators of I ∩K[x1, . . . , xn−1] in this scenario by substituting h for xn
in all generators of I . Before applying this to IPn , it is beneficial to get more familiar with the ideal
by proving the following equivalences.

Lemma 4.16. zk+1 ≡ xdk (Pn) for k = 1, . . . , n− 1.

Proof. First derive (similar to the first part of lemma 4.12)

xdk
(I)
≡ xdkxd

n−1−dk
1 yd

n−1−dk
1

(II)
≡ xd

n−k
k yd

n−1−dk
1 · · · ydn−k−dk ≡

(II)
≡ xny

dn−1−dk
1 · · · ydn−k−dk yd

n−k−1

k+1 · · · yn (Pn).
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4. Representation Degree

Now remember xn ≡ 1 (Pn) and continue with

xdk
(III)
≡ yd

n−1−dk
1 · · · ydn−k−dk yd

n−k−1

k+1 · · · ydn−1zn
(IV)
≡ yd

n−1−dk
1 · · · ydn−k−dk zd

n−k−1

k+1 ≡
(IV)
≡ yd

n−1−dk
1 · · · ydn−k+1−d2

k−1 zd
n−k−d
k zk+1

(IV)
≡ zd

n−1−dk
1 zk+1

(V)
≡ zk+1 (Pn).

Now apply lemma 4.15 to the ideal IPn using the polynomials xn − 1, yn − zn, z1 − 1, and
zi+1−xdi for i = 1, . . . , n−1 and obtain generators for I ′n = IPn ∩K[x1, . . . , xn−1, y1, . . . , yn−1].
Note that the polynomial xdn−1 − xnyn vanishes on substitution.

I ′n =
¨
x1y1 − 1, xi+1yi+1 − xdi : i = 1, . . . , n− 2

∂
+¨

xd1y
d
1 − 1, xdi y

d
i − xd

2

i−1 : i = 2, . . . , n− 1
∂
.

Since (x1y1 − 1) | (xd1yd1 − 1) and (xi+1yi+1 − xdi ) | (ydi+1x
d
i+1 − xd

2

i ) for i = 1, . . . , n − 1, this
simplifies to

I ′n =
¨
x1y1 − 1, xi+1yi+1 − xdi : i = 1, . . . , n− 2

∂
.

Due to lemma 4.15 it suffices to show that I ′n is prime. This will imply that IPn is prime and
therefore toric.

Rather than dealing with ideals, return to commutative Thue system. The productions P ′n =¶
x1y1 ≡ 1, xdi ≡ xi+1yi+1 : i = 1, . . . , n− 2

©
represent the ideal I ′ and thus are also equivalences

of Pn. Therefore the following is an extension the of lemma 4.13 for P ′n.

Lemma 4.17.

xc11 · · ·x
cn−1

n−1 y
d1
1 · · · y

dn−1

n−1 ≡ x
e1
1 · · ·x

en−1

n−1 y
f1
1 · · · y

fn−1

n−1 (P ′n)

if and only if

fj = dj +
n−j−1∑
i=0

(ej+i − cj+i)di and cj , dj , ej , fj ≥ 0 for j = 1, . . . , n− 1. (4.2)

Proof. Since the rules in P ′n are (a subset of) the rules (I) and (II) in Pn, lemma 4.13 applies.
Thus (4.2) must hold for all equivalent words. It remains to show that this condition is
sufficient. The proof is by induction on n. The case n = 2 is clear.

Postulate the statement for n− 1 and prove it for n. Since the equivalence is symmetric,
assume w.l.o.g. cn−1 < en−1.

Remember the proof of lemma 4.12 derived (with n shifted by 1)

1 ≡ xn−1y
dn−2

1 yd
n−3

2 · · · yn−1 (P ′n)
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4.6. Toric Ideals

by only using rules in P ′n. Repeating this en−1 − cn−1 times yields

xc11 · · ·x
cn−1

n−1 y
d1
1 · · · y

dn−1

n−1 ≡ x
c1
1 · · ·x

cn−2

n−2 x
en−1

n−1 y
d̃1
1 · · · y

d̃n−1

n−1 (P ′n)

with d̃j = dj + (en−1− cn−1)dn−1−j ≥ 0 for j = 1, . . . , n− 1. Therefore d̃n−1 = fn−1 by (4.2)
and

fj = d̃j +
n−j−2∑
i=0

(ej+i − cj+i)di.

The rest of the derivation exists by induction.

This structure analysis suffices to prove the wanted result.

Lemma 4.18. IP ′n ⊆ K[X] is prime.

Proof. Since IP ′n is a binomial ideal, it is prime if and only if it is toric (lemma 2.108). So
it suffices to show for arbitrary monomials m1,m2 ∈ K[X] that m1 − m2 ∈ IP ′n implies
m′1 −m′2 ∈ IP ′n for m′i = mi

gcd(m1,m2) (i = 1, 2), and that mk
1 −mk

2 ∈ IP ′n implies m1 −m2 ∈
IP ′n for any k ≥ 1.

If m1 − m2 ∈ IP ′ , m1 = xc11 · · ·x
cn−1

n−1 y
d1
1 · · · y

dn−1

n−1 and m2 = xe11 · · ·x
en−1

n−1 y
f1
1 · · · y

fn−1

n−1 ,
lemma 4.17 yields

fj = dj +
n−j−1∑
i=0

(ej+i − cj+i)di and cj , dj , ej , fj ≥ 0 for j = 1, . . . , n− 1.

Assume m = xg11 · · ·x
gn−1

n−1 y
h1
1 · · · y

hn−1

n−1 divides m1 and m2. Then, for j = 1, . . . , n− 1,

c̃j = cj − gj ≥ 0, d̃j = dj − hj ≥ 0, ẽj = ej − gj ≥ 0, f̃j = fj − hj ≥ 0,

and

f̃j = d̃j +
n−j−1∑
i=0

(ẽj+i − c̃j+i)di.

Hence, using lemma 4.17 again,

m1

m
− m2

m
= xc̃11 · · ·x

c̃n−1

n−1 y
d̃1
1 · · · y

d̃n−1

n−1 − x
ẽ1
1 · · ·x

ẽn−1

n−1 y
f̃1
1 · · · y

f̃n−1

n−1 ∈ IP ′n .

Now let mk
1 −mk

2 ∈ IP ′n for some monomials m1 = xc11 · · ·x
cn−1

n−1 y
d1
1 · · · y

dn−1

n−1 and m2 =

xe11 · · ·x
en−1

n−1 y
f1
1 · · ·x

fn−1

n−1 and k ≥ 1. Lemma 4.17 implies

kfj = kdj +
n−j−1∑
i=0

(kej+i − kcj+i)di and cj , dj , ej , fj ≥ 0 for j = 1, . . . , n− 1,
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and thus

fj = dj +
n−j−1∑
i=0

(ej+i − cj+i)di and cj , dj , ej , fj ≥ 0 for j = 1, . . . , n− 1.

This results in m1 −m2 ∈ IP ′n and proves that IP ′n is prime.

Summing up the results, Pn is prime since P ′n is prime, and since it is binomial, it is a
toric ideal. This finishes the proof of the single exponential lower bound for the represen-
tation degree in toric ideals.

Theorem 4.19. There are a family of toric ideals IPn in 3n− 2 variables for each n ∈ N, generated
by O(n) binomials Pn of degrees bounded by d and binomials hn ∈ IPn of degree 1 such that each
representation of hn by Pn has degree at least

R(hn,Pn) ≥
n∑
i=0

di.
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5. Gröbner Basis Degree

In the second chapter about degree bounds, the degrees of polynomials in Gröbner bases
will be analyzed. The algorithm in chapter 6 will motivate these elaborate studies and
show that these bounds essentially determine the worst case complexity of the Gröbner
basis computation. Just like the previous chapter, the following will be an extensive com-
pilation of the tightest bounds to the best of the author’s knowledge.

There are two contributions of the author of this thesis to this topic. The first is the pre-
viously published dimension-dependent bound improving on Dubé’s bound for arbitrary
ideals. The first publication contains a mistake which is uncovered and fixed (yielding a
slightly worse upper bound). On the other hand, the lower bound is improved in compar-
ison with the previous publication. The second contribution is a degree bound for toric
ideals which is derived from a similar bound by Sturmfels for a different type of ideal
representation.

5.1. Arbitrary Ideals

Most previous authors considered arbitrary ideals parametrized by the number of vari-
ables n and the degrees d1, . . . , ds of the polynomials f1, . . . , fs which generate the ideal.
[1], [17], and [35] provide a double exponential upper bound for the Gröbner basis degree
as explained in the introduction of [12]. [12] gives a combinatorial proof of an improved
upper bound.

Theorem 5.1 (Dubé 1990). Let I be an ideal in K[X] generated by polynomials F = {f1, . . . , fs}
of maximal degree d. Then the Gröbner basis degree is bounded by

G(F ) ≤ 2

Ç
d2

2
+ d

å2n−1

.

Proof. See [12].

Dubé’s result is contrasted by a lower degree bound which also exhibits double expo-
nential growth.

Theorem 5.2 (Yap 1991). Fix an admissible monomial ordering ≺. Then there are a family of
ideals In ⊆ K[X] for n ∈ N, generated by O(n) polynomials Fn of degrees bounded by d such that
each Gröbner basis has a maximal degree of at least

deg(GB≺(Fn)) ≥ d2(1/2−ε)n for any ε > 0 and sufficiently large d, n ∈ N.
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5. Gröbner Basis Degree

Proof. See [44], §8 and [44], ”Notes added in proof” for the proof for graded monomial
orderings and [44], §1 for the reduction to arbitrary monomial orderings.

The result is an improvement of the bounds derived by Möller and Mora [35] respec-
tively by Huynh in [20] which both use the ideal which was presented by Mayr and Meyer
in [33].

5.2. Zero-Dimensional Ideals

A special focus in research was on the class of zero-dimensional ideals. Here the bounds
are smaller by a magnitude. The well-known theorem of Bézout (cf. [40]) immediately
implies a singly exponential upper degree bound for radical ideals. Another approach
using the theory of multiplicities yields the same bound for arbitrary homogeneous ideals.
The generalization for inhomogeneous ideals is a bit more involved.

Lemma 5.3 (Caniglia, Galligo, Heintz 1989). Let I ( K[X] be a zero-dimensional ideal gener-
ated by polynomials F = {f1, . . . , fs} of degrees d1 ≥ . . . ≥ ds. Then

dimK(K[X]/I) ≤ d1 · · · dn.

Proof. See [6], theorem 17.

Theorem 5.4. Let I ( K[X] be a zero-dimensional ideal generated by polynomials F = {f1, . . . ,
fs} of degrees d1 ≥ . . . ≥ ds. Then the Gröbner basis degree is bounded by

G(F ) ≤ d1 · · · dn.

Proof. There are two key observations. First of all, NI is isomorphic to K[X]/I as vector
space, so the bound of lemma 5.3 applies. Secondly, if any monomial xα ∈ NI , also its
divisors are irreducible. Thus T = spanK

¶
xβ ∈ K[X] : xβ | xα

©
⊆ NI . Now dimK(T ) ≥

deg(xα) + 1 yields an upper bound for the degree of the irreducible monomials. Finally,
lemma 5.3 implies

G(F ) ≤ max {deg(xα) + 1 : xα ∈ NI,≺,≺ admissible} ≤ dim(NI) ≤ d1 · · · dn.

Note that [6], theorem 20 actually proves the bound ndn for d = max {d1, . . . , ds} which
was also achieved by Dickenstein et al. in [11], theorem 3.3. Well-known examples show
that the bound of theorem 5.4 is tight. One of them will be presented below.
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5.2. Zero-Dimensional Ideals

Example 5.5. This is a slight variation of [35], proposition 2.2. For any n ∈ N and d1, . . . , dn, let
I ⊆ K[X] be the ideal generated by

f1 = xd11

f2 = x1 + xd22

f3 = x2 + xd33

...

fn = xn−1 + xdnn

Note that (f1, . . . , fn) is a regular sequence and thus dim(I) = 0. For the lexicographic monomial
ordering with x1 ≺ . . . ≺ xn, it is easy to verify that xd1···dn−1

n is irreducible. Hence every Gröbner
basis contains an element of degree at least d1 · · · dn.

Theorem 5.6 (cf. [35]). For any n ∈ N and d1, . . . , dn ∈ N, there is a zero-dimensional ideal I in
K[X] generated by polynomials F = {f1, . . . , fn} of degrees d1, . . . , dn such that

G(F ) ≥ d1 · · · dn.

For special monomial orderings, there is a better upper bound by Lazard. However, it
does not apply to all zero-dimensional ideals. In this context one should recall example
2.76.

Theorem 5.7 (Lazard 1983). Let I ( K[X] be an ideal which is generated by polynomials
F = {f1, . . . , fs} of degrees d1 ≥ . . . ≥ ds. Fix a graded monomial ordering ≺ and assume
dim

¨
hf1, . . . ,

hf s
∂

= 0. Then there is a Gröbner basis w.r.t. ≺ with degree bounded by

deg(GB≺(F )) ≤ (d1 − 1) + . . .+ (dn+1 − 1).

Here one defines dn+1 = 1 if s = n.

Proof. See [31], theorem 3.

Lazard’s bound is also tight and it is rather simple to come up with an example.

Example 5.8. For any n ∈ N and d1, . . . , dn ∈ N, let I ⊆ K[X] be the ideal generated by

f1 = xd11

f2 = x1x
d2−1
2 + xd22

f3 = x2x
d3−1
3 + xd33

...

fn = xn−1x
dn−1
n + xdnn

Again, it is easy to see that (f1, . . . , fn) is a regular sequence and dim(I) = 0 (actually, this is
equivalent by corollary 2.75). For an arbitrary graded monomial ordering ≺ with x1 � . . . � xn,
a Gröbner basis of I contains the monomial x(d1−1)+...+(dn−1)

n .
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Theorem 5.9. For any n ∈ N, d1, . . . , dn ∈ N, and any graded monomial ordering ≺, there is
an ideal I in K[X] generated by polynomials F = {f1, . . . , fn} of degrees d1, . . . , dn such that
dim

¨
hf1, . . . ,

hfn
∂

= 0 and any Gröbner basis w.r.t. ≺ has a maximal degree of at least

deg(GB≺(F )) ≥ (d1 − 1) + . . .+ (dn − 1).

5.3. Dimension-Dependent Bounds

The bounds for arbitrary ideals and zero-dimensional ideals suggest that the actual reason
for double exponential degrees in the reduced Gröbner bases is the dimension of an ideal,
not the number of variables. One would hope that the behavior mirrors the bounds for the
representation degree which were presented in section 4.5. So the results in this section
will be no great surprise. Still the proofs use an interesting combination of tools reaching
from the cone decompositions introduced by Dubé to regular sequences and an effective
version of the Noether normal form which are used to handle the dimension of an ideal.

Unfortunately, the first publication [34] of this result contains an error in the proof of the
upper degree bound. While the proof for the homogeneous case is correct, the reduction
to inhomogeneous ideals in corollary 3.21 is incorrect. This is illustrated by example 2.83
in which the dimension of the ideal changes dramatically on homogenization. It will be
shown how to avoid this using polynomials from the Noether normal form. Unfortunately,
the resulting bound is slightly weaker than the one in [34].

In the homogeneous case, the space of normal forms will be represented as cone decom-
position similar to [12]. Instead of computing a cone decomposition of the ideal, as well,
a regular sequence will be embedded into the ideal using lemma 2.81. The corresponding
complete intersection ideal approximates a large part of the original ideal and even has the
same dimension. The cone decomposition of the normal forms will be extended to a cone
decomposition with the same Hilbert function as the complement of the complete inter-
section. The formula for the Hilbert function of regular sequences from lemma 2.77 and an
independence argument from the following section will reduce the calculations to a spe-
cial case for which one can give an explicit construction and bound the degrees along the
way. This yields a bound for homogeneous ideals. The general case will be reduced to this
using an effective version of the Noether normal form. This way one can construct poly-
nomials in the ideal whose homogenizations generate an ideal of the same height. Then
the above reasoning can be applied. Unfortunately, the degrees of these polynomials are
exponential in the number of variables. While the resulting degree bound is worse than in
the homogeneous case, it still is double exponential only in the dimension of the ideal.

Cone Decompositions First recall section 2.5 where cone decompositions were intro-
duced and some existence results were proved. In the following, some of Dubé’s re-
sults from [12] will be presented which connect the degree of cone decompositions to the
Gröbner basis degree. Moreover, the Hilbert polynomial of exact cone decompositions will
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be calculated in terms of the so-called Macaulay constants which also fix the degree of the
cone decomposition. Finally, an independence argument will be given in order to simplify
the calculation of the Macaulay constants.

Lemma 5.10 (Dubé 1990). Let I be an ideal in K[X] and fix a graded admissible monomial order-
ing ≺. Then there is a homogeneous 0-standard cone decomposition P of NI and the degree of the
reduced Gröbner basis of I w.r.t. ≺ is bounded by deg(GB≺(I)) ≤ deg(P ) + 1.

Proof. (from [12], theorem 4.11) First remember that Nlm(I) = NI and G = lm(GB(I))
is a reduced monomial basis of lm(I). Thus, by lemma 2.50, P = Split(1, X,G) is a
homogeneous 0-standard cone decomposition ofNI . It remains to prove the degree bound.
Note that, since ≺ is graded, deg(GB(I)) = deg(G).

Pick any g ∈ G and consider Split(h, U,G : h) for U ⊆ X and a monomial h ∈ K[X]
such that g ∈ lm(I) ∩C(h, U). Note that this especially holds for U = X and h = 1.

If none of the termination condition holds, there are two recursive calls Split(h, U \
{xk}, G : h) and Split(h, U,G : (xk · h)). Since g and h are monomials and C(h, U) =
C(h, U \ {xk})⊕C(xk · h, U), either g ∈ lm(I)∩C(h, U \ {xk}) or g ∈ lm(I)∩C(xk · h, U).

Thus there is a call Split(h, U,G : h) with g ∈ lm(I) ∩ C(h, U) where one of the two
termination conditions 1 ∈ G : h and (G : h) ∩ K[U ] = ∅ holds. However, g ∈ C(h, U)
implies (G : h) ∩K[U ] 6= ∅which excludes the second termination condition.

Hence 1 ∈ G : h and, since G was assumed to be reduced, h = g. For the parent
call Split(g′, U ′, G : g′) of Split(g, U,G : g), none of the termination conditions may
hold. Since 1 /∈ G : g′, the parent call has the form Split(x−1

k g, U,G : (x−1
k g)). Since

C(x−1
k g, U) ∩ Nlm(I) 6= {0}, there must be a cone C ∈ P with deg(C) ≥ deg(x−1

k g) =
deg(g)− 1.

Definition 5.11. Let P be a q-exact cone decomposition in K[X]. If P+ = ∅, let q = 0. Then the
Macaulay constants of P are defined as

ak = max {q,deg(C) + 1 : C ∈ P,dim(C) ≥ k} for k = 0, . . . , n+ 1.

Note that a0 = deg(P ) + 1, a1 = deg(P+) + 1, and an+1 = q, so it suffices to bound the
Macaulay constants (actually a0) in order to get a bound of the Gröbner basis degree using
lemmas 5.10 and 2.53.

In the following, the Hilbert polynomial of an exact cone decomposition will be ex-
pressed by the Macaulay constants. Later, it will be discussed how to extend a cone de-
composition such that the Hilbert function of the resulting cone decomposition is known
thus yielding an approach for the calculation of the Macaulay constants.

Lemma 5.12 (Dubé 1990). Let P be a q-exact degree-compatible cone decomposition of a vector
space T in K[X] and a0, . . . , an+1 the Macaulay constants of P . Then

HPT (z) =

Ç
z − an+1 + n

n

å
− 1 +

n∑
i=1

Ç
z − ai + i− 1

i

å
.
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Proof. (from [12], §7) Since P is q-exact, P+ contains exactly one cone for each degree
between q and deg(P+). More precisely, for each degree d = ai+1, . . . , ai − 1, there is
exactly one cone in P+ which has dimension i for i = 1, . . . , n. Thus

HPT (z) =
∑
C∈P+

HPC(z) =
n∑
i=1

ai−1∑
d=ai+1

Ç
z − d+ i− 1

i− 1

å
.

Now one use the binomial identityÇ
z − d+ i− 1

i− 1

å
=

Ç
z − d+ i

i

å
−
Ç
z − d+ i− 1

i

å
in order to obtain a telescoping sum which condenses to

HPT (z) =
n∑
i=1

ñÇ
z − ai+1 + i

i

å
−
Ç
z − ai + i

i

åô
=

Ç
z − an+1 + n

n

å
−
Ç
z − a1 + 1

1

å
+

n∑
i=2

ñÇ
z − ai + i− 1

i− 1

å
−
Ç
z − ai + i

i

åô
=

Ç
z − an+1 + n

n

å
− 1−

Ç
z − a1

1

å
−

n∑
i=2

Ç
z − ai + i− 1

i

å
.

The formula provided by lemma 5.12 still can be terrifying in computations, especially
if the Macaulay constants are to be determined from a complicated Hilbert function. Such
general computations will be avoided by the reduction to a special case. The essential
insight is provided by the following lemma.

Lemma 5.13 (Dubé 1990). Let P be a degree-compatible q-exact cone decomposition of a subspace
T of K[X] for any q ≥ 1. Then the Macaulay constants a1, . . . , an+1 are uniquely determined by
HPT and q.

Proof. (from [12], §7) The coefficients of a polynomial can be reconstructed by evaluating
the derivatives at 0. The following is a discrete analogon. Define the backwards difference
operator (∇p)(z) = p(z)−p(z−1) for any function p : Z −→ Z and all z ∈ Z and its iteration
∇kp = ∇(∇k−1p) for any k > 1. The backward difference of binomial coefficients is easily
computed. Assuming a ∈ Z and b ∈ N and using the identity

(z+a
b

)
−
((z−1)+a

b

)
=
(z+a−1
b−1

)
,

one obtains:

∇
Ç
z + a

b

å
=

® (z+a−1
b−1

)
for b > 0

0 for b = 0

and thus, for any k ∈ N,

∇k
Ç
z + a

b

å
=

® (z+a−k
b−k

)
for b ≥ k

0 for b < k
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Now apply∇k for k = 1, . . . , n to the formula provided by lemma 5.12 and recall an+1 = q:

(∇kHPT )(z) =

Ç
z − q + n− k

n− k

å
−

n∑
i=k

Ç
z − ai + i− 1− k

i− k

å
(5.1)

Now extract the constant terms respectively evaluate at zero (just remember that the bino-
mial coefficients represent polynomials in z). The constant term ofÇ

z + a

b

å
=

(z + a) · · · (z + a− b+ 1)

b · · · 1

is simply
(a
b

)
for a ≥ 0, it is 0 for 0 ≤ a < b, but for a < 0 it is (−1)b

(b−a−1
b

)
. With

(a
b

)
= 0 for

0 ≤ a < b, the constant term is (−1)b
(b−a−1

b

)
for any a < b.

Since ai ≥ q ≥ 1 for i = 0, . . . , n, collecting the constant terms of (5.1) yields

(∇kHPT )(0) = (−1)n−k
Ç
q − 1

n− k

å
−

n∑
i=k

(−1)i−k
Ç

ai
i− k

å
.

Hence one can resolve for

ak+1 = (∇kHPT )(0)− (−1)n−k
Ç
q − 1

n− k

å
+ 1 +

n∑
i=k+2

(−1)i−k
Ç

ai
i− k

å
and finally determine a1 from the equation for HPT (z) provided by lemma 5.12.

Note that q ≥ 1 is not essential for the proof of lemma 5.13. However it simplifies the
technical reasoning and will not hurt later on.

As mentioned before, an arbitrary cone decomposition will be extended to the cone de-
composition of a space whose Hilbert polynomial is known. Since complete intersections
have nice Hilbert functions and capture the dimension of the ideal, they were chosen for
this construction. Lemmas 5.13 and 2.77 combine to

Corollary 5.14. Let J be an ideal in K[X] generated by a homogeneous regular sequence g1, . . . , gt
of degrees d1, . . . , dt and fix an admissible monomial ordering. If P is a degree-compatible q-exact
decomposition of a vector space T ⊆ K[X] with HFT = HFNJ for any q ≥ 1, its Macaulay
constants a1, . . . , an+1 only depend on q, n, t, and d1, . . . , dt.

Note that a0 is explicitly excluded from the above result. It will be shown later how to
overcome this using the bounds on the other Macaulay constants.

A New Decomposition In order to bound the Macaulay constants of a homogeneous
ideal I = 〈f1, . . . , fs〉, Dubé uses the direct decompositions

K[X] = I ⊕NI
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and

I = 〈f1〉 ⊕
s⊕
i=2

fi ·N〈f1,...,fi−1〉:fi . (5.2)

The Hilbert functions of K[X] and 〈f1〉 are easily determined, and for all other summands
one can calculate exact cone decompositions using Split (algorithm 1). The drawback is
that, in Dubé’s construction, the Macaulay constants achieve their worst case bound in the
zero-dimensional case. Therefore a different decomposition is necessary.

Looking back at Dubé’s paper, the key to improvement can be found in [12], corollary
5.2. Instead of calculating a cone decomposition of I , he separates the cone C(f1, X) from
the cone decomposition as in (5.2) and thereby improves the final bound slightly. Dealing
with arbitrary non-trivial ideals, this is the best that can be done. But restricting to ideals
I of a certain dimension r, this decomposition can be improved using an embedded reg-
ular sequence g1, . . . , gn−r whose length equals the height of the ideal. The following is a
generalization of [12], lemma 5.1.

Lemma 5.15. Let I be an ideal in K[X] generated by homogeneous polynomials g1, . . . , gt, f1, . . . ,
fs, and let J = 〈g1, . . . , gt〉 ⊆ I . For a fixed admissible monomial ordering ≺,

I = J ⊕
s⊕
i=1

fi ·NJi−1:fi (5.3)

with Jk = 〈g1, . . . , gt, f1, . . . , fk〉 for k = 0, . . . , s.

Proof. In order to prove this, use induction to show

Jk = J ⊕
k⊕
i=1

fi ·NJi−1:fi for k = 0, . . . , s (5.4)

Then the equality I = Js yields the stated result.
The ”⊇”-inclusion of (5.4) is clear since f1, . . . , fs ∈ I and J ⊆ I . For the other inclusion,

the case k = 0 is trivial. So assume k > 0 and prove

Jk = Jk−1 ⊕
Ä
fk ·NJk−1:fk

ä
.

Let f ∈ Jk and thus
f = h+ a · fk with h ∈ Jk−1, a ∈ K[X].

Rewriting
a = (a− nfJk−1:fk(a)) + nfJk−1:fk(a)

yields
a · fk ∈ fk · (Jk−1 : fk) + fk ·NJk−1:fk .

Since fk · (Jk−1 : fk) ⊆ Jk−1, one gets f ∈ Jk−1 + fk ·NJk−1:fk . It remains to show that the
sum is direct. For any k = 0, . . . , s, assume h ∈ Jk−1 ∩ fk ·NJk−1:fk and therefore h = a · fk
for some a ∈ NJk−1:fk . However h ∈ Jk−1 implies a ∈ Jk−1 : fk and thus a = 0 and
h = 0.
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The decomposition (5.3) will be used for the construction of a cone decomposition com-
plementing J starting from a cone decomposition ofNI . Since I is the ideal whose Gröbner
basis shall be bounded, it will be important to make sure that the maximal degrees of cones
do not decrease in order to be able to apply lemma 5.10 later.

Lemma 5.16. Let I be an ideal in K[X] which is generated by homogeneous polynomials g1, . . . , gt,
f1, . . . , fs and fix an admissible monomial ordering. Furthermore let J = 〈g1, . . . , gt〉 ⊆ I and
d = max {deg(fi) : i = 1, . . . , s}. Then any homogeneous 0-standard cone decomposition Q of
NI may be completed to a homogeneous d-exact cone decomposition P of a vector space T ⊆ K[X]
with HFT = HFNJ such that deg(Q) ≤ deg(P ).

Proof. By lemma 2.50, one can construct a homogeneous 0-standard cone decomposition
Qk of NJk−1:fk with Jk = 〈g1, . . . , gt, f1, . . . , fk〉 for each k = 1, . . . , s. Then fk · Qk is
a homogeneous deg(fk)-standard cone decomposition of fk · NJk−1:fk . By lemma 2.48,
Q,Q1, . . . , Qs can be refined to homogeneous d-standard cone decompositions Q̃, Q̃1, . . . ,
Q̃s. Since

K[X] = J ⊕
s⊕
i=1

fi ·NJi−1:fi ⊕NI ,

the union
Q′ = Q̃ ∪ Q̃1 ∪ . . . ∪ Q̃s

is a homogeneous d-standard cone decomposition of T =
⊕s
i=1 fi ·NJi−1:fi ⊕ NI and

HPT = HPNJ is obvious since all polynomials are homogeneous. By lemma 2.53, Q′ can
be refined to a homogeneous d-exact cone decomposition P of T . None of the operations
decreases the degree of the cone decomposition, so deg(Q) ≤ deg(P ).

By lemma 5.13, all Macaulay constants of a degree-compatible d-exact cone decomposi-
tion P of a vector space T complementing J except a0 = deg(P ) + 1 are determined by the
Hilbert polynomial. The actual purpose of this construction, however, is to bound deg(P )
(see lemma 5.10). This can be realized using the regularity of the ideal (which is known for
a homogeneous complete intersection) in order to bridge the gap between a1 and a0.

Lemma 5.17. Let I be an ideal in K[X] and fix a graded admissible monomial ordering ≺. If P
is a degree-compatible q-exact cone decomposition of a vector space T ⊆ K[X] with HFT = HFNI
and corresponding Macaulay constants a0, . . . , an+1,

a0 ≤ max {a1, reg(I)}.

Proof. Since≺ is graded, the Hilbert function of K[X] = I⊕NI can be computed as sum of
the Hilbert functions of I and NI . The latter can be expressed using the Hilbert functions
of the cones of P since the cone decomposition is degree-compatible. Since HFK[X](z) =
HPK[X](z) for all z ∈ Z and, by definition of the regularity, HFI(z) = HPI(z) for all z ≥
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reg(I), using corollary 2.32 yields for max {a1, reg(I)} ≤ z < a0

#{C ∈ P : dim(C) = 0,deg(C) = z} = HFNI (z)−HPNI (z) =

= (HFK[X](z)−HFI(z))− (HPK[X](z)−HPI(z)) = 0.

Thus there are no cones with degree greater or equal max {a1, reg(I)} which implies the
statement.

Applying lemma 5.17 to a homogeneous complete intersection and using lemma 2.77,
one obtains

Corollary 5.18. Let J be an ideal in K[X] generated by a homogeneous regular sequence (g1, . . . ,
gt) with degrees d1, . . . , dt and fix an admissible monomial ordering. If P is a q-exact degree-
compatible cone decomposition of a vector space T ⊆ K[X] with HPT = HPNJ and corresponding
Macaulay constants a0, . . . , an+1,

a0 ≤ max {a1, d1 + . . .+ dt − n+ 1}.

Actually, now everything is clear — at least for the homogeneous case. Let I ( K[X]
be an ideal of dimension r generated by polynomials f1, . . . , fs. Using lemma 2.81, one
obtains a homogeneous regular sequence (g1, . . . , gn−r) in I (with the same degrees). Let
J = 〈g1, . . . , gn−r〉 be the ideal generated by the regular sequence. With lemmas 5.10 and
5.16, one can compute an exact degree-compatible cone decomposition P of a vector space
T ⊆ K[X] with HFT = HPNJ such that deg(P ) + 1 is a bound of the Gröbner basis degree
of I . By corollary 5.18, it suffices to determine the Macaulay constants a1, . . . , an+1 of P .
This can be done — as Dubé originally did — by comparing the Hilbert polynomials of
K[X] and J ⊕NJ . However, the calculations are somewhat cumbersome.

The clue for avoiding this trouble is the reduction to a special case. Remember corollary
5.14: the Macaulay constants of P only depend on a few constants. Thus it suffices to
calculate them once (for each set of parameters) — for a special case with an easy structure.

Lemma 5.19. Let I ( K[X] be an ideal of dimension r generated by homogeneous polynomials
g1, . . . , gn−r, f1, . . . , fs where (g1, . . . , gn−r) is a regular sequence of degrees d1, . . . , dn−r and
d = max {deg(fi) : i = 1, . . . , s}, and fix an admissible monomial ordering. IfQ is a homogeneous
0-standard cone decomposition of NI ,

deg(Q) ≤ max
¶

deg(P+), d1 + . . .+ dn−r − n
©

where P is a degree-compatible d-exact cone decomposition of NJ and J =
〈
xd11 , . . . , x

dn−r
n−r

〉
.

Proof. Let Ĩ = 〈g1, . . . , gn−r〉. By lemma 5.16, one can extend any homogeneous 0-standard
cone decomposition Q of NI to a homogeneous d-exact cone decomposition Q̃ of a vector
space T with HPT = HPNĨ and degree deg(Q̃) ≥ deg(Q). Let a0, . . . , an+1 be the Macaulay
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constants of Q̃. By corollary 5.18, deg(Q̃) = a0 − 1 ≤ max {a1 − 1, d1 + . . .+ dn−r − n}.
However, the Macaulay constants a1, . . . , an+1 of Q̃ only depend on d, n, n− r, and the de-
grees d1, . . . , dn−r as proved in corollary 5.14. The ideal J =

〈
xd11 , . . . , x

dn−r
n−r

〉
is obviously

a r-dimensional ideal generated by a homogeneous regular sequence with the same de-
grees. Thus any degree-compatible d-exact cone decomposition P of NJ (which exists by
lemmas 2.50, 2.48, 2.53) has the same Macaulay constants (except, possibly, a0) and thus
deg(Q+) = deg(P+) = a1 − 1.

Example 5.20. It is very surprising that the Macaulay constants are independent of the ideal, but
only depend on the degrees of the generators and the dimension. For verification, consider the very
simple ideal J =

〈
x2
〉

with dimension dim(I) = 2 in the ring K[x, y, z]. This ideal is a complete
intersection of the form in lemma 5.19. Using the concepts of this section and the algorithms from
section 2.5, one can obtain a 2-exact cone decomposition P ofNJ (cf. example 2.54). Due to its size,
only the cones of positive dimension are listed:¶

C(xz, {y, z}),C(z3, {y, z}),C(y2z2, {y}),C(xy4, {y}),C(y6, {y}),C(y6z, {y})
©

Now let I =
〈
x2 − xy, xy + xy

〉
which also is a homogeneous ideal of dimension dim(I) =

2. One can embed the complete intersection I ′ =
〈
x2 − xy

〉
into I and then compute a cone

decomposition Q of a vector space T which complements I ′. This cone decomposition extends a
cone decomposition of NI :

Q+ =
¶
C(y2, {y, z}),C(xy2 + xyz, {y, z}),C(yz3, {z}),

C(z5, {z}),C(xz5, {z}),C(xyz5 + xz6, {z})
©

Both P and Q are 2-exact cone decompositions with the same parameters n, r, d and thus — as
expected — have the same Macaulay constants:

a1 = 8, a2 = 4, a3 = 2.

Macaulay Constants By lemma 5.19, it remains to bound the Macaulay constant a1 of a
d-exact cone decomposition of NJ for the ideal J =

〈
xd11 , . . . , x

dn−r
n−r

〉
in K[X], which will

be fixed for the remainder of this section. Note that this is a monomial ideal for which all
monomial orderings are equivalent. Hence, the monomial ordering will not be mentioned
in the following lemmas.

The special shape of this ideal allows to dramatically simplify the calculations compared
to the proof in Dubé’s paper which does not make any assumption on the ideal. Neverthe-
less, the obtained bound will apply to any ideal by the preceding considerations (lemma
5.19).

From r = dim(J) = deg(HPJ) + 1, one immediately deduces:
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Lemma 5.21. Let J =
〈
xd11 , . . . , x

dn−r
n−r

〉
be an ideal in K[X] and a0, . . . , an+1 the Macaulay

constants of a degree-compatible d-exact cone decomposition P of NJ . Then

an = . . . = ar+1 = d.

In the following, the construction of a d-exact cone decomposition for J will be pre-
sented. Along the way, bounds for the remaining Macaulay constants will be derived.
First it is necessary to determine NJ . The following observation is obvious.

Corollary 5.22. Let J =
〈
xd11 , . . . , x

dn−r
n−r

〉
be an ideal in K[X]. Then the space of normal forms of

J equals the direct product
NJ = Tr ×K[xn−r+1, . . . , xn],

where the vector space Tr is given by

Tr = spanK{xα ∈ K[x1, . . . , xn−r] : α ∈ Nn, αi < di for i = 1, . . . , n− r}. (5.5)

The construction of the cone decomposition will be inductive. It will prove crucial that,
in each step, the part of the normal forms which is not covered has a form similar to NJ

— the direct product of a finite vector space Tk generated by monomials and a polynomial
ring in less variables. Thus the (vector space) dimension of Tk determines the number of
cones of the highest dimension.

Lemma 5.23. Let Tk ⊆ K[x1, . . . , xn−k] be a vector space generated by monomials and Pk a
degree-compatible cone decomposition of Tk ×K[xn−k+1, . . . , xn]. Then Pk has exactly dimK(Tk)
cones of dimension k.

Proof. For k = 0, the statement is obvious. For k ≥ 1, the key is to look at the Hilbert
polynomials. Consider a monomial basis {b1, . . . , bs} of Tk. Thus

Tk ×K[xn−k+1, . . . , xn] = b1K[xn−k+1, . . . , xn]⊕ . . .⊕ bsK[xn−k+1, . . . , xn]

and

HPTk×K[xn−k+1,...,xn](z) =
s∑
i=1

Ç
z − deg(bi) + k − 1

k − 1

å
.

On the other hand, one can compute the Hilbert polynomial from the the cone decompo-
sition Pk by corollary 2.43:

HPTk×K[xn−k+1,...,xn](z) =
∑
C∈P+

k

Ç
z − deg(C) + dim(C)− 1

dim(C)− 1

å
.

Now compare the coefficients of zk−1 of both representations of the Hilbert polynomial.
Since P+

k only contains cones of dimension at most k, this yields
s∑
i=1

1

(k − 1)!
=

∑
C∈P+

k
dim(C)=k

1

(k − 1)!
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5.3. Dimension-Dependent Bounds

and thus #
¶
C ∈ P+

k : dim(C) = k
©

= s = dimK(Tk).

Looking at the explicit formula (5.5) for Tr, one obtains dim(Tr) = d1 · · · dn−r and thus

Corollary 5.24. Let J =
〈
xd11 , . . . , x

dn−r
n−r

〉
be an ideal in K[X] and a0, . . . , an+1 the Macaulay

constants of a degree-compatible d-exact cone decomposition P of NJ . Then

ar = d1 · · · dn−r + d.

Now turn to the actual construction of a d-exact cone decomposition of NJ . In each
induction step, the number of cones can be determined by lemma 5.23. This also fixes
ak−1 − ak.

Lemma 5.25. Let J =
〈
xd11 , . . . , x

dn−r
n−r

〉
be an ideal in K[X]. Then, for any d ≥ 2, there exist

d-exact cone decompositions Pk and finite-dimensional subspaces Tk ⊆ NJ ∩K[x1, . . . , xn−k] with
a monomial basis such that

NJ = (Tk ×K[xn−k+1, . . . , xn])⊕
⊕
C∈Pk

C for k = 0, . . . , r.

Let a0, . . . , an+1 be the Macaulay constants of P0. Then ak−1 ≤ 1
2a

2
k for k = 2, . . . , r.

Proof. The induction starts with k = r. Let Pr = ∅, an = . . . = ar+1 = d (which makes Pr
d-exact), and define Tr as in (5.5), i.e. dimK(Tr) = d1 · · · dn−r + d. Then all requirements are
fulfilled.

Now Pr−1, . . . , P0 and Tr−1, . . . , T0 will be constructed inductively such that all cones
in Pk−1 \ Pk have dimension k for k = 1, . . . , r. The claim ak−1 ≤ 1

2a
2
k, for k = 2, . . . , r,

follows from ak − ak+1 = dim(Tk) and dim(Tk−1) + ak ≤ 1
2a

2
k, for k = 1, . . . , r, which will

be verified inductively.
Let 1 ≤ k ≤ r. By induction, Pk and Tk exist such that

NJ = (Tk ×K[xn−k+1, . . . , xn])⊕
⊕
C∈Pk

C.

In order to make the induction work, it is necessary to choose Tk−1 ⊆ Tk and Pk−1 ⊇
Pk. Keep in mind that Pk−1 \ Pk will be the subset of a cone decomposition of Tk ×
K[xn−k+1, . . . , xn] containing all the cones of dimension k. Thus, by lemma 5.23, Pk−1 \ Pk
must contain exactly dimK(Tk) cones of dimension k. Pk ⊆ P0 is already constructed and
contains all cones of dimension larger than k. Hence an, . . . , ak+1 are fixed. Since Pk−1 shall
be d-exact, the cones of dimension k must have the degrees ak+1, ak+1 +1, ak+1 +2, . . .. Let
{b1, . . . , bs} be a monomial basis of Tk with deg(b1) ≤ . . . ≤ deg(bs) and choose

Ci = bix
ak+1+i−deg(bi)−1
n−k+1 K[xn−k+1, . . . , xn] for i = 1, . . . , s.

It is easy to see that Ci ⊆ Tk × K[xn−k+1, . . . , xn], deg(Ci) = ak+1 + i − 1, and dim(Ci) =
k. Thus Pk−1 = Pk ∪ {C1, . . . , Cs} is a d-exact degree-compatible cone decomposition
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5. Gröbner Basis Degree

and, by construction, ak − ak+1 = #{C ∈ Pk−1 : dim(C) = k} = dim(Tk). Since Tk ⊆
K[x1, . . . , xn−k], furthermore

Tk ×K[xn−k+1, . . . , xn] = C1 ⊕ . . .⊕ Cs ⊕ (Tk−1 ×K[xn−k+2, . . . , xn])

where

Tk−1 = spanK
{
bix

e
n−k+1 : i = 1, . . . , s, e = 0, . . . , ak+1 + i− deg(bi)− 2

}
⊆ K[x1, . . . , xn−k+1].

The above formula also implies dimK(Pk−1) <∞. Moreover

NJ = (Tk−1 ×K[xn−k+2, . . . , xn])⊕
⊕

C∈Pk−1

C.

So it only remains to bound dimK(Tk−1) + ak.

dimK(Tk−1) =
s∑
i=1

(ak+1 + i− deg(bi)− 1) ≤
s∑
i=1

(ak+1 + i− 1) = sak+1 +
1

2
s(s− 1)

With s = dimK(Tk) = ak − ak+1, the induction hypothesis, and ak+1 ≥ d ≥ 2,

dimK(Tk−1) + ak ≤ (ak − ak+1)ak+1 +
1

2
(ak − ak+1)(ak − ak+1 − 1) + ak

=
1

2

Ä
a2
k − a2

k+1 + ak + ak+1

ä
≤ 1

2

Å
a2
k − a2

k+1 +
1

2
a2
k+1 + ak+1

ã
≤ 1

2
a2
k.

Lemma 5.25 yields a d-exact cone decomposition P0 that represents NJ up to a finite-
dimensional vector space T0. Let {b1, . . . , bs} be a monomial basis of T0. Then the union
P = P0 ∪ {C(bi, ∅) : i = 1, . . . , s} is a d-exact cone decomposition of NJ with Macaulay
constants which fulfill the bounds of corollary 5.24 and lemma 5.25.

Corollary 5.26. Let J =
〈
xd11 , . . . , x

dn−r
n−r

〉
be an ideal in K[X] and a0, . . . , an+1 the Macaulay

constants of a degree-compatible d-exact cone decomposition P of NJ . Then

ak ≤ 2

ï
1

2
(d1 · · · dn−r + d)

ò2r−k
for k = 1, . . . , r.

From the construction, one can even verify that a0 = a1 as predicted by lemma 5.17. This
concludes the proof for the homogeneous case as a1 bounds the Gröbner basis degree.

Theorem 5.27. Let K be an infinite field and I ( K[X] be an ideal of dimension r > 0 generated
by homogeneous polynomials F = {f1, . . . , fs} of degrees d1 ≥ . . . ≥ ds. Then the Gröbner basis
degree is bounded by

G(F ) ≤ 2

ï
1

2
(d1 · · · dn−r + d1)

ò2r−1

.
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5.3. Dimension-Dependent Bounds

Proof. W.l.o.g. one can assume d1 ≥ 2. Otherwise the Gröbner basis degree would be
bounded by 1 trivially. Let Q be a degree-compatible 0-standard cone decomposition of
NI as in lemma 5.10. Then G(F ) ≤ deg(Q) + 1. By lemma 2.81, one can embed a regular
sequence g1, . . . , gn−r in I with degrees dk1 , . . . , dkn−r for some 1 ≤ k1 < . . . < kn−r ≤
s. Then lemma 5.19 bounds deg(Q) by the Macaulay constant a1 − 1 of a d1-exact cone
decomposition of J =

〈
xk11 , . . . , x

kn−r
n−r

〉
. Corollary 5.26, finally, gives the bound on a1:

a1 ≤ 2

ï
1

2

(
dk1 . . . dkn−r + dk1

)ò2r−1

≤ 2

ï
1

2
(d1 · · · dn−r + d1)

ò2r−1

The second inequality holds since ki ≥ i for i = 1, . . . , n− r and thus dki ≤ di. Since the
above bound for a1 is greater than d1 + . . .+ dn−r − n+ 1, the stated bound holds.

Note that theorem 5.27 also holds over finite fields F. To see this, consider an infinite
extension K of F, e.g. the algebraic closure. First consider the ideal dimension of the
embedding I · K[X] of the ideal I ⊆ F[X]. Since (I · K[X]) ∪ K[U ] = ∅ iff I · F[U ] = ∅,
the definition of the dimension by independent sets implies that the ideal dimensions of
the ideal and its embedding are the same. Now calculate the reduced Gröbner basis of
the ideal over K using the Buchberger algorithm (most other Gröbner basis algorithms
would suit here). On the one hand, no immediate step of the Buchberger algorithm would
involve coefficients from K \ F and thus the reduced Gröbner basis also has coefficients in
F. On the other hand, the reduced Gröbner basis is the basis with the smallest degrees for
homogeneous ideals. Thus the degree bound also applies to the reduced Gröbner basis.

Thanks to Gregor Kemper for this remark.

The Inhomogeneous Case Unlike the claim in [34], the lifting to the inhomogeneous case
is not quite trivial. Given an ideal I generated by polynomials f1, . . . , fs, Dubé considers
the homogeneous ideal Ĩ =

¨
hf1, . . . ,

hfs
∂
. By lemma 2.24, the dehomogenization of a

Gröbner basis G of Ĩ yields a Gröbner basis of I . Since the dehomogenization only might
decrease the degrees, it suffices to bound deg(G).

This approach, however, does not transfer straight forward to the dimension-dependent
bounds. As example 2.83 shows, dim(Ĩ) might be much larger than dim(I) such that the
benefit of the presented construction vanishes. A possibility to avoid this using polynomi-
als from the Noether normal form will be presented in the following. Unfortunately, the
resulting bound will be slightly weaker than in the homogeneous case.

Lemma 5.28. Let K be an infinite field and I ( K[X] be an ideal of dimension r generated by
polynomials f1, . . . , fs of degrees d1 ≥ . . . ≥ ds. Then there are polynomials g1, . . . , gn−r ∈ I
such that ht

¨
hg1, . . . ,

hgn−r
∂

= ht(I) and deg(gi) ≤ (d1 · · · dn−r)2 for i = 1, . . . , n− r.

Proof. By theorem 4.8, there are an invertible linear change of variables

σ : K[X] −→ K[X], xk 7→ ak,1x1 + . . .+ ak,nxn with ai,j ∈ K for i, j = 1, . . . , n
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5. Gröbner Basis Degree

and hi ∈ I ∩ K[x1, . . . , xi] such that 0 < deg(hi) = degxi(hi) ≤ (d1 · · · dn−r)2 for i =
r+ 1, . . . , n. Consider hhr+1, . . . ,

hhn. These polynomials form a regular sequence of length
n− r and thus generate an ideal of height n− r. Now apply σ−1 and let gi = σ−1(hr+i) for
i = 1, . . . , n− r. Since the height of an ideal is invariant under changes of variables and
hgi = σ−1(hhr+i), the ideal

¨
hg1, . . . ,

hgn−r
∂

has height n− r, too.

Instead of considering Ĩ =
¨
hf1, . . . ,

hfs
∂
, the polynomials hg1, . . . ,

hgn−r from lemma
5.28 will be adjoined yielding K =

¨
hg1, . . . ,

hgn−r,
hf1, . . . ,

hfs
∂
. Since hg1, . . . ,

hgn−r ∈ I ,
lemma 2.24 still applies. By corollary 2.75, hg1, . . . ,

hgn−r is a regular sequence and therefore
one can use lemma 5.19.

Theorem 5.29. Let K be an infinite field and I ( K[X] be an ideal of dimension r generated by
polynomials F = {f1, . . . , fs} of degrees d1 ≥ . . . ≥ ds. Then the Gröbner basis degree is bounded
by

G(F ) ≤ 2

ï
1

2

Ä
(d1 · · · dn−r)2(n−r) + d1

äò2r
.

Proof. Let hg1, . . . ,
hgn−r be the polynomials from lemma 5.28 with degrees d̃i = deg(gi) ≤

(d1 · · · dn−r)2 for i = 1, . . . , n− r, and K =
¨
hg1, . . . ,

hgn−r,
hf1, . . . ,

hf s
∂
. Because of the

inclusions
¨
hg1, . . . ,

hgn−r
∂
⊆ K ⊆ hI , K ⊆ K[X0] is a (r + 1)-dimensional ideal in n +

1 variables. Let Q be a degree-compatible 0-standard cone decomposition of NK as in
lemma 5.10. Then G(F ) ≤ deg(Q) + 1 by lemma 2.20. On the other hand, lemma 5.19
bounds deg(Q) by the Macaulay constant a1 − 1 of a d1-exact cone decomposition of J =≠
xd̃11 , . . . , x

d̃(n+1)−(r+1)

(n+1)−(r+1)

∑
in the ring K[X0]. Corollary 5.26, finally, gives a bound on a1.

Since this bound is greater than d̃1 + . . .+ d̃(n+1)−(r+1) − (n+ 1) + 1,

G(F ) ≤ 2

ï
1

2

Ä
d̃1 · · · d̃(n+1)−(r+1) + d1

äò2r
≤ 2

ï
1

2

(Ä
(d1 · · · dn−r)2

än−r
+ d1

)ò2r
.

Again, it would be nice to generalize this result to arbitrary fields. The reasoning follow-
ing theorem 5.27, however, does not hold here since a reduced basis w.r.t. to an arbitrary
ordering does not necessarily have minimal degree.

Consider a basis F of an ideal I of polynomials over a finite field F in variables X and
choose an infinite field extension K ⊇ F. Since K is a vector space over F, one may choose
a F-basis B of K with 1 ∈ B and let ϕ : K −→ F be the projection onto the basis element 1
given by ϕ (

∑
b∈B ab · b) = a1 · 1 (with ab ∈ F).

As noted before, the dim(I) = dim(I ·K[X]). So by theorem 5.27, there is a Gröbner basis
G ⊆ K[X] of I · K[X] with the desired degree bound. Dividing each element of G by its
leading coefficient, one may assume that lc(g) = 1 for all g ∈ G.

The claim is that ϕ(G) ⊆ F[X] is a Gröbner basis of I with the desired degree bound.
First note that deg(f) ≥ deg(ϕ(f)) for all f ∈ K[X], so the degree bound holds. Moreover,
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5.3. Dimension-Dependent Bounds

the leading coefficients of the elements of G are 1, so lm(g) = lm(ϕ(g)) for all g ∈ G. Hence
lm(I) = lm(I · K[X]) = lm(G) = lm(ϕ(G)) which proves that G is a Gröbner basis and
finishes the proof.

Once again thanks to Gregor Kemper for this remark.

One can simplify the bound to G(F ) ≤ 2
î

1
2

Ä
d2(n−r)2 + d

äó2r
for d = max {d1, . . . , ds}.

Lower Bound Remember the Mayr-Meyer construction respectively theorem 5.2. To the
best of the authors’ knowledge, there is little known about the dimension of these ideals.
Only for the Mayr-Meyer ideals there is a lower bound for the dimension which is linear in
the number of variables (cf. [35]). For the following statement, it would be more interesting
to have an upper bound. Though the trivial bound given by the number of variables suf-
fices if the constants are irrelevant. The trick for obtaining a lower bound for the Gröbner
basis degree is a combination with the well-known construction for the zero-dimensional
case.

Example 5.30. Fix a graded admissible monomial ordering ≺ and consider the ideal Ir in the
polynomial ring K[x1, . . . , xr] constructed by Yap. By theorem 5.2, the degree of the Gröbner basis
Gr of Ir is bounded by deg(Gr) ≥ d2(1/2−ε)r for any ε > 0 and sufficiently large d, r ∈ N.

It is well-known that the set of leading monomials of an irredundant Gröbner basis equals the set
of minimally reducible monomials, i.e. the w.r.t. the ideal reducible monomials whose divisors are
irreducible. Since ≺ is graded, the minimally reducible monomials have degrees up to the degree of
the Gröbner basis. By the pigeon hole principle, there is some k ∈ {1, . . . , r} such that there is a
w.r.t. Ir minimally reducible monomial xα ∈ K[x1, . . . , xr] with degxk(xα) ≥ 1

rd
2(1/2−ε)r .

Now define the ideal

Ir,n = Ir +
¨
xk − xdr+1, xr+1 − xdr+2, . . . , xn−1 − xdn

∂
⊆ K[X],

let π : K[X] −→ K[x1, . . . , xr] be the projection which sends xr+1, . . . , xn to 1, and π′ : K[X] −→
K[xr+1, . . . , xn] analogously. Consider the block ordering ≺′ on K[X] defined by xα ≺′ xβ iff
π(xα) ≺ π(xβ) or π(xα) = π(xβ) and π′(xα) ≺lex π′(xβ) for all xα, xβ ∈ K[X]. Here ≺lex
denotes the lexicographic monomial ordering with xr+1 �lex . . . �lex xn.

Then xα ∈ K[x1, . . . , xr] is minimally irreducible w.r.t. Ir iff xαx−αkk xαkd
n−r

n is minimally
irreducible w.r.t. Ir,n. Hence, the degree of any Gröbner basis Gr,n of Ir,n w.r.t. ≺′ is bounded by
deg(Gr,n) ≥ 1

rd
2(1/2−ε)rdn−r. The factor 1

r of this bound can be hidden in the constant ε.
Finally note that dim(Ir,n) ≤ dim(Ir,n) ≤ r. This follows easily since any w.r.t. Ir,n indepen-

dent set can contain at most one of the variables xk, xr+1, . . . , xn.

Theorem 5.31. There are a monomial ordering and a family of ideals Ir,n ⊆ K[X] of dimension at
most r for r, n ∈ N with r ≤ n which are generated by O(n) polynomials Fr,n of degrees bounded
by d such that each Gröbner basis Gr,n has a maximal degree of at least

deg(Gr,n) ≥ d(n−r)2(1/2−ε)r for any ε > 0 and sufficiently large d, r ∈ N.
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This result is weaker than the one by Yap since it only works for special monomial or-
derings. Most likely, this cannot be avoided since the degree bounds for Gröbner bases of
zero-dimensional ideals depend on the monomial ordering (cf. [31]). For some monomial
orderings, one will — most likely — not obtain the single exponential dependence on n.

Theorem 5.32. There is a family of ideals Ir,n ⊆ K[X] of dimension at most r for r ≤ n ∈ N,
generated by O(n) polynomials Fr,n of degrees bounded by d such that each Gröbner basis (with
respect to any admissible monomial ordering ≺) has a maximal degree of at least

deg(GB(Fr,n)) ≥ d2(1/2−ε)r for any ε > 0 and sufficiently large d, r ∈ N.

Proof. Let Fr be as defined in theorem 5.2 and Fr,n = Fr ∪ {xr+1, . . . , xn}. Then Ir,n, the
ideal generated by Fr,n in K[X], has dimension dim(Ir,n) ≤ r and the degree bound is
exactly as in theorem 5.2.

5.4. Toric Ideals

Remember that toric ideals are prime binomial ideals. Although it is a proper restric-
tion, it seems reasonable to consider toric ideals I which are generated by binomials F =¶
xαi − xβi ∈ K[X] : i = 1, . . . , s

©
. The objective is to study the degrees of the polynomials

in a reduced Gröbner basis of I in the worst case, for any admissible monomial ordering.

Lower Bound A well-known example (c.f. [35], III.2) provides an exponential lower de-
gree bound for Gröbner bases. The following variant of this example is a toric ideal.

Example 5.33. For any s < n ∈ N and d1, . . . , ds ∈ N, let

I =
¨
xd11 − xs+1

∂
+
¨
xi−1 − xdii : i = 2, . . . , s

∂
be an ideal in K[X] generated by polynomials of degrees d1, . . . , ds and fix the lexicographic mono-
mial ordering≺ with x1 � . . . � xn. An easy calculation yields xd1···dss −xs+1 ∈ I , but no smaller
power of xs can be leading monomial of a polynomial in I . Thus the unique reduced Gröbner basis
of I w.r.t. ≺ is

G =
¶
xd1···dss − xs+1, xi−1 − xdii : i = 2, . . . , s

©
.

It remains to show that I is toric. In order to verify this, consider the homomorphism

ϕ : Zn −→ Zn−s, α 7→ A · α with A =

à
d2 · · · ds d3 · · · ds · · · 1 d1 · · · ds 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1

í
The claim is I = Iϕ. It is easy to see xi−1 − xdii ∈ Iϕ, for i = 2, . . . , s, and xd11 − xs+1 ∈ Iϕ. Thus
I ⊆ Iϕ.
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On the other hand, consider xα+ − xα− ∈ Iϕ, i.e. α ∈ ker(ϕ). Then

xα
+ − xα− ≡ xa1s x

c1
s+1 − x

a2
s x

c2
s+1 mod

¨
xi−1 − xdii : i = 2, . . . , s

∂
⊆ I ⊆ Iϕ

for some a1, c1, a2, c2 ∈ N. Denote the k-th unit vector in Zn by ek. Lemma 2.106 yields (a1 −
a2)es− (c1− c2)es+1 ∈ ker(ϕ). Thus (a1−a2) +d1 · · · ds(c1− c2) = 0. Assume w.l.o.g. c1 ≤ c2

and therefore a1 ≥ a2. Then

I 3 xd1···dss − xs+1 | xa1−a2s − xc2−c1s+1 | xa1s x
c1
s+1 − x

a2
s x

c2
s+1

implies Iϕ ⊆ I which proves that I = Iϕ is toric.
It is easy to see that homogenization of the example w.r.t. a new indeterminate preserves all

properties. The matrix A defining ϕ becomes

A =


0 d2 · · · ds d3 · · · ds · · · 1 d1 · · · ds 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 · · · 1
1 −1 −1 · · · −1 −1 −1 · · · −1

 .

This yields the same lower bound for an ideal in n+ 1 variables and a graded monomial ordering.

The previous example proves the following lower bound which is almost as strong as
theorem 5.6.

Theorem 5.34. For any s ≤ n ∈ N and d1, . . . , ds ∈ N, there is a toric ideal I ( K[X] generated
by polynomials F = {f1, . . . , fs} of degrees d1, . . . , ds such

deg(GB(F )) ≥ d1 · · · ds.

Upper Bound In [42], §4, Sturmfels gives a single exponential upper degree bound for
Gröbner bases in terms of the coefficients of a matrix A defining the toric ideal IkerZn (A).
In the following, his proof will be adapted to the situation of a toric ideal IM given by a
basis B = {β1, . . . , βs} of a saturated submodule M of Zn. The case in which the ideal is
represented by a basis F =

¶
xαi − xβi : i = 1, . . . , s

©
of the ideal IM can easily be reduced

to the former case. Following the Sturmfels’ strategy, it is possible to reuse a part of his
proof. His idea was to consider module elements with small support.

Definition 5.35. Let M be a saturated submodule of Zn. A vector 0 6= γ ∈ M is called circuit
of M iff its support supp(γ) = {k ∈ {1, . . . , n} : γk 6= 0} is minimal w.r.t. inclusion among the
elements of M and gcd(γ1, . . . , γn) = 1.

Definition 5.36. Let I be a toric ideal in K[X]. Then xα+ − xα− ∈ I is called primitive iff there
is no other binomial xβ+ − xβ− ∈ I with xβ+ | xα+ and xβ− | xα− .
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Definition 5.37. Let α, β ∈ Zn. Then α is conformal to β iff supp(α+) ⊆ supp(β+) and
supp(α−) ⊆ supp(β−).

Lemma 5.38 (Sturmfels 1996). Let M be an saturated module of Zn. Given a bound |γ+|, |γ−| ≤
d for the positive and negative parts of all circuits γ ∈ M , the degree of the reduced Gröbner basis
G of IM ⊆ K is bounded by deg(G) ≤ nd.

Proof. (from [42], §4) LetG be the reduced Gröbner basis of IM and consider xα
+−xα− ∈ G

with xα
+ � xα

−
. Then xα

+
is minimally reducible w.r.t. IM and xα

−
= nfIM (xα

+
). If

xβ
+ | xα+

and xβ
− | xα− for some xβ

+ − xβ− ∈ IM , xβ
+

= xα
+

since xα
+

is minimally
reducible. Since nfIM (xα

+
) is minimal w.r.t.≺ in xα

+
+IM , also xβ

−
= xα

−
. Thus xα

+−xα−

is primitive. Thus is suffices to show that the exponent vector of each primitive binomial
in IM can be expressed by circuits in a controlled way.

Let 0 6= α ∈ QM . Then there is a circuit γ ∈M with supp(γ) ⊆ supp(α). Assume w.l.o.g.
that αkγk > 0 for some k = 1, . . . , n (otherwise replace γ by −γ). Let

c = min

ß
αi
γi
∈ Q : αiγi > 0, i = 1, . . . , n

™
.

By definition of c, α−cγ ∈ QM is conformal to α and has strictly smaller support. Thus, by
induction, each α ∈M is a non-negative rational linear combination of n circuits conformal
to α.

Now consider a primitive binomial xα+ − xα− ∈ IM . The last paragraph yields

α =
n∑
i=1

ciγi for some ci ∈ Q≥0 and circuits γi ∈M conformal to α for i = 1, . . . , n.

Since γ1, . . . , γn are conformal to α and c1, . . . , cn ≥ 0, α+ = c1γ
+
1 + . . . + cnγ

+
n and α− =

c1γ
−
1 + . . .+ cnγ

−
n . Furthermore, α is primitive and hence c1, . . . , cn < 1 follows. Thus

deg(xα
+ − xα−) = max

¶
|α+|, |α−|

©
≤ max

{
n∑
i=1

|γ+
i |,

n∑
i=1

|γ−i |
}
≤ nd.

Lemma 5.39. Let IM ⊆ K[X] be a toric ideal given by a basis {β1, . . . , βs} of the moduleM ⊆ Zn
with 2-norms di = ‖βi‖2 for i = 1, . . . , s such that d1 ≥ . . . ≥ ds. Then the degree of the reduced
Gröbner basis G of IM is bounded by deg(G) ≤ 1

4(n+ 1)3d1 · d1 · · · dn.

Proof. It is suitable to use matrix notation. Therefore let B = (β1, . . . , βs) and observe
M = B · Zs. Also remember the notation of definition 1.2 and write BJ = BJ,{1,...,s}.

In order to examine circuits more closely, let MJ = {α ∈M : αi = 0 for all i ∈ J} = B ·
kerZs(BJ). This corresponds to a projection π onto a (n−#J)-dimensional subspace, i.e.

Zs B−→ Zn π−→ Zn−#J × {0}#J .
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Since MJ = π(M), dimQ(MJ) = dimQ(M)− dimQ(kerM (π)) ≥ dimQ(M)−#J .
Let γ be a circuit and J = supp(γ). Then γ ∈ MJ and dimQ(MJ) = 1. Otherwise one

could project out one more coordinate and obtain a non-zero element of M whose support
is strictly contained in J which is a contradiction.

Therefore γ = B · c for some c ∈ Zs and 0 = γJ = BJ · c. Let r = rank(BJ) and
assume r < s (otherwise add a vector βs+1 = 0 to the module basis). Then r = dimQ(M)−
dimQ(MJ) ≤ #J . One can choose a r× (r+ 1)-submatrix B̃ of BJ with rank(B̃) = r. Thus
the kernel of B̃ = (b̃1, . . . , b̃r+1) is one-dimensional and, by lemma 1.1, generated by

c̃ =
r+1∑
i=1

(−1)i det(b̃1, . . . , b̃i−1, b̃i+1, . . . , b̃r+1)ei.

This vector c̃ ∈ Zr+1 extends to a solution c′ ∈ Zs of BJ · c′ = 0 by padding with zeros.
Then γ′ = B · c′ is an element of MJ and, since dim(MJ) = 1, a rational multiple of γ.
From lemma 1.3 and B · ker(BJ) = MJ 6= {0}, one deduces that, for the right choice of
B̃, one obtains γ′ = B · c′ 6= 0. Since γ ∈ Zn is a circuit, especially gcd(γ1, . . . , γn) = 1.
On the other hand, β1, . . . , βs and thus b̃1, . . . , b̃r+1 are integral vectors as well as c′ and γ′.
Together, γ′ = kγ for some 0 6= k ∈ Z. Hence, |γ| ≤ |γ′| = |B · c′|. c′ was chosen such that
γJ = BJ · c′ = 0. Thus at most n−#J ≤ n− r non-zero coefficients of γ remain:

|γ| ≤ (n− r) max

{∣∣∣∣∣ s∑
i=1

(βi)kc
′
i

∣∣∣∣∣ : k = 1, . . . , n

}

Now c′ is obtained from c̃ by padding with zeros. Hence it can only have r + 1 non-zero
entries:

|γ| ≤ (n− r)(r + 1) max
{
|(βi)kc′i| : i = 1, . . . , s, k = 1, . . . , n

}
Since 0 ≤ r ≤ #J < n, one obtains using Hadamard’s determinant inequality

|γ| ≤ 1

4
(n+ 1)2 max {|(βi)k| : i = 1, . . . , s, k = 1, . . . , n}max

{
|c′i| : i = 1, . . . , s

}
≤

≤ 1

4
(n+ 1)2d1

r+1∏
i=1

‖b̃i‖2 ≤
1

4
(n+ 1)2d1d1 · · · dr+1.

With |γ+|, |γ−| ≤ |γ|, this calculation and lemma 5.38 prove the claimed bound.

Theorem 5.40. Let I be a toric ideal in K[X] generated by binomials F =
¶
xαi − xβi : i = 1, . . . ,

s} of degrees d1 ≥ . . . ≥ ds. Then the Gröbner basis degree is bounded by

G(F ) ≤
√

2
n−3

(n+ 1)3d1 · d1 · · · dn.
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5. Gröbner Basis Degree

Proof. If F is an ideal basis of the toric ideal I = IM , B = {α1 − β1, . . . , αs − βs} is a basis
of the module M ⊆ Zn. Since

‖αi − βi‖2 ≤
√

2 max
¶
‖(αi − βi)+‖2, ‖(αi − βi)−‖2

©
≤

≤
√

2 max
¶
|(αi − βi)+|, |(αi − βi)−|

©
≤

≤max {|αi|, |βi|} =
√

2 deg(xαi − xβ
−
i ) =

√
2di

for i = 1, . . . , s, lemma 5.39 concludes the proof.
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Part III.

Complexity Bounds





6. Gröbner Basis Computation without
Degree Bounds

The following exposition extends the results by Kühnle and Mayr in [28]. The goal is to
compute Gröbner bases on Turing machines with low space complexity. The algorithm by
Kühnle and Mayr requires exponential space and is therefore asymptotically optimal. The
matching lower bound was given by Mayr and Meyer in [33]. However, the algorithm’s
time and space complexity essentially depends only on the degree bounds by Hermann
(theorem 4.1) and Dubé (theorem 5.1) which are used in order to turn a polynomial equa-
tion into a system of linear equations. Chapters 4 and 5 showed that there are many ideal
classes for which the worst cases are much better. One could plug-in the derived bounds
and obtain an algorithm which uses less space but only works correctly for the particular
class of ideals. This is somewhat annoying since good theoretical bounds are necessary for
an efficient algorithm.

This chapter will present an algorithm which works correctly for all ideals and whose
complexity depends on the particular instance. Thus it will be much better for most cases
and in the same magnitude for worst case examples like those constructed by Mayr and
Meyer respectively Yap. The key idea is to implement a space-efficient S-polynomial cri-
terion which allows to check whether a Gröbner basis is complete. Then it is possible to
incrementally compute the Gröbner basis.

Note that — just like in [28] — the monomial ordering must be given as a rational weight
matrix. This is a proper restriction since not all monomial orderings can be represented this
way. However all common monomial orderings can be represented by a rational weight
matrix. Moreover, one can approximate any monomial ordering up to an arbitrary degree
with a rational weight matrix.

Reduction to Linear Algebra Kühnle and Mayr came up with a way to compute normal
forms efficiently. This is central to the following and thus will be explained in detail. Let
I be the ideal in K[X] whose Gröbner basis shall be computed and assume it is generated
by polynomials f1, . . . , fs. Since h − nfI(h) ∈ I for any polynomial h ∈ K[X], there exists
a representation

h− nfI(h) =
s∑
i=1

aifi with a1, . . . , as ∈ K[X]. (6.1)

Their idea was to rewrite this equation as linear system and apply the result from corollary
3.26. First assume deg(aifi) ≤ D for i = 1, . . . , s and worry about D later. Name the
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6. Gröbner Basis Computation without Degree Bounds

coefficients by

ai =
∑

|α|≤D−deg(fi)

ai,αxα for i = 1, . . . , s

fi =
∑

|β|≤deg(fi)

fi,βx
β for i = 1, . . . , s

h =
∑
|γ|≤D

hγx
γ and

nfI(h) =
∑
|γ|≤D

yγx
γ .

Then (6.1) is equivalent to

hγ − yγ =
s∑
i=1

∑
|α|≤D−deg(fi)
|β|≤deg(fi)
α+β=γ

ai,αfi,β for all γ ∈ Nn, |γ| ≤ D. (6.2)

Note that the unknowns of the system are printed in bold letters. Rewrite the system in
matrix form

h− E · y = F · a

where h = (hγ)|γ|≤D, y = (yγ)|γ|≤D, a = (ai,α) i=1,...,s
|α|≤D−deg(fi)

, E is the identity matrix of size(D+n
n

)
and F is the according coefficient matrix. If it is possible to compute the coefficients

of F efficiently, one can apply corollary 3.26 toÄ
F E

ä
·
Ç

a
y

å
= h (6.3)

and thereby solve (6.1).

Definition 6.1. Let I be an ideal in K[X] generated by polynomials F = {f1, . . . , fs} and fix
an admissible monomial ordering ≺. For any given D ∈ N and h ∈ K[X], the w.r.t. ≺ mini-
mal polynomial h̃ =

∑
|α|≤D yαx

α for which (6.2) is solvable is denoted by nfF (h,D) = h̃. If
nfF (h,D) 6= h, h is called D-reducible w.r.t. F .

Note that D-reducibility does not imply reducibility nor the other way round.

Lemma 6.2 (Kühnle, Mayr 1996). Let I be an ideal in the polynomial ring K[X] over a well-
endowed field K, let I be generated by polynomials F = {f1, . . . , fs}, and fix an admissible mono-
mial ordering ≺ represented by a rational weight matrix W ∈ Qn×n. For any given D ∈ N
and h ∈ K[X], it is possible to compute nfF (h,D). If q bounds the bitsize of all numerators and
denominators in W , F , and h, the algorithm is in SPACE(log2(sDnq)).
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Proof. (from [28], §3 and §4) The idea is to find a special maximal minor of (6.2) respectively
its matrix form (6.3) which corresponds to the w.r.t. ≺ minimal solution of the system, i.e.
nfF (h,D). The caveat, of course, is the space consumption. Storing the whole matrix is
prohibitive, but even storing which of the

(D+n
n

)
rows respectivelyO(sDn) columns belong

to the minor requires too much storage. Thus this has to be avoided in a clever way. It is
also necessary to tackle the computation of the indices of F in (6.3).

For the first problem, the solution lies in the choice of a special minor. Fix an ordering
in which one can enumerate the rows (respectively columns) with little space requirement
(postpone the choice of the ordering for a moment). Then there is a canonical maximal
minor for which the index set of rows respectively columns is lexicographically minimal.
For this minor, one can ”locally” compute whether a row (respectively column) belongs to
the minor. It suffices to compare the rank of the minor of the first k − 1 rows (respectively
columns) and the minor of the first k rows (respectively columns) differ. The k-th row
(respectively k-th column) belongs to the minor iff both ranks differ. Using corollary 3.26,
one can determine both ranks in space O(log2(sDnq)).

Next consider the order of the columns and rows. Remember that the columns corre-
spond to the variables ai,α and yγ . The desired solution h̃ = nfF (h,D) is minimal w.r.t.
≺ which means that the coefficients yγ corresponding to large monomials of h̃ are zero.
Choosing columns for the minor corresponds to choosing the non-zero variables of the
solution. By the greedy computation of the minor and the Steinitz exchange lemma, the
variables which should be zero have to be in the last columns. Thus the columns will be
ordered with the variables ai,α first (in arbitrary order) and the yα following in increasing
order w.r.t. ≺. This guarantees that the solution h̃ which will be computed from the above
minor is minimal w.r.t. ≺. It turns out that the order or the rows is arbitrary.

For the above construction, it is necessary to enumerate the all monomials up to degree
D ordered by ≺ (this also can be used if an arbitrary order is required). Assume that the
algorithm only stores the current monomial. The next term will be found in an exhaustive
search which requires the storage of two more monomials, the enumeration monomial and
the smallest monomial found during the enumeration which is greater than the current
monomial. This needs space O(n log(D)). By corollary 3.23 and since ≺ is represented by
a matrix, the comparison of two monomials w.r.t. ≺ can be done in SPACE(log2(nD)).

Last but not least, consider the matrix F . Given a row index γ and a column index (i, α),
the corresponding matrix coefficient is fi,β if β = γ − α ≥ 0 and 0 otherwise. So it suffices
to write down α, β, γ, and i which can be done in space O(n log(D) + log(s)). Since the
matrix dimensions of the linear system are O(sDn), corollary 3.26 and the intermediate
space requirements yield the stated complexity.

Degree Bounds The key for turning lemma 6.2 into an algorithm which computes a
Gröbner basis is the structure lemma 2.13. It claims that the reduced Gröbner basis al-
ways has the form GB(I) = {xα − nfI(x

α) ∈ K[X] : xα minimally reducible w.r.t. I}. The
remaining pieces of the jigsaw are a suitable degree bound and a way to enumerate the
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6. Gröbner Basis Computation without Degree Bounds

minimally reducible monomials.
Kühnle and Mayr bound the degree of the minimally reducible monomials by Dubé’s

degree bound. Then they represent the monomial ordering as single rational weight func-
tion (on the appearing monomials) and bound the degree of a normal form by estimating
the length of the reduction w.r.t. the reduced Gröbner basis. This yields

Lemma 6.3 (Kühnle, Mayr 1996). Let I be an ideal in K[X] and fix an admissible monomial
ordering ≺ represented by a non-negative rational weight matrix W ∈ Qn,n. Let B be a bound
on all numerators and denominators of the entries of W and assume its Gröbner basis degree is
bounded by deg(GB(I)) ≤ G. Then the degree of the normal form of a polynomial h ∈ K[X] w.r.t.
I is bounded by

deg(nfI(h)) ≤ deg(h)nnn
2
B2n2+2nGn

2+1.

Proof. See [28], section 2.

While lemma 6.3 is necessary for the computation of arbitrary normal forms, it can be
avoided for the computation of Gröbner bases. In this case, degree bounds like Dubé’s
or the dimension-dependent analogon, theorem 5.29, apply not only to the minimally re-
ducible monomials but also to their normal forms. In the following theorem, the main
result of [28] will be improved by applying the dimension-dependent bounds by Kratzer
and the author of the thesis. Later, the degree bounds will be replaced by an incremental
algorithm with a S-polynomial criterion.

Theorem 6.4. Let K be a well-endowed field and I ( K[X] be an ideal of dimension r generated by
polynomials F = {f1, . . . , fs} of degrees bounded by d, and fix an admissible monomial ordering
≺ represented by a rational weight matrix W ∈ Qn×n. If q bounds the bitsize of all numerators
and denominators in W and F , it is possible to compute the reduced Gröbner basis G of I w.r.t. ≺
in SPACE(n824r log2(sdq)).

Proof. (improving on [28], §5) By lemma 2.13, the leading monomials of the elements of
a reduced Gröbner basis are minimally reducible, i.e. they are reducible but none of their
divisors is. Then the Gröbner basis polynomials are obtained as difference of the leading
monomial and its normal form w.r.t. I . Hence it suffices to enumerate all monomials xα ∈
K[X] up to the maximal Gröbner basis degree D1 and check for each, whether it is D2-
reducible for a suitable D2, but all the divisors x−1

k xα (k = 1, . . . , n) are D2-irreducible.
This check is done using lemma 6.2.

In order to obtain the mentioned space bound, remember theorem 5.29. It states that

deg(GB(I)) ≤ 2

ï
1

2

Ä
d2(n−r)2 + d

äò2r
:= D1.

Furthermore, xα − nfI(x
α) ∈ GB(I) yields deg(nfI(x

α)) ≤ deg(GB(I)). Now D2 must be
large enough to ensure nfF (xα, D2) = nfI(x

α) for all monomials xα ∈ K[X] up to degree
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D1. The corresponding representation degree is bounded by Kratzer’s theorem 4.9 (with
µ = min {n, s}):

D2 :=D1 +
(
d
Ä
(n+ 1) max

¶
D1, (n+ 2)2 (dµ + 1)µ+2

©
+ 1
än−r)2r

=

=D1 +
Ä
d ((n+ 1)D1 + 1)n−r

ä2r
The complexity is dominated by the computation of normal forms and thus can be derived
from lemma 6.2 as

SPACE(log2(sDn
2 q)) = SPACE(log2(sD

n(n−r)2r
1 q)) =

= SPACE(log2(sdn(n−r)322rq)) = SPACE(n824r log2(sdq)).

The bound for the gradings of the coefficients follows directly from lemma 6.2.

The S-Polynomial Criterion The algorithm in theorem 6.4 always uses the worst case
degree bounds. Thus the size of the linear system only depends on the degree signature
of the input and the ideal dimension. In the worst case, this is optimal because the mem-
bership problem is exponential space complete (shown by Mayr, Meyer in [33]). Still, for
most instances this complexity can be avoided as the improvement of the original result
by Kühnle and Mayr indicates. In the following, this will be done blindly — i.e. without
the knowledge of better degree bounds — by increasing D step by step. As soon as the
Gröbner basis is complete, the calculation can be aborted. Unfortunately the result is not
necessarily reduced. The contribution of the author of this thesis is to show how this can
be done space-efficiently using S-polynomials.

Given an ideal I in K[X] generated by polynomials F = {f1, . . . , fs}, remember the
structure lemma 2.13 for the reduced Gröbner basis of I . It claims that xα − nfI(x

α) is an
element of the Gröbner iff xα is minimally reducible w.r.t. I . The idea is to approximate
this by

G = {xα − nfI(x
α, D) ∈ K[X] : α ∈ Nn, xα is minimally D-reducible w.r.t. F, |α| ≤ D}

and check the Gröbner basis using lemma 2.15. With gα = xα − nfI(x
α, D) for all α ∈ Nn,

this means to consider

S(gα, gβ) =
∑
gγ∈G

aα,β,γgγ

lm(aα,β,γgγ) � lm(S(gα, gβ))

fi =
∑
gγ∈G

bi,γgγ

for
gα, gβ ∈ G,
i = 1, . . . , s, and
aα,β,γ , bi,γ ∈ K[X].

(6.4)

Note the last set of equation which verifies thatG generates I . As before, the space efficient
linear algebra methods of corollary 3.26 can be applied if the degrees of aα,β,γ and bi,γ are
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6. Gröbner Basis Computation without Degree Bounds

bounded by D. With

S(gα, gβ) = hα,β =
∑
|ε|≤2D

hα,β,εx
ε for |α|, |β| ≤ D,xα, xβ minimally D-reducible w.r.t. F,

aα,β,γ =
∑
|ζ|≤D

aα,β,γ,ζxζ for |α|, |β|, |γ| ≤ D,

gγ =
∑
|η|≤D

gγ,ηx
η for |γ| ≤ D,

fi =
∑
|ε|≤2D

fi,εx
ε for i = 1, . . . , s, and

bi,γ =
∑
|ζ|≤D

bi,γ,ζxζ for i = 1, . . . , s, |γ| ≤ D,

(6.4) yields a system of linear equations

hα,β,ε =
∑
|γ|≤D

∑
|ζ|≤D
|η|≤D
ζ+η=ε

aα,β,γ,ζgγ,η
∀|α|, |β| ≤ D, |ε| ≤ 2D :

xα, xβ minimally D-reducible w.r.t. F

aα,β,γ,ζ = 0
∀|α|, |β|, |γ|, |ζ| ≤ D : xγxζ � lm(hα,β),

xα, xβ minimally D-reducible w.r.t. F

aα,β,γ,ζ = 0

∀|α|, |β|, |γ|, |ζ| ≤ D :

xγ not minimally D-reducible w.r.t. F,

xα, xβ minimally D-reducible w.r.t. F

fi,ε =
∑
|γ|≤D

∑
|ζ|≤D
|η|≤D
ζ+η=ε

bi,γ,ζgγ,η ∀i = 1, . . . , s, |ε| ≤ 2D

bi,γ,ζ = 0
∀i = 1, . . . , s, |γ|, |ζ| ≤ D :

xγ not minimally D-reducible w.r.t. F

(6.5)

With S = {α ∈ Nn : |α| ≤ D,xα minimally D-reducible w.r.t. F}, h = (hα,β,ε)|α|,|β|∈S
|ε|≤2D

, a =

(aα,β,γ,ζ)|α|,|β|∈S
|γ|,|ζ|≤D

, f = (fi,ε)i=1,...,s
|ε|≤2D

, and b = (bi,γ,ζ) i=1,...,s
|γ|,|ζ|≤D

, one can write (6.5) in matrix
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form â
G 0
E1 0
E2 0
0 F
0 E3

ì
·
Ç

a
b

å
=

â
h
0
0
f
0

ì
. (6.6)

It remains to show, how G, F , E1, E2, and E3 can be computed efficiently.

Theorem 6.5. Let I be an ideal in the polynomial ring K[X] over a well-endowed field K, let
I be generated by polynomials F = {f1, . . . , fs}, and fix an admissible monomial ordering ≺
represented by a rational weight matrix W ∈ Qn×n. If q bounds the bitsize of all numerators
and denominators in W and F , it is possible to compute a Gröbner basis G of I w.r.t. ≺ in
SPACE(log2(sDnq)) where D bounds the representation degrees of the Gröbner basis.

Proof. The algorithm starts with D = max {deg(fi) : i = 1, . . . , s} and doubles D after each
step. For each value ofD, it solves (6.5) respectively (6.6) using corollary 3.26. If the system
is solvable, then

G = {xα − nfI(x
α, D) ∈ K[X] : α ∈ Nn, xα is minimally D-reducible w.r.t. F, |α| ≤ D}

is a Gröbner basis of I . In this case, the algorithm terminates with computing these poly-
nomials by solving the smaller system (6.2) and the enumeration technique of theorem 6.4.
Thus the complexity is dominated by the part that solves (6.5) for the largest value of D.

It was already discussed how to check whether a monomial is minimally D-reducible
and compare two monomials w.r.t. ≺. Thus one can enumerate the set S and it is legal to
index the matrices by indices from S. First consider the matrices E1, E2, and E3. One can
choose all of them to be square matrices whose only non-zero entries are on the diagonal.
The entry on the diagonal corresponding to a variable aα,β,γ,ζ respectively bi,γ,ζ is 1 if the
conditions of the respective line of (6.5) are fulfilled and 0 otherwise. Here the computation
of lm(hα,β) remains. It suffices to be able to compute the coefficients of the S-polynomial
hα,β,ε. Then the leading monomial can be determined by enumerating all monomials and
remembering the largest with non-zero coefficient. For the computation of hα,β,ε, observe
lm(gα) = xα and lm(gβ) = xβ since xα and xβ both are D-reducible w.r.t. F . So one can
compute xδ = gcd(xα, xβ) = xα∧β and therefore

hα,β = S(gα, gβ) = gβ,βx
β−δgα − gα,αxα−δgβ = xβ−δgα − xα−δgβ.

The coefficients of F and G are gγ,η or zero. Which of both is the case can be determined
analogously to lemma 6.2.

In total, there are O(sD4n) variables and equations. Corollary 3.26 yields a complexity
ofO(log2(sD4nq)) where the constant in the exponent can be dropped due to the logarithm
and the O-notation.
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Usually, the membership problem is solved by (at least implicitly) computing a represen-
tation of the polynomial w.r.t. the given basis. This is true for reductions w.r.t. a Gröbner
basis as well as linear algebra approaches. In both cases a representation can be output
without dramatic overhead once the membership of the polynomial was proved. More-
over, since the lower space bounds for the membership problem basically match the upper
bounds for the representation problem, this situation is not very surprising.

For toric ideals, however, there might be a gap between the complexities of both prob-
lems. While the single exponential lower degree bound for the representation problem in
toric ideals from section 4.6 suggests that this problem needs polynomial space in the input
— as upper complexity bound, the PSPACE algorithm of Mayr for radical ideals in [32],
corollary 8.2 applies —, the membership problem will be solved in polylogarithmic space
in the following. The keys to this result are the representation of toric ideals by modules
and the existence of cancellation-free representations.

Remember that toric ideals are assumed to be given by binomials, i.e. I = 〈xαi − xβi ∈
K[X] : i = 1, . . . , s〉. Before analyzing the membership problem for arbitrary polynomials,
restrict the problem to binomials h = xγ − xδ ∈ K[X]. By lemma 2.106, h ∈ I is equivalent
to (γ − δ) ∈ M = Z(α1 − β1) + . . . + Z(αs − βs). Here M is a saturated submodule of Zn.
This yields

γ − δ =
s∑
i=1

ci(αi − βi) with ci ∈ Z for i = 1, . . . , s. (7.1)

(7.1) is an inhomogeneous integral linear equation system, whose solvability over the in-
tegers has to be decided. This can be done in polynomial time, e.g. by computing the Her-
mite normal form, which is a kind of a triangular system, and then using back-substitution
and divisibility tests. One can even compute an explicit solution, but this is only a module
representation and does not easily yield an ideal representation.

Up to now, the fact that M is a saturated submodule of Zn was not used. Remember this
means ε ∈ M iff kε ∈ M for any 0 6= k ∈ Z and ε ∈ Zn. Using this property, the system
(7.1) can be relaxed to

γ − δ =
s∑
i=1

yi(αi − βi) with yi ∈ Q for i = 1, . . . , s. (7.2)

Obviously, any solution of (7.1) is also a solution of (7.2). On the other hand, given a
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solution y1, . . . , ys of (7.2), let 0 6= q ∈ Z be the common denominator of y1, . . . , ys. Then

q(γ − δ) =
s∑
i=1

(qyi)(αi − βi) with (qyi) ∈ Z for i = 1, . . . , s.

So q(γ − δ) ∈ M and therefore (γ − δ) ∈ M . All together, h ∈ I if and only if (7.2) is
solvable. Since the latter is a rational linear system, its solvability can be checked by two
rank computations for the matrix of the homogeneous system and the extended coefficient
matrix which can be done in polylogarthmic space (corollary 3.26).

Lemma 7.1. Let I be a toric ideal in K[X] generated by binomials F = {xαi − xβi ∈ K[X] : i =
1, . . . , s}, let h = xγ − xδ ∈ K[X] be a binomial, and let q bound the bitsize of all exponents βi,j .

Then the membership problem h
?
∈ I can be solved in space O(log2((n+ s)q)).

Proof. (7.2) has n equations in s unknowns. Thus corollary 3.26 yields the stated complex-
ity.

This intermediate result will be used for solving the slightly more general case in which
h ∈ K[X] is an arbitrary polynomial. The following complexity theorem uses lemma 2.107
and achieves a complexity similar to lemma 7.1.

Theorem 7.2. Let I be a toric ideal in the polynomial ring K[X] over a well-endowed field K and let
I be generated by binomials F =

¶
xαi − xβi ∈ K[X] : i = 1, . . . , s

©
, let h =

∑t
i=1 hix

γi ∈ K[X]
be any polynomial, and let q bound the bitsize of all numerators and denominators of the coefficients

and the exponents. Then the membership problem h
?
∈ I can be solved in spaceO(log2((n+s+t)q)).

Proof. By lemma 7.1, one can check the membership of any binomial in space O(log2((n+
s)q)). According to lemma 2.107, it suffices to consider representations of h by binomials
in I whose monomials are in the support of h. This is formalized in

t∑
i=1

hix
γi =

∑
1≤j<k≤t
xγj−xγk∈I

cj,k(x
γj − xγk) with cj,k ∈ K for j, k = 1, . . . , t. (7.3)

This polynomial equation can be solved by considering the linear system of the coefficients

hi =
∑

1≤j<i
xγj−xγi∈I

(−cj,i) +
∑
i<k≤t

xγi−xγk∈I

ci,k with cj,k ∈ K for i, j, k = 1, . . . , t

which has t equations and O(t2) unknowns. Using the space-efficient method for rank
computations (corollary 3.26), again, the system can be solved in space O(log2(tq)).

When applying corollary 3.26, the matrix of the equation system has to be computed
on the fly — storing it would require to much space. It is necessary to verify this can
be done efficiently. First, it is necessary to determine the dimensions of the matrix. The
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number of rows (respectively equations) is simply t. The number of columns (respectively
indeterminates) equals the number of pairs (j, k) with j < k such that xγj − xγk ∈ I . This
quantity can be determined by enumerating all pairs (j, k) with j < k and counting how
often the membership condition is fulfilled. The required space isO(log(t)+log2((n+s)q)).
The coefficients then can be computed from the row index i and a valid column index (j, k).
If i = j, the coefficient is 1, if i = k, the coefficient is −1, and otherwise it is 0.
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8. Radical Computation in Low Dimensions

In chapter 6, the complexity of Gröbner basis computations was analyzed. Theorem 6.4
reached better bounds than Kühnle and Mayr in [28] due to the dimension-dependent
degree bounds from sections 4.5 and 5.3. This chapter will demonstrate the application of
these new results to a more complex algorithm. The computation of radicals by Laplagne
[30] will be revisited in the following and its space complexity will be analyzed depending
on the dimension.

Algorithm In the first part of the chapter, Laplagne’s algorithm from [30] will be ex-
plained. The details will be given for the reader’s convenience. The presentation will be
restricted to fields of characteristic 0, although the results are slightly more general (infinite
perfect fields should suffice).

Many algorithms for radical computation base on the Seidenberg lemma which allows
the computation of radicals of zero-dimensional ideals.

Lemma 8.1 (Seidenberg Lemma [39]). Let K be a field of characteristic 0 and I ( K[X] be a
zero-dimensional ideal which contains square-free 0 6= fi ∈ I ∩K[xi] (i.e. gcd(fi, f

′
i) = 1) for each

i = 1, . . . , n. Then I is radical.

Proof. (from [26], proposition 3.7.15) The proof is by induction on n. For n = 1, I is princi-
pal and contains the square-free polynomial f1. Thus the generator g | f1 of I is square-free
and I is radical.

Now assume n > 1 and factorize fn = h1 · · ·ht into irreducible polynomials. Since fn is
square-free,

I = I + 〈fn〉 = I +
t⋂
i=1

〈hi〉 =
t⋂
i=1

(I + 〈hi〉).

Any intersection of radical ideals is radical itself, so it suffices to show that J = I + 〈hk〉
is radical for each k = 1, . . . , t. Since 0 6= hk ∈ K[xn] is irreducible, 〈hk〉 ∩ K[xn] is a
maximal ideal and L = K[xn]/〈hk〉 is a field. Consider the canonical homomorphism ϕ :
K[x1, . . . , xn] −→ L[x1, . . . , xn−1] which has the kernel ker(ϕ) = 〈hk〉. Observe fi = ϕ(fi) ∈
ϕ(J)∩L[xi] is square-free for each i = 1, . . . , n− 1. Furthermore ker(ϕ) ⊆ J which implies
K[x1, . . . , xn]/J ∼= L[x1, . . . , xn−1]/ϕ(J) and hence dim(ϕ(J)) = 0. Thus the induction
hypotheses apply to ϕ(I) and, since the ring L[x1, . . . , xn−1] has less variables, ϕ(J) is
radical by induction. Now assume fe ∈ J for some e ∈ N. Then ϕ(f)e = ϕ(fe) ∈ ϕ(J)
implies ϕ(f) ∈ ϕ(J) since ϕ(J) is radical. This means f ∈ J + ker(ϕ) = J and hence J is
radical.
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8. Radical Computation in Low Dimensions

Corollary 8.2. Let K be a field of characteristic 0 and I ( K[X] be a zero-dimensional ideal and
fi ∈ I ∩ K[xi] for i = 1, . . . , n. Let gi =

√
fi = fi

gcd(fi,f ′i)
be the square-free part of fi. Then

√
I = I + 〈g1, . . . , gn〉.

Having the Seidenberg lemma at hand, the radical computation will be reduced to the
zero-dimensional case. One of the standard techniques herefore is localization w.r.t. a max-
imal independent set.

Lemma 1.58 predicts which primary components disappear on localization. In order to
get control over this set, Laplagne transforms the ideal to Noether normal form. Then all
primary components of maximal dimension remain and the radical of their intersection
can be computed using the Seidenberg lemma. The missing primary components can be
isolated using the ideal quotient (lemma 1.31) and their radical will be computed recur-
sively. The whole procedure is summarized in algorithm 3.

Algorithm 3: Radical(I)

Data: Ideal I in K[X]
Result:

√
I

Compute change of variables σ such that σ(I) is in Noether normal form.
Let r = dim(I) and U = {x1, . . . , xr}.
if r = 0 then return

√
I .

Compute J =
(»

σ(I) ·K(U)[X \ U ]
)
∩K[X].

return σ−1(J) ∩ Radical(I : σ−1(J)∞).

Lemma 8.3. Let I ( K[X] be a r-dimensional ideal in Noether normal form with primary decom-
position I = Q1 ∩ . . . ∩Qt, and define U = {x1, . . . , xr} and J ′ = (I ·K(U)[X \ U ]) ∩ K[X].
Then

√
I =
√
J ′ ∩

√
I : J ′∞ and

I : J ′∞ ⊇
t⋂
i=1

dim(Qi)<r

Qi.

Proof. By lemma 1.58,

J ′ =
t⋂
i=1

Qi∩K[U ]={0}

Qi.

Since I is in Noether normal form, there is a polynomial gi ∈ I ∩ K[x1, . . . , xi] with
degxi(gi) = deg(gi) > 0 for each i = r+1, . . . , n. Assume dim(Qk) = r for some k = 1, . . . , t.
By lemma 2.69, dim(lm(Qk)) = dim(Qk) = r. Consider the lexicographic monomial order-
ing ≺ with x1 ≺ . . . ≺ xn. Then xeii = lm(gi) ∈ lm(I) ⊆ lm(Qk) for some ei ∈ N and each
i = r + 1, . . . , n, so U must be independent w.r.t. lm(Qk) and thus independent w.r.t. Qk.
Hence J ′ ⊆ Qk and the claimed inclusion for I : J ′∞ follows from lemma 1.31.
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It remains to show
√
I =
√
J ′ ∩

√
I : J ′∞. The same lemmas as above imply

√
J ′ ∩

√
I : J ′∞ =

t⋂
i=1

Qi∩K[U ]={0}

√
Qi ∩

t⋂
i=1

J ′ 6⊆
√
Qi

√
Qi =

√
Q1 ∩ . . . ∩

√
Qt =

√
I.

Lemma 8.4. Let I ( K[X] be an ideal. Then Radical(I) =
√
I and the recursion depth is

bounded by dim(I) + 1.

Proof. Let J ′ = (σ(I) ·K(U)[X \ U ]) ∩ K[X]. By lemma 8.3,
»
σ(I) =

√
J ′ ∩

»
σ(I) : J ′∞.

Since
√
J ′ =

(»
σ(I)K(U)[X \ U ]

)
∩ K[X] = J and σ(I) : J ′∞ = σ(I) :

√
J ′
∞

, applying
σ−1 yields the correctness of Radical. Finally, dim(I : σ−1(J)∞) < dim(I) by lemma 8.3
since it is the intersection of ideals of dimension less then dim(I) and thus the recursion
depth is at most dim(I) + 1.

Complexity Now that the correctness of Radical is established, the complexity will
be analyzed. As in previous chapters, the emphasis will be on space-efficient methods.
The first step is the change of variables into Noether normal form which was previously
analyzed by Dickenstein et al. in [11]. The underlying algorithm and the necessary degree
bounds were already presented in theorem 4.8. The following lemma applies the technique
of corollary 3.26 and derives complexity bounds. Contrary to the arithmetic circuits used
by Dickenstein, Boolean circuits will be used in the following supposing a well-endowed
field. Therefore also the growth of coefficients has to be considered — mostly using lemma
3.8).

Lemma 8.5 (Dickenstein et al. 1991). Let K be a well-endowed infinite field and I be an ideal in
K[X] generated by polynomials F = {f1, . . . , fs} of degrees bounded by d. It is possible to compute
r = dim(I) and a change of variables σ : K[X] −→ K[X], f(x) 7→ f(Ax) with An×n ∈ K
such that {x1, . . . , xr} is independent w.r.t. σ(I) and, for each i = r + 1, . . . , n, a polynomial
hi ∈ σ(I) ∩ K[x1, . . . , xi] with degxi(hi) = deg(hi) > 0 and deg(hi) ≤ (d1 · · · dn−r)2. If q
bounds the bitsize of all numerators and denominators in F , the algorithm can be implemented in
SPACE(n4 log2(sdq)) and the coefficients of the matrix A have bitsize O(n2 log(d)).

Proof. (from [11], §1) First it is necessary to determine r = dim(I). Herefore enumerate all
subsets U ⊆ X and test whether I ∩ K[U ] 6= {0}. The cardinality of the maximal w.r.t. I
independent set U is the dimension of I .

A degree bound for the independence test is needed. Opposed to theorem 4.8, embed-
ding a complete intersection J does not work since there might be sets U ⊆ X which are
dependent w.r.t. I but independent w.r.t. J . Thus a degree bound computed for J might
be to low yielding false positives.

However, if I ∩ K[U ] 6= {0} and K is the algebraic closure of K, one can employ a
consequence of Bézout’s theorem (lemma 2.95) in order to bound deg(VK(I)) ≤ dn. As
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8. Radical Computation in Low Dimensions

in theorem 4.8, the existence of h ∈
√
I ∩ K[U ] with deg(h) ≤ dn follows. Since h ∈√

I iff x0
hh ∈

»
〈hf1, . . . ,

hfs〉 and the representation of x0
hh can be chosen homogeneous,

theorem 4.3 bounds the degree of the representation hk = g =
∑s
i=1 aifi with a1, . . . , as ∈

K[X] by k ≤ dn and deg(aifi) ≤ dn deg(x0
hh) ≤ dn(dn + 1) for i = 1, . . . , s.

Since there are O((dn(dn + 1))n) = O(d2n2
) monomials of degree up to dn(dn + 1), the

equation h =
∑s
i=1 aifi can — for given f1, . . . , fs — finally be transformed to a linear

system of size O(sd2n2
) which has a non-trivial solution h iff U is dependent w.r.t. I . By

corollary 3.26, this can be decided in space O(n4 log2(sdq)) by two rank computations.
The initial change of variables just permutes the variables such that U = {x1, . . . , xr} is

independent w.r.t. I and thus its coefficients have constant size.
The rest of the algorithm is by induction. Each step k = r + 1, . . . , n of theorem 4.8

begins with the search for a polynomial hk ∈ σ(I) ∩ K[x1, . . . , xr, xk] with representation
degree bounded by deg(hk) ≤ dn−r(dn−r + 1). The complexity for the computation of
this polynomial is dominated by the computation of the dimension. For the change of
variables, it is necessary to find a point (y1, . . . , yr) ∈ Kr at which h̃(y1, . . . , yr, 1) 6= 0 for
the homogeneous component h̃ of highest degree of hk. By lemma 1.44, this is possible
with coefficients of size O(n2 log(d)) each. Thus the computation uses space O(n3 log(d))
since n coefficients have to be stored at a time. The evaluation is polylogarithmic in the
bitsize using techniques from section 3.3 and thus is negligible. Due to the special form of
the functions, the composition of the (at most n) changes of variables computed adds only
log(n) to the bitsize of the coefficients which hides in the O-notation.

Lemma 8.6. Let K be a well-endowed field and I, J ( K[X] be ideals of dimension at most r which
are generated by polynomials f1, . . . , fs respectively g1, . . . , gt of degrees bounded by d. Then one
can compute the following by a Gröbner basis computation:

1. A polynomial in I ∩K[U ] (if existent) for any U ⊆ X .

2. A basis of I : J∞.

3. A basis of I ∩ J .

The degrees of the computed polynomials and the cardinalities of the computed bases are bounded by
dn

O(1)2O(r) . If q bounds all the bitsize numerators and denominators in the input, the computation
can be performed in space nO(1)2O(r) logO(1)((s+ t)dq).

Proof. 1. is reduced by the elimination theorem 2.16. 2. and 3. can be computed using 1.
applied to the ideals constructed in lemma 1.51 and lemma 1.52 respectively lemma 1.50.
Note that all ideals involved in the computations have dimensionO(r) (more exactly≤ r+
number of newly introduced indeterminates). The degree bound of the reduced Gröbner
basis follows from theorem 5.29. For the cardinality of the reduced Gröbner basis, note
that there are less than (dn

O(1)2O(r)
)n = dn

O(1)2O(r)
monomials of degree up to dn

O(1)2O(r)

and the elements of the Gröbner basis have pairwise distinct leading monomials. The
space complexity is proved in theorem 6.4.
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Lemma 8.7. Let K be a well-endowed field of characteristic 0 and I ( K[X] be an ideal of dimen-
sion r in Noether normal form generated by polynomials F = {f1, . . . , fs} of degrees bounded by
d and let U = {x1, . . . , xr}. If q bounds the bitsize of all numerators and denominators in F , it
is possible to compute a basis of

»
I ·K(U)[X \ U ] ∩K[X] with degrees bounded by dnO(1)2O(r) in

space nO(1)2O(r) logO(1)(sdq).

Proof. The key to this lemma is the Seidenberg lemma respectively corollary 8.2. In lemma
8.5, it was shown that hi ∈ I ∩K[x1, . . . , xr, xi] with deg(hi) ≤ d2n, for i = r + 1, . . . , n, can
be computed in space O(n4 log2(sdq)). Their derivations h′i are easily calculated on the fly.

Avoiding the GCD-calculation, the LCM will be computed using the equality 〈hi〉 ∩
〈h′i〉 = 〈lcm(hi, h

′
i)〉 and lemma 8.6. Both 〈hi〉 and 〈h′i〉 have dimension r in K[x1, . . . , xr, xi]

and the bitsize of the coefficients of hi is trivially bounded by 2O(n4 log2(sdq)) (lemma 3.8).
Hence the computation needs space nO(1)2O(r) logO(1)(sdq). However, from the context,
deg(lcm(hi, h

′
i)) ≤ 2d2n is clear.

The polynomial division gi = hi
gcd(hi,h′i)

=
lcm(hi,h

′
i)

h′i
can be formulated as linear system

of size O(deg(lcm(hi, h
′
i))

n) = O(d2n2
) with coefficients of bitsize 2n

O(1)2O(r) logO(1)(sdq) and
solved using corollary 3.26. This suffices in order to realize the polynomial division in
nO(1)2O(r) logO(1)(sdq).

Furthermore one can contract the basis 〈f1, . . . , fs, gr+1, . . . , gn〉 of
»
I ·K(U)[X \ U ] to a

basis of (I ·K(U)[X \ U ]) ∩K[X] using lemma 2.17. This requires two more Gröbner basis
computations — the first in order to fulfill the prerequisites of the lemma and the second
for the saturation. Since the ideals have dimension O(r), the degrees remain bounded by
dn

O(1)2O(r)
and the space requirement by nO(1)2O(r) logO(1)(sdq).

Theorem 8.8. Let K be a well-endowed field of characteristic 0. Then Radical can be imple-
mented such that it computes a basis G of the radical of any r-dimensional ideal I ( K[X] gener-

ated by polynomials F = {f1, . . . , fs} of degrees bounded by d such that deg(G) = dn
O(r)2O(r2) in

space nO(r)2O(r2) logO(r)(sdq) where q bounds the bitsize of all numerators and denominators in
F .

Proof. In any iteration, there are a constant number of Gröbner basis computations and
similar operations which were discussed in lemmas 8.6 and 8.7. On input of degree d,
cardinality s, and bitsize q, they produce output of degree and cardinality dn

O(1)2O(r)
in

space nO(1)2O(r) logO(1)(sdq) which implies a bitsize of 2n
O(1)2O(r) logO(1)(sdq) by lemma 3.8.

Feeding such an operation with the output of another such operation yields a result of

degree and cardinality of
(
dn

O(1)2O(r)
)nO(1)2O(r)

= dn
O(1)2O(r)

. The space complexity of this
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concatenation is bounded by

nO(1)2O(r) logO(1)
[(
dn

O(1)2O(r)
) (
dn

O(1)2O(r)
) (

2n
O(1)2O(r) logO(1)(sdq)

)]
=

= nO(1)2O(r)
Ä
nO(1)2O(r) logO(1)(d) + nO(1)2O(r) logO(1)(sdq)

ä
=

= nO(1)2O(r) logO(1)(sdq).

Thus any constant number of operation stays within the same magnitude. By lemma 8.4,
the algorithm performs r recursions which implies the stated bounds.
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Conclusion

As mentioned in the introduction and throughout, the computation of Gröbner bases
is inherently complex. The goal of this thesis was to analyze this complexity for special
ideal classes. Now it is time to summarize the results and point out open problems. The
structure of the thesis will be used as guidance.

Representation Degree The representation degree in arbitrary ideals was revisited in
section 4.1. The lower and upper bounds by Hermann respectively Yap only differ in two
points: a factor of 2 in the second exponent and the dependence on the number of ideal
generators. While the first seems negligible, it would be nice to clarify to which amount
the degree depends on the number of generators.

The radical membership treated in section 4.2 has been intensely studied such that lower
and upper bounds match exactly for the most important parameters.

In section 4.3, the representation problem for zero-dimensional ideals was considered.
While the author of this thesis found various upper bounds in literature, the best of which
was stated in theorem 4.6, he is not aware of any interesting lower bounds for this case.
Also the upper bound might leave room to improvement when comparing it with the
situation of the Gröbner basis degrees.

The upper degree bound for complete intersections in section 4.4 is neat and could be
sharp, although no lower bound is known. The search for lower bounds for complete
intersections might also yield a tight lower bound for the zero-dimensional case.

In section 4.5, two results were treated. The first was a version of effective Noether nor-
malization. The degree bound presented in this thesis is slightly sharper than the one by
Dickenstein et al. in [11]. This was possible due to the sharp bound for the radical member-
ship problem by Jeloneck and the use of regular sequences. Still, the author suggests that
it can be further improved. One could try to make use of the theory of multiplicities (sec-
tion 2.9) and therefore avoid the radical membership problem. This could save the square
in the degree bound. However, it is not quite obvious since the theory of multiplicities is
mostly designed for the homogeneous case. Lemma 2.99 could be part of the remedy, but it
doesn’t apply straight forward since generators of the homogenization of an ideal are not
easily obtained. Also combining lemmas 2.23 and 1.31 with corollary 2.100 yields no trivial
result since the dimension of the ideal might change on homogenization (see lemma 2.70
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8. Radical Computation in Low Dimensions

and example 2.76) and thus ”hidden” (i.e. lower dimesional) primary components must
be considered.

The second result was Kratzer’s upper bound for the representation degree. This bound
could be somewhat sharpened using the improved Noether normalization. The lower
bound for the representation problem is rather trivial, but attacking it most likely requires
tackling the zero-dimensional case first and then combining the techniques as in theorem
5.31.

The chapter about representation degrees closes with a completely new construction that
provides a lower bound for toric ideals in section 4.6. There is no complementing upper
bound. The situation is the same for prime and radical ideals, super-classes of toric ideals.
This is surprising due to the celebrated bounds of the radical membership (cf. section 4.2).

This concludes the survey of the representation degree and yields way to the chapter
about the Gröbner basis degree.

Gröbner Basis Degree In section 5.1, it was shown that, for arbitrary ideals, the situation
is very well understood. The lower and upper bounds only differ by a constant factor 2.

For zero-dimensionals ideals, however, the bounds match perfectly as seen in section
5.2. The tight upper bound is a slight improvement of the result by Caniglia et al. [6]
which the author of this thesis could not find in literature. As soon as homogeneous ideals
or graded monomial orderings (although with some caveats) are considered, the bounds
are smaller by a magnitude as proved by Lazard and a trivial example.

Section 5.3 contains a main contribution of the thesis. Both upper and lower bounds for
the Gröbner basis degree are derived depending on the ideal dimension. They agree up to
a factor of 2 in the second exponents. The upper bound for inhomogeneous ideals would
be affected by an improvement by the Noether normalization. Also techniques by Sombra
in [41], §1 might be helpful in order to construct a homogeneous sequence with increasing
degrees (thus the first polynomials would have much lower degrees). Both techniques,
however, would only improve the bound by a factor of 2 in the first exponent. Attacking
the second exponent would, on the one hand, require to improve the bounds for arbitrary
ideals. On the other hand, a direct method for inhomogeneous ideals could be useful.

Finally, toric ideals are considered in section 5.4. A proof technique by Sturmfels [42] is
adapted to ideal given by a basis yielding an upper bound. A lower bound is derived from
an example by Möller and Mora [35]. Both bound are single exponential but leave some
room for improvement.

Complexity It is well known that the complexity of Gröbner basis computations depends
on the degrees of the bases and representations in the worst case. Mayr and Meyer [33]
constructed polynomials of high degree in order to show that the membership problem
and thus (Gröbner basis computation) is exponential space hard. Then Kühnle and Mayr
[28] came up with a reduction of normal form and Gröbner basis computations to linear
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systems which can be computed space-efficiently proving that the computation of Gröbner
bases is exponential space complete.

In chapter 6, the algorithm from [28] is revisited. First, the dimension-dependent bounds
from previous chapters are used to sharpen the complexity estimate. Further improve-
ment comes from the avoidance of the degree bounds for normal forms in lemma 6.3. In
the second part, the algorithm is stripped of all degree bounds and transformed into an
incremental algorithm. The complexity of this algorithm depends on the degrees of the
actual basis and their representation (actually S-polynomials of basis elements) in terms of
the generators.

Chapter 7 gives a short but insightful analysis of the membership problem of toric ideals
(generated by binomials). By the reduction to a module membership problem, it can be
solved in polynomial time or polylogarithmic space for arbitrary polynomials. It would
be interesting to settle the complexity of the representation problem for toric ideals since
this problem is most likely harder. This is suggested by the lower degree bound in section
4.6. Moreover, the definition of toric ideals via modules seems incompatible with the ideal
representation.

The thesis finishes with the analysis of the radical computation by Laplagne [30]. Chap-
ter 8 combines most previous results and yields improvements of twofold kind. First, the
complexity is analyzed depending on the dimension of the ideal, basically replacing the
number of variables by the ideal dimension in the bound. Secondly, the analysis takes the
growth of coefficients into account which is neglected in the arithmetic circuits considered
by Laplagne and could possibly lead to further escalation of the complexity.

These considerations demonstrate the importance of the ideal dimension as a measure
of the complexity of various ideal computations from the very basics up to involved algo-
rithms which are long concatenations of basic operations.

Space-efficient algorithms as considered in this thesis recompute subtasks so often that
they would not perform well in practice. Still, the idea of space-efficiency appears when-
ever fast memory is limited but plenty of output is feasible. This situation requires a del-
icate balance of recomputations and storage which is highly dependent on the amount of
memory available.

Moreover, the worst-case analysis is not telling the whole story in the case of Gröbner
bases. Polynomials with random coefficients most likely form a regular sequence (though
the case is not settled in the overdetermined setting, yet). The hardest problems then arise
with growing coefficients. But examples occurring in applications are usually not that
easy. Sometimes they have low dimensions or are toric and can be treated with techniques
presented in this thesis. For other beneficent characterizations there might be similar re-
sults. Two questions arise in this context. Are the algorithms used in practice aware of
these complexity results, e.g. do they (provably) perform better for low-dimensional ide-
als? If this is not the case, is it possible to construct algorithms which are suitable for these
ideals? The goal of this thesis was not to answer these questions, so they might be par-
tially answered (e.g. there are efficient algorithms for the computation of Gröbner bases of
zero-dimensional ideals and their radicals).
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