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Abstract

X-ray computed tomography (CT) is a imaging modality for high-resolution visualization

of the human anatomy. Its drawback is the increased health risk due to the ionizing

radiation. Simply downscaling the radiation intensity results in inferior image quality and

thus in unreliable medical diagnoses. This work considers the computation of optimized

intensity profiles, i.e., profiles that apply only a small amount of dose at high image

quality. To this end, metrics for image quality as well as for dose are derived. Based

on that, optimization tasks are formulated and addressed by numerical as well as analytic

solution approaches. This includes in particular the derivation and analysis of a novel type

of cutting plane algorithm. The results of the numerical simulations show the excellent

dose reduction potential of this technique, especially for so called inverse geometries, and

hence support further research on these novel CT architectures.

Zusammenfassung

Die Computertomographie (CT) ist ein Bildgebungsverfahren zur hochaufgelösten Darstel-

lung der menschlichen Anatomie. Ihr Nachteil besteht in dem durch die ionisierende

Strahlung erhöhten Gesundheitsrisiko. Verringern der Strahlungsintensität führt jedoch

zu geringer Bildqualität und damit zu ungenauen Diagnosen. Diese Arbeit beschäftigt

sich mit der Berechnung von optimalen Strahlenprofilen, die bei hoher Bildqualität nur

wenig Strahlendosis applizieren. Hierzu werden Metriken für die Bildqualität sowie die

Dosis hergeleitet. Anhand dieser werden Optimierungsaufgaben formuliert und sowohl

numerische wie analytische Lösungsansätze präsentiert. Dies umfasst die Herleitung und

Analyse eines neuen Typs von cutting plane algorithm. Die Ergebnisse der numerischen

Simulationen zeigen dabei das herausragende Dosisreduktionspotential des Verfahrens vor

allem für sogenannte inverse Geometrien und unterstützen so die weitere Erforschung

dieser neuen CT Architekturen.
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Chapter 1

Introduction

In the year 1895, Wilhelm Conrad Röntgen produced the first X-ray image: He visualized

the bones of his wife’s hand by measuring the X-ray attenuation of the biological tissue.

This was the beginning of medical imaging. In the year 1917, Johann Radon showed

that functions can be reconstructed from their line integrals. About 50 years later, Allan

M. Cormack and Godfrey Hounsfield combined both concepts in order to visualize cross-

sectional images of the human body; they invented X-ray computed tomography (CT).

Today, CT has become one of the standard modalities for clinical diagnostics, whereas it

is outperforming in terms of resolution, speed, and bone contrast.

However, X-ray exposure of the human body is not without risk: The ionizing radiation

may damage the genetic material of the body cells and by that increase the probability of

cancer development. Furthermore, due to the increasing expectation of life, the broader

access to medical care, and also the technological progress of medical treatments, the

number of CT acquisitions continuously increases. For that reason, radiation dose causes

more and more awareness from both, patients and clinicians.

On the other hand, medical treatment requires reliable diagnosis which in turn can

only be provided by high quality images. In particular, pixel noise has a severe impact on

image quality and may cause misinterpretations of the patient’s anatomy.

However, dose and noise are no independent entities in CT. As we will see later, they

depend on the intensity of the X-ray beams in a complementary way: high intensity means

high dose and low noise and vice versa. Due to this reciprocal correlation, reducing the

dose while keeping up the image quality is a challenging task.

In current clinical systems, only rather simple techniques for dose/noise reduction are

applied. One is a static filter placed in front of the X-ray source to reduce the radiation

of the outer parts of the body where less intensity is needed. Another technique is the

modulation of the intensity based on the length/width ratio of the patient. However,

these approaches are very practical but by no means optimal in terms of dose and noise,
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Chapter 1. Introduction

in particular as they do not regard tissue specific information, e.g. the location of highly

dose sensitive or highly attenuating organs. Also the standard fan beam geometry is not

optimal, as the control over the X-ray intensities is rather limited.

This unsatisfactory situation motivates this work and induces its goals: First, we want

to provide a detailed, quantitative analysis of the dose and the image noise in CT. This

analysis should be used to optimize the intensity profiles, i.e., to compute profiles that

either minimize the noise at a certain dose level or vice versa minimize the dose at a

certain noise level. From a practical point of view, this also requires the investigation of

numerical algorithms to efficiently solve these optimization tasks. Finally, based on the

optimization results, we want to encourage the investigation of a new type of CT scanners,

namely so called inverse geometry scanners, in particular multisource (MS) geometries.

In more detail, the work is organized as follows: In Chapter 2, we give a brief overview

on the principles of CT. In addition, we describe the concept of MS geometries. Chapter

3 focuses on the dose and the noise in CT and their dependency on the X-ray intensity.

In the end, we will raise the question of how to optimize the intensity profile.

More or less detached from the CT context, a novel optimization approach, called

supporting hyperplane algorithm (SHA), is derived in Chapter 4. In Chapter 5 we then

formulate concrete optimization tasks based on the derived dose and noise metrics and pro-

vide numerical solution methods including the SHA. Chapter 6 is dedicated to numerical

simulations. This includes the graphical illustration of the metrics, their numerical valida-

tion, the performance analysis of the optimization algorithms, and, last but not least, the

results of the optimization tasks. Finally, the described methods and results are discussed

and evaluated in Chapter 7.
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Chapter 2

Principles of

X-ray Computed Tomography

X-ray computed tomography (CT) is a medical imaging modality for high-resolution, cross-

sectional visualization of the human body. This chapter gives a short overview of the

physical and mathematical principles of this technique. We thereby focus on the data

acquisition process, the image reconstruction, and its implementation for discrete data

sets. For a detailed description, we refer to the textbooks by Dössel [20], Kalender [38],

and Kak and Slaney [37], and for the mathematical background to Smith et al. [49] and

Natterer [43]. Finally, we extend these well known concepts to so called multisource inverse

geometry CT, which is a relatively new approach for the next generation of CT architectures

(c.f. De Man et al. [14, 16] and Bequé et al. [5]).

2.1 Data Acquisition

CT produces images representing the X-ray attenuation properties of the human body.

For data acquisition, an X-ray beam g is sent through the body. It gets attenuated by the

traversed tissue and is detected on the opposite side. The attenuation is exponential, i.e.,

according to the Lambert-Beer law

I = I0 exp



−
∫

g

f(x) dx



 , (2.1)

where I0 denotes the input intensity of the beam, f(x) the linear attenuation coefficient

in the point x, and I the measured output intensity.

Intensity is thereby defined as the number of photons per unit time and unit area.

Although the interaction of a single photon with the tissue is of statistical nature, from a

3



Chapter 2. Principles of X-ray Computed Tomography

macroscopic perspective, the intensity can be seen as a deterministic magnitude following

(2.1).

In practice, an X-ray beam is polychromatic, i.e., the energy E of the photons lies within

the range of a continuous energy spectrum: I0 = I0(E). Furthermore, the attenuation

coefficients are energy dependent: f(x) = f(x,E). However, a typical CT detector is not

capable of differentiating these energies, but measures the integral

I =
∫

I0(E) exp



−
∫

g

f(x,E) dx



 dE. (2.2)

For that reason, it is in most aspects sufficient to neglect the polychromaticity, that is, to

assume an average energy and to deal with (2.1).

From the measured intensities, we can then compute the line integral

p =
∫

g

f(x) dx = − log
I

I0

. (2.3)

The linear attenuation coefficient f , also called density function, incorporates the de-

sired information about the body. Different types of tissue have different attenuation

coefficients, and hence a visualization of f allows to localize and differentiate these types.

To this end, we have to measure I (and p, respectively) for all lines g.

x2

x1θ

r

x2

x1

α

−α

α

β

Figure 2.1: CT scanning geometries. For parallel beam (left), the lines are parameterized

by the angle θ and the distance r to the origin, and for fan beam (right) by their view

angle β and fan angle α.

Potential arrangements of the lines g, so called scanning geometries, are depicted in

Figure 2.1. For the parallel beam geometry, the lines g are characterized by the rotation

angle θ ∈ [0, π] and their distance r to the center of rotation (COR).1 For a fixed θ, the

1Throughout this work, the origin of the coordinate system and the COR are coincident.
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2.1. Data Acquisition

lines are all parallel to each other. We have

gpar(θ, r) :=
{

rω(θ) + sω⊥(θ) | s ∈ R

}

with ω(θ) :=

(

cos θ

sin θ

)

, ω⊥(θ) :=

(

− sin θ

cos θ

)

.

Although the parallel beam geometry can be seen as the natural representation, it is

nowadays only of theoretical interest, as the so called fan beam geometry has become stan-

dard. In this setup, a point source emits a fan of X-ray beams. Each beam is characterized

by its fan angle α, i.e., the angle between the ray and the central line through the COR.

For a certain interval α ∈ [−α, α], the beams are detected by a curved detector on the

opposite side of the body. During data acquisition, the source and the detector, both

mounted on the so called gantry, rotate around the body with a common COR covering

all view angles β ∈ [0, 2π]. For historic reasons, a CT scanner with a fan beam geometry

is called third generation (TG) system [20].

x2

x1

θ

·
r

β

α

−α

α

x2

x1

θ

·
r

β

α

−α

α

Figure 2.2: Representation of a ray (bold line) by its parallel and fan beam coordinates

(θ, r) and (β, α), respectively.

As depicted in Figure 2.2, both geometries are related by the coordinate transform

θ = α+ β and r = R1 sinα (2.4)

with R1 the distance from the point source to the COR. Thus

gfan(β, α) := gpar(α+ β,R1 sinα) =
{

R1 sinαω(α+ β) + sω⊥(α+ β) | s ∈ R+

}

.

A particular fan at the view angle β covers all points

fan(β) := {gfan(β, α) | α ∈ [−α, α]}
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Chapter 2. Principles of X-ray Computed Tomography

and the field of view (FOV) is the intersection of all fans, i.e.,

FOV =
⋂

β∈[0,2π]

fan(β).

In the following, we assume the object under consideration to be lying within the FOV,

that is, there exists a domain

Ω ⊂ R
2 such that supp(f) ⊂ Ω ⊂ FOV

(supp(f) denotes the support of the function f).

The resulting data sets ppar and pfan with

ppar(θ, r) =
∫

gpar(θ,r)

f(x) dx, (θ, r) ∈ [0, π]× R =: Σpar, and

pfan(β, α) =
∫

gfan(β,α)

f(x) dx, (β, α) ∈ [0, 2π]× [−α, α] =: Σfan,

are called sinograms. The computation of f from a given sinogram is called image recon-

struction and will be discussed in the subsequent section.

Remark 2.1. If the one dimensional (1D) detector is extended two a two dimensional

(2D) panel, the fan beam geometry becomes a so called cone beam geometry and three

dimensional (3D) data is acquired. If, in addition, the patient is moved orthogonally to the

gantry during data acquisition, one speaks about a helical scan. However, throughout this

work, we restrict ourselves to 2D acquisitions, but all concepts described in the following

can mutatis mutandis be transferred to the other settings.

2.2 Image Reconstruction

There are basically two types of image reconstruction techniques available, namely analy-

tical and iterative reconstruction. The latter method starts out with a certain estimate of

the image, calculates the corresponding sinogram and compares this simulation with the

measured data. Based on that, the image is iteratively modified until the error between

the simulation and the measurement has been minimized yielding an approximation of the

desired density f .

However, for the purpose of this work, we consider the analytical techniques only, in

particular the filtered backprojection algorithm. That is, because on the one hand this

method is widely used in practice, and on the other hand it is a linear approach which

allows for the propagation of variances (c.f. Section 3.3).

The relation between the attenuation coefficient f and its parallel beam sinogram

p = p(θ, r), i.e., between a function and its line integrals, is mathematically described by

the Radon transform.

6



2.2. Image Reconstruction

Definition 2.2. For the spaces L2(Ω) and L2(Σpar) of the measurable, square integrable

functions on Ω and Σpar, respectively, the mapping

R : L2(Ω)→ L2(Σpar), f 7→ Rf, Rf(θ, r) =
∫

gpar(θ,r)∩Ω

f(x) dσ(x),

is called Radon transform. Its adjoint

R# : L2(Σpar)→ L2(Ω), p 7→ R#p, R#p(x) =

π∫

0

p(θ, x⊤ω(θ)) dθ,

is called backprojection operator.

Given this definition, image reconstruction means the inversion of the Radon transform,

i.e., the computation of f = R−1p. Although this analytical inverse exists and can be

stated explicitly, it is only of limited value in practice. That is, because R is a compact

operator, and therefore the inverse problem becomes ill-posed (c.f. Rieder [46]).

Alternatively, we make use of the relation

(R#p) ∗2 f = R#(p ∗1 Rf),

which is derived in Appendix A.1. (∗2 denotes the 2D convolution operator in L2(R2)

and and ∗1 the 1D convolution operator along the second dimension of L2(Σpar).) For

D := R#q approximating the Dirac-distribution, we get

f ≈ D ∗2 f = R#(q ∗1 Rf). (2.5)

D is thereby called point spread function and q reconstruction kernel. Typical choices

for q are variants of the low-pass filter defined by its Fourier transform

F(q)(k) =







|k| for |k| ≤ k
0 else

with a cut-off frequency k. Figure 2.3 illustrates the filter. One can show that D converges

to the Dirac distribution for k →∞ (c.f. Natterer [43], Chapter VII ).

Equation (2.5) induces a reconstruction algorithm called filtered backprojection (FBP):

The sinogram ppar = Rf gets filtered by a 1D convolution with q and afterwards backpro-

jected yielding an approximation of f .

In this fashion, FBP works for parallel beam geometries. To adapt (2.5) to a fan beam

geometry, we apply the coordinate transform (2.4), yielding the following weighted FBP

formula as derived in Appendix A.2:

f ≈ C(h ∗1 (w1pfan)) (2.6)

7



Chapter 2. Principles of X-ray Computed Tomography

   

0

k
2

−
1

k
0

1

k
   

0

k

−k 0 k

Figure 2.3: Low pass filter q (right) and its representation in the Fourier domain F(q)

(left).

with

C : L2(Σfan)→ L2(Ω), p 7→ Cp, (Cp)(x) =
1

2

2π∫

0

w2(x, β)p(β, γ(β, x)) dβ,

w2(x, β) :=
1

(x⊤ω(β))2 + (R1 − x⊤ω⊥(β))2
, γ(x, β) := arctan

(

x⊤ω(β)

R1 − x⊤ω⊥(β)

)

h(α) := q(α)

(

α

sin(α)

)2

, (w1p)(β, α) := |R1 cos(α)| p(β, α).

In practice, we have α < π/2 and can therefore omit the absolute value bars in the

definition of w1. Note, that the convolution h ∗1w1p in L2(Σfan) has to be carried out only

within [−α, α].

2.3 Discrete Data

So far, we considered the image, i.e., the density function f , and the sinogram p as elements

of L2-spaces. However, this representation does not regard some substantial restrictions:

In practice, the data acquisition is limited to a finite number of detectors having a finite

width as well as to a finite number of rotation angles. Furthermore, the image has to

be visualized on a 2D grid of pixels having a finite size. Therefore, we adapt the data

acquisition and the image reconstruction for the finite dimensional setting.

2.3.1 Discrete Acquisition

A single X-ray detector typically consists of a scintillator crystal coupled to a photo-diode.

In the crystal, the incoming photons are converted to visible light. In turn, the photo-diode

converts the light to electric current proportional to the number of photons, i.e., to the

X-ray intensity. In a fan beam geometry, a set of single detectors is mounted on a curved

array in order to measure photons over the whole fan.

8



2.3. Discrete Data

In order to gain significant signals, the single detectors have to have a certain width

∆α, since otherwise not enough photons would hit the scintillation crystal. These pixels

are thereby characterized by the fan angles of its centers

αn := −α+
1

2
∆α+

1

4
∆α+ (n− 1)∆α, n ∈ N := {1, . . . , N}.

The additional shift by ∆α/4 is called quarter detector offset and is used to avoid aliasing

artifacts in the reconstruction [37]. Also the rotation interval [0, 2π] is split into small

intervals with a length ∆β and centers

βk =
1

2
∆β + (k − 1)∆β, k ∈ K = {1, . . . , K},

so called views, and all photons detected within such an interval are assigned to the same

view. Furthermore, due to manufacturing limitations, there are small distances between

the sensitive areas of the single detectors, and the detectors may have a varying sensitivity

due to inhomogeneities or different angles of incidence.

For these reasons, one actually does not measure I ∈ L2(Σfan), but

I = DI ∈ R
K×N with (DI)kn :=

βk+∆β/2∫

βk−∆β/2

〈I(β, ·), ηn〉 dβ (2.7)

and ηn ∈ L2(R) a function characterizing the sensitivity of the n-th pixel. (〈·, ·〉 denotes

the scalar product in L2(R).) The line of response (LOR) for a tuple (k, n) is the set of

all rays covered by the corresponding box in Σfan, that is,

LORkn = {gfan(β, α) | |β − βk| ≤ ∆β/2, |α− αn| ≤ ∆α/2} .

By adapting (2.3), we get the approximated line integrals

p ∈ R
K×N , pkn := − log

Ikn
I0,kn

(2.8)

with I0 = DI0.

2.3.2 Discrete Filtering

To perform image reconstruction based on the discrete data set p, we have to adapt the

FBP formula (2.6): First, we approximate w1pfan by

p̃ ∈ R
K×N , p̃kn := w1,npkn, with w1,n := R1 cosαn. (2.9)

9
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Second, we discretize the filtering step. To this end, we extend the discrete sinogram

entries to an L2-function of α again using interpolation, i.e.,

(Φp)k(α) :=
∑

n∈N

pknφ∆α(α− αn)

with a basis function φ∆α : R→ R+. Now we apply the convolution with h onto Φp:

(h ∗1 (Φp)k)(αl) =
∫

R

h(α)(Φp)k(αl − α) dα =
∫

R

h(α)
∑

n∈N

pknφ∆α(αl − α− αn) dα

=
∑

n∈N

pkn

∫

R

h(α)φ∆α((l − n)∆α− α) dα

For

h̃ = (h−N , . . . , hN), h̃n :=
∫

R

h(α)φ∆α(n∆α− α) dα

we finally get

(h ∗1 (Φp)k)(αl) =
∑

n∈N

pknh̃l−n = (h̃ ∗N p)kl. (2.10)

(∗N denotes the discrete convolution over N .) Thus the filtering step can be reduced to a

discrete convolution of the data.

2.3.3 Distance-Driven Backprojection

The last step in the fan beam FBP is the weighted backprojection. To reconstruct the

density from discrete data points, we need a discrete version of the backprojection operator

C. Moreover, image visualization on a computer is based on a grid of pixels, i.e., a set of

squares with an edge length ∆x and centers xj, j ∈ J := {1 . . . , J}. Therefore, we have

to compute the average fj of the density f over such a pixel xj.
2

Finding a backprojection operator that maps the discrete data onto the pixel grid is

basically an interpolation problem. Various approaches to that have been described in

literature. For an overview we refer to Zhuang et al. [62]. We present an approach called

distance-driven backprojection (DDBP) [13]: The interpolation coefficients are supposed

to represent the contributions of the sinogram entries to the image pixels, i.e., the overlaps

of the single LORs and the image pixels under consideration.

To compute these overlaps for the view βk, the boundaries of the image pixels xj,

j ∈ J , as well as the boundaries of the detector pixels αn, n ∈ N , are projected onto a

common axis with the position of the X-ray source R1ω
⊥(βk) being the projection center.

This is illustrated in Figure 2.4. The bounds of the projected pixels form intervals Qk(αn)

2Depending on the context, we may identify the image pixels, detector pixels, and views with their

centers.
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x2

x1

x2

Qk1 Qk2 Qk3 Qk4 Qk5

Rk1 Rk2 Rk3

Figure 2.4: Distance-driven backprojection. Left: For a view βk, the boundaries (•) of

image pixels xj (�) as well as the boundaries (�) of the detector pixels αn are projected

onto a common axis (x2). Right: The interpolation weights depend on the resulting

intervals Rkj = Rk(xj) and Qkn = Qk(αn).

and Rk(xj). The interpolation coefficients c̃jkn are then the length of the intersection of

these intervals divided by the length of Rk(xj):

c̃jkn =
|Qk(αn)) ∩Rk(xj)|

|Rk(xj)|
.

Finally, the discrete fan beam DDBP reads

C : R
K × R

N → R
J , p 7→ Cp, (Cp)j =

∑

k∈K

∑

n∈N

cjknpkn (2.11)

with

cjkn :=
∆β

2
w2(xj, βk)c̃jkn.

We formulate the algorithm:

Algorithm 2.3 (Discrete Fan Beam FBP).

1. Weight sinogram p, i.e., compute p̃ according to (2.9).

2. Filter p̃ by computing p = h̃ ∗N p̃.

3. Compute DDBP: f = Cp.

Remark 2.4. Rearranging the coefficients cjkn to a matrix C ∈ R
J×KN allows to write the

backprojection as a single matrix-vector-product. C is called system matrix, as it depends

on system intrinsic parameters only. However, in practice this matrix is very big, and thus

the backprojection is rather computed on the fly instead of storing the complete matrix in

advance.

11
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Remark 2.5. Analogously to the DDBP, we can also define a distance-driven projection

(DDP) [13] that computes a discrete sinogram p given a discrete density function f . Such

an operator is required for numerical simulations.

2.4 Multisource Inverse Geometries

As mentioned above, TG systems are today’s standard CT architectures. However, as we

will see in Chapter 3, they are not optimal from a dose/noise perspective, as they allow

for only limited control over the X-ray beam intensities. A higher level of control can be

achieved for so called inverse geometry systems [16], which can be seen as the next scanner

generation. Figure 2.5 shows various system concepts as elements of a broader class of CT

architectures.

Figure 2.5: CT architecture concepts (c.f. De Man [16], reprinted with permission) with

sources (S) and detectors (D) including a TG geometry (left) and inverse systems.

A fully inverted system would have a broad X-ray source and a single point detector.

However, this remains a more or less theoretical concept, as it suffers from various practical

limitations. Intermediate steps in between the TG and the fully inverted system are

either multi-spot, hereinafter called multisource (MS), or scanned-source inverse geometries.

While the latter type has been proposed by Schmidt et al. [47], we focus on MS geometries

as described by De Man et al. [14] and Bequé et al. [5]. Figure 2.6 (left) provides a more

detailed illustration of that geometry.

12



2.4. Multisource Inverse Geometries

S−2

S−1

S0S1

S2

x1

x2

D

ψ ψmax
Sm

Sm+1

0

D1D2

·

·

Figure 2.6: Left: a multisource geometry comprising |M| = 5 sources (S−2, . . . , S2) equidis-

tantly (source-to-source angle ψ) distributed over an arc and a relatively small, flat detector

(D). The fans cover a circular FOV (dotted circles for 1, 3 and 5 sources, respectively).

Right: congruent triangles △{Sm, D2, 0} (dash-dotted line) and △{Sm+1, D1, 0} (dashed

line) and the edge-to-origin distances (bold arrows) used to determine ψmax.

A set of point sources Sm, m ∈ {−M, . . . ,M} =: M, is symmetrically and equidis-

tantly distributed over an arc with radius R1 and its center being the COR. Each source

sequentially projects a subfan onto a flat detector (with a distance R2 to the origin and a

width d) covering only a part of the FOV. The subfans can be assembled to a complete TG

fan, if the inner edge of a subfan has a smaller distance to the COR than the outer edge

of its inner neighbor. In the limit case, i.e., for the maximum source-to-source angle ψmax,

the points {Sm, D2, 0} and {Sm+1, D1, 0}, as shown in Figure 2.6 (right), form congruent

triangles. The triangles are rotated by ψmax, which is in turn the angle between the lines

{0, D1} and {0, D2}. Hence

ψmax = 2 arctan
d

2R2

.

For smaller angles ψ ≤ ψmax, the subfans overlap.

As for a TG system, the source arc and the detector are mounted on a common gantry

which rotates around the COR. By that, we acquire data for view angles θ ∈ [0, 2π],

positions on the detector r ∈ [−d/2, d/2], and sources m ∈M.

As mentioned above, we can assemble the MS subfans to a TG fan. This step is called

rebinning and is illustrated in Figure 2.7. In more detail, we have the fan beam coordinates

βm(θ) = θ +mψ, αm(r) = arctan
R2 sin(mψ)− r cos(mψ)

R1 +R2 cos(mψ) + r sin(mψ)
. (2.12)
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A derivation can be found in Appendix A.3. Vice versa, we get

θm(β) = β −mψ, rm(α) =
R2 sin(mψ)− (R1 +R2 cos(mψ)) tanα

sin(mψ) tanα− cos(mψ)
.

+ + + + =

Figure 2.7: Rebinning of MS subfans for ψ = ψmax: the subfans of the views β + mψ,

m ∈M, contribute to fan(β).

By (2.12), we have a MS beam characterized by

gMS(θ, r;m) := gfan (βm(θ), αm(r)) .

yielding intensities

IMS
0,m(θ, r) and IMS

m (θ, r), m ∈M, (θ, r) ∈ [0, 2π]× [−d/2, d/2] =: ΣMS.

In order to reconstruct an image from MS data, we apply rebinning and perform fan

beam FBP, i.e., Algorithm 2.3.3 To deal with a potential subfan overlap, the rebinning is

carried out for the intensities, i.e., we add up the subfan data sets:

I(β, α) =
∑

m∈M

IMS
m (θm(β), rm(α)) (2.13)

(analogously for the input intensities I0).

In practice, we have to deal with discrete data again, i.e., discrete views θk̃, k̃ ∈ K
(∆θ = ∆β), and discrete detector pixels ro, o ∈ {1, ..., O} =: O. Analogously to (2.7), we

acquire data

IMS = DIMS ∈ R
|M|×K×O

with

(DIMS)mk̃o :=

θ
k̃

+∆θ/2
∫

θ
k̃
−∆θ/2

〈

IMS
m (θ, ·), ηmo

〉

dθ

and ηmo ∈ L2(R) the sensitivity of the o-th detector pixel for a ray emitted by the m-th

source. Hence the rebinning requires interpolation, as we have to match the TG fan angles

3Note that there exist also direct analytic reconstruction methods for MS data sets, c.f. Yin et al. [60]

and Baek and Pelc [1].
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αn, n ∈ N , and the flat MS detector bins ro, o ∈ O. However, we assume ψ to be a

multiple of ∆β, and thus no interpolation is required along the first dimension. As for

the backprojection, one can apply a distance-driven approach (c.f. Section 2.3.3) yielding

rebinning coefficients anmo and

I = AIMS ∈ R
K×N , Ikn =

∑

m∈M

∑

o∈O

anmoI
MS
mko. (2.14)

Afterwards, we compute the fan beam sinogram p and proceed with the standard Discrete

Fan Beam FBP:

Algorithm 2.6 (MS Fan Beam FBP).

1. Rebin the intensities IMS and IMS
0 according to (2.14) yielding I and I0, respectively.

2. Compute the sinogram p according to (2.8).

3. Apply Algorithm 2.3 onto p yielding f .
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Chapter 3

Dose and Noise in

X-ray Computed Tomography

In Chapter 2, we gave a brief overview of the principles of CT focusing on data acquisition

and image reconstruction. This chapter deals with the more specific topics radiation dose

and image noise in CT. For the physical background we refer to Johns and Cunningham

[36], Dössel [20], and Kalender [38]. We start by investigating X-ray beam intensity profiles

and afterwards show their influence on dose and noise. Finally, we present a workflow

concept which allows to optimize the profiles yielding less dose and/or image noise.

Equations (2.1) and (2.2), respectively, describe the dependency of an X-ray measure-

ment on the input intensity I0. Thereby, the measured attenuated intensities I should be

kept above a certain level, as otherwise the measurement would become unreliable. This

requires, in turn, a sufficiently high input intensity I0. The effect of data unreliability

on the quality of the reconstructed image will be discussed in Section 3.3. On the other

hand, higher intensity means more radiation for the patient, i.e., a higher patient dose (c.f.

Section 3.2). For that reason, the input intensity has to be chosen carefully, to find a good

trade-off between image quality and radiation exposure.

3.1 Intensity Profiles

The intensity distribution over the fan angle α and rotation angle β, i.e., the function

I0(β, α), is called intensity profile. This section describes various techniques to generate

intensity profiles given a particular scanning geometry.
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3.1.1 Tube Current Modulation

As stated in Section 2.1, the X-ray intensity is proportional to the number of photons

emitted by the source. The number of photons, in turn, is proportional to the current (in

milliampere (mA)) between the cathode and the anode of the X-ray tube. By modulating

the tube current function t = t(β), also called mA-profile, we can modify the X-ray intensity

during the rotation:

Ĩ0 = c0t(β) (3.1)

with the constant c0 characterizing the efficiency of the X-ray source, i.e., the beam inten-

sity per mA.

Figure 3.1 (left) shows the data acquisition for a homogeneous ellipsoidal object. De-

pending on the view angles β, the paths of X-rays traversing the object have different

length. The longer its path, the more a beam gets attenuated, yielding the measurements

shown in Figure 3.1 (top right). In order to level out these measurements, i.e., to avoid

surplus but also insufficient intensities, one can modulate the tube current t(β) as shown

in 3.1 (bottom right).

β = 0

β = π
2

0 π 2π0

Ĩ0,max

β
0 π 2π0

Ĩ0,max

Figure 3.1: Left: X-ray projection of a homogeneous ellipse for β = 0 and β = π/2. Right:

resulting measured intensities I(β) (solid lines) for the central beam (α = 0) depending

on the input intensities c0t(β) (dotted lines) having a maximum Ĩ0,max.

Of course, the modulation function t is subject to several practical limitations. For

that reason, we model t as the superposition of L translated versions of the basis function

B : [0, 2π]→ R+ scaled with actuators ξl ≥ 0, l ∈ {1, . . . , L} =: L, that is,

t(β) =
∑

l∈L

B(β − βl)ξl. (3.2)

Throughout this work, we use k-th order B-splines as basis functions yielding a piecewise

constant modulation function for k = 0 and a smooth modulation function for k = 2,

respectively (c.f. Figure 3.2).
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Figure 3.2: Normalized B-splines of order k = 0, 1, 2 (from left to right) on the interval

[0, 2π].

3.1.2 Bowtie Filters

We want to adapt the input intensity not only during rotation, but also across the fan.

Consider the projection of a homogeneous disc, as illustrated in Figure 3.3 (left). The

X-rays in the central region of the fan traverse rather long paths through the disc yielding

low measured intensities, while beams in the outer regions are less attenuated yielding

high values (Figure 3.3, top center). To avoid these surplus intensities, we have to modify

the input intensity such that less photons pass the object in the outer region (Figure 3.3,

bottom center).

−α α

Ĩ0

I(α)
−α α

Ĩ0

I(α)

I0(α)−α 0 α0

Ĩ0

α
−α 0 α0

Ĩ0

Figure 3.3: Left: X-ray projection of a homogeneous disc with input intensity I0 ≡ Ĩ0.

Center: resulting measured intensities I(α) (solid lines) depending on the input intensities

I0(α) (dotted lines). Right: realization of the lower input intensity distribution I0(α) by

the insertion of a bowtie filter.

The technical realization of this compensation in a TG system is the integration of

an additional attenuator in between the source and the object (Figure 3.3, right). Such

an attenuator typically consists of a metal plate with a varying thickness. Due to its

characteristic profile, i.e., thin in the central region and thick in the outer region, it is

called bowtie filter.
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For h ∈ L2(R2) the density function of the filter, we get

H(α) = exp




−

∫

gfan(0,α)

h(x) dσ(x)




 (3.3)

the X-ray flux per unit intensity as a function of the fan angle. With Ĩ0 the intensity of

the X-ray beams emitted by the source, we have

I0 = I0(α) = Ĩ0H(α).

Of course, a typical patient does not have a homogeneous circular profile. Therefore,

various types of filters exist for the different regions of the body and different patient sizes.

Figure 3.4 shows typical bowtie spectra.

0

1

−α 0 α
0

1

−α 0 α

Figure 3.4: Typical bowtie filter functions H(α) for thorax (left) and head (right) acqui-

sitions.

Finally, we combine tube current modulation and bowtie filters yielding the 2D intensity

profile for TG systems:

I0(β, α) = Ĩ0H(α) = c0t(β)H(α) = c0H(α)
︸ ︷︷ ︸

=:F (α)

∑

l∈L

B(β − βl)ξl (3.4)

The function F (α) describes the X-ray flux per mA.

3.1.3 Virtual Bowtie

We motivated the introduction of MS inverse geometry CT in Section 2.4 by its advanta-

geous controllability of the intensity profiles. This can be seen as follows:

The tube current of every single subfan can be controlled independently according to

(3.1), i.e., for the m-th subfan it can be written as the product of the mA-profile tm and its

flux F̃m(r). E.g., if no additional filter is applied, F̃m is a rectangular function vanishing

for r /∈ [−d/2, d/2]. Hence,

IMS
0,m(θ, r) = tm(θ)F̃m(r) =

∑

l∈L

B(θ − θl)F̃m(r)ξlm
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using the representation of tm as a superposition of B-splines (c.f. (3.2)). The actuators

ξlm form a matrix ξ ∈ R
L×|M|.

Together with (2.13), we have

I0(β, α) =
∑

m∈M

IMS
0,m(θm(β), rm(α)) =

∑

m∈M

∑

l∈L

B(θm(β)− θl) F̃m(rm(α))
︸ ︷︷ ︸

=:Fm(α)

ξlm.

The rebinned flux functions Fm(α) are called flux basis functions. By this interpretation,

we have |M| degrees of freedom to control the intensity across α. E.g., in case of no subfan

overlap (ψ = ψmax), we can control the flux independently on |M| intervals. This feature

can be seen as a dynamic flux compensation, i.e., a virtual filtering, which we call virtual

bowtie.

We define the actuator basis functions

glm(β, α) := B(θm(β)− θl)Fm(α) ∀l,m

yielding

I0(β, α) =
∑

m∈M

∑

l∈L

glm(β, α)ξlm. (3.5)

For the discrete setting, we have

I0,kn = (AIMS
0 )kn = (ADIMS

0 )kn

=
∑

m∈M

∑

o∈O

anmo

θk+∆θ/2∫

θk−∆θ/2

〈

IMS
0,m(θ, ·), ηmo

〉

dθ

=
∑

m∈M

∑

o∈O

anmo

θk+∆θ/2∫

θk−∆θ/2

〈
∑

l∈L

B(θ − θl)Fm(·)ξlm, ηmo
〉

dθ

=
∑

m∈M

∑

l∈L

θk+∆θ/2∫

θk−∆θ/2

B(θ − θl) dθ
︸ ︷︷ ︸

=:pkl

∑

o∈O

anmo 〈Fm(·), ηmo〉
︸ ︷︷ ︸

=:qnm

ξlm.

The coefficients pkl and qnm form matrices P ∈ R
K×L and Q ∈ R

N×|M|, respectively. We

write

I0 = PξQ⊤ (3.6)

and call P the tube current basis matrix and Q the flux basis matrix. The representations

(3.5) and (3.6), respectively, are not limited to MS geometries, but are valid for other

geometric concepts like scanned source geometries (c.f. Figure 2.5, lower half) or other

types of dynamic bowtie filters [54]. Therefore, these formulas will be applied throughout

the rest of this work. We give two additional examples:
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Example 3.1.

a) A conventional TG profile (3.4) is represented forM = {0} and

gl0(β, α) = F (α)B(β − βl)

according to (3.4).

b) A fully controllable system (FCS) is a CT architecture, where the intensity of every

LOR can be controlled independently (e.g. the benchtop system described in [6]). In

this configuration, we have L = K andM = {1, . . . , N}. The support of each basis

function is limited to a single LOR, i.e.,

supp(gkn(β, α)) ⊂ LORkn ∀k, n.

P and Q are diagonal matrices.

Remark 3.2. Throughout this section, we neglected the polychromaticity of the X-ray

beams, as proposed in Section 2.1. Otherwise, Fm and thus I0 would become energy

dependent.

3.2 Dose

X-ray exposure of the human body causes the damage of cells. In most cases, the damage

can either be repaired by the cell itself, or the cell may die. Up to a certain extent, the body

can compensate for that and no adverse health effects occur. However, the radiation may

also damage the genetic material of the patient. With a certain likelihood, this may cause

mutations which in turn may result in the development of cancer. Thus X-ray radiation

may increase the risk of cancer, and this enhanced probability is called stochastic effect.

This section presents methods to categorize and to quantify the stochastic effects fol-

lowing the Recommendations of the International Commission on Radiological Protec-

tion (ICRP) [34]. In the end, we derive an intensity dependent dose metric.

3.2.1 Energy Deposition

There are different types of interactions between ionizing radiation like X-rays and biolog-

ical tissue, such as photo absorption and Compton scatter. Each type can be characterized

by a linear attenuation coefficient, whereas their sum is the attenuation coefficient f intro-

duced in Section 2.1. For photo absorption, a photon hitting an atom causes the emission

of an electron while depositing all of its energy in the tissue. In case of Compton scatter,

only a part of the energy is deposited, and the photon proceeds with lower energy into a

new direction. For details, we refer to Dössel [20], Section 1.2.
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The stochastic effects are caused by the energy deposition. For a small fraction of tissue

in the body, namely the volume element dV , the so called absorbed dose is defined as the

mean imparted energy dE divided by the mass dm of dV , that is,

dE

dm
=

1

ρ

dE

dV

with ρ the density of dV . The unit of the absorbed dose is J kg−1 and has the special

name gray (Gy).

Obviously, the energy deposition is proportional to the number of photons entering dV.

By tracing back the paths of the photons, we have that the number of scattered photons,

as well as the number of absorbed photons is also proportional to the number of photons

entering the tissue. By that, we have the proportionality of the absorbed dose to the

input intensity I0(β, α), whereas the fan beam coordinates (β, α) describe the position and

direction of the incoming photon. We get the spatial distribution of the total absorbed

dose:

Dabs(x) =

2π∫

0

α∫

−α

D(x, β, α)I0(β, α) dα dβ

with D(x, β, α) the average absorbed dose at the position x per photon entering the body

from the direction (β, α).

3.2.2 Equivalent and Effective Dose

We assume that the stochastic effects caused by Dabs are equivalent to those caused by

a homogeneous irradiation of a whole organ (or tissue) T applying the average absorbed

dose

Dequ,T :=
1

|VT |
∫

VT

Dabs(x) dx

with VT the volume of the organ. Dequ is therefore called equivalent dose.1 Although the

unit of Dequ is still J kg−1, it is called sievert (Sv).

However, we want to have an estimate of the health risk of an X-ray exposure covering

several organs. Since different organs have different sensitivities to stochastic health effects,

the ICRP introduced organ weighting factors wT (c.f. Table 3.1) and defined the effective

patient dose

Deff :=
∑

T

wTDequ,T .

1The definition given by the ICRP [34] also includes a weighting for different types of radiation (e.g.

photons, protons, and neutrons) which can be neglected in the context of CT.

23



Chapter 3. Dose and Noise in X-ray Computed Tomography

tissue wT
∑
wT

bone-marrow, colon, lung, stomach, breast 0.12 0.60

gonads 0.08 0.08

bladder, oesophagus, liver, thyroid 0.04 0.16

bone surface, brain, salivary glands, skin 0.01 0.04

remainder tissues 0.12

total 1.00

Table 3.1: ICRP tissue weighting factors [34].

We define the energy deposition maps per actuator, i.e., the mappings

D0
abs,lm(x) :=

2π∫

0

α∫

−α

glm(β, α)D(x, β, α) dα dβ.

with glm(β, α) the basis functions of the intensity profile according to (3.5). Its unit is

Gy/mA. Based on that, we introduce the effective dose contributions per actuator

dlm :=
∑

T

wT
1

|VT |
∫

VT

D0
abs,lm(x) dx (3.7)

with the unit Sv/mA. Hence

Deff =
∑

T

wT
1

|VT |
∫

VT

2π∫

0

α∫

−α

D(x, β, α)I0(β, α) dα dβ dx

=
∑

T

wT
1

|VT |
∫

VT

2π∫

0

α∫

−α

D(x, β, α)
∑

m∈M

∑

l∈L

glm(β, α) ξlm dα dβ dx

=
∑

T

wT
1

|VT |
∫

VT

∑

m∈M

∑

l∈L

D0
abs,lm(x) ξlm dx

=
∑

m∈M

∑

l∈L

dlmξlm =: 〈d, ξ〉 . (3.8)

We use the notation 〈d, ξ〉, as the component-wise multiplication and summation of the

two matrices d and ξ is a scalar product in R
L×|M|. Hence the effective dose turns out to

be a linear function of the intensity profile actuators ξ. It is a metric that describes the

health risk of a CT acquisition based on the applied intensities.

3.2.3 Numerical Dose Computation

The energy deposition and thus the effective dose cannot be measured in a real patient

directly. For that reason, we have to apply an indirect method, that is, we simulate the
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3.2. Dose

dose numerically based on a data set of the patient. Alternative methods are based on

patient models, c.f. Rannikko et al. [45] and Yamamoto et al. [59].

organ map attenuation and
scatter coefficients

energy deposition maps

equivalent dose contribution

effective dose contribution

ICRP weights

Monte Carlo simulation

integration over organ

weighted summation

for every actuator

for every organ

actuator profile

effective patient dose

weighted summation

Figure 3.5: Workflow of the numerical dose computation.

Figure 3.5 illustrates the workflow for the simulation of the dose. The required data set

consists of a segmented organ map of the patient, which in turn provides the distribution of

the different attenuation coefficients (e.g. for energy deposition and scatter) of the patient.2

Based on those coefficients, we compute the energy deposition maps D0
abs,lm for all l,m

using a Monte Carlo simulation, i.e., we simulate the path of a sufficiently high number of

photons entering the body according to the actuator basis function glm(β, α), and divide

the resulting energy distribution over x by the number of emitted photons.3

Afterwards, we follow equation (3.7) to compute the coefficients dlm, that is, we in-

tegrate over the different organs yielding the equivalent dose contributions, weight the

coefficients with the ICRP tissue weighting factors, and sum over all organs. Finally, we

compute the effective patient dose according to (3.8), i.e., by a weighted summation of the

dose contributions and the actuator profile ξ.

2The acquisition of an segmented organ map is a challenging task, but is not covered by this work.
3Note that the numerical method actually computes the coefficients for finite voxels xj and interpola-

tion is required to get a continuous profile.
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3.3 Noise

In any practical CT acquisition, noise is incorporated in the measurement data. This

affects the reliability of the data and hence the quality of the reconstructed image. There-

fore the measurements are interpreted as random variables, and the statistical magnitude

variance serves as a quantitative measure for the strength of the noise. For a summary on

computational formulas for random variables, see Appendix A.4.

A broad variety of articles addressing noise and variance analysis in FBP has been

published since the 1970ies. Among those we note Tanaka and Iinuma [52], Brooks and

Di Chiro [10], Barrett et al. [2], Huesman et al. [32], Chesler et al. [12], Gore and Tofts

[28], Bennett and Byer [4], Gies et al. [27], Graham et al. [29], Zhu and Star-Lack [61],

and Wunderlich and Noo [58]. All these articles cover different aspects of the variance

analysis but essentially differ with respect to the scanning geometry under consideration,

the underlying data domain (discrete or continuous), and various approximation steps (e.g.

stationary noise models, or the negligence of covariances or electronic noise).

Also the approach presented in this section partially accords with the referenced arti-

cles. In more detail, we formulate a intensity dependent noise model including electronic

noise and propagate it through the reconstruction process. The propagation thereby com-

prises the fan beam DDBP, i.e., Algorithm 2.3, including covariances. Approximations are

made by simplifying the statistics of the MS rebinning, by linearizing the computation of

the noise in the sinogram, and by limiting the convolution in the filtering step. In the end,

we obtain a reciprocal relation between the noise and the X-ray beam intensity. Since the

previous section showed the proportionality of the dose and the intensity, noise and dose

can be seen as complementary entities in CT.

Note, that our approach could also deal with other analytic reconstruction formulas,

e.g. those proposed by Pan and Yu [44], Wang et al. [57], and Dennerlein [19], where the

authors claim improved noise properties of the reconstructed images.

3.3.1 Noise Sources in X-ray Computed Tomography

X-ray measurements are affected by Poisson distributed quantum noise [20]. Hence the

measurements Ikn, k ∈ K, n ∈ N , are interpreted as random variables. The noiseless

measurements Ikn := I0,kn exp(−pkn) (c.f. (2.8)) serve as expectation values and - due to

Poisson statistics - also as their variances.

Additionally, the detector electronics cause so called electronic noise which is assumed

to be Gaussian distributed and stationary for all measurements.4 Its expectation value

4This is a macroscopic approximation for high values Ikn. From a microscopic perspective, the detector

measures integer values, i.e., the electronic noise is of discrete nature.
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3.3. Noise

equals zero and its variance is described by the constant σ2
e .

Together, the expectation value and the variance of the data read

E[Ikn] = Ikn = I0,kn exp(−pkn), Var[Ikn] = E[Ikn] + σ2
e , (3.9)

The simple summation of the variances is due to the independence of both noise sources.

Remark 3.3. Equation (3.9) describes the combination of a discrete and a continuous

random variable. To overcome this conflict, we hereinafter consider Ikn as a Gaussian

distributed continuous random variable with expectation value and variance according to

(3.9). This is a valid approximation for high numbers Ikn.

Remark 3.4. In the following, we apply the same statistics (3.9) in case of a MS system,

i.e., if we do not measure I directly, but compute it by I = AIMS as described in Section

2.4. This is an approximation, as we neglect the smoothing and the covariances induced

by the mapping A.

3.3.2 Variance in the Sinogram

Based on the formulated noise model (3.9), we analyze the noise in the sinogram p. From

(2.8) we have

p = h(I) with h(t) := − log
t

I0

(3.10)

(The indices kn are omitted throughout this section.) as shown in Figure 3.6 (left). Since

p is a function of the random variable I, it is a random variable itself. For both random

variables I and p, we introduce probability density functions f and g, respectively, and

propose the probability P (I ≤ Ĩ) to be equal to the probability P (p ≥ h(Ĩ)) ∀Ĩ ∈ [0, I0]

(c.f. Figure 3.6 right).5

Hence for their corresponding cumulative distribution functions holds

∞∫

h(Ĩ)

g(s) ds =

Ĩ∫

0

f(t) dt ∀Ĩ ∈ [0, I0].

By applying the parameter transform

t = h−1(s) = I0 exp(−s), dt = −I0 exp(−s) ds

we get

∞∫

h(Ĩ)

g(s) ds =

h(Ĩ)∫

h(0)

−f(h−1(s))I0 exp(−s) ds =

∞∫

h(Ĩ)

f(I0 exp(−s))I0 exp(−s) ds ∀Ĩ ∈ [0, I0]

5The change of "≤" to "≥" is due to the monotonic decrease of the function h.
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h(t)

t

h(t) = − log t
I0

I0I
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h(t)

t

I0I

Figure 3.6: Left: function h(t) and the mapping of a point I onto h(I). Right: interpre-

tation of I as a random variable with expectation value I and density function f and the

resulting random variable p = h(I) with density function g, respectively.

yielding

g(s) = f(I0 exp(−s))I0 exp(−s). (3.11)

Finally, we can compute the expectation value and the variance of the using the stan-

dard formulas:

E[p] =

∞∫

−∞

sg(s) ds, Var[p] =

∞∫

−∞

(E[p]− s)2g(s) ds. (3.12)

3.3.3 Linearization

Although we could state an approximate density function f(I) explicitly (as a Gaussian

density function according to Remark 3.3), equations (3.11) and (3.12) are not useful for

a practical handling of the variance of the sinogram. For that reason, we compute an

approximate representation by linearizing (3.10) around the expectation value E[I] = I.

By Taylor’s theorem, we have

h(t) ≈ h(I) +
d

dt
h(I)(t− I) = h(I)− 1

I
(t− I) = h(I)− t

I
+ 1.

We assume the input intensity and thus the expectation value I to be deterministic. Thus

for the variance holds

Var[p] = Var[h(I)] ≈ Var[h(I)] +
1

I
2 Var [I] + 0 =

1

I
2 Var [I] .
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Together with (3.9), we have

Var[p] ≈ 1

I
2 (I + σ2

e) =
1

I
+ σ2

e

1

I
2 . (3.13)

Finally, we write out the indices kn again and express the variance by the input intensity

I0,kn according to (3.9):

Var[pkn] ≈
exp(pkn)

I0,kn

+ σ2
e

(

exp(pkn)

I0,kn

)2

. (3.14)

3.3.4 Variance in Filtered Backprojection

The sinogram noise propagates through the individual reconstruction steps towards the

final image. The first step of the image reconstruction is the cosine weighting (2.9). We

have

p̃kn = w1,npkn, Var[p̃kn] = w2
1,nVar[pkn].

The second step is filtering, i.e. the convolution (2.10):

pkn =
∑

l∈N

p̃klh̃n−l.

This operation introduces covariances between the filtered sinogram entries pkn of a par-

ticular view k. We have

Cov [pkn,pkñ] = E [(pkn − E [pkn]) (pkñ − E [pkñ])]

= E








∑

l∈N

h̃n−l (p̃kl − E [p̃kl])





(
∑

m∈N

h̃ñ−m (p̃km − E [p̃km])

)



=
∑

l∈N

∑

m∈N

h̃n−lh̃ñ−mE [(p̃kl − E [p̃kl]) (p̃km − E [p̃km])]

=
∑

l∈N

∑

m∈N

h̃n−lh̃ñ−mCov [p̃kl, p̃km]

=
∑

l∈N

h̃n−lh̃ñ−lVar [p̃kl] . (3.15)

The last step is due to the independence of the unfiltered sinogram entries p̃kl and p̃km
for l 6= m.

Since filtering is a rather local operator (c.f. Figure 2.3), only small |n− ñ| yield sig-

nificant contributions to the sum (3.15). Within this small range, we assume the variance

to be rather constant, i.e., we set

Var[p̃kl] ≈ Var[p̃kn] ≈ Var[p̃kñ]
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yielding

Cov[pkn,pkñ] ≈ h|n−ñ|Var[p̃kn] with hd :=
∑

l∈N

h̃lh̃l−d. (3.16)

The last FBP step is the backprojection f = Cp according to (2.11). The variance in

a pixel j of the reconstructed image reads

Var[fj] =
∑

k∈K

∑

n∈N

(

c2
jknVar[pkn] + 2

∑

ñ<n

cjkncjkñCov[pkn,pkñ]

)

≈
∑

k∈K

∑

n∈N

bjknVar[pkn]. (3.17)

with

bjkn := w2
1,n

(

h0c
2
jkn + 2

∑

ñ<n

h|n−ñ|cjkncjkñ

)

.

By substituting (3.6) and (3.14) into (3.17) we write the variance as a function of the

actuator settings ξ:

Var[fj] ≈
∑

k∈K

∑

n∈N

bjkn




exp(pkn)

(PξQ⊤)kn
+ σ2

e

(

exp(pkn)

(PξQ⊤)kn

)2


 . (3.18)

3.4 Optimization of the Intensity Profile

In the previous sections, we showed that both, dose and noise, can be controlled by the

X-ray beam intensities. This section is intended to show how such control mechanisms are

applied in today’s clinical practice and to present a new workflow concept which allows to

compute optimal intensity profiles.

3.4.1 Currently Used Modulation Techniques

The general goal of adapting the beam intensity profile I0 is to limit the dose while retaining

good image quality. The review articles by Kalra et al. [39, 40] and McCollough et al. [42]

give a good overview of such mechanisms that are in place in current TG scanners.

The design of the bowtie filters has been described in Section 3.1.2. For the tube

current modulation, there are mainly two techniques available. The first one regards the

anatomic shape of the patient, i.e., the length/width ratio of the particular body region.

For thorax imaging, this leads to so called sinusoidal modulation.

The second technique adapts the tube current according to the attenuation pkn esti-

mated for the particular view k. This estimation is either based on the information of a

so called scout scan, i.e., a low dose pre-image of the patient, or on the attenuation mea-

sured in the previous rotation in case of a helical acquisition. Gies et al. [27] suggested
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3.4. Optimization of the Intensity Profile

the so called square root compensation. Thereby, the cube current is set proportional to

the square root of the exponential attenuation of the central ray (n0 = N/2), that is, to
√

exp(pkn0
). The authors showed that such a profile would minimize the average variance

Var[pkn0
], k ∈ K, while keeping the total applied intensity constant, which in turn is

limiting the dose.

3.4.2 Computer Assisted Scan Protocol and Reconstruction

As illustrated above, the current dose reduction techniques require none or only limited

prior information about the patient and are therefore very practical, but not optimized for

the particular patient. Furthermore, they do not make use of the enhanced controllability

of the intensity profile as provided by an inverse geometry system.

For that reason, we propose a new approach for intensity modulation called Computer

Assisted Scan Protocol And Reconstruction (CASPAR) [17, 51]. It uses detailed knowledge

about the patient in order to determine optimal intensity profiles including the virtual

bowtie concept.

We start out from equations (3.8) and (3.18) which characterize the effective dose and

the noise in the reconstructed image, respectively, as a function of the actuators ξ. The

formulas comprise the patient specific parameters d ∈ R
|M|×L and p ∈ R

K×N . Thus, if

we want to make use of these formulas to compute an optimal intensity profile, i.e., a

particular actuator setting ξopt, we actually would have to know these parameters before

performing the CT scan.

To overcome this contradiction, we have to estimate d and p based on prior patient

knowledge. In the ideal case, this prior knowledge is a segmented organ map of the patient

which allows to compute p by a fan-beam projection simulation and d according to Section

3.2.3. This case is assumed throughout the rest of this work. However, a clinically more

relevant approach may be the estimation of d and p based on a scout-scan or on a general

patient classification system [45].

Clinical examinations may require high image quality in several regions of interest

(ROIs) only. CASPAR therefore deals with a weighted version of (3.18), namely the

mapping

V : R
L×|M| → R

J , ξ 7→ V (ξ),

V (ξ)j = wj
∑

k∈K

∑

n∈N

bjkn




exp(pkn)

(PξQ⊤)kn
+ σ2

e

(

exp(pkn)

(PξQ⊤)kn

)2



(3.19)

with pixel specific weights wj ≥ 0, j ∈ J . These weights may be set by the radiologist

based on the prior patient knowledge.

Any norm of V (ξ) can now be used as an image quality metric. Together with the
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dose metric (3.8), we can formulate various optimization problems. Thereby, the intrinsic

limitations of the actuators ξ serve as box constraints

ξ ≤ ξ ≤ ξ (3.20)

with given strictly positive matrices ξ, ξ ∈ R
L×|M|
++ . (Inequalities are to be understood

component-wise.)

CASPAR is addressing these optimization tasks, and the rest of this work is focusing

on their mathematical aspects: Chapter 4 discusses a new type of cutting plane algorithm.

In Chapter 5, this algorithm is – among others – applied to several optimization tasks

induced by the dose and noise metrics. Chapters 6 and 7 finally present and analyze the

results of the numerical implementations of the tasks.
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Chapter 4

The Supporting Hyperplane

Algorithm

4.1 Problem Statement

For strictly positive vectors y, y ∈ R
K
++, y < y, d ∈ R

K
++, and the scalar d0 > 0, we define

the box

Y :=
{

y ∈ R
K | y ≤ y ≤ y

}

and the enclosed halfspace

D :=
{

y ∈ Y | d⊤y ≤ d0

}

.

In this domain, we consider the optimization problem

(Py) min
y∈D

f(g(y)),

whereas

f : R
K → R, f(z) = max

j
{a⊤j z},

computes the maximum of J linear functions a⊤j z with non-negative vectors aj ∈ R
K
+ , and

g : R
K
++ → R

K
++, g(y)k =

1

yk
,

computes the component-wise reciprocal of a strictly positive vector y ∈ R
K .

The function g is an involution, i.e., it is its own inverse. Thus for the substitution

z := g(y), we have y = g(z). If we define
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z := g(y), z := g(y),

Z :=
{

z ∈ R
K | z ≤ z ≤ z

}

= g(Y ),

G : Z → R, G(z) =
∑

k

dk
zk
− d0,

and M := {z ∈ Z | G(z) ≤ 0} = g(D),

(Py) is equivalent to

(Pz) min
z∈M

f(z).

While (Py) comprises linear constraints and a nonlinear convex cost function, (Pz)

incorporates a nonlinear convex constraint but a piecewise linear cost function. Figure 4.1

visualizes both representations of the optimization task.

D

M

Figure 4.1: Visualization of the equivalent optimization problems (Py) and (Pz). Left:

The feasible domain D is the intersection of Y (dashed line) and the area below the

hyperplane d⊤y = d0 (solid line). f(g(y)) is decreasing (level sets/gradients shown as

dotted lines/arrows). Right: The feasible domain M is the intersection of Z (dashed line)

and the area above the curve G(z) = 0 (solid line). f(z) is increasing (level sets/gradients

shown as dotted lines/arrows).

In order to solve this task, we want to make use of this particular property and will

therefore develop a modified cutting plane strategy, which combines projections onto hy-

perplanes in the Y -domain and a sequence of linear programs in the Z-domain.

4.2 Context And Literature

The general idea of so called cutting plane or outer approximation algorithms for convex

optimization is to approximate the feasible domain by hyperplanes and solve the resulting

linearly relaxed problems. By iteratively improving the polyhedral approximation, the
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solutions of the relaxed problems converge to the solution of the original problem. This idea

was formulated by Kelley [41] and Cheney and Goldstein [11] and afterwards generalized

by Eaves and Zangwill [21].

In standard algorithms, a particular cutting plane is computed based on the slope

of the constraint function G at the solution of the current relaxed problem. Thus the

hyperplane is in general not tangent to, but lies below the feasible domain M . Veinott [56]

and later Horst et al. [31] proposed to use projection techniques to compute hyperplanes

that are tangent to M , i.e., supporting hyperplanes, for which one expects to cut off more of

the infeasible domain. However, for general optimization tasks, these projections require

the application of numerical methods. Topkis [53] suggested to select an analytically

computable point lying in between the current solution and M and to compute a cut

through this point. However, we make use of the explicit parameterization of M and

transfer the projection to the Y -domain. By that, we are able to present general conditions

for feasible projections as well as a concrete analytically computable projection.

Most cutting plane algorithms also drop previously computed cuts, in order to reduce

the computational effort for the linearly relaxed problems. In case of a strictly convex

cost function, it is sufficient to just keep constraints that are active in the current solution

[8]. Topkis [53] established a geometric rate of convergence. Dempster and Merkowsky

[18] extended this result to linear cost functions by using a lexicographic simplex method

and a strictly convex perturbation technique. However, since we use hyperplanes that

are tangent to the feasible domain, no constraint will be redundant. Secondly, inactive

constraints could become active again in later iterations and dropping them may cause a

loss of information and therefore slow down the convergence. Thus it is always a trade-off

between this loss and the computational effort. We face this by an optional dropping

strategy following an approach of Eaves and Zangwill [21] which removes constraints only

if sufficient progress of the cost function has been made. To show a geometric convergence

rate for our non-smooth cost function and the proposed projection method, we also apply

a perturbation technique.

Further types of cutting plane algorithms have been described among others by Elzinga

and Moore [22] and Fukushima [24].

4.3 Derivation of the Algorithm

This section further exploits the structure of the problems (Py) and (Pz) and by that

motivates and finally formulates a supporting hyperplane algorithm (SHA).

First, we state that G is monotonically decreasing, as for the partial derivatives holds

∂kG(z) = −dk
z2
k

< 0 ∀z ∈ Z,
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while f is monotonically increasing, since the max-function is monotone and the vectors

aj are non-negative.

Throughout this chapter, we make the following assumptions:

Assumption 4.1.

a) G(z) > 0, i.e., z /∈M .

b) η := −G(z) > 0, i.e., intM 6= ∅.
c) ∂f(z) ∩ lin {ek | k = 1, . . . , K, zk = zk} = ∅ ∀z ∈M .

(intA denotes the interior of the set A, linA denotes the linear hull of the set A, ∂h(x)

the subdifferential of the convex function h in x, and ek the k-th unit vector.) Condition

a) ensures that (Pz) is not trivial, as the condition G(z) ≤ 0 would be obsolete if z would

be feasible. Condition b) implies that the Slater condition is fulfilled. Due to condition

c), any subgradient of f in a particular point on the lower bound of Z has at least one

non-zero component in one of the non-binding dimensions. This condition prevents any

non-singleton subset of ∂Z (∂A denotes the boundary of the set A.) from being a solution

of (Pz) and thereby facilitates the following uniqueness theorem:

Theorem 4.2. (Pz) has a unique solution z∗ obtained on S := {z ∈ Z | G(z) = 0}. (Py)

has a unique solution y∗ obtained on H :=
{

y ∈ Y | d⊤y = d0

}

= g(S).

Proof. The existence of z∗ follows from the compactness of Z and the continuity of f .

Assume G(z∗) < 0. In case of z∗ > z, there exists z̃ < z∗ such that z̃ ∈ S due to the

monotony of G. Obviously, f(z̃) < f(z∗) in contradiction to the assumption. In case of

z∗ 6> z, there exist index sets

M := {k | k = 1, . . . , K, z∗k = zk} and L := {k | k = 1, . . . , K, z∗k > zk} .

Hence we find z̃ such that z̃m = z∗m ∀m ∈ M , z̃l < z∗l ∀l ∈ L and z̃ ∈ S. By Assumption

4.1 b), we have L 6= ∅, and by Assumption 4.1 c), ∃l ∈ L such that al > 0 for a ∈ ∂f(z∗).

Hence

a⊤z∗ > a⊤z̃ ⇒ f(z∗)− f(z̃) ≥ a⊤(z∗ − z̃) > 0

in contradiction to the assumption. Thus z∗ ∈ S.

Finally, we show the uniqueness of the solution: Assume that there are two solutions

b, c ∈ S, b 6= c. Since the solution set must be convex, also z(α) = αb+(1−α)c, α ∈ (0, 1),

must be a solution. However, the strict convexity of G yields

G(z(α)) < αG(b) + (1− α)G(c) = α0 + (1− α)0 = 0 ∀α ∈ (0, 1),

i.e., z(α) /∈ S, in contradiction to the assumption.

The relation y∗ = g(z∗) yields the second proposition regarding (Py).
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By the preceding theorem, we know that the solution of (Pz) will be obtained on

the lower bound of the feasible domain M , namely the hypersurface S. Thereby, any

intersection of Z and a set of halfspaces tangent to S yields an outer approximation of M .

A particular tangent halfspace in w ∈ S reads

T (w) :=
{

z ∈ R
K | ∇G(w)⊤(z − w) ≤ 0

}

, ∇G(w) := (∂1G(w), . . . , ∂KG(w))⊤ ∈ R
K .

Throughout this chapter, any constraint of the form z ∈ T (w) is called polyhedral con-

straint.

In order to identify points w on S, we project given points y ∈ Y \D onto H as follows:

Definition 4.3. A mapping ρ : Y \ D → H, y 7→ ρ(y) is called projection of y onto the

hyperplane H. The projection is called feasible, if

g(y) /∈ T (g(ρ(y))).

For the associated points in Z, that is, for

z := g(y) ∈ Z \M and w := g(ρ(y)) ∈ S,

this means

z /∈ T (w).

As it will turn out later, feasible projections prevent cycles in the proposed algorithm

and are therefore required for its convergence. We further concretize potential projections:

Lemma 4.4. Projections ρ : Y \D → H, y 7→ ρ(y), such that ρ(y) ≤ y, are feasible.

Proof. For the associated points z := g(y) ∈ Z \M and w := g(ρ(y)) ∈ S, the condition

ρ(y) ≤ y means w ≥ z. As ∇G(w) < 0, we have

∇G(w)⊤(z − w) > 0,

since at least one component of z−w is negative, as y /∈ D and z /∈M , respectively. Hence

we have z = g(y) /∈ T (w) and ρ being feasible.

Finally, we define a concrete projection:

Lemma 4.5. Let y ∈ Y \D. For

θ :=
d0 − d⊤y
d⊤y − d⊤y and p := θy + (1− θ)y,

we have θ ∈ (0, 1), p ∈ H, and ρ : Y \D → H, y 7→ p, a feasible projection.
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Proof. Since η = −G(z) > 0 by Assumption 4.1 b), we have d0 > d⊤y. Furthermore,

d⊤y > d0, since y /∈ D. Hence

0 < d0 − d⊤y < d⊤y − d⊤y

yielding θ ∈ (0, 1). Furthermore,

d⊤p = d⊤(θy + (1− θ)y) = θd⊤y + (1− θ)d⊤y = θ(d⊤y − d⊤y) + d⊤y

= (d0 − d⊤y) + d⊤y = d0.

Since θ ∈ (0, 1), y < p ≤ y ≤ y. Together, we have p ∈ H and ρ feasible according to

Lemma 4.4.

y1

p1 y2

p2

y3p3 w1

w2

w3

Figure 4.2: Left: projection of points yi, i = 1, 2, 3, onto H (solid line) yielding points pi
according to Lemma 4.5. Right: hyperplanes (dotted lines) tangent to S (solid line) in the

points wi = g(pi) yielding an outer approximation of M .

Figure 4.2 shows the projection of several points onto H as well as the outer approx-

imation of M by tangential halfspaces. We state another characteristic feature of the

optimization problem: The minimization of f over a polyhedron is a linear minimax prob-

lem and can be solved using a standard method for linear programming such as the simplex

method (c.f. Appendix B.1). Together, this motivates the following algorithm for solving

(Pz):

We start with the polyhedron Z as the feasible domain. In this domain, we minimize

f(z) yielding a point zi. This point is mapped to the Y -domain and projected onto H.

The resulting point pi is mapped back to the Z-domain, i.e., wi := g(pi), and the half space

T (wi) tangent to S in wi is computed. The feasible domain is updated by computing the

intersection of T (wi) and the previous feasible domain yielding an improved polyhedral

approximation of M . Then we start over by determining the minimum of f(z) on this new

polyhedron. Figure 4.3 depicts iterations 2 to 4 of the algorithm.

By this method, a single polyhedral constraint is added in every iteration, and thus

the number of constraints of the linear program is continuously increasing. To reduce the
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Figure 4.3: Visualization of the SHA. From left to right: iteration 2 to 4. Upper row:

approximating hyperplanes (solid line) of S (dotted line) over Z (dash-dotted line) and

the solution zi (�) of the linear program with level set {z ∈ Z | f(z) = f(zi)} (dashed line).

Lower row: zi (�), its projection wi (•) and the new tangent (bold solid line).

computational effort for solving these programs, we can also drop constraints from previous

iterations if sufficient progress has been achieved. In a more formal fashion, the algorithm

reads:

Algorithm 4.6 (SHA).

Set I1 := ∅, P 1 := Z. For i = 1, 2, . . .

1. Determine the solution zi of

(LPi) min
z∈P i

f(z).

2. If zi ∈M , terminate.

3. Project yi := g(zi) onto H yielding pi := ρ(yi) and wi := g(pi) ∈ S.

4. For δl :=
∥
∥
∥wl − zl

∥
∥
∥ and a constant c > 0, determine the index sets

J i :=
{

l ∈ I i | f(zi) ≤ f(zl) + cδl
}

and

Ki :=
{

l ∈ I i | zi ∈ ∂T (wl)
}

and set I i+1 := J i ∪ Ki ∪ {i}.

5. Update the feasible domain P i+1 := Z ∩ ⋂

l∈Ii+1

T (wl).

J i is the index set whose corresponding objective values are close to the current value.

Ki is the set of constraints that are active in zi. All other constraints are dropped in Step
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5. As mentioned above, applying feasible projections prevents cycles in the algorithm, as

a point zi won’t be feasible in the next iteration.

4.4 Proof of Convergence

We proceed with proving the convergence of the proposed SHA. To this end, we analyze

several characteristics of the sequences {zi} and {f(zi)} which finally contribute to the

desired convergence theorem.

Lemma 4.7. The sequence {f(zi)} generated by the SHA is increasing and

f(zi) ≤ σ∗ := min
z∈M

f(z) ∀i.

Proof. Since all active sets are kept, zi also minimizes f on

Qi := Z ∩
⋂

l∈Ki

T (wl).

Since P i+1 ⊂ Qi, f(zi+1) ≥ f(zi), and since P i ⊃M , f(zi) ≤ σ∗.

The next lemma provides some geometrical properties of the projection ρ:

Lemma 4.8. Given a point zi ∈ Z \M and its projection wi according to Lemma 4.4.

Then there exist positive constants λ and µ such that for every z ∈ T (wi) holds

∥
∥
∥z − zi

∥
∥
∥ ≥ µ

∥
∥
∥zi − wi

∥
∥
∥ and

∥
∥
∥z − wi

∥
∥
∥ ≤ λ

∥
∥
∥z − zi

∥
∥
∥ .

z

wi

zi

z̃ T (wi)

∇G(wi)

·

β

Figure 4.4: Visualization of the proof of Lemma 4.8.

Proof. Set z̃ := arg minz∈T (wi) ‖z − zi‖. Hence the vector z̃− zi is parallel to ∇G(wi), and

z̃, zi, and wi form a right triangle (c.f. Figure 4.4). For the angle β := ∠(z̃ − zi, wi − zi)
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holds:

cos β =
(z̃ − zi)⊤(wi − zi)
‖z̃ − zi‖ ‖wi − zi‖ =

1

‖∇G(wi)‖ ‖wi − zi‖
∑

k

−∂kG(wi)
︸ ︷︷ ︸

>0

(wik − zik
︸ ︷︷ ︸

≥0

)

≥ 1

‖∇G(wi)‖ ‖wi − zi‖ min
k̃
{−∂k̃G(wi)}

∑

k

(wik − zik)

=
1

‖∇G(wi)‖ min
k̃
{−∂k̃G(wi)} |w

i
k − zik|
‖wi − zi‖ ≥ min

w∈S
min
k

|∂kG(w)|
‖∇G(w)‖

︸ ︷︷ ︸

=: a

|wi − zi|
‖wi − zi‖
︸ ︷︷ ︸

=: b

.

Since S is compact and 0 /∈ S, a is strictly positive. The second factor b is the quotient of

1-norm and 2-norm which is bounded by b ≥
√

2
−1

=: b. Together, we have

cos β ≥ a b =: µ > 0.

Thus for any z ∈ T (wi) holds
∥
∥
∥z − zi

∥
∥
∥ ≥

∥
∥
∥z̃ − zi

∥
∥
∥ = cos β

∥
∥
∥wi − zi

∥
∥
∥ ≥ µ

∥
∥
∥wi − zi

∥
∥
∥ .

The second inequality follows from

∥
∥
∥z − wi

∥
∥
∥ ≤

∥
∥
∥z − zi

∥
∥
∥+

∥
∥
∥zi − wi

∥
∥
∥ =

∥
∥
∥z − zi

∥
∥
∥+

1

cos β

∥
∥
∥zi − z̃

∥
∥
∥

≤
∥
∥
∥z − zi

∥
∥
∥+

1

cos β

∥
∥
∥zi − z

∥
∥
∥ =

(

1 +
1

cos β

)
∥
∥
∥z − zi

∥
∥
∥

≤
(

1 +
1

µ

)
∥
∥
∥z − zi

∥
∥
∥ =: λ

∥
∥
∥z − zi

∥
∥
∥ .

The first inequality is used in the following lemma to show that for every cluster point

of {zi} the distance to the surface S tends to zero. The second inequality is required in

the next section in order to determine the rate of convergence.

Lemma 4.9. For any convergent subsequence {zip} of the sequence {zi} generated by the

SHA and a projection according to Lemma 4.4 holds

δip =
∥
∥
∥wip − zip

∥
∥
∥→ 0.

Proof. Define

δ̃l := min
{

µδl, δ
l
}

with δ
l
:=
{

inf
x

∥
∥
∥zl − x

∥
∥
∥ | f(x) > f(zl) + cδl

}

the minimum distance between zl and a point whose function value is sufficiently high.

We show that zi /∈ U(δ̃l, zl) ∀l < i (U(r, z) denotes the open ball of radius r around z.):
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First, let l ∈ I i, i.e., zi ∈ T (wl). By Lemma 4.8 holds

∥
∥
∥zi − zl

∥
∥
∥ ≥ µ

∥
∥
∥zl − wl

∥
∥
∥ = µδl.

Second, if l /∈ I i, we have f(zi) > f(zl) + cδl, and thus
∥
∥
∥zi − zl

∥
∥
∥ ≥ δl. Together, we have

zi /∈ U(δ̃l, zl).

Hence for any convergent subsequence {zip} must hold δ̃ip → 0, i.e., µδip → 0 or

δ
ip → 0. Both implies δip → 0 (the first as µ is strictly positive, the second as f is

Lipschitz).

We have provided all necessary lemmata to show the convergence of the SHA:

Theorem 4.10. The sequence {zi} generated by the SHA and a projection according to

Lemma 4.4 converges to z∗.

Proof. Let {zip} denote a convergent subsequence with limit point z̃. Hence

∥
∥
∥wip − z̃

∥
∥
∥ ≤

∥
∥
∥wip − zip

∥
∥
∥

︸ ︷︷ ︸

→0, Lemma 4.9

+
∥
∥
∥zip − z̃

∥
∥
∥

︸ ︷︷ ︸

→0

.

Thus wip → z̃. Since {wip} ⊂ S, z̃ ∈ S and by that f(z̃) ≥ σ∗. By Lemma 4.7, we have

f(zi) ≤ σ∗ ∀i, in particular f(z̃) ≤ σ∗ and thus f(z̃) = σ∗. By the uniqueness (Theorem

4.2) follows z̃ = z∗.

Since Z is compact, {zi} must contain a convergent subsequence. Since all of these

subsequences converge to z∗, also {zi} itself converges to z∗.

We showed the convergence of the SHA for a relatively broad class of projections,

namely those according to Lemma 4.4. However, the more specific projection according to

Lemma 4.5 will be required in the next section in order to determine a rate of convergence.

4.5 Rate of Convergence

In order to determine a rate of convergence of the SHA, we follow the approach of Dempster

and Merkowsky [18] and apply the following three steps:

1. Approximate the linear program (LPi) by a strictly convex substitute.

2. Determine a rate of convergence for the strictly convex problems.

3. Transfer the results to the original problem.
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4.5.1 Strictly Convex Perturbation

We start by reformulating (LPi) as a linear optimization problem. Therefore, we define

A ∈ R
J×K the matrix consisting of the columns aj and introduce a variable upper bound

σ ∈ R:

(LPi)

min
z∈RK , σ∈R

σ

Az −1Jσ ≤ 0

−Ez ≤ −z
Ez ≤ z

∇G(wl)⊤z ≤ ∇G(wl)⊤wl ∀ l ∈ I i.
(1J denotes the vector consisting of J ones and E the identity matrix.)

We cite a statement by Dempster and Merkowsky [18]:

Lemma 4.11. Given a non-empty closed polytope P :=
{

x ∈ R
N | Ax ≤ b

}

with A ∈
R
J×N , b ∈ R

J and the programs

(Q) min
x∈P

c⊤x and (Qǫ) min
x∈P

c⊤x+ ǫh(x)

with c ∈ R
N , h ∈ C1(RN ,R) convex and the scalar ǫ ≥ 0. Then there exists ǫ > 0 such

that for all ǫ ∈ [0, ǫ] any solution x∗ of (Qǫ) also solves (Q).

In this case, x∗ also minimizes h(x) on P =
{

x ∈ P | c⊤x ≤ c∗
}

with c∗ ∈ R the

optimum value of (Q), and µ = 1/ǫ is the Lagrange multiplier associated with the last

condition, i.e., there exists λ ∈ R
J such that

∇h(x∗) + A⊤λ+ cµ = 0

λ⊤(Ax∗ − b) = 0

λ, µ ≥ 0.

(4.1)

A proof can be found in Appendix A.5. The lemma shows that linear programs can be

perturbated with a convex function such that the solution of the new problem also solves

the original problem. We apply this onto (LPi) and the function G(z), i.e., we can find

constants ǫi > 0 such that the perturbation of the cost function f with ǫiG(z) yields a

solution that still solves (LPi) ∀ǫi ∈ [0, ǫi].

Before we show that there exists a uniform lower bound of ǫi, i.e., that we can per-

turb all linear programs identically, we first analyze the behavior of the active polyhedral

constraints of (LPi) for i→∞:

For a particular point z ∈ Z, we define

Bi(z) := conv
{

∇G(wl) | l ∈ I i, ∇G(wl)⊤(z − wl) = 0
}

the convex hull of the gradients ∇G(wl), l ∈ I i, that correspond to the in z active poly-

hedral constraints. The following lemma shows that this hull tends to a single vector:
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Lemma 4.12. For the iteration sequence {i} of the SHA holds

Bi(zi)→ ∇G(z∗).

Proof. For ∇G(wl) ∈ Bi(zi) holds

∇G(wl)⊤(zi − wl)→ ∇G(wl)⊤(wi − wl),

as ‖zi − wi‖ → 0 by Lemma 4.9. Due to the strict convexity of G, the latter term

becomes zero only for wi = wl, thus Bi(zi)→ ∇G(wi). Since wi → z∗, we have Bi(zi)→
∇G(z∗).

By making use of this convergence, we can show the existence of a uniform perturbation

parameter ǫ:

Lemma 4.13. There exists ǫ > 0 such that the solution of

(SPi) min
z∈P i

f̃(z), f̃(z) := f(z) + ǫG(z),

also solves (LPi) ∀i, i.e., that there is a positive lower bound ǫ ≤ ǫi ∀i with ǫi the maximum

perturbation parameter for (LPi) according to Lemma 4.11.

Proof. To determine ǫi, we apply the conditions (4.1) onto (LPi): there exist α ∈ R
J
+,

β ∈ R
|Ii|
+ , γ ∈ R

K
+ , δ ∈ R

K
+ and µ ∈ R+ such that

A⊤α − Eγ + Eδ +
∑

l

∇G(wl)βl +∇G(zi) = 0 and − 1⊤J α+ µ = 0. (4.2)

According to the complementary slackness condition, only multipliers corresponding to

active constraints can be positive. Hence

∑

l

∇G(wl)βl ∈ coneBi(zi)

(coneA denotes the conical hull of the set A.). Thus we can reformulate the conditions

(4.2): There exist λ ∈ R
O
+ (O := J + 2K + 1) and bi ∈ Bi(zi), such that

Ci
(

λ

µ

)

+

(

∇G(zi)

0

)

=

(

0

0

)

, Ci :=

(

A⊤ −E E bi 0

−1J 0 0 0 1

)

. (4.3)

By Lemma 4.11, the system (4.3) is solvable for all iterations i with finite solutions

(λi⊤, µi). Hence the numbers ǫi = 1/µi exist. However, we have to show that the system

is also solvable for i→∞ and that ǫi does not tend to zero.

To prove the solvability in the limit case (LP∗), we consider the original problem (Pz):

Since the feasible domain is not empty and the Slater condition is fulfilled according to
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Assumptions 4.1 a) and b), respectively, (Pz) has a Karush-Kuhn-Tucker (KKT) point,

i.e., the system
(

A⊤ −E E ∇G(z∗)

−1J 0 0 0

)

κ =

(

0

−1

)

(4.4)

is solvable with non-negative finite multipliers κ ∈ R
O which also fulfill the complementary

slackness condition (c.f. Figure 4.5 a) and c)). In particular, by the regularity condition

Assumption 4.1 c), the multiplier corresponding to the condition G(z∗) ≤ 0, i.e., the last

component κO, is strictly positive.

b) µa

(1 + λO)b∗

a)
a

κOb
∗

d) µa

(1 + λO)b∗

−λ1e1

c)
a

κOb
∗

−κ1e1

Figure 4.5: Visualization of the linear equation systems in the proof of Lemma 4.13: Let

a ∈ ∂f(z∗) ⊂ conv {aj | j ≤ J}. a) and b): (Pz) and (LP∗), respectively, without any

active box constraints (κJ+1, . . . , κJ+2K = 0, λJ+1, . . . , λJ+2K = 0). c) and d): (Pz)

and (LP∗), respectively, with active constraint −z1 ≤ −z1 yielding positive κ1 and λ1,

respectively. Due to the Assumption 4.1 c), e1 and a cannot be parallel.

We return to the investigation of the (LPi). For i → ∞, i.e., for bi → b∗ = ∇G(z∗)

(by Lemma 4.12), the system (4.3) becomes

(

A⊤ −E E b∗ 0

−1J 0 0 0 1

)(

λ

µ

)

+

(

b∗

0

)

=

(

0

0

)

(

A⊤ −E E b∗ 0

−1J 0 0 0 1

)(

λ+ eO
µ

)

=

(

0

0

)

(4.5)

(c.f. Figure 4.5 b) and d)). Since (4.4) has a non-negative solution, also (4.5) has such a

solution (λ∗⊤, µ∗), i.e., there exists a positive perturbation parameter ǫ∗.

Next, we consider the solutions of (4.3) in the neighborhood of b∗ and z∗. To this

end, we want to apply the implicit function theorem onto (4.3). It mainly requires the

Jacobian matrix of the mapping under consideration to be invertible in the point under

consideration. In order to fulfill this precondition, we have to extract quadratic submatrices

of Ci:

In a first step, we formally define mappings that perform such submatrix extractions:

Let λN denote the vector of the components of λ indicated by the index set N ⊂ {1, . . . , O}.
We define L := |N |+ 1 and the mapping PN : R

L → R
O+1 that embeds (λ⊤N , µ)⊤ into R

O+1
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by setting all non-indicated components to zero. Furthermore, we define RL : R
K+1 →

R
L, z 7→ (z1, . . . , zL)

⊤ which cuts off the last K + 1− L components of the vector z.

We apply this formalism onto the matrices Ci: For pi := (zi⊤, bi⊤)⊤, let N i ⊂ {1, . . . , O}
denote the set of strictly positive components of the solution λi of (4.3). We have Li ≤ K+

1. We define the orthogonal transformation Qi in R
K+1 which rotates the Li-dimensional

image of CiPN i such that im(QiCiPN i) ⊂ lin{e1, . . . , eLi} (imM denotes the image of the

matrix M .). Finally, we cut off the last K + 1 − Li zero-components by applying RLi .

The matrix RLiQ
iCiPN i ∈ R

Li×Li is invertible, since otherwise, we could set at least one

additional component of λ to zero and repeat with a smaller Li. By applying the formalism

to (4.3), we get

FN i(λN i , µ; pi) := RLiQ
iCiPN i

(

λN i

µ

)

+RLiQ
i∇G(zi) = 0.

After having brought every single problem (4.3) into this invertible shape, we consider

the sequence of all of these problems again: However, since the strictly positive components

of the solutions λi may change for each iteration, i.e., the set of active constraints may

vary, we have to consider subsequences on which the set remains constant.1 Thus for a

particular N ⊂ {1, . . . , O}, we identify the subsequence {iq} of {i} for which N iq ≡ N .

If the subsequence is finite, we obtain an upper bound MN of µ as the maximum of

the solutions µiq . In the infinite case, the {Ciq} and {Qiq} converge, as {piq} converges,

while {PN iq} and {RLiq} remain constant. For the limit point p∗, we have the existence of

a solution of FN(λN , µ; p∗) = 0, as (4.5) is solvable, and we can apply the implicit function

theorem. It follows that there exist positive numbers M̃N and δN such that µ < M̃N
provided p ∈ U(δN , p

∗).

Given this neighborhood, we can infer a finite upper bound for µiq : Since all piq lie in

U(δN , p
∗) after a finite number of iterations, say for q > q0, we obtain the upper bound

MN as the maximum of the µiq , q ≤ q0, and of M̃N .

Repeating this procedure for all subsequences yields a finite set {MN | N ⊂ {1, . . . , O}}.
Its maximum is a uniform upper bound for µ and its reciprocal the desired uniform lower

bound for ǫ.

For the uniform lower bound ǫ, the solution of (SPi) also solves (LPi). Thus in the

following, we consider the SHA solving (SPi) instead of (LPi). We refer to this variant

as Algorithm 4.6 b). Note that we do not really apply this variant in order to solve the

optimization task, but we formally state this algorithm to determine its rate of convergence

and to afterwards infer a rate for the original algorithm.

1Note that the whole set of polyhedral constraints is represented by the single vector bi.
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4.5.2 Linear Convergence of the Perturbated Algorithm

We prove several estimates regarding the cost and the constraint function as well as the

projection ρ defined in Lemma 4.5. These estimates will finally contribute to the compu-

tation of a linear rate of convergence for the function values f̃(zi) generated by Algorithm

4.6 b). First, we make use of the strict convexity of the perturbated cost function f̃ in

order to bound the distance of its arguments by its function values:

Lemma 4.14. Let zi and Ki be generated by Algorithm 4.6 b). For

Qi := Z ∩
⋂

l∈Ki

T (wl) and α :=
1

2
min

{

z⊤∇2G(ζ)z | ζ ∈ Z, ‖z‖ = 1
}

> 0

holds

f̃(z)− f̃(zi) ≥ αǫ
∥
∥
∥z − zi

∥
∥
∥

2 ∀z ∈ Qi.

Proof. By Taylor’s theorem, there exists ζ ∈ [z, zi] such that

G(z) = G(zi) +∇G(zi)⊤(z − zi) +
1

2
(z − zi)⊤∇2G(ζ)(z − zi).

Let b ∈ ∂f(zi), the subdifferential of f in zi.

f̃(z)− f̃(zi) = f(z)− f(zi) + ǫ(G(z)−G(zi))

≥ b⊤(z − zi) + ǫ∇G(zi)⊤(z − zi) + ǫ
1

2
(z − zi)⊤∇2G(ζ)(z − zi)

≥ (b+ ǫ∇G(zi))⊤(z − zi) + αǫ
∥
∥
∥z − zi

∥
∥
∥

2
. (4.6)

Any (sub)gradient of a sum of convex functions is the sum of (sub)gradients of these

functions. Hence we have

b+ ǫ∇G(zi) ∈ ∂f̃(zi).

In the proof of Lemma 4.7, we showed that zi generated by the SHA minimizes f on Qi.

By the same argument, we have that zi generated by Algorithm 4.6 b) minimizes f̃ on Qi.

Hence for any c ∈ ∂f̃(zi) holds

c⊤(z − zi) ≥ 0 ∀z ∈ Qi.

This applies in particular to c = b + ǫ∇G(zi). Thus the first summand in (4.6) is non-

negative which yields the proposition.

Another Taylor expansion based second-order estimate holds for the constraint function

G:
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Lemma 4.15. For w ∈ S and

β :=
1

2
max

{

z⊤∇2G(ζ)z | ζ ∈ Z, ‖z‖ = 1
}

> 0

holds

G(z) ≤ β ‖z − w‖2 ∀z ∈ T (w).

Proof. By Taylor’s theorem, there ∃ζ ∈ [w, z] such that

G(z) = G(w) +∇G(w)⊤(z − w) +
1

2
(z − w)⊤∇2G(ζ)(z − w)

≤ 0 + 0 +
1

2
(z − w)⊤∇2G(ζ)(z − wi) ≤ β ‖z − w‖2 .

The lemma shows that the function value G(z) cannot grow arbitrarily fast, if z lies

above a certain tangent space of G. We have

α = min
k

{

dk
z3
k

}

and β = max
k

{

dk
z3
k

}

.

The next lemma investigates the projection ρ as defined in Lemma 4.5. In more detail,

it provides an estimate of the distances between a point and its projection depending on

the value of the constraint function in that point.

Lemma 4.16. For y ∈ Y \D, the projection ρ : y 7→ ρ(y) ∈ H according to Lemma 4.5,

and its associated points z := g(y) ∈ Z \M , w := g(ρ(y)) ∈ S, we have

‖y − ρ(y)‖ ≤ ζ

η
G(z) and γ ‖z − w‖ ≤ ‖y − ρ(y)‖ .

with ζ := max
y∈H

∥
∥
∥y − y

∥
∥
∥, η as in Assumption 4.1 b) and γ := min

k
{y2
k
}.

Proof. For convenience, we write a := G(z). Recall

θ =
d0 − d⊤y
d⊤y − d⊤y =

−G(z)

G(z)−G(z)
=

η

a+ η
, (1− θ) =

a

a+ η
, ρ(y) = θy + (1− θ)y.

To show the first inequality, we compute

‖y − ρ(y)‖ =
∥
∥
∥y −

(

θy + (1− θ)y
)∥
∥
∥ =

∥
∥
∥(1− θ)y − (1− θ)y

∥
∥
∥

=

∥
∥
∥
∥
∥

a

a+ η
y − a

a+ η
y

∥
∥
∥
∥
∥

(

η

a

a

η

)

=
∥
∥
∥θy − θy

∥
∥
∥
a

η

=
∥
∥
∥θy + (1− θ)y − y

∥
∥
∥
a

η
=
∥
∥
∥ρ(y)− y

∥
∥
∥
a

η
≤ ζG(z)

η
.
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The second inequality follows from

‖y − ρ(y)‖2 = ‖g(z)− g(w)‖2 =
∑

k

(
1

zk
− 1

wk

)2

=
∑

k

1

(zkwk)2
(wk − zk)2

≥ 1

max
k
{z4
k}
∑

k

(wk − zk)2 = γ2 ‖z − w‖2 .

The estimates for the cost and the constraint function as well as for the projection are

finally put together yielding a linear rate of convergence:

Theorem 4.17. For the sequence {f̃(zi)} generated by Algorithm 4.6 b), there exists a

constant 0 < Λ < 1 such that

f̃(z∗)− f̃(zi+1) ≤ Λ(f̃(z∗)− f̃(zi)).

Proof. f̃ is continuous and bounded on Z, hence there exists a Lipschitz constant L̃. We

compute

f̃(zi+1)− f̃(zi) ≥ αǫ
∥
∥
∥zi+1 − zi

∥
∥
∥

2
(Lemma 4.14, zi+1 ∈ Qi)

≥ αǫ

λ2

∥
∥
∥zi+1 − wi

∥
∥
∥

2
(Lemma 4.8, zi+1 ∈ T (wi))

≥ αǫ

λ2β
G(zi+1) (Lemma 4.15, zi+1 ∈ T (wi))

≥ αǫη

ζλ2β

∥
∥
∥ρ(yi+1)− yi+1

∥
∥
∥ (Lemma 4.16)

≥ αǫηγ

ζλ2β

∥
∥
∥wi+1 − zi+1

∥
∥
∥ (Lemma 4.16)

≥ αǫηγ

ζλ2βL̃

∣
∣
∣f̃(wi+1)− f̃(zi+1)

∣
∣
∣ (f̃ Lipschitz)

=: Λ̃
∣
∣
∣f̃(wi+1)− f̃(zi+1)

∣
∣
∣

≥ Λ̃
(

f̃(z∗)− f̃(zi+1)
)

. (f̃(wi+1) ≥ f̃(z∗) ≥ f̃(zi+1))

Adding f̃(z∗)− f̃(zi+1) to both sides and dividing by 1 + Λ̃ yields:

f̃(z∗)− f̃(zi+1) ≤ 1

1 + Λ̃
(f̃(z∗)− f̃(zi)).

Finally, we set Λ := 1
1+Λ̃

< 1.

The linear convergence of the function values of the perturbated Algorithm 4.6 b) is

an important achievement, since it allows to infer a rate of convergence for the arguments.

This conclusion and its transfer to the original problem is addressed in the subsequent

section.
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4.5.3 Geometric Convergence of the Algorithm

We apply Theorem 4.17 to compute a rate of convergence of the arguments zi:

Lemma 4.18. Let {zi} denote the sequence generated by Algorithm 4.6 b). For the con-

stant L0 := f̃(z∗)− f̃(z1), we have

∥
∥
∥z∗ − zi+1

∥
∥
∥ ≤

√

L0

αǫ

√
Λ
i
,

i.e., the sequence {zi} converges geometrically to z∗.

Proof. First, we show that the linear convergence of the function values implies their

geometric convergence, i.e., that

f̃(z∗)− f̃(zi+1) ≤ L0Λ
i.

To this end, we apply induction on i: For i = 1, we have

f̃(z∗)− f̃(zi) ≤ L0 = L0Λ
i−1.

Due to Theorem 4.17, the inductive step for general i > 1 yields

f̃(z∗)− f̃(zi+1) ≤ Λ(f̃(z∗)− f̃(zi)) ≤ ΛL0Λ
i−1 = L0Λ

i.

Second, we consider the arguments zi: By Lemma 4.14 follows

L0Λ
i ≥ f̃(z∗)− f̃(zi+1) ≥ ǫα

∥
∥
∥z∗ − zi+1

∥
∥
∥

2
,

since z∗ ∈ Qi+1 as z∗ ∈M and M ⊂ Qi+1 ∀i. Straight forward calculations yield

∥
∥
∥z∗ − zi+1

∥
∥
∥ ≤

√

L0

ǫα

√
Λ
i
.

We showed the geometric convergence of the sequence {zi} generated by the pertur-

bated Algorithm 4.6 b). This sequence is unique, as every subproblem (SPi) has a unique

solution. However, if we want to transfer this result to the original problem, we have to

keep in mind that the solutions of the (LPi) may not be unique and the particular element

chosen out of the solution set will depend on the particular algorithm used to solve (LPi).

Moreover, all subsequent subproblems (LPi+j), j > 0, may differ as different solutions may

yield different projections and by that different constraints. For that reason, we cannot

propose a rate of convergence for the whole family of solution sequences, but show at least

the existence of a geometrically convergent sequence:
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Theorem 4.19. Among the family of sequences of solutions of the SHA, there exists a

geometrically convergent sequence {zi}. Furthermore, there exists a constant M0 such that

f(z∗)− f(zi+1) ≤M0

√
Λ
i

with Λ as defined in Theorem 4.17.

Proof. By construction, each solution of the (SPi) also solves (LPi) (c.f. Lemma 4.13).

The sequence {zi} generated by Algorithm 4.6 b) is therefore an element of the family

of potential sequences generated by the SHA. According to Lemma 4.18, it converges

geometrically.

Regarding the second proposition, we state that f is Lipschitz (with constant L). Hence

for the geometrically convergent sequence {zi} holds

∣
∣
∣f(z∗)− f(zi+1)

∣
∣
∣ ≤ L

∥
∥
∥z∗ − zi+1

∥
∥
∥ ≤ L

√

L0

ǫα

√
Λ
i

=: M0

√
Λ
i
.

Since f(z∗) ≥ f(zi)∀i, we can omit the absolute value bars.

Remark 4.20. In the proof of the convergence of the SHA, we did not make use of the

particular structure of the cost function f . Hence we could apply the SHA to an arbi-

trary convex, Lipschitz continuous, and monotonically increasing cost function. Only for

the computation of its rate of convergence, a (piecewise) linear or a strictly convex cost

functions is required. In the latter case, we could even show linearly convergent function

values.

For the practical applicability, however, the iteratively linearly relaxed problems, i.e.,

minz∈P i f(z), have to be efficiently solvable for the particular f . This limitation restricts

the application mainly to (piecewise) linear or quadratic cost functions.2

4.6 Solving the Linear Programs

After the rather theoretic analysis of the rates of convergence of the SHA, we take a closer

look at the iteratively generated linear programs (LPi). These problems are addressed

by the simplex method, and a summary of that algorithm is given in Appendix B.1. In

our analysis, we focus on an efficient implementation of the (LPi), since providing their

solution as fast as possible is crucial for the application of the algorithm in practice. To

this end, we formulate requirements for an efficient implementation and show that solving

the dual problems fulfills these requirements.

2For f being linear, the problem can also be solved analytically (c.f. Section 5.2). For f being quadratic,

an algorithm to address the relaxed quadratic subproblems is provided in Appendix B.2.
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In every iteration of the SHA, a linear program has to be solved. We state three

important characteristics of the sequence of the (LPi):

• The set of polyhedral constraints as indicated in the set I i changes slowly over the

iterations. That is, because in every iteration only a single constraint is added, and

only relatively old constraints are dropped.

• Active constraints are never dropped, i.e., no constraint whose corresponding slack

variable is a basic variable will be dropped. Hence the optimum basis of the previous

iteration remains a basis in the new iteration.

• A previous optimum solution is expected to be close to the new solution.

Due to these three characteristics, it is rather obvious that an efficient method to solve

the sequence of linear programs (LPi) has to make use of the previous iteration(s), in

particular it should make use of the previous optimum solution zi−1. The best scenario

would be, if zi−1 would serve as starting point of the new iteration, or in other words if

the optimum basis Bi−1
∗ would serve as start basis Bi0. In this case, Phase I of the simplex

algorithm could be omitted, and one would expect a fast convergence, as the algorithm

would start close to the solution.

However, since we apply feasible projections in the SHA, the former optimum point

becomes infeasible in the new (LPi) (c.f. Definition 4.3), i.e., the optimum basis Bi−1
∗

becomes infeasible for (LPi).

To circumvent this infeasibility, we consider the dual problem of (LPi) instead. Duality

is a powerful tool in linear optimization. For its derivation and the relationship between

both, the primal and the dual problem, we refer to Boyd and Vandenberghe [9], Chapter

5, and Vanderbei [55], Chapter 5.

We define Ci the matrix consisting of the columns ∇G(wl), l ∈ I i, and di the vector

with components ∇G(wl)⊤wl, l ∈ I i. Furthermore, we set z̃ := z − z. Then the dual

problem of (LPi) in standard form reads

(DPi)

max
α,δ,β,ν

(Az)⊤α +(z − z)⊤δ +(Ciz − di)⊤β
A⊤α +Eδ +Ci⊤β −Eν = 0

1⊤J α = 1

α, δ, β, ν ≥ 0

with variables α ∈ R
J , δ ∈ R

K , β ∈ R
|Ii|, and slack variables ν ∈ R

K . A detailed

derivation can be found in the Appendix A.6.

We observe that the varying set I i influences the size of the variable β. Since we

only remove inactive constraints in (LPi), i.e., non-basic variables in (DPi), dropping
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constraints does not affect the current dual basis. If we add a new constraint in (LPi),

i.e., add a variable to (DPi), this variable is at first set to a non-basic variable, and the

current dual solution remains feasible. Hence we have the desired property of the sequence

of the (DPi): The optimum basis of the previous iteration may serve as starting basis for

the new iteration.

Finally, we obtain the primal solution zi = z̃i+ z by computing the dual basic solution

of the optimum basis B of (DPi):

(

z̃i

σ∗

)⊤

= η⊤ = γ⊤BΦ−1
B with Φ =

(

A⊤ E Ci⊤ −E
1⊤J 0 0 0

)

and γ =









−Az
z − z

di − Ciz
0









.
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Chapter 5

Dose/Noise Optimization

As stated in Section 3.4.2, the workflow concept CASPAR is intended to compute optimized

intensity profiles based on the dose metric (3.8) and the variance mapping (3.19) given

box constraints (3.20). For convenience, we recall the related mappings, namely

the dose 〈d, ξ〉 =
∑

m∈M

∑

l∈L

dlmξlm and (5.1)

the variance V (ξ)j = wj
∑

k∈K

∑

n∈N

bjkn




exp(pkn)

(PξQ⊤)kn
+ σ2

e

(

exp(pkn)

(PξQ⊤)kn

)2


 (5.2)

with ξ ∈ B =
{

ξ ∈ R
L×|M| | ξ ≤ ξ ≤ ξ

}

and 0 < ξ < ξ. (5.3)

This chapter formulates various clinically relevant optimization tasks based on these

mappings. The tasks thereby differ with respect to the norms applied to the variance

operator, the choices of constraint and cost functions, the basis functions of the intensity

profile, i.e., of the (virtual) bowties (c.f. Section 3.1.3) and of the tube current modulation,

and the handling of the electronic noise.

Furthermore, analytic or numerical solution approaches will be given for each task.

The numerical methods are thereby either based on the SHA as introduced in the previous

chapter, or on a standard sequential quadratic programming (SQP) approach as summa-

rized in Appendix B.3.

5.1 Preliminaries

Before we discuss concrete optimization tasks, we prepare the related mappings for a better

handling in the context of optimization.
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5.1.1 Dimension Reduction for the Variance Operator

First, we state an important property of the intensity profile which allows to simplify the

variance operator (5.2).

Definition 5.1. A matrix A ∈ R
C×D with entries acd is called non-summative, if all rows

contain just a single non-zero entry, that is, if for all indices c, there is a single index d̃,

such that

acd̃ 6= 0 and acd = 0 for d 6= d̃.

An intensity profile PξQ⊤ is called non-summative, if both basis matrices P and Q are

non-summative.

Physically, a non-summative intensity profile means that the beam intensity of a par-

ticular data sample kn depends on a single actuator setting only (and not on a linear

combination of actuators).

Example 5.2.

a) For a MS system with non-overlapping subfans, every rebinned detector pixel n is

characterized by a single subfan m. Hence the flux basis matrix Q is non-summative.

b) For a tube current modulation based on 0th order B-splines, the single basis functions

do not have a common support (c.f. Figure 3.2), i.e., the tube current of a view k is

characterized by a single basis function. Hence the tube current basis matrix P is

non-summative.

Definition 5.3. A matrix A ∈ R
C×D is called partially summative, if there exists a matrix

S ∈ R
T×D, T < D, and a non-summative matrix R ∈ R

C×T such that A = RS.

For partially summative intensity profiles, there exist subgroups of data samples whose

elements are controlled by the same linear combination of actuators.

Example 5.4.

a) For a MS system with overlapping subfansm ∈M and rectangular profiles 〈Fm, ηmo〉,
o ∈ O, the intensities of the rebinned detector pixels n ∈ N are the superposition

of several rectangles (under the assumption that the rebinning preserves the rectan-

gularity). Hence there are pixel subsets of N which are characterized by the same

set of rectangles, i.e., by the same linear combination of actuators. With T being

the number of such subsets, we can describe the linear combinations by a matrix

S ∈ R
T×|M| and the application of the linear combination to the elements of the

subsets by a binary, non-summative matrix G ∈ R
N×T .

b) Following a similar argument, we can formulate matrices A and R, in case of a tube

current function consisting of overlapping, rectangular basis functions.

56



5.1. Preliminaries

Based on the previous definitions, we decompose the basis matrices P and Q:

P = AR, A ∈ R
K×W , R ∈ R

W×L, and Q = GS, G ∈ R
N×T , S ∈ R

T×|M|,

with elements akw, rwl, gnt, and stm, respectively, and A and G non-summative. This

representation is valid for all types of intensity profiles: For a non-summative profile, we

would have W = L, T = |M|, and R and S being the corresponding identity matrices.

Vice versa, for W = K, T = N , and A and G being identity matrices, also the case of

general summative intensity profiles is covered.

We set

ãkw :=







a−1
kw if akw 6= 0

0 else
and g̃nt :=







g−1
nt if gnt 6= 0

0 else
(5.4)

and have

1

(PξQ⊤)kn
=
∑

l∈L

∑

m∈M

ãkwg̃nt
1

(RξS⊤)wt
and

1

(PξQ⊤)2
kn

=
∑

l∈L

∑

m∈M

ã2
kwg̃

2
nt

1

(RξS⊤)2
wt

.

For

cjwt := wj
∑

k∈K

∑

n∈N

bjkn exp(pkn)ãkwg̃nt and c̃jwt := wj
∑

k∈K

∑

n∈N

bjkn exp(2pkn)ã
2
kwg̃

2
nt,

we have

V (ξ)j =
∑

w

∑

t

cjwt
1

(RξS⊤)wt
+ σ2

e

∑

w

∑

t

c̃jwt
1

(RξS⊤)2
wt

. (5.5)

This is a simplified expression of the variance (5.2), as the summations over k and n

are reduced to summations over w and t, which incorporates less terms in case of non- or

partially-summative intensity profiles. Furthermore, in case of a non-summative intensity

profile, the summation in the denominator vanishes.

5.1.2 Rearrangement of the Coefficients

In finite dimensional optimization, the variable to be optimized is usually written as a

column vector. However, in the representations (5.1), (5.3), and (5.5), respectively, the

variable is the L× |M|-dimensional matrix ξ.

To convert the mappings to the standard representation, we rearrange their coefficients.

To this end, we concatenate the columns of ξ to a single I-dimensional vector with I :=

L |M|. Mathematically spoken, we map tuples of indices to a single index, that is,

(l,m) 7→ L(M +m) + l =: i in case of M = {−M, . . . ,M}
and (l,m) 7→ L(m− 1) + l =: i in case of M = {1, . . . ,M}.
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Analogously, we map tuples of indices of the matrices R and S, namely

(w, t) 7→ W (t− 1) + w =: h.

By applying these mappings, we set

yi := ξlm, y
i
:= ξ

lm
, yi := ξlm, di := dlm,

ψhi := rwlstm, cjh := cjwt c̃jh := c̃jwt,

∀i ∈ {1, . . . , L |M|} and h ∈ {1, . . . ,WT}.

Hence we can write the dose (5.1) as d⊤y, i.e., a scalar product in R
I , the box constraints

ξ ∈ B as y ∈ Y :=
{

y ∈ R
I | y ≤ y ≤ y

}

, and the variances operator (5.5) as

V : R
I → R

J , V (y)j =
WT∑

h=1

cjh
1

(Ψy)h
+ σ2

e

WT∑

h=1

c̃jh
1

(Ψy)2
h

(5.6)

with Ψ ∈ R
WT×I the matrix with entries ψhi. Obviously, in case of a non-summative

intensity profile, Ψ becomes the identity matrix and can be omitted. As it will be required

later, we compute the partial derivatives of V :

∂V

∂yi
= −

WT∑

h=1

(

cjh
1

(Ψy)2
h

+ 2σ2
e c̃jh

1

(Ψy)3
h

)

ψhi. (5.7)

Throughout this chapter, we make the following assumptions:

Assumption 5.5.

a) The coefficients cjh and c̃jh are all non-negative.

b) There is no actuator without dose contribution, i.e., d > 0.

c) There is no actuator without variance contribution, i.e., Ψy > 0 for y > 0, and for

all j, there exists at least one h, such that cjh > 0.

Assumption a) is reasonable, as the potentially negative coefficients introduced by

the covariances due to the filter step (c.f. Section 3.3) are not dominant. Otherwise, a

particular actuator would have a proportional relation to the variance, meaning that low

intensities would yield a better image quality.

Furthermore, assumptions b) or c) do not really restrict the following optimization

tasks, as in case they are not fulfilled, the corresponding actuators can be set to a constant

value and excluded from the computations. This may occur, e.g., if all X-ray beams

controlled by a particular actuator miss the patient, or if the ROI weights wj of all pixels

correlated to a particular actuator are set to zero.

Corollary 5.6. Given Assumption 5.5, the mapping V is strictly convex.

Proof. For y, ỹ ∈ Y , we have Ψy > 0. As the real-valued mappings x 7→ x−1 and x 7→ x−2

are strictly convex for x > 0, and a positive, non-vanishing linear combination preserves

strict convexity, we have the strict convexity of V .
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5.2 Minimizing the Mean Variance

We consider the optimization task

(MV1) min
y∈Y
‖V (y)‖1 s.t. d⊤y = d0.

for a non-summative intensity profile, i.e., for Ψ being the identity matrix. That is, the

minimization of the 1-norm of the variance map given a constant (strictly positive) effective

patient dose d0 ∈ R++.

Due to the non-negativity of the coefficients cjh and c̃jh (c.f. Assumption 5.5 a)), we can

drop the absolute value bars in the definition of the 1-norm, as all coefficients V (y)j are

non-negative for y ∈ Y . Except for a scaling factor of the cost function, the optimization

task is therefore equivalent to the minimization of the mean variance given a constant

dose.

We define the Lagrangian

L : R
I × R→ R, L(y, µ) =

∑

j∈J

V (y)j + µ(d⊤y − d0)

=
I∑

i=1

bi
1

yi
+ σ2

e b̃i
1

y2
i

+ µ(diyi − d0),

with

bh :=
∑

j∈J

cjh and b̃h :=
∑

j∈J

c̃jh.

By Assumption 5.5 c), these coefficients are strictly positive.

For its partial derivatives, we have

∂L

∂yi
= −bi

1

y2
i

− 2σ2
e b̃i

1

y3
i

+ µdi.

Their roots fulfill the necessary condition for a minimum. Since the cost function is convex,

and the constraint is linear, this condition is also sufficient. We set

zi :=
1

yi
∀i (5.8)

yielding the condition

∂L

∂yi
= −biz

2
i − 2σ2

e b̃iz
3
i + µdi = 0 ∀i. (5.9)

Hence the roots of the partial derivatives of the Lagrangian can be found by computing

the roots of I cubic polynomials. We consider the cases σe = 0 and σe > 0 separately:
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Case σe = 0: The second summand in (5.9) vanishes, and the condition is reduced to

a set of quadratic equations in zi:

−biz
2
i + µdi = 0 ∀i.

This equation is solved by1

z∗i =
√
µ

√

di
bi
∀i.

To determine the Lagrange multiplier µ∗ of the optimum solution, we make use of the

constraint d⊤y = d0, i.e., we compute

0 =
I∑

i=1

di
1

z∗i
− d0 =

I∑

i=1

di
1√
µ

√

bi

di
− d0 =

1√
µ

I∑

i=1

√

bidi − d0

⇒ 1√
µ∗

=
d0

I∑

i=1

√
bidi

yielding the optimum actuator profile y∗ with

y∗i =
d0

I∑

k=1

√
bkdk

√

bi

di
∀i.

Case σe > 0: We formulate a theorem characterizing the roots of a particular class of

cubic polynomials:

Theorem 5.7. The cubic polynomial

x3 + ax2 + c, a ≥ 0, c ≤ 0,

has the real, nonnegative root

x =







2∑

j=1

3

√

−(A+B) + (−1)j
√
D − 3
√
A for D ≥ 0

3
√
A
(

2 cos
(
φ
3

)

− 1
)

else,

whereas

A :=
a3

33
, B :=

c

2
, D := B(2A+B), φ := arctan

√
−D

−(A+B)
. (5.10)

The rather technical proof of the theorem is based on Cardano’s method and is given

in Appendix A.7.

1The second, negative root is neglected as it has no physical meaning.
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5.2. Minimizing the Mean Variance

We reformulate (5.9) yielding

z3
i +

bi

2σ2
e b̃i

z2
i +
−µdi
2σ2
e b̃i

= 0 ∀i. (5.11)

As zi, bi, and b̃i are all positive, the condition can only hold, if the last summand is

negative, that is, if µ > 0. Hence we can apply Theorem 5.7 yielding solutions

z∗i =







2∑

j=1

3

√

−(Ai +Bi) + (−1)j
√
Di − 3

√
Ai for Di ≥ 0,

3
√
Ai
(

2 cos
(
φi
3

)

− 1
)

else

with

Ai :=
b

3
i

σ6
e6

3b̃3
i

, Bi :=
−µdi
4σ2
e b̃i

, Di := Bi(2Ai +Bi), φi := arctan

√−Di
−(Ai +Bi)

.

The coefficients Bi and thus the solutions z∗i depend on the multiplier µ, that is, z∗i = z∗i (µ).

As for the case σe = 0, we identify µ∗ using

0 =
I∑

i=1

di
1

z∗i (µ)
− d0 =: g(µ). (5.12)

Theorem 5.8. The function g(µ) defined in (5.12) is monotonically decreasing.

Proof. We have the derivative

∂g

∂µ
=
I∑

i=1

∂g

∂z∗i

∂z∗i
∂Bi

∂Bi
∂µ

with
∂g

∂z∗i
= − di

z∗2i
< 0,

∂Bi
∂µ

=
−di

4σ2
e b̃i

< 0 ∀i.

To prove the monotony, we have to show that ∂zi/∂Bi ≤ 0 ∀i. First, we consider the

case Di ≥ 0. Hence

∂z∗i
∂Bi

=
1

3

2∑

j=1

sj, sj :=
(

p+ (−1)jq
)− 2

3
(

−1 + (−1)jq−1(−p)
)

with

p := −(Ai +Bi), q :=
√

Di.

We have p ≥ 0 (c.f. (A.8)) and q ≥ 0 by assumption. Thus

s1 + s2 = (p− q)− 2
3 (−1 + pq−1)− (p+ q)−

2
3 (1 + pq−1)

⇒ q(s1 + s2) = (p− q)− 2
3 (p− q)− (p+ q)−

2
3 (p+ q) = (p− q) 1

3 − (p+ q)
1
3 ≤ 0

⇒ s1 + s2 ≤ 0 ⇒ dzk
dBk
≤ 0.
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Second, we assume Di < 0. For

ti := tanφi =

√−Di
−(Ai +Bi)

, we have
∂z∗i
∂Bi

=
∂z∗i
∂φi

∂φi
∂ti

∂ti
∂Bi

.

Thus

∂z∗i
∂φi

= − 3

√

Ai
2

3
sin

(

φi
3

)

≤ 0 (as φi ∈ [0, π] (c.f. (A.9)))

∂φi
∂ti

=
1

1 + t2i
> 0

∂ti
∂Bi

=
1

(Ai +Bi)2

(

−(Ai +Bi)√−Di
(−(Ai +Bi)) − (−1)

√

−Di
)

=
1

(Ai +Bi)2

(

(Ai +Bi)
2

√−Di
+
√

−Di
)

≥ 0

yielding ∂z∗i /∂Bi ≤ 0.

Due to the monotony, the equation g(µ) = 0 has a unique solution µ∗ which can be

computed by a 1D Newton’s method.2 By that, we can compute z∗ explicitly and thus the

desired y∗ according to (5.8).

The presented methods allow for the computation of the actuator profile y∗ that min-

imizes the average noise while keeping the dose at a constant level. For σe = 0, i.e.,

no or negligible electronic noise, the optimum profile can be computed analytically. In

the general case σe > 0, only a 1D Newton’s method is required for parameter identifi-

cation. Hence, in both cases, the calculation of the optimum solution is efficient from a

computational perspective.

The rather direct solvability is mainly due to the fact that all partial derivatives depend

on a single actuator only, or in other words that the Hessian is a diagonal matrix. By

that, the I equations (5.11) are all separable. This property, however, is due to the non-

summative intensity profiles, and the presented methods are limited to such profiles.

Another limitation regards the box constraints y ∈ Y . Although these restrictions

show up in the statement of the optimization task, they are not considered throughout the

computations and the computed solution y∗ may violate them. However, the likelihood of

such a violation depends on the selected dose level d0 and the mA-limits y, y, and may

not be critical in practice.

In Section 5.4, we present an iterative method for the minimization of the p-norm of

the variance map (1 ≤ p < ∞). This algorithm is capable of dealing with summative

intensity profiles as well as the box constraints and thus can circumvent the limitations of

the above method.

2The existence of µ∗ follows from the Slater condition.
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5.3. Minimizing the Maximum Variance

5.3 Minimizing the Maximum Variance

We consider the optimization task

(MV∞) min
y∈Y
‖V (y)‖∞ s.t. d⊤y = d0,

that is, the minimization of the supremum norm of the variance map given a constant

(strictly positive) effective patient dose d0 ∈ R++. As V (y) is finite dimensional and

non-negative for y ∈ Y , its supremum norm is the maximum value of V (y), i.e.,

‖V (y)‖∞ = max
j∈J

V (y)j,

and thus the task is equivalent to the minimization of the maximum variance. Again, we

consider different cases:

Special case: non-summative intensity profile and σe = 0: The second summand

of the variance operator (5.6) vanishes, and the identity matrix Ψ can be omitted. Hence

we can write the optimization task as

min
y∈D

f(g(y))

with f , g and D as defined in Section 4.1. Thus the method proposed in Chapter 4, that

is, the SHA (Algorithm 4.6), is suitable for solving the optimization problem.

General case: For the general case including summative intensity profiles and elec-

tronic noise, a general method for nonlinear, constrained optimization is required. We

apply SQP as described in Appendix B.3.

To deal with the non-differentiable cost function, we introduce a variable upper bound

σ ∈ R (c.f. Section 4.5.1) and minimize that bound with the additional condition

V (y)j ≤ σ ∀j. (5.13)

More formally, we define

x := (y⊤, σ)⊤ ∈ R
I+1,

f : R
I+1 → R, f(x) = σ,

gA : R
I+1 → R

J , gA(x) = V (y)− 1Jσ,

gB : R
I+1 → R

I , gB(x) = y − y,
gC : R

I+1 → R
I , gC(x) = −y + y,

g := (g⊤A , g
⊤
B , g

⊤
C )⊤,

h : R
I+1 → R, h(x) = d⊤y − d0,

(5.14)
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Chapter 5. Dose/Noise Optimization

and write the optimization task as

min
x∈RI+1

f(x) s.t. g(x) ≤ 0, h(x) = 0, (5.15)

i.e., in the standard form (B.5).

In order to apply the SQP Algorithm B.4, we also have to provide the gradients and

Jacobian matrices of the comprised functions. The partial derivatives read:

∂f

∂yi
= 0,

∂gA,j
∂yi

=
∂V

∂yi
,

∂gB,j
∂yi

= 1,
∂gC,j
∂yi

= −1,
∂h

∂yi
= di, (5.16)

∂f

∂σ
= 1,

∂gA,j
∂σ

= −1,
∂gB,j
∂σ

=
∂gC,j
∂σ

=
∂h

∂σ
= 0.

To determine a start vector x0 of the SQP, we compute a flat intensity profile fulfilling

the dose constraint, that is,

y0 :=
d0

d⊤1I
1I , and set σ0 := max

j∈J
Vj(y

0) yielding x0 := (y0⊤, σ0)⊤. (5.17)

As g is convex, and h affine, x0 can also be used to compute feasible start vectors for the

quadratic programs raised in the SQP, i.e., x0 = x̃ as defined in Lemma B.5.

Obviously, the SQP algorithm could also be applied to the special case of a non-

summative profile and negligible electronic noise. However, the dedicated SHA requires

only the solution of a linear program in every iteration in contrast to the quadratic pro-

grams raised in the SQP. Furthermore, the linear programs are expected to be solved very

efficiently, as they are changing slowly over the iterations, and the previous solutions serve

as start vectors (c.f. Section 4.6).

On the other hand, the superlinear rate of convergence of the SQP is superior to the

geometric rate of the SHA. Hence the better overall performance of both algorithms will

finally depend on the dimensions and the data of the particular problem under consider-

ation. E.g., while tighter actuator bounds yield a faster convergence of the SHA, as the

feasible domain becomes smaller and thus less approximating hyperplanes are required,

they slow down the convergence of the SQP, as a higher number of active constraints re-

quires more iterations to solve the quadratic subproblems. A comparison of both methods

is given in Section 6.3.

5.4 Minimizing p-Norms

The previously discussed optimization tasks, that is, the minimization of the 1-norm of

the variance in Section 5.2 and the minimization of the supremum norm in Section 5.3,

respectively, can be seen as the extreme cases of minimizing the p-norm with 1 ≤ p <∞.
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5.4. Minimizing p-Norms

The drawback of the latter task is the large number of inequality constraints (5.13)

due to the differentiable reformulation of the task. For the minimization of the 1-norm,

on the other hand, we cannot guarantee low variance for all pixels, as this norm is prone

to disregard outliers. For that reason, the minimization of the p-norm may be a good

trade-off between computational efficiency and the desired homogeneous image quality.

We formally state the problem

(MVp) min
y∈Y
‖V (y)‖p s.t. d⊤y = d0

with 1 ≤ p <∞ and d0 ∈ R++. For simplification, we remove the p-th root in the definition

of the norm without affecting the solution.3 Furthermore, we omit the absolute value bars

due to the non-negativity of V (y) for y ∈ Y . This yields the cost function

f : R
I → R, f(y) =

∑

j∈J

Vj(y)p.

The constraints are similar to the constraints gB, gC , and h defined in (5.14). We have

gB : R
I → R

I , gB(y) = y − y,
gC : R

I → R
I , gC(y) = −y + y,

g := (g⊤B , g
⊤
C )⊤,

h : R
I → R, h(y) = d⊤y − d0,

(5.18)

yielding the the standard form (B.5). For the partial derivatives, we have

∂f

∂yi
= p

∑

j∈J

Vj(y)p−1∂Vj
∂yi

and
∂gB,j
∂yi

,
∂gC,j
∂yi

,
∂h

∂yi
as defined in (5.16).

Again, we apply the SQP algorithm using the start vector y0 according to (5.17). In

contrast to the minimization of the supremum norm, we have to deal with a nonlinear cost

function, but with far less and only affine constraints.

Remark 5.9. We consider the case p = 2, σe = 0, and a non-summative intensity profile,

i.e., Ψ the identity matrix. If we define z ∈ R
I , zi := y−1

i ∀i, and C ∈ R
J×I the matrix

containing the coefficients cji, the cost function becomes

f(y) =
∑

j∈J

Vj(y)2 =
∑

j∈J

(
I∑

i=1

cji
1

yi

)2

=
∑

j∈J

(
I∑

i=1

cjizi

)2

= (Cz)⊤(Cz) = z⊤(C⊤C)z,

that is, a quadratic function of z. Hence the resulting optimization task can also be

addressed by the SHA, as stated in Remark 4.20.

3This is due to the monotony of the p-th root.
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5.5 Minimizing the Dose

So far, we considered the minimization of norms of the variance map, while keeping the

dose constant. Vice versa, we can also minimize the dose, while keeping a norm of the

variance map below a certain threshold, i.e.,

(MD) min
y∈Y

d⊤y s.t. ‖V (y)‖p ≤ σ0, σ0 ∈ R++,

for a fixed p ≥ 1 (including p =∞).

This is basically a change of the cost and constraint functions of the previously discussed

optimization tasks. Due to this similarity, we reduce the discussion of this class of problems

to a single example, namely the case p = ∞. That means, that we limit the variance of

all pixels to σ0.

To obtain the standard form (B.5), we set

f : R
I → R, f(y) = d⊤y,

gA : R
I → R

J , gA(y) = V (y)− 1Jσ0,

g := (g⊤A , g
⊤
B , g

⊤
C )⊤

with gB and gC as in (5.18). Equality constraints are not present.

For the partial derivatives, we have

∂f

∂yi
= di and

∂gA,j
∂yi

,
∂gB,j
∂yi

,
∂gC,j
∂yi

as defined in (5.16).

To solve the problem, we apply the SQP algorithm again. As a start vector y0, we

choose a flat actuator profile scaled to fulfill the inequality constraint. In more detail, we

define

b := max
j∈J

WT∑

h=1

cjh
1

(Ψ1J)h
and b̃ := max

j∈J

WT∑

h=1

c̃jh
1

(Ψ1J)2
h

,

set y0 := a−11I with a constant a > 0, and compute

V (y0) =
WT∑

h=1

cjh
1

(Ψ1J)h
a+ σ2

e

WT∑

h=1

c̃jh
1

(Ψ1J)2
h

a2 ≤ ba+ σ2
e b̃a

2.

Hence identifying a, such that

ba+ σ2
e b̃a

2 = σ0,

guarantees the feasibility of y0. We have

a =







b−1σ0 if σe = 0,

(2σ2
e b̃)
−1

(−b+
√

b2 + 4σ2
e b̃σ0) else.
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Chapter 6

Numerical Simulations

In Chapter 3, we derived metrics to measure patient dose and image noise in CT. Based

on these metrics, we developed a workflow concept called CASPAR intended to reduce

the dose and/or the noise. In Chapter 5 we formulated several optimization tasks that

could be applied by CASPAR and presented solution approaches. This chapter focuses

on the application of this concept on a clinical data set, in order to validate the variance

metric, to analyze the performance of the algorithms, and to demonstrate the dose/noise

reduction potential of CASPAR.

6.1 Input Data

In a first step, we generate the required input data. To this end, we describe the underlying

scanner configurations and depict a thorax phantom data set. Based on that, we are able

to perform numerical dose computations.

6.1.1 Scanner configuration

The geometric parameters of the CT scanner are listed in Table 6.1. The time for a full

gantry rotation is 1.0 sec, its direction is clockwise, and for the first view (β1 = 0) the

detector is assumed to be in top position, i.e., straight above the patient.

source-COR-dist. (R1) 541 mm detector-COR-dist. (R2) 408 mm

number of views (K) 984 number of detector pixels (N) 888

scan interval [0, 2π] detector pixel size 1.0 mm

diameter FOV 500 mm number image pixels (J) 512× 512

Table 6.1: Scanner geometry.
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Chapter 6. Numerical Simulations

The intensity profile I0(β, α) has a continuous spectrum with a 120 keV peak energy. In

Section 3.1, we modeled the profile I0(β, α) using basis functions glm(β, α), l ∈ L, m ∈M.

In the following, we want to perform simulations for various sets of basis functions, i.e.,

for various types of intensity profiles. Table 6.2 names and lists all configurations under

consideration.1

name

flux basis tube current basis

number of subfan number of spline

subfans |M| overlap splines L order

TG0 1 - 24 0

TG2 1 - 24 2

MS30 3 0% 24 0

MS32 3 50% 24 2

MS52 5 50% 24 2

MS112 11 50% 24 2

FCS N 0% K 0

Table 6.2: Intensity profile configurations.

For the tube current basis functions B(β − βl), l ∈ L, we consider two types, namely

0th and 2nd order B-splines, as shown in Figure 3.2. With the nomenclature as in Section

5.1.1, 0th order splines yield a non-summative basis matrix P , i.e., W = L (c.f. Example

5.2 b)), while no dimension reduction is possible for 2nd order splines, i.e., W = K.

For the flux across the X-ray fan, we differentiate as follows: In case ofM = {0}, we

have a conventional TG geometry (c.f. Example 3.1 a)), and assume the flux F0(α) to be

equal to the flux through the body bowtie shown in Figure 3.4.

In case of |M| > 1, we assume the flux basis functions Fm(α) to be rectangular.

Potential realizations of such bases would be MS systems as described in Section 2.4.

Analogously, we call the support of Fm the m-th subfan. The rectangles may either be

disjoint (in this case the flux basis functions are 0th order B-splines), or they may overlap

by 50%, meaning that every part of the fan is covered by exactly two basis functions except

for the outer halves of the first and the last subfan.

We set the height of the rectangles, that is, the flux across the m-th subfan, equal to

the flux at the center of the body bowtie. For the MS configuration, we further divide the

flux by the number of subfans |M|. This compensates for the shorter exposure time of

a single subfan in a MS geometry, as the subfans are projected subsequently (c.f. Section

2.4), while the total rotation period is assumed to be constant for all geometries.2

1FCS denotes the fully controllable system introduced in Example 3.1 b).
2For the FCS, we do not consider an mA-profile but characterize the intensity profile directly.
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In case of non-overlapping subfans, the matrix Q is non-summative, i.e., T = |M| (c.f.

Example 5.2 a)). In case of 50% overlap, we get T = |M| + 1 fan segments that are

characterized by the same linear combination of actuators (c.f. Example 5.4 a)).

6.1.2 Thorax Phantom

The data set under consideration is a 2D CT image, that is, the attenuation map f(x),

x ∈ R
2, of a female thorax and a corresponding segmented organ map. The data is shown

in Figure 6.1.

Figure 6.1: Left: CT image (attenuation map f(x) in cm−1) of a female thorax. Right:

corresponding segmented organ map.

As described in Remark 2.5, we apply a DDP to the discretized version f of f yielding

the discrete fan beam sinogram p shown in Figure 6.2.

 

 

1 N
1

K

0

3

6

9

Figure 6.2: Distance-driven fan beam sinogram p of the thorax phantom.
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6.1.3 Dose

In order to provide the effective dose contributions per actuator d, we apply the numerical

dose computation as described in Section 3.2. This incorporates the computation of the

energy deposition maps D0
abs,lm(x) for every actuator tuple (l,m). To this end, we apply a

Monte Carlo tool that is part of the CatSim simulation environment [15].

However, due to the scatter of the photons, the energy is deposited in all three spatial

dimensions. To compensate for that, we extend the phantom axially yielding a 90 mm

coverage. Hence, also the energy deposition to the non-central slices is estimated and

finally added to the energy deposited in the central slice. The 3D data set is thereby

sampled by cubic voxels of 3.91 mm edge length. Figure 6.3 shows a selection of actuator

basis functions glm(β, α) and the resulting energy deposition maps for different intensity

profile configurations.

Figure 6.3: 2D intensity basis functions glm(β, α) in photons per mA (upper row) and

resulting energy deposition map D0
abs,lm(x) (lower row).

Tabular 6.3 shows reference organ masses provided by the ICRP as well as estimated

organ densities. Based on that, we compute the fraction of the total organ in the single

slice of the thorax. By multiplying the fraction with the ICRP sensitivity weight (c.f.

Table 3.1) we get the relative contribution to the effective patient dose caused by energy

deposition to that organ. That means, that a photon deposited in the breast for example

contributes approximately 112 times more to the effective dose that a photon deposited in

the skin.

Based on the energy deposition maps, we compute the effective dose contributions dlm,

l ∈ L, m ∈ M, according to (3.7) using the organ map, the fractions of the organs in
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organ mass density fraction relative dose

[g] [g/cm3] in slice [%] contribution (normalized)

skeleton 7,800 1.30 0.27 5.2

lung 950 0.25 2.0 38.7

breast 500 1.02 5.9 111.9

heart 620 1.06 2.0 38.8

muscle 17,500 1.05 0.6 10.9

thymus 25 1.06 2.5 48.1

esophagus 350 1.06 1.3 8.4

skin 2,300 1.06 0.6 1.0

Table 6.3: Reference organ masses for a 60 kg female body according to the ICRP [33],

organ densities, the fraction of the total organ present in the thorax slice, and the relative

dose contributions.

the slice, and the sensitivity weights. The dose contributions for all considered intensity

profile configurations are depicted in Figure 6.4. The peaks in the profiles thereby reflect

the high dose sensitivity of the breast.

Figure 6.4: Effective dose contributions d in µSv/mA for various intensity profile config-

urations.
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6.2 Validation of the Variance Metric

In Section 3.3, we derived a metric to predict the variance in the reconstructed image.

Within this derivation, we made several approximations: We used a linearization for the

computation of the variance in the sinogram (c.f. (3.13)), and we approximated the variance

in the reconstruction by a linear combination of the sinogram variances (c.f. (3.17)).

Therefore, we have to ensure that the metric is predicting the variance with a suffi-

ciently high accuracy. To this end, we validate the metric, that is, we qualitatively and

quantitatively compare the predicted metric with the variance measured from a set of noisy

data.

Throughout this section, we set the electronic noise to σe = 3.0 (photons). According

to the noise model (3.9), the variance depends on the measured attenuated intensity I only.

In order to measure the variance for a particular I, we add Poisson and Gaussian noise to

I, and compute p as the logarithmic ratio of I and an arbitrary constant I0 = 1× 105 > I

according to (2.8). We repeat this 5× 106 times and measure the variance in the resulting

noisy data set of p.

50 100 150 200
0

0.05

0.1

I
50 100 150 200

0

10

20
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I

%

Figure 6.5: Linearization in the variance propagation. Left: measured (dashed line) and

predicted (solid line) variance Var[p] as a function of the attenuated intensity I. Right:

relative error (in percent) between the measurement and the prediction.

Figure 6.5 shows the measured variance as a function of I, as well as the predicted

variance according to (3.13). The analysis of the relative error between measurement and

prediction yields that high accuracy is achieved for a sufficiently high intensity I. In more

detail, the error is below 10% for I > 35 =: I. In the following, this value serves as a lower

bound, and the parameters of all subsequent simulations have been chosen such that this

condition is not violated.3

In order to predict the variance in the sinogram p of the thorax phantom, we choose a

flat intensity profile profile I0 = 1 × 106 and compute the attenuated intensities I for the

given p. Based on than, we can compute the variance Var[I] according to (3.9). Then we

propagate this variance through the FBP using formula (3.17). To this end, we determine

3Note that I depends on the electronic noise σe.
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the system intrinsic summands bjkn based on the fan angle weights w1,n, the filter weights

h|n−ñ| and the DDBP coefficients cjkn. We thereby restrict the influence of the covariances

to |n− ñ| ≤ 3, that is, we compute

bjkn = w2
1,n

(

h0c
2
jkn + 2h1cjkncjkn−1 + 2h2cjkncjkn−2 + 2h3cjkncjkn−3

)

.

Again, we validate the prediction by a measurement, i.e., we add Poisson and Gaussian

distributed noise to the attenuated intensities I. Then we compute a noisy sinogram

according to (2.8), and reconstruct a noisy image using Algorithm 2.3. This is repeated

1 × 104 times and the variance in every single pixel is computed. Figure 6.6 shows the

resulting measurement as well as the predicted variance. Both results are in excellent

qualitative and quantitative agreement.

Figure 6.6: Measured (left) and predicted (center) variance in the reconstructed image

given a flat intensity profile I0 ≡ 1 × 106 photons. Right: horizontal (top) and vertical

(bottom) profile of the measured (red dots) and predicted (solid line) variance at the lines

indicated by the arrows in the left image.

6.3 Performance of the Optimization Algorithms

In Chapter 4, we presented a new type of cutting plane algorithm called SHA. In Section

5.3, we showed that this algorithm is suitable for a class of variance minimization problems,

namely for the minimization of the maximum variance in case of a non-summative intensity

profile and negligible electronic noise (σe = 0). We also stated that we could use the generic

SQP to address this task. This section investigates the performance of both methods and

compares the results.

For all simulations presented in this work, we use the programming environment

FreeMat [3] on a 3.2 GHz computer. For the solution of the linear programs in the SHA,
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we use the linear optimization package lp_solve [7]. To reduce the computational effort,

we do not compute the variance for all image pixels, but for a 51× 51 pixel grid. That is,

we consider approximately every tenth pixel of each dimension. Furthermore, we exclude

all pixels lying outside the thorax phantom, i.e., we set the ROI weights wj of these pixels

(c.f. Section 3.4.2) to zero and of the other pixels to one. In the end, we get J = 933 active

pixels.

We consider the intensity profile configurations TG0 and MS30 (c.f. Table 6.2) with

varying actuator bounds and a effective dose limit d0 = 10µSv. The performance of the

algorithms is shown in Figures 6.7 to 6.10. The number of subiterations thereby denotes

the number of pivot steps in the linear programs of the SHA, or the number of iterations

of the quadratic programs (QP) of the SQP, respectively.
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Figure 6.7: Performance of the SHA (left) and SQP (center) for TG0 and ξ = 50 mA and

ξ = 500 mA: (normalized) cost function value per iteration (upper row) and number of

subiterations (lower row). Right: cost per elapsed computation time.
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Figure 6.8: Performance of the SHA (left) and SQP (center) for TG0 and ξ = 5 mA and

ξ = 3000 mA: (normalized) cost function value per iteration (upper row) and number of

subiterations (lower row). Right: cost per elapsed computation time.

100 200 300
0.2

0.4

0.6

0.8

1

iteration

co
st

SHA

100 200 300
0

20

40

60

iteration

pi
vo

t s
te

ps

20 40 60 80 100
0.2

0.4

0.6

0.8

1

iteration

co
st

SQP

20 40 60 80 100
0

20

40

60

iteration

Q
P

 s
te

ps

10
−1

10
0

10
1

0.2

0.4

0.6

0.8

1

time [sec]

co
st

 

 

SHA
SQP

Figure 6.9: Performance of the SHA (left) and SQP (center) for MS30 and ξ = 100 mA and

ξ = 2000 mA: (normalized) cost function value per iteration (upper row) and number of

subiterations (lower row). Right: cost per elapsed computation time (logarithmic scale).

75



Chapter 6. Numerical Simulations

500 1000 1500 2000
0.2

0.4

0.6

0.8

1

iteration

co
st

SHA

500 1000 1500 2000
0

50

100

iteration

pi
vo

t s
te

ps

20 40 60 80 100
0.2

0.4

0.6

0.8

1

iteration

co
st

SQP

20 40 60 80 100
0

50

100

iteration

Q
P

 s
te

ps

10
−1

10
0

10
1

10
2

0.2

0.4

0.6

0.8

1

time [sec]

co
st

 

 

SHA
SQP

Figure 6.10: Performance of the SHA (left) and SQP (center) for MS30 and ξ = 5 mA and

ξ = 3000 mA: (normalized) cost function value per iteration (upper row) and number of

subiterations (lower row). Right: cost per elapsed computation time (logarithmic scale).

The actuator bounds are chosen either rather loose (Figures 6.8 and 6.10, respectively)

such that they are all inactive in the optimum solution, or rather tight (Figures 6.7 and

6.9, respectively) yielding eight (of 24) active constraints for TG0 and 38 (of 72) for MS30.

In the tight cases, the SHA converges significantly faster than the SQP due to the low

number of subiterations as shown in Table 6.4. In the loose cases, the situation is the

other way round, and the SHA produces poor results for a high number of variables (c.f.

Figure 6.10).

configuration TG0 MS30

bounds tight loose tight loose

SHA 4.5 6.3 11.6 23.9

SQP 9.4 6.6 25.7 12.6

Table 6.4: Average number of subiterations required for the SHA and SQP depending on

the choice of the actuator bounds.
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6.4 Optimization Results

CASPAR is intended to compute optimized intensity profiles. This section presents such

profiles for the configurations listed in Table 6.2 and the tasks and methods discussed in

Chapter 5. Furthermore, we show the resulting variance distributions and energy deposi-

tion maps in order to demonstrate the dose/noise reduction potential.

Before we present the CASPAR results, we present the results of standard modula-

tion techniques described in Section 3.4.1: For the standard geometry TG2, we compute

them for a flat intensity profile (FLAT), a sinusoidal tube current function (SIN), and a

modulation function according to the square root compensation (SRC). All profiles are

scaled such that they yield an effective patient dose d0 = 10µSv. This limit as well as the

electronic noise level σe = 3.0 (photons) will be used for all subsequent simulations. The

modulated profiles, the corresponding variance maps, and the energy deposition maps are

depicted in Figure 6.11.

Figure 6.11: Results for standard modulation techniques: Intensity profile (upper row),

predicted variance maps (middle row) and energy deposition maps (lower row).

Using the standard techniques, one can significantly improve the image variance. In

particular the streaks in the area of the spine can be reduced. The energy deposition maps

show that one mainly irradiates the arms of the patient. However, these methods do not

regard the organ specific dose sensitivities, and thus quite some energy is also deposited
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in the highly dose sensitive breast.

The subsequent sections demonstrate how CASPAR is capable to employ the dose

information in order to further reduce the variance.

6.4.1 Minimizing the Mean Variance

First, we investigate the minimization of the mean variance, i.e., task (MV1). In case of a

non-summative intensity profile, i.e., for TG0, MS30 and FCS, we derived a direct solution

method requiring only a 1D Newton method for parameter identification. However, the

method is not capable of regarding actuator bounds. Therefore, we use the SQP for the

computation of an optimized profile (MS30 lim) with an upper limit ξ = 2000 mA.

Figure 6.12: Results for CASPAR (MV1): Intensity profile (upper row), predicted variance

maps (middle row) and energy deposition maps (lower row).

Figure 6.12 shows the CASPAR results. We observe a significant reduction compared to

standard techniques (c.f. Figure 6.11). This is mainly due to the reduced energy deposition

in the breast.

Furthermore, the higher the degree of freedom of the intensity profile, i.e., the number

of actuators, the higher is the reduction potential. In particular for the FCS, we obtain a

very low and very homogeneous variance map. However, this requires very high intensities.

On the other hand, the comparison of the mA-limited and the unlimited results for MS30
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shows that the reduction of the maximum intensity to less than 50% has in this case only

minor effects on the variance profile.

For a fair comparison, we limit the actuators for all subsequent simulations to ξ = 5mA

and ξ = 4000 mA (except for the FCS). Table 6.5 lists the mean and the maximum variance

for the standard modulation techniques as well as for the results obtained by CASPAR

(MV1).

standard techniques CASPAR (MV1)

FLAT SIN SRC TG0 TG2 MS30 MS32 MS52 MS112 FCS

mean var. 19.0 14.1 13.5 10.1 10.0 6.6 5.6 5.2 5.1 4.7

max. var. 69.6 38.6 35.8 21.1 20.0 14.4 14.0 12.0 9.0 6.3

Table 6.5: Mean and maximum variance in 10−7 cm−1 for standard modulation techniques

and for CASPAR (MV1).

The results quantitatively validate the above statements: The mean as well as the

maximum variance for the optimized profiles are significantly below the results for the

standard techniques. The reduction potential increases with the number of subfans, i.e.,

with the number of variables.

6.4.2 Minimizing the Maximum Variance

Although the results of (MV1) have shown the great noise reduction potential of CASPAR,

we also observe rather inhomogeneous variance maps for |M| ≤ 3 (c.f. Figure 6.12). That

is, because the applied 1-norm yields an optimum average variance, but underestimates

outliers. Therefore, we investigate the minimization of the maximum variance, i.e., task

(MV∞).

Figure 6.13 illustrates the results of the optimization.4 Table 6.6 lists the corresponding

key values for the variance. As expected, the maximum values for the variance are further

reduced yielding more homogeneous variance maps. However, this causes a higher average

variance.

4We omit the depiction of the energy deposition maps, as they are rather similar to those obtained by

(MV1).
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Figure 6.13: Results for CASPAR (MV∞): Intensity profile (upper row) and predicted

variance maps (lower row).

TG0 TG2 MS30 MS32 MS52 MS112

mean var. 10.5 10.3 8.0 6.9 6.2 6.1

max. var. 19.1 18.7 11.1 9.5 8.1 7.4

Table 6.6: Mean and maximum variance in 10−7 cm−1 for CASPAR (MV∞).

6.4.3 Minimizing p-Norms

As discussed in Section 5.4, the minimization of the p-norm for 1 < p <∞ may be a good

alternative to overcome the disadvantages of the previously investigated tasks, that is, the

inhomogeneity for (MV1) and the high average variance for (MV∞), respectively. As an

example, we show the results of (MVp) for various values of p applied on MS30 (c.f. Figure

6.14).

We observe the increasing homogeneity, but also the increasing overall variance for

higher numbers of p. Figure 6.15 compares the maximum and the mean variance for all

intensity profile configurations depending on the choice of p including p = 1 and p =∞.

The differences for varying p are relatively low for the TG configurations and increase

with the number of actuators, that is, with |M|. By that, the plot visualizes once again

the great noise reduction potential of CASPAR in combination with scanner geometries

incorporating a highly controllable intensity profile.
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Figure 6.14: Results for CASPAR (MVp) applied on MS30: Intensity profile (upper row)

and predicted variance maps (lower row).
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Figure 6.15: Variance key values depending on the selected p. Left: mean variance, right:

maximum variance (in cm−1).

6.4.4 Minimizing the Dose

Last but not least, we also investigate the minimization of the dose subject to a constant

upper variance limit. This limit is set to σ0 = 18.7× 10−7 cm−1, that is, to the maximum

variance computed with (MV∞) for TG2 (c.f. Table 6.6). The results are depicted in

Figure 6.16.

We also compare CASPAR (MD) to the standard modulation techniques. To this

end, we scale the standard profiles shown in Figure 6.11 such that they match the upper

variance limit. In Table 6.7, we list the resulting effective dose for the standard techniques

as well as for CASPAR (MD).
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Figure 6.16: Results for CASPAR (MD): Intensity profile (upper row), predicted variance

maps (middle row) and energy deposition maps (lower row).

standard techniques CASPAR (MD)

FLAT SIN SRC TG0 TG2 MS30 MS32 MS52 MS112

eff. dose 30.4 18.9 17.8 10.2 10.0 6.1 5.2 4.5 3.6

Table 6.7: Effective dose in µSv for standard techniques and CASPAR (MD).

CASPAR is capable to reduce the dose by a factor of 3 compared to the flat profile and

of almost 2 to the standard modulation techniques. For MS geometries, further reduction

is achieved up to a factor of 8.4.
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Chapter 7

Discussion and Conclusion

We have presented a novel strategy for dose/noise optimization in X-ray computed to-

mography (CT). This strategy is called CASPAR and is based on patient specific dose

and noise metrics. We have derived these metrics as functions of the intensity profile (c.f.

Chapter 3), formulated corresponding optimization tasks, and provided numerical solution

approaches (c.f. Chapter 5). The novel supporting hyperplane algorithm (SHA) (c.f. Chap-

ter 4) can be seen as an alternative to the standard optimization techniques and may be

advantageous from a computational perspective. This chapter is intended to discuss these

topics with respect to the numerical results presented in Chapter 6.

The dose metric derived in Section 3.2 is based on the widely accepted effective patient

dose proposed by the International Commission on Radiological Protection (ICRP). It can

be written as a linear function of the intensity profile, i.e., of the tube current actuators.1 A

disadvantage of the proposed method with respect to its application in a clinical workflow is

the time consuming Monte Carlo simulation used to determine the energy deposition maps.

Therefore, other techniques, such as a patient classification system, may be more useful

from a clinical perspective. However, for the purpose of this work, i.e., the demonstration

of the dose/noise reduction potential, the proposed patient specific simulation seems to

be the most appropriate method, as it yields high accuracy. Even more accurate results

could be achieved, if a three dimensional (3D) phantom would be used. That is, because

the proposed expansion of the two dimensional (2D) slice to a 3D slab (c.f. Section 6.1.3)

may disregard scattered photons which travel outside the slab before being absorbed.

In Section 3.3, we showed how the noise in the measured data propagates through the

image reconstruction process. Although we provided an exact formula for the computation

of the variance in the sinogram, its approximation using linearization turned out to be a

more practicable approach. In Section 6.2, we showed that the approximation is suffi-

1Also other existing dose concepts that are linear with respect to the beam intensity could be applied,

e.g. the so called CT dose index (CTDI) [23].
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ciently accurate, if a sufficiently high number of photons can be measured at the detector.

However, if this is not fulfilled, the variance for this measurement would be very high, as it

increases exponentially with a decreasing intensity. Moreover, the high variance contribu-

tion in the sinogram would yield high variance in the reconstructed image. Hence, in case

of reasonably defined actuator bounds and dose/noise limits, this case will be prevented

by the optimized profiles anyway.

The second part in the reconstruction is the filtered backprojection (FBP). Again,

we made an approximation in order to simplify the computation of the variance in the

filter step. In more detail, we assumed the sinogram variance to be stationary within

small areas. The validation in Section 6.2 proved this to be a reasonable approach from

a practical perspective. Finally, we expressed the variance propagation in the FBP by a

linear combination of the sinogram variances.

Both metrics play a complementary role in CT: High intensities mean high dose but also

low noise and vice versa. While the variance simply depends on the integrated attenuation

along a line of response (LOR), the dose also depends on the sensitivity and the order

of the organs traversed. Hence a particular beam may have a high dose contribution but

only a low noise contributions and vice versa. From a mathematical point of view, this

opposite property can be measured by the scalar product of the coefficients: the smaller

the product, the more the coefficients differ. That is, the more orthogonal the dose and

variance coefficients, the higher is the dose/noise reduction potential.

For the thorax phantom under consideration, the comparison of the sinogram (c.f. Fig-

ure 6.2) and the effective dose contribution per LOR (c.f. Figure 6.4, right, fully controllable

system (FCS)) illustrates the orthogonality. In particular, both peaks in the sinogram,2

which result from beams covering a long path through the patient including arms and

spine, correspond to very low dose contributions, as no highly dose-sensitive organs are hit

by these beams (compare Table 6.3, relative dose contribution).

Vice versa, high dose contributions caused by beams that mainly irradiate the breast

of the patient, cause only low variance contribution. Since this is a specific feature of the

thorax, the simulation results presented in this work may not quantitatively reflect the

reduction potential for other regions of the body.

Obviously, the contributions are less orthogonal, if more LORs are controlled by a

single actuator. On the other hand, the higher the level of control over the intensity

profile, the higher may be the dose/noise reduction. This explains the superior results for

the multisource (MS) geometries (c.f. e.g. Table 6.5).

However, even for the standard third generation (TG) geometry, the CASPAR op-

timized intensity profiles outperform the standard modulation techniques in terms of

dose/noise reduction: Compared to the sinusoidal modulation (square root compensa-

2Note that the variance contribution is determined by the exponential of the sinogram entries.
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tion), the mean variance was reduced by 29% (26%) (c.f. Table 6.5) and the maximum

variance by 52% (48%) (c.f. Table 6.6) at constant dose. Vice versa, the dose was reduced

by 47% (44%) at constant maximum variance (c.f. Table 6.7).

The dose/noise reduction achieved by the standard modulation techniques compared

to a flat profile is thereby due to the compensation of the high attenuation of beams

traversing the patient in horizontal direction. CASPAR achieves further improvement by

also regarding the different dose sensitivity of beams entering either the back or the chest of

the patient. Another advantage of CASPAR is the control of the noise in the reconstructed

image, while the standard techniques consider the noise in the sinogram only. CASPAR is

thereby capable of particularly weighting certain regions of interest (ROIs). In addition,

by the choice of a particular norm of the image variance, CASPAR allows to trade off

the desired low mean against the acceptable maximum variance (c.f. Section 5.4), i.e., the

average noise against its homogeneity across the image.

For the computation of the optimized profiles, we presented various methods (c.f. Chap-

ter 5): A direct method for the minimization of the mean variance, the generic sequential

quadratic programming (SQP) algorithm suitable for all types of optimization tasks, and a

novel type of cutting plane algorithm called SHA. The latter is tailored to a specific prob-

lem, namely the minimization of the maximum variance at constant dose. To this end,

the problem is considered in two different domains, and in each of them it is addressed by

a linear subproblem. Although the analysis of the performance of the SHA and the SQP

does not yield a single superior method (c.f. Section 6.3), the SHA seems to be favorable

for smaller dimensions or in case of tight actuator boundaries.

That is, because the single iteration steps of the SHA, i.e., linear programs with ben-

eficial start vectors, are expected to be computationally cheaper than for the SQP, where

quadratic programs with generic start vectors are to be solved. For smaller dimensions,

this advantage of the SHA is predominant compared to the slower rate of convergence

(geometric vs. superlinear). Furthermore, the SQP suffers from tight actuator bounds, as

additional active constraints means a higher number of subiterations required to solve the

quadratic programs, while the performance of the SHA is improved due to the smaller

feasible domain.

This work is also intended to encourage the further development of inverse geometry

systems. As stated above, the simulation results underline the great dose/noise reduction

potential of such systems, more precisely of MS geometries. These systems are capable

to realize very homogeneous variance maps (c.f. Figures 6.13 and 6.16), i.e., guarantee

excellent overall image quality at very low dose. E.g., for a MS system comprising eleven

sources, the dose was reduced by 80% compared to TG system using sinusoidal modulation

(c.f. Table 6.7).

However, a limiting factor of MS systems is the shorter exposure time of the single
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subfans, i.e., the emission of less photons per LOR. As a consequence, the actuator limits

will be reached during the optimization (c.f. Figure 6.13, right) and may prevent the

profile from further dose/noise reduction. To compensate for this limitation, the number

of photons per time needs to be increased, that is, more powerful X-ray tubes have to be

developed.

In summary, we state that the presented method to compute optimized intensity meth-

ods has an enormous dose/noise reduction potential. However, the optimality may go along

with some slow down of the clinical workflow, as the required patient specific information

has to be acquired and the optimization routines have to be run before the actual scan.

Nevertheless, the increasing awareness of patients and clinicians for radiation dose together

with the need of high quality images for reliable diagnostics will leverage the development

of more sophisticated scan protocols and new geometry concepts in the future. CASPAR

– in particular in combination with a MS geometry – addresses both needs and may there-

fore serve as a powerful simulation tool for future research as well as a innovative workflow

concept in clinical practice.
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Appendix A

Additional Proofs, Derivations, and

Computational Formulas

A.1 Relation between the Radon Transform, its Ad-

joint and the Convolution Operators

We show that

(R#p) ∗2 f = R#(p ∗1 Rf)

with the notations as in Definition 2.2 and ∗2 and ∗1 the 2D convolution operator in L2(R2)

and the one dimensional (1D) convolution operator acting on the second dimension of

L2(Σpar), respectively (c.f. Natterer [43], Chapter 2). We have

(R#p ∗2 f)(x) =
∫

R2

(R#p)(x− y)f(y) dµ(y)

=
∫

R2

π∫

0

p(θ, (x− y)⊤ω(θ)) dθf(y) dµ(y)

=

π∫

0

∫

R2

p(θ, (x− y)⊤ω(θ))f(y) dµ(y) dθ.

By the substitution y = rω(θ) + sω⊥(θ), r, s ∈ R, we have

(x− y)⊤ω(θ) = x⊤ω(θ)− rω(θ)⊤ω(θ)− sω⊥(θ)⊤ω(θ) = x⊤ω(θ)− r.
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Thus

(R#p ∗2 f)(x) =

π∫

0

∫

R2

p(θ, x⊤ω(θ)− r)f(rω(θ) + sω⊥(θ)) ds dr dθ

=

π∫

0

∫

R

p(θ, x⊤ω(θ)− r)Rf(θ, r) dr dθ

=

π∫

0

(p ∗1 Rf)(θ, x⊤ω(θ)) dθ = (R#(p ∗1 Rf))(x).

A.2 Fan Beam Filtered Backprojection

We derive a fan beam FBP formula from the parallel beam formula (2.5), i.e., from

f(x) ≈ (D ∗2 f)(x) = (R#(q ∗1 ppar))(x) =

π∫

0

∫

R

q(x⊤ω(θ)− r)ppar(θ, r) dr dθ. (A.1)

with ppar = Rf . To this end, we make several independent statements and computations

that will finally contribute to the derivation of the desired formula:

a) The extension of the integration in the backprojection operator R# to the full circle

[0, 2π] yields twice the value of the integral over the half circle [0, π]. That is, because

the first variable of ppar is π-periodic, i.e., ppar(θ ± π, r) = ppar(θ, r).

b) We express the argument of q in (A.1) by β and α according to the coordinate

transform (2.4): By the angle addition theorems we have

x⊤ω(θ)− r = x⊤ω(α+ β)−R1 sinα = x⊤
(

cosα cos β − sinα sin β

sinα cos β + cosα sin β

)

−R1 sinα

= x⊤ω(β) cosα + (x⊤ω⊥(β)−R1) sinα.

We set

v sin γ := x⊤ω(β), v cos γ := R1 − x⊤ω⊥(β)

and compute

tan γ =
v sin γ

v cos γ
, γ = arctan

(

x⊤ω(β)

R1 − x⊤ω⊥(β)

)

,

v2 = v2 sin2 γ + v2 cos2 γ, v =
√

(x⊤ω(β))2 + (R1 − x⊤ω⊥(β))2.

Finally, we get

x⊤ω(θ)− r = v sin γ cosα − v cos γ sinα = v sin(γ − α)

by applying the angle addition theorems once again.
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c) We compute

q(v sin(γ − α)) = (F−1Fq)(v sin(γ − α))

=

∞∫

−∞

(Fq)(k) exp(i2πv sin(γ − α)k) dk

=

k∫

−k

|k| exp(i2πv sin(γ − α)k) dk

We define the coordinate transform

k = k′
γ − α

v sin(γ − α)
, dk = dk′

γ − α
v sin(γ − α)

, k
′
= k

v sin(γ − α)

γ − α ,

yielding

q(v sin(γ − α)) =

k
′

∫

−k
′

∣
∣
∣
∣
∣
k′

γ − α
v sin(γ − α)

∣
∣
∣
∣
∣
exp(i2π(γ − α)k′) dk′

γ − α
v sin(γ − α)

=

k
′

∫

−k
′

|k′| exp(i2π(γ − α)k′) dk′
(

γ − α
v sin(γ − α)

)2

=

∞∫

−∞

(Fq)(k′) exp(i2π(γ − α)k′) dk′
(

γ − α
v sin(γ − α)

)2

= q(γ − α)

(

γ − α
v sin(γ − α)

)2

=:
1

v2
h(γ − α).

d) The Jacobian of the transformation (2.4) reads
∣
∣
∣
∣
∣

1 1

0 R1 cosα

∣
∣
∣
∣
∣
= R1 cosα.

By putting all these statements together, we have

f(x) ≈
π∫

0

∫

R

q(x⊤ω(θ)− r)ppar(θ, r) dr dθ
a)
=

1

2

2π∫

0

∫

R

q(x⊤ω(θ)− r)ppar(θ, r) dr dθ

b)
=

1

2

2π∫

0

∫

R

q(v sin(γ − α))ppar(θ, r) dr dθ
c)
=

1

2

2π∫

0

1

v2

∫

R

h(γ − α)ppar(θ, r) dr dθ

d)
=

1

2

2π∫

0

1

v2

∫

R

h(γ − α)pfan(β, α) |R1 cosα| dα dβ

=
1

2

2π∫

0

W2(x, β)
∫

R

h(γ − α)(W1pfan)(β, α) dα dβ
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with the definitions as in Section 2.2.

A.3 Multisource Rebinning

We verify the coordinate transform (2.12). That is, we show that a MS beam of subfan m

characterized by its view angle θ and its position on the detector r, can be transferred to

a beam of a conventional fan beam geometry.
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·
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S0
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D

Figure A.1: Transform of MS to fan beam coordinates. Left: relation of view angles θ and

β; right: relation of detector position r and fan angle α.

Figure A.1 (left) illustrates that the subfan emitted by the source Sm, which has an

angular distance mψ to the central source S0, turns out to be a part of a TG fan with

source Sm at the view angle

β = θ +mψ.

The second identity can be derived by several basic geometric computations. With the

notations as in Figure A.1 (right), we have that the angle ∡{A, 0, D} equals mψ. Thus we

have

A0 = 0D cos(mψ) and AD = 0D sin(mψ).

(XY denotes the distance of the points X and Y .) Furthermore, also the angle ∡{E,D,C}
equals mψ and thus

ED = CD cos(mψ) and AB = EC = CD sin(mψ).
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Finally,

tanα =
BC

SmB
=

AD − ED
Sm0 + 0A+ AB

=
0D sin(mψ)− CD cos(mψ)

Sm0 + 0D cos(mψ) + CD sin(mψ)

=
R2 sin(mψ)− r cos(mψ)

R1 +R2 cos(mψ) + r sin(mψ)
.

A.4 Computational Formulas for Random Variables

We present a short summary of computational formulas for random variables. For de-

tails, we refer to the textbook by Georgii [26]. For a continuous random variable X, the

probability density function f induces the cumulative distribution function

F (x) =

x∫

−∞

f(t) dt,

which denotes the probability P (X ≤ x), i.e., the probability that the value of X lies

between −∞ and x.

The expectation value of X is defined by

E[X] =

∞∫

−∞

xf(x) dx,

and the variance by

Var[X] =

∞∫

−∞

(x− E[X])2f(x) dx.

For two random variables X and Y , one has the covariance

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] .

The covariance is zero, if X and Y are independent.

For constants ci and random variables Xi, i ∈ N, holds:

E

[
∑

i

ciXi

]

=
∑

i

ciE[Xi]

Var

[
∑

i

ciXi

]

=
∑

i

c2
iVar[Xi] + 2

∑

i<j

cicjCov[Xi, Xj].
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A.5 Convex Perturbation of Linear Programs

We give a proof of Lemma 4.11, i.e., we show that linear programs can be perturbated

with a convex cost function such that solution of the perturbated problem still solves the

original one. In our argumentation, we follow Dempster and Merkowsky [18]:

Proof. Both problems (Q) and (Qǫ) are solvable. For c∗ the optimum value of (Q), consider

a third optimization problem
min
x

h(x)

Ax ≤ b

c⊤x ≤ c∗.

(A.2)

Its feasible set is the solution set of (Q). Hence this problem is also solvable, i.e., there

exists a Karush-Kuhn-Tucker (KKT) point (x∗, λ∗, µ∗) ∈ R
N+J+1 such that

∇h(x∗) + A⊤λ∗ + cµ∗ = 0 (A.3)

Ax∗ ≤ b (A.4)

λ∗⊤(Ax∗ − b) = 0 (A.5)

µ(c⊤x∗ − c∗) = 0

λ∗, µ∗ ≥ 0.

As mentioned above, x∗ also solves (Q). Hence there exists a Lagrange multiplier ρ∗ ∈ R
J

such that

A⊤ρ∗ + c = 0 (A.6)

Ax∗ ≤ b
ρ∗⊤(Ax∗ − b) = 0 (A.7)

ρ∗ ≥ 0.

First, consider the case µ∗ > 0: We divide (A.3) by µ∗, multiply by a scalar t ∈ [0, 1]

and add (1− t) times (A.6):

t

µ∗
∇h(x∗) + A⊤

(

t

µ∗
λ∗ + (1− t)ρ∗

)

+ c = 0

Analogously, we multiply (A.5) by t
µ∗

and add (1− t) times (A.7):

(

t

µ∗
λ∗ + (1− t)ρ∗

)⊤

(Ax∗ − b) = 0

Furthermore, we have
t

µ∗
λ∗ + (1− t)ρ∗ ≥ 0.
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Together with condition (A.4), we found that (x∗, t
µ∗
λ∗ + (1 − t)ρ∗) is a KKT point for

(Qǫ) with ǫ = t
µ∗

. Since t ∈ [0, 1], we obtain

ǫ =
1

µ∗
> 0.

Second, we consider the case µ∗ = 0. We can multiply any ǫ > 0 to (A.3) and (A.5)

and add them to (A.6) and (A.7), respectively:

ǫ∇h(x∗) + A⊤(ǫλ∗ + ρ∗) + c = 0

Ax∗ ≤ b
(ǫλ∗ + ρ∗)⊤ (Ax∗ − b) = 0

ǫλ∗ + ρ∗ ≥ 0

Hence (x∗, ǫλ∗ + ρ∗) is a KKT point for (Qǫ) for any ǫ > 0, i.e., we obtain an arbitrary

upper bound ǫ.

A.6 The Dual of the Relaxed Minimax Problem

We follow the concept of the Lagrangian dual function (c.f. Boyd and Vandenbherge [9],

Chapter 5) to derive the dual problem of (LPi) as defined in Chapter 4. With the defini-

tions of Ci, di and z̃ as in Section 4.6, we write (LPi) as

min
z̃≥0, σ∈R

σ

Az̃ −1Jσ ≤ −Az
Ez̃ ≤ z − z
Ciz̃ ≤ di − Ciz.

We define the Lagrange function

L : R
K × R× R

J × R
K × R

|Ii| → R

L(z̃, σ, α, δ, β) = σ + α⊤(Az̃ − 1Jσ + Az) + δ⊤(Ez̃ + z − z) + β⊤(Ciz̃ − di + Ciz)

and compute the corresponding Lagrange dual function

g(α, δ, β) = inf
z̃≥0

inf
σ∈R

L(z̃, σ, α, δ, β)

= inf
σ∈R

(1− α⊤1J)σ + inf
z̃≥0

(α⊤A+ δ⊤E + β⊤Ci)z̃

+ α⊤Az + δ⊤(z − z) + β⊤(−di + Ciz).
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The dual problem is then defined as

max
α,δ,β

g(α, δ, β) subject to α, δ, β ≥ 0.

This is equivalent to

max
α,δ,β

(Az)⊤α +(z − z)⊤δ +(−di + Ciz)⊤β

A⊤α +Eδ +Ci⊤β ≥ 0

1⊤J α = 1

α, δ, β ≥ 0.

We introduce slack variables ν ≥ 0 for every inequality constraint yielding the standard

form (DPi).

A.7 Roots of Cubic Polynomials

Cardano’s method for finding roots of a cubic polynomial, i.e. for solving

x3 + ax2 + bx+ c = 0, a, b, c ∈ R,

works as follows:

• Substitute x = y − a/3:

y3 + py + q = 0, p := b− a2

3
, q :=

2a3

33
− ab

3
+ c.

• Set y := u+ v:

u3 + v3 + (3uv + p)(u+ v) + q = 0.

• Set v = − p
3u

, i.e., 3uv + p = 0:

u3 +
(

− p

3u

)3

+ q = 0.

• Multiply by u3 and substitute z = u3:

z2 + qz − p3

33
= 0.

• The quadratic equation has the two solutions

z1,2 = −q
2
±
√
D, D :=

q2

22
+
p3

33
.

94



A.7. Roots of Cubic Polynomials

• Compute

z1 · z2 =
q2

22
−D =

q2

22
−
(

q2

22
+
p3

33

)

= −p
3

33
= u3 · v3

hence

u = 3
√
z1 = 3

√

−q
2

+
√
D, v = 3

√
z2 = 3

√

−q
2
−
√
D.

• Back substitution yields x.

In order to proof Theorem 5.7, we apply this method onto the polynomial (5.7), i.e.,

onto

x3 + ax2 + c, a ≥ 0, c ≤ 0,

yielding

p = −a
2

3
, q =

2a3

33
+ c, D =

3a3c

33
+
c2

22

u, v =
3

√

−a
3

33
− c

2
±
√
D =

3

√

−(A+B)±
√
D.

with

A :=
a3

33
, B :=

c

2
, and D = B(2A+B).

Hence we get the (potentially complex) solution

x = y − a

3
= u+ v − a

3

=
2∑

j=1

3

√

−(A+B) + (−1)j
√
D − 3
√
A.

We have to show that x is real and non-negative. Recall that A ≥ 0 and B ≤ 0. First,

we consider the case D ≥ 0, i.e. 2A+B ≤ 0. Since

A+B ≤ 2A+B ≤ 0, (A.8)

we have

(u3)2 =






−(A+B)
︸ ︷︷ ︸

≥0

+
√

B(2A+B)
︸ ︷︷ ︸

≥0







2

≥ (−(A+B))2 +
√

B(2A+B)
2

= A2 + 2AB +B2 +B(2A+B) = A2 + 2B(2A+B) ≥ A2

⇒ u3 ≥ A.
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Furthermore,

A2 ≥ 0

A2 + 2AB +B2 ≥ 2AB +B2

(A+B)2 ≥ B(2A+B)

−(A+B) ≥
√

B(2A+B)

v3 = −(A+B)−
√

B(2A+B) ≥ 0.

Thus u and v are real, hence x is real and, since

x = u+ v − 3
√
A ≥ 3

√
A+ 0− 3

√
A = 0,

also non-negative.

Second, consider the case D ≤ 0, i.e., 2A+B ≥ 0: As
√
D is imaginary, we have

y = u+ v =
3

√

−(A+B) + i
√
−D +

3

√

−(A+B)− i
√
−D

= 3

√

r exp(iφ) + 3

√

r exp(−iφ)

with i the imaginary unit,

r :=
√

(A+B)2 −D, φ := arctan

√
−D

−(A+B)
.

Hence

y = 3

√

r exp(iφ) + 3

√

r exp(−iφ) = 3
√
r

(

exp

(

i
φ

3

)

+ exp

(

−i
φ

3

))

= 2 3
√
r cos

(

φ

3

)

.

We further analyze r:

r =
√

(A+B)2 −D =
√

(A+B)2 −B(2A+B)

=
√
A2 + 2AB +B2 − 2AB −B2 = A.

The numerator in the definition of φ is non-negative, while the sign of denominator may

vary. Hence we have

φ ∈ [0, π] ⇒ φ

3
∈
[

0,
π

3

]

⇒ cos
φ

3
∈
[
1

2
, 1
]

(A.9)

yielding

x = y − 3
√
A = 3
√
r2 cos

(

φ

3

)

− 3
√
A =

3
√
A

(

2 cos

(

φ

3

)

− 1

)

︸ ︷︷ ︸

≥0

,

i.e. x is real and non-negative, which finally proofs Theorem 5.7.
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Standard Optimization Algorithms

B.1 The Simplex Method

The simplex method is the standard algorithm for solving linear programs. We give a short

summary of how the algorithm works and thereby focus on the so called bases and the

basis exchange, as these features are relevant for an efficient implementation of the (LPi)

in Chapter 4. For details, we refer to the textbooks by Schrijver [48] and Vanderbei [55]

and the lecture notes by Grötschel [30].

The so called standard form of a linear program reads

max
ξ∈Σ

γ⊤ξ, Σ = {ξ ∈ R
n | Φξ = β, ξ ≥ 0} (B.1)

with γ ∈ R
n, Φ ∈ R

m×n, β ∈ R
m, and n > m. By introducing slack variables, every linear

program can be written in this fashion.

Definition B.1. An index vector B ⊂ {1, ..., n} containing m elements, such that the

submatrix ΦB ∈ R
m×m (consisting of the columns of Φ that are indicated by B) is regular,

is called basis and ΦB basis matrix. The complementary index vector C, such that

B ∩ C = ∅, B ∪ C = {1, ..., n},

is called non-basis. The vector ξ ∈ R
n such that

ξB = Φ−1
B β ∈ R

m and ξC = 0 ∈ R
n−m

is called basic solution. The elements of ξB and ξC are called basic and non-basic variables,

respectively. If ξB ≥ 0, ξ is called feasible, and if ξB > 0, non-degenerate. The vector

η ∈ R
m, η⊤ := γ⊤BΦ−1

B

is called the dual basic solution.
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The feasible basic solutions form the vertices of the simplex Σ and are the potential

candidates for the optimum solution. (The optimum is always obtained at a vertex of the

simplex.) Hence the algorithm starts at an arbitrary feasible basic solution. By exchanging

single elements of B and C, so called pivot steps, it moves along the edges of the simplex

towards better vertices until the optimum is reached. Thereby, a particular basis exchange,

i.e. the replacement of the element r of B by the element s of C and vice versa, is feasible,

if

(Φ−1
B ΦC)rs 6= 0.

Furthermore, the basis exchange improves the solution, if

(Φ−1
B ΦC)rs > 0 and γs > 0 for γ⊤ := γ⊤C − γ⊤BΦ−1

B ΦC .

In short words, the algorithm reads:

Algorithm B.2 (simplex method).

Phase I: Determine a feasible start vertex, i.e. B, ΦB and ξ = Φ−1
B β.

Phase II: Perform basis exchanges until the optimum vertex is reached.

Phase I, i.e., finding a feasible start vertex, is usually done by solving another linear

program (with a known start vertex).

B.2 Quadratic Programming - Active Set Strategy

In this section, we present a standard approach for the solution of a quadratic program

min
s∈Rn

f(s) :=
1

2
sTQs+ cT s+ γ s.t. As ≤ α, Bs = β, (B.2)

with symmetric, positive definite Q ∈ R
n×n, c ∈ R

n, γ ∈ R, A ∈ R
p×n, α ∈ R

p, B ∈ R
q×n,

and β ∈ R
q, namely the so called active set strategy. For details, we refer to the textbooks

by Geiger and Kanzow [25] and Spellucci [50].

First, we formulate the KKT conditions for p = 0, i.e., in case of no inequality con-

straints:

Qs+ c+B⊤µ = 0, Bs = β.

For a feasible vector sk and s = sk + ∆s, this yields

(

Q B⊤

B 0

)(

∆s

µ

)

=

(

−c−Qsk
β −Bsk

)

=

(

−∇f(sk)

0

)

, (B.3)

i.e., if we know a feasible point, we can compute a KKT point (s⊤, µ⊤)⊤ directly.
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Second, we consider the general case p ≥ 0. For a feasible point sk, we define

Ik :=
{

i ∈ {1, . . . , p} | A⊤i sk = αi
}

the index set of the in sk active conditions and AIk the submatrix of A indicated by Ik.

Analogously to (B.3), we have that the solution of






Q A⊤Ik B⊤

AIk 0 0

B 0 0













∆s

λIk
µ







=







−∇f(sk)

0

0






, (B.4)

is a KKT point ((sk + ∆s)⊤, λ⊤Ik , µ
⊤)⊤ of the quadratic program that only regards the in

sk active constraints. Based on that observation, we formulate an Algorithm for solving

(B.2):

Algorithm B.3 (Active set strategy for quadratic programs).

Choose a feasible point s0 ∈ R
n and determine I0. For k = 0, 1, ...

1. Solve (B.4) yielding (∆s⊤, λ⊤Ik , µ
⊤)⊤ and set λi = 0 for i /∈ Ik.

2. Consider the following cases:

∆s = 0 and λIk ≥ 0: sk is the a solution of (B.2). STOP.

∆s = 0 but λi < 0 for an i ∈ Ik: sk is not a KKT point, but the cost f cannot

be further reduced given the actual set of active constraints. Deactivate one

constraint, i.e., Ik+1 = Ik \ {s} with λs < 0.

∆s 6= 0 and sk + ∆s feasible: Progress can be made given the actual set of con-

straints. Set sk+1 = sk + ∆s.

∆s 6= 0 but sk+ ∆s infeasible: One of the currently inactive constraints is violated,

i.e., ∃r with aTr∆s > 0. Reduce step width

sk+1 := sk + t∆s with t :=
αr − a⊤r sk
a⊤r ∆s

and activate the r-th constraint: Ik+1 = Ik ∪ {r}.

For the symmetric, positive definite matrix Q, one can show that ∆s is always a descent

direction. Thus, the optimum will be reached after a finite number of iterations.

B.3 Sequential Quadratic Programming

A standard approach for the solution of nonlinear constrained optimization tasks, i.e.,

problems of the form

min
x∈Rn

f(x), s.t. g(x) ≤ 0, h(x) = 0, (B.5)
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with convex, continuously differentiable functions f : R
n → R, g : R

n → R
p, and h : R

n →
R
q, is the so called sequential quadratic programming (SQP). This section provides an

overview of this method. For details, we refer to the textbooks by Geiger and Kanzow [25]

and Jarre and Stoer [35].

B.3.1 Derivation of the Algorithm

We formulate the Lagrangian of (B.5)

L : R
n × R

p × R
q → R, L(x, λ, µ) = f(x) + λ⊤g(x) + µ⊤h(x)

and the KKT conditions

Φ(x, λ, µ) :=













∇xL(x, λ, µ)

λ1g1(x)
...

λpgp(x)

h(x)













= 0, λ ≥ 0, g(x) ≤ 0.

To compute the roots of Φ, we apply Newton’s method onto Φ. The Jacobian matrix reads

DΦ(x, λ, µ) = Ψ(x, λ,∇2
xxL)

with

Ψ(x, λ,B) :=













B Dg⊤(x) Dh⊤(x)

λ1∇g⊤1 (x)
...

λp∇g⊤p (x)

g1(x)
. . .

gp(x)

0

Dh(x) 0 0













and ∇2
xxL = ∇2

xxL(x, λ, µ) the Hessian of L. For the k-th Newton step, we have







xk+1

λk+1

µk+1







=







xk

λk

µk







+







∆x

∆λ

∆µ







with Ψ(xk, λk,∇2
xxL)







∆x

∆λ

∆µ







= −Φ(xk, λk, µk).

We modify the step by setting

Ψ(xk, λk+1, Bk)







∆x

∆λ

∆µ







= −Φ(xk, λk, µk), (B.6)
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i.e., we replace the matrix ∇2
xxL(xk, λk, µk), with a (computationally cheaper) matrix Bk,

and generate an implicit system by replacing λk with λk+1. Additionally, we formulate

constraints

λk+1 = λk + ∆λ ≥ 0

g(xk) +Dg(xk)∆x ≤ 0,
(B.7)

to regard the conditions λ ≥ 0, g(x) ≤ 0 again.

In explicit fashion, (B.6) reads

Bk∆x+Dg⊤(xk)∆λ+Dh⊤(xk)∆µ = −∇f(xk)−Dg⊤(xk)λk −Dh⊤(xk)µk,

λk+1
i ∇g⊤(xk)∆x+ gi(x

k)∆λi = −λki gi(xk), 1 ≤ i ≤ p,
Dh(xk)∆x = −h(xk).

Hence

∇f(xk) +Bk∆x+Dg⊤(xk)λk+1 +Dh⊤(xk)µk+1 = 0,

λk+1
i (∇g⊤i (xk)∆x+ gi(x

k)) = 0, 1 ≤ i ≤ p,
Dh(xk)∆x+ h(xk) = 0

(B.8)

Equations (B.8) and (B.7) turn out to be KKT conditions of the quadratic program

min
s∈Rn

1

2
sTBks+∇f⊤(xk)s

Dg(xk)s ≤ −g(xk)
Dh(xk)s = −h(xk)

(B.9)

with s := ∆x. Thus (∆x⊤, λk+1⊤, µk+1⊤)⊤ is a KKT point of (B.9). This result induces

the following algorithm:

Algorithm B.4 (Sequential quadratic programming).

Choose x0 ∈ R
n feasible for (B.5) and B0 ∈ R

n×n symmetric, positive definite. For

k = 0, 1, . . .

1. Determine a KKT point (s⊤, λ⊤, µ⊤)⊤ of (B.9) and set

xk+1 := xk + s, λk+1 := λ, µk+1 := µ.

2. Determine a symmetric, positive definite matrix

Bk+1 ≈ ∇2
xxL(xk+1, λk+1, µk+1).

The quadratic programs in step 1 can be addressed with Algorithm B.3. If g is convex

and h affine, we can compute the required feasible start vector as follows:
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Lemma B.5. Let x̃ denote a feasible vector of the nonlinear optimization problem (B.5)

with g convex and h affine. For the solution xk of k-th iteration of Algorithm B.4 holds

that x̃− xk is feasible for the quadratic program (B.9).

Proof. By Taylor’s theorem, there exists a constant c ≥ 0 such that

g(x̃) = g(xk) +Dg(xk)(x̃− xk) + c.

By the feasibility of x̃, we have

0 ≥ g(x̃) ≥ g(xk) +Dg(xk)(x̃− xk),

i.e., the feasibility of x̃− xk for the inequality constraints of (B.9).

The function h is affine, that is, h(x) = Ax+ b with a suitable matrix A and a vector

b. Furthermore, xk is feasible for (B.5). Thus

−h(xk) = 0 = (Ax̃− b)− (Axk − b) = A(x̃− xk) = Dh(xk)(x̃− xk),

i.e., x̃− xk fulfills the equality constraints of (B.9).

Since another feasible vector of (B.5) is required as start vector x0 of the algorithm,

we can simply set x̃ = x0.

B.3.2 Quasi-Newton-Updates

The replacement of the Hessian of the Lagrange function with a matrix Bk in (B.6) char-

acterizes a Quasi-Newton-Method. This is a superlinearly convergent method, if

Bk+1s = y (B.10)

with

y = ∇xL(xk+1, λk+1, µk+1)−∇xL(xk, λk+1, µk+1)

≈ ∇2
xxL(xk+1, λk+1, µk+1)s.

A common update formula which fulfills (B.10) is the so called BFGS update (named

after its inventors Broyden, Fletcher, Goldfarb, and Shanno)

Bk+1 := Bk +
yy⊤

s⊤y
− Bkss

⊤Bk
s⊤Bks

.

For Bk symmetric, this yields a symmetric matrix Bk+1. Furthermore, the matrix is

positive definite (as required for the convergence of the quadratic program (B.9) according

102



B.3. Sequential Quadratic Programming

to Appendix B.2), if Bk is positive definite and if y⊤s > 0. The latter condition can be

enforced by the so called Powell modification: If y⊤s < as⊤Bks with a ∈ (0, 1), set

θ := (1− a)
s⊤Bks

s⊤Bks− y⊤s
∈ (0, 1) and ỹ := θy + (1− θ)Bks

yielding

ỹ⊤s = θ(y⊤s− s⊤Bks) + s⊤Bks = (a− 1)s⊤Bks+ s⊤Bks = as⊤Bks > 0.
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