
Self-Monitoring and Control for Embedded Systems using
Hybrid Constraint Automata

Paul Maier
Technische Universität München

Boltzmannstraße 3, 85748 Garching
+49.89.289.19595

maierpa@in.tum.de

Martin Sachenbacher
Technische Universität München

Boltzmannstraße 3, 85748 Garching
+49.89.289.19556

sachenba@in.tum.de

Summary

Many of today's mechatronic systems ̶ such as automobiles, automated factories
or chemical plants ̶ are a complex mixture of hardware components and embed-
ded control software, showing both continuous (vehicle dynamics, robot motion)
and discrete (software) behavior. The problems of estimating the internal
discrete/continuous state and automatically devising control actions as intelligent
reaction are at the heart of self-monitoring and self-control capabilities for such
systems. In this paper, we address these problems with a new integrated approach,
which combines concepts, techniques and formalisms from AI (constraint opti-
mization, hidden markov model reasoning), fault diagnosis in hybrid systems (sto-
chastic abstraction of continuous behavior), and hybrid systems verification (hy-
brid automata, reachability analysis). Preliminary experiments with an industrial
filling station scenario show promising results, but also indicate current limita-
tions.

Keywords

Maximal 5 Keywords

Page 2 Paul Maier, Martin Sachenbacher

1 Introduction

Many complex systems today ̶ such as automobiles, automated factories or
chemical plants ̶ consist of hardware components whose functionality is extend-
ed or controlled by embedded software. Model-based diagnosis and planning al-
gorithms using a discrete Hidden Markov Model (HMM) of the system's internal
behavior have been proposed to address the problems of self-monitoring under
partial observations and intelligent self-control to compensate for faults and other
contingencies in such systems [WICE03]. Specifically, [WCG01] introduced
Probabilistic Hierarchical Constraint Automata (PHCA) as a compact means of
HMM encoding, which allows to conveniently model uncertain hardware behav-
ior as well as complex software behavior. In previous work [MWS05], we have
introduced an approach to efficiently compute best diagnoses and plans for sys-
tems modeled as PHCAs. It is based on encoding PHCA as soft constraints and
then using a decomposition-based constraint optimization algorithm to compute
best, i.e. most probable, system trajectories over a given time horizon of steps.

However, many real-world
components, like the silo of a
filling station shown in figure
1, involve not only discrete be-
havior but also continuous dy-
namics; failures often manifest
themselves as a subtle combi-
nation of the system's continu-
ous dynamics, and its evolution
through discrete behavior
modes.

Hybrid systems have long been at the center of interest in model-based verifica-
tion and increasingly gain attention in areas such as model-predictive control,
model-based diagnosis and reconfiguration. Henzinger introduced the formalism
of hybrid automata as a modeling framework for hybrid systems [H96], which is
nowadays a widely accepted standard not only in hybrid systems verification. Re-
cent advances in modeling concurrent stochastic hybrid systems have been pub-
lished by Alur et al. [AGLS06, BSA04].

In this paper, we propose an extension of the PHCA formalism to Hybrid PHCAs
(HyPHCAs), which allow modeling of continuous behavior as linear Ordinary
Differential Equations (ODEs). Since HyPHCAs allow an infinite number of sys-
tem trajectories, the main challenge is then to make computation of best trajecto-
ries on HyPHCAs tractable. We address this problem with an abstraction-based
approach that combines concepts, techniques and formalisms from AI (constraint

Figure 1: Filling station.

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 3

optimization, hidden markov model reasoning), fault diagnosis in hybrid systems
(stochastic abstraction of continuous behavior), and hybrid systems verification
(hybrid automata, reachability analysis).

Model-based diagnosis/monitoring of hybrid systems is also addressed by the
works of Lunze et al. [LN01, BKLS+06] and Williams et al. [HW02]. Lunze and
co-workers introduced a method which abstracts continuous system models with
stochastic automata, which encode Markov chains. The stochastic automaton for-
malism is similar to PHCA, but doesn't allow for complex hierarchical structures.
Therefore they are less suited for creating models during the design phase of a
technical system. Williams et al. introduced Probabilistic Hybrid Automata and
describe a hybrid tracking algorithm, which combines discrete tracking using hid-
den markov models with continuous tracking using extended Kalman Filters.

The key difference between these existing approaches and our work is that we
avoid specialized algorithms fitted to the modeling formalism (HyPHCAs in our
case). Instead, we employ the general framework of constraint optimization
[MRS06], and can therefore use existing, highly optimized off-the-shelf constraint
solvers [BHGL+04] to solve the problems of monitoring and intelligent control.
To take advantage of specific model features, we plan to develop formalism or
model specific heuristics to, e.g., exploit the often refined model structure due to
design. This makes our approach very flexible and it is a lot easier to incorporate
new developments such as, e.g., Quantified Constraint Optimization [BLV08].
Furthermore, by extending PHCAs, a modeling framework explicitly designed for
embedded model-based development, we are moving closer to the over-arching
ideal of using a single model for system design, system verification and online
model-based monitoring/control.

Here, we do not address the problem of hybrid control [KH05], we exclusively fo-
cus on discrete control inputs (commands). However, this mostly depends on the
tools we use, and hence it should be possible to extend our method to hybrid con-
trol problems. In the next section, we introduce our motivating example, which
we also used for our experiments. Then we introduce HyPHCAs in section 3, de-
scribe how we abstract them to receive discrete models in section 4 and show how
monitoring and control problems can be solved based on a soft-constraint encod-
ing of the discrete models in section 5. Finally, we present results and conclude
with a discussion and future work.

2 Industrial Filling Station Example

As an example we use an industrial filling station employed in teaching [D07].
The station fills a granulate material in small bottles, which are transported to and
away from the station on a conveyor belt. A pneumatic arm moves bottles from

Page 4 Paul Maier, Martin Sachenbacher

the conveyor onto a swivel and back when they are finished. The swivel positions
the bottles below a silo, where they are filled by a screw mechanism powered by
an electrical motor. A photo sensor (binary signaled) indicates when the silo is
empty. We created a simplified model of the filling station (shown in figure 2),
which consists only of the silo and the sensor model. The silo fill level, during
filling, is continuously modeled as (where is the fill rate).
This equation, while not realistic, demonstrates that our approach can handle such
equations. We experimented with a scenario in which we address the combined
problem of monitoring and control, and a second scenario which demonstrates
how varying degrees of abstraction influence the monitoring quality.

In the first scenario (referred to as scenario 1, shown in table 2), which ranges
over 10 time steps (duration of a single step), the silo receives motor
commands to fill two bottles. It has an initial fill level of 50 units. Within the first
7 time steps, the motor switch breaks, causing the motor to continue running and
emptying the silo (referred to as motor-switch-fault). At the sensor indicates an
empty silo.

The monitoring problem is to choose among three possible hypotheses explaining
the signal: (1) the silo emptied nominally (2) the silo emptied too quickly due to
the motor-switch-fault or (3) the sensor is stuck-on. A model which respects the
continuous behavior allows a reasoner to detect an inconsistency with the sensor
signal: the silo couldn't have emptied nominally, without the motor running. Thus,
hypothesis (1) is ruled out. Since the sensor fault is much less likely than the mo-
tor fault, the reasoner correctly assumes hypothesis (2) as most probable.

The control problem is to find suitable actions to deal with the fault and reach a
given goal stated by a high level control program. In this case the goal is that at
in the future, the silo must have a fill level between 5 and 10 and be in its initial

Figure 2: HyPHCA modeling the silo and the silo empty sensor of a filling stati-
on. The bolt indicates failure states (e.g., silo.motor-switch-fault,
sensor.stuck-on).

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 5

location wait (see table 2). In the following, we describe an approach, combining
several well known methods, which at the same time allows to deduce the correct
fault hypothesis and the sequence of commands to reach the goal.

The second scenario (referred to as scenario 2, shown in figure 5) is a slight varia-
tion of the first, where we know that the motor control doesn't break . Again the
sensor indicates an empty silo, but now earlier at . The reasoner, knowing
about the continuous behavior, can deduce that even with the motor-switch-fault,
the silo couldn't have emptied that quickly, ruling this fault out. Therefore, it cor-
rectly assumes that the sensor must be stuck-on, given the model abstraction is not
too coarse.

Throughout the remaining text, we will use the following abbreviations: m-s-f
refers to the motor-stuck-fault, m-s-f.ne and m-s-f.e refer to the primitive loca-
tions notEmpty and empty of m-s-f, d refers to a partitioning of with parti-
tion elements (e.g., d10 if we partition with 10 elements), s-on refers to stuck-
on and nom. to nominal.

3 Modelling Hybrid System Behavior with HyPHCAs

Systems with mixed discrete/continuous behavior can be modeled using hybrid
automata [H96], capturing continuous system evolution with ODEs over real-val-
ued variables. They however don't support hierarchical structure and probabilistic
behavior in order to uniformly model both probabilistic hardware behavior (e.g.,
likelihood of component failures) and complex software behavior (such as high
level control programs). In contrast, PHCA [WCG01] have the required expres-
sivity.

Definition 1. A PHCA is a tuple , where:

• is a set of composite and primitive locations. Each composite
location denotes another PHCA. A location may be marked or unmarked.
A marked location represents an active execution branch.

• is a probability distribution over subsets , denoting the proba-
bility that is the set of start locations.

• is a set of dependent, observable and command-
able variables, all having finite domains. denotes the set of finite do-
main constraints over .

• : associates with each location a finite domain con-
straint .

• , for each , is a probability distribution over a set of transi-
tion functions : . Each transition function

Page 6 Paul Maier, Martin Sachenbacher

maps a marked location into a set of locations to be marked at the next
time point, provided that the transition's guard constraint is entailed.

Definition 2. (PHCA state, PHCA trajectory) The state of a PHCA at time is a
set of marked locations called a marking . A sequence of such markings

 is called a PHCA trajectory.

In the remainder, we will use the notation to refer to the domain of a variable
, and to refer to the cross product of the domains of variables

.

PHCA don't allow to model continuous state evolution. Therefore, in style of hy-
brid automata, we define Hybrid PHCAs (HyPHCAs). They extend PHCAs with
linear ODEs, a widely used standard for modeling continuous system evolution. A
system of linear ODEs describes the time-continuous evolution of a
vector of variables as a set of equations over and their first de-
rivatives . is a vector of constants and the

-matrix of coefficients for the equation set.

Definition 3. A HyPHCA is a tuple where

• is a set of real-valued variables , their
first derivatives and a set representing
values of right after discrete transitions.

• is a function associating locations with constraints
over discrete and/or real-valued variables. denotes the set
of constraints over .

• is a function associating locations with constraints
over real-valued variables and their derivatives in the form of linear ordi-
nary differential equations. denotes the set of these differen-
tial equations.

• is a probability distribution over a set of transition functions
 for locations . Each transition

function maps a primitive location marked at time to the set of loca-
tions to be marked at the next time instant, given the location's guard is
entailed.

 and are analog to the PHCA definition.

Definition 4. (HyPHCA state, HyPHCA trajectory) The state of a HyPHCA at
time is a tuple , where is an assignment to all

variables at time , called continuous state, and a marking
analogous to the PHCA state marking (with the set of all markings). A
function , mapping time points (real-valued) to HyPHCA states,
is called a HyPHCA trajectory function. A finite sequence , re-

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 7

sulting from evaluating on a finite sequence of time points, is called a discrete-
time HyPHCA trajectory.

Discrete Flow and Clocked PHCAs

Our discrete approach to simultaneous tracking and control of hybrid system evo-
lution requires to convert a HyPHCA model to a discrete flow PHCA (dfPHCA),
conservatively abstracting continuous evolution with Markov chains. The evolu-
tion of a continuous variable in between two time points and is
thereby mapped to a discrete, timed transition between the quantized states of at
time and time . These discrete evolutions are encoded as discrete flow con-
straints. A dfPHCA is a tuple (parameter-
ized with fixed-length time interval) where is analogous to
of a HyPHCA, except that derivatives are omitted and variables have finite do-
mains now. is the discrete flow, a function associat-
ing locations with constraints encoding Markov chains over the discrete flow vari-
ables of the location. is defined as for HyPHCAs with real-valued variable sets

 and replaced by and . The rest is analog to the PHCA definition. The

state of at time is a tuple , where is an assign-

ment of values to discretized continuous variables at time , and a
marking analogous to the PHCA state marking. A function ,

mapping the infinite set of real-valued time points
 to dfPHCA states, is called a dfPHCA trajecto-

ry function. Evaluating for a finite subset of yields a finite sequence of
dfPHCA states , called a dfPHCA trajectory.

To bridge the gap from dfPHCAs to PHCAs, we define clocked PHCAs as dfPH-
CAs (also parameterized with) with discrete flows and discrete flow variables
omitted. A clocked PHCA trajectory is therefore a function
mapping to markings only. Clocked PHCAs can be seen as PHCAs with a fixed
duration between time points. The key difference is the trajectory semantic. For a
PHCA trajectory, only the indices of successive time points are relevant. I.e. a
PHCA trajectory is a function mapping natural numbers to mark-

ings, rather than real-valued time points.

To avoid confusion, we write , and for trajectories of a PHCA ,

clocked/discrete flow PHCA , and HyPHCA , respectively.

4 From Hybrid to Abstract Discrete Models

Discrete flow constraints encode special case PHCAs. In theory, a dfPHCA can be
turned into an equivalent clocked PHCA by emedding discrete flows as sub-

Page 8 Paul Maier, Martin Sachenbacher

PHCA into composite locations. So intuitively, a discrete abstraction of a HyPH-
CA is obtained by converting it to a dfPHCA, then converting the dfPHCA to a
clocked PHCA as above and finally abstracting from time intervals, leaving a
PHCA. However, certain non-trivial issues with hierarchical execution of PHCAs
arise. First of, the PHCA formalism doesn't allow transitions originating from a
composite location , they must originate from primitive locations within .
A more demanding problem is the following: Let be a discrete flow we
embed as sub-PHCA into location , rendering it composite. The PHCA
marking semantics demand that sub-locations of can only be marked when it-
self is marked. Let further be marked at and, due to a transition away, not
marked at . Specifically, all locations of are unmarked at . However,
if location with discrete flow is marked at , should deter-
mine the values for variables in its scope at . But since it is now encoded as
sub-PHCA , which determines these values via its marked locations, this be-
comes impossible.

These issues make it hard to define and understand the abstraction of HyPHCAs
using PHCAs directly. Therefore, we describe the abstraction using dfPHCAs. It
remains for future work to show that, when time intervals are abstracted, an arbi-
trary dfPHCA has an equivalent PHCA and thus encodes an HMM like a PHCA.

4.1 Converting HyPHCAs to Discrete Flow PHCAs

First, we define further required entities. Let be a
HyPHCA. The set denotes all transitions defined through . ,

 and are a transition's source, destination set and guard con-
straint, respectively. is a set of disjunct grid cells (also called quanti-
zation cells) partitioning the continuous state space of : . Let

 be the dfPHCA with discrete flow constraints generated
from . In the following, we refer to elements of the respective automatons, like

, by and , and , etc., except for those elements which are
unique to one or the other formalism (e.g.).

Figure 3 illustrates the Hy-
PHCA to dfPHCA conver-
sion. The conversion of lo-
cations, initial probability
distributions and proba-
bilistic transitions is
straight forward:

,
 and

= . The PHCA vari-

Figure 3: HyPHCA (above) is converted to a dfPH-
CA (below).

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 9

ables of consist of the discrete variables as well as and , the dis-
cretized counterparts to and (discrete versions of are not needed):

. The constraints over finite domain and continuous
variables in can be split into a set of constraints over discrete variables only
and constraints over both finite and continuous variables:

. The finite do-
main constraints of are accordingly

.
The function maps simple arithmetic constraints such as or
to corresponding finite domain constraints.

The finite domains of discretized variables are derived from the
quantization . The grid cells can be mapped onto intervals of the
variables and . Index sets of these intervals then form the domains of
and . That is, the values of, e.g., a variable represent intervals of
corresponding variable .

Now for each primitive location , its continuous flow is con-
verted to a discrete flow constraint . It encodes a special clocked PHCA

, which has only primitive locations, corresponding to grid cells of ,
and represents a Markov chain that conservatively approximates the continuous
flow. Its discrete, unguarded probabilistic transitions represent the evolution of
variables in between two time points and . is added to the
corresponding location . If it conflicts with transition guards determining
variable values for via , the guard takes precedence over

 (see, e.g., figure 3).

4.2 Discrete Abstraction of Continuous Flow

We can build on a lot of
related work in the areas
of automated verification
and hybrid diagnosis. To
conservatively estimate
transition probabilities of

 we use the geo-

metric abstraction method
introduced in [LN01]. The
process is illustrated in
figure 4: The reachable set

 is computed (red),

and from its overlap with
gridcells at (repre-

Figure 4: Reachable set for
 starting from the

marked grid cell. Right: the
derived PHCA .

Page 10 Paul Maier, Martin Sachenbacher

senting destination locations of) the probabilities are derived. Currently
we use PHAVer [F05] to compute , but different approaches can be em-
ployed: In [ASB07] Stursberg et al. combine Markov chains abstracting continu-
ous behavior with a more advanced reachability analysis. A too coarse state space
quantisation can lead to spurious solutions, as scenario 2 demonstrates. Currently,
the right number of partitions must be determined empirically. Hofbaur and Rien-
müller introduced a method to intelligently quantize the continuous state space
based on qualitative properties of piecewise affine systems [HR08]. This might be
a useful extension to our approach as it automatically chooses a good number of
partition elements, balancing precision of the abstraction against tractability, and
reduces the number of spurious solutions.

It remains to show that a dfPHCA, generated as described above from a HyPH-
CA, is actually a conservative abstraction in terms of the probabilities of system
trajectories, expressed with the proposition

Proposition 1. (Discrete flow PHCAs as conservative abstraction of HyPHCAs)
Let be a function that maps assignments to discretized continuous
variables to grid cells . Let be a discrete flow PHCA gen-

erated as described above from a HyPHCA , a finite sequence of
observations and commands and the correspond-
ing sequence of time points. Let be a trajectory of consistent with

 (i.e.) and

χ θA  Δt  :={Δ∣∀SU
 t i  ,m

t i  ∈Δ  ti,  SΠ U

 ti  , m
 t i ∈θA Δt  :m

t i = m
 t i ∧SU

 ti ∈G  SΠ U

t i  }

the set of all HyPHCA trajectories contained in . Then the following holds:

 is the probability of dfPHCA trajectory occurring giv-

en the sequence of observations and commands. Likewise,
 is the conditional density function of a distribution

over discrete-time HyPHCA trajectories.

5 Monitoring and Control as Constraint Optimization

Given a discretized model, partial observations, known commands and a goal
state , we combine the problems of system monitoring and finding goal
achieving commands into a single problem of finding the most probable system
trajectory over time steps which is consistent with the observations and con-
tains . From this trajectory the goal achieving commands can be easily de-
rived. We frame this problem as a discrete constraint optimization problem (COP)

 [SFV95] with transition probabilities as preferences by translating
the discretized model to soft-constraints following our framework in [MWS05].

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 11

The translation unfolds a given PHCA over a time window of steps as fol-
lows: is a set of variables with corresponding set of finite do-
mains . For all time points , it consists of

encoding PHCA variables, auxiliary variables (needed to, e.g., encode hierarchical
structure) and the solution variables of the COP, a set of binary variables

 representing location markings of . is

a set of constraints with scope and a constraint
function : mapping partial assignments of variables in

 to a probability value in . For all time steps , hard constraints
in (evaluates to) encode hierarchical structure as well as consistency of

observations and commands with locations and transitions, while soft constraints
in encode probabilistic choice of initial locations at (here, marks the
start of the time window, not the time point corresponding to present) and proba-
bilistic transitions. All assignments to form a set ordered by the global probabil-
ity value in terms of the functions (evaluated on the assignments extended to

). The assignments with highest probability are the -best solutions to , which
correspond to the most probable PHCA system trajectories. Their extension to
provides assignments to, e.g., goal achieving commands.

To encode dfPHCAs, we extended the framework with a soft-constraint encoding
of discrete flow constraints. This can be done very compactly and is thus a further
advantage over a PHCA encoding (as discussed in section 4). A flow constraint is
``active'' if and only if its associated location is marked and it is not overridden by
a transition guard. We encode this logic with hard constraints for each location
and time point, which implement the formula

. The auxiliary vari-

ables with domain and with domain

 indicate an override of a discrete flow and its activation, re-
spectively. The discrete flow itself is a function mapping discrete flow variables
in and to transition probabilities. Again for each location and time

point we encode these functions as soft constraints, extending their scope with
, keeping the former mappings if and map-

ping to zero otherwise.

All described steps up to now ̶ discretizing, generating Markov chains, encoding
as COP ̶ can be done offline. Online, we iteratively add observations and
known commands to and solve the COP to generate the most likely system
trajectories. For this step we employ existing off-the-shelf solvers such as Toul-
bar21.

1https://mulcyber.toulouse.inra.fr/projects/toulbar2/

Page 12 Paul Maier, Martin Sachenbacher

6 Results

We created and solved COP instances with different discretizations for (d2,
d5, d10 and d25) for our example scenarios and some variations. We tried Toul-
bar2's default and a second, decomposition based configuration. The problem size
was for all instances 843 variables and 920 constraints. For scenario 1 with d10
table 2 shows the most probable system trajectory the solver deduced from the

given observations and goals as
variable assignments in bold
face (given assignments in nor-
mal font). The generated solu-
tion correctly identifies the mo-
tor-switch-fault and provides
the necessary commands to
reach the goal: for

, and
 for and
 for . The

most probable system trajecto-
ries for scenario 2 with d5 and
d10 are shown in figure 5 as
trellis diagrams depicting dis-

crete transitions of the dfPHCA. Big black arrows and black filled circles mark
the found most probable trajectory, grey arrows show possible transitions. In this
scenario, the reasoner misses the fault sensor.stuck-on if is abstracted too

Table 1: Left: Runtime results (mean time in
sec.) for example scenarios
over different discretizations
for .

Figure 5: The inferred system trajectories for the sensor-fault scenario as trellis
diagram for d10 for (left) and for d5 (right).

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 13

coarsely (d5). We assume spurious solutions to be the culprit: The coarser the ab-
straction, the more probable become evolutions of which in reality are very
unlikely or impossible. This causes the combination of the more likely motor-
switch-fault and a spurious evolution of to become most probable. With a suf-
ficiently fine grained abstraction (d10), the spurious evolution's probability is re-
duced to near zero, which rules out the incorrect motor-switch-fault and leaves the
sensor.stuck-on fault as most probable.

Table 1 shows the average online runtimes for all scenarios. The columns show
results for scenario 1, its two variations 1.1 and 1.2, and scenario 2. The variations
are nominal behavior (1.1) and diagnose motor-switch-fault only (1.2). As one
would expect, a slight increase in runtime can be seen for the more fine grained
discretization d25. The variations 1.1 and 1.2 take roughly the same time as sce-
nario 1. Small differences are probably due to the fact that the variations are the
same COP with some constraints omitted. E.g., when diagnosing the motor-
switch-fault only, the goal is omitted. This makes the problem slightly harder be-
cause more future evolutions are possible. Finally, we expected the offline decom-
position of the problem to lower online computation effort, but surprisingly, it had
a negative effect in our scenario.

The offline steps (discretization, Markov chain generation and soft constraint en-
coding) for d2, d5, d10 and d25 take 16.5, 39.0, 138.5 and 215.4 seconds. They
show that the effort for model abstraction and encoding is considerable, even for a
small model. However, runtime is still within manageable bounds. Memory con-
sumption might be a bigger issue (for d25: 300 MB), it remains for future ex-
periments to show the limits of our method. Most of the resources are, however,
consumed by the Markov chain generation, i.e. the discrete model part influences
offline resource usage only marginally. This is not surprising: Converting the dis-
crete part of a HyPHCA to a discrete PHCA and encoding the final discrete model
as soft-constraints is linear in the size of the model, whereas the step of Markov
chain generation is exponential in the dimension of the continuous state space.

Resource usage might be reduced by improving reachability analysis, e.g., by op-
timizing PHAVer parameters. Also, there's room for improvement over our proto-
type implementation of the Markov chain generation. Finally note that of course
components with the same continuous behavior require Markov chain generation
only once. Due to the costly reachability analysis the approach might not be suit-
able for systems with many components showing different continuous behavior.

Page 14 Paul Maier, Martin Sachenbacher

Table 2: The monitoring/control results for our example scenario 1 (discretiza-
tion with 10 partition elements of). The rows show: Known
sensor values (1 row), known commands (4 rows), marked loca-
tions for sensor and silo (2 rows) and fill level (1 row).

7 Conclusion

Estimating the internal discrete/continuous state, and automatically devising con-
trol actions as intelligent reaction to identified failures and contingencies are at the
heart of self-monitoring and self-control capabilities for embedded (mixed hard-
ware/software) systems. We introduced HyPHCAs, an extension to PHCAs, as a
modeling framework and showed how to combine several methods from AI, fault
diagnosis in hybrid systems and hybrid systems verification to track the state and
compute reactive actions for mixed discrete/continuous systems modeled as Hy-
PHCAs. In an offline step, the approach abstracts the differential equations of the
HyPHCA to Markov chains encoded as PHCAs, embeds them in the discrete part
of the HyPHCA, and encodes the discrete abstraction with soft-constraints, such
that on-line monitoring and control of the system can be done by solving a dis-
crete constraint optimization problem. Our experimental results demonstrate the
feasibility of the approach on a small, but real-world factory scenario. Our next
steps are to refine the semantics of HyPHCAs in terms of probability distributions
over trajectories, to develop an estimator module which iteratively shifts the time
window ([MWS05]) to monitor systems over long time periods and verify our re-
sults on larger factory settings such as [BBW]. In this and in other settings, accu-
rate model-based monitoring and control can only be achieved by considering
both hybrid hardware and software behavior.

Literature

[WICE03] Williams, B. C.; Ingham, M.; Chung, S. H.; Elliott, P. H.: Model-Based Pro-
gramming of Intelligent Embedded Systems and Robotic Space Explorers. Pro-
ceedings of the IEEE: Special Issue on Modeling and Design of Embedded Soft-
ware, 91(1):212--237, 2003

Self-Monitoring and Control for Embedded Systems using Hybrid Constraint Automata Page 15

[WCG01] Williams, B. C.; Chung, S. H.; Gupta, V.: Mode Estimation of Model-Based
Programs: Monitoring Systems With Complex Behavior. In: Proc. IJCAI-01,
pages 579--590, 2001.

[MWS05] Mikaelian, T.; Williams, B. C.; Sachenbacher, M.: Model-based Monitoring and
Diagnosis of Systems with Software-Extended Behavior. In: Proc. AAAI-05,
2005.

[H96] Henzinger, T.: The Theory of Hybrid Automata. In: Proc. LICS-1996, pages
278--292, New Brunswick, New Jersey, 1996.

[AGLS06] Alur, R.; Grosu, R.; Lee, I.; Sokolsky, O.: Compositional Modeling and Refine-
ment for Hierarchical Hybrid Systems. Journal of Logic and Algebraic Program-
ming, 68(1-2):105-128, 2006.

[BSA04] Bernadsky, M.; Sharykin, R.; Alur, R.: Structured Modeling of Concurrent Sto-
chastic Hybrid Systems. In: Proc. FORMATS/FTRFT-2004, pages 309--324,
2004.

[LN01] Lunze, J.; Nixdorf, B.: Representation of Hybrid Systems by Means of Stochas-
tic Automata. Mathematical and Computer Modelling of Dynamical Systems,
7:383--422, 2001.

[BKLS+06] Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.; Schröder, J.: Chapter 9:
Diagnosis and Reconfiguration of Quantized Systems. In: Diagnosis and Fault
Tolerant Control, pages 447-504. Springer, 2nd edition, 2006.

[HW02] Hofbaur, M. W. and Williams, Brian C.: Mode Estimation of Probabilistic Hy-
brid Systems. In: Proc. HSCC-02, pages 253--266, Stanford, California, USA,
2002. Springer.

[MRS06] Meseguer, P.; Rossi, F.; Schiex, T.: Chapter 9: Soft Constraints. In: Handbook
of Constraint Programming, Elsevier, 2006.

[BHGL+04] Bouveret, S.; Heras, F.; Givry, S. de; Larrosa, J.; Sanchez, M.; Schiex, T.: Tool-
bar: a State-of-the-Art Platform for WCSP,
http://www.inra.fr/mia/T/degivry/ToolBar.pdf, 2004.

[BLV08] Benedetti, M.; Lallouet, A.; Vautard, J.: Quantified Constraint Optimization. In:
Proc. CP-2008, LNCS, pages 463--477, Sydney, Australia, 2008. Springer.

[KH05] Kleissl, W.; Hofbaur, M.: A Qualitative Model for Hybrid Control.
In: Workshop Proc. QR-05. Volume 19. Graz, Austria, 2005

[D07] Dominka, S.: Hybride Inbetriebnahme von Produktionsanlagen --- Von der
Virtuellen zur Realen Inbetriebnahme (in German). PhD thesis, Technische Uni-
versität München, 2007.

[F05] Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past Hytech.
In: Proc. HSCC-05, pages 258-273, 2005.

[ASB07] Althoff, M.; Stursberg, O.; Buss, M.: Online Verification of Cognitive Car De-
cisions. In: IEEE Intelligent Vehicles Symposium, 2007.

[HR08] Hofbaur, M. W.; Rienmüller, T.: Qualitative Abstraction of Piecewise Affine
Systems. In: Workshop Proc. QR-08, 2008.

[SFV95] Schiex, T.; Fargier, H.; Verfaillie, G.: Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In: Proc. IJCAI-1995, 1995.

[BBW] Buss, M.; Beetz, M.; Wollherr, D.: CoTeSys - Cognition for Technical Systems.
In: Proc. COE Workshop on Human Adaptive Mechatronics (HAM), 2007.

Page 16 Paul Maier, Martin Sachenbacher

Author

Vita (short text)

	1 Introduction
	2 Industrial Filling Station Example
	3 Modelling Hybrid System Behavior with HyPHCAs
	4 From Hybrid to Abstract Discrete Models
	4.1 Converting HyPHCAs to Discrete Flow PHCAs
	4.2 Discrete Abstraction of Continuous Flow

	5 Monitoring and Control as Constraint Optimization
	6 Results
	7 Conclusion

