
Self-Monitoring and Control for Embedded Systems using 
Hybrid Constraint Automata

Paul Maier
Technische Universität München

Boltzmannstraße 3, 85748 Garching
+49.89.289.19595

maierpa@in.tum.de

Martin Sachenbacher
Technische Universität München

Boltzmannstraße 3, 85748 Garching
+49.89.289.19556

sachenba@in.tum.de

Summary

Many of today's mechatronic systems   ̶ such as automobiles, automated factories 
or chemical plants   ̶ are a complex mixture of hardware components and embed-
ded control software, showing  both continuous (vehicle dynamics, robot motion) 
and  discrete  (software)  behavior.  The  problems  of  estimating  the  internal 
discrete/continuous state and automatically devising control actions as intelligent 
reaction are at the heart of self-monitoring and self-control capabilities for such 
systems. In this paper, we address these problems with a new integrated approach, 
which combines concepts, techniques and formalisms from AI (constraint  opti-
mization, hidden markov model reasoning), fault diagnosis in hybrid systems (sto-
chastic abstraction of continuous behavior), and hybrid systems verification (hy-
brid automata, reachability analysis).  Preliminary experiments with an industrial 
filling station scenario show promising results, but also  indicate current limita-
tions.
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1 Introduction

Many complex  systems  today    ̶ such  as  automobiles,  automated  factories  or 
chemical plants   ̶ consist of hardware components whose functionality is extend-
ed or controlled by embedded software. Model-based diagnosis and planning al-
gorithms using a discrete Hidden Markov Model (HMM) of the system's internal 
behavior have been proposed to address the problems of self-monitoring under 
partial observations and intelligent self-control to compensate for faults and other 
contingencies  in  such  systems  [WICE03].  Specifically,  [WCG01]  introduced 
Probabilistic Hierarchical Constraint Automata (PHCA) as a compact means of 
HMM encoding, which allows to conveniently model uncertain hardware behav-
ior as well as complex software behavior. In previous work [MWS05], we have 
introduced an approach to efficiently compute best diagnoses and plans for sys-
tems modeled as PHCAs. It is based on encoding PHCA as soft constraints and 
then using a decomposition-based constraint optimization algorithm to compute 
best, i.e. most probable, system trajectories over a given time horizon of  steps.

However,  many  real-world 
components,  like  the  silo  of  a 
filling  station  shown in  figure 
1, involve not only discrete be-
havior but also continuous dy-
namics;  failures often manifest 
themselves  as  a  subtle  combi-
nation of the system's continu-
ous dynamics, and its evolution 
through  discrete  behavior 
modes.

Hybrid systems have long been at the center of interest in model-based verifica-
tion and increasingly gain attention  in  areas  such  as  model-predictive  control, 
model-based diagnosis and reconfiguration. Henzinger introduced the formalism 
of hybrid automata as a modeling framework for hybrid systems [H96], which is 
nowadays a widely accepted standard not only in hybrid systems verification. Re-
cent advances in modeling concurrent stochastic hybrid systems have been pub-
lished by Alur et al. [AGLS06, BSA04].

In this paper, we propose an extension of the PHCA formalism to Hybrid PHCAs 
(HyPHCAs),  which allow modeling  of  continuous behavior  as linear  Ordinary 
Differential Equations (ODEs). Since HyPHCAs allow an infinite number of sys-
tem trajectories, the main challenge is then to make computation of best trajecto-
ries on HyPHCAs tractable. We address this problem with an abstraction-based 
approach that combines concepts, techniques and formalisms from AI (constraint 

Figure 1: Filling station.
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optimization, hidden markov model reasoning), fault diagnosis in hybrid systems 
(stochastic abstraction of continuous behavior),  and hybrid systems verification 
(hybrid automata, reachability analysis).

Model-based  diagnosis/monitoring  of  hybrid  systems  is  also  addressed  by  the 
works of Lunze et al. [LN01, BKLS+06] and Williams et al. [HW02]. Lunze and 
co-workers introduced a method which abstracts continuous system models with 
stochastic automata, which encode Markov chains. The stochastic automaton for-
malism is similar to PHCA, but doesn't allow for complex hierarchical structures. 
Therefore they are less suited for creating models during the design phase of a 
technical system. Williams et al. introduced Probabilistic Hybrid Automata and 
describe a hybrid tracking algorithm, which combines discrete tracking using hid-
den markov models with continuous tracking using extended Kalman Filters.

The key difference between these existing approaches and our work is that we 
avoid specialized algorithms fitted to the modeling formalism (HyPHCAs in our 
case).  Instead,  we  employ  the  general  framework  of  constraint  optimization 
[MRS06], and can therefore use existing, highly optimized off-the-shelf constraint 
solvers [BHGL+04] to solve the problems of monitoring and intelligent control. 
To take advantage of specific model features, we plan to develop formalism or 
model specific heuristics to, e.g., exploit the often refined model structure due to 
design. This makes our approach very flexible and it is a lot easier to incorporate 
new developments  such  as,  e.g.,  Quantified  Constraint  Optimization  [BLV08]. 
Furthermore, by extending PHCAs, a modeling framework explicitly designed for 
embedded model-based development, we are moving closer to the over-arching 
ideal of using a single model for system design, system verification and online 
model-based monitoring/control.

Here, we do not address the problem of hybrid control [KH05], we exclusively fo-
cus on discrete control inputs (commands). However, this mostly depends on the 
tools we use, and hence it should be possible to extend our method to hybrid con-
trol problems. In the next section, we introduce our motivating example, which 
we also used for our experiments. Then we introduce HyPHCAs in section 3, de-
scribe how we abstract them to receive discrete models in section 4 and show how 
monitoring and control problems can be solved based on a soft-constraint encod-
ing of the discrete models in section 5. Finally, we present results and conclude 
with a discussion and future work.

2 Industrial Filling Station Example

As an example we use an industrial filling station employed in teaching [D07]. 
The station fills a granulate material in small bottles, which are transported to and 
away from the station on a conveyor belt. A pneumatic arm moves bottles from 
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the conveyor onto a swivel and back when they are finished. The swivel positions 
the bottles below a silo, where they are filled by a screw mechanism powered by 
an electrical motor. A photo sensor (binary signaled) indicates when the silo is 
empty. We created a simplified model of the filling station (shown in figure 2), 
which consists only of the silo and the sensor model. The silo fill level, during 
filling,  is continuously modeled as   (where   is the fill  rate). 
This equation, while not realistic, demonstrates that our approach can handle such 
equations. We experimented with a scenario in which we address the  combined 
problem of monitoring and control,  and a second scenario which demonstrates 
how varying degrees of abstraction influence the monitoring quality.

In the first scenario (referred to as scenario 1, shown in table 2), which ranges 
over 10 time steps (duration of a single step  ), the silo receives motor 
commands to fill two bottles. It has an initial fill level of 50 units. Within the first 
7 time steps, the motor switch breaks, causing the motor to continue running and 
emptying the silo (referred to as motor-switch-fault). At  the sensor indicates an 
empty silo.

The monitoring problem is to choose among three possible hypotheses explaining 
the signal: (1) the silo emptied nominally (2) the silo emptied too quickly due to 
the motor-switch-fault or (3) the sensor is stuck-on. A model which respects the 
continuous behavior allows a reasoner to detect an inconsistency with the sensor 
signal: the silo couldn't have emptied nominally, without the motor running. Thus, 
hypothesis (1) is ruled out. Since the sensor fault is much less likely than the mo-
tor fault, the reasoner correctly assumes hypothesis (2) as most probable.

The control problem is to find suitable actions to deal with the fault and reach a 
given goal stated by a high level control program. In this case the goal is that at  
in the future, the silo must have a fill level between 5 and 10 and be in its initial 

Figure 2: HyPHCA modeling the silo and the silo empty sensor of a filling stati-
on. The bolt indicates failure states (e.g., silo.motor-switch-fault,  
sensor.stuck-on).
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location wait (see table 2). In the following, we describe an approach, combining 
several well known methods, which at the same time allows to deduce the correct 
fault hypothesis and the sequence of commands to reach the goal.

The second scenario (referred to as scenario 2, shown in figure 5) is a slight varia-
tion of the first, where we know that the motor control doesn't break . Again the 
sensor indicates  an empty silo,  but now earlier  at  .  The reasoner,  knowing 
about the continuous behavior, can deduce that even with the motor-switch-fault, 
the silo couldn't have emptied that quickly, ruling this fault out. Therefore, it cor-
rectly assumes that the sensor must be stuck-on, given the model abstraction is not 
too coarse.

Throughout the remaining text,  we will  use the following abbreviations:  m-s-f 
refers to the motor-stuck-fault,  m-s-f.ne and m-s-f.e refer to the primitive loca-
tions notEmpty and empty of m-s-f, d  refers to a partitioning of  with  parti-
tion elements (e.g., d10 if we partition  with 10 elements), s-on refers to stuck-
on and nom. to nominal.

3 Modelling Hybrid System Behavior with HyPHCAs

Systems with mixed discrete/continuous behavior can be modeled using hybrid 
automata [H96], capturing continuous system evolution with ODEs over real-val-
ued variables. They however don't support hierarchical structure and probabilistic 
behavior in order to uniformly model both probabilistic hardware behavior (e.g., 
likelihood of component failures) and complex software behavior (such as high 
level control programs). In contrast, PHCA [WCG01] have the required expres-
sivity.

Definition 1. A PHCA is a tuple , where:

•  is a set of composite and primitive locations. Each composite  
location denotes another PHCA. A location may be marked or unmarked.  
A marked location represents an active execution branch.

•  is a probability distribution over subsets  , denoting the proba-
bility that  is the set of start locations.

•  is a set of dependent, observable and command-
able variables, all having finite domains.  denotes the set of finite do-
main constraints over .

• :    associates with each location     a finite domain con-
straint .

• , for each   , is a probability distribution over a set of transi-
tion functions  :     . Each transition function 
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maps a marked location into a set of locations to be marked at the next  
time point, provided that the transition's guard constraint is entailed.

Definition 2. (PHCA state, PHCA trajectory) The state of a PHCA at time  is a  
set of marked locations called a marking   . A sequence of such markings 

 is called a PHCA trajectory.

In the remainder, we will use the notation  to refer to the domain of a variable 
, and  to refer to the cross product  of the domains of variables 

.

PHCA don't allow to model continuous state evolution. Therefore, in style of hy-
brid automata, we define Hybrid PHCAs (HyPHCAs). They extend PHCAs with 
linear ODEs, a widely used standard for modeling continuous system evolution. A 
system of linear ODEs  describes the time-continuous evolution of a 
vector of variables  as a set of equations over  and their first de-
rivatives  .   is a vector of constants  and   the 

-matrix of coefficients for the equation set.

Definition 3. A HyPHCA is a tuple  where

•  is a set of real-valued variables  , their  
first derivatives  and a set  representing 
values of  right after discrete transitions.

•  is a function associating locations with constraints  
over discrete and/or real-valued variables.  denotes the set  
of constraints over . 

•  is a function associating locations with constraints  
over real-valued variables and their derivatives in the form of linear ordi-
nary differential equations.   denotes the set of these differen-
tial equations.

•  is  a  probability  distribution  over  a  set  of  transition  functions 
 for  locations  .  Each  transition  

function  maps a primitive location marked at time  to the set of loca-
tions to be marked at the next time instant, given the location's guard is  
entailed.

 and  are analog to the PHCA definition.

Definition 4.  (HyPHCA state, HyPHCA trajectory) The state of a HyPHCA at  
time  is a tuple  , where  is an assignment to all  

variables   at  time  ,  called  continuous  state,  and   a  marking 
analogous to the PHCA state marking (with  the set of all markings). A 
function , mapping time points (real-valued) to HyPHCA states,  
is called a HyPHCA trajectory function. A finite sequence , re-
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sulting from evaluating  on a finite sequence of time points, is called a discrete-
time HyPHCA trajectory.

Discrete Flow and Clocked PHCAs

Our discrete approach to simultaneous tracking and control of hybrid system evo-
lution requires to convert a HyPHCA model to a discrete flow PHCA (dfPHCA), 
conservatively abstracting continuous evolution with Markov chains. The evolu-
tion of a continuous variable   in between two time points   and   is 
thereby mapped to a discrete, timed transition between the quantized states of  at 
time  and time . These discrete evolutions are encoded as discrete flow con-
straints. A dfPHCA is a tuple  (parameter-
ized with fixed-length time interval ) where  is analogous to  
of a HyPHCA, except that derivatives are omitted and variables have finite do-
mains now.  is the discrete flow, a function associat-
ing locations with constraints encoding Markov chains over the discrete flow vari-
ables of the location.  is defined as for HyPHCAs with real-valued variable sets 

 and  replaced by  and . The rest is analog to the PHCA definition. The 

state of   at time  is a tuple  , where  is an assign-

ment of values to discretized continuous variables  at time , and  a 
marking analogous to the PHCA state marking. A function , 

mapping  the  infinite  set  of  real-valued  time  points 
 to dfPHCA states, is called a dfPHCA trajecto-

ry function. Evaluating  for a finite subset of  yields a finite sequence of 
dfPHCA states , called a dfPHCA trajectory.

To bridge the gap from dfPHCAs to PHCAs, we define clocked PHCAs as dfPH-
CAs (also parameterized with ) with discrete flows and discrete flow variables 
omitted.  A clocked PHCA trajectory is therefore a function   
mapping to markings only. Clocked PHCAs can be seen as PHCAs with a fixed 
duration between time points. The key difference is the trajectory semantic. For a 
PHCA trajectory,  only the indices of successive time points are relevant.  I.e. a 
PHCA trajectory is a function  mapping  natural numbers to mark-

ings, rather than real-valued time points.

To avoid confusion, we write  ,   and   for trajectories of a PHCA  , 

clocked/discrete flow PHCA   , and HyPHCA , respectively.

4 From Hybrid to Abstract Discrete Models

Discrete flow constraints encode special case PHCAs. In theory, a dfPHCA can be 
turned  into  an  equivalent  clocked  PHCA by emedding  discrete  flows  as  sub-
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PHCA into composite locations. So intuitively, a discrete abstraction of a HyPH-
CA is obtained by converting it to a dfPHCA, then converting the dfPHCA to a 
clocked PHCA as above and finally abstracting from time intervals,  leaving a 
PHCA. However, certain non-trivial issues with hierarchical execution of PHCAs 
arise. First of, the PHCA formalism doesn't allow transitions originating from a 
composite location , they must originate from primitive locations within . 
A more demanding problem is the following: Let  be a discrete flow we 
embed as  sub-PHCA   into location  ,  rendering it  composite.  The PHCA 
marking semantics demand that sub-locations of  can only be marked when  it-
self is marked. Let further   be marked at   and, due to a transition away, not 
marked at . Specifically, all locations of  are unmarked at . However, 
if location   with discrete flow  is marked at  ,   should deter-
mine the values for variables in its scope at . But since it is now encoded as 
sub-PHCA , which determines these values via its marked locations, this be-
comes impossible.

These issues make it hard to define and understand the abstraction of HyPHCAs 
using PHCAs directly. Therefore, we describe the abstraction using dfPHCAs. It 
remains for future work to show that, when time intervals are abstracted, an arbi-
trary dfPHCA has an equivalent PHCA and thus encodes an HMM like a PHCA. 

4.1 Converting HyPHCAs to Discrete Flow PHCAs

First, we define further required entities. Let   be a 
HyPHCA. The set   denotes all  transitions   defined through  .  , 

 and   are a transition's source, destination set and guard con-
straint, respectively.  is a set of disjunct grid cells (also called quanti-
zation  cells)  partitioning  the  continuous  state  space  of  :  .  Let 

 be the dfPHCA with discrete flow constraints generated 
from . In the following, we refer to elements of the respective automatons, like 

, by  and ,  and , etc., except for those elements which are 
unique to one or the other formalism (e.g. ).

Figure 3 illustrates the Hy-
PHCA to dfPHCA conver-
sion. The conversion of lo-
cations,  initial  probability 
distributions  and  proba-
bilistic  transitions  is 
straight  forward: 

, 
 and   

= . The PHCA vari-

Figure 3: HyPHCA (above) is converted to a dfPH-
CA (below).
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ables of  consist of the discrete variables  as well as  and , the dis-
cretized  counterparts  to   and   (discrete  versions  of   are  not  needed): 

.  The  constraints  over  finite  domain  and  continuous 
variables in  can be split into a set of constraints over discrete variables only 
and  constraints  over  both  finite  and  continuous  variables: 

. The finite do-
main  constraints  of   are  accordingly 

. 
The function  maps simple arithmetic constraints such as  or   
to corresponding finite domain constraints.

The  finite  domains  of  discretized  variables   are  derived  from the 
quantization . The grid cells  can be mapped onto intervals of the 
variables  and . Index sets of these intervals then form the domains of  
and . That is, the values of, e.g., a variable  represent intervals of 
corresponding variable .

Now for each primitive location  , its continuous flow   is con-
verted to a discrete flow constraint . It encodes a special clocked PHCA 

,  which has only primitive locations, corresponding to grid cells of , 
and represents a Markov chain that conservatively approximates the continuous 
flow. Its discrete,  unguarded probabilistic transitions represent the evolution of 
variables  in between two time points  and .   is added to the 
corresponding location . If it conflicts with transition guards determining 
variable  values  for   via  ,  the  guard  takes  precedence  over 

 (see, e.g., figure 3).

4.2 Discrete Abstraction of Continuous Flow

We can build on a lot of 
related  work  in  the  areas 
of  automated  verification 
and  hybrid  diagnosis.  To 
conservatively  estimate 
transition  probabilities  of 

 we  use  the  geo-

metric abstraction method 
introduced in [LN01]. The 
process  is  illustrated  in 
figure 4: The reachable set 

 is  computed  (red), 

and from its overlap with 
gridcells  at   (repre-

Figure  4:  Reachable  set   for 
 starting from the  

marked  grid  cell.  Right:  the  
derived PHCA .
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senting destination locations of  ) the probabilities are derived. Currently 
we use PHAVer [F05] to compute  , but different approaches can be em-
ployed:  In [ASB07] Stursberg et al. combine Markov chains abstracting continu-
ous behavior with a more advanced reachability analysis. A too coarse state space 
quantisation can lead to spurious solutions, as scenario 2 demonstrates. Currently, 
the right number of partitions must be determined empirically. Hofbaur and Rien-
müller  introduced a method to intelligently quantize the continuous state space 
based on qualitative properties of piecewise affine systems [HR08]. This might be 
a useful extension to our approach as it automatically chooses a good number of 
partition elements, balancing precision of the abstraction against tractability, and 
reduces the number of spurious solutions.

It remains to show that a dfPHCA, generated as described above from a HyPH-
CA, is actually a conservative abstraction in terms of the probabilities of system 
trajectories, expressed with the proposition

Proposition 1. (Discrete flow PHCAs as conservative abstraction of HyPHCAs)  
Let  be a function that maps assignments to discretized continuous  
variables  to grid cells . Let   be a discrete flow PHCA gen-

erated as described above from a HyPHCA   ,  a finite sequence of  
observations   and commands   and  the correspond-
ing sequence of time points. Let   be a trajectory of   consistent with 

 (i.e.  )  and 

χ θA  Δt  :={Δ∣∀SU
 t i  ,m

t i  ∈Δ  ti,  SΠ U

 ti  , m
 t i ∈θA Δt  :m

t i = m
 t i ∧SU

 ti ∈G  SΠ U

t i  }  

the set of all HyPHCA trajectories contained in . Then the following holds:

 is the probability of dfPHCA trajectory  occurring giv-

en  the  sequence   of  observations  and  commands.  Likewise, 
 is  the conditional  density function  of a  distribution 

over discrete-time HyPHCA trajectories.

5 Monitoring and Control as Constraint Optimization

Given a  discretized  model,  partial  observations,  known commands  and a  goal 
state  ,  we combine the problems of system monitoring and finding goal 
achieving commands into a single problem of finding the most probable system 
trajectory over   time steps which is consistent with the observations and con-
tains . From this trajectory the goal achieving commands can be easily de-
rived. We frame this problem as a discrete constraint optimization problem (COP) 

   [SFV95] with transition probabilities as preferences by translating 
the discretized model to soft-constraints following our framework in [MWS05].
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The translation unfolds a given PHCA  over a time window of   steps as fol-
lows:   is a set of variables with corresponding set of finite do-
mains  . For all time points  , it consists of   

encoding PHCA variables, auxiliary variables (needed to, e.g., encode hierarchical 
structure)  and  the  solution  variables  of  the  COP,  a  set  of  binary  variables 

 representing location markings of .   is 

a set  of constraints   with scope   and a constraint 
function  :     mapping partial assignments of variables in 

 to a probability value in . For all time steps , hard constraints 
in  (  evaluates to ) encode hierarchical structure as well as consistency of 

observations and commands with locations and transitions, while soft constraints 
in   encode probabilistic choice of initial locations at   (here,   marks the 
start of the time window, not the time point corresponding to present) and proba-
bilistic transitions. All assignments to  form a set ordered by the global probabil-
ity value in terms of the functions  (evaluated on the assignments extended to 

). The  assignments with highest probability are the -best solutions to  , which 
correspond to the most probable PHCA system trajectories. Their extension to  
provides assignments to, e.g., goal achieving commands.

To encode dfPHCAs, we extended the framework with a soft-constraint encoding 
of discrete flow constraints. This can be done very compactly and is thus a further 
advantage over a PHCA encoding (as discussed in section 4). A flow constraint is 
``active'' if and only if its associated location is marked and it is not overridden by 
a transition guard. We encode this logic with hard constraints for each location 
and  time  point,  which  implement  the  formula 

.  The  auxiliary  vari-

ables   with  domain   and   with  domain 

 indicate an override of a discrete flow and its activation, re-
spectively. The discrete flow itself is a function mapping discrete flow variables 
in   and   to transition probabilities. Again for each location and time 

point we encode these functions as soft constraints, extending their scope with 
, keeping the former mappings if   and map-

ping to zero otherwise.

All described steps up to now   ̶ discretizing, generating Markov chains, encoding 
as COP     ̶ can be done offline. Online, we iteratively add observations and 
known commands to     and solve the COP to generate the  most likely system 
trajectories. For this step we employ existing off-the-shelf solvers such as Toul-
bar21.

1https://mulcyber.toulouse.inra.fr/projects/toulbar2/
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6 Results

We created and solved COP instances with different discretizations for   (d2, 
d5, d10 and d25) for our example scenarios and some variations. We tried Toul-
bar2's default and a second, decomposition based configuration. The problem size 
was for all instances 843 variables and 920 constraints. For scenario 1 with d10 
table 2 shows the most probable system trajectory the solver deduced from the 

given observations and goals as 
variable  assignments  in  bold 
face (given assignments in nor-
mal  font).  The generated solu-
tion correctly identifies the mo-
tor-switch-fault  and  provides 
the  necessary  commands  to 
reach the goal:  for 

,   and 
 for   and 
 for  .  The 

most  probable system trajecto-
ries for scenario 2 with d5 and 
d10  are  shown  in  figure  5  as 
trellis  diagrams  depicting  dis-

crete transitions of the dfPHCA. Big black arrows and black filled circles mark 
the found most probable trajectory, grey arrows show possible transitions. In this 
scenario,  the reasoner  misses the fault  sensor.stuck-on if   is  abstracted  too 

Table 1:  Left: Runtime results (mean time in 
sec.)  for  example  scenarios  
over  different  discretizations  
for . 

Figure 5: The inferred system trajectories for the sensor-fault scenario as trellis  
diagram for d10 for   (left) and for d5 (right).
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coarsely (d5). We assume spurious solutions to be the culprit: The coarser the ab-
straction, the more probable become evolutions of   which in reality are very 
unlikely or impossible.  This causes the combination of the more likely motor-
switch-fault and a spurious evolution of  to become most probable. With a suf-
ficiently fine grained abstraction (d10), the spurious evolution's probability is re-
duced to near zero, which rules out the incorrect motor-switch-fault and leaves the 
sensor.stuck-on fault as most probable. 

Table 1 shows the average online runtimes for all scenarios. The columns show 
results for scenario 1, its two variations 1.1 and 1.2, and scenario 2. The variations 
are nominal behavior (1.1) and diagnose motor-switch-fault only (1.2). As one 
would expect, a slight increase in runtime can be seen for the more fine grained 
discretization d25. The variations 1.1 and 1.2 take roughly the same time as sce-
nario 1. Small differences are probably due to the fact that the variations are the 
same  COP  with  some  constraints  omitted.  E.g.,  when  diagnosing  the  motor-
switch-fault only, the goal is omitted. This makes the problem slightly harder be-
cause more future evolutions are possible. Finally, we expected the offline decom-
position of the problem to lower online computation effort, but surprisingly, it had 
a negative effect in our scenario.

The offline steps (discretization, Markov chain generation and soft constraint en-
coding) for d2, d5, d10 and d25 take 16.5, 39.0, 138.5 and 215.4 seconds. They 
show that the effort for model abstraction and encoding is considerable, even for a 
small model. However, runtime is still within manageable bounds. Memory con-
sumption might be a bigger issue (for d25:  300 MB), it remains for future ex-
periments to show the limits of our method. Most of the resources are, however, 
consumed by the Markov chain generation, i.e. the discrete model part influences 
offline resource usage only marginally. This is not surprising: Converting the dis-
crete part of a HyPHCA to a discrete PHCA and encoding the final discrete model 
as soft-constraints is linear in the size of the model, whereas the step of Markov 
chain generation is exponential in the dimension of the continuous state space.

Resource usage might be reduced by improving reachability analysis, e.g., by op-
timizing PHAVer parameters. Also, there's room for improvement over our proto-
type implementation of the Markov chain generation. Finally note that of course 
components with the same continuous behavior require Markov chain generation 
only once. Due to the costly reachability analysis the approach might not be suit-
able for systems with many components showing different continuous behavior.
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Table  2:  The monitoring/control results for our example scenario 1 (discretiza-
tion with 10 partition elements of  ). The rows show: Known 
sensor values (1 row), known commands (4 rows), marked loca-
tions for sensor and silo (2 rows) and fill level (1 row).

7 Conclusion

Estimating the internal discrete/continuous state, and automatically devising con-
trol actions as intelligent reaction to identified failures and contingencies are at the 
heart of self-monitoring and self-control capabilities for embedded (mixed hard-
ware/software) systems. We introduced HyPHCAs, an extension to PHCAs, as a 
modeling framework and showed how to combine several methods from AI, fault 
diagnosis in hybrid systems and hybrid systems verification to track the state and 
compute reactive actions for mixed discrete/continuous systems modeled as Hy-
PHCAs. In an offline step, the approach abstracts the differential equations of the 
HyPHCA to Markov chains encoded as PHCAs, embeds them in the discrete part 
of the HyPHCA, and encodes the discrete abstraction with soft-constraints, such 
that on-line monitoring and control of the system can be done by solving a dis-
crete constraint optimization problem. Our experimental results demonstrate the 
feasibility of the approach on a small, but real-world factory scenario. Our next 
steps are to refine the semantics of HyPHCAs in terms of probability distributions 
over trajectories, to develop an estimator module which iteratively shifts the time 
window ([MWS05]) to monitor systems over long time periods and verify our re-
sults on larger factory settings such as [BBW]. In this and in other settings, accu-
rate  model-based monitoring  and control  can only be achieved by considering 
both hybrid hardware and software behavior.
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