
The shortest path problem revisited:

Optimal routing for electric vehicles

Andreas Artmeier, Julian Haselmayr, Martin Leucker, Martin Sachenbacher

Technische Universität München, Department of Informatics
Boltzmannstraße 3, 85748 Garching, Germany

{artmeier,haselmay,sachenba,leucker}@in.tum.de

Abstract. Electric vehicles (EV) powered by batteries will play a sig-
nificant role in the road traffic of the future. The unique characteristics
of such EVs – limited cruising range, long recharge times, and the ability
to regain energy during deceleration – require novel routing algorithms,
since the task is now to determine the most economical route rather than
just the shortest one. This paper proposes extensions to general shortest-
path algorithms that address the problem of energy-optimal routing.
Specifically, we (i) formalize energy-efficient routing in the presence of
rechargeable batteries as a special case of the constrained shortest path
problem (CSP) with hard and soft constraints, and (ii) present an adap-
tion of a general shortest path algorithm (using an energy graph, i.e., a
graph with a weight function representing the energy consumption) that
respects the given constraints and has a worst case complexity of O(n3).
The presented algorithms have been implemented and evaluated within
a prototypic navigation system for energy-efficient routing.

1 Introduction

Dwindling fossil fuel reserves and the severe consequences of climate change are
major challenges of the new millennium. Electric vehicles (EVs) offer a potential
contribution: they can be powered by regenerative energy sources such as wind
and solar power, and they can recover some of their kinetic and/or potential
energy during deceleration phases. This so-called recuperation or regenerative
braking increases the cruising range of current EVs by about 20 percent in typical
urban settings, and often more in hilly areas. However, a more wide-spread use of
EVs is still hindered by limited battery capacity, which currently allows cruising
ranges of only 150 to 200 kilometers. Thus, accurate prediction of remaining
cruising range and energy-optimized driving are important issues for EVs in the
foreseeable future.

The unique characteristics of EVs have an impact on search algorithms used
in navigation systems and route planners. With the limited cruising range, long
recharge times, and energy recuperation ability of battery-powered EVs, the
task is now to find energy-efficient routes, rather than just fast or short routes.
This modification might appear insignificant at first glance, as it seems enough
to simply exchange time and distance values with energy consumption in the

Andreas Artmeier
Preprint

PREPRINT PREPRINT PREPRINT

underlying routing problem. But on a second glance, several new challenges
surface, which require novel algorithms that go beyond existing solutions for
route search in street networks.

For example, consider the simple vehicle routing problem shown in Figure 1.
The nodes correspond to locations and the edges correspond to road segments.
The positive (resp. negative) values at the edges denote consumption (resp. gain)
of energy, which we assume is taken from (resp. stored in) a battery with maxi-
mum capacity Cmax. There are two possible paths from source s to destination

t: (s
2−→ x

−1−−→ t) and (s
−1−−→ y

2−→ t), both of which are optimal from a classical
shortest-path perspective as they have the same overall cost of 1 energy unit.
However, if at node s there is only Cs = 1 unit of energy left in the battery,
the path via y becomes the only feasible path. If instead we start with a battery
charged to Cs = Cmax ≥ 2 at node s, both paths to t are feasible, but the path
via x is now preferable since it has a lower overall energy consumption (the other
path via y will require 2 energy units, since recuperation is no longer possible in

the segment s
−1−−→ y).

Cs

s x

y t

2

-1

-1

2

Fig. 1: A simple electric vehicle
routing problem

In this work, we address the problem
of finding the most energy-efficient path for
battery-powered electric cars with recupera-
tion in a graph-theoretical context. This prob-
lem is similar to the shortest path problem
(SP), which consists of finding a path P in
a graph from a source vertex s to a destina-
tion vertex t such that c(P) = minQ∈U (c(Q)),
where U is the set of all paths from s to t,

and c : E → Z is a weight function on the edges E of the graph. SP is poly-
nomial; the best known algorithm for the case of non-negative edges is Dijkstra
[1] with time complexity O(n2), while in the general case, Bellman-Ford [2], [3]
has O(n3). However, most commonly used SP algorithms like contraction hier-
archies [4], highway hierarchies [5] and transit vertex routing [6] can’t be applied
to our problem because of the negative weights due to recuperation. In addi-
tion, SP does not consider the constraints that result from the discharge and
recharge characteristics of the EV’s battery pack, namely that it neither can be
discharged below zero, nor charged above its maximum capacity. An extension
of the SP, the constrained shortest path problem (CSP) [7], is to find a shortest
path P from s to t among all feasible paths in a graph, where a path P is called
feasible if b(P) ≤ T ∈ N for an additional weight function b : E → N. Our
problem of energy-efficient routing with recuperation can be framed as such a
CSP, but CSP is known to be NP-complete [8].

In the following, we (i) show how to model energy-efficient routing in the pres-
ence of rechargeable batteries as a special case of a CSP, extending the shortest
path problem with problem-specific hard and soft constraints, and (ii) present a
novel variant of a general shortest path algorithm that respects these constraints,
but still has a polynomial worst case time complexity of O(n3).

2

PREPRINT PREPRINT PREPRINT

Algorithm 2.1: ConstrainedGenericShortestPath

input: A directed graph G = (V,E), weight function c : E → Z, source vertex s,
strategy S, maximum capacity Cmax and initial Us

output: A prefix bounded shortest path tree from s with respect to absorp

begin1

foreach vertex v in V do2

d(v) ← ∞;3

p(v) ← null;4

d(s) ← 0+Us;5

Q ← {s};6

while Q �= ∅ do7

choose u from Q with strategy S;8

Q ← Q \ {u};9

foreach successor v of u do10

d
� ← d(u) + c(u, v);11

d
� ← max (d�, 0);12

if d
�
< d(v) and d

� ≤ Cmax then13

d(v) ← d
�;14

p(v) ← u;15

Q ← Q ∪ {v};16

end17

2 Preliminaries

We assume that a road network can be modeled as a directed graph G = (V,E)
with |V | = n and |E| = m. A path P of length |P | = k is then a sequence of k+1
distinct vertices (v1, v2, . . . , vk+1) with (vi, vi+1) ∈ E for all i ∈ {1, 2, . . . , k}. In
addition, we assume that a weight function c : E → Z models the amount of
energy required or gained when traveling along the edges in the network. The
weight c(P) of a path P of length k is then defined by c(P) =

�k
i=1 c(vi, vi+1).

A cycle C = (v1, v2, . . . , vk, v1) is called positive if c(C) ≥ 0. For a road network,
the absence of negative cycles corresponds to the law of conservation of energy.

Algorithm 2.1 ([9, 10]) without the underlined statements – these show our
changes to be explained in the next sections – computes a shortest path tree
for a given source vertex and expansion strategy, where the shortest path tree
is a directed tree that represents the solution of all shortest path problems with
this source vertex, and the strategy determines the order in which vertices are
processed. The algorithm extends and improves a tree defined by function p,
where p(v) is the predecessor of v in the tree. The distance d(v) is the weight
c(P) of the path P from s to v in this tree. The algorithm improves these distance
values d(v) for v ∈ V until the queue Q is empty, and the best path (according to
the distance value) to every reachable vertex is found. Note that the algorithm
does not terminate if a cycle with negative weight is reachable from the source
vertex.

3

PREPRINT PREPRINT PREPRINT

The time complexity of the algorithm with Dijkstra’s strategy – choose the
vertex with smallest distance value from Q – is known to be O(n2) for positive
weights but exponential for the general case [11], while using the Bellman-Ford
strategy – choose the vertices in a FIFO manner from Q – results in time com-
plexity O(n3) for arbitrary weights.

3 Prefix-bounded Shortest Paths

Our goal is to find an energy efficient route for a battery-powered EV in a road
network with given energy values, modeled as a directed graph G = (E, V) with
weight function c : E → Z.

Clearly, route segments are only feasible if the required energy does not
exceed the charging level of the battery. In addition, due to elevation differences
or changes in the cruising speed, on each route there can be road sections where
the energy consumption is negative, such that the EV’s battery can be recharged.
However, we also have to consider that the battery has a certain maximum
capacity, beyond which recharging is no longer possible. The two conditions on
the charge level of the battery—it cannot be discharged below zero, it cannot
store more energy than its maximum capacity—can be viewed as hard and soft
constraints, respectively, on possible routes: a route is infeasible if there is a point
where the required energy exceeds the charge level, and a route is less preferred
if there is a point where energy could be recuperated but the battery’s maximum
capacity is exceeded.

For modeling these constraints, some more definitions are needed. Let Cmax

be the maximum battery capacity, Cvi the charge level of the battery at vertex
vi, and Uvi = Cmax−Cvi the remaining storage capacity of the battery at vertex
vi. Then for a path P = (v1 → v2 → · · · → vk) with v1 = s in G, we define the
absorption function absorp recursively as

absorp(P k) =

�
Uv1 if k = 1,

max
�
absorp(P k−1) + c(vk−1, vk

�
, 0) if k > 1

where P i = (v1 → v2 → · · · → vi) is the subpath of P ending in vertex vi (with
i ≤ k). Moreover, we call path P prefix-bounded by Cmax, if absorp(P i) ≤ Cmax

holds for every i = 1, 2, . . . , k.
The problem we want to solve can then be described as follows: given a start

point and battery charge level, find a route to a target point that respects the
constraints and where the remaining charge is highest. We call this problem the
prefix-bounded shortest path problem, or for short PBSP. A prefix-bounded path
P corresponds exactly to a route which is feasible to use (0 ≤ Cvi , Uvi ≤ Cmax)
and where absorp(P) is the remaining storage capacity at the end of the route.
Formally, a solution to a PBSP is a path P ∈ W such that

absorp(P) = min
Q∈W

(absorp(Q))

4

PREPRINT PREPRINT PREPRINT

where W is the set of all paths w from s to t for which the constraint wi ≤
Cmax−Us holds for all i ∈ {1, 2, . . . , (|w|+1)}. Since maximizing the remaining
battery charge is equivalent to minimizing the remaining battery capacity, we can
search for a prefix-bounded shortest path tree with respect to function absorp
in order to get a solution to the PBSP.

If we only consider graphs with non-negative edges, the PBSP is a special case
of a CSP [7], where the two weight functions b and c are equivalent. However,
algorithms for CSP are exponential in the worst case, and they do not allow
for negative weights. Therefore, we instead propose an algorithm that extends
the generic shortest path algorithm by taking the prefix-bound constraints into
account. As we will see, the additional prefix-bound constraints don’t change the
time complexity of the shortest path problem, and thus this algorithm solves the
problem in polynomial time (O(n3) with the Bellman-Ford strategy).

4 Computing Prefix-Bounded Shortest Path Trees

In this section, we modify the generic shortest path algorithm (see Section 2)
to compute a prefix-bounded shortest path tree with respect to function absorp,
that is, to solve a PBSP. The modifications are shown as underlined statements in
Algorithm 2.1. One modification concerns the initialization of the source vertex
with the difference between the maximum capacity of the battery and its current
charge (line 5). The other modifications implement the soft constraint that the
battery can’t be overcharged (line 12) and the hard constraint prohibiting the
use of road sections with insufficient energy (line 13).

Theorem 1. Algorithm 2.1 computes for every strategy S a prefix-bounded short-
est path tree with respect to function absorp.

A detailed proof of correctness for the algorithm can be found in the ap-
pendix. In [12], several expansion strategies are presented for solving the general
shortest path problem. However, in the context of electromobility, novel ones are
needed that take into account the specific energy graph properties, e.g., far fewer
negative than positive edge weights. As a first variant, we propose the following
expand strategy. For each vertex, a counter is initialized with 0 and incremented
each time this vertex is chosen for expansion in line 8; the strategy then chooses
a vertex from Q with the smallest counter. This strategy leads to the same time
complexity as the FIFO strategy does for the Bellman-Ford algorithm in the
general shortest path problem (see [10] for instance).

Theorem 2. Algorithm 2.1 using strategy expand has time complexity O(n3).

Lemma 1. Algorithm 2.1 using strategy dijkstra has time complexity O(n2) if
c is non-negative.

Now we consider the strategy expand-distance: choose the vertex u from Q

which has smallest d(u) among vertices in Q which are expanded least of all.
This new strategy, combining both previously presented strategies, guarantees

5

PREPRINT PREPRINT PREPRINT

time complexity O(n3) in any case. In addition, if c is non-negative, we get O(n2)
since at the beginning of the algorithm expand(u) = 0 and no vertex is inserted
twice into Q. Therefore the following key statement is proven.

Corollary 1. Algorithm 2.1 using strategy expand-distance has time complexity
O(n3) for arbitrary weight function c and O(n2) if c is non-negative. ��

Since in our graph modeling the energy values there are typically only few
edges with negative weight, the time complexity of the expand-distance strategy
can be expected to be near O(n2), and in contrast to the conventional Dijkstra al-
gorithm we are sure to be far away from exponential time. These two advantages
are the reason why we suggest Algorithm 2.1 using strategy expand-distance in
the context of routing for electromobility.

5 Prototypic Implementation and Experimental Results

We developed a prototypic software system for energy efficient routing, based on
opensource libraries and freely available data. It is possible to access this system
online (www.greennav.org). For a given car type, source address and destination
address, the system computes a route with minimum energy costs. The data
basis consists of the collaborative project OpenStreetMap (OSM), which aims
to create and distribute freely available geospatial data, and the altitude map of
the NASA Shuttle Radar Topographic Mission (SRTM), which provides digital
elevation data with a resolution of about 90m. By combining these two sources,
we created a road map with elevation and cruising speed information for every
point in this network. The first step was then to derive a graph with weights
corresponding to the energy consumption of road sections. For this purpose, we
used a simplistic physical model of an EV. The consideration of recuperation
induces negative weights for a small percentage of edges.

Figure 2 shows the web interface to our prototype. It is possible to choose
source, destination and car type on the left side. The blue path displays the
energy efficient shortest path according to the available data and vehicle model.
While some of the proposed deviations from a straight (shortest) route are indeed
due to energy savings, others originate from an overly simplistic vehicle model
and some missing speed tags in the OSM data; future development will address
these problems. Within this prototype, we evaluated Algorithm 2.1 using the four
different strategies dijkstra, expand expand-distance, and FIFO. The evaluation
was carried out on a section of the OSM map that covers the Allgäu region
southwest of Munich, and contains 776,419 vertices and 1,713,900 edges. We
set Us = 0 and take k = 10 randomly selected source vertices s as input. The
individual runtimes xi were used to calculate the average time x̄ = 1

k

�k
i=1 xi

(first value in columns 2-5 in Table 1) and the variance 1
k

�k
i=1(xi− x̄)2 (second

value). These calculations were done for different values of Cmax with steps of 10
kWh. Additionally, the average size of the corresponding prefix-bounded shortest
path tree (number of vertices) is presented. Our experiments were conducted on
a Intel Core2 Duo CPU with 2.20 GHz and 2 GB RAM.

6

PREPRINT PREPRINT PREPRINT

Fig. 2: Screenshot of our route planner prototype, showing the energy optimal
route for an EV from TUM’s Munich campus to TUM’s Garching campus.

In Table 1 it can be seen that the strategies FIFO and expand are far away
from practical usability, since we have aborted the individual executions for
Cmax > 20 after one minute without any result. Strategy expand-distance is less
than two times slower than dijkstra in our experiments (average of 10 computa-
tions), and moreover, the former strategy has the advantage that the worst case
time complexity is polynomial.

6 Conclusion

Optimal routing for electrical vehicles with rechargeable batteries will become in-
creasingly important in the future. In this paper, we studied this problem within
a graph-theoretic context. We modeled energy-optimal routing as a shortest path
problem with constraints, and proposed a family of search algorithms that re-
spect these constraints with a worst case time complexity of O(n3); in fact, our
problem constitutes a tractable variant of the more general constrained shortest
path problem. Further research will study the impact of the negative/positive
edge ratio in our routing graphs and the development of special tailored heuris-
tics using the law of conservation of energy. In addition, we plan to extend our
approach by modeling the energy consumption with stochastic instead of con-

7

PREPRINT PREPRINT PREPRINT

Cmax [kWh] dijkstra expand FIFO expand-distance average tree size
10 0.28 / 0.00 1.20 / 1.07 0.80 / 0.19 0.29 / 0.00 19695
20 0.33 / 0.01 16.23 / 169.21 23.80 / 963.10 0.36 / 0.01 67211
30 0.44 / 0.02 > 60 / - > 60 / - 0.54 / 0.03 136884
40 0.64 / 0.07 > 60 / - > 60 / - 0.85 / 0.15 231475
50 0.86 / 0.13 > 60 / - > 60 / - 1.22 / 0.35 330229
60 1.00 / 0.18 > 60 / - > 60 / - 1.54 / 0.55 414227
70 1.13 / 0.19 > 60 / - > 60 / - 1.84 / 0.68 486764
80 1.22 / 0.19 > 60 / - > 60 / - 2.11 / 0.78 551194
90 1.32 / 0.16 > 60 / - > 60 / - 2.37 / 0.68 612294
100 1.41 / 0.11 > 60 / - > 60 / - 2.59 / 0.59 664905
infinity 1.57 / 0.03 > 60 / - > 60 / - 3.14 / 0.17 776419

Table 1: Runtime in seconds (and variance) for computing energy-optimal paths
with algorithm ConstrainedGenericShortestPath, using four different strategies.

stant values for assessing the risk of running out of energy before arriving at the
destination. Finally, it is interesting to extend the framework towards energy-
efficient management of a fleet of EVs, for instance in car-sharing scenarios.

References

1. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

2. Bellman, R.: On a routing problem. Quart. of Appl. Math. 16(1) (1958) 87–90
3. L. R. Ford, J.: Network flow theory. Technical report, RAND (1956)
4. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:

Faster and simpler hierarchical routing in road networks. Proceedings of the 7th
Workshop on Experimental Algorithms (WEA’08) (2008)

5. Sanders, P., Schultes, D. In: Highway Hierarchies Hasten Exact Shortest Path
Queries. Volume 3669 of Lecture Notes in Computer Science. Springer (2005)

6. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824) (2007) 566

7. Joksch, H.C.: The shortest route problem with constraints. Journal of Mathemat-
ical Analysis and Applications 14 (1966) 191–197

8. M., G., D., J.: Computers and Intractibility: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York (1979)

9. Gallo, G., Pallottino, S.: Shortest path methods: A unifying approach. Volume 26
of Mathematical Programming Studies. Springer Berlin Heidelberg (1986)

10. B.V. Cherkassky, A.G., Radzik, T.: Shortest paths algorithms: Theory and exper-
imental evaluation. Mathematical Programming 73(2) (1993)

11. Johnson, D.B.: A note on dijkstra’s shortest path algorithm. Journal of the ACM
20(3) (1973) 385–388

12. Zhan, F.B., Noon, C.E.: A comparison between label-setting and label-correcting
algorithms for computing one-to-one shortest paths. Journal of Geographic Infor-
mation and Decision Analysis 4(2) (2000) 1–11

8

PREPRINT PREPRINT PREPRINT

A Appendix: Proofs of Section 4

Theorem 1. Algorithm 2.1 computes for every strategy S a prefix-bounded
shortest path tree with respect to function absorp.

Proof. Every time a vertex v with d(v) is inserted into Q (i.e. the operation in
line 16), a path P from s to v in G (defined over the predecessor function p) with
d(v) = absorp(P) is found. Due to the inequality in line 13 it additionally holds
that every calculated path is prefix-bounded by Cmax. Moreover the current
path has always a smaller value d(v) than any previously seen path with target
v. Since there is only a finite number of paths from s to v in G, v is only finitely
often inserted into Q. Therefore Q will finally become empty (due to deletion in
9) and the algorithm terminates.

For the claim of the theorem it is sufficient to show that every vertex v ∈ V is
sometime inserted with d(v) = d(s, v) into Q (where d(s, v) denotes the distance
of the shortest path from s to v with respect to absorb). Let

P = (s = v1 → v2 → · · · → vk = v)

be a shortest prefix-bounded path with respect to absorp in G. Therefore we
prove by induction over i = 1, . . . , k that vi is inserted with d(vi) ≤ absorp(P i)
into Q. The base case i = 1 is obvious. For the induction step i → i + 1 we
notice that for every strategy S, vi will be eventually removed from Q and Q

will finally become empty. Due to the check in line 13, vi+1 is inserted with

d(vi+1) = max (d(vi) + c(vi, vi+1) , 0)

into Q, or this vertex was previously added with a smaller value. Hence using
the induction hypotheses we have

d(vi+1) ≤ max (d(vi) + c(vi, vi+1), 0)

≤ max
�
absorp(P i) + c(vi, vi+1), 0

�
= absorp(P i+1).

Therefore theorem 1 is proven. ��

Theorem 2. Algorithm 2.1 using strategy expand has time complexity O(n3).

Proof. For every vertex u in Q, there is a corresponding path P (u) from s to u,
which is defined by predecessor function p. We want to show expand(v) ≤ |P (u)|,
where expand(·) denotes the number of expansions of a vertex and | · | the graph-
theoretical length of a path.

We prove by induction over i ≥ 1 that this assertion is true at any time
i the algorithms is in line 7 and for every vertex in Q. The base case i = 1 is
obvious, since there is only s inQ: expand(s) = 0 = |P (s)|. For the induction step
i → i+1 we assume u chosen to be expanded at time i. It is sufficient to show that
every successor v of u, which is updated in 15 at time i, fulfills expandi+1(v) ≤
|P i+1(v)|. (The subscript index denotes the time which is considered). Now, let
us consider the last time j < i+ 1, where v was chosen in line 7 (if v was never

9

PREPRINT PREPRINT PREPRINT

chosen, we have expandi(v) = 0 and there is nothing to prove). Considering our
strategy and using induction hypotheses it is

expandj(v) ≤ expandj(x) ≤ |P j(x)|

for every vertex x in Q at time j. Since exactly the vertices in Q are expanded,
every path, which is found at time k > j, contains at least one vertex x. Therefore
the graph-theoretical lengths are increasing and especially it is |P j(x)| ≤ |P i(u)|.
Since P i+1(v) consists of the path P i(u) and the edge (u, v), we have

expandi+1(v) = expandj(v) + 1 ≤ |P i(u)|+ 1 = |P i+1(v)|.

as required.
Every graph-theoretical length of a path is bounded by n−1. Hence no vertex

is expanded more than n times. Since every expansion takes at most O(n) and
the minimal element can surely be found with O(n), this leads to the desired
time complexity O(n3). ��

Lemma 1. Algorithm 2.1 using strategy dijkstra has time complexity O(n2) if
c is non-negative.

Proof. Let u be the vertex which is chosen at time i in line 7. Since c is non-
negative and di(u) is minimal (subscript index denotes the time which is con-
sidered), we get dj(v) ≥ di(u) for all vertices v chosen in 7 at every time j ≥ i.
Hence value d(u) cannot be improved anymore. Therefore every vertex is in-
serted only once into Q. Since every expansion (line 10 to 16) takes O(n) and
the minimal element can surely be found with O(n), we get an overall time com-
plexity of O(n2). ��

10

