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Abstract
Artificial intelligence has long been inspired by the vision of autonomous systems that not
only act on the larger world, but also maintain and optimize themselves. Autonomous systems
perform desired tasks to achieve desired goals continuously over a long period of time without
external guidance or intervention. This requires that autonomous systems know about their
true capabilities (model), reason about their course of action with respect to their current con-
ditions (planning), and reflect on their actual behavior to determine their current conditions
(diagnosis).

In general, long-life autonomy can be seen as a combination of two methods: (1) diagnosis
to determine the current condition of the system and (2) planning to optimize system operation
for the current condition. A step towards long-life autonomy is to automate diagnosis.

The integration of diagnosis into regular system operation is typically realized by one of the
following approaches: Alternating between explicit diagnosis and regular operation or simul-
taneous execution of passive diagnosis and regular operation. Alternating phases often result
in long periods during which regular operation must be suspended. This is particularly true,
when diagnosing complex fault scenarios, such as faults that occur intermittently. The combi-
nation of passive diagnosis with regular operation is often unsuccessful, as regular operation
may not sufficiently exercise the underlying system to isolate the underlying fault.

This work introduces a new architecture, coined a Self-diagnosing Agent, which realizes
the integration by a novel diagnosis paradigm called pervasive diagnosis. Pervasive diagnosis
actively manipulates the course of action during operation in order to gain diagnostic informa-
tion without suspending operation. Consider a system where operational goals can be achieved
in multiple ways. This flexibility can be exploited to generate operational plans that simulta-
neously gather information by trading off information gain objectives with performance ob-
jectives. Therefore active diagnosis and regular operation occur at the same time leading to
higher long-run performance than an integration of regular operation with passive diagnosis
or alternating between explicit diagnosis and regular operation.

The main contribution is an overall framework, which tightly integrates regular operation
and active diagnosis. In particular, this contribution introduces an information criterion that
defines how informative a plan is, a strategy to derive informative operational plans, and a di-
agnosis framework to efficiently update the belief states. The overall framework is optimized
for systems with faults multiple in number, intermittent in appearance and potentially caused
by hidden interactions. As a result, systems that embody the Self-diagnosing Agent architec-
ture benefit from active diagnosis during regular operation leading to a higher, more reliable,
and more robust long-run performance.
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Kurzfassung
Autonome Systeme sind Systeme die eigenständig Aktionsfolgen bestimmen die ihre Ziele er-
reichen. Während autonome Systeme bereits in verschiedensten Bereichen Anwendung finden,
stellt die Langzeitautonomie immer noch eine ungelöste Herausforderung dar. Diese Disser-
tation greift diese Herausforderung auf und untersucht eine Kombination von zwei Methoden:
Diagnose zur Bestimmung des aktuellen Zustandes und Planung zur Generierung von best-
möglichen Aktionsfolgen basierend auf dem diagnostizierten Zustand. Durch eine neuartige
Integration von Planung und Diagnose kann der Informationsgewinn als Optimierungsfaktor
in die Generierung von Aktionsplänen aufgenommen werden. Das resultierende Gesamtsys-
tem profitiert von Synergieeffekten zwischen Planung und Diagnose die zu einer gesteigerten
Langzeitsystemleistung führen.
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CHAPTER 1

Introduction
Follow effective action with quiet reflection. From the quiet reflection
will come even more effective action.

(James Levin: Reflection)

1.1 Introduction

Artificial intelligence has long been inspired by the vision of autonomous systems that not
only act on the larger world, but also maintain and optimize themselves. In its ambition, an
autonomous system achieves desired goals continuously over a long period of time without ex-
ternal guidance or intervention. Such systems are especially beneficial when jobs are too dan-
gerous, dirty, or dull for humans or require repetitive operation with great accuracy and relia-
bility. Autonomous and semi-autonomous systems are already used in a wide range of domains
such as manufacturing, assembly, packing, logistic, transport, earth and space exploration,
surgery, weaponry, and laboratory research (Christensen, Batzinger, Bekris, Bohringer, Bor-
dogna, Bradski, Brock, Burnstein, Fuhlbrigge, Eastman, Edsinger, Fuchs, Goldberg, Hender-
son, Joyner, Kavaraki, Kelly, Kelly, Kumar, Manocha, McCallum, Mosterman, Messina, Mur-
phey, Peters, Shephard, Singh, Sweet, Trinkle, Tsai, Wells, Wurman, Yorio & Zhang 2009).
However, most of today’s deployed systems are centered around short-life autonomy. A sys-
tem embodies short-life autonomy if it has the ability to achieve desired goals without external
guidance or intervention, but not necessarily continuously over an extended period of time.

An early example for short-life autonomy is the mobile robot named Shakey (Nilsson 1984),
illustrated in Figure 1.1(a), which was introduced in August 1967 by the Artificial Intelli-
gence Center at SRI International (then Stanford Research Institute). Shakey performed tasks
that required planning, navigation, and the rearrangement of simple objects by leveraging its
limited ability to perceive and model its environment. Shakey was not designed to perform
those tasks continuously over an extended interval of time. For instance it lacked the ability to
autonomously calibrate itself, to recover from failures, or to adapt to changes. Nevertheless,
demonstrating short-life autonomy at this early time, even if the system had to be restarted be-
fore each experiment, was already a great achievement. Today’s standards are higher. Various
research programs shifted their focus to emphasize long-life aspects of autonomy. In 2007,
the robotic research lab Willow Garage introduced its second mobile robot platform, named
PR2 (illustrated in Figure 1.1(b)), and stated long-life autonomy for personal robotics as one
of their core research objectives. In 2009, McGann, Berger, Bohren, Chitta, Gerkey, Glaser,
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Marthi, Meeussen, Pratkanis, Marder-Eppstein & Wise (2009) and Marder-Eppstein, Berger,
Foote, Gerkey & Konolige (2010) demonstrated PR2’s ability to reliably navigate inside an
office environment, open doors, and plug into regular outlets over a total distance of a full
26.2 miles marathon. Even though, the individual tasks were demonstrated before, performing
the same tasks continuously over a long period of time without any external intervention was
very challenging. Whereas short-life autonomy often neglects the occurrence of rear events,
assumes correct calibration, and relies on the availability of a fully functional system, long-life
autonomy requires the ability to adapt to changes, and robustly and reliably plan the course of
action even in unforeseen situations.

(a) Shakey: One of the first (short-life) autonomous
mobile robots.

(b) PR2: (Long-life) autonomous mobile robot
plugging itself into a regular outlet.

FIGURE 1.1 Autonomous mobile robot platforms: Shakey and PR2.

Another program that focuses on long-life autonomy, particular in the field of autonomous
driving, is the DARPA Grand Challenge created in 2004 by the Defense Advanced Research
Projects Agency (DARPA). The DARPA Grand Challenge is a series of competitions targeted
to develop ground vehicles that navigate and drive entirely autonomous. It pursues the goal
to keep war fighters off the battlefield and out of harms’ way (DARPA 2004). Figure 1.2(a)
shows Stanford’s winning autonomous ground vehicel, named Stanley, passing the finishing
line (Thrun, Montemerlo, Dahlkamp, Stavens, Aron, Diebel, Fong, Gale, Halpenny, Hoff-
mann, Lau, Oakley, Palatucci, Pratt, Stang, Strohband, Dupont, Jendrossek, Koelen, Markey,
Rummel, van Niekerk, Jensen, Alessandrini, Bradski, Davies, Ettinger, Kaehler, Nefian &
Mahoney 2006). During the race in 2005, Stanley drove completely autonomously a total dis-
tance of approximately 175 miles in 6 hours and 54 minutes by navigating through off-road
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terrain and taking sharp turns as shown in Figure 1.2(b). A key element of Stanley’s success
was its extremely robust and reliable perception and modeling capability, which enabled very
accurate models of the environment. These models were then leveraged by a planner to con-
sider possible futures before committing to a course of action. A prerequisite of planning is
the availability of models that accurately describe the capabilities of the system and the en-
vironment it is operating in. However, in a real-world setting accurate models might not be
available. A system model can be incomplete or obsolete due to the system breaking, evolv-
ing over time, or experiencing unforeseen situations. As a consequence, a plan which is valid
with respect to the original model might cause exceptions during execution. A great example
is the autonomous vehicle from the Carnegie Mellon University, named H1ghlander, which
participated in the 2005 DARPA Grand Challenge. Despite its high reliability, the system ex-
perienced an exception during the race causing the vehicle to slow down and ultimately leading
to Stanley’s victory (Thrun et al. 2006).

(a) Stanley at the finish line, winning the race. (b) Stanley navigating though the terrain including
sharp turns.

FIGURE 1.2 Autonomous ground vehicle named Stanley at the 2005 DARPA Grand Challenge.

Both previously introduced programs, personal robotic and autonomous driving, led to a
tremendous advancement in the field of long-life autonomy. However, the advancements were
mainly achieved through increased system reliability to avoid unforeseen situations such as
exceptions or failures. Despite the increased reliability, systems eventually break, exceptions
occur, and unforeseen events happen. This is especially true when systems have to be con-
trolled and operated over a very long time. For instance, the Voyager 1 and 2 spacecrafts
have each been controlled and operated successfully in space for more than 27 years and
the Galileo spacecraft for 14 years. Even though all three unmanned spacecrafts were de-
signed to be highly reliable, a total of 3,300 exceptions were tracked during the three flight
operations (Green, Garrett & Alan Hoffman 2006). This supports the argument that long-life
autonomy can not simply be reached through increased robustness and reliability, but rather
through the ability to handle unforeseen situations. For instance, during the landing maneuver
of NASA’s Apollo 11 an exception caused a near failure of the mission. The exception oc-
curred in a navigation and guidance computer, despite the fact that the system was extensively
tested. In the end, the exception was handled manually after diagnosing the problem remotely.
In a world where exceptions occur, autonomous systems require the ability to diagnose them-
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(a) Hyper-modular, Multi-engine Printer. (b) Reactive Exception Handling, exception handling without
root-cause analysis, may fail given non-local root-cause sce-
narios.

FIGURE 1.3 Hyper-modular, Multi-engine Printer build at the Palo Alto Research Center
(PARC, a Xerox Company).

selves and to adapt their behavior to the diagnosed conditions. Diagnosis is a reasoning process
which explains discrepancies between predicted behavior and observed behavior, determines
the system state, and improves the understanding of the system. In general, long-life autonomy
can be seen as a combination of two methods: (1) diagnosis to determine the current condition
of the system and (2) planning to optimize system operation for the diagnosed condition. A
step towards long-life autonomy is to integrate automated diagnosis.

Long-life autonomy is not only required for space exploration, but also essential in many
other domains. Automated manufacturing, for instance, requires automated diagnosis to han-
dle production failures in order to avoid cost extensive down times. Consider the Hyper-
modular, Multi-engine printer illustrated in Figure 1.3(a). Such printers resemble a product
manufacturing plant. Raw materials (blank sheets) enter at the plant’s inputs, they are routed
through different machines, and final products (printed sheets) are collected at the outputs.
Autonomous printer receive a stream of print jobs continuously over a long period of time,
constructs a plan for each sheet without external guidance, and optimizes themselves for long-
run performance. A long-life autonomous printer can use its own model to diagnose faults
during execution (e.g. diagnosing which module causes a paper jam) to then stimulate the
sheet planner to choose plans that avoid certain modules.

Envision a system without diagnosis, but instead with the ability to detect discrepancies and
to react to the detected discrepancies without performing root-cause analysis. As a result, the
system reacts to surface symptoms and not to the root-cause. Consider the example provided
in Figure 1.3(b). Three single sheets of paper are planned to follow path 1. Assume that the
module at location CAUSE creates a scuff mark. Once a scuff mark exists, it builds up over
time and causes a sheet to jam downstream. As a result, the first sheet jams along path 1
indicated by the star labeled JAM. Following a purely reactive strategy, a system avoids the
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jammed module in future plans as it has detected an exception in this module. Consequently,
the second sheet is rerouted around the jammed module following path 2. However, path 2 still
traverses the module causing the scuff mark and causes the paper to jam further downstream
along path 2. By now, two modules are jammed and therefore taken offline. The reactive strat-
egy continues and consecutive sheets are planed around the two jammed modules. However,
those plans may still traverse the module causing a scuff mark as in path 3. Consider the third
sheet then follows path 3 and jams. As a consequence the entire system is jammed.

The previous example illustrates that long-life autonomy has to be a combination of diagno-
sis to determine the current condition of the system and planning to optimize system operation
for the diagnosed condition. The main challenge is to integrate planning and diagnosis such
that the overall system benefits from its diagnosis capabilities while still maintaining high
long-run performance. One of the most sophisticated and well developed integrations of di-
agnosis and planning was realized in the remote agent project (Muscettola, Nayak, Pell &
Williams 1998). The overall system was successfully demonstrated onboard the NASA Deep
Space One mission in May, 1999. The remote agent project performs passive diagnosis during
regular operation by monitoring execution without actively optimizing operation for informa-
tion gain. As a consequence, the combination of passive diagnosis with regular operation is
often unsuccessful, as regular operation may not sufficiently exercise the system to isolate
the underlying fault. An alternative approach is to alternate between explicit diagnosis and
regular operation. Explicit diagnosis executes test cases which are optimized purely for infor-
mation gain while regular operation is suspended. Such alternating phases typically result in
long periods of time in which regular operation is suspended. This is particularly inefficient
when diagnosing complex fault scenarios, such as faults that occur intermittently. Motivated
to overcome the shortcomings of the two previous integrations, this work introduces a novel
integration of regular operation and diagnosis leading to a higher long-run performance.

1.2 Motivation and Aims:
This work introduces a new architecture, coined a Self-diagnosing Agent, which realizes the
integration by a novel diagnosis paradigm called pervasive diagnosis. Pervasive diagnosis ac-
tively manipulates the course of action during operation in order to gain diagnostic information
without suspending operation. Consider a system where operational goals can be achieved in
multiple ways. This flexibility can be exploited to generate operational plans that simultane-
ously gather information by trading off information gain with performance objectives. There-
fore the resulting approach combines system operation and diagnosis in the following way:

Simultaneous execution of active diagnosis and regular operation. Consequently, active
diagnosis and regular operation occur at the same time leading to higher long-run performance
than an integration of regular operation with passive diagnosis or alternating between explicit
diagnosis and regular operation.

The conceptual framework of pervasive diagnosis is illustrated in Figure 1.4. The frame-
work is implemented by a loop: The core idea of pervasive diagnosis is that plans achieve
operational goals and informative observations at the same time, coined informative opera-
tional plans. Those plans are executed and sent together with their corresponding observations
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Planner
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FIGURE 1.4 Pervasive Diagnosis: Integration of Operational Planning and Active Diagnosis.

to the diagnosis engine. The diagnosis engine updates its beliefs online to be consistent with
the observations, updates the model, and forwards the beliefs to the planner. The planner then
determines future plans based on the current beliefs, the performance objectives, and the infor-
mation gain objectives. Systems that embody pervasive diagnosis benefit from high long-run
performance by exploiting the overlap between operational plans and diagnostic plans.

However, not all systems can leverage pervasive diagnosis. In order to benefit form perva-
sive diagnosis the following three assumptions have to be true:

• Assumption 1: A sequence of plans is executed and observed. Pervasive diagnosis is
a sequential diagnosis technique where individual operational plans are optimized for
information gain. For example, a continuous stream of print jobs can be used for root-
cause analysis by choosing alternative routes while printing.

• Assumption 2: There are multiple different ways in which operational goals can be
achieved. For example, consider that the same print job can be achieved by different
routes through a print system. In the case where no redundancy can be leveraged, it
might be possible to alter action parameters such as execution speed.

• Assumption 3: The space of operational plans and diagnostic plans intersect. The
space of operational plans contains plans that are optimized to achieve operational goals
and the space of diagnosis plans contains plans that are optimized for information gain.
Those spaces may or may not overlap. In general, an observation process may not con-
flict with operational goals. A negative example would be a product, which needs to be
cut open for observation and thus is not longer a valid product.

The core idea of the Self-diagnosing Agent Architecture is to enable systems to reflect
on their actual behavior, to determine their own states, to infer their true capabilities, and to
leverage their gained knowledge to operate robustly and reliably.

Consider a Hyper-modular, Multiple-engine Printer that contains a single, persistent fault,
initially unknown to the system. The example is illustrated in Figure 1.5. The system prints
a sequence of jobs with the overall objective to maximize long-run performance. Assume a
sheet of paper is printed following the plan illustrated in Figure 1.5(a) and that the execution
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(a) Plan execution with scuffed paper, thus all modules along the plan are
suspected.

(b) Informative operational plan achieves either operational goals, suspected
set reduction, or both.

(c) Here, plan execution leads to valuable diagnostic information without dis-
rupting operation.

FIGURE 1.5 Self-diagnosing Agent deriving Informative Operational Plans.
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results in an observable fault, a scuffed sheet. Given that there is no other information avail-
able, each module along the execution path is suspected to have potentially contributed to the
fault. The set of suspected modules is highlighted in Figure 1.5(a). Since a fault was detected,
a Self-diagnosing Agent optimizes future plans to perform regular operation and active infor-
mation gain at the same time. Figure 1.5(b) illustrates such an informative operational plan.
Note that the plan is optimized for system operation (traverses a print engine), but routes the
sheet through some additional modules to increase information gain. In this particular case
the plan fails to achieve an operational goal as the output sheet is scuffed. However, the plan
still contributes by improving the diagnosis state. The core idea is that all plans either achieve
operational goals, improve the diagnosis state by reducing the suspected set, or some combi-
nation. The next plan, illustrated in Figure 1.5(c), is again optimized to achieve operational
goals and information gain at the same time. The execution results in a valid output (printed
sheet), which leads to synergy effects between regular operation and active diagnosis.

In summary, this work introduces the Self-diagnosing Agent Architecture which uses per-
vasive diagnosis. Pervasive diagnosis is a novel diagnosis paradigm that enables regular oper-
ation and active diagnosis to occur at the same time leading to higher long-run performance
than passive diagnosis or alternating between active diagnosis and regular operation.

1.3 Technical Challenges
The Self-diagnosing Agent framework is intended to run on real-world systems during long-
life operation. This poses several technical challenges both on the conceptual and on the algo-
rithmic side. The overall challenge decomposes into the following two challenges: Generating
operational plans that simultaneously gather diagnostic information and performing online
diagnosis for systems that plan. On the planning side, a planner has to tightly integrate oper-
ational objectives and diagnosis objectives such that regular operation and active information
gathering can occur within a single plan. On the diagnosis side, a diagnosis framework has
to perform diagnosis based on an abstract planning model while scaling with the size of the
planning problem.

In order to determine a plan that gathers diagnostic information, an information criterion
has to be defined that quantifies the potential information gain. This is particular challenging
if the system under observation exhibits intermittent behavior, e.g. only one out of one thou-
sand executions causes an observable abnormality. Consider the printer example from before
where sheets are routed through modules and eventually get scuff marked. Suppose a plan is
executed and a scuff mark is observed at the output as illustrated in Figure 1.5(a). Without
further information all modules that have been involved in the print job are suspected to have
potentially contributed to the fault. In order to diagnosis the system efficiently, a plan has to
be generated that leads to informative observations. Intuitively, the most informative plan is
the plan that traverses half of the suspected modules. However, consider the same problem
where some of the modules fail intermittently, e.g. produce a scuff mark once every thousand
times. The challenge is to examine if the half split intuition remains to be optimal even with
a changing intermittency rate. After an information criterion is defined, an algorithm has to
be designed that efficiently generates informative operational plans. This is difficult as the in-
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formation gain of an action depends on the actions that have been executed previously to this
action as well as on the actions that will be executed before the next observation is done. Sup-
pose there is a set of suspected actions, we know one of the actions is faulty and we want to
determine the potential information gain executing a specific action. The potential information
gain is very high if we execute the action by itself. That is because if a fault is observed we
can unambiguously identify this action as faulty. On the other hand, if we observe all of the
actions together, observing a fault is informative. This dependencies between the individual
actions/modules lead to a combinatorial search which is challenging to solve efficiently.

Another technical challenge is to perform online diagnosis for systems that plan. Online di-
agnosis considers diagnosis reasoning during system operation. This requires fast diagnostic
inference to keep up with execution. This is especially challenging if diagnosing a system that
plans based on its planning model. A planning model describes the nominal system behavior
on an abstract level and omits many of the system details. This demands the consideration
of advanced fault models to compensate for the lack if knowledge. For instance, a planning
model may capture the transport actions of a paper transport module without going into de-
tail which roller and motor is involved in any particular action execution. Due to the abstract
nature of a planning model, faults may appear intermittently or only if a group of modules
interact. The intermittency might be due to details, which are omitted by the model, e.g. the
room temperature. An interaction fault, is a fault where a set of components behaves abnormal
if they interact, but each individual component remains within specification if they are tested
individually. For instance, imagine modules age over time and show some small delay in their
behavior, but remain within specification. Suppose that executing two modules together leads
to an accumulated delay that causes the system to fail, but this information is abstracted away
by the model. As a result an execution that involves more modules fails, even though all in-
dividual models are within specification. The goal is to perform diagnosis despite the abstract
model by introducing domain independent advanced fault models. The challenge is to enable
efficient diagnosis inference despite the fact that advanced fault models generally increase the
number of hypothesis exponentially. Therefore a diagnosis framework needs to be designed
that handles complex fault scenarios while performing sufficiently fast to be applicable during
operation.

In summary, the overall challenge is to perform online diagnosis to determine the current
state of the system and to generate operational plans that gather informative observations based
on the diagnosed state. This results in the following technical challenges: Define an informa-
tion criterion that defines how informative a plan is, leverage this information criterion to
generate informative operational plans, and perform efficient online diagnosis for systems that
plan.

1.4 Contributions

This work presents the following five contributions:

• Self-diagnosing Agent framework: This contribution introduces an overall framework to
tightly integrate regular operation, active information gathering, and online diagnosis.
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The key idea is to exploit the flexibility of plan construction to simultaneously achieve
operational goals while gathering diagnostic information. This contribution introduces
an information criterion that determines how informative plans are, a strategy to derive
informative operational plans, and an online diagnosis framework to efficiently update
the belief states.

• Tiered-Partitioned Inference framework: This contribution outlines an efficient compu-
tational framework for statistical diagnosis featuring two main ideas: Tiered inference,
which structures fault hypotheses into tiers based on their fault cardinality, and parti-
tioned inference, which dynamically partitions the overall system into subsystems such
that single fault inference can be used within each subsystem. As a result, this frame-
work enables efficient online diagnosis for multiple faults by leveraging high-speed sin-
gle fault inference (e.g. the one presented in the next contribution).

• Continuously Estimating Persistent and Intermittent Failure Probabilities: This contribu-
tion enables fast diagnostic inference for systems with persistent and intermittent faults.
The memory and time efficient inference framework is realized by a combination of
Bayesian Inference and count-based estimation to derive failure probabilities. In partic-
ular, this framework enables high-speed single fault inference, which leads to efficient
online multiple fault diagnosis if combined with the previous contribution.

• Diagnosing Hidden Interaction Fault: This contribution presents a novel framework that
extends model-based diagnosis to systems with hidden interaction faults. A hidden in-
teraction fault is present if an unknown interaction among a set of components leads to
an observable failure, even though each individual component meets specifications. The
extension is realized by a general, domain independent model. This contribution enables
diagnosis of systems, even if the underlying model is incomplete.

• Target-Value Search Problem: This contribution defines a new class of combinatorial
search problems, called Target-Value Search Problem, in which the objective is to find
the path or set of paths between two given vertices in a graph whose length/value is as
close as possible to some target-value. Target-Value Search can be applied in the context
of a Self-diagnosing Agent to derive informative operational plans.

1.5 Reader’s Guide
The five contributions presented in the previous section are described in five chapters. An
additional chapter on intelligent agents sets the context and outlines short comings of previous
agent architectures.

• Chapter 2 describes the general concept of intelligent agents. An intelligent agent can be
implemented by numerous agent architectures, which are outlined in this chapter, before
short comings are presented, which motivate the rest of the discussion.

• Chapter 3 formulizes the Self-diagnosing Agent framework, which leverages a novel
integration of regular operation and active diagnosis.
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• Chapter 4 presents a computationally efficient diagnosis framework, which is based on
tiered-partitioned inference. This framework leverages high-speed single fault inference
to diagnose systems with multiple faults.

• Chapter 5 studies a framework to estimate persistent and intermittent failure probabil-
ities from a continuous stream of observations. In particular, this framework realizes
high-speed single fault inference.

• Chapter 6 describes a general, domain independent extension of model-based diagnosis
to systems with hidden interaction faults.

• Chapter 7 defines a new class of combinatorial search problems, called Target-Value
Search Problem. Target-Value Search can be applied in the context of a Self-diagnosing
Agent to derive informative operational plans.

• Finally, Chapter 8 summarizes the work on Self-diagnosing Agents and points out the
benefits of a Self-diagnosing Agent. Finally, it concludes by revisiting the core contri-
butions of this work.

Some aspects of former versions of this work have been published in (Kuhn, Price, Do, Liu,
Zhou, Schmidt & de Kleer 2010), (Kuhn, de Kleer & Liu 2009), (Liu, Kuhn & de Kleer 2009),
(de Kleer, Kuhn, Liu, Price, Do & Zhou 2009), (Kuhn, Price, de Kleer, Do & Zhou 2008b),
(Kuhn & de Kleer 2010), (Schmidt, Kuhn, Zhou, de Kleer & Price 2009), (Kuhn, Price, de
Kleer, Do & Zhou 2008a), (Kuhn & de Kleer 2008).
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CHAPTER 2

A World of Agents
This chapter studies agents by building on the concepts introduced in (Russell & Norvig
2009). It starts with an introduction in Section 2.1 followed by describing the general concept
of an agent in Section 2.2. A formal framework of an intelligent agent is outlined in Sec-
tion 2.3. Section 2.4 then introduces an example from the printer domain called Sheet Path
Finder (Shepafi). Until then, agents have been described in terms of behavior without talking
about their internal implementation. Section 2.5 presents architectures on how an agent might
be realized. In some situations agents might have to reason about the different available action
choices before committing to a specific action. This process is called planning and is outlined
in Section 2.6. Section 2.7 gives a brief overview how agent technology can be used to control
hyper-modular, multi-engine printer and outlines the challenges which might occur. Finally,
Section 2.8 concludes the chapter by motivating a tight integration of regular operation and
online diagnosis.

2.1 Introduction
For thousands of years, mankind has tried to understand how the human brain works and
what it is that makes humans intelligent. In 1956 the name artificial intelligence, in short AI,
was coined as part of the proposal titled "A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence" (McCarthy, Minsky, Rochester & Shannon 2006). Artificial
intelligence studies, not only how intelligence works, but also how intelligence can be built.

But what is intelligence? Numerous researchers have attempted to answer this question. The
answers can be summarized in four categories of definitions (Russell & Norvig 2009). The
common understanding is that a system is perceived to be intelligent if it can be characterized
by one of the four definitions in Table 2.1.

The definitions of intelligence bring out two dimensions. The first differentiator is whether
it is enough for an intelligent entity to be passive, as in the sense of thinking (but maybe not
acting), or active, in the sense of not only thinking, but also acting. The second dimension
highlights the reference for intelligence. The question is if either the human, as an intelligent
being, sets the bar, or intelligence has to be compared to rational behavior.

All four definitions are interesting and have been pursuit in science. Without engaging in
a deeper discussion about what the correct definition is, in the context of this work artificial
intelligence is simply defined as the computational study of agents with rational behavior,
agents that act rationally.

13



CHAPTER 2 A World of Agents

Humanly

Thinking Thinking Humanly (Haugeland 1985, Bellman 1978)

Acting Acting Humanly (Kurzweil 1990, Rich & Knight 1990)

Rationally

Thinking Thinking Rationally (Charniak & McDermott 1985, Winston 1992)

Acting Acting rationally (Poole, Mackworth & Goebel 1998, Nilsson 1998)

TABLE 2.1 Definitions of Artificial Intelligence

2.2 Concept of an Agent
The word agent origins from the Latin word “agere”, which translates into “to do”. As the
origin of the word agent suggests, an agent is something that acts. In general, an agent is
everything that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators (Russell & Norvig 2009).

Skeleton of an Agent

E
nvironm

ent

Sensors

?

Actuators

FIGURE 2.1 Skeleton of an Agent

The concept of an agent is illustrated in Figure 2.1. A human can be seen as an agent with
eyes, ears, nose, skin, and other organs as sensors and hands, legs, mouth, and other body parts
as actuators. Similarly, a robot can also be viewed as an agent with its input as sensor input and
its output as actuator effects. Every agent is able to sense its own actions, but not necessarily
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the effects caused by those actions. For example, a robot that grabbed for an object knows that
it has grabbed, but might not know if it holds the grabbed object in hand. The success of the
grabbing action might not be observable.

An agent receives a continuous stream of inputs through sensors. The term percept is used
to refer to the perceptual inputs at any given instant and the term percept history for the entire
stream of received percepts. As indicated in Figure 2.1, there might be a dependency between
the perceptual inputs and the agent’s choice of actions. In general, the behavior of an agent can
be described by specifying a choice of action for every possible percept history. A complete
specification of the behavior is called the agent function.

2.2.1 Agent Function

The behavior of an agent can be formalized by a function mapping every possible percept
history onto an action choice. This function is referred to as agent function. In principle,
an agent function can be stored in a lookup table, where every possible percept history is
mapped to an action choice. Using the lookup table as part of an actual implementation is
rather impractical because the size of the resulting lookup table would be infinite for most
agents as the set of unique percept histories is infinite. Instead, the concept of an agent program
is introduced to implement an agent function.

2.2.2 Agent Program

The behavior of an agent is characterized by the agent function. However, an actual imple-
mentation is realized by the so called agent program. An agent program implements an agent
function with the limitation that it is only parameterized with the currently available percept.
In comparison, an agent function maps entire percept histories to actions. The important dis-
tinction is that it receives the complete percept history as an input whereas the agent program
receives only the current percept at any given instant. The agent function is to be understood
as a theoretical concept whereas the agent program is an actual implementation of an agent
function.

However, both, the agent function and the agent program, describe the behavior of an agent.
But how should an agent behave? The next section continues the discussion by studying intel-
ligent agents.

2.3 Intelligent Agent

An intelligent agent acts autonomously, perceives the environment, acts persistently over a
period of time, adapts to changes, and adopts predefined goals. An intelligent agent that does
the right thing based on the available knowledge is coined rational agent (Russell & Wefald
1991). But what is the right thing? This question is addressed in the next section.
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2.3.1 Performance Measurement
A performance measure can be used to quantify the degree of an agent of doing the right
thing. The happiness of an agent can be used as performance measure by asking the agent
about its degree of happiness, assuming that being happy is the right thing, and stimulate
the agent to reach the highest degree of happiness. The disadvantage of such an approach is
that some agents might not know how happy they are, or they delude themselves about their
own happiness. Another problem is that being happy is very subjective. Similar to people,
some agents might be happy in a situation, whereas other agents might be very unhappy in
the same situation. To come to a more objective performance measure the performance of an
agent is evaluated against an external objective, typically defined by the designer of the agent.
Such a performance measure is referred to as objective performance measurement, or simply
objective. The objective is used to quantify the behavior of an agent. A rational agent is an
agent that maximizes its performance measure based on the knowledge available to the agent.
The next section defines a rational agent more formally.

2.3.2 Rational Agent
Generally, a rational agent does the right thing given its available knowledge. The concept of
a performance measurement can be used to adapt this very general definition to the following
definition of a rational agent:

Definition 1. For each possible percept history, a rational agent should select an action that
is expected to maximize its performance measure, given the evidence provided by the percept
history and whatever built-in knowledge the agent has (Russell & Norvig 2009).

Note, that a rational agent is not an omniscient agent. An omniscient agent can precisely
predict how the world evolves and how its actions effect the environment. Based on this predic-
tion, an omniscient agent then chooses actions in order to maximize its performance measure.
In comparison, a rational agent can only hypothesize about expected outcomes of its actions
and how the world evolves. Based on those hypotheses a rational agent chooses the action that
maximizes its performance measure. The important difference is that an omniscience agent is
certain about the future whereas a rational agent can only anticipate how the future might be.

An agent does not only rely on the currently available knowledge, but also actively engages
in increasing its knowledge about the environment. It would not be rational to cross a road
without checking the traffic and then determining that the percept history did not indicate
traffic. Instead, a rational agent should be aware of its lack of knowledge and choose actions
to change that. In general, a rational agent should consider gathering information in order to
increase the expected performance measure. This leads to the concept of active information
gathering. Information gathering is the process of choosing actions with the goal to alter future
percepts in order to increase the agent’s knowledge. It is also referred to as exploration.

Another important quality of a rational agent is the ability to learn. Information gathering
by itself is not all to useful if an agent is not able to incorporate the gathered information into
its knowledge. Learning is the ability to enrich its own knowledge with new information and
to make it available for later use.
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The rest of this document discusses how rational agents are built. Before going into more
detail, an example domain is introduced, which will serve as a reference example to illustrate
further concepts.

2.4 A Real-World Agent
The increasing complexity of systems makes it far more important that intelligent agents con-
trol themselves. A good example of this trend is the domain of high-end printers. Even though
desktop printers are limited to printing and copying, a high-end printer is much more complex.
They come with an entire collection of functions, like printing, scanning, faxing, binding, sta-
pling, sorting, stacking, etc., and give the user a broad range of options to choose from, such
as different paper types, color options, printing simplex or duplex, etc. An example for such a
high-end printer is the Xerox iGen3 shown in Figure 2.2.

FIGURE 2.2 High-end production color printer: Xerox iGen3.
Many different possible combinations of functions and options increase the complexity not

only in terms of hardware, but also in terms of software. Each possible combination might re-
quire a slightly different program to control the printer, which potentially leads to an enormous
amount of software. For example, a printer with 10 functions and 10 options, where all com-
binations of functions and options are valid configurations, requires 1, 048, 576 = 210 × 210

programs. This leads to an enormous amount of software. To avoid this complexity without
restricting the functionalities of future products, XEROX pursues the goal that future ma-
chines can automatically plan, control, and reconfigure themselves from knowledge of their
own physical constraints and their environment in order to achieve the users goals. As part
of this vision a group of researchers at the Palo Alto Research Center, Inc. (PARC, formerly
XEROX PARC) started to work on intelligent agent technologies that enables machines to
automatically plan and control themselves based on a system model and available sensor data.
In particular, the group developed a hyper-modular multi-engine printer, which fully embraces
model-based planning and scheduling.

2.4.1 Hyper-modular, Multi-engine Printer
This section introduces the concept of the hyper-modular, multi-engine printer developed at
the PARC. The hyper-modular, multi-engine printer can be seen as a network of paper trans-
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(a) Picture of the prototype.

(b) Schematic of the prototype.

FIGURE 2.3 The hyper-modular, multi-engine printer combines over 170 independently con-
trolled modules.
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port modules, linking multiple print engines and other special purpose modules together. Fig-
ure 2.3 shows the hyper-modular, four-engine printer. It has over 170 independently controlled
modules, including many paper transport modules, two paper feeders, four printers, and two
output trays.

Thus printer resemble a product manufacturing plant, with raw materials (blank sheets) en-
tering at the plant’s inputs, being routed through different machines that can change the prop-
erties of the materials, and the final products (printed sheets) being collected at the outputs.
This domain also has certain properties of package routing or logistics problems with cross-
goal resource constraints, which represent a wide range of on-line decision-making settings,
such as multi-robot coordination.

2.4.2 Running Example: Sheet Path Finder (Shepafi)
In the following, a running example system is introduced, which is referred to as Sheet Path
Finder, in short Shepafi. The system is motivated by the earlier introduced hyper-modular,
multi-engine printer.

Shepafi is a system with reduced complexity, simplifying the problem to a sheet transporta-
tion problem. It assumes that individual sheets of paper have to be navigated through the
system starting from one of two feeder modules, traversing some paper transport modules,
and finishing at one of the two finisher modules. Details about the process of printing or other
capabilities, such as stapling, are abstracted away. Further moving from module to module
is assumed to be an atomic action. The resulting problem resembles a sheet transportation
problem. This problem is small enough to be quickly understood, but conveys all necessary
properties to serve as a meaningful example. A schematic of the Shepafi system is illustrated
in Figure 2.4.
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FIGURE 2.4 Sheet Path Finder (Shepafi): Topology

Shepafi consists of a set of ten modules, M={fe1,fe2,pt1,pt2,pt3,pt4,pt5,pt6,fi1,fi2} (two
feeder modules, two finisher modules, and six intermediate paper transport modules) and a
set of actions A={a1, a2,. . . , a12}. The modules are connected by actions as indicated in the
schematic shown in Figure 2.4.

Suppose an uncontrolled failure event e1. Further assume, that the occurrence of this failure
event can ony be observed at a finisher. The failure event e1 occurs if and only if action a7 is
executed. The failure event is assumed to be persistent (not intermittent), hence the resulting
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observation can be simulated by checking if an executed course of action contains action a7.
Given a course of action, denoted plan p, a successful execution is indicated by <p,succ> and
a failed one by <p,fail>.

Shepafi serves as a running example through out the entire discussion. Consider a system
such as Shepafi, it remains to be shown how an intelligent agent can be implemented control-
ling it. Therefore next section introduces numerous agent architectures and highlights their
advantages and disadvantages.

2.5 Architecture of an Agent
Until now, agents have been described in terms of behavior without talking about their inter-
nal implementation. This section introduces architectures on how an agent might be realized.
Even though internal implementations might vary greatly, conceptually they can be fit into six
architectures. The skeleton of an agent program is illustrated in Figure 2.1 and can be extended
to the following existing agent architectures:

• Table-driven Agent,

• Simple Reflex Agent,

• Model-based Reflex Agent,

• Goal-based Agent (Model-based, goal-based Agent),

• Utility-based Agent (Model-based, utility-based Agent),

• Learning Agent (Model-based, utility-based, learning Agent),

2.5.1 Table-driven Agent
A Table-driven Agent is the most trivial implementation of an agent program. Internally, the
current percept is directly mapped onto a choice of action. The agent bases its decision-making
directly on the perceptual input, without interpreting the perceptual input by some kind of
higher level situation or world state. It maintains a lookup table of actions indexed with all
possible percepts and uses those rules to determine what action to perform next. The architec-
ture of a Table-driven Agent is illustrated in Figure 2.5.

This limits the Table-driven Agent to fully-observable worlds of limited complexity. The
main drawback of this architecture is the lack of an interpretation step. An example that illus-
trates the problem is an agent that plays a board game equipped with a camera to sense and
a display to indicate the intended moves. For simplicity, assume that the move on the game
board is realized by a human. In a table-driven architecture the perceptual input is directly
mapped to an action. In our example the agent maps raw image data to move actions. Due
to lighting conditions or the camera angle the same game state might result in many different
raw image data, even though they all represent the same high level game state. Given this ar-
chitecture, each unique image data has to be captured in a lookup table. This quickly gets out
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FIGURE 2.5 Table-driven Agent

of hands in terms of the table size and leads to an enormous overhead within the lookup table.
The next section introduces the simple reflex agent who avoids this overhead by introducing
an abstract interpretation step mapping perceptual inputs to a higher level world state, before
choosing an action.

2.5.2 Simple Reflex Agent

The Simple Reflex Agent, is another simple implementation of an agent. It works similarly to
a Table-driven Agent, with the only difference that it interprets the current perceptual input
as a higher-level state before choosing an action. The interpretation step reduces the number
of stored mappings, because multiple unique perceptual inputs are interpreted by the same
higher-level situation or state. For example, in the context of the board game it is only neces-
sary to maintain an action choice for each game state but not for all possible raw images. This
leads to enormous savings in the number of stored mappings, because the same game state
might be represented by many different images due to lighting differences or camera angles.

Internally, the agent stores a set of condition-action rules, which map from a condition
to an action. As illustrated in Figure 2.6, the agent first determines the current state, before
evaluating the condition-rules with respect to the current state. The first condition-rule with
a positive evaluating condition determines the choice of action. A template of such a rule is
shown in Table 2.2. Since an agent maintains its knowledge in rules it, is also called a Rule-
based Agent. Simple Reflex Agent emerged as a subfield of artificial intelligence in order to
capture expert knowledge. The goal of Simple Reflex Agent is to make expert knowledge
computationally available (Hayes-Roth 1985).

The Simple Reflex Agent architecture only succeeds in an environment where the knowl-
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FIGURE 2.6 Simple Reflex Agent

Rule n: IF condition THEN action

TABLE 2.2 Template of a condition-action rule.

edge of non-perceptual parts of the current state is required. In the context of our running
example system Shepafi the adoption of this agent means that, if the location of a sheet would
not be fully observable at any given time the agent would be setup to fail. The reason behind is
a Simple Reflex Agent determines the current state purely by its current perceptual input. As
a result, a Simple Reflex Agent is limited to fully observable environments. The next section
introduces an agent architecture that maintains an internal state to handle worlds with partial
observability.

2.5.3 Reflex Agent with Internal State (Model-based Reflex Agent)
In some situations an agent might interact with a world, where not all parts of the world are
always fully observable at any given time. In those situations it is useful to maintain an internal
state in order to keep track of the parts that are not fully observable. In our Shepafi example, a
sheet location might not be observable, but the agent can still succeed by tracking the current
location given the selected actions. Such kind of tracking can be realized by an internal state.

A Reflex Agent with Internal State selects actions based on its current state, with the dif-
ference that the current state is derived not only from the current percept but also based on
an internally stored state. Maintaining an internal state enables the agent to remember infor-
mation contained in earlier percepts. In order to maintain an internal state, the agent needs
an understanding of "How the world works". This knowledge can be decomposed into two
categories: The first one captures aspects regarding the environment, basically knowledge of

22



SECTION 2.5 Architecture of an Agent

"How the world evolves". The second part holds information regarding the actions of an agent,
in particular the effects of those actions. This is often described as "What my actions do".

Reflex Agent with Internal State
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FIGURE 2.7 Reflex Agent with Internal State

This knowledge is called a world model, or simply a model. The model represents the
knowledge of the agent on "How the world works". The model is an integral element in the
process of maintaining an agent’s perceived world state. As shown in Figure 2.7, a world
state is derived from the previous state, action, the model, and the current percept. Once the
world state is determined the Reflex Agent with Internal State continues its selection process
in accordance to the Simple Reflex Agent. That is by matching a condition-action rule to the
current state and choosing the corresponding action.

In comparison to a Simple Reflex Agent, a Reflex Agent with Internal State overcomes
the limitation of being constrained to a fully-observable world. However, all reflex agents,
which are based on condition-action rules share the lack of flexibility to adapt to dynamically
changing goals. Condition-action rules implicitly capture the goal, which an agent intends to
achieve by characterizing the behavior of an agent. In case the goal changes, the entire rule set
has to be updated in order to adapt the behavior according to the new goal. This leads to an
enormous overhead, especially if goal changes are numerous.

The next section discusses an agent architecture that is able to take on different goals and to
simulate how different action choices compare with respect to the goal achievement.

2.5.4 Goal-based Agent
The previous agents, in particular reflex agents, suffer from a lack of flexibility to adapt to
dynamically changing goals. A reflex agent requires a complete re-build of its condition-action
rule set if a new goal emerges. In the situation of a new goal, an agent should be able to
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leverage its understanding of its own actions and how the world evolves, to adapt its behavior.
The knowledge required to do so is captured in the model currently used to maintain an internal
state. The same knowledge can be leveraged to adapt the action selection process to a new goal.

An agent with explicit goal description and the ability to adapt its behavior accordingly is
referred to as Goal-based Agent. A Goal-based Agent differs from a reflex agent as it does
not rely on predefined condition-action rules to describe its behavior. Instead, a Goal-based
Agent dynamically leverages its knowledge of its own actions of how the world evolves in
order to determine the best action. Given a goal, it engages in an explicit deliberation process
to evaluate potential action choices, based on the current state, an internal model of its own
actions, and a model of how the world evolves. A Goal-based Agent considers possible future
scenarios to decide what the best action is. These considerations can be viewed as simulations
of possible futures to determine "What will happen if I do action A or action B?" and "What
effect is better with respect to the goal?". The consideration process is referred to as planning
or search and is discussed in more detail in Section 2.6.

Goal-based Agent

E
nvironm

ent

Sensors

What the world
is like now

What it will be like
if I do action A

What action I
should do now

Actuators

State

Model

How the world evolves

What my actions do

Goal

FIGURE 2.8 Goal-based Agent

The main advantage of a Goal-based Agent is its increased flexibility. That results from the
capability to leverage its own understanding of the world not only to determine a world state,
but also to adapt its own behavior in the presence of new goals.

A Goal-based Agent has the advantage of being able to adapt to changing goals, but has
no notion of how different goal achieving strategies compare. As the idiom "All roads lead to
Rome" indicates there might be many different ways to achieve a goal. Among those different
goal achieving strategies, a Goal-based Agent expresses no preferences. This might result in
goal achieving strategies which are less optimal than others.

The next section presents an Utility-based Agent approach that introduces the concept of a
continuous success measurement instead of a binary measurement of either goal achieved or
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not.

2.5.5 Utility-based Agent
Sometimes an agent might be able to retrieve multiple different ways to achieve a goal. In such
situations it is of interest to evaluate the alternatives in order to determine which one is "best".
A Goal-based Agent distinguishes only between goal achievement and goal failure, but lacks
the concept of a quality of achievement.

A Utility-based Agent chooses actions based on the utility, resulting from a successor state.
The utility is determined from an utility function. A utility function indicates a quality for each
state by mapping a state to a measure of the utility of that state. In the case, multiple alternative
goal achieving strategies can be identified, e.g. in the example of traveling to Rome, a Utility-
based Agent can determine the preferable way.
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FIGURE 2.9 Utility-based Agent

As illustrated in Figure 2.9, the goal is replaced by an utility function and a reasoning step,
which quantifies the utility of an action, hence of a possible successor state. For example,
one could define in our example system Shepafi that it is preferable to route a sheet without
bending it. In this case, the utility function would need to reflect that those goal achieving
strategies are preferred, which do not bend the sheet.

A Utility-based Agent even allows the tradeoff between multiple competing quality mea-
sures by combining all sub-utility functions into one overall utility function. As an example
imagine a system that optimizes the trade-off between the likelihood of success and the cost
of reaching the goal.

Until now agent have been built on the assumption, that there is a correct model available
which describes how the world works. But what happens if this assumption does not hold?
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The next section presents a general concept of a learning agent that intends to continuously
improve its model by learning how the world works.

2.5.6 Learning Agent

The previous sections covered various architectures of agents, which described how an agent
leverages its information about the world to act in order to achieve a goal or lead to the highest
utility state. This builds on the underlying assumption that there is an accurate model available
to the agent. In an early paper, Turing considers the possibility of programming the knowledge
manually into an agent, but finally concludes in the same paper that this would not only result
in too much work, but also limits an agent to known environments. In order to act in unknown
environments, an agent must be able to recover from an incomplete or misrepresented model of
the world. The difficulty is, that if an agent derives its action choices from an inaccurate model,
it is most likely to fail, given its misunderstanding of the world. Turing therefore suggests an
alternative approach, which envisions agents that learn. Those agents can then be taught how
they should behave. As a consequence, at first an agent needs to be aware of the possibility
that its understanding of the world might be incorrect. Only agents with this awareness can
increase their understanding of the world. A Learning Agent needs to identify incorrect or
incomplete knowledge and be able to improve its knowledge by learning (Russell & Norvig
2009). The goal of a learning agent is to increase its understanding of the world and to leverage
its improved understanding to perform better than without learning.
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FIGURE 2.10 Learning Agent
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Figure 2.10 introduces a general architecture of a Learning Agent. A Learning Agent can
be decomposed into four components: a performance element, a critic element, a learning
element, and a problem generator element.

In this architecture the performance element refers to an utility based agent. It reasons about
the future, more specifically about how the world will evolve and what the effects of actions
might be, in order to derive an appropriate action choice based on the currently available
knowledge. This task is isolated from the learning part, which is concerned on how the cur-
rently available knowledge can be improved. The learning element of an agent can only im-
prove the behavior of an agent if the current behavior is evaluated and criticized, which is done
by the critic element.

The critic element evaluates the consequences of the agent’s behavior and provides feedback
on how the agent can improve its behavior. The evaluation is based on an external performance
standard, as the percept itself does not convey how the agent is performing. For example, a
print agent might receive data about a scuff mark on a sheet as perceptual input, but the fact
of a scuff mark alone does not indicate if that is good or not. In fact, the agent requires a
performance standard in order to know that scuff marks are not wanted. The percept itself
does not indicate that. The performance standard is external to the agent to avoid any influence
of the agent on it. In particular, it is the goal to avoid that the agent adapts the performance
standard to its current behavior, instead of adapting its own behavior. The resulting feedback
of the critic element is then provided to the learning element.

The learning element gathers feedback from the critic element based on which it improves
its internal knowledge. In a more concrete example, a printer agent without learning might
route the paper through many unnecessary parts of the system with the result that the overall
throughput decreases. A learning agent can learn that unnecessary resource allocations slow
down productivity and adapt its behavior to avoid those unnecessary allocations. Generally,
performance feedback is represented by rewards and penalties, which can be leveraged to
improve the utility function of the Utility-based Agent in the performance element. In order
to be able to learn, an agent has to collect informative percepts, which is the responsibility of
the problem generator.

The problem generator stimulates the agent to perform experiments in order to gather infor-
mative percepts. Those experiments are designed based on the current knowledge and the cer-
tainty about this knowledge. Sometimes it can be beneficial to choose sub-optimal actions in
the short run, to improve the agents understanding of the world and therefore the performance
over the long run. In the printer domain it might be useful to take different routes through the
system in order to verify that those parts are functional before the technician leaves the site,
even though some of those routes are sub-optimal in terms of resource allocation.

The critic element is responsible to evaluate the current behavior with respect to the per-
formance standards and furthermore give its feedback criticism to the learning element. The
task of the learning element is to take the feedback into account, to incorporate the feedback
into the knowledge base, and to propagate changes to the model of the performance element.
The problem generator receives learning goals from the learning element and transforms them
into performance goals, which are forwarded to the performance element. The performance
element takes those goals into account.

In summary, a learning agent can be used to learn knowledge, which is helpful to improve
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the performance of an agent. The main advantage of a Learning Agent is the capability to learn
on its own, without being manually programmed. That enables Learning Agents to operate in
an unknown or evolving environment.

2.6 Planning: The Reasoning Side of Action
The previous section discussed various architectures of intelligent agents to enable agents that
are capable to act autonomously, perceive the environment, act persistently over a period of
time, adapt to changes, and take on predefined goals. In general, a Rational Agent should
select an action that is expected to maximize its performance measure. In some situations a
Rational Agent might have to reason about the different choices of available actions before
committing to a specific action. This process is called planning or search, and is the reasoning
side of acting. This section presents planning by building on some of the concepts introduced
in (Nau, Ghallab & Traverso 2004).

In general, planning is concerned with the consideration of possible futures. A more tech-
nical definition of planning describes it, as:

Definition 2. Planning is an abstract, explicit deliberation process to choose and organize ac-
tions before acting in order to maximize its expected performance measure, given the evidence
provided by the percept history and whatever built-in knowledge an agent has.

Automated planning is a subfield of artificial intelligence that studies this deliberation pro-
cess of choosing and organizing actions computationally. Not all situations require an explicit
planning process before acting. For example, an agent might choose not to plan, if it possesses
the knowledge that an action or pre-stored plan leads directly to the goal or that acting can
be freely adapted while executing actions. However, there are situations in which an agent
chooses to simulate and evaluate potential action sequences before committing to a particular
action. Usually planning is considered by an agent who faces new situations, has to achieve
complex tasks or objectives, has to chose from less familiar actions, or if adaptation to actions
during execution is constraint by high risk or high cost consequences. In general planning
is understood as a costly and resource-consuming process. Therefore agents only plan if the
trade-off between cost of planning and the resulting benefits suggest to plan.

There are many practical applications that motivate the field to build automated planning
tools. The field of planning applications may be categorized based on the intended task to
be solved and the corresponding action type. Roughly speaking, planning applications may
be divided into path and motion planning, perception planning and information gathering,
navigation planning, manipulation planning, communication planning, and several other forms
of social and economic planning. The following section provides a way how one may think
about the individual categories.

• Path and motion planning is concerned with finding a geometric trajectory through
some configuration space that connects a start configuration and goal configuration
while avoiding collisions or more general spaces of negative utility, given kinematics
constraints and the internal system dynamics. A commonly cited problem is the Piano
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Mover Problem (Natarajan 1986), in which a fleet of robots intends to move a piano
from one room to another without bouncing into walls or furniture. The planner has to
consider the kinematics and the dynamics of the piano as well as of the robots.

• Perception planning and information gathering is concerned with selecting and organiz-
ing actions to achieve the highest information gain to enrich some knowledge base. The
planner has to trade-off the information value of different sensing-actions or actions that
stimulate the system to determine the best strategy to gather data. Examples are active
probing in diagnosis, localization and map building in navigation problems, or generally
active state estimation or active system identification.

• Navigation planning is concerned with navigating a robot or more generally a mobile
device to some goal location through some environment. Typically navigation plan-
ning combines perception planning, path planning, and motion planning. Fundamen-
tally, navigation requires the ability to determine the current position (information gath-
ering) and then to plan a path towards some goal location (path and motion planning).
In order to navigate through some environment, an agent requires some representation
of the environment i.e. a map and the ability to interpret that representation.

• Manipulation planning is concerned with choosing and organizing actions to manipulate
an object into some goal configuration. Such actions might include grabbing, lifting,
turning, modifying, constructing, or destroying an object.

• Communication planning is concerned with reaching a target audience using marketing
communication channels such as advertising, public relations, experiences or direct mail
for example. It is concerned with deciding who to target, when, with what message and
how.

• Social and economic planning is concerned with planning economic activity in produc-
tion, or in directing an economy towards specific goals, socially or economically.

Planning in AI aims to build agents with rational behavior. Planning is the reasoning side
of acting and is therefore a key element to computational intelligence. For that reason it is
important to understand the theory of planning as well as being able to build programs that
plan.

2.6.1 Conceptual architecture of Planning

The following section formulates a conceptual design for planning. The conceptual architec-
ture involves four components: a planner, a controller, a model, and a system. In order to
provide a practical implementation for planning the following aspects have to be defined: the
role of the individual components, an architecture that describes the interactions among them,
and all individual components.
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2.6.1.1 Components and how they interact

The four components in a model-based planning system are a planner, a controller, a model,
and a system. Figure 2.11 illustrates the four components and their interactions.
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FIGURE 2.11 Plan System Architecture

The role of each individual component can be thought of as follows:

• System: A system evolves through state space driven by events and actions, which it
receives as input. Based on its evolution, a system provides information about its current
state as output.

• Model: A model is an abstract, declarative representation of a system, describing its
capabilities and structure. It serves as a base for the selection process of actions for a
planner.

• Controller: Given a plan and current state information as an input, a controller releases
actions to the system, which are in accordance to the plan and the current state informa-
tion.

• Planner: A planner, given a system description, a set of initial states, information about
the current execution status, and a goal, synthesizes a plan that advises the controller
which action is appropriate to execute in order to achieve a given goal.

The four components are common among different model-based planning systems, even if
individual planning systems might differ in their detailed definition, e.g. what exactly a plan
is, how much state information a controller has, or assumptions made about the system. The
next section discusses the individual components of a planning system in more detail.
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2.6.1.2 System

A common technique used in computer science to model a dynamic system, is the general
model for state-transition systems.

Definition 3. A state-transition system is a quadruple Σ =< S,A, E , T >, where

• S is a finite set of states;

• A is a finite set of actions;

• E is a finite set of events; and

• T : S ×A× E → S is a state-transition function.

A state-transition system may be represented by a directed graph with labeled arcs. Given
a state-transition system < S,A, E , T >, the corresponding graph may be constructed by
creating a vertex for each state s ∈ S and an arc from s to s′ labeled (a, e) for each transition
s′ ∈ T (s, a, e). It is convenient to define a neutral action noop and a neutral event ε to account
for state-transitions which are strictly due to events or actions. In the case of T (s, a, ε) 6= ∅
there exists a set of transitions, which start from state s triggered only by action a. Accordingly
if the set T (s, noop, e) 6= ∅ there exists a set of transitions, which start from state s triggered
only by some event e.

Not all actions are necessarily applicable in all states. An action a ∈ A is applicable in
state s ∈ S if

∨
e∈E T (s, a, e) contains at least one state-transition. One can introduce an

applicability function app : S × A → {true, false}. Given a state s ∈ S, an action a ∈ A,
and a state-transition function T the semantic of the applicability function app can formally
be defined by

app(s, a)⇔
∨
e∈E

T (s, a, e) 6= ∅, (2.1)

where true indicates that action a is applicable in state s and false indicates the opposite.
The system evolves through state space triggered by both, actions and events. The difference

between an action and an event is whether they are intentionally controlled by a planner or
not. An action is intentionally controlled by a planner as part of a goal achievement process.
An event, on the other hand, is contingent; a planner has no control over events. However,
events need to be considered by the planner as, they may cause state transitions in the system.
Without defining an event formally, an event can be viewed as something which may lead to a
state-transition. Events may occur, triggered by an action execution (action-event), as a result
of several conditions, which are suddenly all met in a state, (state-event), or spontaneously
dictated by nature (nature-event).

This can be illustrated with the concrete application Shepafi modeled as a state-transition
system, as presented in Section 2.4.2. Shepafi consists of ten modules
M = {fe1, fe2, pt1, pt2, pt3, p4, p5, p6, fi1, fi2}, and twelve actions,A = {a1, a2, . . . , a12},
connecting the modules as shown in Figure 2.4. Further, assume that there exist two events
E = {e1, ε}. Event e1 causes a fault if and only if action a7 is executed and event ε is the
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neutral event. To model the occurrence of a fault a health variable h = {¬AB,AB} is intro-
duced. The health variable is assigned to ¬AB (not abnormal), if the fault has not occurred,
and to AB (abnormal) otherwise. The states of the system are represented as pairs, consist-
ing of a module and a health assignment. Note that a health assignment indicates that a fault
has occurred, but does not indicate which particular module behaves abnormal. The transition
function is defined by the directed graph shown in Figure 2.12. Summarized, this results in the
state-transition system ΣShepafi =< S,A, E , T >, where

• S = {< m, h > ‖m ∈ {fe1, fe2, pt1, pt2, pt3, p4, p5, p6, fi1, fi2} , h ∈ {AB,¬AB}};
• A = {a1, a2, . . . , a12};
• E = {e1, ε}; and

• T is represented by the directed graph shown in Figure 2.12.
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FIGURE 2.12 Sheet Path Finder (Shepafi): State-Transition System where each state represents
a potential state of a sheet (not a module).

ΣShepafi defines all states, actions, events, and state-transitions in Shepafi. The directed
graph shown in Figure 2.12 captures how the system evolves, stimulated by actions and events.
However, until now it was not described how systems can be observed. In order to model
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how the system can be observed, the current state-transitions is extended by an observation
function. The resulting system is a state-transition system with observation function, coined
observable state-transition system.

Definition 4. An observable state-transition system is a 6-tupel Σobs =< S,A, E , T,Φ >,
where:

• S is a finite set of states;

• A is a finite set of actions;

• E is a finite set of events;

• T : S ×A× E → S is a state-transition function;

• Φ : S → 2S is an observation function.

In case of an observable state-transition system Σobs, the elements of a state-transition sys-
tem Σ are extended by an observation function Φ. The observation function Φ(s) = {s1, . . . , sn}
maps state s ∈ S into a set of states, called belief state. A belief state represents all states the
system could possible be in, given the current uncertainty. The uncertainty represented by
the belief state might result from partial observability. In this case the observation function
Φ(s) maps state s, the true underlying system state, to a set of states containing all states the
system could possibly be in. In case that the system is fully observable the observation func-
tion results in the identity function. Continuing with the example, the state-transition system
ΣShepafi can be extended to an observable state-transition system by adding an observation
function. According to Section 2.4.2, observations can only be collected at the two finisher
modules. An observation at any other location does not lead to any information. The observa-
tion capabilities is modeled by an observation function that returns for all the following states
< fi1,¬AB >,< fi2,¬AB >,< fi1, AB >, and < fi2, AB > the state itself and for all
other states the entire set of states, S. This ensures that observations are only informative if
they are made at one of the two finisher modules. After adding the observation function to
ΣShepafi, the resulting system Σobs

Shepafi is an observable state-transition system.
In general, the observable state-transition systems can be used to model planning systems.

2.6.1.3 Controller

A controller is an entity that releases actions to a system according to some plan, provided by
a planner, and some belief state, given by an observation function of the system. The exact
implementation varies greatly and depends on the assumptions made about a system, e.g. if
the system is fully or partially observable. In general, a controller assumes that a plan com-
bined with a belief state can be leveraged to extract the appropriate action, which is than
executed next. In many planning systems, the planner is assumed to be off-line in the sense,
that there is no information flowing back from the controller to the planner. However, since
a real world system may evolve over time there is a chance that the orginal model does not
correctly represent the system. To address those mismatchs between the model and the system,
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the controller is assumed to be capable of handling such mismatch. Some more sophisticated
systems incorporate an on-line planner to respond to exceptions during the planning process.
In such systems, planners are not limited to only planning, but take on the burden of interleav-
ing planning and acting in order to perform plan supervision, plan revision, and, if necessary,
re-planning.

2.6.1.4 Planner

In general, planning is concerned with finding which action to apply to which set of states,
in order to achieve a pre-stated goal, given a description of a state-transition system, a set
of initial states, and information about the execution status. Typically, the planner organizes
the solution to a particular problem in a data structure, called plan. Hence, the controller is
advised which action is appropriate to be executed, given a belief of the current system state.
The goals, a planner may be requested to achieve, can be categorized into the following goal
types:

1. In the simplest case, the goal is specified by a set of goal states Sg (sometimes the set
might contain only a single goal state sg) and is achieved, if the plan execution ends
in any of those goal state. Note that the plan execution has to terminate in a goal state,
rather than evolving a system through a goal state. This type of planning is also called
feasible planning.

2. The goal may also be specified by a set of goal states Sg, an utility function attaching
rewards or penalties to each state, a compound function, and an optimization criterion.
In this case the goal is to end plan execution in a goal state, while optimizing the com-
pounded utility over all the states the system evolved through based on the optimization
criterion. Planning problems following this goal specification are called optimal plan-
ning.

3. Similar to the preceeding goal specification, a goal may be stated in the same way except
that the utility function attaches rewards or penalties to actions. The goal is to terminate
the plan execution in a goal state, while optimizing the compounded utility over all
actions released to the system based on the optimization criterion. This type of planning
is coined optimal planning.

4. Another way to formulate the goal, is to specify a task (e.g. a set of actions or recursively
a set of tasks) and to require the system to perform the task in order to achieve the goal.
Note that this specification does not require termination in a specific state, as long as the
task is achieved.

This goal types conveys an idea on how planning goals may be specified. The specification
of an initial situation is usually captured in either a single initial state, or in a belief state which
is captured by a set of states, denoting all the states the system could be in initially.

The conceptual model introduced so far, is very loosely defined and can hardly serve as a
reference for a practical implementation. The intent of this conceptual model, is to serve as
a frame of reference throughout the discussion and to convey how planners may be thought
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of. In general, planners rely on the restrictions made about the system and on the kind of
information available. The next section outlines a set of relevant model restrictions, followed
by a description of the common planning problems stated in the literature.

2.6.2 Classes of Planning

Consider some kind of planning problem with an associated system. Sometimes it is helpful to
analyze the system, whether or not certain restrictions can be made. Usually, a more restricted
problem representation leads to a more efficient solution. A common set of restrictions is pre-
sented, which tends to accelerate problem solving while simultaneously maintaining relevant
aspects of the original problem. In particular, the following restrictions have been shown to be
helpful:

2.6.2.1 Model Restrictions :

• Restrictions A1 - Finite: A system is finite if the state set, the action set, and the event
set are finite.

• Restrictions A2 - Fully Observable: A system is fully observable, if the observation of
any two states, s, s′ ∈ S, is not equal, φ(s) 6= φ(s′). The observation function results in
the identity function. In this case, the controller has perfect knowledge about the current
state of the system at any given time.

• Restrictions A3 - Deterministic: A system is deterministic, if the state-transition func-
tion T defines at most one state-transition for any combination of a state s ∈ S with
either an event e ∈ E or an action a ∈ A. Formally, a system is deterministic if the
following term holds true:

∨
s∈S
∨
a∈A

∨
e∈E |T (s, a, e)| ≤ 1. In a deterministic system

the controller has perfect knowledge about the successor state given the current state
and the occurred event or action.

• Restrictions A4 - Static: A system is static if it remains in the same state unless the
controller releases an action to the system. In a static system the set of events is empty.

• Restrictions A5 - Restricted Goals: Goal restricted problems may only specify the
goal by either a single goal state sg or a set of goal states Sg and may only require the
plan execution to terminates wants a goal state is reached. This corresponds to the first
goal type described earlier.

• Restrictions A6 - Sequential Plans: A system is controlled by a sequential plan if the
plan is a linear ordered finite sequence of actions.

• Restrictions A7 - Implicit Time: A system meets the implicit time requirement if all
state-transition are assumed to be instantaneous. No action nor event in the system im-
plements the concept of duration.
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• Restrictions A8 - Offline Planning: A planner is an off-line planner if it does not take
any state information into account during planning. The planner synthesizes the plan
purely based on the system description, the set of initial states, and the pre-stated goal.
Therefore internal dynamics do not have any implication on the planning process.

The outlined model restrictions can be combined in various ways, which defines different
classes of planning problems. Over the following sections classical planning, planning under
uncertainty, and temporal planning are introduced.

2.6.2.2 Classical Planning

Classical planning assumes that all earlier presented restrictions (A1-A8) hold and that the
system can be represented by a restrictive state-transition system. A restrictive state-transition
system is a finite, deterministic, static system with restricted goals and implicit time represen-
tation. Classical planning further assumes that the initial state, denoted s0, is a single state and
known to the planner.

Such a system can be represented by the quadruple Σclassic =< S,A, ε, T > instead of the
5-tuple Σobs =< S,A, E , T,Φ > for two reasons: First, there are no contingent events, and
secondly, since the system is assumed to be deterministic and the initial state s0 is known, all
other states can be predicted with certainty. This reduces the planning problem to the follow-
ing:

Given a system as a triple Σclassic =< S,A, T >, an initial state, s0 ∈ S , and a set of goal
states Sg ⊆ S the problem can be reduced to find a sequence of actions< a1, a2, . . . , ak > cor-
responding to a sequence of state-transitions< (s0, a1, ε, s1), (s1, a2, ε, s2)..., (sk−1, ak, ε, sk) >
such that if the sequence is applied starting from the initial state s0 the system evolves into
some state sk and sk is a goal state, sk ∈ Sg.

In classical planning, conform to restriction A6, a plan can be represented as a linear ordered
finite sequence of actions. The controller follows the sequence of actions unconditionally, and
releases the actions to the system without considering any observations regarding the current
state. This is also called open-loop planning.

Classical Planning appears rather trivial: The task of planning reduces to path search in di-
rected finite graphs, which is well-studied and many well-known solutions already exist. The-
oretically, for any system Σclassic the corresponding graph can be created and searched with
known algorithms, like Bellman-Ford-Algorithm (Bellman 1958), Dikstra-Algorithm (Dijkstra
1959), A*-search-algorithm (Hart, Nilsson & Raphael 1968), or any other search algorithm.
However, practically many of the problems quickly get to big to be represented explicitly. A
good example is chess. With chess it is possible, in principle, to play a perfect game or con-
struct a machine to do so as follows: One considers in a given position all possible moves,
then all moves for the opponent, etc., until the end of the game. The end must occur, by the
rules of the games, after a finite number of moves. Each of these variations ends in win, loss
or draw. By working backward from the end, one can determine whether there is a forced win,
the position is a draw, or it is a loss. In his 1950 paper, "Programming a Computer for Playing
Chess", (Shannon 1950) has estimated the number of possible positions, "of the general order
of 64!

32!8!22!6
, or roughly 1043". Later Victor Allis also estimated the game-tree complexity to be
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at least 10123, "based on an average branching factor of 35 and an average game length of 80".
As a comparison, the number of atoms in the observable universe is estimated to be between
4× 1079 and 1081.

Therefore, there is a need to have implicit representations and to construct solvers which can
leverage those implicit representations without unfolding the problem explicitly for finding a
solution. The Planning Domain Definition Language (PDDL) is a commonly used formalism
to represent planning tasks implicitly. PDDL is an attempt to standardize how a planning task
is described. It was developed mainly to make the International Planning Competitions possi-
ble, which started in 1998 (McDermott 2000). Ever since, PDDL is the dominating formalism
to specify planning domains and tasks. The official PDDL specification provides more infor-
mation (Ghallab, Nationale, Aeronautiques, Isi, Penberthy, Smith, Sun & Weld 1998) on the
syntax and semantics. Other commonly used formalism are Strips (Fikes & Nilsson 1971) and
ANML (Smith, Frank & Cushing 2008).

2.6.2.3 Planning under Uncertainty

Another area in planning is concerned with planning under uncertainty. This branch of plan-
ning is motivated by the desire to reflect some of the aspects of real-world systems more re-
alistically. In the context of a real-world system, planning has to scope with contingent event
occurrences, non-deterministic actions, or partial state information. Generally, in the area of
planning under uncertainty, one or some of the restrictions are relaxed. In particular, one or
more of the following restrictions are relaxed: A2 (Fully Observable), A3 (Deterministic), or
A4 (Static). As a result, the field can roughly be divided into the following subfields: planning
with partial observability, planning with non-deterministic actions, planning for non-static sys-
tems, and any combination of them.

• non-deterministic: In a non-deterministic system the outcome of some, or all of the
actions can not be reliably predicted. A classic example of such a system is to throw
a dice. Let’s say, our example system consists of one dice and a dice throwing action.
The system can be modeled with six states, indicating which of the six faces is currently
facing up, and one action, which can be applied independently of the current state. Ap-
plying an action to the dice results in one of the six states. If the dice is assumed to be
fair, than the outcome of a throw can not reliably be predicted. In planning this is called
a non-deterministic action, an action with unpredictable outcome.

• non-static: A non-static system is a system with contingent events. An event is un-
derstood as a non-intentional occurrence of a state transition. In the case a system is
non-static, the planner as well as the controller can not simply rely on the state infor-
mation they have, as there might has been a contingent state-transition in the meantime.
A planning system has to take eventual state-transitions into account and generate plans
that can be applied independently of the occurrence of a contingent state-transition.

• partial observability: In the face of uncertainty about the behavior of the system, the
ability to observe the current state of a system might be essential in order to control
the system. This is true, if the selection of the next action depends on the current state
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information and can not be done without it. However, there are systems which can be
controlled even so one has only partial knowledge about the current state. The uncer-
tainty about the current state is a combination of partial observability together with
either non-deterministic actions or non-static system behavior. In the case partial oper-
ability combined with non-deterministic actions, the outcome of an action can neither
be reliably predicted, nor determined by observation which leads to uncertainty regard-
ing the current state. On the other hand, if the system evolves contingently, as in the
case of a non-static system, and the system is not fully observable, there remains some
uncertainty about how the system has evolved.

There are many planning systems that handle planning under uncertainty. In such systems
the uncertainty is usually captured in the model. In the case of a non-deterministic system,
the uncertainty is usually modeled by annotating different action outcomes with probabili-
ties. A non-static system behavior is captured by modeling the probabilities of contingent
state-transitions and in the case of a partial observable system an observation function maps
observations into belief states.

The hyper-modular, multi-engine printer domain is a good example where planning under
uncertainty is necessary. A failure event, e.g. a paper jam or scuff mark, might occur during
action execution leading to unpredicted behavior. In addition the actual behavior might only be
observable further down stream. In our running example Shepafi an failure event might happen
and it is assumed that a failure can only be observed at one of the two finisher modules. This
leads to a non-deterministic, non-static system with partial observability.

2.6.2.4 Temporal Planning

An important aspect of many real world planning applications is time. Actions and events
take place over a period of time, and the possibility of taking actions may depend on events
and other actions taking place simultaneously. This leads to a relaxation of restriction A6 (Se-
quential Plans) or restriction A7 (Implicit Time). The resulting differences separating temporal
planning from the classical planning can be characterized mainly in terms of two aspects:

• In temporal planning actions do not sequentially follow each other, but may temporally
overlap and interfere. The possibility of taking an action may depend on whether some
other actions are being taken. In classical planning actions are taken in a sequence, and
the possibility of taking an action is independent of earlier (and later) actions, given the
current state.

• In temporal planning the effects of an action may be a complex function of the state and
other simultaneous actions, whereas in classical planning they are independent of other
actions.

In the domain of hyper-modular, multi-engine printers temporal behavior is every impor-
tant. Multiple sheets might be routed through the system at any given time, which requires
resource coordination. Temporal aspects are important to ensure that no collisions among si-
multaneously executed sheets occur. One important temporal aspect are action durations.
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2.7 Autonomous Hyper-modular, Multi-engine Printer
This section gives a brief overview how agent technology can be used to control hyper-
modular, multi-engine printer. The hyper-modular, multi-engine printer domain resemble a
product manufacturing plant, with raw materials (blank sheets) entering at the plant’s inputs,
being routed through different machines that can change the properties of the materials, and
the final products (printed sheets) being collected at the outputs. Multiple feeders allow blank
sheets to enter the printer at a high rate and multiple finishers allow several jobs to run simul-
taneously.

FIGURE 2.13 Architecture of the control software.

Figure 2.13 outlines our software architecture, which can be used to control manufactur-
ing systems. As illustrated in Figure 2.13, job requests arrive asynchronously over time. A
job request might consist of a set of sheets, which are described by several attributes. The
Integrated Planner and Scheduler (Do, Ruml & Zhou 2008b), from now on just referred to
as planner, translates the job requests into plans. A plan for printing an individual sheet is a
linear sequence of actions, which routs each sheet through multiple modules. All sheets of a
particular job have to arrive at the same finisher and sheet n + 1 is directly stacked on top of
sheet n such that no other sheet of the same job or any different job is stacked between the
two consecutive sheets. There may be many different plans that can be used to print a given
sheet. Each module has a limited number of discrete actions it can perform, and for many of
these actions the planner is allowed to control their duration. An action is identified by a triple:
〈moduleID,actionID,start time〉. The coordination entity consumes the plans and maintains a
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virtual sheet controller for every plan or respectively for every sheet currently in execution.
A sheet controller manages a dynamic group of module controllers currently acting on the
plan e.g., signals downstream modules to get ready to handle the sheet. Figure 2.13 shows two
sheets in the system (indicated as red lines along the paper path) and consequently there are
two sheet controllers. Multiple sheet controllers might talk to the same module controller. e.g
one sheet controller signals a module controller to get ready whereas another one talks to the
same model controller to coordinate the speed of a sheet it currently acts on. The coordination
entity translates discrete plans into continuous trajectories. A trajectory describes the speed
of leading edge overtime. Given a trajectories, each module controller performs computation
to adjust the motor speed to keep the sheet on its trajectory. In case the module controller is
not able to achieve certain timing constraint, it propagates his information back to the sheet
controller. The sheet controller then tries to compensate for the exception by adapting its tra-
jectory. If that does not resolve the exception, the corresponding sheet stops and the planner is
notified, which of the modules are jammed as result of the stoppage. In Section 2.7.5, excep-
tion handling is discussed in more detail and outline how it can be integrated into an overall
framework. The intent of the brief introduction of the software architecture is to provide some
background information on how the planner fits into the overall framework. The next section
focuses on the planning task and planning technologies used in the manufacturing domain.

2.7.1 Planning and Scheduling
This section characterizes the manufacturing systems from a planning point of view and intro-
duce the planning technologies used to control them. Those systems may run at high speed (up
to several hundred pages per minute) and have to operate over a long period of time. A good
example for such a manufacturing system is a high speed printer. At any given time, there
might be multiple sheets of the same job or different jobs in the system. In addition, individual
print engines might be of different engine types, e.g. a color engine can print both color and
black&white images, whereas a mono engine can only print black&white images. Controlling
these systems requires planning and scheduling of a series of job requests, which arrive asyn-
chronously over time. This planning problem can be characterized using the model restriction
introduced in Section 2.6.2.1. From a planning point of view, a printer system can be described
as a finite, deterministic, static system with restricted goals and explicit time representation.
Further it is assumed that the initial state is a single state and known to the planner. In addi-
tion, resource allocations are described, which incur from the constraint that prevents multiple
sheets to be in the same location at the same time. This formulation is suitable to describe
the nominal behavior of the system. Section 2.7.5 discusses exception handling in more detail
and in this context the planning task representation is extended to capture non-deterministic
system behavior, e.g. occurrence of a failure.

As a concrete example assume a print job is requested. The planner may decide to feed a
blank sheet from any of the two feeders, then route it to any one of the four print engines
(or through any two of the four engines in the case of duplex printing) and then send it to
the correct output tray. This on-line planning problem is complicated by the fact that many
sheets are in-flight simultaneously and the plan for the new sheet must not interfere with those
sheets, as shown in Figure 2.14. Moreover, plan synthesis and plan execution are interleaved
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FIGURE 2.14 Planning and Scheduling Problem.

in real-time. Since the goal is to minimize wall clock end time, the speed of the planner itself
affects the value of a plan.
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FIGURE 2.15 The system architecture, with the planning system indicated by the dashed box.

Figure 2.15 shows the core architecture of the Integrated Planner and Scheduler and how
it communicates with the coordination entity. The major components are outlined below. The
overall objective is to minimize the end time of all known sheets, ranging over all current print
jobs. This can be approximated by optimally planning one sheet at a time. Figure 2.16 gives a
sketch of the planning algorithm, which is referred to below.
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On-linePlanner
1. plan the next sheet
2. if an unsent plan starts soon, then
3. foreach plan, from the oldest through the imminent one
4. freeze its time points to the earliest possible times
5. release the plan to the printer controller

PlanSheet
6. search queue← {final state}
7. loop:
8. dequeue the most promising node
9. if it is the initial state, then return
10. foreach applicable operator
11. undo its effects
12. add temporal constraints
13. foreach potential resource conflict
14. generate all orderings of the conflicting actions
15 enqueue any feasible child nodes

FIGURE 2.16 Outline of the hybrid planner

2.7.2 Temporal Constraints and Plan Management

Given the rich temporal constraints in printer control, fast temporal constraint propagation,
consistency checking, and querying are extremely important in our domain. Temporal con-
straints are maintained by using a Simple Temporal Network (STN) (Dechter, Meiri & Pearl
1991), represented by the box named STN in Figure 2.15. The network contains a set of time
points ti and constraints among them of the form lb ≤ ti − tj ≤ ub. The time points managed
by the STN include action start and end times, as well as resource allocation start and end
times, with the following constraints:

• (i) wall-clock action start time;

• (ii) the range of action start and end times;

• (iii) constraints between action start time and resource allocation by that action;

• (iv) conflicts for various types of resources.

For constraint propagation, a variation of the arc consistency algorithm (Cervoni, Cesta &
Oddi 1994) is used.

The planner uses an A∗ search strategy (Hart et al. 1968) that maintains multiple open
search nodes. Each node is associated with a separate STN. Temporal constraints are added to
the appropriate STN when a search node is generated. Whenever a new constraint is added,
constraint propagation tightens the upper and lower bounds on the domain of each affected
time point.
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Lines 1–5 in Figure 2.16 correspond to the plan manager in Figure 2.15. After planning
a new sheet, the plan manager checks the queue of planned sheets to see if there are any
that could begin soon (line 2). If there are, those plans are released to the printer controller
for execution. New temporal constraints are added that freeze the starting time of actions
belonging to plans sent to the controller. These newly added constraints can cause significant
propagations and in turn tighten the starting times of actions in the remaining plans.

The large number of potential plans for a given sheet and the close interaction through
resource conflicts among plans for different sheets means that it is better to process scheduling
constraints during the planning process. The planner uses state-space regression to plan each
sheet, but maintains as much temporal flexibility as possible in the STN using partial orders
between different actions in plans for different sheets. Therefore, it can be seen as a hybrid
between state-space search and partial-order planning. Our approach is perhaps similar in
spirit to that taken by the IxTeT system (Ghallab & Laruelle 1994).

2.7.3 Planning Individual Sheets
When planning individual sheets, the regressed state representation contains the (possibly
partially-specified) state of the sheet. Best-first search (BFS) is used to find the optimal plan
for the current sheet, in the context of all previous sheets. Because it must not interfere with
existing plans, the state contains information both about the current sheet and previous plans.
More specifically, the state is a 3-tuple 〈 Literals, STN, R 〉, where

• Literals describes the regressed logical state of the current sheet. Those literals that are
currently true are represented separately and those that are unknown, with false literals
being represented implicitly.

• STN contains all known time points for the state and the current constraints among them.
This includes constraints between different plans, between actions in the same plan, as
well as against the wall-clock time.

• The resource profile R is the set of current resource allocations, representing the com-
mitments made to plans of previous sheets and the partial plan of the current sheet.

After the optimal plan for a sheet is found, the resource allocations and STN used for the
current plan are recorded passed back to the outer loop in Figure 2.16 and become the basis
for planning the next sheet.

A major feature of our planner is that it seamlessly integrates planning and scheduling.
Starting times of actions are not fixed but merely constrained by temporal ordering constraints
in the STN. Note that line 14 of Figure 2.16 insists that any potential overlaps in allocations
for the same resource are resolved immediately, resulting in potentially multiple children for
a single action choice. This allows temporal propagation to update the action time bounds and
guides plan search. While the plan for a single sheet is a totally-ordered sequence of actions,
there are partial orders between actions that belong to plans of different sheets to represent the
resource conflict resolutions.
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2.7.4 Optimizing Productivity and Heuristic Estimation
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FIGURE 2.17 Important time points for evaluating a plan.

Our overall objective is to minimize the earliest possible end time for all planned sheets. In
essence, this objective function minimizes the total time to finish all planned sheets and thus
maximizes the printer’s productivity. To support this, the primary criterion for evaluating the
promise of a partial plan (line 8 in Figure 2.16) is the estimate of the earliest possible end time
of the partial plan’s best completion. To estimate this quantity, a simple lower bound on the
additional makespan is computed, which is required to complete the current regressed plan.
This heuristic value is indicated in Figure 2.17 by estimated remaining makespan. It is inserted
before the first action in the current plan (t4) and after the plan’s earliest start time (t2). By
adding the constraint t2 < t3, the insertion may thus change the end time of the plan. It may
also introduce an inconsistency in the temporal database, in which case the plan can safely
be abandoned. Given that the current plan should end after the end time of all previous sheets
in the same print job (t5 < t6), our objective function is to minimize t6 without causing any
inconsistency in the temporal database. Ties are broken in favor of smaller predicted makespan
(t6 − t3) and then larger currently realized makespan (t6 − t4). This is analogous to breaking
ties on f(n) in BFS with larger g(n), and encourages further extension of plans nearer to a
goal. Because our heuristic is admissible, the plan found is optimal according to our objective
function.

To estimate the duration required to achieve a given set of goals G from the initial state,
dynamic programming is used over the explicit representation of the bi-level temporal on the
planning graph (abbreviated as PG in Figure 2.17), in a manner similar to Temporal Graph-
Plan (Smith & Weld 1999). To compute more accurate heuristic estimates in the presence of
significant resource contention, resource conflicts are taken into account (Do & Ruml 2006a).

2.7.5 Exceptions during Operation
The previous sections discussed how autonomous technologies can be used to build autonomous
printer. However, this discussion was limited to systems with nominal behavior. Many real-

44



SECTION 2.7 Autonomous Hyper-modular, Multi-engine Printer

world systems, such as hyper-modular, multi-engine printers, are not limited to nominal be-
havior. There are many reasons why a system might fail or behave abnormal, e.g. incorrect
modeling, break down of system parts, unexpected interactions between different parts or with
the environment, or simply wear and tear of components. All these reasons can be potential
root-causes that disrupt nominal operation. The occurrence of abnormal behavior is called an
exception.

FIGURE 2.18 Clearance of a sheet after a paper jam occurred.

An exception can be characterized as a situation, in which predicted behavior deviates from
actual behavior. Figure 2.18 shows an example of an exception, in which a sheet deviates
from its trajectory by jamming within a system module. Usually after the appearance of an
exception regular operation has to be disrupted for a special process to handle the exception.
This process is called exception handling.

2.7.6 Exception Handling
The goal of exception handling is to automatically adapt the system to the current health con-
ditions and to leverage the remaining parts of the system to achieve the highest performance
possible. Ideally, exception handling is transparent to the user, minimize user intervention,
and operates a system with minimal performance degradation. Exception handling introduces
many hard problems, which are discussed in the remainder of this chapter. In general, excep-
tion handling strategies can be classified into two categories: reactive exception handling and
proactive exception handling.

2.7.6.1 Reactive Exception Handling

A Reactive Exception Handling Strategy reacts to symptoms by deciding the course of ex-
ception handling based on the symptoms. For example previous work in the context of hyper-
modular, multi-engine printers (Fromherz, Bobrow & de Kleer 2003, Do et al. 2008b) de-
scribes a reactive exception handling that takes jammed modules offline and reroute consec-
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utive sheets around the offline modules. Implementing such strategies is much harder than it
appears to be. Since all plans tightly interact through various resource constraints an exception
affecting any single plan can affect the executability of other plans. A plan that started out as
a valid plan might become invalid due to the failing of another plan.

A concrete example is provided in Figure 2.19. Consider two print jobs. The first job con-
sists of two sheets, sheet 1 and sheet 2. Both sheets are planned to go to the middle finisher.
The dashed lines indicate the planned routes of the individual sheets. The second job consists
of only one sheet, sheet 3, and is planned to arrive at the top finisher. The plans of both jobs are
shown in Figure 2.19(a). The third finisher is a purge tray and can be used to exit sheets that
not longer belong to any job. As discussed before, a job is correctly executed, if and only if all
sheets of the job arrive at the same finisher and sheet n+ 1 is directly stacked on top of sheet
n with no other sheet in between sheet n and sheet n + 1. Consider that sheet 1 is jammed as
indicated by the cross in Figure 2.19(b). Without intervention two further exceptions occur:
sheet 2 arrives at the finisher before sheet 1, which violates the sheet order constraint of job
1; sheet 3 crashes into sheet 1, which fails job 2 and may cause more modules to be jammed.
In order to avoid further exceptions the plans for sheet 2 and sheet 3 have to be changed. Re-
active exception handling aims to reroutes consecutive sheets to prevent cascading exceptions
and re-requests sheets or jobs that did not finish successful. Rerouting sheets online is a very
hard problem, since the sheets do not stop or slow down until the original plan is replaced
by a new plan. Since planning takes time, the position has to be predicted where the sheets
will be at the end of the planning phase in order to determine the initial state for the planning
phase. Earlier work describes how online re-planning can be done (Do, Ruml & Zhou 2008a).
Given that new plans are found in the predicted time, a sheet can be rerouted starting from
its predicted initial state. Figure 2.19(c) shows new plans for sheet 2 and sheet 3. Sheet 2 is
rerouted to the purge tray to prevent violation of the sheet order constraint in job 1 and sheet
3 is rerouted around sheet 1 to avoid crashing. After the two sheets are rerouted, job 1 is re-
requested and planned around the jammed module to the middle finisher. This leads eventually
to a successful execution of both jobs.

The reactive exception handling strategy detects surface symptoms and adapts operation
accordingly without performing detailed root-cause analysis. This strategy works well, if the
root-cause is treated by reacting to symptoms. There are cases, however, where this fails. In
those cases treating symptoms has no effect on underlying root-causes. In the printer domain,
for example, the module that is causing an exception might differ from the module where
symptoms are detected. In this case, the reactive strategy takes only those modules offline,
where symptoms are detected, but leaves modules online, which causes the exception. In gen-
eral, reactive exception handling treats symptoms independently from each other and assumes
that treating the symptom also resolves the underlying root-cause. If this assumption is vi-
olated, for example in the case of symptoms with non-local root-causes, reactive exception
handling fails.

Consider the example provided in Figure 2.7.6.1. In this example reactive strategy fails to
restore sustainable operation by simply reacting to surface symptoms. Consider three sheets,
all originally planned to follow path 1. Assume that the module at location CAUSE creates a
small scuff mark at the leading edge of a paper. Once a scuff mark exists, it builds up over time
and causes a sheet to jam downstream. As a result, the first sheet jams along path 1 at location
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(a)

(b)

(c)

FIGURE 2.19 Reactive Exception Handling realized by replanning and job re-requests.
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FIGURE 2.20 Reactive Exception Handling, exception handling without root-cause analysis,
may fail given non-local root-causes scenarios.

JAM. Following the reactive strategy, the jammed module is taken offline and the second
sheet is rerouted around the jammed module, e.g. following path 2. However, path 2 still
traverses the module causing the scuff mark. Therefore the paper jams along path 2. By now,
two modules are jammed and taken offline. The reactive exception handling strategy continues
by reacting just on the detected symptoms. Consecutive sheets are scheduled around the two
jammed modules, but may still traverse the module causing the scuff mark. Consider that
the third sheet then follows path 3 and jams. As a consequence the entire system is jammed.
This scenario suggests that a purely reactive strategy might not always lead to high long-run
performance.

The next section introduces an exception handling strategy that goes beyond reactive ex-
ception handling by performing root-cause analysis to isolate to true underlying root-causes
of abnormal behavior.

2.7.6.2 Proactive Exception Handling

Proactive Exception Handling differs from reactive exception handling as it not only reacts to
exceptions, but additionally performs root-cause analysis to isolate the true underlying root-
cause. Proactive Exception Handling reasons about the current health state in order to deter-
mine and eliminate the underlying root-cause of exceptions. Based on the gained knowledge
the system then adapts future plans to compensate for the current conditions. This leads to
higher long-term performance than a purely reactive strategy.

Figure 2.21 provides an example that illustrates the advantages of Proactive Exception Han-
dling. Consider the example where a Hyper-modular, Multiple-engine Printer contains a sin-
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(a) Plan execution with scuffed paper, thus all modules along the plan are
suspected.

(b) Plan execution achieves suspected set reduction.

(c) Plan execution leads to valuable diagnostic information.

FIGURE 2.21 Proactive Exception Handling
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gle, persistent fault, initially unknown to the system. The example is illustrated in Figure 2.21.
The system prints a sequence of jobs with the overall objective to maximize long-run perfor-
mance. Assume the plan illustrated in Figure 2.21(a) is executed and results in an observable
fault, a scuffed paper. Without further root-cause analysis, one can only hypothesize, which of
the modules has caused the damage. The scuff mark could have been cause by any module the
sheet traversed. Even modules that interacted only indirect with the sheet could potentially be
responsible for the scuff mark by triggering another module to scuff the paper. Such faults are
called dependent faults (Weber & Wotawa 2008). For example a module can heat up and cause
a neighboring module to fail. In general, any module could have triggered the scuff mark.

Reactive Exception Handling may decide to take all modules offline as response to the
symptom. However, this seems not practical, since the system can not longer achieve goals.
Alternatively, exception handling could take only those modules offline, which directly inter-
acted with the sheet, assuming that some subset of them caused the scuff mark. Both suggested
strategies do not perform root-cause analysis and may end up with a suboptimal long-term
performance due to the lack of knowledge. Given an exception, the optimal response is to
reconfigure the system such that the highest long-term performance can be achieved. A pre-
requisite of finding an optimal response strategy is to isolate the underlying root-cause of an
exception. Only based on this knowledge the optimal response can be reliably determined.
Even if the underlying root-cause can not be found, potentially reducing the set of hypotheses
leads in average to higher long-term performance.

Proactive Exception Handling may chose to optimize further plans to gather additional in-
formation in order to isolate the underlying root-cause. Consider again the example in Fig-
ure 2.21(a). The set of suspected modules is highlighted in Figure 2.21(a). Since a fault was
detected, Proactive Exception Handling optimizes future plans for long-run performance by
increasing the potential information gain. Figure 2.21(b) illustrates an informative plan, which
leads to a reduced suspected set. By continuing this strategy, the next plan execution, illus-
trated in Figure 2.21(c), leads again to a suspected set reduction. As a result only those mod-
ules need to be taken offline, which are still suspected. Even in the more general case of
multiple faults, root-cause analysis can be used to reduce the number of suspected modules.
As a consequence, Proactive Exception Handling takes in average less modules offline, which
leads to higher long-term performance than a purely reactive strategy.

The process of root-cause analysis is called diagnosis and is the subject of the next chapter.

2.8 Conclusions
This chapter introduced the concept of a rational agent, an agent that does the right thing. It
discusses in more detail how one can quantify what the right thing is and considers a perfor-
mance measurement to address this question. It finally defines a rational agent to be an agent,
that selects for each possible percept history an action such that the expected performance
measure is maximized, given the evidence provided by the percept history and whatever built-
in knowledge the agent has (Russell & Norvig 2009). After defining a rational agent it outlines
various architectures to build such agents. The most sophisticated architecture is the general
learning agent architecture (Russell & Norvig 2009), which enables an agent to gather and
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leverage new knowledge from observations. Subsequently, an application of hyper-modular,
mulit-engine printer illustrates a case in which the observations do not unambiguously suggest
what an agent should learn. This leads to the consideration of a disambiguation process also
referred to as diagnosis, which motivates the next chapter.
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Self-diagnosing Agent: The Integration of
Active Diagnosis into a Planning Agent
In plan-driven systems, a planner uses a system model to create plans that achieve operational
goals. The same system model can be used to diagnose exceptions during execution. Prior
work has demonstrated that diagnosis can be used to adapt plans to compensate for compo-
nent degradation. However, the sources of diagnostic information are severely limited. Diag-
nosis must either make inferences from observations during regular operation over which it
has no control (passive diagnosis), or regular operation must be halted to introduce diagnostic-
specific plans (explicit diagnosis). The declarative nature of model-based approaches allows
the planner to potentially achieve operational goals in multiple ways. This chapter introduces
a novel agent architecture, coined a Self-diagnosing Agent, which exploits this flexibility us-
ing a novel paradigm pervasive diagnosis. Pervasive (active) diagnosis constructs informative
operational plans that simultaneously achieve operational goals, while uncovering additional
diagnostic information about the condition of components. Section 3.1 introduces the general
concept of a Self-diagnosing Agent and the overall framework. Section 3.2 defines diagnosis
and outlines the diagnosis process, model-based diagnosis, and different paradigms of diag-
nosis such as passive and active diagnosis. Over the next sections, diagnosis is applied to
planning agents. First Section 3.3 presents passive diagnosis for planning agents, followed
by a probabilistic extension in Section 3.4. Active diagnosis is then described, first explicit
diagnosis, in Section 3.5, and then pervasive diagnosis, in Section 3.6. To compare the dif-
ferent diagnosis paradigms, Section 3.7 develops a formal framework that evaluates the total
response costs. Section 3.8 presents an overall framework to integrate active diagnosis with
regular production. The theoretical results are verified in Section 3.9 on a hyper-modular,
multi-engine printer. Finally, Section 3.10 concludes the chapter.

3.1 Introduction
Automated diagnosis is a key strategy for improving the reliability and maintainability of com-
plex systems; it reduces labor overhead and leads to more rapid repairs. In remote applications,
such as autonomous spacecraft operation, automated diagnosis can be used when human ex-
perts are unavailable. Autonomous systems perform tasks to achieve desired goals continu-
ously over a long period of time without external guidance or intervention. This requires that
autonomous systems know about their capabilities (model), reason about their course of action
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with respect to their current conditions (planning), and reflect on their actual behavior to deter-
mine their current conditions (diagnosis). In general, autonomy can be seen as a combination
of two processes:

• Diagnosis to determine the current conditions of the system.

• Planning a course of action to optimize system operation for the diagnosed conditions.

An autonomous system requires diagnosis to be integrated into regular operation. This chap-
ter introduces a new architecture, coined a Self-diagnosing Agent, which realizes the integra-
tion by a novel diagnosis paradigm called pervasive diagnosis. Pervasive diagnosis actively
manipulates the course of action during operation in order to gain diagnostic information with-
out suspending operation. Consider a system where operational goals can be achieved in mul-
tiple ways. This flexibility can be exploited to generate operational plans that simultaneously
gather information by trading off information gain with performance objectives. Therefore ac-
tive diagnosis and regular operation occur at the same time leading to higher long-run perfor-
mance than an integration of regular operation with passive diagnosis or alternating between
explicit diagnosis and regular operation.

The conceptual framework of pervasive diagnosis is illustrated in Figure 3.1. It extends the
planning framework shown in Figure 2.11.

Planner

Model

Plan Executor

System

Diagnosis engine

performance objective
& information gain objective

goal

system
description

execution status
operational

diagnostic plans

observations actions

events

plans, observations

belief state

model
updates

system
description

FIGURE 3.1 Pervasive Diagnosis: Integration of Operational Planning and Active Diagnosis.

The framework is implemented by a loop: The core idea of pervasive diagnosis is that plans
simultaneously achieve operational goals and informative observations, coined informative
operational plans. Those plans are executed and sent together with their corresponding obser-
vations to the diagnosis engine. The diagnosis engine updates its beliefs online to be consistent
with the observations, updates the model, and forwards the beliefs to the planner. The planner
then determines future plans based on current beliefs, performance objectives, and information
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gain objectives. Systems that embody pervasive diagnosis benefit form high long-run perfor-
mance by exploiting the overlap between operational plans and diagnostic plans. The space of
all plans, operational plans, diagnostic plans, and their overlap is illustrated in Figure 3.2.

Operational Plans

Informative
Operational Plans

Diagnostic Plans

All Plans

FIGURE 3.2 Pervasive diagnosis exploits the overlap between operational plans and diagnostic
plans, so called informative operational plans.

However, not all systems can leverage pervasive diagnosis. In order to benefit form perva-
sive diagnosis the following three assumptions have to hold true:

• Assumption 1: A sequence of plans is executed and observed. Pervasive diagnosis is
a sequential diagnosis technique where individual operational plans are optimized for
information gain. For example, a continuous stream of print jobs can be optimized for
root-cause analysis.

• Assumption 2: There are multiple different ways in which operational goals can be
achieved. For example, consider that the same print job can be achieved by different
routes through a print system. If no redundancy can be leveraged, it may be possible to
alter action parameters such as execution speed.

• Assumption 3: The space of operational plans and diagnostic plans intersect. An
observation process may not conflict with operational goals. A product, for example,
that has to be cut open as part of the observation process is not longer a valid product.

A Self-diagnosing Agent extends the widely used framework of a Learning Agent by inte-
grating pervasive diagnosis. The goal of a Learning Agent is to increase its understanding of
itself and the world by learning to perform better than without learning (see Section 2.5.6). In
general, a Learning Agent realizes this goal by identifying incorrect or incomplete knowledge
and improving its knowledge by learning better predictive models directly from observations.
In comparison, a Self-diagnosing Agent extends those capabilities by the ability to perform
diagnosis. The core differentiator between a Self-diagnosing Agent and a Learning Agent is
that a Self-diagnosing Agent has the ability to perform root cause analysis to improve its un-
derstanding to guide learning. Due to the integration of diagnosis an agent can determine the
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root-causes of discrepancies between predicted and actual behavior before reasoning about
how it learns. This analysis enables an agent to change its behavior with respect to the root-
causes instead of continuously adapting to surface symptoms. This is particular important if
the optimal reaction can only be inferred by reasoning over a set of symptoms. Suppose a sce-
nario in which a root-cause can only be observed non locally. In this case, an agent that relies
on pure learning without root-cause analysis may conclude that a local adaptation is needed.
Only an agent that performs in-depth reasoning over a set of observations may correctly con-
clude that the root-cause is non local and therefore can only be compensated by a non local
adaptation.

Self-diagnosing Agent
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Actuators
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Diagnosis
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feedback

learning
goals

changes

knowledge

Performance
standard

belief updates,

information gain objective

FIGURE 3.3 Self-diagnosing Agent

The overall framework of a Self-diagnosing Agent is illustrated in Figure 3.3. The frame-
work complies with the general Learning Agent framework, except that the critics element
is replaced by a diagnosis element, which leads to the following four components: a perfor-
mance element, a diagnosis element, a learning element, and a problem generator. The ability
to perform diagnosis enables the diagnosis element to provide diagnosis belief updates and
information gain objectives to the performance element. The performance element can then
generate informative operational plans to efficiently perform active diagnosis during regular
operation to increase the agent knowledge about its current state. The main contribution of this
work is an overall framework, which tightly integrates regular operation and active diagnosis.
In particular, an information criterion is defined that quantifies how informative plans are, a
plan generation algorithm is designed to derive informative operational plans, and a diagnosis
framework is introduced to efficiently perform online diagnosis for systems that plan.
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The core differentiator between a Self-diagnosing Agent and a Learning Agent is that a
Self-diagnosing Agent performs root cause analysis and leverages the gain in understanding
to improve the overall performance. An integral part of a Self-diagnosing Agent is the process
of root-cause analysis, which is defined in the next section.

3.2 Diagnosis: Reasoning about Action
This section introduces the general concept of root-cause analysis, called diagnosis. The word
diagnosis is derived through Latin from the Greek word διάγνωση and is formed from διά
(dia), meaning "apart", and γνωση (gnosi), meaning "to learn"’. In Greek, diagnosing means
discriminating, distinguishing, or discerning between two or more possibilities. In general,
the act of diagnosis describes a discrimination process, which is performed to determine the
underlying root-cause for observed effects. The diagnosis process does not attempt to treat or
cure, it is rather informational and exploratory in nature. The word diagnosis refers to a hy-
pothesis that explains why a system differs from its nominal behavior. Consider a person with
increased temperature. The hypothesis person has fever is one possible diagnosis, which ex-
plains the discrepancy between the nominal behavior and the observed behavior. The process
of diagnosis can be viewed as the interaction between observations and predictions. Obser-
vations capture the actual system behavior, whereas predictions capture the nominal behavior
deduced from some system model. A failure is presumed to be present if predictions and ob-
servations differ from each other.

In engineering, the process of diagnosis is a reasoning process, which explains discrepan-
cies between predicted behavior and observed behavior. The system model, from which the
nominal behavior is drawn, is an integral part of diagnosis. Without such a model, diagnosis
is not able to perceive discrepancies from nominal behavior, as it lacks knowledge of how the
system behaves nominally.

Conceptually, the process of diagnosis can be separated into three subtasks, which are com-
mon among all diagnosis systems: hypotheses generation, testing, and discrimination.

• The hypothesis generation task maps symptoms to a set of hypotheses. Given the dis-
crepancies between predicted behavior and observed behavior, this subtask generates a
set of possible hypotheses.

• The second subtask is hypothesis testing. After a set of hypotheses is generated, the
testing process filters out any hypotheses, which can not explain the gathered observa-
tions. This leads to a subset of hypotheses, where each is able to account for all observed
observations.

• The task of hypothesis discrimination is concerned with discriminating among the
remaining set of hypotheses using some kind of discrimination technique, e.g. process
of elimination.

In a practical setting, it is likely that diagnosis subtasks are interweaved to improve effi-
ciency. However, an interweaved approach is conceptually similar to an approach where the
subtasks are performed independently.
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3.2.1 Model-based Diagnosis
Model-based diagnosis refers to a subfield of artificial intelligence that studies diagnosis com-
putationally. It seeks to perform diagnosis on systems, possible complex systems, without
human intervention. Model-based diagnosis has a long history in artificial intelligence and
engineering, including logic based frameworks (Reiter 1992), continuous non-linear systems
(Rauch 1995), and hybrid logical probabilistic diagnosis (Poole 1991). It has been deployed in
the context of spacecrafts (Williams & Nayak 1996), xerographic systems (Zhong & Li 2000),
automotive systems (Cascio, Console, Guagliumi, Osella, Panati, Sottano & Dupré 1999) and
to determine optimal placement of sensors during design (Mauss, May & Tatar 2000).

The remainder of this section discusses the general concepts and definitions of model-based
diagnosis. In order to exposit the key concepts consider a simple logic example. After the basic
concepts of model-based diagnosis are introduced with the logic example, the printer example
is used to outline how diagnosis can be integrated into systems which use planning.

A

B C
d

a
b

c
e f

FIGURE 3.4 Example circut, SMALLY, with two and-gates and one inverter-gate.

Consider the logic circuit, SMALLY, illustrated in Figure 3.4. It can be modeled using a
component set, a system description, and observations. The component set specifies the com-
ponents of the overall system. The system description, on the other hand, specifies the behavior
of the individual components and how they interact with each other. Observations describe the
actual behavior of the system. Formally:

Definition 5. An observable system is a triple (SD,COMPS,OBS) where

• SD, system description, is a set of first-order sentences,

• COMPS, components, is a set of constants,

• OBS, observations, is a set of first-order sentences.

Typically, the system description SD organizes the knowledge by maintaining a component
library CL and a system topology ST . The component library CL captures the behavior of the
individual components and the system topology ST describes the system’s components, their
type, and how they are connected. Generally, it can not be assumed that a system description
SD is organized in any particular way, but it can be assumed that the SD intends to capture the
behavior and the structure of the system. Note, that it says ‘intends’, as a system description
might be incomplete. The case of diagnosing systems with incomplete models is addressed in
Chapter 6.
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SMALLY contains two and-gatesA andB, and one inverterC. In Figure 3.4 solid lines illus-
trate how the components are connected. Consider there is a single fault in the system, causing
the system to behave abnormal if and only if component C is involved. For example, if A real
world scenario could be that component C is late in propagating its signal. Further assume
that there are no intermittent faults, which means exercising a faulty component always leads
to an observable abnormality. This is not a general restriction to model-based diagnosis (de
Kleer 2007a), but it makes the example more comprehensible.

The set of components COMPS consists of three gates, as shown in Figure 3.4, therefore
COMPS = {A,B,C}. The system topology ST for the example is shown in Equation 3.1.

ST = {And(A) ∧ And(B) ∧ Inv(C),

a ≡ in(A, 1) ∧ b ≡ in(A, 2) ∧ out(A) ≡ d,

d ≡ in(B, 1) ∧ c ≡ in(B, 2) ∧ out(B) ≡ e,

e ≡ in(C, 1) ∧ out(C) ≡ f}

(3.1)

To indicate the health state of a component the concept of an abnormal component is de-
fined using an AB-literal. Those AB-literals are used to formalize the component behavior in
component library CL.

Definition 6. An AB-literal indicates the health of a component. Given a component x ∈
COMPS, the AB-literal can be either AB(x) or ¬AB(x), where AB(x) represents that
component x is ABnormal (faulted) and ¬AB(x) indicates that x is not ABnormal, thus nor-
mal.

The component library CL describes the behavior of the individual components. The com-
ponent library CL for the example is shown in Equation 3.2.

CL = {And(x)→ [¬AB(x)→ [in(x, 1) ∧ in(x, 2) ≡ out(x)]] ,

Inv(x)→ [¬AB(x)→ [in(x, 1) ≡ ¬out(x)]]} (3.2)

The system description SD is the union of the component library CL and the system topol-
ogy ST , as shown in Equation 3.3.

SD = CL ∪ ST
(3.3)

A complete assignment over all components or respectively over all corresponding health
AB-literals, to either abnormal (true, T ) or not abnormal (false, F ), is called a health assign-
ment. A special case is the assignment that assigns not abnormal to all AB-literals, denoted
¬AB∗. The ¬AB∗ is defined in Definition 7.
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Definition 7. The ¬AB∗ assigns not abnormal to all AB-literals. Formally,

¬AB∗ = {
∧

c∈COMPS

¬AB(c)}. (3.4)

In the absence of failures, the ¬AB∗ together with system description SD and observations
OBS is consistent, as defined in Definition 8.

Definition 8. A set of observations OBS is consistent with a system description SD if and
only if the following sentence is satisfiable:

SD ∪OBS ∪ ¬AB∗ (3.5)

Assume observation obs1, observing a, b, c, and f , is collected

obs1 = [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 1. (3.6)

Given observation obs1 and the system description SD, one can evaluate if the predicted
behavior is consistent with the observed behavior. In our example, the predicted behavior is
not consistent with observation obs1. System description SD together with assignment ¬AB∗
imply that from a ≡ b ≡ c ≡ 1 follows d ≡ 1, e ≡ 1, and f ≡ 0. The predicted value
for f is therefore 0, but the observed value is 1. The difference is called a discrepancy. Each
discrepancy between a predicted and observed behavior indicates one or more components
behaving abnormal. Intuitively, a conflict indicates a set of components, which can not all be
functional at the same time, given some observation. Based on system description SD and
observation obs1 one can infer the present of a conflict. Before the concept of a conflict is
defined, AB-clauses are introduced to be able to express dependencies among AB-literals.

Definition 9. AnAB-clause is a disjunction ofAB-literals containing no complementary pair
of AB-literals.

Given Definition 9 a conflict is defined as follow:

Definition 10. A conflict in (SD,COMPS,OBS) is any AB-clause, which is entailed by
SD ∪OBS.

In our running example, the following AB-clause is a conflict:

SD ∪ {obs1} |= AB(A) ∨ AB(B) ∨ AB(C). (3.7)

The task of diagnosis is concerned with finding a set of health assignments that make SD
and OBS consistent. Intuitively, a diagnosis is a health assignment that explains the observed
symptoms or logically speaking makes SD and OBS consistent. Formally, a diagnosis is
defined by the following two definitions:
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Definition 11. Given two sets of components, B and G, D(B,G) is defined to be the conjunc-
tion: [∧

c∈B

AB(c)

]
∧
[∧
c∈G

¬AB(c)

]
(3.8)

where AB(x) is the AB-literal of x.

Definition 12. Let ∆ ⊆ COMPS. A diagnosis for (SD,COMPS,OBS) isD(∆, COMPS−
∆) such that the following is satisfiable

SD ∪OBS ∪ {D(∆, COMPS −∆)} (3.9)

For brevity, diagnoses are denoted by their ∆ so ∆ = {A,B} represents D(∆, COMPS−
∆) = D({A,B}, COMPS−{A,B}). List 3.10 shows all valid diagnoses based on observa-
tion obs1 ordered by cardinality. The cardinality of a diagnosis is defined in Definition 13.

Definition 13. The cardinality of a diagnosisD(∆, COMPS−∆), denoted |D(∆, COMPS−
∆)| or in short |D|, is the number of elements in ∆.

single fault diagnoses:

∆1 = {A}, ∆2 = {B}, ∆3 = {C},

double fault diagnoses:

∆4 = {A,B}, ∆5 = {A,C}, ∆6 = {B,C},

triple fault diagnoses:

∆7 = {A,B,C}

(3.10)

The set of diagnoses can be reduced by a more constrained definition of diagnosis, coined
minimal cardinality diagnosis:

Definition 14. A diagnosis D(∆, COMPS − ∆) for (SD,COMPS,OBS) is a minimal
cardinality diagnosis if and only if there exists no other diagnosis D′(∆′, COMPS − ∆′)
such that |∆′| < |∆|.

List 3.11 shows all valid minimal cardinality diagnoses. The minimal cardinality in our
example is currently 1, yet it can not be concluded that there is only one failure in the system.
The only conclusion that can be drawn is that there exists at least one failure in the system.

single fault diagnoses:

∆1 = {A}, ∆2 = {B}, ∆3 = {C}
(3.11)
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Suppose another observation obs2 is collected:

obs2 = [a ≡ 1 ∧ b ≡ 1]→ d ≡ 1. (3.12)

Based on the two collected observations, obs1 (Equation 3.6) and obs2 (Equation 3.12), it
can be deduced that a fault in component A individually can not explain the discrepancy. Re-
call, there are no intermittent faults in our example. This reduces the set of minimal cardinality
diagnoses to:

single fault diagnoses:

∆2 = {B}, ∆3 = {C},
(3.13)

To illustrate the diagnosis framework, assume that another two observations obs3 and obs4

are made, as shown in Equation 3.15.

obs3 = [d ≡ 1 ∧ c ≡ 1]→ e ≡ 1 (3.14)
obs4 = [e ≡ 1]→ f ≡ 1

Based on the observations obs1, obs2, and obs3, it can be derived that neither component A
individually nor component B individually can explain the discrepancy. This reduces the set
of all minimal cardinality diagnoses to the list:

single fault diagnoses:

∆3 = {C},
(3.15)

Once our reasoning includes all available observations, obs1, obs2, obs3, and obs4, the cur-
rent diagnosis is verified. At this point the diagnosis framework converges to the following
health diagnosis:

D({C}, COMPS − {C}) =
[∧

c∈{C}AB(c)
]
∧
[∧

c∈COMPS−{C} ¬AB(c)
]

= AB(C) ∧ ¬AB(A) ∧ ¬AB(B)
(3.16)

Diagnosis, as defined in this section, is a formal framework using first-order logic as de-
scribed in (Reiter 1987) and (de Kleer, Mackworth & Reiter 1992). The size of the initial di-
agnosis space is exponential in the number of system components. Any component can either
behave abnormal or not abnormal, thus the diagnosis space in our example consists initially
of 23 = 8 diagnoses. As with all model-based frameworks, model-based diagnosis is compu-
tationally explosive if the implementation follows naively the definitions. Chapters 5 and 4
show how the computational complexity can be drastically reduced. The goal of diagnosis is
to isolate a set of health assignments, which are consistent with the collected observations.
Recall, that each conflict is a set of components, which contains at least one abnormal compo-
nent. Thus each diagnosis must have a non-empty intersection with every single conflict. This
observation is a key element to the algorithms used to develop efficient diagnosis algorithms.
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The next section introduces different diagnosis strategies based on how proactive observations
are gathered. After that the individual strategies are compared based on a theoretical evaluation
framework.

3.2.2 Classes of Diagnosis
The task of diagnosis is to detect and isolate the underlying root-causes from observed sensor
data. In that process the information content of gathered observations is crucial to effective
diagnosis. In general, diagnosis can be categorized into two classes based on how proactive
they gather information: passive diagnosis and active diagnosis.

3.2.2.1 Passive Diagnosis

In passive diagnosis πpass the diagnostic reasoner gathers information purely through passively
observing (or monitoring) the system. Passive diagnosis performs diagnosis without actively
participating in the process of selecting actions. The system is assumed to generate a sequence
of actions according to some objective. This sequence of actions results in observations which
are consumed by the diagnostic reasoner. Note, that a passive diagnosis engine has no influence
on the plan generation process. As a result the course of action is typically optimized for some
performance objective, but not to maximize diagnostic information. The remote agent project
(Muscettola et al. 1998) which is responsible for diagnosing, planning and repairing spacecraft
is one of the most sophisticated and well developed examples of passive diagnosis used to
inform planning, search and repair.

3.2.2.2 Active Diagnosis

Active diagnosis πact differs from passive diagnosis, which purely monitors the system, by
the ability to influence the action selection process. In more detail, the action selection pro-
cess depends at least partly on the current belief state. As a result the course of action can
be optimized for information gain leading to more informative observations. From an active
diagnosis point of view, this imposes three challenges on the action selection process:

• Information criterion: Which criterion determines how informative an action is?

• Selecting informative actions: How to select an informative course of action?

• Integrating diagnosis: How to integrate active diagnosis into regular operation?

The first challenge is to define an information criterion. The second challenge is to generate
plans with maximum information gain. The information criterion is briefly discussed in Sec-
tion 3.5.1. The generation of informative plans motivates Section 3.5.2 and Chapter 7. The
third challenge addresses how active diagnosis and system operation are combined, which
motivates the rest of this section. There are two active diagnosis strategies explicit diagnosis
and pervasive diagnosis, which differ in the way on how diagnosis is integrated into operation.
Both strategies are outlined over the next two sections.
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3.2.2.3 Explicit Diagnosis

In the case of explicit diagnosis πexp, the action selection is purely optimized for information
gain. Actions are selected based on how much diagnostic information they contribute inde-
pendently of any operational goal. In explicit diagnosis, the optimal sequence of actions max-
imizes the diagnostic information and therefore minimizes the ambiguity among the hypothe-
ses. Calculating such probe sequences has been demonstrated for static circuit domains (de
Kleer & Williams 1987). This can be extended to sequential circuits with persistent state and
dynamics through time-frame expansion methods described in (Bushnell & Agrawal 2000)
or (de Kleer 2007c). Finding explicit diagnosis tests can be done as a SAT formulation (Ali,
Veneris, Safarpour, Abadir, Drechsler & Smith 2004). The use of explicit diagnosis jobs has
been suggested for model-based control systems (Fromherz 2007). The combination of ex-
plicit diagnosis to obtain information and model-based control conditioned on the information
has appeared in many domains including automatic compensation for faulty flight controls
(Rauch 1995), choosing safe plans for planetary rovers (Dearden & Clancy 2002), maintain-
ing wireless sensor networks (Provan & Chen 1999) and automotive engine control (Kim,
Rizzoni & Utkin 1998). Section 3.5 goes into more detail on how explicit diagnosis can be
realized in the context of a planning agent.

3.2.2.4 Pervasive Diagnosis

Pervasive diagnosis πper is a new paradigm, in which regular operation is actively manipu-
lated to maximize diagnostic information. Active diagnosis and regular operation can there-
fore occur simultaneously leading to higher long run performance than passive diagnosis or
alternating active diagnosis with regular operation. The integration of diagnostic goals in an
operational strategy results in informative operation. The primary objective in informative op-
eration is to continue operation. In the case that there are various ways to achieve operational
goals, informative operation simultaneously maximizes diagnostic information. Regular op-
eration might be optimized towards time efficient operation, cost efficient operation, robust
operation, or any combination of those. All of those share the primary objective of achieving
operational goals, but differ in the way how they approach a goal. In all named approaches
the set of goal achieving strategies are ranked by an objective function and the highest rank-
ing strategy dominates. For example, in time efficient operation, strategies are ranked by time
and the most time efficient strategy dominates. Similar to other operation strategies, infor-
mative operation, ranks the set of goal achieving plans by their potential of information gain
and selects the most promising strategy. Details on how this can be realized are outlined in
Section 3.6.

3.3 Passive Diagnosis for Planning Agents
A first step towards a Self-diagnosing Agent is to formulate how a planning agent can be diag-
nosed. A planning agent uses a system description to generate goal achieving plans. The same
description can be leveraged by diagnosis to infer the underlying diagnostic state. A planning
system is usually represented as an observable state-transition system (see Section 2.6.1.2,
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Definition 4). An observable state-transition system is a 6-tupel Σobs =< S,A, E , T,Φ >,
where:

• S is a finite set of states;

• A is a finite set of actions;

• E is a finite set of events;

• T : S ×A× E → S is a state-transition function;

• Φ : S → 2S is an observation function.

Generally, a planning agent attempts to derive a plan p such that executing plan p evolves
the system from an initial state s0 to some state sk and sk is a goal state, sk ∈ Sg. A not
abnormal plan execution evolves a system into a goal state. In the case of a plan execution
that does not terminate in a goal state, the system has deviated from its normal execution
behavior. To determine if a plan execution behaved not abnormal or abnormal an observation
can be performed. The observation function Φ maps the underlying system state s ∈ S to a
set of states obs ∈ 2S , called observation. An observation represents all states an underlying
system can possibly be in. If the system is fully observable, the observation function Φ maps
a state s to a set of states that contains only state s. Executing a plan results in an execution
observation, this indicates if an execution behaves not abnormal or abnormal. If the execution
behavior is not abnormal, an observation obs contains at least one goal state, otherwise the
execution behavior is abnormal. This leads to the following definition:

Definition 15. Assume a system as a 6-tuple Σobs =< S,A, E , T,Φ >, an initial state s0 ∈ S,
a set of goal states Sg ⊆ S, and a plan p are given. Executing plan p behaves not abnormal
if and only if the execution evolves the system from the initial state s0 to some state sk such
that the corresponding observation obs = Φ(sk) contains at least one goal state, ∃sg ∈ obs
s.t. sg ∈ Sg, otherwise the execution of plan p behaves abnormal.

Based on Definition 15 an execution observation function Y can be defined as follows:

Definition 16. Given the set of all plans P , an execution observation function Y : P → {0, 1}
is a function that maps a plan p ∈ P to a binary observation, where Y(p) = 1 if and only if
plan p executed not abnormal and Y(p) = 0 if and only if plan p executed abnormal.

In order to diagnose a planning system descript as a 6-tuple Σobs =< S,A, E , T,Φ >
it remains to be shown how it can be formulized as an observable system. As defined in
Section 3.2.1, an observable system is a triple (SD,COMPS,OBS), where

• SD, system description, is a set of first-order sentences,

• COMPS, components, is a set of constants,

• OBS, observations, is a set of first-order sentences.
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The idea of the presented formulation is to model a planning system as a signal processing
system. In general, executing a plan evolves a system from an initial state into some state and
the corresponding execution observation indicates if the execution behaved not abnormal or
abnormal. Figuratively, a plan execution can also be viewed as propagating a signal from an
initial state to some state and the corresponding execution observation indicates if the signal
propagation behaved not abnormal or abnormal. Assuming that not abnormal signal propa-
gation does not manipulate the signal, a propagation behaved abnormal if the signal differs
between the initial state and the state the plan execution terminates in. In planning, an abnor-
mal plan execution is cause by one or multiple abnormal action executions. Hence, if a plan
execution behaved abnormal, at least one action execution behaved abnormal. Figuratively, if
a signal got manipulated during propagation at least one link (action) must have manipulated
the signal. The task of diagnosis is to infer a complete health assignment over all actions. The
set of components COMPS is the set of actions A, formally:

COMPS = {a|a ∈ A} . (3.17)

The system description SD is decomposed into a component library CL and a system topol-
ogy ST .

SD = CL ∪ ST (3.18)

The component library CL captures the behavior of the individual components. In the here
introduced formulation, there exists only one type of component, an action, formally:

CL = {action(a)→ [¬AB(a)→ in(a) ≡ out(a)]} (3.19)

Note, that the component library CL describes an action as a signal propagating component
that outputs the same signal as inputted if the component behaves not abnormal.

The system topology ST describes the actual existing components and their type. Typically,
the system topology also describes the connections between the individual components. In the
context of planning, connections represent the order in which actions can be executed in. In
planning there are often to many combinations in which actions can be executed in to be
represented explicitly (see Section 2.6.2.2). Therefore, the connections are only captured if
this information is relevant for diagnosis. In the context of diagnosis, a connection is relevant
if it was part of an observed plan execution. In the case where a plan has been executed and
observed, the connections are represented as part of the observation formulation. Given that
there is only one type of component, that the set of components COMPS is known, and that
connections are not described as part of the system topology, the resulting system topology
ST is formularized as follows:

ST =

{ ∧
a∈COMPS

action(a)

}
(3.20)

The next step is to formulise observations. Consider a plan p =< a1, a2, . . . , ak > and a
corresponding execution observation Y(p), the corresponding observation in the context of an
observable system can be formulized as:
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obs(p) =

1 ≡ in(a1) ∧ out(ak) ≡ Y(p) ∧
∧

ai,aj∈p,s.t.j=i+1

out(ai) ≡ in(aj)

 (3.21)

Note, that observations describe the structure of the executed plan p and set the input signal
of the first action to 0, and the output signal of the last action to the corresponding execution
observation Y(p). The set of observations results from a sequence of executed plans and their
corresponding execution observations.

A planning system can therefore be mapped to an observable system as defined in Defini-
tion 17:

Definition 17. Given a system as a 6-tuple Σobs =< S,A, E , T,Φ >, a sequence of exe-
cuted plans P =< p1, p2, . . . , pn >, and an execution observations function Y the resulting
observable system is defined as a triple (SD,COMPS,OBS), where

• SD = CL ∪ ST , where
CL = {action(a)→ [¬AB(a)→ in(a) ≡ out(a)]}
ST =

{∧
a∈COMPS action(a)

}
• COMPS = {a|a ∈ A}
• OBS =

⋃
pi∈P obs(pi), where

obs(p) =
{

1 ≡ in(a1) ∧ out(ak) ≡ Y(p) ∧∧ai,aj∈p,s.t.j=i+1 out(ai) ≡ in(aj)
}
.

Given the introduced mapping, diagnosing a planning system is straightforward by follow-
ing Section 3.2.1. In summary, this section proposes a fundamentally new approach to diag-
nose a planning system. As with all model-based frameworks, it is computationally explosive
if directly implemented as described in the definitions. Many systems have a set of actions,
which is to big to be represented explicitly (see Section 2.6.2.2). This problem can be avoided
by generating the set of components COMPS incrementally. An incremental approach starts
with an empty component set COMPS, hence COMPS = ∅. Executing a plan implies ex-
ecuting actions. An action is dynamically added to the set of components COMPS once it
was executed. This ensures that all necessary actions are represented in the component set, but
prevents a computational explosion.

Up to this point only logical diagnosis has been content of the discussion. The next section
extends diagnosis to a probabilistic framework.

3.4 Probabilistic Diagnosis for Planning Agents
The task of diagnosis, as defined in Section 3.2.1, is to infer a health assignment that explains
the observed symptoms or logically speaking makes a system description SD and a set of
observations OBS consistent. At any given time, there might exist multiple diagnoses and
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not all of those diagnoses must have the same likelihood of being true. This section considers
probabilistic diagnosis for planning systems.

Let X be the underlying diagnosis state and Y(p) be the observation resulting from exe-
cuting plan p. For example, the bit-vector X = 011000 indicates that only the second and
third component are faulted. The observation is a single bit indicating an abnormal execu-
tion if Y(p) = 1 and a not abnormal execution if Y(p) = 0. In the context of the diagnosis
framework introduced in Section 3.2.1, a hypothesis is a health assignment and the set of all
possible hypotheses, denoted X , is the set of all possible health assignment. A special case is
the no fault hypothesis x0, which assigns not abnormal to all AB-literals, also referred to as
not abnormal health-assignment ¬AB∗.

Probabilistic diagnosis reasons about the likelihood of hypotheses and assigns a likelihood
probability Pr(X), called diagnosis belief, to each hypothesis X . The probability distribution
over all possible hypotheses X defines the current diagnosis beliefs Pr(X). The diagnosis
beliefs at time t are denoted Prt(X). The introduced framework updates the diagnosis beliefs
using past observations and Bayes’ rule to obtain a posterior distribution over the unknown
diagnosis state X given plan p and the corresponding execution observation Y(p):

Prt(X|p,Y(p)) = αPrt(Y(p)|X, p)Prt(X)

Chapters 4 and 5 present the overall probabilistic diagnosis framework in more detail. In
the context of a planning systems, the introduced probabilistic framework is used to infer
the current failure probabilities of actions. In diagnosis the information content of gathered
observations is crucial to effective diagnosis, which motivates the next section.

3.5 Explicit Diagnosis for Planning Agents
Explicit diagnosis is an active diagnosis paradigm with the ability to influence the action se-
lection process. More specifically explicit diagnosis optimizes the action selection process
strictly for information gain. Actions are selected based on how much diagnostic information
they contribute independently of any operational goal. As a result the course of action is opti-
mized for information gain leading to more informative observations than passive diagnosis.
This imposes two challenges on the action selection process:

• Information criterion : Which criterion determines how informative an action is?

• Selecting informative plans : How to select an informative course of action?

The first challenge is to define an information criterion. Given an information criterion, the
second challenge is to generate plans with maximum information gain.

3.5.1 Information Criterion for Informative Planning
A plan execution is said to be informative if it contributes to clarifying ambiguities in the
diagnosis. However, not all plan executions are equally informative regarding diagnosis. The
information content of a plan can be measured using mutual information. Mutual information
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is a metric from information theory which is commonly used for characterizing the perfor-
mance of classification and data compression (Cover & Thomas 1991).

Remember, X is the underlying diagnosis state and Y(p) is the observation resulting from
executing plan p. The mutual information betweenX and Y(p) is defined as (Cover & Thomas
1991):

I(X;Y(p))
def
= Σx∈XΣy∈Y(p)Pr(x, y)

[
log2

Pr(x, y)

Pr(x)Pr(y)

]
. (3.22)

Conceptually, it measures the bits of information observation Y(p) tells about the underlying
diagnosis state X . It is non-negative, and is equal to zero if and only if X and Y(p) are
independent, in which case, measuring any value of Y(p) has no implication on refining the
underlying diagnosis state X , hence has zero information content. In practice an irrelevant
observation should be avoided, but rather an observation should be made that reveals as much
information as possible regarding underlying diagnosis state X .

In diagnosis for planning, observations are made from plan executions. The goal for plan
selection is to find a plan p such that I(X;Y(p)) is maximized. The first task is to be able to
predict the failure probability of a plan p. Let Ap be the set of unique actions in plan p:

Ap =
⋃
ai∈p

{ai}. (3.23)

Given the assumption, that a plan execution behaves abnormal AB(p) if at least one action in
the plan behaves abnormal, the following equation holds:

AB(p) ⇔ AB(a1) ∨ · · · ∨ AB(an) (3.24)

The predicted probability of a plan being abnormal is a function of the probabilities assigned
to all relevant hypotheses. The set of hypotheses that bear on the uncertainty of the outcome
of plan p is denoted Xp and is defined as:

Xp = {x|a ∈ x, a ∈ Ap, x ∈ X}. (3.25)

Therefore plan p fails whenever any hypothesis in Xp is true.

AB(p) ⇔ x1 ∨ x2 ∨ · · · ∨ xm where xj ∈ Xp (3.26)

The probability of a plan failure Prt(AB(p)) is defined as the sum of all probabilities of
hypotheses in which plan p fails:

Prt(AB(p))
def
=
∑
x∈Xp

Prt(x) (3.27)

Given the failure probability of a plan, it is straightforward to compare plans in terms of
their information content. For example, given two plans p1 and p2, p1 is more informative and
preferable to plan p2 if:
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I(X;Y(p1)) > I(X;Y(p2)). (3.28)

Mutual information I(X;Y(p)) measures the reduction of uncertainty in the underlying
diagnosis state X when observing Y(p), i.e.,

I(X;Y(p)) = H(X)−H(X|Y(p)), (3.29)

where H(X) is the entropy of X , and H(X|Y(p)) is the entropy of X conditioned on observ-
ing Y(p), i.e., the “remaining uncertainty” after the observation. Maximizing I(X;Y(p)) is
equivalent to minimizing H(X|Y(p)). This is equivalent to selecting the plan, which leaves as
little uncertainty as possible. Mutual information can be calculated by taking advantage of its
symmetry, formally

I(X;Y(p)) = I(Y(p);X). (3.30)

The amount of information that Y(p) tells about X is equal to the amount that X tells about
Y(p). Exchanging X and Y(p) in (3.29), results in:

I(X;Y(p)) = H(Y(p))−H(Y(p)|X). (3.31)

Although (3.29) and (3.31) are equivalent, the latter is often easier to compute. In a diagnostic
problem there is a current diagnosis Pr(x) and an observation likelihood Pr(Y(p)|x), hence
the second term H(Y(p)|X) is easy to compute. The other way, H(X|Y(p)) in (3.29), in-
volves the posterior belief Pr(x|Y(p)), which is much harder to compute. For the rest of this
discussion (3.31) is used to evaluate the information content of a plan.

Mutual information has been used as an evaluation and selection criterion in a number of
applications. For example, (Liu, Reich & Zhao 2003) uses mutual information to decide which
sensors to activate in the context of tracking a moving target. Similarly, (Hoffmann, Waslander
& Tomlin 2006) uses mutual information to control a fleet of robots, sending robots to most
advantageous locations. In the context of this work, the framework is extended to enable the
integration of planning and diagnosis.

The question is how to diagnose a system when a fault has been observed? A common
divide-and-conquer scheme is to devise a plan p, which includes only half of the actions. If a
fault is observed by executing plan p, that means p contains the fault, and the other half that p
excludes is cleared of suspicion. If the plan is successful, then p is cleared, and the fault must
be in the other half. In this way, every plan dissects the diagnosis space by half.

The following section focuses on the task of diagnosing a single intermittent fault to illus-
trate the idea of choosing the most informative plan. A more general formulation can be found
in (Liu, de Kleer, Kuhn, Price & Zhou 2008). In the single-fault example, the diagnosis space
is linear in the number of actions, i.e.,X = {1, 2, . . . ,M}. Further assume that if action ai has
a fault and contributes to some plan, it will exhibit aberrant behavior with some probability
qai

, the intermittency rate, resulting in plan failure.

The divide-and-conquer scheme can be generalized via the mutual information criterion.
Assume that an faulty action ai can fail a plan execution with an intermittent probability qai

if
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it is included in the plan p, i.e., with the observation likelihood. For single faults,

Pr(Y(p)|X = ai) =



0 if Y(p) = 1 and ai /∈ p
1 if Y(p) = 0 and ai /∈ p
qai

if Y(p) = 1 and ai ∈ p
1− qai

if Y(p) = 0 and ai ∈ p.

(3.32)

Define H(ai)
q as the entropy corresponding to the binomial distribution qai

, i.e. as in

H(ai)
q

def
= −[qai

log qai
+ (1− qai

) log(1− qai
)]. (3.33)

The mutual information can be evaluated as,

I(X;Y(p)) = [−y0 log y0 − y1 log y1]−
∑
ai∈p

Pr(X = ai)H
(ai)
q , (3.34)

where y0 is the probability of observing a success, and y1 is the probability of observing a
failure. The derivation follows from (3.31). The first term (the bracketed term) is H(Y(p)),
and the second term is H(Y(p)|X) =

∑
ai∈p Pr(X = ai)H

(ai)
q .

An interesting special case is when all faults are persistent, i.e., qai
= 1 for all ai. In this

case, all H(ai)
q = 0, and the second term in (3.34) vanishes. The mutual information is hence

only −y0 log y0 − y1 log y1, maximized when y0 = y1 = 0.5. Thus the optimal explicit diag-
nosis plan p∗πexp

is the one that touches closest to half the probability mass:

p∗πexp
= argmin

p∈Pobs

| Prt(AB(p))− T | (3.35)

where the target T = 0.5, Pobs being the set of all observable plans. This is a generalization of
the divide-and-conquer strategy above.

In the intermittent fault case, the second term is non-zero and can be considered as a “cor-
rection” term due to the intermittency. When all the actions have the same qai

value, the mutual
information can be further simplified. It can be evaluated as the function of a single variable
w =

∑
ai∈p Pr(X = ai):

− [wq logwq + (1− wq) log(1− wq)]− wHq (3.36)

Given any plan p, the accumulative probability w and the corresponding mutual information
value can now be evaluated. Similarly, the most informative plan p can be found by optimizing
the search to determine the plan closest to the optimal w value. The optimal w follows through
calculus as:

w =
1

q(2Hq/q + 1)
=

1(
1

1−q

) 1−q
q

+ q

(3.37)
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When q → 0, w is asymptotically approaching 1
e
. This can be verified from the limit

lim
q→0

(
1

1− q
) 1

q

= e. (3.38)

For q ∈ (0, 1], w takes values from 1
e

to 1
2
. Thus, in the case of intermittent faults the target

value T is determined by the qai
’s of the actions and lies between 1

e
to 1

2
, unlike T = 1

2

for persistent faults. The concept can be generalized to the diagnosis of multiple faults (Liu
et al. 2008). Given the information criterion, it remains to be shown how informative plans
can be selected.

3.5.2 Selecting Informative Plans
The previous section introduced an information criterion to select informative plans. There-
fore, an optimal explicit diagnosis plan p∗πexp

is the one that touches closest to some target
probability mass:

p∗πexp
= argmin

p∈Pobs

| Prt(AB(p))− T | (3.39)

where Pobs is the set of all observable plans and T is the target probability mass. Given a
persistent fault scenario T = 0.5 and in the case of an intermittent fault scenario T takes
values from 1

e
to 1

2
depending of the intermittency rate q.

This section considers the selection process of informative plans, given the derived informa-
tion criterion. It introduces a search algorithm to find informative plans, which can be gener-
alized to the Problem of finding a path which is as close as possible to some target value. This
problem is referred to as the Target-Value Search Problem, which is discussed in more detail
in Chapter 7. The idea is based on an efficient estimation of the value v = | Prt(AB(p))−T |
during the search. To estimate the value of v, dynamic programming is used to incrementally
update the estimate of the upper and lower bound values on Prt(AB(p)), using the action
failure probabilities Prt(a) provided by the diagnosis reasoner. This incremental process can
be illustrated with an example.
Example: Consider the graph in Figure 3.5 which represents legal action sequences or possi-
ble plans that can be executed. A plan starts in the initial state I and follows the arcs through
the graph to reach an observable state, denoted as goal state G.

Suppose that a plan is executed that moves the system through the state sequence [I, A, C,G].
The sequence is shown as a shaded background on the relevant links in the figure. Assume the
plan resulted in an abnormal execution observation. Unknown to the diagnosis engine, the ab-
normal outcome was caused by action aA,C . Assume the fault is persistent. A diagnosis engine
would now suspect all of the actions along the plan path, knowing that at least one of them
has contributed to the fault. This results in three hypotheses corresponding to the suspected
actions: {{aI,A}, {aA,C}, {aC,G}}. In the absence of additional information, all hypotheses are
assigned with equal probability (see Table 3.1).

The graph structure and probability estimates can be used to construct heuristic bounds on
the uncertainty that can be contributed to a plan by any plan suffix. The heuristic can be build
backwards from the goal stateG (right side of figure). Consider action aD,G leading from state
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FIGURE 3.5 Machine topology places limits on what can be learned in the suffix of a plan.

Hypothesis {aI,A} {aA,C} {aC,G}
Probability 1

3
1
3

1
3

TABLE 3.1 Probability of Hypotheses (single fault)

D to the goal state G in Figure 3.5. Action aD,G was not part of the plan that was observed to
fail, so it is not a candidate hypothesis. Under the single fault hypothesis it has probability zero
of being faulted. Extending a prefix plan ending in state D with action aD,G will not increase
the failure probability of the extended plan, because the action aD,G has probability zero of
being abnormal. There are no other possible plan completions from D to G so both the upper
and lower bound for any plan completion from state D is zero.

Similarly, it can be determined that state B also has a lower bound of zero. Since a plan
prefix ending in B can be completed by an action aB,D which does not use a suspected action
and ends in state D which has lower bound zero. State B has an upper bound of 1

3
since it can

be completed by an unsuspected action aB,C to state C which has both an upper and lower
bound of 1

3
probability of being abnormal.

Once the bounds on the probability of a suffix being abnormal have been built up recursively,
these bounds can be used to guide forward search for a plan that achieves the target probability
T . Consider a plan starting with action aI,A. Action aI,A was part of the plan that was observed
to be abnormal. Adding aI,A to a partial plan, increases the probability of failure as it is a
candidate itself. After aI,A the system would be in state A. A plan could be completed through
D. Action aA,D itself, has zero probability of being abnormal, and given the heuristic bound,
it is known that a completion through D must add exactly zero probability of being abnormal.
Alternatively, from node A, a plan could also be completed through node C. Action aA,C
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immediately adds probability of failure Prt(aA,C) to our plan and given the heuristic bound
completion through C is known to increase the probability of being abnormal by exactly 1

3
.

The pre-computed heuristic therefore allows predicting abnormality probability for any plan
completion. The lower bound of the total plan is 1

3
. This comes from 1

3
from aI,A plus 0 from

the completion aA,D, aD,G. The upper bound is 3
3

equal to the sum of 1
3

from aI,A plus 1
3

from
aA,C and 1

3
from aC,G. Completing this plan through [aA,C , aC,G] results in a total plan that

will fail with probability 1. Note that this plan follows the same path as originally taken. Since
it is already known that this plan fails, it adds no new knowledge under the persistent fault
assumption. Completing this plan through the suffix [aA,D, aD,G] results in a total plan failure
probability of 1

3
, which is closer to T = 0.5. If it fails, then aI,A was the failed action. Note,

that there is no guarantee that a plan exists for an arbitrary value strictly between the bounds.

Intuitively, the algorithm for computing heuristic bounds is as follows: The bounds are
calculated recursively starting from all goal states. A goal state has an empty set of suffix
plans PG→G = ∅ therefore the lower bound LG and upper bound UG are set to zero. Each new
state Sm calculates its bounds based on the bounds of all possible successor states Ssucc(Sm)

and on the failure probability of the connecting action a that causes the transition from Sm
to Sn. A successor state Sn of Sm is any state that can be reached in a single step starting
from Sm. In the single fault case, if the faults applicable to the suffix and prefix are disjoint
HpI→Sn

∩HaSn,Sm
= ∅, the failure probability of the action can simply be added to the upper

bound USm on the failure probability of the suffix. The lower bound LSm can be updated the
same way:

LSm = min
a∈A∧app(Sm,a)

(Prt(AB(a)) + Lsucc(Sm,a))

USm = max
a∈A∧app(Sm,a)

(Prt(AB(a)) + Usucc(Sm,a)) (3.40)

For actual implementation, the LS and US values are updated by running a pair of individual
uniform cost searches, one for the LS value and one for the US value. Uniform cost search is
the form of best-first-search whose only ranking function is the accumulated cost on the best
path from initial node to the current node S. For updating the LS value, the best path is the
shortest path found so far, and for updating the US value the best path is the longest no-loop
path explored so far.

After finding the lower bound LS and upper bound US on the remaining probability mass
starting from S, the bounds can be used to define an objective function fπexp to search for
informative diagnosis plans. The objective function leverages the bounds to estimate v =
|Prt(AB(p)) − T | by estimating the remaining probability mass starting from S using the
following estimate v̂(pI→S):
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v̂(pI→S) =


0 if US ≥ T (pI→S) ≥ LS

LS − T (pI→S) if LS > T (pI→S)

T (pI→S)− US if US < T (pI→S).

(3.41)

where T (pI→S) is the adjusted target value for the partial plan pI→S . The information gain
objective fπexp is then defined using the estimate v̂.

fπexp(pI→S) = g(pI→S) + v̂(pI→S) (3.42)

where T (pI→S) is the adjusted target value for the partial plan pI→S , g(pI→S) is the ac-
cumulated cost of the plan prefix pI→S , and v̂(pI→S) bounds the remaining probability mass
starting from S.
Improving Efficiency through Search Space Pruning
Besides ranking functions, the upper and lower bounds on the total plan failure probability
can be used to prune dominated nodes (i.e., nodes that are guaranteed to be less informative
than some other visited nodes). Consider a search space with lower and upper bounds that do
not straddle the target value T . If the bounds are calculated exactly by dynamic programming,
then the best possible plan in this search space will be on one of the two boundaries that lies
closer to the target value T . Let LSn and USn be the lower and upper bound of the search space
pI→Sn , then let VpI→Sn

represents a guaranteed upper bound on the closeness of a total plan
pI→G to T starting with the partial plan pI→Sn as prefix:

VpI→Sn
= min(|LSn − T (pI→Sn)|, |USn − T (pI→Sn)|) (3.43)

is the closeness of the best plan to T , where T (pI→Sn) is the adjusted target value for the
partial plan pI→Sn . A prefix pI→Si

dominates every plan pI→Sj
if:∧

n∈{i,j}

¬(LSn ≤ T ≤ USn) ∧ (VpI→Si
< VpI→Sj

) ⇒ prune(Sj) (3.44)

The proposed diagnosis strategy is a fundamentally new approach to diagnose a planning
system. As with many frameworks, it is computationally explosive if directly implemented
as described in the definitions. Chapter 7 introduces a set of search algorithms to search for
informative plans more efficiently.

3.6 Pervasive Diagnosis for Planning Agents

The previous section introduced explicit diagnosis for planning agents. The optimal explicit
diagnosis plan p∗πexp

maximizes the diagnostic information by touching as close as possible to
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some target probability mass:

p∗πexp
= argmin

p∈Pobs

| Prt(AB(p))− T | (3.45)

where Pobs is the set of all observable plans and T is the target probability mass.
This section introduces pervasive diagnosis for planning agents, which is realized by ex-

tending explicit diagnosis with an additional constraint that guarantees that plans simultane-
ously achieve operational goals while gathering information. As a result, the optimal pervasive
diagnosis plan p∗πper

is an operational plan that touches closest to some target probability mass:

p∗πper
= argmin

p∈PI→G

| Prt(AB(p))− T | (3.46)

where PI→G is the set of all plans at achieve an operational goal and T is the target probability
mass. Similar as in explicit diagnosis, T is 0.5 in a persistent fault scenario and a value between
1
e

and 1
2

in an intermittent fault scenario. Given this modified objective, the plan selection
framework for explicit diagnosis can be directly applied to search for pervasive diagnosis
plans.

Over the previous sections, three different diagnosis paradigms were introduced. To com-
pare those strategies, the next section develops a formal framework that evaluates the total
responce costs. This theoretical results are then verified in Section 3.9 by experiments pre-
sented.

3.7 Choosing an Diagnosis Paradigm

In this section a formal framework is developed to compare the presented diagnosis paradigms.
The comparison is based on a simple cost model of expected unrealized production. In this
context, production refers to realized operational goals, e.g. printed sheets in the case of a
printer. The expected production loss is due to effort of isolating the faulty component (diag-
nosis costs) and exchanging this component (repair costs). The cost in this model represents
the expected total amount of lost production due to the fault, called expected response cost
Cπ(t):

Cπ(t) = cπd(t) + cr(Prt) (3.47)

where cπd(t) is the diagnosis costs of policy π as a function of the time t spent on diagnosis
and cr(Prt) is the expected repair cost as a function of the current belief state represented as a
probability distribution Prt.

Assume that some diagnosis policy is chosen and time t is spent on his diagnosis policy. At
the end of time t, the system will have beliefs about the condition of its components Prt. While
the system could continue diagnosis until Prt unambiguously assigns the failure probability to
a single component, it may be cheaper to instantly repair all currently suspected components.
Diagnosis is still valuable, however, as repairs will typically cost less when Prt is more specific
about the nature of the fault.

For a given diagnosis policy π, the response cost can be minimized by choosing the diag-
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nosis time t that minimizes the response cost:

Cπ∗ = min
t
Cπ(t) (3.48)

= min
t

[cπd(t) + cr(Prt)]. (3.49)

To better understand the tradeoffs between passive, explicit and pervasive diagnosis, con-
sider a simplified opportunity cost model. Our model assumes that under normal conditions
the machine produces output at its nominal rate rnom and that diagnosis efforts begin once
some abnormal outcome is observed (i.e., a paper jam, dog ear, etc.). Under the diagnosability
assumption, it is assumed that the system failure is immediately detectable and that the only
goal is to isolate and repair the problem. For simplicity, a single, intermittent fault is assumed,
which causes the system to produce faulty output with probability qnom. Therefore if regular
production is continued (without any adaptation to a detected fault) the system might still pro-
duce output with a success probability of 1 − qnom. This can be due to the nature of the fault
intermittency or due to the internal multi-way redundancy.

With the passive diagnosis policy the machine continues to produce output without any
adaptation to the detected fault. Therefore the cost can be estimated by:

cpassd = t× rnom − t× rnom × (1− qnom). (3.50)

where the successfully produced output t× rnom× (1− qnom) is subtracted from the potential
lost output t× rnom .

For the explicit approach, assume production is suspended during diagnosis (reasonable as
chances of producing the correct output are negligible), thus diagnosis cost is equal to the
nominal rate of production that would have occurred:

cexpd = t× rnom. (3.51)

Finally, for pervasive diagnosis it is assumed that the machine produces at a reduced rate
rperv ≤ rnom during diagnosis. The reduced rate results from maximizing information gain
while still obeying the production constraints. Similar to the passive policy, production is
faulty during pervasive diagnosis. The probability of producing a faulty output increases due to
the effort of increasing the information gain. The most information can be gained by executing
plans with maximum uncertainty. That leads to an increased production failure probability
qperv ≥ qnom during production, thus the cost is,

cpervd = t× rnom − t× rperv × (1− qperv). (3.52)

For all three policies, a simple repair cost model is introduced: The technician receives a
list of suspected printer modules in decreasing order of their fault probability. He then follows
a very simple procedure: step through the list, exchange the next module and test the machine
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until the machine is working properly. Using this model, repair costs can be estimated by

cr(Prt) = cexc

N∑
i=1

i× Prt(i) (3.53)

where i indicates the amount of modules that have to be exchanged with probability Prt(i).
Each exchange takes is assumed to take a constant amount of time texc and thus has a constant
cost cexc = rnom × texc.

The simplified opportunity cost model is used to compare the different diagnosis policies.
To simulate the information gained at any time of a particular diagnosis policy a simple ab-
straction can be chosen by selecting a family of distributions. Recall, components are ordered
in decreasing posterior probability order. Thus, Prt can be approximated with a monotoni-
cally declining function. The “slope” of this decreasing function is assumed to depend on how
much information gain can be achieved per unit time. This can be represented with a “slope”
parameter α. Further assume that each policy will reach a point where it can not gain more
information. That point might be different among the policies due to the amount of internal
redundancy they can exploit. For example, the passive policy optimizes for efficient produc-
tion and will not explore a particular production plan if there exists a more efficient alternative
production plan. The pervasive policy on the other hand explores alternative production plans
to gain information. Explicit diagnosis usually gains more information, since it does not have
to obey the production constraint. The residual uncertainty is captured by the parameter βπ.
Imagine that the distribution Prt is given by a family of the form:

Prπt = γ(e−αt + βπ) (3.54)

where γ is a normalizing constant to ensure that the elements of Prt sum to 1. Of course, this
distribution does not reflect a real system, but it will allow us to see how different diagnosis
methods respond given their residual uncertainty βπ.

The response cost model allows us to understand how the cost varies with the diagnosis
policy chosen and with the amount of time spent in diagnosis. The response cost over time
is plotted for passive, explicit, and pervasive diagnosis in Figure 3.6. Subfigure 3.6(a), 3.6(b)
and 3.6(c) show each of the three policies as a separate curve. For short diagnosis times re-
pairing of the machine is quickly started, but there exists only poor information about the
underlying fault. This leads to high repair cost. If additional time is spent in diagnosis, poten-
tial time for production is lost, but information is gained, which reduces repair cost. At some
point, cost for diagnosis outweighs the reduction in repair cost, and any additional time spent
for diagnosis increases the response cost. Therefore each policy results in a U -shaped curve
where the bottom of the U indicates the optimal amount of time spent for diagnosis using a
particular policy.

Once the optimal amount of time for each policy is determined, one must still select which
of the policies to employ. The effectiveness of pervasive diagnosis depends on whether the
space of production plans is sufficiently informative to isolate the fault. Figure 3.6(a), 3.6(b)
and 3.6(c), show that changing the residual uncertainty βperv for pervasive diagnosis from
0.1 to 0.15 to 0.2 causes pervasive diagnosis to change from the diagnosis method with lowest
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(a) βperv=0.1 Low uncertainty, pervasive diagnosis
achieves lowest cost
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(b) βperv=0.15 Medium uncertainty, pervasive diagno-
sis ties with explicit
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(c) βperv=0.2 High uncertainty, explicit diagnosis
achieves lowest cost

FIGURE 3.6 Responce costs as a function of time, plotted with βperv=0.1, βperv=0.15, and
βperv=0.2. Pervasive diagnosis is favorable when operational plans exist, which are infor-
mative.
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cost, to the method with costs equal to explicit diagnosis to being more expensive than explicit
diagnosis.
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FIGURE 3.7 Lowest minimal response cost as a function of βperv.

Subfigure 3.7 plots the optimal cost for pervasive diagnosis as a function of residual un-
certainty βperv against the constant costs for explicit and passive diagnosis. There is a distinct
region in the lower left corner where the low cost of pervasive diagnosis dominates explicit
and passive approaches. Systems in this region can use pervasive diagnosis to lower diagnosis
costs without reengineering the system or adding sensors.

3.8 Integration of Pervasive Diagnosis and Regular
Operation

This section outlines how pervasive diagnosis can be integrated into a planning agent such that
the resulting Self-diagnosing Agent is able to optimize simultaneously for the following two
objectives:

• fπop: maximizing operational performance (e.g. minimizing plan finishing time), and

• fπper : maximizing information gain information (e.g. minimizing ambiguity).

In general, the integration of two objective functions is not trivial as improving the final
plan quality along one dimension can worsen the quality according to the other. Therefore a
trade off parameter, denoted γ, is introduced, which specifies the “weights” for each objective
function and the integration is realized by a weighted sum. As a result, the top level objective
function f of a Self-diagnosing Agent defined by Equation 3.55.

f = γfπper + (1− γ)fπop (3.55)
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(a) The printer consists of 4 print engines (large rectangles) connected by con-
trollable paper handling modules. Sheets enter on the left and exit on the right.
There are 48 actions controlling feeders, paper paths, print engines and finisher
trays.

(b) The flexibility of the architecture can be exploited to choose paper paths that
use different subsets of components. A sequence of these paths can be used to
isolate the fault.

FIGURE 3.8 A schematic of a modular printer used in the experiments.

where the value γ is a trade off parameter. The weighted objective function f (Equation 3.55)
combines the information gain objective (e.g. minimizing ambiguity) (denoted fπper) with the
performance objective (e.g. minimizing plan finishing time) (denoted fπop) to guide the search
towards the plan, which is optimal with respect to the trade off between information gain and
performance.

The next section outlines experimental results that suggest that the theoretical improvement
can be realized in the context of a manufacturing system, in particular on a hyper-modular,
multi-engine printer.

3.9 Experiments
This section evaluates the practical benefits of a Self-diagnosis Agent in the context of a man-
ufacturing system, in particular on a hyper-modular, multi-engine printer. Pervasive Diagnosis
has been implemented and combined with an existing model-based planner and diagnosis
engine. The overall system has been tested on a model of a modular printer (Ruml, Do &
Fromherz 2005) or (Do & Ruml 2006b). Multiple pathways allow the system to parallelize

81



CHAPTER 3 Self-diagnosing Agent

production, to use specialized print engines for specific sheets, and to reroute around failed
modules. A schematic diagram showing the available paper paths in the machine is presented
in Figure 3.8(a).

A test run is done for each possible abnormal action. The planner then receives a print job
request from the queue. It generates a plan and sends it to a simulation of the printer. The
simulation models the physical dynamics of the paper moving through the system. Plans that
execute on this simulation can be executed unmodified on our physical prototype machine
in the laboratory. The simulation determines the outcome of the job. If the job is completed
without failure, e.g. a dog ear (bent corners) or a scuff mark and deposited in the requested
output tray, the plan has succeeded or in the language of diagnosis, the plan was not abnormal,
otherwise the plan was abnormal.

The original plan and the outcome of executing the plan are sent to the diagnosis engine.
The engine updates the fault hypothesis probabilities. As soon as a fault occurs, the planner
searches for the most informative plan. Since there is a delay between submitting a plan and
receiving the outcome, production jobs from the job queue are planed without optimizing for
information gain until the outcome is returned. This keeps the performance of the system high.

The performance of passive diagnosis (only regular operation), explicit diagnosis (alternates
between explicit diagnosis and regular operation) and pervasive diagnosis (regular operation
modified to obtain additional diagnostic information) are evaluated.

In the experiments an exchange time for a single module is set to be texc = 150 sec. The
nominal rate of the system is rnom = 3.1 sheets/sec. The experiments have shown that the
reduced rate of pervasive diagnosis is rperv = 1.9 sheets/sec.

Based on the introduced model, the performance of passive diagnosis, explicit diagnosis
and pervasive diagnosis is compared for three levels of fault intermittency, represented by the
probability q. When q = 1, a faulty action always causes the plan to fail. When q = 0.01 a
faulty action only causes the plan to fail with a statistical mean of 0.01.

The summary of the experimental results is in Table 3.2. A more detailed visualization of
the results is presented in Figures 3.9, 3.10,and 3.11 for the intermittency rates q = 0.01,
q = 0.1, and q = 1. Given the probabilistic intermittency rates, the experiments are averaged
over 1000 runs to reduce statistical variation.

Figure 3.9, 3.10, and 3.11 show the expected costs of repair relative to repair start time
in terms of lost production in relation to a healthy machine. The figures plot the costs for
the following fault intermittency rates: q = 0.01, q = 0.1, and q = 1. Cost of repair is
computed by estimating the repair time based on the current probability distribution over the
fault hypothesis (see Section 3.7) and pricing this downtime according to the nominal machine
production rate. Cost of diagnosis at time t is the accumulated production deficit in relation
to a healthy machine producing at its nominal rate rnom (see Section 3.7). The x-axis is the
amount of time (relative to the first occurrence of the fault) after which one chooses to stop
diagnosis and start repairing the machine. The minimum of the sum of these costs denotes the
optimal point in time to switch from diagnosis to repair and gives the minimal expected total
loss of production due to the fault.

In all experiments the optimal response costs of pervasive diagnosis was below those of the
other two approaches. As expected, the respective optimal durations of diagnostic processes
are in the order (shortest to longest) of explicit, pervasive and passive. This corresponds to the
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q=0.01 min. response cost time t # of exchanged modules

Passive 1010.22 214.1 2.01

Explicit 947.25 76.6 1.41

Pervasive 768.80 204.6 1.01

q=0.1 min. response cost time t # of exchanged modules

Passive 1055.25 35.0 2.10

Explicit 591.31 29.1 1

Pervasive 547.77 37.2 1

q=1.0 min. response cost time t # of exchanged modules

Passive 1012.00 7.78 2.01

Explicit 515.43 3.1 1

Pervasive 509.76 3.78 1

TABLE 3.2 Pervasive diagnosis has the lowest rate of lost production.

0 2 4 6 8

repair start time

600

800

1000

1200

1400

1600

1800

2000

ex
pe

ct
ed

 lo
ss

 o
f s

he
et

s

passive
pervasive
explicit

passive

explicit

pervasive

FIGURE 3.9 Experimental results for intermittency rate q = 1.00. The curves show the re-
sponds cost in expected loss of sheets as a function of diagnosis time t. For each diagnosis
policy there is a horizontal line indicating the minimal response cost.
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FIGURE 3.10 Experimental results for intermittency rate q = 0.10. The curves show the re-
sponds cost in expected loss of sheets as a function of diagnosis time t. For each diagnosis
policy there is a horizontal line indicating the minimal response cost.

fact that explicit diagnosis focuses solely on the diagnosis task. Therefore explicit diagnosis is
able to select plans with maximal diagnosis information gain and can isolate the faulty com-
ponent in the shortest amount of time. However, due to the high production loss (production is
halted), explicit diagnosis does not result in minimal response costs. Passive diagnosis has the
lowest rate of lost production, but incurs the highest expected repair costs due to its lower qual-
ity diagnosis. This corresponds to the fact that the plans executed during passive diagnosis are
optimized for production regardless of diagnosis needs. Pervasive diagnosis intelligently in-
tegrates diagnosis goals into production plans by using planning flexibility. Passive diagnosis
works well for faults with low intermittency rates and explicit diagnosis for high intermit-
tency, pervasive diagnosis combines the benefits of both. This leads to a lower total expected
production loss in comparison to passive and explicit diagnosis.

3.10 Conclusions
This chapter introduced a new architecture, coined a Self-diagnosing Agent, which realizes
the integration of acitve diagnosis and regular operation by a novel diagnosis paradigm called
pervasive diagnosis. Pervasive diagnosis actively manipulates the course of action during op-
eration in order to gain diagnostic information without suspending operation. Consider a sys-
tem where operational goals can be achieved in multiple ways. This flexibility is exploited to
generate operational plans that simultaneously gather information by trading off information
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FIGURE 3.11 Experimental results for intermittency rate q = 0.01. The curves show the re-
sponds cost in expected loss of sheets as a function of diagnosis time t. For each diagnosis
policy there is a horizontal line indicating the minimal response cost.

gain with performance objectives. Therefore active diagnosis and regular operation occur at
the same time leading to higher long-run performance than an integration of regular operation
with passive diagnosis or alternating between explicit diagnosis and regular operation. While
a Self-diagnosing Agent has interesting theoretical advantages, the experiments have shown
that the theoretical benefits can be realized on a real time applications. Throughout this chapter
an application of a Self-diagnosing Agent to a hyper-modular, multi-engine printer has been
presented. The techniques generalize to a wide class of domains ranging from space crafts to
robotics to smart networks.
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CHAPTER 4

Tiered-Partitioned Inference for Multiple
Fault Diagnosis
Diagnosing multiple-component systems is difficult and computationally expensive, as the
number of fault hypotheses grows exponentially with the number of components in the system.
This chapter describes an efficient computational framework for statistical diagnosis featuring
two main ideas:

• Tiered Inference: Structuring fault hypotheses into tiers, starting from low cardinality
fault assumptions (e.g., single fault) and gradually escalating to higher cardinality (e.g.,
double faults, triple faults) when necessary.

• Partitioned Inference: Dynamically partitioning the overall system into subsystems,
within which there is likely to be a single fault. The partition is based on correlation
between the system components and is dynamic: when a particular partition is ruled
out, a new one is constructed based on the updated belief. When no viable partition
remains, the search proceeds to the next tier.

This approach enables the use of single-fault diagnosis, which has only linear complexity,
to the subsystems avoiding exponential hypothesis explosion. The performance is analyzed
and shows that for practical systems where most components are functioning properly, the
proposed scheme achieves a desirable tradeoff between computational cost and diagnosis ac-
curacy.

4.1 Introduction
Troubleshooting a system to isolate faulted components can be difficult. This is especially
true, when diagnosing multiple faults as the number of fault combinations grows exponen-
tially in the number of components. In diagnosis literature, various ideas have been proposed
to address the computational challenge. The general diagnosis engine (GDE) work (de Kleer
& Williams 1987) finds minimal diagnoses, isolating not the complete fault combination, but
a minimal subset of faulted components that can explain the observations. Another example
is the production plant diagnosis work (Kuhn & de Kleer 2008), which extends model-based
diagnosis (Reiter 1987, de Kleer & Williams 1987) to production systems such as food pro-
cessing plants, oil refineries, and printers. The diagnosis engine (Kuhn & de Kleer 2008)
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discriminates fault assumptions based on their complexity. Diagnosis starts with simple fault
assumptions (e.g., single, persistent, and/or independent faults) for computationally efficient
diagnosis, and escalates to more complicated fault assumptions (e.g., multiple, intermittent,
and/or interaction faults) when necessary. This progression of diagnosis greatly reduces com-
putation complexity.

The minimal diagnosis idea and the progressive diagnosis work are qualitative in nature.
This chapter extends this approach from qualitative reasoning to statistical inference. The
main challenge is to perform Bayesian updates in the context of multiple fault diagnosis com-
putationally efficient.

Statistical inference is widely adopted in diagnosis. The basic idea is to evaluate hypotheses
(fault combinations) based on their probability given the observation data (Berger 1995). For
illustration, the standard notation is used with uppercase symbols denoting random variables
and lowercase symbols denoting a particular realization. Mathematically, the probability for
any hypothesis X in the hypotheses space X can be updated via the Bayes rule:

Pr(X|Y ) = αPr(Y |X)Pr(X), (4.1)

where Pr(X) is the initial probability (prior) for the hypothesisX , Pr(Y |X) is the likelihood
probability of observing Y given that X is true, and α is the normalization factor such that∑
X ∈ XPr(X|Y ) = 1. The resulting Pr(X|Y ) is the posterior probability that X is true

given the observation Y . The diagnosis that best explains the data is the maximum a posterior
(MAP) estimate

XMAP = arg max
X∈X

Pr(X|Y ). (4.2)

While Bayesian update offers a coherent and quantitative way of incorporating observation
data, it faces the same need to search through all hypotheses in X . In practice, a system with
k components has the hypothesis space

X = {000000, 000001, . . . , 111111} (4.3)

Each hypothesis X ∈ X is a bit vector, where i-th bit is an indicator whether the i-th com-
ponent has fault. (0 for not having fault, 1 for having fault). The computational complexity of
the Bayesian update is O(2k). When k is large, the update is prohibitively expensive.

The proposed approach introduces two ideas to mitigate the computational difficulty. The
first is tiered inference, illustrated in Section 4.2. The basic idea is to organize the hypothesis
space X into tiers with increasing fault cardinality. Inference is restricted to lower tiers (fewer
defective modules) until the lower tiers have been ruled out by the observation data. This idea
is implicit in many diagnosis engines such as GDE (de Kleer & Williams 1987) and MBD
(Thiebuax, Cordier, Jehl & Krivine 1996), but here it is develop as part of a more general
framework. The main contribution is the second idea: a divide-and-conquer strategy presented
in Section 4.3. It partitions system components into single-fault subsystems. This partitioning
enables utilizing single-fault diagnosis, which only has linear complexity, to diagnosing a
multiple-fault system.

Figure 4.1 illustrates these basic concepts. In the diagram, the hypothesis space X is repre-
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Figure 1: Basic idea: (1) organize hypothesis into tiers
(along the vertical direction), and (2) partition compo-
nents into subgroups (along the horizontal direction),
for instance, AB are a group, and CD are a group.

In this paper, we propose two ideas to mitigate the
computational difficulty. The first is tiered inference,
illustrated in Sec. 2. The basic idea is to organize the
hypothesis space X into tiers with increasing fault car-
dinality. Inference is restricted to lower tiers (fewer de-
fective modules) until the lower tiers have been ruled
out by the observation data. This idea is implicit in
many diagnosis engines such as GDE (de Kleer and
Williams, 1987) and MBD (Thiebuax et al., 1996), but
we develop it as part of a more general framework.
Our main contribution is the second idea: a divide-
and-conquer strategy presented in Sec. 3. It parti-
tions system components into single-fault subsystems.
This partitioning enables utilizing single-fault diagno-
sis, which only has linear complexity, to diagnosing a
multiple-fault system.

Figure 1 illustrates these basic concepts. In the dia-
gram, the hypothesis space X is represented as a ma-
trix, with columns representing components, and rows
representing the different fault assumptions. Organiz-
ing hypotheses into tiers is shown as dividing the hy-
pothesis into vertically stacked blocks. Inference starts
from the top block (no-fault tier), and progresses down
to the single-fault tier X1, then to the double-fault tier
X2, and so on. The second idea is to organize mod-
ules into groups, for instance, AB form a subsystem,
and CD forms a subsystem. This forms a horizontal
partition in the figure.

While partitioning a multiple-fault system into
single-fault subsystems is a neat idea, how to partition
is actually a tricky problem. We take a best-effort ap-
proach: given the posterior belief {p(x)}, we seek a
partition which results in subsystems that are single-
fault with maximum probability. Sec. 4 describes a
computationally efficient greedy algorithm based on
the intuition that modules within a subsystem must be
negatively correlated so that the total number of faults
remains constant (single-fault). The partitioning idea
and algorithm are the main novelty of this paper.

Many diagnosis approaches have taken advantage

of the hierarchical structure of the system being diag-
nosed (Pravan, 2001) (Srinivas, 1994). For example,
all possible combinations of faults in a subsystem can
be represented as a single component, as done in (Sid-
diqi and Huang, 2007). Similarly, if two distinct faults
are indistinguishable they can be represented as one
fault. These approaches greatly reduce computational
cost. However, they depend on one single decompo-
sition determined a priori. The approach of this paper
is quite different: it dynamically constructs and mod-
ifies the decomposition as diagnosis proceeds and is
complementary to these fixed approaches.

Sec. 5 demonstrates the application of tiered infer-
ence to production plant diagnosis. Consider a produc-
tion system, where raw material is transported through
a sequence of modules (known as an “itinerary”) and
modified to produce a product. At the end of an
itinerary, one observes a good product or a damaged
product. The product is damaged if any of the modules
in the itinerary malfunctions. Furthermore, damage
caused by a defective module cannot be repaired by
subsequent modules. In this paradigm, diagnosis aims
at isolating broken modules based on the itineraries
and observed output. For this diagnosis problem, we
analyze the tradeoff between computational cost and
inference accuracy. While we use production plant di-
agnosis as an illustration, the ideas presented in this
paper are more general and can be extended to other
diagnosis problems.

2 TIERED INFERENCE
To mitigate the computational difficulty, we further ad-
vance our prior work in (Kuhn and de Kleer, 2008)
and propose the notion of tiered inference. The ba-
sic idea is to restrict posterior computation to a subset
of hypotheses, and broaden the scope of inference only
when necessary. In the tiered inference framework, we
partition the overall hypothesis space into tiers, i.e.,

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ XM , (3)
where each tier Xj is defined as the collection of hy-
potheses assuming a total of j faults in the system, i.e.,
hypotheses with cardinality j (

∑
i xi = j). Once the

system is observed to be malfunctioning, the need for
diagnosis arises. Inference starts with the single-fault
tier X1, assuming that the system has only one fault.
At this tier, the inference only updates the posterior for
the hypotheses in X1 and ignores all other hypotheses.
This drastically reduces the computational complexity
from O(2M ) to O(M). However, the single-fault as-
sumption is an approximation, as the system can have
multiple faults. When a conflict is detected, i.e., all the
hypotheses in X1 conflict with the observation data,
we escalate the inference to the next tier X2, assuming
a total of two faults in the system. The inference then
updates all hypotheses in X2. The process repeats until
observation data or the hypothesis space is exhausted.

Before diving into technical details, we first provide
some intuition using an example. Figure 2 shows the
computation structure in the tiered inference frame-
work. The hypothesis space X is partitioned into non-
overlapping tiers X1,X2, . . . ,XM as shown in Fig-
ure 2a. Figure 2b shows the computation in the tiered
inference algorithm. Imagine a sequence of observa-
tions as follows:

2

FIGURE 4.1 Basic idea: (1) organize hypothesis into tiers (along the vertical direction), and (2)
partition components into subgroups (along the horizontal direction), for instance, AB are
a group, and CD are a group.
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sented as a matrix, with columns representing components, and rows representing the different
fault assumptions. Organizing hypotheses into tiers is shown as dividing the hypothesis into
vertically stacked blocks. Inference starts from the top block (no-fault tier), and progresses
down to the single-fault tier X1, then to the double-fault tier X2, and so on. The second idea
is to organize modules into groups, for instance, AB form a subsystem, and CD forms a
subsystem. This forms a horizontal partition in the figure.

While partitioning a multiple-fault system into single-fault subsystems is a neat idea, how
to partition is actually a tricky problem. Consider the following best-effort approach: given the
posterior belief {Pr(X)}, a partition is preferred, which results in subsystems that are single-
fault with maximum probability. Section 4.4 describes a computationally efficient greedy al-
gorithm based on the intuition that modules within a subsystem must be negatively correlated
so that the total number of faults remains constant (single-fault). The partitioning idea and
algorithm are the main novelty of this work.

Many diagnosis approaches have taken advantage of the hierarchical structure of the sys-
tem being diagnosed (Pravan 2001) (Srinivas 1994). For example, all possible combinations
of faults in a subsystem can be represented as a single component, as done in (Siddiqi &
Huang 2007). Similarly, if two distinct faults are indistinguishable they can be represented
as one fault. These approaches greatly reduce computational cost. However, they depend on
a single decomposition determined a priori. The approach presented in this chapter is quite
different: it dynamically constructs and modifies the decomposition as diagnosis proceeds and
is complementary to these fixed approaches.

Section 4.5 demonstrates the application of tiered-partitioned inference to manufacturing
plant diagnosis. The presented examples are drawn from hyper-modular, multi-engine printers
(Section 2.4.1). A reprographic system receives a continuous stream of print jobs and each
print job consists of a sequence of sheets of paper. The planner constructs an optimal plan for
each sheet which specifies a full trajectory through potentially dozens of modules. Each mod-
ule type has a set of actions it can perform. One of those actions may be faulty, but the module
may always succeed at other actions. Therefore, the proposed approach applies the framework
to actions, not to modules. Each capability fails approximately independently. Figure 4.2 illus-
trates a three way module with six capabilities. Figure 4.3 illustrates five modules of the two
types connected together. Circles indicate rollers, triangles indicate sensors, and two sheets of
paper are indicated in red. Note that three modules can be acting on the same sheet of paper at
one time.

It is possible to design machine configurations where a failure in the output capability of
one module cannot be distinguished from a failure in the input capability of the connected
module. In the presented framework, this will show up as a double fault when in fact only
one of the two modules if faulted. This confusion can be avoided by applying an idea from
digital circuits to collapse indistinguishable faults. In addition, multiple faults are allowed.
Experiments with printers have shown that most equipment contains multiple, low frequency,
intermittent faults. High-end reprographic systems operate more-or-less continuously provid-
ing a constant stream of observations and exceptions. Consider a system, where raw material
(e.g. sheets of paper) is transported through a sequence of modules by executing a sequence
of actions (known as a “plan”) and modified to produce a product (e.g. printed paper). A plan
execution results in an execution observation, a not abnormal execution or an abnormal exe-
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FIGURE 4.2 A more detailed figure of a three way module. The 6 possible paper movements
(capabilities) are indicated on the diagram.

FIGURE 4.3 A more detailed figure of five connected modules moving two sheets of paper.

cution. The execution is abnormal if any of the actions in the plan malfunctions. Furthermore
assume that an execution failure caused by a defective action cannot be repaired by subsequent
actions. In this paradigm, diagnosis aims at isolating abnormal actions based on the executed
plans and their corresponding execution observations. In this context, the tradeoff between
computational cost and inference accuracy is analyzed for this diagnosis problem. While pro-
duction plant diagnosis is used as an illustration, the presented ideas are more general and can
be extended to other diagnosis problems.

4.2 Tiered-partitioned inference

To mitigate the computational difficulty, our prior work in (Kuhn & de Kleer 2008) has been
advanced and the notion of tiered-partitioned inference is now proposed. The basic idea is to
restrict posterior computation to a subset of hypotheses, and broaden the scope of inference
only when necessary. In the tiered-partitioned inference framework, the overall hypothesis
space is partitioned into tiers, i.e.,

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xk, (4.4)

where each tier Xj is defined as the collection of hypotheses assuming a total of j faults
in the system, i.e., hypotheses with cardinality j (

∑
i xi = j). Once the system is observed

to be malfunctioning, the need for diagnosis arises. Inference starts with the single-fault tier
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X1, assuming that the system has only one fault. At this tier, the inference only updates the
posterior for the hypotheses in X1 and ignores all other hypotheses. This drastically reduces
the computational complexity from O(2k) to O(k). However, the single-fault assumption is
an approximation, as the system can have multiple faults. When a conflict is detected, i.e.,
all the hypotheses in X1 conflict with the observation data. As a consequence the inference
is escalated to the next tier X2, assuming a total of two faults in the system. The inference
then updates all hypotheses in X2. The process repeats until observation data or the hypothesis
space is exhausted.

Before diving into technical details, an example is used to provide some intuitions. Fig-
ure 4.4 shows the computation structure in the tiered-partitioned inference framework. The
hypothesis space X is partitioned into non-overlapping tiers X1,X2, . . . ,Xk as shown in Fig-
ure 4.4a. Figure 4.4b shows the computation in the tiered-partitioned inference algorithm.
Imagine a sequence of observations as follows:

1. The first batch of observations is used to update all hypotheses in X1, hence the compu-
tation is linear in |X1|. In Figure 4.4b, this is shown as vertical solid lines in the first tier
(the upper-left corner). The length of the lines symbolizes the amount of computation,
in this case proportional to the size of X1.

2. The last observation of the first batch rules out all hypotheses in X1. In this case, an
escalation is forced to the double tier X2. The observations now need to be re-applied.
This corresponds to the solid lines in the second tier. The computation is linear in |X2|.

3. The second batch of observations are applied to all hypotheses in X2. The computation
is shown as the dashed lines in the second tier.

4. The last observation of the second batch further rules out all hypotheses in X2. That
forces an escalation to X3 and all the previous observations have to be re-apply (solid
and dashed lines in the third tier). As more observations are accumulated, the update
computation (dotted lines in the figure) is restricted to X3.

In contrast, Figure 4.4c shows the computation where all observations are applied to all hy-
potheses. Notice that the total vertical lines are much shorter in Figure 4.4b than in Figure 4.4c.
The computational savings are clear. The savings are primarily due to the fact that the higher
tier hypotheses are not updated until necessary.

In this tiered-partitioned inference framework, what is the price to pay in return for the infer-
ence computational savings? First bear in mind that this is an approximation — the higher tiers
have been ignored when the lower tiers remain consistent with the observations. Therefore
tiered-partitioned inference loses optimality, for instance, the maximum a posterior (MAP)
diagnosis is only optimal within the tiers that had been worked on. It can no longer be claimed
optimality in the overall hypothesis space. Secondly, the tiered-partitioned inference frame-
work needs to store all past observations. In the case where the current tier is ruled out, the
past observations will be re-applied to the new tier. This means the system should have enough
memory. The comparison is as follows: If the computation is done sequentially each time a
new observation is made, the memory storage requirement for updating the whole hypothesis
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Figure 2: Computational structure: (a) partition hy-
pothesis space into tiers, (b) computation in the tiered
inference framework, (c) computation in the whole hy-
pothesis space.

1. The first batch of observations is used to update
all hypotheses in X1, hence the computation is
linear in |X1|. In Figure 2b, this is shown as ver-
tical solid lines in first tier (the upper-left corner).
The length of the lines symbolizes the amount of
computation, in this case proportional to the size
of X1.

2. The last observation of the first batch rules out all
hypotheses in X1. In this case, we are forced to
escalate to the double tier X2. The observations
now need to be re-applied. This corresponds to
the solid lines in the second tier. The computation
is linear in |X2|.

3. The second batch of observations are applied to
all hypotheses in X2. The computation is shown
as the dashed lines in the second tier.

4. The last observation of the second batch further
rules out all hypotheses in X2. Now we escalate
to X3 and re-apply all the previous observations
(solid and dashed lines in the third tier). As more
observations are accumulated, the update compu-
tation (dotted lines in the figure) is restricted to
X3.

In contrast, Figure 2c shows the computation where all
observations are applied to all hypotheses. Notice that
the total vertical lines are much shorter in Figure 2b
than in Figure 2c. The computational savings are clear.
The savings are primarily due to the fact that the higher
tier hypotheses are not updated until necessary.

In this tiered inference framework, what is the price
to pay in return for the inference computational sav-
ings? First bear in mind that this is an approximation
— we have ignored the higher tiers when the lower
tiers remains consistent with the observations. There-
fore tiered inference loses optimality, for instance, the
maximum a posterior (MAP) diagnosis is only opti-
mal within the tiers that had been worked on. One
can no longer claim optimality in the overall hypoth-
esis space. Secondly, the tiered inference framework
needs to store all past observations. In the case where
the current tier is ruled out, the past observations will

be re-applied to the new tier. This means the sys-
tem should have enough memory. The comparison
is as follows: If the computation is done sequentially
each time a new observation is made, the memory
storage requirement for updating the whole hypothesis
space is 2M — only the posterior probabilities need
to be stored, the observation itself does not need to be
stored. In contrast, the memory requirement for the
tiered inference method is |Xj | + O(|observations|),
i.e., we need to store the probability of hypotheses
in the current tier, as well as all observations in the
past. When the observation history is long, the mem-
ory requirement is high. In essence, the tiered infer-
ence framework reduces the burden on computation,
but shifts the burden to memory storage. In practice
one may be able to compress the observation history
into some aggregated form.

It is important to characterize when this tiered in-
ference framework is advantageous. In practical sys-
tems, most modules are likely to be good, and the total
number of faults is likely to be small. In this case, the
single-fault tier can be much more probable than the
double-fault tier, and even more so than the triple-fault
tier, and so on. Hence it makes sense to focus compu-
tational resources to the single-fault tier, and escalate
to the higher tiers only when necessary. The higher
tier hypotheses are safely ignored because they have
minimal probability to start with. The computational
savings are tremendous. On the other hand, a patho-
logical case would be the situation where each mod-
ule has a high (close to 1) probability of having fault.
From the computational point of view, starting from
the low cardinality tiers is less attractive, since the low
cardinality hypotheses are likely to be ruled out by the
observations, and the reduction in inference computa-
tion is less significant. Furthermore, as we shall see
shortly, the tiered inference framework will incur an
overhead cost of defining the next subset or tier of hy-
potheses to work on every time an existing tier is ruled
out. This overhead cost will be high in this patholog-
ical case, making the tiered inference framework less
attractive. On the flip side, this pathological case is
rare.

3 PARTITION INTO SINGLE-FAULT
SUBSYSTEMS

Diagnosing a single-fault is computationally efficient.
If a M -module system is assumed or known to have
a single-fault, we only need compare M hypotheses,
rather than the 2M hypotheses in the multi-fault case.
Given that single-fault inference is computationally ef-
ficient, it would be nice to apply this technique when-
ever applicable. This motivates us to find single-fault
subsystems although the overall system can have mul-
tiple faults.

The tiered inference idea in the previous section
suggests that we can use single-fault diagnosis in
the first tier X1 until data conflict arises. Figure 3
shows a simple example system with only 4 mod-
ules (ABCD). Figure 3a arranges the hypotheses
based on their cardinality. This defines the tiers X0,
X1, X2, and so on. In the tiered inference frame-
work, we start from X0 and X1. When data suggests
that the system (ABCD) has more than one faults,

3

FIGURE 4.4 Computational structure: (a) partition hypothesis space into tiers, (b) computa-
tion in the tiered-partitioned inference framework, (c) computation in the whole hypothesis
space.

space is 2k — only the posterior probabilities need to be stored, the observation itself does
not need to be stored. In contrast, the memory requirement for the tiered-partitioned infer-
ence method is |Xj|+O(|observations|), i.e., the probability of hypotheses in the current tier
needed to be stored, as well as all observations in the past. When the observation history is
long, the memory requirement is high. In essence, the tiered-partitioned inference framework
reduces the burden on computation, but shifts the burden to memory storage. In practice one
can to compress the observation history into some aggregated form as demonstrated in (Kuhn
& de Kleer 2008). Another possibility is to store only distinct plans and their failure/success
counts as outlined in Chapter 5.

It is important to characterize when this tiered-partitioned inference framework is advanta-
geous. In practical systems, most actions are likely to be good, and the total number of faults is
likely to be small. In this case, the single-fault tier can be much more probable than the double-
fault tier, and even more so than the triple-fault tier, and so on. Hence it makes sense to focus
computational resources to the single-fault tier, and escalate to the higher tiers only when nec-
essary. The higher tier hypotheses are safely ignored because they have minimal probability to
start with. The computational savings are tremendous. On the other hand, a pathological case
would be the situation where each action has a high (close to 1) probability of having a fault.
From the computational point of view, starting from the low cardinality tiers is less attractive,
since the low cardinality hypotheses are likely to be ruled out by the observations, and the
reduction in inference computation is less significant. Furthermore, the tiered-partitioned in-
ference framework incurs an overhead cost of defining the next subset or tier of hypotheses
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to work on every time an existing tier is ruled out. This overhead cost can be high in this
pathological case, making the tiered-partitioned inference framework less attractive. On the
flip side, this pathological case is rare.

4.3 Partition into single-fault subsystems
Diagnosing a single-fault is computationally efficient. If a k-action system is assumed or
known to have a single-fault, only k hypotheses need to be compared, rather than the 2k

hypotheses in the multi-fault case. Given that single-fault inference is computationally effi-
cient, it would be nice to apply this technique whenever applicable. This motivates us to find
single-fault subsystems although the overall system can have multiple faults.
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Figure 3: Example of tiered inference: (a) hypothesis
space and tiers; (b) escalating to tier X2; (c) partition
X2 into two groups, each with (at most) a single fault:
top box — partition into {(AB), (CD)}; second box
— partition into {(AD), (BC)}. Other partition are
also possible.

the tiered inference escalates to the double-fault tier,
X2

!
= {x :

∑
i xi = 2}, as shown in Figure 3b. At this

point, we know that the overall system (ABCD) has
at least two faults, but it is possible that subsystems,
for instance, (AB) and (CD) each has a single fault.
In this case, we can still apply single-fault diagnosis
to subsystems (AB) and CD separately to isolate the
faults. The computation is still efficient. With this par-
tition, the update is restricted to hypotheses into the
subset X t = {x | xA + xB ≤ 1, xC + xD ≤ 1},
shown as the hypotheses marked with check-marks in
the top box in Figure 3c. The computation is restricted
to X t, hence fast.

The question now is to seek a good partitioning
such that the partitioned subsystems are most likely
to have single fault. Formally, the partitioning prob-
lem is as follows: given an overall system S con-
taining modules, the partitioning divides S into two
groups S1 and S2 such that S1 ∪ S2 = S and S1 ∩
S2 = ∅. For instance, in the example in Figure 3,
S1 = (AB) and S2 = (CD) is a valid partition. Note
that this partitioning is not unique: we can partition
(ABCD) into {(AB), (CD)} (top box in the figure),
or {(AD), (BC)} (second box in the figure)1 or other
combinations. The next section addresses the question
of which partition to use. The basic idea is to exam-
ine the correlation between system components to find
those subsets which collectively contain only a single
fault with maximum probability.

Given a subsystem partition and the corresponding
subset of hypotheses X t assuming at most a single
fault within each subsystem, the algorithm restricts the
posterior updates to the subset, until the observation
data conflicts with X t. In this case, we backtrack to
the existing tier X2 and find a more suitable partition.
When the whole tier X2 is ruled out by observation,
we escalate to the third tier X3 (the collection of hy-
potheses with 3 fault modules) and partition the overall

1We use the bracket to denote a group within which there
is believed to be only single-fault, and the curly bracket for
a collection of groups.

system into three subsystems, each of which hopefully
contains a single fault. The whole process repeats as
more observations are made.

4 HOW TO PARTITION
4.1 Criterion for partitioning
As mentioned in the previous section, when the single-
fault assumption fails, we escalate to X2 and assume
that the overall system has two faults. We partition the
M -module system into two subsystems, or two groups,
within which there is likely to be at most one fault.

There are many ways of partitioning a system into
two groups. For example, (ABCD) can be partitioned
into C1

4 + C2
4/2 = 7 ways. Which one is more prefer-

able? What optimality criteria should we use? The
intuition is clear: we would like to make sure that the
single-fault assumption for each subsystem is true with
maximal probability.

Criterion: We favor the partition (of the
module set) which captures maximal proba-
bility mass, i.e., maximizing the probability∑

x∈X t p(x).

For instance, in Figure 3, partitioning into
subsystems {(AB), (CD)}, shown as the top
block on the right hand side, captures hypotheses
{0101, 0110, 1001, 1010}. There are two hypotheses
{0011, 1100} that violates the single-fault assumption
in (CD) and (AB) respectively. If the probabilities
p(0011) and p(1100) are small, this means (AB) and
(CD) are likely to have single-fault, and the partition
is advantageous. On the other hand, if p(0011) and
p(1100) are big, this mean the single-fault subsystem
assumption is questionable. To compare the two
partitions {(AB), (CD)} and {(AC), (BD)}, we
only need to compare the probability mass of missed
hypotheses, in this case, p(0011) + p(1100) and
p(0110) + p(1001). The partition with a lower
probability mass is more favorable.

4.2 A partitioning algorithm
Now with the optimality criterion, how should we de-
sign the partitioning algorithm? The straightforward
solution is to compare all partitions and see which par-
tition captures the largest probability sum, but this is
too expensive with complexity 2M . Can we find a
partitioning which is good (of course suboptimal) with
much less computation time? We first discuss the case
of partitioning into two groups.

Intuition: For a group of modules to have
a single fault, i.e.,

∑
i∈P xi = 1, the xi’s

would have to be negatively correlated.

In other words, when one member xi increases, there
must be another xj which decreases in order to main-
tain the constant sum. This means we should look
for modules with significant negative correlation and
group them into a group. In contrast, if two mem-
bers are positively correlated, i.e., when one in-
creases/decreases, the other one increases/decreases
too, then these two modules should not be grouped into
the same group.

4

FIGURE 4.5 Example of tiered-partitioned inference: (a) hypothesis space and tiers; (b) esca-
lating to tier X2; (c) partition X2 into two groups, each with (at most) a single fault: top
box — partition into {(AB), (CD)}; second box — partition into {(AD), (BC)}. Other
partitions are also possible.

The tiered-partitioned inference idea in the previous section suggests that single-fault di-
agnosis can be used in the first tier X1 until data conflict arises. Figure 4.5 shows a simple
example system with only four actions (ABCD). Figure 4.5a arranges the hypotheses based
on their cardinality. This defines the tiers X0, X1, X2, and so on. The tiered-partitioned in-
ference framework starts from X0 and X1. When data suggests that the system (ABCD)
has more than one fault, the tiered-partitioned inference escalates to the double-fault tier,
X2

def
= {X | ∑i xi = 2}, as shown in Figure 4.5b. At this point, it is know that the over-

all system (ABCD) has at least two faults, but it is possible that subsystems, for instance,
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(AB) and (CD) each have a single fault. In this case, single-fault diagnosis can be applied
to the subsystems (AB) and (CD) separately to isolate the faults. The computation with in
both subsystems is efficient, as it is single-fault diagnosis. With this partition, the update is
restricted to hypotheses into the subset X t = {X | xA + xB ≤ 1, xC + xD ≤ 1}, shown as
the hypotheses marked with check-marks in the top box in Figure 4.5c. The computation is
restricted to X t, hence fast.

The question now is to seek a good partitioning such that the partitioned subsystems are
most likely to have single fault. Formally, the partitioning problem is as follows: given an
overall system with a set of components COMPS, the partitioning divides COMPS into
two groups COMPS1 and COMPS2 such that COMPS1 ∪ COMPS2 = COMPS and
COMPS1 ∩ COMPS2 = ∅. For instance, in the example in Figure 4.5, COMPS1 = (AB)
andCOMPS2 = (CD) is a valid partition. Note that this partitioning is not unique: (ABCD)
can be partitioned into {(AB), (CD)} (top box in the figure), or {(AD), (BC)} (second box in
the figure)1 or other combinations. The next section addresses the question of which partition
to use. The basic idea is to examine the correlation between system components to find those
subsets which collectively contain only a single fault with maximum probability.

Given a subsystem partition and the corresponding subset of hypotheses X t assuming at
most a single fault within each subsystem, the algorithm restricts the posterior updates to the
subset, until the observation data conflicts with X t. In this case, the current partitioning has
to be replaced by a more suitable partitioning within the existing tier X2. When the whole tier
X2 is ruled out by observation, the framework escalates to the third tier X3 (the collection of
hypotheses with 3 faulty actions) and partitions the overall system into three subsystems, each
of which hopefully contains a single fault. The whole process repeats as more observations
are made.

4.4 How to partition

4.4.1 Criterion for partitioning

As mentioned in the previous section, when the single-fault assumption fails, the framework
escalates to X2 and assumes that the overall system has two faults. In that process the k-action
system is partitioned into two subsystems, or two groups, within which there is likely to be at
most one fault.

There are many ways of partitioning a system into two groups. For example, (ABCD) can
be partitioned intoC1

4 +C2
4/2 = 7 ways. Which one is more preferable? What optimality crite-

ria should be used? The intuition is clear: The partition which has only single-fault subsystem
with maximal probability is preferred.

Criterion: The partition (of the action set) which captures maximal probability
mass, i.e., maximizing the probability

∑
X∈X t Pr(X).

1The bracket are used to denote a group within which there is believed to be only single-fault, and the curly
bracket for a collection of groups.
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For instance, in Figure 4.5, partitioning into subsystems {(AB), (CD)}, shown as the top
block on the right hand side, captures hypotheses {0101, 0110, 1001, 1010}. There are two
hypotheses {0011, 1100} that violates the single-fault assumption in (CD) and (AB) respec-
tively. If the probabilities Pr(0011) and Pr(1100) are small, this means (AB) and (CD) are
likely to have single-fault, and the partition is advantageous. On the other hand, if Pr(0011)
and Pr(1100) are big, this mean the single-fault subsystem assumption is questionable. To
compare the two partitions {(AB), (CD)} and {(AC), (BD)}, the probability mass of missed
hypotheses can be compared, in this case, Pr(0011) + Pr(1100) and Pr(0110) + Pr(1001).
The partition with a lower (not captured) probability mass is more favorable.

4.4.2 A partitioning algorithm
Now with the optimality criterion, how should the partitioning algorithm be designed? The
straightforward solution is to compare all partitions and see which partition captures the largest
probability sum, but this is too expensive with complexity 2k. The question is can a partitioning
be found which is good (maybe suboptimal) with much less computation time? First the case
of partition into two groups is discussed.

Intuition: For a group of actions to have a single fault, i.e.,
∑

i∈P xi = 1, the xi’s
would have to be negatively correlated.

In other words, when one member xi increases, there must be another xj which decreases in
order to maintain the constant sum. This means, the algorithm should look for actions with
significant negative correlation and group them into a group. In contrast, if two members are
positively correlated, i.e., when one increases/decreases, the other one increases/decreases too,
then these two actions should not be grouped into the same group.

Using this heuristics an algorithm can be designed, which examines the correlation coeffi-
cient between actions. The correlation coefficient is defined as

ρ(i, j)
def
=

Cov(xi, xj)

σiσj

=
E [(xi − µi)(xj − µj)]

σiσj
(4.5)

For any two actions i and j, xi and xj are the indicators of their respective health (0 if the
action is good, and 1 if the action is bad), µi and µj are the respective mean of xi and xj , and
σi and σj are their respective standard deviations. The correlation coefficient ρ(i, j) measures
the dependency between xi and xj . It has the following properties: (a) −1 ≤ ρ ≤ 1; (b) the
sign of ρ shows whether the two random variables are positively or negatively correlated; (c)
ρ = 1 if xi = xj , and ρ = −1 if xi = −xj; (d) symmetry: ρ(i, j) = ρ(j, i). Given a set
of hypotheses X and their respective probability values, one can easily compute the mean
{µi}i=1,...,k, the standard deviation {σi}, the covariance matrix {Cov(xi, xj)}i,j=1,...,k, and the
correlation coefficient ρ(i, j) for any i and j. The computational complexity is linear in the
number of hypotheses.

The algorithm is the following:
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1. From the hypotheses and their respective probabilities, evaluate the correlation coeffi-
cient ρ(i, j) for any (i, j). The result is a correlation coefficient matrix of size k × k.

2. Find the two group seeds i1 and i2 as the action which have the highest correlation
E(x2

i ) values. This indicates that these two actions are more likely to have a fault than
the others. In the case of a tie, the seeds are selected randomly. The two groups “grow”
around the seeds. Previously a random selection scheme has been used: randomly select
the first seed i1, and then find the second group seed i2 as the action which has the
highest correlation with i1. Since these two are positively correlated, they should not be
in the same group. The max-correlation scheme works best in simulations performed as
part of the experiments.

3. For any remaining action j, compare the correlation coefficients ρ(i1, j) and ρ(i2, j).
The action is assigned to group 1 if ρ(i1, j) < ρ(i2, j) and to group 2 if otherwise.

Computational complexity : The computation is primarily on the computation of {ρ(i, j)}.
The complexity if O(k2 · |# of hypotheses|) — there are k2 correlation coefficients, and com-
puting each need to go through all hypotheses in the current tier. In contrast, the “oracle”
scheme of comparing all partitioning combinations has complexity O(2k · |# of hypotheses|).
Performance: Despite its simplicity, this greedy algorithm works well. In our simulation, a
large number (100) of random simulations were repeated and the partitioning scheme was
compared against the enumeration of 2k possible partitions. The proposed partitioning selec-
tion scheme has the following performance:

• Against the missing probability metric: the partition selection method is at about the
85% percentile among all 2k partitions, i.e., around 15% partitions are better than the
proposed solution, and 85% are worse. But the computational complexity is significantly
less.

• Compared to the “oracle” — the partition with smallest missing probability, the partition
scheme produces a slightly larger missing probability, on average 3–5% larger.

Example — Consider a 5-action production system (ABCDE). The observations are as fol-
lows: (1) observing a fault with plan (ABCDE); (2) observing a fault with plan (ABC); (3)
observing a fault with (DE). At this point, the single fault assumptions are eliminated. As-
sume each action is defective with a prior probability r = 0.1. Further assume all faults are
persistent. In this case, the covariance coefficient matrix is:

ρ =



1 −0.5 −0.5 0 0

−0.5 1 −0.5 0 0

−0.5 −0.5 1 0 0

0 0 0 1 −1

0 0 0 −1 1


(4.6)
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The partitioning algorithm selects B and D as group seeds and partitions actions into two
subsystems (ABC) and (DE), which agrees with earlier intuition.

A similar problem is optimal number partitioning (Korf 1995), which partitions a set of
integer numbers into two groups with equal sums. However, there is a fundamental difference:
the optimal number partitioning is deterministic, while our partitioning problem is inherently
statistical and must work with uncertainties. As a result, the algorithms for the two problems
are quite different.

4.4.3 Preparing probability distribution for partitioning
The algorithm above requires the computation of correlation coefficients {ρ(i, j)}i,j=1,2,...,k.
They are computed based on a set of hypotheses and their respective probability values. Should
this hypothesis set be the entire hypothesis space (X , size 2k)? or a smaller subset? It may be
sufficient to compute the distribution for a subset. For instance, if the first tier (the single
fault hypotheses tier X1) is ruled out, and the framework must escalate to double faults, only
the double fault hypothesis tier X2 needs to examined , since other hypotheses are out of
the representation of two-group partition anyway. Therefore the other hypotheses will not be
covered by the partitioning. In our tiered-partitioned inference framework, tier X2 is used for
partitioning into two groups. Likewise, if X2 is ruled out by observations, an escalation to the
triple-fault tier X3 has to be performed, and partition the k-action system into three groups.
The partitioning is computed based on the probability values of all hypotheses in X3.

The algorithm described above can be modified to partitioning components into any number
of groups. The extension is straight-forward: more group seeds can be selected in Step 2, and
the seeds can then grow into groups.

4.5 Implementation and simulation
As an example to illustrate the advantages and drawbacks of the tiered-partitioned inference
approach, consider diagnosis of a production plant. Assume that actions are independent, and
each action is defective with a known prior probability r. All faults are intermittent, i.e., a
defective action damages any product passing it with a known probability q, known as the
intermittency probability. In practice, each action may have its own r and q, different from the
others. For simplicity, assume that all actions share the same r and q value.

Mathematically, the prior probability is

Pr(X) =
(
r

P
i xi
) · ((1− r)k−P

i xi
)
.

Given an plan p, the likelihood of observing an output Y (0 for good, and 1 for damaged) is

Pr(Y |X) =

 (1− q)n(P=p,X) if Y = 0

1− (1− q)n(P=p,X) if Y = 1

Here the exponent n(P = p,X) is the number of defective actions involved in the production
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plan p given the hypothesis X . This is actually quite intuitive: a product is undamaged only
when none of the defective actions malfunctions, hence the probability is the action-wise good
probability (1− q) raised to the power n(p,X).

Now with prior and likelihood probabilities specified, Bayesian updates (Equation 4.1) can
be performed. Two diagnosis schemes are compared: (a) a baseline scheme applying all ob-
servations sequentially to update the posterior belief Pr(X|Y ) for all X ∈ X that has not
been ruled out by previous observation data; and (b) the tiered-partitioned inference scheme
described in Sections 4.2– 4.4. To evaluate the performance, 300 random trials were simu-
lated, each with an observation sequence of 400 randomly generated production plans and
corresponding execution observations. Performance is assessed based on cost and accuracy:

• Computational cost: for the baseline scheme, computational cost is measured as the
accumulative number of posterior updates, i.e., how many times (Equation 4.1) is exe-
cuted. For tiered-partitioned inference, the cost is the sum of two parts: (i) the inference
cost, i.e., the number of posterior updates, and (ii) the overhead cost of partitioning ac-
tions into subsystems, measured as the number of hypotheses sieved through to compute
the correlation coefficient (Equation 4.5). Table 4.1 reports the two terms, separated by
a “;” in the third column.

• Diagnosis accuracy, measured as the total number of bits that XMAP differ from the
ground truth. Ideally, ifXMAP recovers the ground truth, this term should be 0. However,
this is often not achieved, even in the baseline inference scheme. This is due to the fact
that the observations may not be sufficient, for instance, if some defective actions are
never used in production, and/or the faults are intermittent, hence the defects are never
observed.

• Partition count, measured as the total number of partitions. The baseline inference scheme
does not perform partitioned inference, hence it partitions the system into one partition.

Table 4.1 reports the results for a 10-action production system, averaged over 300 random
trials. Each row corresponds to a value of r, ranging from 0.05 to 0.9. Small r implies a healthy
system, while r = 0.9 corresponding to an extremely shaky system where all actions are likely
to fail. The extremes are used to provide insights. Note the following:

(1) The computational cost saving using the tiered-partitioned inference scheme is signif-
icant. For instance, with r = 0.05, the tiered-partitioned inference scheme has a computation
cost less than 1% of the baseline scheme. With r = 0.9, the tiered-partitioned inference com-
putation is around 10% of the baseline computation.

(2) The baseline scheme is on average more accurate than the tiered-partitioned inference.
This is expected, since the tiered-partitioned inference is an approximation.

(3) Tiered-partitioned inference is most advantageous when r is small. The inference ac-
curacy is almost as good as the baseline scheme for r ≤ 0.2, and the computation cost is 1–2
magnitudes order lower. This shows the benefit of tiered-partitioned inference. The good per-
formance is not surprising, as a system with small r is what tiered-partitioned inference was
originally designed for.

(4) As r increases, tiered-partitioned inference incurs an increasingly heavy partitioning
overhead cost (second number in the third column). This is due to the fact that the system has
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Computation cost Diagnosis accuracy Partition count

baseline tiered-part baseline tiered-part baseline tiered-part

r = 0.05 285779.7 2268.5; 63.3 0.03 0.03 1 1.05

r = 0.1 265003.1 2051.9; 448.3 0.17 0.13 1 1.35

r = 0.2 236468.3 2705.2; 1435.7 0.47 0.59 1 2.03

r = 0.5 175757.8 6293.7; 4610.0 1.51 2.36 1 3.85

r = 0.9 141973.8 7875.2; 6470.0 1.16 5.07 1 4.90

TABLE 4.1 Tradeoff between computational cost and diagnosis accuracy. This table is gener-
ated assuming the intermittency probability of q = 0.1. The second column reports compu-
tation cost of the baseline scheme measured as the number of hypotheses updated; the third
column reports the computation cost for tiered-partitioned inference for Bayesian update
and partitioning overhead, and the last two columns report diagnosis accuracy of the two
schemes, measured as the number of bits that MAP estimate differs from the ground truth.

more defective actions, and the single-fault assumption within subsystems is often ruled out by
observation data. In this case, the partitioning operations are frequently repeated. The overhead
cost makes computational savings less dramatic. Furthermore, tiered-partitioned inference be-
comes less accurate. For instance, in the last row (r = 0.9), the tiered-partitioned inference
diagnosis has roughly 5 bits flipped. It misses to detect 5 defective actions. In comparison, the
baseline has 1.16 bits flipped on average. Note that this is due to their different strategies: the
baseline scheme seeks exact inference and optimal diagnosis, while tiered-partitioned infer-
ence favors low-cardinality diagnosis. Tiered-partitioned inference stays at lower tiers as long
as the lower tiers can explain the data. This is similar to a minimal diagnosis: the minimal can-
didate set can be quite different from the underlying ground truth, especially when the faults
are intermittent and the number of observations is limited.

4.6 Conclusion
This chapter has presented a new framework for efficiently computing multiple fault diag-
noses. This framework introduces the generic notion of tiered-partitioned inference which fo-
cuses search and inference on the set of hypotheses most likely to contain the fault(s). Past ap-
proaches which focus on most probable, subset-minimal, or minimum cardinality approaches
are all instances of the more general tiered-partitioned approach. In addition, this chapter in-
troduced the notion of partitioning the actions such that efficient, linear, single fault inference
can be used (and never requires the usual multiple-fault inference scheme). By performing
single fault diagnosis on each partition, the potential computational inference on each parti-
tion is avoided. For smaller cardinality diagnoses, the inference saving outweighs the cost of
computing partitions (including recomputing partitions when they are discovered to be unsuc-
cessful).
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CHAPTER 5

Continuously Estimating Persistent and
Intermittent Failure Probabilities
Almost all previous work on model-based diagnosis has focused on persistent faults. How-
ever, some of the most difficult to diagnose faults are intermittent. It is very difficult to isolate
intermittent faults which occur with low frequency but yet at high enough frequency to be un-
acceptable. For example, a printer which prints one blank page out of a thousand or a computer
that spontaneously reboots once per day is unacceptable. Accurate assessment of intermittent
failure probabilities is critical to diagnosing and repairing equipment. This chapter presents an
overall framework for estimating component failure probabilities which includes both persis-
tent and intermittent faults.

5.1 Introduction
Almost all previous work on model-based diagnosis has focused on persistent faults where the
prior probability of component failure is provided by the manufacturer or estimated from fleet-
wide service records (Section 3.2.1). However, some of the most difficult to diagnose faults are
intermittent. It is very difficult to isolate intermittent faults which occur with low frequency,
but yet at high enough frequency to be unacceptable. For example, a printer which prints one
out of one thousand pages blank or a computer that spontaneously reboots once per day is
unacceptable. Accurate assessment of intermittent failure probabilities is critical to diagnosis
and sustainable system operation. This chapter presents an overall framework for estimating
component failure probabilities, which includes both persistent and intermittent faults. These
estimates are constantly updated while the system is operating.

The presented examples are drawn from hyper-modular, multi-engine printers (Section 2.4.1).
A reprographic system receives a continuous stream of print jobs and each print job consists
of a sequence of sheets of paper. The planner constructs an optimal plan for each sheet which
specifies a full trajectory through potentially dozens of modules. Each module type has a set
of actions it can perform. One of those actions may be faulty, but the module may always
succeed at other actions. Therefore, the proposed approach applies the framework to actions,
not modules. Each capability fails approximately independently. Figure 5.1 illustrates a three
way module with six capabilities. Figure 5.2 illustrates five modules of the two types con-
nected together. Circles indicate rollers, triangles indicate sensors, and two sheets of paper are
indicated in red. Note that three modules can be acting on the same sheet of paper at one time.
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FIGURE 5.1 A more detailed figure of a three way module. The 6 possible paper movements
(capabilities) are indicated on the diagram.

FIGURE 5.2 A more detailed figure of five connected modules moving two sheets of paper.

It is possible to design machine configurations where a failure in the output capability of one
module cannot be distinguished from a failure in the input capability of the connected module.
In the presented framework, this will show up as a double fault when in fact only one of the
two modules if faulted. This confusion can be avoided by applying an idea from digital circuits
to collapse indistinguishable faults. In addition, multiple faults are allowed. Experiments with
printers have shown that most equipment contains multiple, low frequency, intermittent faults.
High-end reprographic systems operate more-or-less continuously providing a constant stream
of observations and exceptions.

Consider a system as a 6-tupel Σobs =< S,A, E , T,Φ > (Section 2.6.1.2, Definition 4),
which is controlled by a Self-diagnosing Agent (Chapter 3). Further assume that a system
operates more-or-less continuously over a long period of time providing a constant stream of
executed plans and corresponding execution observations. Each plan p consists of a sequence
of actions, denoted p =< a1, . . . , ak >. Following Definition 15 and 16, in Section 3.3, a
plan execution results in Y(p) = 1 if and only if plan p executed not abnormal and Y(p) = 0
otherwise.

These systems present two challenges to model-based diagnosis:

• The system may operate continuously over a long period of time with very high speed
while executing multiple plans in parallel such that retaining full details of behavior of
all past executions is impractical, and

• The system may experience intermittent faults, which occur with very low frequency,
but yet at high enough frequency to be unacceptable.
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To efficiently update the probabilities an approach is needed, which derives the correct
posterior probabilities with minimal space and time. Recording all past data and updating all
possible hypothetical diagnoses is impractical, yet no valuable information should be thrown
away. The presented approach addresses both challenges by estimating the probabilities based
on maintaining a limited set of counters instead of the entire history. The counter convention
is adopted from (Abreu, Zoeteweij & van Gemund 2006), which associates two counters with
each executed action ai:

• cf,ai
: number of failed plan executions where ai was use.

• cs,ai
: number of succeeded plan executions where ai was used.

Such counters can be leveraged to estimate the failure probabilities of system actions. These
estimates are critical to detect and isolate intermittent faults during continuous operation (se-
quential diagnosis) and to stimulate future operation to avoid faulty components (prognosis).
The presented approach is applicable to systems with faults single or multiple in numbers and
persistent or intermittent in their appearance. Figure 5.3 illustrates all combinations.

Single

Persistent

Single

Intermittent

Multiple

Persistent

Multiple

Intermittent

FIGURE 5.3 Fault combinations considered by the proposed approach.

The following simplifying assumptions are made as they apply for most planning systems.
These systems have some striking differences from the commonly explored digital circuits
analyzed in most of the model-based diagnosis literature (Section 3.2.1):

• Errors can not be masked or cancelled out, e.g. a damaged sheet can not be repaired
by the machine. However, there are systems where faults may be masked, e.g. digital
systems where internal faulty signals can be masked to produce correct outputs. The out-
lined approach still applies for such systems, but requires more reasoning to determine
whether a faulty output is masked. (See (de Kleer 2007a).)

• Fault probabilities are stationary. The presented approach can be easily extended to ac-
commodate slowly drifting probabilities by introducing discounting over time.

• Observations do not affect machine behavior. This assumption is made in most ap-
proaches to diagnosis.
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• All faults are distinguishable. This is simply for exposition: as in digital circuits, indis-
tinguishable faults are collapsed.

These assumptions hold in a broad range of systems. The only input the presented approach
requires is a sequence of plan and execution-observation pairs where the plan is expressed as a
set of actions. All observable planning agents provide this information. Over the next sections
a framework is presented that enables the estimation of failure probabilities for systems with
faults single or multiple in number and persistent or intermittent in their appearance.

5.2 Single Persistent Fault
This section considers the estimation of single persistent fault probabilities. This case follows
from GDE (de Kleer & Williams 1987). Let Pr(ai) be the probability action ai is faulted. Let
p be a plan that produces the observation Y(p). The standard notation is used, with uppercase
symbols denoting random variables and lowercase symbols denoting a particular realization:
The sequential Bayesian filter (Berger 1995) is:

Prt(A|Y, P ) = αPr(Y |A,P )Prt−1(A). (5.1)

Where α is chosen so that the posterior probabilities sum to 1 (presuming the knowledge that
there is a fault is given).
Pr(Y |A,P ) is 1 in situations where cf,A are incremented, otherwise it is 0. Namely, if the

action is not element of a failing plan it is exonerated by the single fault assumption, and if
the action is used in a successful plan it is exonerated because every fault is assumed to be
observed. Figure 5.4 illustrates the possibilities.

General Purpose 
PDDL Planner

General Purpose 
Diagnostic Engine

Model Of Machine

Fig. 2. Basic architecture.

(manifesting as a “jam”). Second, the system (Figure 1)
has a scanner on the output so it can detect if the sheet
has been damaged in any way.

Common kinds of failures are:

• A dog ear at one of the corners.
• Scuff marks on the paper caused by rollers (called

nips) gripping the paper too tightly.
• The leading edge of the paper as it moves through the

system may encounter a protrusion. (Leading edge
damage.

• Paper is crumpled or shredded inside the machine.

These systems have some striking differences from the
commonly explored digital circuits analyzed in most of the
model-based diagnosis literature:

• Most errors cannot be masked or cancelled out. A
damaged sheet cannot be repaired by the machine.

• The sheet may be touched by the same module more
than once.

We notate an itinerary and its outcome by the se-
quence of modules touched by the paper followed by
Fail or Success. For example the itinerary in which a
sheet passes through modules A,B,C,D,E,B,C and moved
to the output tray without damage is represented as
(A,B,C,D,E,B,C,Success). The itinerary in which a sheet
passes through modules A and B and then jams in C is
represented as (A,B,C, Fail).

2. OUTLINE AND ASSUMPTIONS

In this paper we provide solutions for all combinations of
intermittent and persistent faults. Each itinerary consists
of a sequence of modules. We adopt the counting conven-
tion from Abreu et al. (2006) and associate two counters
with each module m:

• cf,m: number of plans where m was used and failed.
• cs,m: number of plans where m was used and suc-

ceeded.

The following simplifying assumptions apply for our repro-
graphic engines:

• Every faulty module output is observable. (Catas-
trophic fault assumption.) Any damage to a piece
of paper cannot be rectified by later modules. This
assumption does not hold for digital systems where in-
ternal faulty signals can be masked to produce correct
outputs. Our approach still applies for such systems
but requires more reasoning to determine whether a
faulty output is masked. (See de Kleer (2007).)

Fail Success

Used

Not

Used 0 1

o

u

01

Fig. 3. Summary of the observation function in the single
fault persistent case. Note that when diagnoses can
have multiple faults, the test for whether a diagnosis
is used generalizes to whether any of its models are
used in the current itinerary.

• Fault probabilities are stationary. Our approach can
be easily extended to accommodate slowly drifting
probabilities through discounting.

• Paper cannot damage a module. Most applications of
model-based diagnosis presume signals cannot dam-
age the system. However this does not hold for pro-
duction lines which transport heavy objects as a
misrouted object could damage the machine itself.
Fortunately, in reprographic machines the relatively
fragile paper is always what gets damaged.

• Observations do not affect machine behavior. This
assumption is made in most approaches to diagnosis.

• All faults are distinguishable. This is simply for
exposition: as in digital circuits, indistinguishable
faults are collapsed.

These assumptions hold in a broad range of systems.
The only input our approach requires is the sequence of
itinerary-outcome pairs where the itinerary is expressed
as a set of modules. For example, printers, manufacturing
plants, bottling plants, and packaging plants can exploit
our approach.

3. SINGLE PERSISTENT FAULT

This case follows from GDE de Kleer and Williams (1987).
Let p(M) be the probability module M is faulted. Let U
be whether the module was used in the plan that produced
the observation O. The sequential Bayesian filter Berger
(1995) is:

pt(M |O,U) = αp(O|M,U)pt−1(M). (1)

Where α is chosen so that the posterior probabilities sum
to 1 (presuming we start with the knowledge there is a
fault).

p(O|M,U) is 1 in situations where cf,m are incremented,
otherwise it is 0. Namely, if the module is not used in
a failing itinerary it is exonerated by the single fault
assumption, and if the module is used in a successful plan it
is exonerated because we assume that every faulty output
is observed. Figure 3 illustrates the possibilities.

Assume that at t = 0 all modules fail with prior prob-
ability p0 = 10−10. Consider the arrangement of mod-

FIGURE 5.4 Summary of the observation likelihood in the single fault persistent case. Note that
when diagnoses can have multiple faults, the test for whether a diagnosis is used generalizes
to whether any of its actions are used in the current plan.

Assume that at t = 0 all actions fail with prior probability Pr0 = 10−10. Consider the
sequence of pairs: (p1 =< aA, aB, aC , aD, aE, aF >, Y(p1) = 1), (p2 =< aA, aB, aC >,
Y(p2) = 0), (p3 =< aE, aF >, Y(p3) = 0). After observing the execution of p1 it can
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SECTION 5.3 Single Intermittent Fault

be concluded that one of the six actions must be faulted. As the priors are all equal, each
action must be faulted with probability 1

6
. Since all faults are assumed to be persistent and

that all faults manifest, a successful plan execution exonerates all the actions of the plan. Thus
observing plan p2 indicates that aA ,aB and aC are all working correctly. Finally, observing
the execution of p3 exonerates action aE and aF . Therefore, aD is faulted with probability 1
(see Table 5.1).

TABLE 5.1 The resulting posterior probabilities Pr(A = a|Y, P = p) over one sequence of
plans assuming a single persistent fault.

t a = aA a = aB a = aC a = aD a = aE a = aF

0 10−10 10−10 10−10 10−10 10−10 10−10

1 1
6

1
6

1
6

1
6

1
6

1
6

2 0 0 0 1
3

1
3

1
3

3 0 0 0 1 0 0

5.3 Single Intermittent Fault
This section considers the estimation of single intermittent fault probabilities. This case ex-
tends the model for intermittent faults presented in (de Kleer 2007a), which was informed by
(Koren & Kohavi 1977). In the case of intermittent faults, Pr(Y |A,P ) is still 0 in case cs,a
and 1 in case cf,m. Otherwise, Pr(Y |M,P ) needs to be estimated using the counters. The
probability that action a produces an incorrect output if faulted is calculated as follows:

cf,a
cf,a + cs,a

. (5.2)

(The denominator can never be 0 as will be described later in Section 5.3.1.)
Let Pr0(A) be the prior probability that a is faulted. Given a particular observation Y ,

Bayes rule gives:

Pr1(A|Y, P ) = αPr(Y |A,P )Pr0(A). (5.3)

The observation likelyhood Pr(Y |A,P ) is estimated from the counters. If the observation is
a failure (Y(p) = 1) and a is used in plan p, then:

Pr(Y = 1|A = a, P = p) =
cf,a

cf,a + cs,a
, (5.4)

and if it is a success (Y(p) = 0) and a is used in plan p, then:

Pr(Y = 0|A = a, P = p) =
cs,a

cf,a + cs,a
, (5.5)

105



CHAPTER 5 Continuously Estimating Persistent and Intermittent Failure Probabilities

otherwise if it is a success (Y(p) = 0), a cannot affect Y as a is not in p, then:

Pr(Y = 0|A = a, P = p) = 1, (5.6)

otherwise,
Pr(Y = 1|A = a, P = p) = 0, (5.7)

(captures the single fault assumption). Figure 5.5 summarizes the all four possibilities.

A CB

DEF

Fig. 4. 6 module fragment with possible interaction paths.

ules in Figure 4. Consider the sequence of itineraries:
(A,B,C,D,E,F,Fail), (A,B,C,Success), (E,F,Success). After
the (A,B,C,D,E,F,Fail) itinerary, one of the 6 modules
must be faulted. As the priors are all equal, each module
must be faulted with probability 1

6 . As we assume faults
are persistent and all faults are manifest, a successful
itinerary exonerates all the modules of the itinerary. Thus
the itinerary (A,B,C,Success) indicates that A,B and C are
all working correctly. Finally, the itinerary (E,F,Success)
exonerates modules E and F. Therefore, D is faulted with
probability 1 (see Table 1).

Table 1. The resulting posterior probabili-
ties p(M = m|O,U) over one sequence of

itineraries. One persistent fault.

t m = A m = B m = C m = D m = E m = F

0 10−10 10−10 10−10 10−10 10−10 10−10

1 1
6

1
6

1
6

1
6

1
6

1
6

2 0 0 0 1
3

1
3

1
3

3 0 0 0 1 0 0

4. SINGLE INTERMITTENT FAULT

This case extends the model for intermittent faults pre-
sented in de Kleer (2007) which was informed by Koren
and Kohavi (1977). In the case of intermittent faults,
p(O|M,U) is still 0 in case m01 and 1 in case cf,m. Other-
wise, we need to estimate p(O|M, U) using the counts. The
probability that module m produces an incorrect output
if faulted is calculated as follows:

cf,m

cf,m + cs,m
.

(The denominator can never be 0 as will be described
later.) Let p0(M) be the prior probability that m is faulted.
Given a particular observation O, Bayes rule gives:

p1(M |O,U) = αp(O|M, U)p0(M).
The observation function P (O|M,U), is estimated from
the counts. If the observation is a Failure and m is used,
then:

p(Fail|M = m, U) =
cf,m

cf,m + cs,m
,

and if is Success and m is used, then:

p(Success|M = m, U) =
cs,m

cf,m + cs,m
,

otherwise as m cannot affect o, if m good,
p(Success|M = m, U) = 1,

otherwise,
p(Fail|M = m, U) = 0,

(captures the single fault assumption). Figure 5 summa-
rizes the 4 possibilities.

Fail Success

Used

Not

Used 0 1

o

i

Fig. 5. Summary of the observation function in the single
fault intermittent case.

After many iterations of Bayes rule, intuitively,
pt(M |O,U) = αp(good)gp(bad)bp0(M),

where there are g observations of m-used good behavior
and b observations of m-used bad behavior. Formally:

pt(M |O,U) =
{

0 if ∃U ∈ Us.t.UFail ∧m $∈ U
αwp0(M) otherwise (2)

where,

w = [
cs,m

cf,m + cs,m
]cs,m [

cf,m

cf,m + cs,m
]cf,m . (3)

Consider again the arrangement of modules in Figure 4
and 3 itineraries: (A,B,C,D,E,F,Fail), (A,B,C,Success),
(E,F,Success). The probabilities are updated as fol-
lows: After the first observation all cf,m counters are
1 and the cs,m 0, therefore w’s are 1. After observing
(A,B,C,Success) the counters (cs,m, cf,m) for {A, B,C} are
all 1, 1 and the counters for {D,E, F} are all 0, 1. There-
fore, w = 1

4 for {A, B,C} and 1 for the rest. We observe
(E,F,Success) next. The counters for {A, B,C} are all 1, 1.
The counters for D are 0, 1 and the counters for {E,F}
are: 1, 1. Now suppose itinerary (A,B,C,D,E,F,Success) re-
peats for 7 iterations. Table 2 illustrates how the posterior
probabilities evolve.

Table 2. The resulting posterior probabili-
ties p(M = m|O,U) over one sequence of

itineraries. One intermittent fault.

t m = A m = B m = C m = D m = E m = F

0 10−10 10−10 10−10 10−10 10−10 10−10

1 1
6

1
6

1
6

1
6

1
6

1
6

.17 .17 .17 .17 .17 .17

2 1
15

1
15

1
15

4
15

4
15

4
15

.07 .07 .07 .27 .27 .27

3 1
9

1
9

1
9

4
9

1
9

1
9

.11 .11 .11 .44 .11 .11

4 16
107

16
107

16
107

27
107

16
107

16
107

.15 .15 .15 .25 .15 .15

10 .16 .16 .16 .18 .16 .16

Working with the same 6 modules, consider a slightly
more realistic example. Assume that the prior probabilities
of intermittent failures are equal for all the modules.
Consider the case in which module D is intermittently
faulted and damages one out of every 1001 sheets (starting
with sheet 1001). Suppose that the printer repeatedly
executes the itineraries: (A,B,E,F), (C,B,E,D) (A,B,C)
(F,E,D). After seeing 2000 itineraries the counts for A,F,C

FIGURE 5.5 Summary of the observation likelihood in the single fault intermittent case.

After many iterations of Bayes rule, intuitively,

Prt(A|Y,P) = αPr(good)gPr(bad)bPr0(A), (5.8)

where there are g observations of a being used in a plan execution with good behavior and b
observations of a being used in a plan execution bad behavior. Formally:

Prt(A|Y,U) =

 0 if ∃P ∈ Ps.t.Y(p) = 1 ∧ A 6∈ P
αwPr0(A) otherwise

(5.9)

where,
w = [

cs,a
cf,a + cs,a

]cs,a [
cf,a

cf,a + cs,a
]cf,a . (5.10)

Consider again the example of three itineraries: (p1 =< aA, aB, aC , aD, aE, aF >, Y(p1) =
1), (p2 =< aA, aB, aC >, Y(p2) = 0), (p3 =< aE, aF >, Y(p3) = 0). The probabilities are
updated as follows: After observing p1 all cf,a counters are 1 and the cs,a 0, therefore w’s are
1. After observing p2 the counters (cs,a, cf,a) for {aA, aB, aC} are all (1, 1) and the counters
for {aD, aE, aF} are all (0, 1). Therefore, w = 1

4
for {aA, aB, aC} and 1 for the rest. Next p3 is

observed. The counters for {aA, aB, aC} are all (1, 1). The counters for aD are (0, 1) and the
counters for {aE, aF} are: (1, 1). Now suppose plan p1 is repeatly executed for seven time.
Table 5.2 illustrates how the posterior probabilities evolve.

Working with the same six actions, consider a slightly more realistic example. Assume
that the prior probabilities of intermittent failures are equal for all the actions. Consider the
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SECTION 5.3 Single Intermittent Fault

TABLE 5.2 The resulting posterior probabilities Pr(A = a|Y, P ) over a sequence of plans
assuming a single intermittent fault.

t a = aA a = aB a = aC a = aD a = aE a = aF

0 10−10 10−10 10−10 10−10 10−10 10−10

1 1
6

1
6

1
6

1
6

1
6

1
6

.17 .17 .17 .17 .17 .17

2 1
15

1
15

1
15

4
15

4
15

4
15

.07 .07 .07 .27 .27 .27

3 1
9

1
9

1
9

4
9

1
9

1
9

.11 .11 .11 .44 .11 .11

4 16
107

16
107

16
107

27
107

16
107

16
107

.15 .15 .15 .25 .15 .15

10 .16 .16 .16 .18 .16 .16

case in which action aD is intermittently faulted and behaves abnormal one out of every
1001 times (assume the example starts with execution 1001). Suppose that the system, e.g.
a printer, repeatedly executes the plans: p1 =< aA, aB, aE, aF >, p2 =< aC , aB, aE, aD >,
p3 =< aA, aB, aC >, p4 =< aF , aE, aD >. After seeing 2000 plan executions the counts for
{aA, aF , aC , aD} are cs,a = 1000, cf,a = 0 and counts for {aB, aE} are cs,a = 1500, cf,a = 0.
Suppose D behaves abnormal during the executing plan p2. By the single fault assumption,
actions aA and aF are exonerated and their posterior probability of failure is now 0. The w for
actions aB and aE are now: [1500

1501

]1500 1

1501
= .000245. (5.11)

The term is higher for aC and aD as fewer samples of good behavior have been observed:[1000

1001

]1000 1

1001
= .000368. (5.12)

Normalizing, the posterior probability for aB, and aE failing are: 0.2 and for aC , aD are: 0.3.
Suppose no errors are seen in the next 2000 itineraries. Then, aD behaves abnormal in p3. By
the single fault assumption, actions aB and aC are now exonerated. The values for w for aD
and aE are now: [2000

2002

]2000[ 2

2002

]2
= 1.352× 10−7, (5.13)[3000

3002

]3000[ 2

3002

]2
= .601× 10−7. (5.14)
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CHAPTER 5 Continuously Estimating Persistent and Intermittent Failure Probabilities

Normalizing Pr(A = aD|Y ) = 0.7, P r(A = aE|Y ) = 0.3.

TABLE 5.3 The resulting posterior probabilities Pr(A = a|Y, P ) over a more complex se-
quence of itineraries assuming a single intermittent fault.

t a = aA a = aB a = aC a = aD a = aE a = aF

2001 0 .2 .3 .3 .2 0

4002 0 0 0 .7 .3 0

6003 0 0 0 .77 .23 0

8004 0 0 0 .83 .17 0

16008 0 0 0 .96 .04 0

In practice faults never occur with such regularity as in Table 5.3. Instead, every sequence of
plans will yield different posterior probabilities.

As can be seen in this example, the restriction to single faults is a very powerful force for
exoneration. All the actions not exonerated will have the same cf,a count. This results from
the fact that under the single fault assumption, only actions that been used in every failing run
remain suspect. Hence they have the same cf,a. In the example, cf,a = 1 in equations 5.11
and 5.12. After more observations, cf,a = 2 in equations equations 5.13 and 5.14.

5.3.1 Incorporating prior counts
So far it was presumed that nothing is known about the counts prior to making observations. If
counts are initially 0, then the denominator of equation 5.10 will be 0. One possible approach
to avoid this is Laplace’s adjustment: make all initial counts 1, which is equivalent to assuming
an uniform prior over Pr(a). Another approach which is utilized in this approach is to ensure
that equation 5.10 is never evaluated until an observation is made. The current observation is
always included in counts, thus the denominator of equation 5.10 will never be 0 whenever it
is utilized. Both approaches converge to the same in the limit as the number of observations
grows to infinity.

One important detail left out of the examples is that if an action has operated perfectly
for very large counts it takes too many failing samples before its posterior probability rises
sufficiently to be treated as a leading candidate diagnosis. Therefore, for it is advised to apply
a small exponential weighting factor λ at every increment such that counts 100,000 in the past
will have less weight then new samples, e.g. λ = 0.99999.

5.4 Multiple Persistent Faults
This section considers the estimation of multiple persistent fault probabilities. Over the last
sections actions have been considered to estimate the probabilities. Instead of actions, this
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SECTION 5.5 Multiple Intermittent Faults

section considers diagnosis hypotheses D. The number of possible diagnoses is exponential in
the number of actions, however, Chapter 4 introduces a Tiered-partitioning Diagnosis Frame-
work, which considers only a small subset of hypothesis at any given time. For illustration lets
consider for the moment the general case.

Analogous to the single persistent fault case:

Prt(D|Y, P ) = αPr(Y |D,P )Prt−1(D). (5.15)

To determine the prior probability of a diagnosis Pr0(D) it is presumed that actions fail
independently. Let good(D) be all the good actions of D and bad(D) all the bad action of D,
than Pr0(D) is:

Pr0(D) =
∏

g∈good(D)

Pr0(g)
∏

b∈bad(D)

(1− Pr0(b)). (5.16)

It remains to determine Pr(Y |D,P ). If all the actions used in a plan are a subset of the good
actions of a diagnosis d, then Pr(Y = 1|D = d, P ) = 0 and Pr(Y = 0|D = d, U) = 1.
In every remaining case (i.e., if any of the used actions are bad in d), then Pr(Y = 0|D =
d, U) = 0 and Pr(Y = 1|D = d, U) = 1. Figure 5.6 summarizes these results.

and D are cs,m = 1000, cf,m = 0 and counts for B and
E are cs,m = 1500, cf,m = 0. Suppose D damages the
sheet during the itinerary (C,B,E,D). By the single fault
assumption, modules A and F are exonerated and their
posterior probability of failure is now 0. The w for modules
B and E are now:[1500

1501
]1500 1

1501
= .000245. (4)

The term is higher for C and D as we have observed fewer
samples of good behavior:[1000

1001
]1000 1

1001
= .000368. (5)

Normalizing, the posterior probability for B, and E failing
are: 0.2 and for C, D are: 0.3. Suppose we see no errors
in the next 2000 itineraries. Then, D damages a sheet in
itinerary (D,E,F). By the single fault assumption, modules
B and C are now exonerated. The values for w for D and
E are now:[2000

2002
]2000[ 2

2002
]2 = 1.352× 10−7, (6)[3000

3002
]3000[ 2

3002
]2 = .601× 10−7. (7)

Normalizing p(D|O) = 0.7, p(E|O) = 0.3.

Table 3. The resulting posterior probabilities
p(M = m|O,U) over a more complex sequence

of itineraries. One intermittent fault.

t m = A m = B m = C m = D m = E m = F

2001 0 .2 .3 .3 .2 0

4002 0 0 0 .7 .3 0

6003 0 0 0 .77 .23 0

8004 0 0 0 .83 .17 0

16008 0 0 0 .96 .04 0

In practice faults never occur with such regularity as in
Table 3. Instead, every sequence of itineraries will yield
different posterior probabilities.

As can be seen in this example, the restriction to single
faults is a very powerful force for exoneration. All the
modules not exonerated will have the same cf,m count.
This results from the fact that under the single fault
assumption, only modules that been used in every failing
run remain suspect. Hence they have the same cf,m. In
our example, cf,m = 1 in equations 4 and 5. After more
observations, cf,m = 2 in equations equations 6 and 7.

4.1 Incorporating prior counts

So far we presume nothing is known about the counts
prior to making observations. If counts are initially 0, then
the denominator of equation 3 will be 0. One possible
approach to avoid this is Laplace’s adjustment: make all
initial counts 1, which is equivalent to assuming a uniform
prior over p(m). Another approach which we utilize in this
paper is to observe that equation 3 need never be evaluated
until an observation is made. The current observation
is always included in counts, thus the denominator of
equation 3 will never be 0 whenever we want to utilize
it. Both approaches converge to the same in the limit as
the number of observations grow to infinity.
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o
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Fig. 6. Summary of the observation function in the mul-
tiple persistent case for an observation o of itinerary
U .

One important detail we leave out of the examples for
conciseness is that if a module has operated perfectly for
very large counts it takes too many failing samples before
its posterior probability rises sufficiently to be treated as a
leading candidate diagnosis. Therefore, for our application,
we apply a small exponential weighting factor λ at every
increment such that counts 100,000 in the past will have
only half the weight of new samples (λ = 0.99999).

5. MULTIPLE PERSISTENT FAULTS

Instead of modules, we consider diagnosis hypotheses D.
Let good(D) be all the good modules of D and bad(D) all
the bad modules of D. The number of possible diagnoses
will be exponential in the number of modules. In practice,
we only consider the more probable diagnoses, but for the
moment consider the general case.

Analogous to the single persistent fault case:
pt(D|O,U) = αp(O|D,U)pt−1(D).

To determine the prior probability of a diagnosis p0(D) we
presume modules fail independently:

p0(D) =
∏

g∈good(D)

p0(g)
∏

b∈bad(D)

(1− p0(b)).

It remains to determine p(O|D,U). If all the modules used
in an itinerary are a subset of the good modules of a di-
agnosis d, then p(Fail|D = d, U) = 0 and p(Success|D =
d, U) = 1. In every remaining case (i.e., if any of the used
modules are bad in d), then p(Success|D = d, U) = 0 and
p(Fail|D = d, U) = 1. Figure 6 summarizes these results.

For diagnostic purposes we need to compute the posterior
probability that a particular module is faulted:

p(m|o1, . . . , ot) =
∑

d s.t.m∈bad(d)

p(d|o1, . . . , ot).

6. MULTIPLE INTERMITTENT FAULTS

We apply Bayes rule as before:
pt(D|O,U) = αp(O|D,U)pt−1(D).

Let pb(m) be the probability that a module m produces
an incorrect output when faulted. Let us first assume that
pb(m) is given. In this case Pt(D|O,U) is given by:

pt(M |O,U) = αwp0(M) (8)

FIGURE 5.6 Summary of the observation likelihood in the multiple persistent case for an ob-
servation y of plan p.

For diagnostic purposes, the posterior probability that a particular action is faulted is com-
puted by:

Pr(a|y1, . . . , yt) =
∑

d s.t.a∈bad(d)

Pr(d|y1, . . . , yt). (5.17)

5.5 Multiple Intermittent Faults

This section considers the estimation of multiple persistent fault probabilities. Bayes rule can
be applied as before:

Prt(D|Y, P ) = αPr(Y |D,P )Prt−1(D). (5.18)

109



CHAPTER 5 Continuously Estimating Persistent and Intermittent Failure Probabilities

Let Prb(a) be the probability that an action a produces an incorrect output when faulted.
Let us first assume that Prb(a) is given. In this case Pt(D|O,P ) is given by:

Prt(D|Y,P) = αwPr0(A) (5.19)

w =

 1−∏a∈bad(D)∩P (1− Prb(a)) If Y(P ) = 1∏
a∈bad(D)∩P (1− Prb(a)) If Y(P ) = 0

(5.20)

As in the previous analyses, the posterior probabilities of the diagnoses are obtained by
repeatedly applying Bayes rule. Before introducing a more direct method consider the result
of applying Bayes rule repeatedly. Iterating Bayes rule results in:

w =
∏

P s.t. Y(P )=1

[1−
∏

a∈bad(D)∩P

(1− Prb(a))]

×
∏

P s.t. Y(P )=0

∏
a∈bad(D)∩P

(1− Prb(a)) (5.21)

Consider both terms separately. The second term, success, can be computed simply by main-
taining the counter (as in the single fault case) cs,a for each action:∏

P s.t. Y(P )=1

∏
a∈bad(d)∩P

(1− Prb(a)) = (1− Prb(a))cs,a . (5.22)

To compute the first term a single counter cf,s can be associated with each set of actions s
utilized in a failing plan i. Since the approach is not dependent on the order of actions within
a plan, counters can be kept per action set instead of for each plan to reduce the number of
counters. For example consider two plans p1 =< aA, aB, aC > and p2 =< aC , aB, aA > by
the same counter cf,s for action set s ={A,B,C}. Let S be the set of all such sets, which have
failed at least once. The first term is then:∏

P s.t. Y(P )=1[1−
∏

a∈bad(D)∩P (1− Prb(a))] =∏
s∈S[1−∏a∈bad(D)∩s(1− Prb(a))]cf,s

(5.23)

Notice that it is not required to store the action sets of successful itineraries (by far the domi-
nant case).

5.5.1 Learning the Intermittency Rate
As in the single fault case, the intermittency parameters of action failure qi can be learned. In
practice, it could be a single scalar (assuming that all the actions have the same intermittency
parameter) or a vector (allowing actions to have different intermittency rates). This section
presents a general methodology for the estimation of the intermittency rate q.
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SECTION 5.6 Conclusions

The goal of learning is to estimate the value of q to best match the observation Y . To
achieve this goal, q is treated as a deterministic unknown parameter, and formulate the learning
problem as a maximum-likelihood estimation problem:

q̂ML = argmax
q
Prq(Y ). (5.24)

Here Y is the observation history, i.e., the plans and their corresponding execution observa-
tions. To evaluate Prq(Y ) the following can be used:

Prq(Y ) =
∑
D

Prq(Y |D)Pr(D) (5.25)

where Pr(D) is the prior probability, initially all equal for all hypotheses. The observation
likelihood Prq(Y |D) is the Pr(Y |D,P ) given by (5.20) in the previous section; the plan
P is known, hence it is removed to simplify notation. Given any intermittency parameter q
(which equivalently specifies all the actions mis-operation probability Prb(a)), the observation
likelihood Prq(Y ) can be evaluated by the marginalization (5.25). The optimal estimate is then
obtained by search over the space for maximal Prq(Y ).

Example. Assume all faulty actions have the same intermittency parameter, i.e., Prb(a) = q
for all action a. In this case, given any itinerary, the probability of observing a success or a
failure is:

Prq(Y |D,P ) =

 1− (1− q)n(D,P ) if Fail

(1− q)n(D,P ) if Success
(5.26)

where the exponent n(D,P )
def
= |bad(D) ∩ P | denotes the number of bad actions in the

hypothesis D that are involved in the plan P . For any given D and P , n(D,P ) is easy to
evaluate. This enables us to express Prq(Y ) as simple polynomial function of q. This can be
used to search for the optimal q ∈ [0, 1].

Figure 5.7 shows the learning for a simple system consisting of five actions, among which
two actions have faults with an intermittency rate of 0.2. Learning is done based on 100, 200,
and 500 randomly simulated trials; the results are shown as the green, blue, and red curves
respectively. The curves plot the computed observation likelihood lnPrq(Y ) as a function of
q. The maximum likelihood estimates are marked with circles. With more trials shows, the
estimated q is closer to the underlying true value. For example, with 500 trials, q̂ML = 0.19
(ground truth is 0.2). As more trials are incorporated, the likelihood lnPrq(Y ) has a more
prominent optimal q estimate. This is expected.

This algorithm computes Pr(D) and q simultaneously and converges rapidly. The general-
ization to the situation where all q’s are different requires a multi-dimensional optimization.

5.6 Conclusions
This chapter lays out a framework for continuously diagnosing any combination of persistent
and intermittent faults. Furthermore, an extension has been introduced to simultaneously learn
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FIGURE 5.7 Learning of intermittency q. (lnPrq(Y ) vs. q)

the intermittency rate q while compute the posterior probabilities. This approach demonstrates
that it is possible to update the probabilities and learn the intermittency rate without recording
all past itineraries. The key idea of the proposed framework is based on maintaining a limited
set of counters instead of the entire itinerary history without losing valuable diagnosis infor-
mation. Table 5.4 shows the granularity of the counters needed to store the entire diagnostic
history. Note: the number of actions |A| is much smaller than the number of action sets |S| and
the number of action sets |S| is much smaller than the number of plans |P |. This extension

TABLE 5.4 Table shows the granularity of counters needed to store the entire diagnostic history.

cs cf

single fault per action per action

multiple fault per action per action set

to model-based diagnosis enables on-line diagnosis to modular planning agents, e.g. repro-
graphic equipment. More importantly, it extends model-based diagnosis to the real challenges,
such as efficient diagnosis of intermittent multiple faults, faced in diagnosing manufacturing
plants, packaging equipment, laboratory test equipment, etc.
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CHAPTER 6

Diagnosis with incomplete Models:
Diagnosing Hidden Interaction Faults
This chapter extends model-based diagnosis (MBD) (de Kleer & Williams 1987, Reiter 1987)
to systems with hidden interaction faults. An interaction fault is present if an interaction among
a set of components leads to an observable failure, even though each individual component in-
dividually meets the specifications. A naive approach to address interaction faults is to simply
account for all possible interaction faults in the system model. However, the naive approach
presumes that all possible faults, both component and interaction faults, are known and ad-
dressed in the model. This assumption is violated by most real world systems, such as shorts
in circuits (Davis 1984) or unmodeled connections (de Kleer 2007b). That leads to incomplete
system models, hence possibly hidden interaction faults. The problem of hidden interactions
has been known for a long time (Davis 1984), but until now no general solution has been
proposed. Instead of pushing for complete models (Preist & Welham 1990) or relying on
additional structural information (Davis 1984, Bottcher 1995, de Kleer 2007b) the proposed
framework approaches the challenge differently. System models are allowed to be incomplete
and a general, domain independent extension is introduced to model-based diagnosis to ac-
count for resulting hidden interaction faults. This extends model-based diagnosis to systems
with incomplete models, in particular to models with incomplete structural information. In the
chapter, the proposed diagnosis framework is demonstrated on a logic circuit with a hidden
interaction fault, before it is outlined how this framework can be used in the context of action
driven systems.

6.1 Introduction
Model-based diagnosis assumes that all necessary information, regarding all possible failure
causes, is available in the system model. In our experience, this generally accepted assump-
tion does not hold in practice. In reality, systems fail for all kind of reasons, some of which
designers might not be able to predict at the time the system model is built. This leads to
incomplete models and to possible hidden interaction faults. For example, during the landing
maneuver of the Mars Polar Lander an interaction between a touch sensor and the deployment
of one of the Lander’s legs most likely caused the mission to fail (Young, Arnold, Brackey,
Carr, Dwoyer, Fogleman, Jacobson, Kottler, Lyman & Maguire 2000). The deployment of the
leg caused the touch sensor to produce a noise spike which was incorrectly classified as an in-
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dication of touch down. As a consequence, the lander shut off its thrust about 40 meters above
the touch-down surface. This is a classic example of a failure caused by a hidden interaction.
If the engineers could have predicted this interaction, the failure could have been avoided. The
classification algorithm could have requested either additional information from the altitude
sensor onboard the lander or a time persistent signal from the touch sensor. Building adequate
models for increasingly complex systems, especially for embedded systems, is very difficult;
building complete models is practically impossible. In practice most models are incomplete;
especially when all possible interactions are not known at the time the system is built.

Unlike a behavior model, which might describe the behavior only partially, e.g. weak fault
model (describes only nominal behavior), the structural model is usually assumed to be com-
plete (Davis 1984, Preist & Welham 1990, Bottcher 1995, de Kleer 2007b). An incomplete
system topology, e.g. a model that doesn’t capture all connections, causes standard diagnosis
frameworks to result in an irresolvable contradiction.

Instead of pushing for complete models, the challenge is approached differently. Models are
allowed to be incomplete and a diagnosis framework is introduced that works with incomplete
models, extending model-based diagnosis to systems with hidden interactions. The frame-
work accounts for interaction faults without explicitly modeling them. The resulting approach
enables diagnosis for systems with multiple, interaction faults.

The chapter is organized as follows: The first section reviews related work. A logic circuit,
SMALLY, is introduced which serves as our example system to illustrate the limitations of
standard model-based diagnosis (Section 3.2.1). Then, interaction faults are formally defined
and a general extension to model-based diagnosis is introduced to account for hidden inter-
action faults. The last section outlines how this framework can be applied to action driven
systems, such as planning agents.

6.2 Related Work
The general mechanisms of inferring health states from observations have a long history in
artificial intelligence and engineering including logic based frameworks (Reiter 1992), con-
tinuous non-linear systems (Rauch 1995), xerographic systems (Zhong & Li 2000), and hybrid
logical probabilistic diagnosis (Poole 1991).

The process of diagnosis can be viewed as the interaction between observations and pre-
dictions. Observations capture the actual system behavior, whereas predictions are deduced
from the system model. Model-based diagnosis presumes a system failure to be present if
predictions and observations differ from each other.

Model-based approaches (de Kleer & Williams 1987, Reiter 1987) predict component in-
teraction only where these are explicitly provided in the system description. The problem of
faults caused by hidden interactions has been known since (Davis 1984). In (Davis 1984)
bridge faults between adjacent components are introduces, but the suggested solution requires
explicit knowledge about which unintended connections potentially result from adjacent com-
ponents. In (Preist & Welham 1990) a solution, similar to the naive approach, is proposed
which explicitly models all possible unintended interactions. The argument that a complete
model is preferable over an incomplete model is true, but note that a complete model might
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not always be available. In (Bottcher 1995) the work of (Davis 1984) is generalized by intro-
ducing a notion of neighbors that requires information about spatial proximity among compo-
nents. A literature review suggests that there exists no other diagnosis framework that accounts
for hidden interaction faults by a general, domain independent extension without relying on
additional domain dependent knowledge. All approaches listed in the related work section,
(Davis 1984, Preist & Welham 1990, Bottcher 1995, de Kleer 2007b) assume that additional
knowledge regarding potential hidden interaction is available. This chapter introduces an ap-
proach to diagnosing hidden interactions that does not rely on any kind of additional infor-
mation such as knowledge about potential unintended connections or spatial proximity among
components.

6.3 Limitations of Model-based Diagnosis
Model-based diagnosis, as reviewed in Section 3.2.1, has a long history in artificial intelli-
gence. This section outlines limitations of model-based diagnosis in the context of hidden
interaction faults. Consider the logic circuit, SMALLY, illustrated in Figure 3.4. Assume obser-
vation obs1 is collected, which involves both components, A and C, for example by observing
a, b, c, and f ,

obs1 = [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 1. (6.1)

Given observation obs1 and the system description SD, it can evaluated if the predicted be-
havior is consistent with what was observed. In the presented example the predicted behavior
is not consistent with the actual observation obs1. The system description SD together with
¬AB∗ imply that a ≡ b ≡ c ≡ 1 that d ≡ 1, e ≡ 1, and f ≡ 0. The predicted value for
f is therefore 0, but the actually observed value is 1. Based on system description SD and
observation obs1 a conflict can be inferred. The resulting conflict in our example is

SD ∪ {obs1} ` AB(A) ∨ AB(B) ∨ AB(C). (6.2)

The diagnosis task is to find health assignments that make SD and OBS consistent. The list
in Equation 6.3 shows all valid diagnoses based on observation obs1 ordered by cardinality.

single fault diagnoses:

∆1 = {A}, ∆2 = {B}, ∆3 = {C},

double fault diagnoses:

∆4 = {A,B}, ∆5 = {A,C}, ∆6 = {B,C},

triple fault diagnoses:

∆7 = {A,B,C}

(6.3)
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The set of diagnoses can be reduced to the set of minimal cardinality diagnoses, defined in
Definition 14. The list in Equation 6.4 shows the set of minimal cardinality diagnoses. The
minimal cardinality among all diagnoses is 1 yet it can not be concluded that there is only one
failure in the system. The only conclusion that can be drawn is that there is at least one failure
in the system.

single fault diagnoses:

∆1 = {A}, ∆2 = {B}, ∆3 = {C}
(6.4)

Assume another observation obs2 is collected:

obs2 = [a ≡ 1 ∧ b ≡ 1]→ d ≡ 1. (6.5)

Based on the two observations collected, obs1 Equation 6.1 and obs2 Equation 6.5, it can be
deduce that a fault in component A individually can not explain the discrepancy. Recall, non-
intermittent faults are assumed. This reduces the set of minimal cardinality diagnoses to the
list:

single fault diagnoses:

∆2 = {B}, ∆3 = {C},
(6.6)

To illustrate the limitations of standard diagnosis frameworks, assume that another two ob-
servations obs3 and obs4 are collected, shown in Equation 6.8.

obs3 = [d ≡ 1 ∧ c ≡ 1]→ e ≡ 1 (6.7)
obs4 = [e ≡ 1]→ f ≡ 0

Based on the observations obs1, obs2, and obs3, it can be concluded that neither component
A individually nor component B individually can explain the discrepancy. Once the reasoning
is expanded to include all available observations, obs1, obs2, obs3, and obs4, the diagnosis
framework results with an irresolvable contradiction. But why is that? Lets take a closer look
at the observations, obs1, obs2, obs3, and obs4. The observations can be re-written as shown in
Equation 6.9.

obs2 = [a ≡ 1 ∧ b ≡ 1]→ d ≡ 1 (6.8)
obs3 = [d ≡ 1 ∧ c ≡ 1]→ e ≡ 1

[obs2 ∧ obs3] → [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ e ≡ 1

obs4 = [e ≡ 1]→ f ≡ 0

[obs2 ∧ obs3 ∧ obs4] → [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 0

obs1 = [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 1

As a result, it can now be seen that observation obs1 is in an irresolvable contradiction to
the observations obs2, obs3, and obs4. This inconsistency is independent of the chosen health
assignment. As there exists no health assignment that makes the observations consistent, it can
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be inferred that there exists no diagnosis for the system. Generally, the existence of a diagnosis
is defined as:

Definition 18. A diagnosis exists for (SD,COMPS,OBS) if and only if SD ∪ OBS is
consistent.

Standard model-based diagnosis will terminate with an irresolvable contradiction, if no di-
agnosis can be found. Formally, from Definition 18 it follows that there exists no diagnosis for
(SD,COMPS,OBS) if and only if SD ∪ OBS is inconsistent. Hence, in our example, no
diagnosis can be found, and standard model-based diagnosis terminates with an error.

The limitations are caused by the assumption that an accurate and complete model is avail-
able. In a real world scenario this is rather impractical. Building models is a time demanding,
expensive process. Therefore, most system models are limited to enable detection or isolation
of a small pre-defined set of failures. Typically, a system model captures only the knowledge
required to diagnosis this pre-defined set of failures and abstracts all other information away.

For example, the automobile industry adopted on-board diagnosis for cars, but only tar-
geted to specific subsystems and failure modes. Some cars have the capability to diagnosis
if a head light bulb is out, but fail if the connecting cable is broken. A broken cable occurs
so infrequently, that most diagnosis designer neglect that a cable might break and abstract it
away (de Kleer 2007b). If the cable does break, the initial diagnosis might suggest that one
of the two connected components is faulted. Once the two components are individually tested
without noticeable abnormality the diagnosis framework either incorrectly concludes an in-
termittent fault in one of the two components (if the framework is aware of this fault type)
or terminates with an irresolvable error. The irresolvable error results from the unawareness
of the connection. The connection is hidden to the diagnosis framework and all other compo-
nents are exonerated as fault candidates. The diagnoser results with an empty list of diagnosis
candidates, yet has observed a discrepancy. This results in an irresolvable contradiction.

Another reason for incomplete system models is due to model recycling, the act of reusing
an already existing model. Building models is an expensive and time demanding task, which
makes model recycling attractive. Typically, there are two kinds of sources for reusable mod-
els: Either there exists a similar system, similar enough to adapted its model or there exists a
model for the target system which was originally built for a different task, e.g. system based
on a planning (Kuhn et al. 2008b) or scheduling (Muscettola et al. 1998) model.

The set of failures desired to be diagnosable as well as the intended repairs influence the
scope and abstraction level of the resulting system model. For example, a vendor that only per-
forms repair by exchanging entire subsystems might neglect fault isolation on the component
level as it is not necessary for the repair. This leads to abstract system models targeted towards
a specific diagnosis task. In our car example, diagnosis is targeted to find the most common
failures (e.g. broken light bulb), but results with an irresolvable contradiction if a component
outside of the model scope causes the abnormality, e.g. a broken cable. Such models violate
the no-function-in-structure principle.
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6.4 Model-based Diagnosis with Interaction Faults
This section proposes a diagnosis framework that is able to diagnose component faults as well
as hidden interaction faults. The approach builds on the assumption, that there is no additional
knowledge besides what is already captured by the model. Hence all available knowledge is
already built into the model, yet the model might still be incomplete. This leads to a new
fault type: faults caused by hidden interactions, coined interaction faults. An interaction fault
is present, if an interaction among a set of components leads to an observable failure, even
though each individual component individually meets the specification. Hidden interactions
can lead to interaction faults. Hidden interaction faults can be characterized into the following
two groups of hidden interactions:

• A hidden component interaction is present if a set of known components interact through
a hidden component. The component is hidden in the sense that it does not appear in
the model. A common example for hidden components are connections in circuits (de
Kleer 2007b). Most system models abstract connections away. Typically, a fault in a
connection initially results in the belief that one of the two connected components is
faulted. Once the two components are individually tested without noticeable abnormal-
ity the diagnosis framework either incorrectly concludes an intermittent fault (if the
framework is aware of this fault type) or terminates with an irresolvable contradiction.

• A hidden behavior interaction is present if and only if the interaction between a set of
components leads to unpredicted behavior. Consider a food processing line for candy
bars. There are multiple components wrapping and boxing candy bars. It may be that
component A leaves a tiny rip which is of no consequence for the consumer, but boxing
component B has a small protrusion such that the rip sometimes catches and destroys
the candy bar. Such faults are called hidden behavior interaction faults:A andB are per-
fectly operational individually but will not work correctly if A and B operate together.
Hidden behavior faults also occur in circuits: Two gates A and B may not work well
together as the accumulated delay leads to a failure. Testing both components individu-
ally might convey that both are late, yet within specification. (Some might call this bad
design, but most complex systems have design errors.)

The following section introduces a diagnosis framework for systems containing interaction
faults. First, such systems are defined and an extension to standard model-based diagnosis is
discussed such that the diagnosis framework accounts for both individual component faults
as well as hidden interaction faults. The extension is generally applicable without additional
system knowledge. Definition 19 defines a model-based diagnosis system with hidden inter-
actions:

Definition 19. A model-based diagnosis system with hidden interactions is represented as a
quadruple
(SD+, COMPS,OBS+, SCOPE) where:

• SD+, extended system description, is a set of first-order sentences,
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• COMPS, components, is a set of constants,

• OBS+, extended observations, is a set of first-order sentences,

• SCOPE, scope of an observation, is a function mapping an observation onto a subset
of COMPS.

The extended system description SD+ extends the standard system description SD, de-
fined in Definition 5, to account for potential hidden interactions. Similar to before, the SD+
contains knowledge about the behavior and the structure of the system, but admits the possibil-
ity of a hidden interaction. Related approaches (Davis 1984, Bottcher 1995, de Kleer 2007b)
have suggested to extend the SD by explicitly modeling potential hidden interactions by us-
ing additional knowledge about the system. The suggested extension is domain independent,
hence any system is extended with the same extension. This enables the approach to be widely
applicable, even if potential hidden interactions are not known at design time. Before the ex-
tension is introduced, the definition of AB-literals needs to be modified. The modified literals
are denoted as ABi-literals:

Definition 20. Let Pow(COMPS) be the set of all subsets of COMPS such that

Pow(COMPS) = {pc | pc ⊆ COMPS} , (6.9)

let pc ∈ Pow(COMPS) indicate an interaction among all components in pc and let all
ABi(x) = AB(x). An ABi-literal indicates the health of pc ∈ Pow(COMPS) and can
be either AB(pc) or ¬AB(pc), where AB(pc) represents that pc is ABnormal (faulted) and
¬AB(pc) indicates that pc is not ABnormal, thus behaving normal.

Based on the standard system description SD, the extended system description SD+ is
simply constructed by first adding the model extension ME shown in Equation 6.10 and
secondly by replacing all AB-literals with the corresponding single component ABi-literals.

ME =
⋃

pc∈Pow(COMPS)

ABi(pc)→
[ ∧
pc′⊂pc

¬ABi(pc′)

]
(6.10)

The extension semantically adds two aspects to a system description. First, it introduces
ABi-literals for all pc’s with higher cardinality and second it introduces the relation among
individual ABi-literals. ABi-literals for higher cardinality pc’s account for unmodeled inter-
actions which might occur between components c ∈ pc. This guides the diagnosis framework
to detect and isolate abnormalities even if they are caused by hidden interactions. In the case
some pc is diagnosed to be abnormal, sentence 6.10 enforces that all subsumed pc′’s are diag-
nosed to be not abnormal. The second aspect is important as it only makes sense to hypothesize
about an interaction fault if all hypotheses of subsumed individual component faults as well
as interaction faults are exonerated.

The extended system description for our example SMALLY can be formalized as shown in
Equation 6.11. The hidden interaction is indicated as a dashed connection in Figure 3.4.
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SD = CL ∪ ST ∪ME where

CL = {And(x)→
[¬AB({x})→ [in(x, 1) ∧ in(x, 2) ≡ out(x)]]

Inv(x)→ [¬AB({x})→ [in(x, 1) ≡ ¬out(x)]]}
ST = {And(A) ∧ And(B) ∧ Inv(C),

a ≡ in(A, 1) ∧ b ≡ in(A, 2) ∧ out(A) ≡ d,

d ≡ in(B, 1) ∧ c ≡ in(B, 2) ∧ out(B) ≡ e,

e ≡ in(C, 1) ∧ out(C) ≡ f}
ME = {ABi({A,B})→ [¬AB({A}) ∧ ¬AB({B})] ,

ABi({A,C})→ [¬AB({A}) ∧ ¬AB({C})] ,
ABi({B,C})→ [¬AB({B}) ∧ ¬AB({C})] ,
ABi({A,B,C})→
[¬AB({A}) ∧ ¬AB({B}) ∧ ¬AB({C})∧
¬AB({A,B}) ∧ ¬AB({A,C}) ∧ ¬AB({B,C})]}

(6.11)

The extended SD+ does not define any relations between possible observations and in-
teraction faults. A good technician can infer interaction faults from observations. Consider a
technician tests two components individually and observes no abnormality, but if both compo-
nents are tested together the observations indicate an abnormality. The technician would draw
the conclusion that there might exist a hidden interaction. To enable a diagnosis framework
to perform the same kind of inference, two things have to be defined: First, the scope of an
observation has to be defined, basically what is being tested together. Second, the scope has
to be incorporated into the observations, to indicate which observation is relevant to which
interaction faults. Given an observation, the concept of an observation scope defines the set
of components that has potentially impacted this observation. Once the function SCOPE is
defined, a set of observations OBS can be extended to a set of extended observations OBS+
according to:

OBS+ =

[obs] ∨
∨

pc⊆Scope(obs)

ABi(pc) | |pc| > 1, obs ∈ OBS
 (6.12)

Generally, the function SCOPE can be extracted from the system description without re-
lying on additional information. An observation is a set of measurement points. The system
structure combined with the component behavior provides information in order to determine,
which set of components has potential impact on, which set of measurement points. The scope
of an observation can be extracted by backward reasoning. In the example, the scope of an ob-
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servation is informally defined as the components that had potentially impacted the resulting
measurement point. For example an observation measuring at point a and e scopes over com-
ponent A and B, an observation measuring at point a, b, and f scopes over the components
A,B,C and an observation measuring only a and b scopes over no component as the signal
neither travels from a to b nor from b to a. The scope for the observations in our example are
illustrated in Listing 6.14.

SCOPE(obs1) = {A,B,C} (6.13)
SCOPE(obs2) = {A}
SCOPE(obs3) = {B}
SCOPE(obs4) = {C}

Given the observation scopes the extended observation can be constructed based the ex-
tension rule shown in Equation 6.12. The resulting extended observations are shown in List-
ing 6.15.

obsi1 = [obs1] ∨ ABi({A,B}) ∨ ABi({A,C}) ∨ (6.14)
ABi({B,C}) ∨ ABi({A,B,C})

obsi2 = obs2

obsi3 = obs3

obsi4 = obs4

Until now the system definition has been extended and ABi-literals have been introduced
with the intent to diagnose hidden interaction faults. Definition 11 defines a diagnosis as set of
components assigned to be abnormal such that the resulting assignment over all components
makes the system description consistent with the observations. In this definition an assignment
is limited to determine which individual component is considered to be abnormal or not abnor-
mal. In order to account not only for individual components, but also for hidden interactions,
the assignment is expanded to be over all ABi-literals. Individual components are captured
by ABi-literals with cardinality 1 and hidden interactions are addressed by ABi-literals with
higher cardinality. A diagnosis is an assignment of abnormal or not abnormal to all elements of
Pow(COMPS) describing one possible health state of the system. Formally, a diagnosis for
systems with hidden interactions, called an interaction diagnosis, is defined in Definition 22.

Definition 21. Given two sets CAB, C¬AB ⊆ Pow(COMPS), Di(CAB, C¬AB) is defined to
be the conjunction: [ ∧

pc∈CAB

ABi(pc)

]
∧
[ ∧
pc∈C¬AB

¬ABi(pc)

]
(6.15)

where ABi(x) corresponds to the ABi-literal of x.

Definition 22. An interaction diagnosis ∆i for (SD+, COMPS,OBS+, SCOPE) is a sub-
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set of Pow(COMPS), such that the following set of sentences is satisfiable

SD ∪OBS ∪ {Di(∆, Pow(COMPS)−∆)
}

(6.16)

The Listing 6.17 shows all valid interaction diagnoses for SMALLY given that only ob-
servation obsi1 was observed.

single fault interaction diagnoses:

∆i
1 = {{A}}, ∆i

2 = {{B}},
∆i

3 = {{C}}, ∆i
4 = {{A,B}},

∆i
5 = {{A,C}}, ∆i

6 = {{B,C}},
∆i

7 = {{A,B,C}}
double fault interaction diagnoses:

∆i
8 = {{A}, {B}}, ∆i

9 = {{A}, {C}},
∆i

10 = {{B}, {C}}, ∆i
11 = {{A}, {B,C}},

∆i
12 = {{A,B}, {C}}, ∆i

13 = {{B}, {A,C}}
triple fault interaction diagnoses:

∆i
14 = {{A}, {B}, {C}}

(6.17)

Similar to Definition 14, the set of interaction diagnoses can be reduced by adapting the
concept of minimal cardinality interaction diagnoses, as illustrated in Definition 23.

Definition 23. An interaction diagnosis ∆i
x for (SD+, COMPS,OBS+, SCOPE) is min-

imal in cardinality if and only if there exists no other interaction diagnosis ∆i
y such that

|∆i
y| < |∆i

x|.
The minimal cardinality interaction diagnoses resulting from observation obsi1 are all single

fault diagnoses in Listing 23. Further the set can be reduced by an even more strict definition
of minimal, coined a minimal cardinality, minimal interaction diagnosis.

Definition 24. A minimal cardinality diagnosis ∆i
x for (SD+, COMPS,OBS+, SCOPE)

is also a minimal cardinality, minimal interaction diagnosis if and only if there exists no other
diagnosis ∆i

y such that an element in |∆i
y| is a strict subset of any element in |∆i

x|.
The resulting set of minimal cardinality, minimal interaction diagnoses, given that observa-

tion obsi was observed, is illustrated in Listing 6.18.

minimal cardinality, minimal interaction diagnoses:

∆i
1 = {{A}}, ∆i

2 = {{B}}, ∆i
3 = {{C}}

(6.18)
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Listing 6.18 shows the set of minimal cardinality, minimal interaction diagnoses assuming
only observation obsi1 is available. Consider observation obsi2 is included such that the resulting
set of interaction diagnoses has to be consistent with both observations, obsi1 and obsi2. It can be
deduced that a fault in component A individually can not explain the discrepancy. Therefore,
the resulting set of minimal cardinality, minimal interaction diagnoses reduces to the once
shown in Listing 6.19

minimal cardinality, minimal interaction diagnoses:

∆i
2 = {{B}}, ∆i

3 = {{C}}
(6.19)

Consider now that observations obsi3 is included. From all three observations, it can be de-
duced that a single fault in component A as well as a single fault in component B can not
explain the discrepancy. The only explanation for the discrepancy is that there exists either
a single fault in component C, an interaction fault or a multiple fault. Restricting the set of
diagnoses to the set of minimal cardinality interaction diagnoses implies that multiple fault
diagnoses are only be considered if all single faults are exonerated. This leaves only the hy-
potheses of a single fault in component C or single interaction faults as valid diagnoses. The
remaining set of diagnoses is shown in Listing 6.20, in more detail.

minimal cardinality interaction diagnoses:

∆i
3 = {{C}}, ∆i

4 = {{A,B}},
∆i

5 = {{A,C}}, ∆i
6 = {{B,C}},

∆i
7 = {{A,B,C}}

(6.20)

The diagnoses in Listing 6.20 are all minimal cardinality interaction diagnoses according to
Definition 23, yet not all of them are also minimal cardinality, minimal interaction diagnosis.
According to Definition 23 and the fact that diagnosis ∆i

3 is a valid diagnosis it can concluded
that diagnoses ∆i

5, ∆i
6, and ∆i

7 are not considered to be minimal cardinality, minimal interac-
tion diagnoses. All three contain at least one element x, such that {C} ⊂ x. The resulting set
of minimal cardinality, minimal interaction diagnoses is shown in Listing 6.21.

minimal cardinality, minimal interaction diagnoses:

∆i
3 = {{C}}, ∆i

4 = {{A,B}}
(6.21)

Considering all four observations obsi1, obs
i
2, obs

i
3, obs

i
4, it can be deduced that a single fault

in component C can not explain the observations either. Diagnosis ∆i
3 is not longer a valid

diagnosis. At this point the standard model-based diagnosis framework terminates with an
irresolvable contradiction. The proposed framework, however, generates the set of minimal
cardinality, minimal interaction diagnosis shown in Listing 6.22.
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minimal cardinality, minimal interaction diagnoses:

∆i
4 = {{A,B}}, ∆i

5 = {{A,C}}, ∆i
6 = {{B,C}}

(6.22)

Our framework he does not result with an irresolvable contradiction if and only if at least
one of the ABi-literals shown in Listing 6.23 is assigned to abnormal. By assigning one
of the interaction ABi-literals to abnormal observation obsi1 evaluates independently of the
assignment to all other ABi-literals without conflict.

ABi({A,B}) ∨ ABi({A,C}) ∨ ABi({B,C}) ∨ ABi({A,B,C}) (6.23)

Definition 25. A system is diagnosed to contain multiple faults if and only if a minimal cardi-
nality diagnosis ∆i contains more than one element.

Definition 26. A system is diagnosed to contain an interaction fault if and only if a minimal
cardinality, minimal interaction diagnosis ∆i contains an element x ∈ ∆ with more than one
component.

6.5 Conclusions
This chapter has proposed a fundamentally new approach to address the very real issue that
most system models are incomplete. Ensuring complete models is practically impossible.
Through introducing interaction literals most kinds of unintended interactions can be accom-
modated within the model-based diagnosis framework. One of the main motivations behind
this work arose from developing diagnostic algorithms for Xerographic equipment. Interac-
tion faults are surprisingly common and are difficult for technicians to diagnose. They are also
difficult to self-diagnose (more and more equipment includes self-diagnosis).

This chapter has lays out a fundamental approach to hidden interaction faults. As with all
model-based frameworks, it is computationally explosive if directly implemented as described
in the definitions of this chapter. An efficient implementation is outline in Chapter 4, called
Tiered-Partitioned Inference, which introduces both AB(x) and ABi(x) literals only when
needed, i.e., extends ME only when needed. A direct translation of Equation 6.10 to all inter-
action faults of cardinality n leads to potentially |COMPS|n clauses.
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Target-Value-Search
This chapter defines a new class of combinatorial search problems, called Target-Value Search
Problem, in which the objective is to find the path or set of paths between two given vertices
in a graph whose length/value is as close as possible to some target-value. Unfortunately, tra-
ditional heuristic search methods developed for shortest path search cannot be directly applied
due to the lack of optimal substructures in target-value problems. Target-value problems are
a generalization of shortest path problems. Target-value Search Problems can be decomposed
into simpler searches using an interval-valued heuristic. Given the decomposition the prob-
lem can then be solved with efficient A∗ searches. Further it is shown that switching from a
single-interval to a multi-interval heuristic further improves performance. Target-value prob-
lems arise in a variety of domains including planning for activity recommendation and the
integration of automated planning and diagnosis. This chapter illustrate the problem and the-
oretical findings experimentally.

7.1 Introduction
This Chapter addresses the problem of finding a path that achieves the goal, while coming as
close as possible to a target length. These types of problem arise in a variety of domains. In
consumer recommendation domains people often have approximate targets (Winter 2002) that
they would like to get as close to as possible. For instance, one might want to hike in a park
from some parking lot to some mountain cabin in about 3 hours. Within the set of hikes that
reach the cabin, hikes much shorter than 3 hours would be too easy and hikes much longer
than 3 hours would be too tiring.

Target-value search is not limited to problems involving distance. In diagnosis, a technician
would like to select a valid action sequence that is most informative about why the system is
failing, see Chapter 3. Of course, if the sequence is invalid, it will not execute at all. Within
the set of valid sequences, the most informative sequence will be the one whose probability of
failing comes as close as possible to some target(-value) failure probability mass, e.g. T = 0.5
in the persistent failure case. A sequence that succeeds too often, or fails too often, reveals less
information, see Section 3.5.1.

The chapter is organized as follows: In the next section the Target-value Search Problem is
formally defined and a decomposition of the Target-value Search Problem is introduced such
that solutions can be found by leveraging A∗ search (Hart et al. 1968). The key idea of the pre-
sented approach is a novel method of calculating an interval-valued heuristic. Finally, the last
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section evaluates the presented heuristic search on a set of (synthetic and real-world) problems
from the diagnosis domain designed to explore the performance of this new techniques.

7.2 Target-value Search Problem
Let G = (VG, EG) be a finite, directed acyclic graph (DAG), with a set of vertices VG and a
set of positive valued edges EG. Let p = 〈v0, ..., vn〉 be a path where vi ∈ VG and neighboring
vertices are connected by edges (vi, vi+1) ∈ EG. Let the path value, g(p), be the sum of the
edge values in p.

Definition 27. Let pv0→vg be a path from vertex v0 to vg and Pv0→vg be the set of all paths
from v0 to vg. A target-value path pTv0→vg

w.r.t. v0, vg and target-value T is a path from v0 to
vg with minimal deviation between its path value and the specified target-value T :

pTv0→vg
∈ argminp∈Pv0→vg

| g(p)− T |. (7.1)

7.3 Conventions
For clarity and brevity, the discussion is limited to connection graphs. A connection graph
CG
v0→vg

is defined of two vertices v0, vg ∈ G as the sub-graph of G, containing v0, vg and each
vertex that is both a successors of v0 and a predecessor of vg as well as all corresponding edges
(∈ EG) between them. Note thatCG

v0→vg
can be extracted fromG (as shown in Figure 7.1). This

can be done in linear time and space (O(|VG|+ |EG|)) by constructing the successor graph of
v0 and the predecessor graph of vg using breadth-first sweep and taking their intersection.

v0

vg

v0

vg

b1 b2

a1 a2

a'1 a2 a3

a1 a2

b1 b2
||e|| ||e||

a'1 a'2

R′(a) = R(a) ∪R(b)

∪R(a)

R(b)

path valuefam
pre1

path valuefam
pre2

T

path valuefam
pre1

path valuefam
pre2

T

FIGURE 7.1 Extracting CG
v0→vg

from some graph G

In the remainder of the chapter, the discussion refers to the connection graph CG
v0→vg

as
simply C, to the set of edges EC as E , and to the set of edges VC as V .
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7.4 Challenges of the Target-Value Search Problem
Target-value Search Problem is challenging because it does not exhibit optimal substructure.
A problem is said to have optimal substructure if an optimal solution can be constructed effi-
ciently from optimal solutions of its sub-problems. This property is a prerequisite of dynamic
programming. For example, the shortest path problem has optimal substructure. Any sub-path
of a shortest path is itself a shortest path with respect to its first and last vertices. For example,
in Figure 7.2 the shortest path from v0 to vg will use the shortest path from v1 to vg indepen-
dent of the path selection from v0 to v1. The shortest path from v1 to vg will then be combined
with whatever the shortest path between v0 and v1 is.Submitted to SOCS’09 2

v0 v1 vg

e1, .2

e2, .3

e3, .2

e4, .3

Figure 1: tvs does not exhibit optimal substructure: consider the
above graph for tv = 5. after we expanded v0 we have two paths
< e1 >, < e2 > to v1. Both can lead to optimal solutions with the
right completion (i.e. < e1, e4 > and < e2, e3 >), the selection
of which depends on the whole prefix, not only on its last vertex

g*(pa)

g(pa) h(pa)

tv

f(pa) f*(pa)

Figure 2: an example for why a heuristic that underestimates
suffix lengths will not lead to an admissible tvs heuristic: here
f(p) = |tv − (g(p) + h(p))| > f∗(p) = |tv − g∗(p)| while
g(p) + h(p) < g∗(p)

can be exponential in the number of vertices in C.

Heuristic Target Value Search
A straightforward approach to tackle tvs problems is to
use some estimate h of suffix lengths and search through
path space with A∗ (Hart, Nilsson, and Raphael 1968) us-
ing an inadmissible guiding function, such as f(pre) =
|g(pre)+h(pre)− tv|. Note, that if h underestimates suffix
lengths (e.g. it is admissible for shortest-path search), f will
generally not be admissible for tvs due to the non-linearity
introduced by the absolute value operator. See figure 2 for
an example. The basic idea being to find a good solution
tvpcur quickly and use it to prune the Open list of all pre-
fixes, whose g value exceeds tv + |tv − g(tvpcur)|. The
search terminates, if either a perfect solution is found (i.e.
g(tvp) = tv), or the Open list is empty (returning tvpcur).

Previous Work
(Dow and Korf 2007) show, how an admissible heuristic can
be constructed for the non-standard objective function of the
treewidth problem and then be employed in best-first search.
(Kuhn et al. 2008b) construct a pattern database (Culberson
and Schaeffer 1996) to derive a consistent heuristic for best-
first target value search. They show, that problem structure
can be leveraged in two ways: First, prefixes ending in the
same vertex and having equal value can be considered du-
plicates and be used to prune the search tree. Second, given
the pattern database for the graph, one can, in addition to
guiding the search, detect when the problem of finding an
optimal suffix for some prefix degenerates into a shortest or
longest path problem, which can then be solved straightfor-
wardly in vertex space. The pattern database (pdb in the fol-
lowing) contains bounds of vertices’ different paths’ values

v0

vg

e
5 =0.9

e 4
=
2
.4

e 3
=0
.6

e
2
=
0
.8

e
1 =0.8

[0.9;0.9]

[0.0;0.0]

[1.5;2.4]

[1.7;3.2]

v2

v1

Figure 3: the connection graph (solid edges) of v0 and vg with
edge values and entries of a single interval pattern database

to vg . Given some prefix pre and tv, one can use the pdb to
determine, whether the target value for the suffix tv−g(pre)
falls outside the bounds stored in the pdb. If so, the problem
of finding an optimal completion for pre breaks down to ei-
ther a shortest- or longest-path problem, both of which can
be solved using dynamic programming.

The f(pre) function is defined as 0, if tv − g(pre) falls
inside the interval, otherwise as the distance of tv − g(pre)
to the closest bound. This can be used in a (more or less)
standard A∗ with duplicate detection as sketched out above.
In contrast to the first approach, which in most cases (if there
is no perfect tvp in the graph) has to generate all prefixes
in C, with g < tv + f∗, this can often make due with a
small subset, typically offsetting the cost for constructing
the pdb (especially if multiple queries are performed with
the same vg). In the worst case, both algorithms have to
generate all prefixes with values ≤ tv + f∗ in C, situating
them in EXPSPACE. Also the algorithm for computing
the pdb as given in (Kuhn et al. 2008b) has a worst-case
exponential runtime complexity.

In the following, we will show, how to extend the above
pdb concept, how to compute such pdb using an algorithm
with linear runtime in the size of C and how to apply depth-
first branch and bound search to tvs. We then give empirical
evidence that the combination of these techniques allows us
to scale tvs to much larger problems than before.

Pattern Database
The pdb of (Kuhn et al. 2008b) stores a single interval per
vertex, with the bounds comprising of the least and largest
value of that vertex’s suffixes. Thus the interval approxi-
mates the range of possible suffix values for that vertex (i.e.
the respective values of the shortest and longest paths from

FIGURE 7.2 Example Target-Value Search Problem

The Target-value Search Problem lacks optimal substructure. A sub-path of a target-value
path with respect to some target-value T is not necessarily a target-value path between its first
and last vertices with respect to the same T . For example, let the target-value be T = 5, let
the graph be the one shown in Figure 7.2, and let the target-value path problem from v0 to
vg be decomposed into two sub-problems: (1) from v0 to v1 and (2) from v1 to vg. Given the
target-value T , the solutions of the sub problems can not be construed as a solution of the
original problem from v1 to vg.

7.5 Naive Target-value Search Algorithm
In this section a naive target-value search algorithm is introduced and used to illustrate the
decomposition, which most Target-value Search Algorithms are based on. The naive algorithm
is constructed from Equation 7.1 by decomposing the argmin over complete paths from v0

to vg into a recursive set of argmin calculations over sub-paths from v′ to vg where v′ is an
immediate successor of v0. After traveling from v0 to v′ some value has been added to the
prefix. To be more specific, the value, which has been added, is the edge value of edge (v0, v

′).
Therefore the target-value can be adjusted by this amount to get the remaining target-value for
the remaining search or respectively to search the suffix of the path. Formally,
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Definition 28. The set of target-value paths PTv0→vg
can be recursively defined as:

PTv0→vg
=



{〈vg〉} if v0 = vg

∅ if notConnected(v0, vg)

v0 ◦ φ(T, v0) otherwise

φ(T, v0) = argmin
p′∈

S
(v0,v′)∈E

PT ′
v′→vg

|g(p′)− T ′|

(7.2)

with T ′ = T − g(〈v0, v
′〉) being the remaining target-value. The operator ◦ maps a vertex

v and a set of paths P to sets of paths P ′ = {〈v, v1, . . . , vn〉|〈v1, . . . , vn〉 ∈ P ; (v, v1) ∈
E ; v, vi ∈ V}.

As shown in the Equation 7.2, the set of target-value paths is one of:

• the singleton {〈vg〉} iff v0 = vg (Note that only DAG’s are considered and therefore if
v0 = vg there exists no other path between them),

• the empty set ∅ iff v0 and vg are not connected in G (since v0 and vg are not connected
in G, there will be no path between v0 and vg in C),

• the set of paths resulting from concatenating to v0 the “best” (w.r.t. the remaining target-
value T ′) completions in C.

It remains to be shown that the naive algorithm terminates. Let the cardinality of a path ||p||
be the number of vertices in its sequence minus one (i.e., the number of edges in the path).
Since C is a finite DAG,

1. for any partial path from v0 to vn, there are a finite number of successors v′n —- certainly
less than |V|.

2. all paths in the graph are finite —- certainly ||p|| < |V|

3. since the branching is finite and the depth is finite, the recursion will be finite. The
number of paths << |V||V|.

The naive algorithm clearly shows the structure decomposition and how a solution can be
computed. Unfortunately, due to the tree recursive nature of this algorithm, the computation
can lead to an exponential blow-up, since the number of paths from v0 to vg in C can be
exponential in the number of vertices in C. However, using a heuristic search approach can
(potentially) avoid the enumeration of most paths.
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7.6 Using Heuristic Search
In general, best-first search explores first the prefixes that appear to be most likely to lead
towards the goal. A special case of best-first search isA∗-search (Hart et al. 1968), which takes
the distance already traveled into account. A straightforward approach to solve the target-value
path problem is to search the prefix space with A∗-search using Equation 7.3:

f(pre) = | g(pre) + h(pre.lastV )− T | (7.3)

where g(pre) is the actual path value of the prefix pre and h(pre.lastV ) is an admissible lower
bound heuristic for the path value from pre’s last vertex to the goal vertex. Prefixes ending in
the same vertex and having equal g(pre) values can be considered duplicates and can be used
to prune the search tree. Note, that the evaluation function f(pre) will not be a lower bound on
the target-value deviation due to the non-linearity introduced by the absolute value operator.
See Figure 7.3 for an example.

g*(pre)

g(pre) h(pre.lastV)

T

f(pre) f*(pre)

FIGURE 7.3 Heuristic that underestimates suffix values will not lead to an admissible target-
value search heuristic: here f(pre) > f ∗(pre) while g(pre) + h(pre.lastV ) < g∗(pre)

Therefore, the search can not optimally be terminated as soon as a goal vertex is to be
expanded. In order to guarantee optimality, the currently best target-value path from v0 to vg
w.r.t. the target-value has to be maintained and all prefixes in C for which Equation 7.4 holds
have been explored.

g(pre) + h(pre.lastV ) < T + f(best) (7.4)

After all prefixes in C for which Equation 7.4 holds have been explored, the search can be
terminated with the currently best target-value path as the result path. Note that for big target-
values this can still lead to an exponential blow-up, since the number of prefixes in C, for
which Equation 7.4 holds, can be exponential in |V |.

However, using h(pre.lastV ) as the lower bound heuristic lets us prune prefixes for which
Equation 7.5 holds.

g(pre) + h(pre.lastV ) > T + f(best) (7.5)

To further limit the search space a non-underestimating upper bound heuristic can be intro-
duced, denoted h+(pre.lastV ), in addition to the lower bound heuristic. This upper bound
heuristic can be used to prune all prefixes in the search tree for which Equation 7.6 holds.

g(pre) + h+(pre.lastV ) < T − f(best) (7.6)
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The next section proposes an algorithm that uses both lower and upper bound heuristics and
introduces an evaluation function f(pre) that does not overestimate the target-value deviation.

7.7 Heuristic Target-Value Search

The proposed algorithm uses lower bounds and upper bounds to limit the search space, and
introduces an admissible (non-overestimate) evaluation function f(pre) for the target-value
deviation.

For each vertex v in C, let h−(v) be a non-overestimate lower bound heuristic and h+(v) be
a non-underestimate upper bound heuristic on the path value from v to the goal vertex. Given
a vertex v with its corresponding lower and upper bound heuristics, a range can be defined,
denoted r(v), that bounds the path value of all possible suffixes from v to the goal vertex as
shown in Equation 7.7.

r(v) = [h−(v), h+(v)] (7.7)

The lower bound of the interval is denoted as r(v).l and the upper bound as r(v).u.
Furthermore, the path family of some prefix pre, denoted fampre, is the set of all paths from

v0 to vg sharing the common prefix pre. Given some path family fampre, a path value interval
(similar to the range) can be constructed by combining g(pre) with either r(pre.lastV ).l or
r(pre.lastV ).u as shown in Equation 7.8.

i(pre) = [ g(pre) + r(pre.lastV ).l,

g(pre) + r(pre.lastV ).u ]
(7.8)

The path value interval i(pre) bounds the path value for all paths in fampre. The lower bound
of the interval is denoted as i(pre).l and the upper bound as i(pre).u. The interval i(pre) is used
to construct an admissible (non-overestimate) evaluation function f(pre) for the target-value
deviation:

f(pre) =


0 i(pre).l ≤ T ≤ i(pre).u

i(pre).l − T i(pre).l > T

T − i(pre).u i(pre).u < T

(7.9)

If the target-value falls in the path value interval of some prefix pre, there is potentially a
path in fampre that exactly achieves the target-value. In this case f(pre) returns zero, as it must
be a true non-overestimate of the target-value deviation. For prefixes where the target-value
does not fall within the interval the following fact can exploited . Since it is assumed that the
lower bound i(pre).l and upper bound i(pre).u are true bounds, it is known that there exists
no path in fampre outside those bounds. If the target-value is below the lower bound of the
interval, the smallest possible deviation is i(pre).l − T . If the target-value is above the upper
bound, the smallest deviation is T − i(pre).u. The evaluation function f(pre) in Equation 7.9
is therefore an admissible lower bound on the target-value deviation.

The path value intervals can also be used to calculate a non-underestimate upper bound of
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target-value deviation, as shown in Equation 7.10.

pruneBound(pre) = max( | T − i(pre).l |,
| T − i(pre).u | )

(7.10)

This upper bound function can be used to maintain a global best upper bound on target-value
deviation pruneBound(best). This global best upper bound can be leveraged to prune prefixes
pre where

f(pre) > pruneBound(best). (7.11)

The evaluation function f(pre) together with pruneBound(pre) enables search to useA∗. The
search basically results in a shortest path search when T is below the interval and longest path
search when T is above the interval. The challenge occurs when the target-value falls within
the interval. This case occurs often near the beginning of the search, when there are many
possible path completions for each prefix, making the interval associated with the last vertex
of the prefix very wide. Many vertices will therefore be assigned the same heuristic value,
namely zero. While admissible, this effectively forces us into a blind search. The blind search
is not explicit, but results from the behavior of the A∗ algorithm. The prefixes that evaluate
to zero will move to the front of A∗’s priority queue and will be expanded first. A prefix that
evaluates to zero (f(pre) = 0) is denoted as a zero-prefix and the space of all zero-prefixes as
the blind-spot. Search in the blind-spot exposes two main difficulties:

• Search is not guided in the blind-spot and therefore will perform as poorly as the naive
algorithm introduced earlier.

• The priority queue might grow exponentially during the blind search, due to a combina-
tion of the tree structure of the naive algorithm and our inability to prune any zero-prefix
(it potentially leads to a path that exactly achieves the target-value).

Target-value search can therefore still lead to an exponential blow-up in time and space, since
the number of prefixes in the blind-spot can be exponential in |V |. However, once the blind-
spot is exhaustively searched, the target-value starts to fall outside the path value intervals.
Informative (non-zero) heuristic bounds can then be assigned, and informed search will again
dominate.

The next sections introduce two techniques to improve the performance of the Heuristic
Target-Value Search: Max-Value-First Search and Multi-interval Heuristic. Max-Value-First
Search is a best-first search technique, which uses an secondary objective function of break
ties of the primary objective function. This results in a significant size reduction of the pri-
ority queue and leads to great performance improvements. Multi-interval Heuristic Search
leverages multiple intervals to represent the heuristic value ranges, which leads to a blind spot
reduction. Multi-interval Heuristic Search is only briefly discussion and as it is described in
more detail in (Schmidt et al. 2009).
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7.8 Max-Value-First Search for Blind-Spot Search

The previous section illustrated that the size of the priority queue can grow exponentially
during the blind search. This is due to a combination of an inability to prune zero-prefixes and
the uninformed search in the blind-spot. Since search is not guided in the blind-spot, search
in the blind spot could result in breadth-first search. The challenge using breadth-first search
manifests in the fact that the priority queue can grow exponentially within the blind-spot. That
can lead to an exponential blow-up in space complexity.

Instead of unguided search, max-value-first search can be used within the blind-spot. Max-
value-first search uses a secondary objective function to guid the search in the blind spot. In
more detail, if the primary objective function f(pre) evaluates a prefix pre to zero (blind spot),
Max-value-first uses a secondary objective function, which expands the prefix with the great-
est path value g(pre) first. Max-value-first search is different from depth-first search, which
chooses randomly among the prefixes with the maximum edge number (depth). Therefore, a
search approach, which leverages depth-first search within the blind spot can be interpreted
as a serach which uses depth of a prefix as secondary objective. In comparison, Max-value-
first search guides the search directly to the frontier of the blind-spot where a zero-prefix
can be expanded with successors which are not zero-prefixes. Pruning can then be applied to
those successors. This is also interesting from an anytime algorithm perspective. Using max-
value-first search enables strong anytime performance, because max-value-first search guides
search in average faster out of the blind-spot (in average faster than depth-first search). Given
a fixed number of expansions, the number of non-zero prefixes found is greater or equal than
with depth-first search or breadth-first search. Therefore if an anytime algorithm is desired,
the most promising non-zero-prefix from A∗’s priority queue can be periodically selected and
expanded towards the goal. Note that non-zero-prefixes can be completed readily using in-
formed search, e.g. A∗. Without the anytime requirement, the search will still expand all zero-
prefixes, but now in a different order. This leads to significant size reduction of the priority list
and additionally allows pruning earlier in the process. A∗ can be used as the primary search
algorithm and max-value-first search can be implemented within the blind-spot by using the
following tie-breaking rule: Given two prefixes have equal f(pre)-values ties can be broken
by preferring the prefix with greater g(pre)-value. Since all prefixes in the blind-spot have the
same f(pre)-value, namely zero, the secondary objective (tie-breaking rule) dominates within
the blind-spot. That reduces the space required by the priority queue, because the blind spot
is explored in a depth-first fashion but with increased pruning strength while searching the
blind-spot.

Assume that the suffix range bounds are perfect (true for the multi-interval heuristic pro-
posed in the next section), then target-value search using max-value-first search, enforced by
the tie-breaking rule, requires at worst O(bd + |V | ∗ rmax) in space where b is the maximum
branching factor in the blind-spot, d is the maximum depth of the blind-spot search tree and
|V |∗rmax accounts for the stored ranges for all vertices (rmax is the maximum allowed number
of ranges per vertex). As illustrated in the experiment section this enables target-value search
to scale to much bigger problems. The next section briefly introduces Multi-interval Heuristic
Target-value Search, which leads to size reductions the blind-spot.
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7.9 Multi-interval Heuristic Target-value Search
As known from the previous two sections, the search performance is directly correlated to
the size of the blind-spot, which is directly correlated to the space covered by path value
intervals. Therefore, if less space is covered then the blind-spot is smaller, which leads to
increased search performance. This section introduces the idea of a multi-interval heuristic,
which reduces the size of the blind-spot. The key idea of multi-interval heuristic target-value
search is to characterize the path value space associated with a path family by using a set
of intervals instead of just one interval. The set of intervals associated with a path family is
denoted as I(pre).

For example, consider two path families fampre1 and fampre2 , which are characterized either
with a single interval (Figure 7.4(a)) and or with two intervals (Figure 7.4(b)).
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FIGURE 7.4 Single vs. multiple path value intervals.

The triangles indicate existing path values, and the blue bars the intervals. Given the target-
value T , in the single interval case prefix pre1 is a zero-prefix (f(pre1) = 0) and therefore an
element of the blind-spot. This forces target-value search to expand pre1 before pre2, even if
prefix pre2 leads ultimately to a better solution. In the case of two intervals per path family,
the space covered by the intervals is smaller as by a single interval, shown in Figure 7.4. In
general, in the worst case a multi-interval representation covers at most the same. In the case
where two intervals are used, prefix pre1 is no longer an element of the blind-spot. As a result,
both prefixes, pre1 and pre2, evaluate to a non-zero heuristic value and therefore prefix pre2
can directly be expanded, since it is closer to the target-value.

A non-overestimate lower bound evaluation function on the target-value deviation f(pre)
can now be constructed in much the same fashion as for a single interval. For the multiple
interval case, the target-value can be compared to the closest upper interval bound and the
closest lower interval bound among all intervals associated with a path family. This leads to
the following lower bound evaluation function: (For clarity and brevity, but with some abuse
of notation, a path value interval i(pre) is referred to as i and a set of intervals I(pre) as I .)
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f(pre) =


0 ∃ i ∈ I : i.l ≤ T ≤ i.u

min( min
i∈I
|i.l − T |,

min
i∈I
|T − i.u| ) otherwise

(7.12)

The multiple intervals can also be exploited for pruning. A non-underestimate upper bound
heuristic on the deviation can be defined from the set of intervals associated with some path
family in a similar manner.

pruneBound(pre) = max( min
i∈I,i.l≤T

T − i.l,
min

i∈I,i.u≥T
i.u− T )

(7.13)

By converting the set of path value intervals to a non-overestimating lower bound evaluation
of deviation from target-value, it is possible to search with A∗.

Multi-interval target-value search relies on efficient computation of the multi-interval heuris-
tic assigned to each path family. Details on how a Multi-interval Heuristic can be computed
can be found in (Schmidt et al. 2009).

7.10 Applications of Target-value Search
The Target-value Search Problem arises in a variety of domains ranging from activity recom-
mendation to navigation to diagnosis. This section outlines two application domains in which
Target-value Search Problems appear: Automated diagnosis of plan-driven Systems and con-
sumer recommendation.

7.10.1 Automated diagnosis of plan-driven systems
Plan-driven control is a key technology for creating reliable and highly adaptable production
systems. A practical example, of a planner driven system can be found in the modular redun-
dant printing engine introduced in Chapter 2.4.1. The system is composed of 197 independent
modules including feeders, marking engines, redirectors, finishers, etc. The modules work to-
gether to produce a variety of printed products. Given an user specified goal, such as a bound
report with the following pages and spot colors, a model-based planner is used to synthesize
a control program to provide real time coordination and control for the modules (Fromherz
et al. 2003, Do et al. 2008b). However, real-world systems might evolve overtime and re-
quire reasoning about their underlying health. In printing systems, rare intermittent faults can
be particularly difficult to diagnose. To reduce the cost of diagnosis, it is possible alter pro-
duction plans such that more information can be gained from production plans, resulting in
informative production plans.

A technique for creating informative production plans is called Pervasive Diagnosis see Sec-
tion 3.2.2.4, and (Kuhn et al. 2008b). A central problem in pervasive diagnosis is to find pro-
duction plans that fail with a probability mass optimal for information gain, see Section 3.5.1
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and (Liu et al. 2008). If the failure probability is too low, the plan will likely never fail and if it
is too high, it probably uses components already known to be broken. Pervasive diagnosis can
be formulated as a target-value search, Section 3.5.2. Let the action set be the edge set E , and
the success probability of an action be the edge weight. Given independent action failures, the
optimal probability of a plan succeeding or failing is equal to the “total probability mass” of a
plan.

7.10.2 Consumer recommendation
A consumer recommendation of complex activities and products, such as route planning
(Winter 2002) or vacation planning, can be formalized as a multi-step search problem con-
sisting of a start state, a goal state, a set of transitions and some optimization criteria. Many
types of activity planning have a target-value component.

14!

27 

Motivation: Consumer Recommendation  

We would like to hike to the top of Black Mountain in 4 miles. 

longest path 4.1 mi path shortest path 

28 

Target-Value Path does not have optimal substructure property  

•! Target-Value Problem is non-order preserving 

•! Best path completion at v depends on the path from s to v! 

NP-hard (reduction from Hamiltonian path problem) 

•! Search over prefix-space, search space explosion.  

FIGURE 7.5 Applications for the Target-Value Path Problem: Hiking trail planning.

For example, a consumer may wish to find a route for a hiking trip (Figure 7.5) that takes a
certain amount of time, burns a certain amount of calories, or as in illustrated in Figure 7.5 is
as close as possible to 4 miles long. The more the value of the path deviates from the target-
value, the less desirable the path is to the consumer. Specifically, the shortest and the longest
path are not of interessed.

In practical domains, such as hiking, apparent cycles in the domain such as loops on a hiking
trail map can be seen as not true cycles in state space, as the state of the hiker before and after
hiking around the loop might be very different. In all practical examples studied as part of this
work, it makes sense to unroll the problem (to some depth) and model it as a DAG.

7.11 Experiments
The experiments in this section show the performance of different approaches on synthetic
and real-world graphs. Graphs for the real world applications were extracted as DAGs from a
system model for the prototype printer shown in Figure 2.3. Graphs for the synthetic experi-
ments were supplied by a graph generator which constructs DAGs like that in Figure 7.6. The
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structure of these graphs is inspired by graphs taken from the connectivity graphs of a number
of production systems. Each graph starts with a vertex v0, branches out to a grid of interior
vertices and then collapses back down to a goal vertex vg. Within the grid, a vertex is always
connected to its direct successor in the same row. Each vertex is also connected to each other
vertex in the next column with a probability p. The grid is parameterized by the number of
columns (width W ) and the number of rows (height H).Submitted to SOCS’09 6
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Figure 6: Call graph for a DFTVS query (tv = 2.4) on the graph
from fig 3.

sparse and dense. All tests were performed on a machine
with a 2.8 GHz Intel Core 2 Duo CPU with 4 GB of ram
running Mac OS X 10.5.6. We implemented all algorithms
as parts of a uniform framework, to allow for fair runtime
comparisons.
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Figure 7: The sparse domain: vertices are always connected to
their ”right”, as well as their ”lower” or ”upper” neighbors (de-
pending on whether the column is ”odd” or ”even”

Both domains represent connection-graph lattices, con-
sisting of designated start and goal vertices and a “grid”
of vertices between them. Generally edge values are as-
signed randomly (sampled from a uniform (0; 1] distribu-
tion). Both are parameterized in terms of width, height and
a seed value for a random-number generator. In the sparse
domain, vertices (with the exception of v0 and vg) have a
constant out-degree of 2, and path-lengths (in number of ver-
tices) between start and goal vary between width + 2 and
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Figure 8: The dense domain: vertices are always connected to
their ”right” neighbor; additionally, for each other vertex in the
”right” neighboring column, there is a connection with probability
p

height ∗width + 2. Its general connection pattern is shown
in figure 7.

The dense domain has uniform path-lengths (in number
of vertices) of width + 2. An additional parameter, prob-
ability p, governs the out-degree of nodes in the grid: a
vertex has a connection to a vertex in its ”right” neighbor
column with probability p (besides its direct right neighbor,
with whom it is always connected). This results in an aver-
age out degree of p ∗ (width − 1) + 1, (which is approxi-
mately p ∗√|V | for the ”square” graphs we mostly use in
the evaluation). In general, for ”square” graphs, we use the
term dimension (d) to denote width and height parame-
ters. Also, if not otherwise noted, we allowed (up to) 5 in-
tervals per pdb entry and used 0.5 as probability parameter
for the dense domain.

Both domains are hard in that they contain a large number
of paths (exponential in width for dense, and in width ∗
height for sparse).
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Figure 9: average search times for target values between the short-
est and longest path in dense graphs of A∗ with the shortest path as
guiding heuristic (d : 5, 6, 7), BFTVS and DFTVS (d : 5, 6, 7, 8).

Figure 9 shows the average time (in µsec), using an A∗ for
inadmissible heuristics with f(x) = |T − (g(x) + sp(x)|,

FIGURE 7.6 Schematic of graph parameterization

In the plots the y-axis shows either search time in milliseconds (search time includes the
heuristic construction) or the maximum size of the search queue in number of vertices, and
the x-axis shows k different normalized target-values, spanning between the shortest path (SP)
and the longest path (LP) in each graph.

The first experiment uses the tightly integrated parallel printer (tipp) domain graph and a
set of synthetic graphs (7x7, 8x8, and 9x9 grid, connection probability p = 0.5). The results
are plotted for k = 30 different target-values each averaged over 200 runs. In the experiment
four different algorithms are compared with different f functions on this problem:

• |T − g|: A∗ with f(pre) = |T − g(pre)| .
• |T − (g + h)|: A∗ with
f(pre) = |T − (g(pre) + h(pre.lastV ))|.
• HTV S: Heuristic Target-Value Search with Breadth-first blind-spot search.

• HTV S−MV F : Heuristic Target-Value Search with Max-Value-First blind-spot search.

Figure 7.7 and Table 7.1 give the search time results of the first experiment. It can be seen
that both |T − g| and |T − (g − h)| perform considerably slower with increasing target-
value. That is due to the non-admissible f(pre) function and the resulting termination crite-
rion. Therefore to terminate optimally the search has to exhaust the prefix space of all prefixes
with a shorter then roughly the target value. An interesting observation is that HTV S is able
to outperform both |T − g| and |T − (g − h)| on smaller problems, but with growing prob-
lem size it starts to fall behind for target-values smaller than about 0.7. This is caused by the
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enormous memory requirement due to the breadth-first blind-spot search. As shown in Fig-
ure 7.8 and Table 7.2, HTV S requires orders of magnitude more memory space than all other
approaches. In comparison, HTV S −MV F , which uses Max-Value-First blind-spot search,
reduces the memory requirement by exploring the blind-spot in a more directed fashion. The
reduced memory management enables HTV S −MV F to dominate in search time as shown
in Figure 7.7 (Table 7.1) and in the zoomed-in Figure 7.9 (Table 7.3).

In Figure 7.9 it is demonstrated how HTV S − MV F is influenced by using the multi-
interval heuristic. The experimental results show that doubling the number of intervals per
path family reduces the search time roughly by half. This coincides with the observations of
(Holte & Hernádvolgyi 1999) about memory-based heuristics.

In experimental results problems have been solved up to a graph size of 500x500-graph
usingHTV S−MV F−120, whereas the three other approaches could only solve problems up
to 15x15-graph-size. That results from the memory efficient max-value-first blind-spot search
and the informative multi-interval heuristic. More detailed experiments on the multi-interval
heuristic can be found in (Schmidt et al. 2009).

7.12 Conclusions
This chapter has introduced a novel and widely applicable class of combinatorial search prob-
lems, which are called target-value search problems. Further it was shown that target-value
search problems can be reduced to the well-known shortest path problem using an evaluation
function that gives a lower bound on the deviation of path value and a specified target-value.
While the target-value problem is not decomposable (no optimal substructures), it was possible
to show that it can be computed from an interval-based heuristic on upper and lower bounds,
which are decomposable. Finally a novel search algorithm, called max-value first search, has
been described, which searches the blind-spot more efficiently resulting in better memory and
time performance. An extensive literature search indicates that there exist no other algorithms
for efficiently solving such problems. The contribution of this chapter makes it possible to
solve target-value search problems such as planning consumer activity recommendations and
the integration of planning and diagnosis.
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FIGURE 7.7 Search time in milliseconds as a function of the target-value. Target-value nor-
malized as SP+i/k(LP-SP)
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target value 0.20 0.30 0.40 0.51 0.59 0.69 0.80

printer domain

|T − g| 0.06 0.28 0.46 0.66 0.94 0.90 0.92

|T − (g + h)| 0.02 0.08 0.34 0.58 0.62 0.90 1.10

HTV S 0.02 0.10 0.30 0.34 0.36 0.04 0.06

HTV S −MV F 0.02 0.12 0.24 0.32 0.24 0.08 0.02

synthetic graph 7x7

|T − g| 0.36 1.20 3.48 5.94 7.44 8.84 9.14

|T − (g + h)| 0.08 0.60 2.16 4.84 6.80 8.76 8.82

HTV S 0.04 0.60 2.08 2.82 1.90 0.48 0.10

HTV S −MV F 0.04 0.52 1.58 2.14 1.90 0.36 0.04

synthetic graph 8x8

|T − g| 1.24 8.04 22.46 36.12 50.36 85.42 98.00

|T − (g + h)| 0.18 3.32 12.52 29.12 45.82 84.16 96.64

HTV S 0.16 4.64 20.84 30.56 20.48 2.50 0.20

HTV S −MV F 0.24 3.08 10.08 12.58 10.14 1.92 0.30

synthetic graph 9x9

|T − g| 4.02 36.68 39.90 42.12 61.14 644.34 1074.82

|T − (g + h)| 0.44 12.36 20.12 31.34 59.10 659.20 1085.32

HTV S 0.84 36.94 251.58 412.86 246.56 16.76 0.72

HTV S −MV F 0.78 13.08 17.00 15.40 16.70 9.48 0.80

TABLE 7.1 Search time in milliseconds as a function of the target-value. Table contains data
illustrated in Figure 7.7. Unit: milliseconds; Target value as SP+i/k(LP-SP);
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CHAPTER 8

Conclusions
This chapter summarizes the work on Self-diagnosing Agents by outlining the overall ap-
proach and explaining how those concepts can be integrated into the widely used Learning
Agent architecture. Finally, it concludes by revisiting the core contributions and stating some
suggestions for future work.

A long standing vision of artificial intelligence has been to build fully autonomous systems
that achieve desired goals over a long period of time without external intervention. This re-
quires that autonomous systems know about their own capabilities (model), reason about their
course of action (planning), and reflect on their actual behavior (diagnosis). In general, long-
life autonomy can be seen as a combination of two methods: (1) diagnosis to determine the
current condition of the system and (2) planning to optimize system operation for the diag-
nosed condition. A step towards long-life autonomy is to integrate automated diagnosis with
regular operation.

This work introduced a new architecture, coined a Self-diagnosing Agent, which tightly
integrates diagnosis into regular operation such that active information gathering, online diag-
nosis, and regular operation can occur at the same time. This novel integration leads to higher
long-run performance than alternative integrations. The presented approach is realized by a
novel diagnosis paradigm called pervasive diagnosis. The core idea of pervasive diagnosis is
to trade off information gain objectives and performance objectives to generate operational
plans that unveil diagnostic information. The conceptual framework of pervasive diagnosis is
illustrated in Figure 8.1.

Planner

Model

System

Diagnosis engine

performance objective
& information gain objective

goal

informative
operational plans

plans,

observations

belief state

FIGURE 8.1 Pervasive Diagnosis: Integration of Operational Planning and Active Diagnosis.

Consider a system where operational goals can be achieved in multiple ways. The planner
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exploits this flexibility during the plan generation process to determine informative operational
plans. Ideally, executing such plans results in valid operation and informative observations.
After gathering observations the diagnosis engine updates its beliefs online, updates the system
model to represent the current capabilities, and forwards the beliefs to the planner. The planner
then determines future plans based on the current beliefs, the performance objectives, and the
information gain objectives. As a result systems that embody pervasive diagnosis benefit from
high long-run performance as synergy effects may be leveraged by exploiting the overlap
between operational plans and diagnostic plans.

Self-diagnosing Agent

E
nvironm

ent

Sensors

Performance
element

Actuators

Learning
element

Diagnosis
element

Problem
generator

feedback

learning
goals

changes

knowledge

Performance
standard

belief updates,

information gain objective

FIGURE 8.2 Self-diagnosing Agent

A Self-diagnosing Agent extends the widely used framework of a Learning Agent by inte-
grating pervasive diagnosis. The goal of a Learning Agent is to increase its understanding of
itself and the world by learning to perform better than without learning (see Section 2.5.6). In
general, a Learning Agent realizes this goal by identifying incorrect or incomplete knowledge
and improving its knowledge by learning better predictive models directly from observations.
In comparison, a Self-diagnosing Agent extends those capabilities by the ability to perform
diagnosis. The core differentiator between a Self-diagnosing Agent and a Learning Agent is
that a Self-diagnosing Agent has the ability to perform root cause analysis to improve its un-
derstanding to guide learning. Due to the integration of diagnosis an agent can determine the
root-causes of discrepancies between predicted and actual behavior before reasoning about
how it learns. This analysis enables an agent to change its behavior with respect to the root-
causes instead of continuously adapting to surface symptoms. This is particular important if
the optimal reaction can only be inferred by reasoning over a set of symptoms. Suppose a sce-
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nario in which a root-cause can only be observed non locally. In this case, an agent that relies
on pure learning without root-cause analysis may conclude that a local adaptation is needed.
Only an agent that performs in-depth reasoning over a set of observations may correctly con-
clude that the root-cause is non local and therefore can only be compensated by a non local
adaptation.

The overall framework of a Self-diagnosing Agent is illustrated in Figure 8.2. The frame-
work complies with the general Learning Agent framework, except that the critics element
is replaced by a diagnosis element, which leads to the following four components: a perfor-
mance element, a diagnosis element, a learning element, and a problem generator. The ability
to perform diagnosis enables the diagnosis element to provide diagnosis belief updates and
information gain objectives to the performance element. The performance element can then
generate informative operational plans to efficiently perform active diagnosis during regular
operation to increase the agent knowledge about its current state. The main contribution of
this work is an overall framework, which tightly integrates regular operation and active diag-
nosis. In particular, an information criterion is defined that quantifies how informative plans
are, a plan generation algorithm is designed to derive informative operational plans, and a di-
agnosis framework is introduced to efficiently perform online diagnosis for systems that plan.
The overall framework is optimized for systems with faults multiple in number, intermittent
in appearance, and potentially caused by hidden interactions.

Experimental results have shown that the theoretical benefits can be realized on real time
applications. Throughout the discussion an application of this framework to a hyper-modular,
multi-engine printer has been presented, which achieves up to eight percent higher long-run
performance than alternative approaches. To date, the Self-diagnosis Agent Architecture has
only been evaluated in the context of an experimental printer setting, but the results suggest
that the same techniques generalize to a wide range of domains such as manufacturing, as-
sembly, packing, logistic, transport, earth and space exploration, surgery, weaponry, and smart
networks.

8.1 Future Work
In general, the contributions of this work are a step towards long-life autonomy. In its ambition,
a long-life autonomous system achieves desired goals continuously over a long period of time
without external guidance or intervention. This requires that autonomous systems know about
their own capabilities (model), reason about their course of action (planning), and reflect on
their actual behavior (diagnosis). Long-life autonomy can not simply be reached by robust
and reliable operation. In a real-world scenario systems break, experience unforeseen events,
or change overtime. Therefore it is especially true for long-life autonomous system that they
need the ability to adapt to changes, to recover from unforeseen situations, and to interact with
unknown environments.

As a result a long-life autonomous system can only operate successfully over a long period
of time if it learns better predictive models, performs diagnosis to determine its current condi-
tions, and leverages the gain knowledge from learning and diagnosis to optimize its behavior.
As illustrated in Figure 8.2, the introduced Self-diagnosing Agent framework combines those
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three processes by extending the widely used Learning Agent with the ability to diagnosis. As
a result learning and diagnosis can occur during regular operation.

However, the Self-diagnosing Agent work does not address if and how the coexistence of
learning and diagnosis can be exploited to leverage synergy effects to improve long-run per-
formance. The intuition is that learning and diagnosis perform both information acquisition
during regular operation to enrich their understanding about the system. However, the infor-
mation acquisition during periods of learning and diagnosis have been considered separately
and during distinct phases of analysis. Learning is concerned with building better predictive
models. The same predictive models can then be used to diagnosis the system based on ob-
servations. Learning and diagnosis are both most efficient if the process of information acqui-
sition is optimized based on their current state of knowledge. An open challenge is to bridge
the gap between information acquisition for learning and diagnosis and to enable an uniform
approach that considers simultaneously the extension of the predictive model and the determi-
nation of the current system state. The overall goal is to combine their information acquisition
objectives to improve long-run performance. The Self-diagnosis Agent is a step towards this
vision, but future work has to be done to investigate how an integration can lead to more
efficient utilization of regular operation, online diagnosis, and online learning.

146



Bibliography
Abreu, R., Zoeteweij, P. & van Gemund, A. (2006), An evaluation of similarity coefficients for

software fault localization, in ‘In Proceedings of the 12th IEEE Pacific Rim Symposium
on Dependable Computing (PRDC’06)’, Riverside, CA, USA.

Ali, M. F., Veneris, A., Safarpour, S., Abadir, M., Drechsler, R. & Smith, A. (2004), Debugging
sequential circuits using boolean satisfiability, in ‘Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design’, pp. 204–209.

Bellman, R. (1958), ‘On a routing problem’, Quarterly of Applied Mathematics 16(1), 87–90.

Bellman, R. (1978), An introduction to artificial intelligence : can computers think?, Boyd &
Fraser Publishing Company, San Francisco, CA, USA.

Berger, J. O. (1995), Statistical Decision Theory and Bayesian Analysis, Springer Verlay, New
York.

Bottcher, C. (1995), No faults in structure?: how to diagnose hidden interactions, in ‘IJCAI’95:
Proceedings of the 14th international joint conference on Artificial intelligence’, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1728–1734.

Bushnell, M. L. & Agrawal, V. D. (2000), Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, Boston.

Cascio, F., Console, L., Guagliumi, M., Osella, M., Panati, A., Sottano, S. & Dupré, D. T.
(1999), On-board diagnosis of automotive systems: From dynamic qualitative diagnosis
to decision trees, in ‘In Proc. Workshop on Qualitative Reasoning on Complex Systems
and their Control at IJCAI99’.

Cervoni, R., Cesta, A. & Oddi, A. (1994), Managing dynamic temporal constraint networks,
in ‘Proceedings of AIPS-94’, pp. 13–18.

Charniak, E. & McDermott, D. (1985), Introduction to artificial intelligence, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Christensen, H., Batzinger, T., Bekris, K., Bohringer, K., Bordogna, J., Bradski, G., Brock,
O., Burnstein, J., Fuhlbrigge, T., Eastman, R., Edsinger, A., Fuchs, E., Goldberg, K.,
Henderson, T., Joyner, W., Kavaraki, L., Kelly, C., Kelly, A., Kumar, V., Manocha, D.,
McCallum, A., Mosterman, P., Messina, E., Murphey, T., Peters, R. A., Shephard, S.,
Singh, S., Sweet, L., Trinkle, J., Tsai, J., Wells, J., Wurman, P., Yorio, T. & Zhang, M.
(2009), A roadmap for us robotics: From internet to robotics, Technical report, Georgia

147



Bibliography

Institute of Technology, University of Southern California, Johns Hopkins University,
University of Pennsylvania, University of California, Berkeley, Rensselaer Polytechnic
Institute, University of Massachusetts, Amherst, University of Utah, Carnegie Mellon
University, Tech Collaborative.

Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, New York, NY: John
Wiley and Sons, Inc.

DARPA (2004), ‘Darpa grand challenge rule book.’, http://www.darpa.mil/grandchallenge05/-
Rules_8oct04.pdf. good description.

Davis, R. (1984), ‘Diagnostic reasoning based on structure and behavior’, Artificial Intelli-
gence 24(1), 347–410. qrps:also.

de Kleer, J. (2007a), Diagnosing intermittent faults, in ‘18th International Workshop on Prin-
ciples of Diagnosis’, Nashville, USA, pp. 45–51.

de Kleer, J. (2007b), Modeling when connections are the problem, in ‘Proc 20th IJCAI’, Hy-
derabad, India, pp. 311–317.

de Kleer, J. (2007c), Troubleshooting temporal behavior in “combinational” circuits, in ‘18th
International Workshop on Principles of Diagnosis’, Nashville, USA, pp. 52–58.

de Kleer, J., Kuhn, L., Liu, J., Price, B., Do, M. & Zhou, R. (2009), Continuously estimat-
ing persistent and intermittent failure probabilities., in ‘7th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes’.

de Kleer, J., Mackworth, A. & Reiter, R. (1992), ‘Characterizing diagnoses and systems’,
Artificial Intelligence 56(2-3), 197–222.

de Kleer, J. & Williams, B. C. (1987), ‘Diagnosing multiple faults’, Artificial Intelligence
32(32), 97–130.

Dearden, R. & Clancy, D. (2002), Particle filters for real-time fault detection in planetary
rovers, in ‘Proceedings of the Thirteenth International Workshop on Principles of Diag-
nosis’, pp. 1–6.

Dechter, R., Meiri, I. & Pearl, J. (1991), ‘Temporal constraint networks’, Artificial Intelligence
49, 61–95.

Dijkstra, E. (1959), ‘A note on two problems in connexion with graphs’, Numerische Mathe-
matik 1, 269–271.

Do, M. B. & Ruml, W. (2006a), Lessons learned in applying domain-independent planning to
high-speed manufacturing, in ‘Proceedings of ICAPS-06’, pp. 370–373.

Do, M. B. & Ruml, W. (2006b), Lessons learned in applying domain-independent planning to
high-speed manufacturing, in ‘ICAPS’, pp. 370–373.

148



Bibliography

Do, M. B., Ruml, W. & Zhou, R. (2008a), Planning for modular printers: Beyond productivity,
in ‘ICAPS’, pp. 68–75.

Do, M., Ruml, W. & Zhou, R. (2008b), On-line planning and scheduling: An application to
controlling modular printers, in ‘Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI-08)’.

Fikes, R. & Nilsson, N. (1971), ‘Strips: A new approach to the application of theorem proving
to problem solving’, Artificial Intelligence 2, 189–208.

Fromherz, M. P. (2007), ‘Planning and scheduling reconfigurable systems with regular and
diagnostic jobs’, US Patent 7233405.

Fromherz, M. P., Bobrow, D. G. & de Kleer, J. (2003), ‘Model-based computing for design
and control of reconfigurable systems’, The AI Magazine 24(4), 120–130.

Ghallab, M. & Laruelle, H. (1994), Representation and control in IxTeT, a temporal planner,
in ‘Proceedings of AIPS-94’, pp. 61–67.

Ghallab, M., Nationale, E., Aeronautiques, C., Isi, C. K., Penberthy, S., Smith, D. E., Sun, Y.
& Weld, D. (1998), Pddl - the planning domain definition language, Technical report.

Green, N., Garrett, H. & Alan Hoffman, A. (2006), ‘Anomaly trends for long-life robotic
spacecraft’, Journal of Spacecraft and Rockets 43(1), 218–224.

Hart, P., Nilsson, N. & Raphael, B. (1968), ‘A formal basis for the heuristic determination
of minimum cost paths’, IEEE Transactions on Systems Science and Cybernetics (SSC)
4(2), 100–107.

Haugeland, J. (1985), Artificial intelligence: the very idea, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA.

Hayes-Roth, F. (1985), Rule-based systems, Technical Report 9, New York, NY, USA.

Hoffmann, G. M., Waslander, S. L. & Tomlin, C. J. (2006), Mutual information methods with
particle filters for mobile sensor network control, in ‘Proceedings of the 45th IEEE Con-
ference on Decision and Control (CDC)’, San Diego, California, USA.

Holte, R. C. & Hernádvolgyi, I. T. (1999), A space-time tradeoff for memory-based heuristics,
in ‘Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99’, AAAI Press, pp. 704–709.

Kim, Y.-W., Rizzoni, G. & Utkin, V. (1998), ‘Automotive engine diagnosis and control via
nonlinear estimation’, IEEE Control Systems pp. 84–98.

Koren, I. & Kohavi, Z. (1977), ‘Diagnosis of intermittent faults in combinational networks.’,
IEEE Trans. Computers 26(11), 1154–1158.

149



Bibliography

Korf, R. (1995), ‘Optimal number partitioning’, Technical report, also available at
ftp://ftp.cs.ucla.edu/tech-report/1995-reports/950062.ps.Z.

Kuhn, L. & de Kleer, J. (2008), An integrated approach to qualitative model-based diagnosis,
in ‘Qualitative Reasoning Workshop (QR 2008)’, Boulder, Colorado, USA.

Kuhn, L. & de Kleer, J. (2010), Diagnosis with incomplete models: Diagnosing hidden in-
teraction faults, in ‘Proceedings of the 2010 AAAI Spring Symposium on Embedded
Reasoning’.

Kuhn, L., de Kleer, J. & Liu, J. (2009), Online model-based diagnosis for multiple, inter-
mittent and interaction faults., in ‘Proceedings of Prognostics and Health Management
(PHM2009)’.

Kuhn, L., Price, B., de Kleer, J., Do, M. & Zhou, R. (2008a), Heuristic search for target-value
path problem, in ‘Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI-08)’.

Kuhn, L., Price, B., de Kleer, J., Do, M. & Zhou, R. (2008b), Pervasive diagnosis: Integration
of active diagnosis into production plans, in ‘Proceedings of the National Conference on
Artificial Intelligence (AAAI08)’, Chicago, Illinois, USA, pp. 132–139.

Kuhn, L., Price, B., Do, M., Liu, J., Zhou, R., Schmidt, T. & de Kleer, J. (2010), Pervasive
daignosis: Integration of planning and diangosis., in ‘IEEE International Conference on
Systems, Man, and Cybernetics’.

Kurzweil, R. (1990), The age of intelligent machines, MIT Press, Cambridge, MA, USA.

Liu, J., de Kleer, J., Kuhn, L., Price, B. & Zhou, R. (2008), A unified information criterion for
evaluating probe and test selection, in ‘Proceedings of Prognostics and Health Manage-
ment (PHM2008)’.

Liu, J., Kuhn, L. & de Kleer, J. (2009), Computationally efficient tiered inference for multiple
fault diagnosis., in ‘Proceedings of Prognostics and Health Management (PHM2009)’.

Liu, J., Reich, J. E. & Zhao, F. (2003), ‘Collaborative in-network processing for target track-
ing’, EURASIP, Journal on Applied Signal Processing 2003(4), 378–391.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B. & Konolige, K. (2010), The office
marathon: Robust navigation in an indoor office environment, in ‘International Confer-
ence on Robotics and Automation’.

Mauss, J., May, V. & Tatar, M. (2000), Towards model-based engineering: Failure analysis
with mds, in ‘Workshop on Knowledge-Based Systems for Model-Based Engineering,
European Conference on AI, ECAI-2000’.

McCarthy, J., Minsky, M., Rochester, N. & Shannon, C. (2006), ‘A proposal for the dartmouth
summer research project on artificial intelligence, august 31, 1955’, AI Magazine 27(4).

150



Bibliography

McDermott, D. (2000), ‘The 1998 ai planning systems competition’, AI Magazine 21, 35–55.

McGann, C., Berger, E., Bohren, J., Chitta, S., Gerkey, B., Glaser, S., Marthi, B., Meeussen,
W., Pratkanis, T., Marder-Eppstein, E. & Wise, M. (2009), Model-based, hierarchical
control of a mobile manipulation platform, in ‘ICAPS Workshop on Planning and Plan
Execution for Real-World Systems’, Thessaloniki, Greece.

Muscettola, N., Nayak, P. P., Pell, B. & Williams, B. C. (1998), ‘Remote agent: To boldly go
where no AI system has gone before’, Artificial Intelligence 103(1-2), 5–47.

Natarajan, B. K. (1986), The complexity of fine motion planning, Technical report, Ithaca,
NY, USA.

Nau, D., Ghallab, M. & Traverso, P. (2004), Automated Planning: Theory and Practice, Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA.

Nilsson, N. J. (1984), Shakey the robot, Technical Report 323, AI Center, SRI International,
333 Ravenswood Ave., Menlo Park, CA 94025.

Nilsson, N. J. (1998), Artificial Intelligence: A New Synthesis, Morgan Kaufmann, San Fran-
cisco, CA.

Poole, D. (1991), Representing diagnostic knowledge for probabilistic horn abduction, in ‘In-
ternational Joint Conference on Artificial Intelligence (IJCAI91)’, pp. 1129–1135.

Poole, D., Mackworth, A. & Goebel, R. (1998), Computational Intelligence: A Logical Ap-
proach, Oxford University Press.

Pravan, G. (2001), Hierarchical model-based diagnosis, in ‘Proc. International Workshop on
Principles of Diagnosis (DX)’.

Preist, C. & Welham, B. (1990), Modelling bridge faults for diagnosis in electronic circuits, in
‘Proceedings of the First International Workshop on Principles of Diagnosis’, Stanford.

Provan, G. & Chen, Y.-L. (1999), Model-based diagnosis and control reconfiguration for dis-
crete event systems: An integrated approach, in ‘Proceedings of the thirty-eighth Con-
ference on Decision and Control’, Phoenix, Arizona, pp. 1762–1768.

Rauch, H. E. (1995), ‘Autonomous control reconfiguration’, IEEE Control Systems Magazine
15(6), 37–48.

Reiter, R. (1987), ‘A theory of diagnosis from first principles’, Artificial Intelligence 32(1), 57–
96.

Reiter, R. (1992), A theory of diagnosis from first principles, in ‘Readings in Model-Based
Diagnosis’, pp. 29–48.

Rich, E. & Knight, K. (1990), Artificial Intelligence, McGraw-Hill Higher Education.

151



Bibliography

Ruml, W., Do, M. B. & Fromherz, M. (2005), On-line planning and scheduling for high-speed
manufacturing, in ‘Proc. of ICAPS-05’, pp. 30–39.

Russell, S. J. & Norvig, P. (2009), Artificial Intelligence: A Modern Approach, 3rd edn, Pren-
tice Hall.

Russell, S. & Wefald, E. (1991), Do the Right Thing: Studies in Limited Rationality, MIT
Press.

Schmidt, T., Kuhn, L., Zhou, R., de Kleer, J. & Price, B. (2009), A depth-first approach
to target-value search., in ‘International Symposium on Combinatorial Search (SoCS
2009)’.

Shannon, C. E. (1950), ‘Programming a computer for playing chess’, Philos. Mag. (Ser. 7)
41, 256–275.

Siddiqi, S. & Huang, J. (2007), Hierarchical diagnosis of multiple faults, in ‘Proceedings of
IJCAI’.

Smith, D. E. & Weld, D. S. (1999), Temporal planning with mutual exclusion reasoning, in
‘Proc. of IJCAI-99’, pp. 326–333.

Smith, D., Frank, J. & Cushing, W. (2008), The anml language, in ‘Proceedings of ICAPS’.

Srinivas, S. (1994), A probabilistic approach to hierarchical model-based diagnosis, in ‘Proc.
Conference on Uncertainty in AI (UAI)’, pp. 538–545.

Thiebuax, S., Cordier, M., Jehl, O. & Krivine, J. (1996), Supply restoration in power distribu-
tion systems – a case study in integrating model-based diagnosis and repair planning, in
‘Prof.8th International Workshop on Principles of Diagnosis (DX)’.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale,
J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P.,
Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van
Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler,
A., Nefian, A. & Mahoney, P. (2006), ‘Stanley: The robot that won the darpa grand
challenge’, Journal of Field Robotics 23(1), 661–692.

Weber, J. & Wotawa, F. (2008), Dependent failures in consistency-based diagnosis, in ‘18th
European Conference on Artificial Intelligence (ECAI 2008)’, Patras, Greece, pp. 801 –
802.

Williams, B. C. & Nayak, P. P. (1996), A model-based approach to reactive self-
configuring systems, in ‘Proceedings of the National Conference on Artificial Intelli-
gence (AAAI96)’, pp. 971–978.

Winston, P. H. (1992), Artificial intelligence (3rd ed.), Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

152



Bibliography

Winter, S. (2002), Route specifications with a linaer dual graph, in ‘Symposium on Geospatial
Theory’.

Young, T., Arnold, J., Brackey, T., Carr, M., Dwoyer, D., Fogleman, R., Jacobson, R., Kottler,
H., Lyman, P. & Maguire, J. (2000), Mars program independent assessment team report,
Technical report, Report to the NASA Administrator and to Congress.

Zhong, C. & Li, P. (2000), Bayesian belief network modeling and diagnosis of xerographic
systems, in ‘Proceedings of the ASME Symposium on Controls and Imaging - IMECE’,
Orlando, Florida.

153


