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Abstract

In a cognitive factory setting, product manufacturing is automatically planned and scheduled, exploiting
a knowledge base that describes component capabilities and behaviors of the factory. However, because
planning and scheduling are computationally hard, they must typically be done offline using a simplified
system model, and are thus unaware of online observations and potential component faults. This leads
to a problem: Given behavior models and online observations of possibly faulty behavior, how likely is
each manufacturing process plan to still succeed? In this work, we first formalize this problem in the
context of probabilistic reasoning as plan assessment. Then we contribute a solution which computes plan
success probabilities based on most likely system behaviors retrieved from solving a constraint optimization
problem. The constraint optimization problem is solved using well-optimized off-the-shelf solvers. Results
obtained with a prototype show that our method can guide systems away from plans which rely on suspect
components.
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1. Introduction

As the market demands for customized and
variant-rich products, the industry struggles to im-
plement production systems that demonstrate the
necessary flexibility while maintaining cost effi-
ciency comparable to highly automated mass pro-
duction. A main cost driver in automated produc-
tion is the human workforce needed for setup steps,
the development of processes, and quality assur-
ance. These high labor costs can only be amortized
by very large lot sizes. For small lot sizes as found
in prototype and highly customized production, hu-
man workers are still unchallenged in flexibility and
cost. Therefore, to facilitate the emergence of mass
customization at prices only highly automated sys-
tems can achieve, levels of flexibility similar to the
flexibility of human workers must be reached.
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Future technical systems are expected to act ro-
bustly under high uncertainty, reliably handle un-
expected events, quickly adapt to changing tasks
and own capabilities. A key technology for the
realization of such systems is automated planning
combined with self-diagnosis and self-assessment.
These capabilities can allow the system to plan its
own actions, and also react to failures and adapt
the behavior to changing circumstances. Cognitive
architectures try to achieve such capabilities for in-
dustrial applications by implementing solutions in-
spired from human and animal cognitive behavior
[1]. Research within the German cluster ”Cognition
for Technical Systems” (CoTeSys) [2] tries to un-
derstand human cognition to make its performance
accessible for technical systems.

In a scenario of cognitive manufacturing, a fac-
tory generates the manufacturing process plans for
numerous individualized products during night for
manufacturing the next day. A factory knowledge
base, describing component capabilities and behav-
ior, serves as model basis for the factory’s intelligent
capabilities such as planning. During night enough
time is available to generate complex plans. Still,

Preprint submitted to Advanced Engineering Informatics May 28, 2010



relevant parts of the knowledge have to be selected
[3] from the knowledge base, as planning/schedul-
ing on the whole knowledge base would be in-
tractable. The question is: can it be guaranteed
that the plan works given the behavioral knowledge
of the system?

Planning and scheduling finishes at a deadline the
next day (e.g. 8 am). However, partial observations
can be made after that deadline, especially during
execution of the plans. In the light of this new
information, it might become clear that success for
certain plans cannot be guaranteed anymore (e.g.,
if a plan operates a component intensely which has
been observed to be prone to failure).

The two problems illustrated above lead to the
same problem of evaluating manufacturing process
plans in the face of information that was not avail-
able or not used for their generation. In the first
case, a sparse model without behavior knowledge
was used due to problem hardness. In the second
case, it’s observations which where not available
at planning/scheduling time. In both cases, plan-
ning and scheduling are complex tasks (even on the
sparse model), which prohibit quick reformulation
of whole plans, only slight modifications are possi-
ble.

In this work, we are interested in the probability
of plan success, i.e. that it achieves its goal, or plan
failure. We want to provide a criterion upon which
an AI decision component or a human operator can
decide to a) continue with a plan, b) stop it be-
cause it probably won’t succeed or c) gather more
information. We call the problem of computing this
probability the Plan Assessment Problem. In this
work, we do not address planning and/or schedul-
ing problems. We assume a given cognitive archi-
tecture which provides typical AI capabilities such
as planning [4]. This work is based on prior work
presented in [5, 6]. It combines concepts from these
works and extends them by a) a formal definition
of the plan assessment problem as a probabilistic
reasoning problem within the domain of cognitive
manufacturing and b) elaborating ideas on how fo-
cussed plan assessment models which model behav-
ior of multiple, different products can be created.

The rest of our article is organized as follows:
In the next section, we introduce our example sce-
nario for the CoTeSys cognitive factory. We then
precisely analyse all aspects of the plan assessment
problem in section 3 and discuss related work in sec-
tion 4. In section 5 we describe in detail the model-
ing formalisms used to create planning and plan as-

sessment models. Plan assessment with hybrid dis-
crete/continuous models based on hybrid automata
is shortly explained in section 6. Then in section 7
we show how belief state approximations can be
computed and introduce our approach to estimat-
ing the success probability using soft-constraint op-
timization. Section 8 is concerned with our re-
stricted prototype implementation of plan assess-
ment, followed by the results obtained with it.

2. Metal Machining and Assembly Example

Part of the CoTeSys cognitive factory test-bed is
a customized and extended Flexible Manufacturing
System (FMS) based on the iCim3000 from Festo
AG (see figure 1b). The system consists of conveyor
transports and three stations: storage, machining
(milling and turning), and assembly.

The following scenario will serve as basis for ex-
amples throughout the article. In the cognitive fac-
tory, a planner creates plans for a toy maze and a
toy robot arm. The maze consists of an alloy base
plate and an acrylic glass cover fixed by metal pins
(see figure 1a), the robot arm (see figure 1c) consists
of alloy parts, joints and servos. The robot is con-
figurable regarding the number of joints and their
orientation as well as in the choice of a manipulator.
A single joint consists of two metal brackets and a
servo motor. In the example laid out, some CNC
(Computerized Numerical Control) cutting opera-
tions are done on each of the brackets, later sets of
two brackets are assembled with a servo. Cabling is
not considered in this scenario and has to be done
manually as a last step. A scheduler assigns the nec-
essary resources. The two product plans, i.e. two
sequences of (action, time)-pairs, look like shown
in figure 4. A rough visualization of the complete
schedule is shown in figure 3.

Errors can be detected in the plant using a vi-
bration sensor at suspicious components. In our
situation, the machining station is suspicious, be-
cause its cutter can go blunt during operation. A
blunt cutter is very likely to break, leading to flawed
products (see figure 1a). However, not every vi-
bration means that a component is faulty. Some
components generate random vibrations, e.g., the
assembly station. Furthermore, with some proba-
bility, vibrations in one station can trigger signals in
sensors of nearby stations. In our example, the vi-
brations of the assembly station and conveyor belts
can trigger sensor signals of the machining station
sensor. The plan assessment must be able to cope
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(a)

(b) (c)

Figure 1: (1a) Effects of cutter deterioration until breakage in machining. (1b) The hardware setup used
for experimentation, showing storage, transport, robot and machining components. (1c) The robotic arm
product. Images c© Prof. Shea TUM PE.
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Figure 2: An example product description depicting the graph of a toy maze and a robot.
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Figure 3: A visualisation of the manufacturing schedule of a maze (dark) and a robot (bright).

〈 . . . , (ROBOT−PLACE−CNC CNC MAZE CNC1 , 310 s ) ,
(CUT GROOVE1 MAZE CNC1 , 320 s ) ,
(ROBOT−PICK−CNC CNC MAZE CNC1 , 870 s ) , . . . 〉

〈 . . . , (ROBOT−PLACE−ASSEMBLY ASSY ROBOT−ARM−PART1 ASM1, 510 s ) ,
(ASSEMBLE−FROM SERVO1 ROBOT−ARM−PART1 ASSY FEED1 ASM1, 515 s ) ,
(ASSEMBLE−FROM ROBOT−ARM−PART2 ROBOT−ARM−PART1 ASSY FEED2 ASM1, 530 s ) , . . . 〉

Figure 4: Excerpt of the product plans showing the actions with their parameters and durations.

with these kinds of ambiguities. Our approach can
deal with them by finding most probable explana-
tions for what happened in the past.

A vibration is detected at t2 = 520s, while the
machining station is cutting a bracket for the robot
arm and the maze is being assembled (as can be
seen from the schedule in figure 3). The question
is: Is the vibration an indicator for a blunt cutter,
and how does this possibility affect the plans?

3. Plan Assessment with Predicted Belief
States

Now we detail the plan assessment problem and
define necessary entities.

Plan Assessment Problem Given a model
Massess, the problem of plan assessment is to com-
pute good lower and upper bounds pl and pu on the
success probability Pr(G|o0:t,Massess) for each plan
P :

pl ≤ Pr(G|o0:t,Massess) ≤ pu

“Good” means that pl is as big and pu as small as
possible.

Massess is the underlying model for plan assess-
ment, which encodes the plant component behav-
ior and possible observations caused by concurrently
executing a set of plans {Pi}. It is a probabilis-
tic model as known from probabilistic reasoning [7]

which defines a distribution Pr(Xt+1|Xt) over pos-
sible state transitions given the current plant state
and a distribution Pr(Ot|Xt) over possible observa-
tions given the current state. G represents the event
that the plan P is executed successfully. The prob-
ability Pr(G|o0:t,Massess) is the mentioned proba-
bility of plan success. It is conditioned on the ob-
servations o0:t obtained up to now, and the plan
assessment model.

3.1. System Models and Knowledge Base

The probabilistic model Massess models the be-
havior of plant components used by the plans to be
assessed, omitting all other components. The mod-
eled behavior can incorporate probabilistic failures
as well as continuous behavior, such as wear of cut-
ting tools. The plans are generated based on a plan-
ning model Mplan. It is focussed on the planning
and scheduling task, i.e. it contains descriptions of
component and their capabilities, leaving out de-
tails like breakdown probabilities and continuous
dynamics.

Both models are derived from a comprehensive
knowledge base that describes all components, ca-
pabilities and behaviors in the plant as well as prod-
ucts, product parts and resources. The three mod-
els are connected as shown in figure 5. The plan-
ning model is derived from the knowledge base us-
ing knowledge selection [3]. The assessment model
is created using the generated manufacturing sched-
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ule. We will later explain this process in more de-
tail.

In the following, we will refer with M to ei-
ther an arbitrary model or the complete knowledge
base, with Mplan to the planning model and with
Massess to the assessment model.

Knowledge Base

Planning Model Plan Assessment Model

Plan-Based
Component Selection

Knowledge
Selection

Figure 5: The models for planning and for plan
assessment are derived from a common knowledge
base.

A system model, be it for planning or plan assess-
ment, is a symbolic description of system compo-
nents, products, parts etc. which generates a Sys-
tem State Space.

Definition 1. System State Space Given a sys-
tem model M , S(M) forms its state space.

If M is a logical model then S(M) is the set of
all possible configurations of true and false facts.
I.e. a single state s is a specific configuration of
true and false facts. If M uses a set of variables X
to describe a system, then S(M) is the set of all
possible assignment vectors for X. System states
are atomic, i.e. assuming a correct model, a system
state fully determines the modeled system.

The term “state” is somewhat ambiguous. We
use automata models which also have states, but
in our case these states can describe whole sets of
system states. In other words, automata states are
not atomic. Therefore, we’ll talk about automata
locations and transitions between them, and reserve
the term “state” for atomic system states.

3.2. Product Models and Plan Goals

Assessing a manufacturing process plan naturally
requires that the factory’s state during or after plan
execution is checked against the plan’s goal. Goal
specifications suitable for plan assessment can be
derived from product models. Such models are pre-
dominant in product development, where recent re-
search focusses, e.g., on model-based collaborative
product design [8].

In manufacturing, the goal of plans is to man-
ufacture products according to a given specifica-
tion, typically a mixture of CAD/CAM (Com-
puter Aided Design/Computer Aided Manufactur-
ing) and CAPP (Computer Aided Process Plan-
ning) models. However, these types of models
are too detailed for our purposes, e.g. they often
contain geometric descriptions of parts. We focus
on basic product parts and features, or composi-
tions thereof, in an abstract product description
P = 〈V,E,C〉. V,E are the vertices and edges of
a graph and C set of first-order logic constraints.
The vertices V describe the basic product parts,
features and compositions. The edges E are “part-
of” relations. The constraints C enforce orderings
on subsets of the edges. The product parts, features
and compositions are types defined in the knowl-
edge base M . The description is similar to notions
introduced in the literature, such as [9], and could
also be seen as the Bill of Materials of the product.
See figure 2 for examples of product descriptions.

Given an abstract product description P and a
model Mplan, the goal for a planner is to find an
optimal sequence of actions which realize the “part-
of” relations in P . Part of this task is to identify
entities in Mplan which describe concrete parts, fea-
tures and compositions. The constraints C in P
establish precedence relations among actions which
guide the planner.

Note that there’s a trade-off here between what is
specified in the product description and what needs
to be planned. Theoretically, the edges of a product
description graph could specify directly the neces-
sary actions to achieve a part-of relation. In this
case the description would already be the final plan.

We now formalize the notions of plan, plan goal
and plan success.

Definition 2. Plan, Plan Goal, Plan Success
Let P be a product specification.

1. A plan P, generated from P , is a sequence
of tuples of actions and their associated start
times (a, t) ∈ A × T. Start times can be real
numbers indicating absolute time points or in-
tegers indicating time point indices, i.e. T = R
or T = N.

2. Associated with a plan P is the goalG it should
achieve. G defines the reference point used for
assessing the plan’s success probability. G is
simply a vector of binary variables which rep-
resent relevant product features, and is derived
from the product specification P .
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3. A plan P is successful if it entails G, i.e. if G is
consistent with all system states possible after
the execution of P.

An important question is how the goal G is de-
rived from the product description P . A possibility
is to introduce a binary variable for each vertex
in the graph of P . These variables then have to
be linked to the plant model used for assessment,
Massess. We haven’t worked out a complete method
yet. However, in section 5.3 we sketch a method to
create Massess from M and a given schedule, which
also addresses the problem of representing manu-
facturing goals.

3.3. Plan Assessment with Predicted Belief States

We evaluate plans by computing bounds on the
plan’s success probability Pr(G|o0:t,Massess). This
can be done by summing over the probabilities
of goal-achieving states, based on the conditional
distribution over all possible system states at the
future time point t + n the goal is (potentially)
achieved. This distribution is the belief state at
t + n, and the problem of computing it is the well
known prediction problem in probabilistic reason-
ing [7]. In fact, we define Pr(G|o0:t,Massess) as the
sum over probabilities of all goal-achieving states of
the belief state:

Definition 3. Plan Success Probability Given
a model Massess, observations o0:t and the goal G of
a plan P we define the probability that G will be
achieved as

Pr(G|o0:t,Massess) =
∑

xt+n∈G
Pr(xt+n|o0:t,Massess)

G is the set of all goal-achieving states G :=
{xt+n ∈ Θ|xt+n entails G}. Θ is the set of all sys-
tem states, i.e. Θ = S(Massess).

In most cases it is infeasible to compute the com-
plete distribution as it requires enumerating all sys-
tem states. The solution is to use approximation
schemes which try to compute good bounds of the
success probability based on a reduced set Θ∗ ⊂
S(Massess) of system states and their conditional
probabilities Pr(xt+n|o0:t,Massess), with xt+n ∈
Θ∗. Then, an upper bound on Pr(G|o0:t,Massess) is
computed by summing over probabilities of goal-
achieving states, and a lower bound by summing
over probabilities of goal-violating states.

Proposition 1. Bounds for Pr(G|o0:t,Massess)
Let Massess be an assessment model and G the goal
of a plan P. Let Θ∗ ⊂ S(Massess) be a set of
system states of Massess and Pr(xt+n|o0:t,Massess),
xt+n ∈ Θ∗ their probabilities conditioned on
given observations. Let further G∗ = {xt+n ∈
Θ∗|xt+n consistent with G} be the set of states
among Θ∗ which entail the plan’s goal, and G∗ =
{xt+n ∈ Θ∗|xt+n not consistent with G} those
which violate it. Then

pl =
∑

xt+n∈G∗
Pr(xt+n|o0:t,Massess)

is a lower bound on Pr(G|o0:t,Massess) and

pu = 1−
∑

xt+n∈G
∗

Pr(xt+n|o0:t,Massess)

an upper bound on Pr(G|o0:t,Massess).

Roughly, the bounds are computed following
these steps:

Computing bounds for success probability. Input:
Massess, set of goals {Gi} of concurrently executed
plans {Pi}.

1. Determine the time point t+ n when all plans
are finished

2. Generate Θ∗ and compute
Pr(xt+n|o0:t,Massess) for xt+n ∈ Θ∗.

3. Compute the lower and upper bounds for each
plan goal

pl =
∑

xt+n∈G∗i

Pr(xt+n|o0:t,Massess)

pu = 1−
∑

xt+n∈G
∗
i

Pr(xt+n|o0:t,Massess)

To make an actual decision to consider a plan
as likely to succeed or fail, pl must be compared
against a threshold ωsuccess and pu against a thresh-
old ωfail (which we assume as given externally).

4. Related Work

Closest to our work are verification approaches.
As a static preprocessing step, computing a plan
success probability could possibly be done within
the framework of probabilistic model checking [10,
11]. Massess would be the model, and the success
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probability for a specific product could be formu-
lated as a temporal logic formula expressing “At
t + n, with p > ωsuccess the product state is in
G”. However, we are not aware of approaches to
online probabilistic model checking which regard
available sensor information (as our method does),
or which focus on models not only of plants and
controllers but also products. Similarly, verification
approaches in control and manufacturing [12, 13]
typically focus on modeling plants and controllers
only.

In probabilistic verification of model-based pro-
grams [14], the problem is to determine the most
likely circumstances under which a high-level con-
trol program drives the system towards a goal vi-
olating state. A plan can be understood as such a
high level control program; so in general, this prob-
lem is similar to the plan assessment problem. How-
ever, our problem differs in that we are interested
in the set of all goal-achieving system trajectories,
from which we derive the plan’s success probability,
while for the verification problem, only the single
most probable goal violating trajectories are inter-
esting.

Early work addressed the problem of automated
manufacturability analysis, which is to evaluate a
process plan for machining a product from stock
with respect to, e.g., design tolerances (does plan
execution violate tolerances?) or the plan’s cost.
[15] discusses the Interactive Manufacturing Analy-
sis and Critique System (IMACS), which generates
process plans and then checks them against, e.g.,
design tolerance constraints, to evaluate whether
the plans can reach their machining goals. An-
other work in this domain is [16], which introduces
a Petri net based approach to process plan evalu-
ation. The authors estimate costs of process plans
by representing the plans along with plant machines
and their tools and configurations as special Petri
nets. They propose two kinds of Petri net mod-
els, each with a special algorithm to compute the
costs. Clearly there is some similarity to our plan
assessment problem, especially the idea of generat-
ing models of machines and plans for plan evalua-
tion. The main difference is that we’re interested
in dynamic machine behavior (nominal and off-
nominal) induced by plan execution, whereas auto-
mated manufacturability analysis is concerned with
evaluating plans against static constraints, such as
design tolerances.

Work on distributed manufacturing [17],
carried out within the PABADIS and

PABADIS’PROMISE [18] projects, addresses sim-
ilar problems. Some focus on robustly generating
plans for newly occurring product variations, while
others address robust plan execution in the face of
plant faults. PABADIS and PABADIS’PROMISE
also address the related problems of flexible
production [19] and scheduling for production [20].

Automated planning is also applied for large scale
operations management, e.g. reacting to oil spill
disasters. [21] gives an overview of such planning
scenarios and discusses, among other things, an oil
spill response configuration system. It creates plans
based on a spill trajectory forecast and then evalu-
ates how much oil a specific plan is able to remove.
It uses a special evaluation model along with the
projected oil flow and the plan. The system mon-
itors plan execution and is able to react to new
events or goals provided by human operators. The
main difference to these approaches is the scope
(large scale operations planning vs our scenario of
product manufacturing) and the fact that plans are
not evaluated against a fixed goal (i.e. how likely
they are to succeed), but against optimality criteria
such as how much oil is being removed.

McDermott [22] and Beetz’s [23] Reactive Plan
Language (RPL) chooses a different approach to
deal with system failures and uncertainty. It uses
a hierarchical task decomposition, breaking down
top level goals to a finer granularity recursively.
The plan itself is not a sequence of actions but exe-
cutable code. The language allows reasoning on and
transformation of the plans. Heuristic routines at-
tain the sub-goals and cope with failures and unex-
pected events during the execution. This approach
is particularly promising in domains of high uncer-
tainty, where classical planning fails. However, the
RPL approach currently neglects explicit diagnosis
techniques and relies on the observability of rele-
vant environment states.

Also related to our work are model-based diag-
nosis approaches as introduced in [24]. The general
problem is to identify faulty components in a sys-
tem given model and current observations. The au-
thors propose a novel iterative diagnosis approach
based on truth maintenance systems.

5. Modeling for Planning and Plan Assess-
ment

Before we go into detail about computing plan
success probabilities and deriving decisions from
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them, we explain what kind of planning models
Mplan and plan assessment models Massess we use.

5.1. PDDL Planning Models

Classical Planning including the Action Descrip-
tion Language (ADL), typing and conditional post
conditions as described in the different publica-
tions on the Planning Domain Definition Lan-
guage (PDDL) [4] is used to generate manufactur-
ing plans. Our planning models are logical system
models, based on first-order predicate logic. They
lack time, continuous and concurrent behaviour.

Planning Model A planning model is a tuple
M = (E,P,A), where E is the set of entities and
P a set of first-order logic predicates encoding the
mentioned relations and connections. A is a set of
possible actions a = (pre(a), add(a), del(a)).

pre(a) is a set of facts encoding the precondition,
and add(a), del(a) encode an action’s post condi-
tions as facts that are added (become true) and
facts that are removed (become false) after execu-
tion. The model defines a state space with possible
transitions between states defined by the actions.

Behavioral models of plant components, includ-
ing possible failures, are left out, since for planning
only component capabilities are relevant. It has to
be considered that the component capabilities mod-
elled for planning are not the principal capabilities
of e.g. a robot, but only the ones that are realized
by for example programmed robot arm trajectories.
As an example, a robot may be able to assemble
two parts in principle, but this capability is only
included if there is a program for the robot for that
specific task.

The planning domain used for the experiments
comprises all aspects of logistics and use of re-
sources necessary for the execution of generated
plans on the simulation model using primitive ac-
tion controllers. Specifically, the products are mod-
elled as a tree of parts that have to be assembled
and CNC operations carried out on parts to change
their shape. The capabilities of the assembly robots
and CNC machines are defined by the types of as-
semblies they can handle, so that similar machines
can have e.g. partly overlapping capabilities and
multiple solutions to the manufacturing task can be
found. The transportation is fully modelled, includ-
ing the storage system and the palletized transport
system based on connected conveyor belts.

5.2. Plan Assessment Models as Hybrid Probabilis-
tic Automata

For plan assessment, behavioral knowledge of the
plant or factory and its components is important.
We assume that in a rigid factory setting, the nom-
inal behavior of plant components can be speci-
fied comprehensively using hierarchical automata
encoding discrete transitions between modes of op-
eration (where a mode corresponds to an automa-
ton location). Uncertainty only appears as un-
likely (failure) behaviors, and can be encoded us-
ing probabilistic transitions to failure modes. Fi-
nally, a plant component can exhibit many kinds
of behavior which are best modeled continuously,
e.g. using ordinary differential equations (ODEs)
or piece-wise affine systems (PWAs). Examples for
such behavior are wear or temperature levels of cut-
ting tools.

In previous work [5] we introduced Hybrid Prob-
abilistic Hierarchical Constraint Automata (Hy-
PHCA), in style of the well known hybrid automata
[25]. They combine the modeling power of PHCA
[26], a formalism specifically tailored to embedded
systems development and model-based monitor-
ing/tracking of complex, uncertain system behav-
ior, with linear ODEs. Linear ODEs are a widely
used standard for modeling continuous system evo-
lution. A system of linear ODEs u̇ = Au + b,
describes the time-continuous evolution of a vector
of variables u = [u1, . . . , un]T as a set of equations
over u and their first derivatives u̇ = [u̇1, . . . , u̇n]T .
b = [b1, . . . , bn]T is a vector of constants and A the
n× n-matrix of coefficients for the equation set.

Definition 4. Probabilistic Hierarchical Con-
straint Automata (PHCA) A PHCA is a tuple
〈Σ, PΞ,Π, O,Cmd, C, PT 〉, where:

• Σ is a set of locations, partitioned into primi-
tive locations Σp and composite locations Σc.
Each composite location denotes a hierarchi-
cal constraint automaton. A location may be
marked or unmarked. A marked location rep-
resents an active execution branch.

• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is
the set of start locations (initial state). Each
composite location li ∈ Σc may have a set
of start locations that are marked when li is
marked.

• Π is a set of variables with finite domains. C[Π]
is the set of all finite domain constraints over
Π.
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• O ⊆ Π is the set of observable variables.

• Cmd ⊆ Π is the set of command variables.

• C : Σ → C[Π] associates with each location li
∈ Σ a finite domain constraint C(li).

• PT (li), for each li ∈ Σp, is a probability distri-
bution over a set of transition functions T (li)
: Σp × C[Π] → 2Σ. Each transition function
maps a marked location into a set of locations
to be marked at the next time step, provided
that the transition’s guard constraint is en-
tailed. The set of all transitions is T .

Definition 5. (PHCA state, PHCA trajec-
tory) The state of a PHCA at time t is a
set of marked locations called a marking m(t)

⊂ Σ. A sequence of such markings θ =
(m(t),m(t+1), . . . ,m(t+n)) is called a PHCA trajec-
tory. To avoid ambiguity with “system state” we
will refer to markings rather than PHCA states.

HyPHCAs extend PHCAs with continuous vari-
ables and linear ODEs:

Definition 6. Hybrid Probabilistic Hierarchi-
cal Constraint Automata (HyPHCA) A Hy-
PHCA is a tuple HA = 〈Σ, PΘ,Π,U , C,F , PT 〉
where

• U = U ∪ U̇ ∪ U ′ is a set of real-valued vari-
ables U = {u1, . . . , un}, their first derivatives
U̇ = {u̇1, . . . , u̇n} and a set U ′ = {u′1, . . . , u′n}
representing values of U right after discrete
transitions.

• C : Σ→ C[Π∪U ∪U ′] is a function associating
locations with constraints over discrete and/or
real-valued variables. C[Π∪U ∪U ′] denotes the
set of constraints over Π ∪ U ∪ U ′.

• F : Σ→ F [U ∪ U̇ ] is a function associating lo-
cations with constraints over real-valued vari-
ables and their derivatives in the form of lin-
ear ordinary differential equations. F [U ∪ U̇ ]
denotes the set of these differential equations.

• PT is a probability distribution over a set of
transition functions T (li) : Σp×C[Π∪U∪U ′]→
2Σ for locations li ∈ Σ. Each transition func-
tion T (li) maps a primitive location marked
at time t to the set of locations to be marked
at the next time instant, given the location’s
guard is entailed.

Σ, PΘ and Π are analog to the PHCA definition.

Definition 7. (HyPHCA state, HyPHCA tra-
jectory) The state of a HyPHCA at time t is a
tuple S(t) = (S(t)

U ,m(t)), where S
(t)
U ∈ R|U | is an

assignment to all variables u ∈ U at time t, called
continuous state, and m(t) ∈ M a marking analo-
gous to PHCA markings (with M ⊆ 2Σ the set of
all markings). A function ∆ : R→ R|U |×M, map-
ping time points (real-valued) to HyPHCA states,
is called a HyPHCA trajectory function. A finite
sequence θHA = ∆(〈ti〉), resulting from evaluating
∆ on a finite sequence of time points, is called a
discrete-time HyPHCA trajectory.

In both cases, discrete and hybrid modelling,
we use discrete time steps of a fixed, predefined
length 4t. Throughout the article we refer to
(Hy)PHCA variables at time t with superscript (t),
e.g. Vibration(t). In the context of probability we
comply with standard notation, i.e. we refer to ran-
dom variables at time t or a sequence of them from
b to t with subscripts t and b:t, respectively. In both
cases t is a short cut for ti, where i is a natural num-
ber index of the time point. Since we have a fixed
length interval between time steps we can refer to
time points using these indexes. Therefore we also
shortcut ti+1 to t+1. The semantic of a single time
step is that a marking m(t) holds or is active within
[t, t+4t), i.e. just before the next time point.

The prototype PHCA shown in figure 7 illus-
trates the PHCA definition. The factory compo-
nents machining and assembly are encoded as top
level composite locations. A dashed border indi-
cates that locations may be marked at the same
time, which means they can run in parallel. There
is a third top level location at the bottom of figure
7 whose behavior constraint encodes that an ob-
served vibration is caused by one of the two com-
ponents or both. Primitive locations are for ex-
ample machining.idle and machining.cut, which en-
code the machining station being idle and working
on a piece. An example for an observable vari-
able is Vibration, which encodes whether a vibra-
tion has occurred or not. The dependent variables
machining.Vibration and assembly.Vibration encode
for each component whether it caused a vibra-
tion. A command variable is, e.g., machining.cmd.
It occurs in the guard constraint for transition
idle → cut within composite location machining:
machining.cmd = cut. Transition guards have
the general form <guard constraint>;<transition
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probability>. The guard constraint is a logical con-
straint over PHCA variables, usually an assign-
ment to command variables. The transition is non-
deterministic: Given the guard is satisfied, it is
taken with probability 0.9. The remaining possi-
bility (completing the probability distribution) is
the transition from idle to the composite location
cutter blunt, which has the same guard and is taken
with probability 0.1.

In our prototype implementation we didn’t in-
clude continuous behavior yet. We refer to [5] for
an example of hybrid modeling. In this work we in-
troduce an approach to convert a HyPHCA model
to a PHCA model by discretizing the continuous
model-part. In section 6 we briefly describe this
approach.

5.3. Plan Assessment Models from Plan Actions
and Goals

The plan assessment model Massess represents the
plant behavior. It specifies each component’s be-
havior as well as interactions among them (through
shared variables). But how are plan goals repre-
sented? We have seen that plan success is defined
in terms of goal consistent system states after plan
execution. Therefore the assessment model has to
represent the goal for each plan such that system
states can be classified as goal entailing or violating
for each goal. We now sketch a method to create as-
sessment models from a given knowledge base and
a schedule created from a set of plans, which also
answers the question of goal representation.

The model Massess is a hierarchical automaton
(using the mentioned HyPHCA framework) com-
posed of sub-automata that represent the plant
components. The actions given in the schedule dic-
tate the number and type of sub-automata in the
model. They map to given sub-automata (tem-
plates) in the knowledge base representing the be-
havior of plant components. For example, in our
schedule we may have one action which puts the
ball into the maze and a second action which lets
a palette move on the conveyor (palettes on con-
veyors are stopped by holding them in place with
a magnetic bolt). Thus two automata are added
to the model Massess: an automaton represent-
ing the assembly-behavior and one representing the
conveyor-behavior. To model the fact that the
same component might work on parts from differ-
ent products, each component incorporates a simple
buffer automaton. This buffer automaton indicates

whether the component is empty or working on a
part from a specific product.

A product’s manufacturing progress is itself mod-
eled as an automaton, which is aligned (through
e.g. shared variables) with the according plant-
component-automata. Component failure then au-
tomatically leads to a location in the progress au-
tomaton representing a faulty product. Depending
on how detailed the progress is represented, indi-
vidual product parts and their possible faults might
be identified as well as forbidden product states. In
the simplest case the progress automaton has only
three locations, not-processed, finished and faulty.
The model Massess is now composed in such a way
that the finished-location for a specific product is
only reachable if all actions finished without fault,
i.e. if all the automata representing these actions
did not run into any fault locations. The goal vec-
tor composed of binary variables, is simply tied to
the finished-location, setting the binary variables to
true.

6. Plan Assessment With Hybrid Discrete/-
Continuous Models

In our example scenario, it might be beneficial to
model the temperature of the cutting tool to pre-
vent overheating. This renders Massess a hybrid dis-
crete/continuous model and leads to the problem
of computing a hybrid belief state: A distribution
over states 〈s, u〉, where s is a vector of discrete
variable value assignments, and u a vector of reals,
i.e. assignments to the continuous variables of the
model. This is the well known problem of hybrid
estimation. In our case u is the temperature of the
cutting tool, which we denote as utemp .

A variety of solutions exist: a k-best hybrid es-
timation approach which tracks the k most prob-
able hybrid trajectories of a complex system [27],
particle filter approaches [28] and methods which
automatically discretize the continuous state space
[29].

In [5] we proposed a discretization approach
which integrates the discretization method from
[29] with model-based diagnosis and soft-constraint
reasoning [30]. This approach differs from others in
that it separates algorithms from modeling formal-
ism, thereby deepening the separation of concerns
and leveraging the power of existing soft-constraint
solvers1. The core idea is to convert the parts of

1We use toolbar https://mulcyber.toulouse.
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0.41
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Figure 6: Illustration of the reachable set Rstart

for u̇temp = −k(utemp− uambient) starting from the
marked grid cell Gstart,ti . Right: the derived PHCA
Fd(L).

a HyPHCA system model Massess described with
linear ODEs to Markov chains (which are actually
a restricted type of PHCA) and reinsert these into
Massess, rendering it a completely discrete model.
In our example, the cooling of the cutting tool can
be modeled as u̇temp = −k(utemp−uambient), which
is the standard cooling equation. In the next para-
graphs we explain how this continuous model is ab-
stracted to a discrete Markov chain.

For each primitive location L ∈ Massess the evo-
lution of its continuous variables in between two
time points, encoded in its continuous flow F(L), is
mapped to discrete, unguarded probabilistic tran-
sitions between locations of a special PHCA Fd(L).
It has only primitive locations, corresponding to
cells of a quantization of the continuous state space,
and represents a Markov chain that conservatively
approximates the continuous evolution.

To conservatively estimate transition probabil-
ities of Fd(L) we use the geometric abstraction
method introduced in [29]. We recap this method
shortly. The quantized state space is combined with
a partition of the time interval [t, t+4t]. Start lo-
cations of transitions of Fd(L) are associated with
quantization cells within the first partition element
in [t, t+4t] and destination locations with the last.
Let now Gstart,t be the quantization cell of start lo-
cation Lstart and Gλ,t+4t the cells of all possible
destination locations Lλ (with λ indexing cells and
locations). The reachable set Rstart is computed,
which is as small as possible yet guaranteed to in-

inra.fr/projects/toolbar/ (15.12.2009) and toulbar2
https://mulcyber.toulouse.inra.fr/projects/toulbar2/

(15.12.2009)

clude all continuous states reachable from Gstart,t

within [t, t+4t]. Now the probabilities for the tran-
sitions Lstart to destination locations Lλ are com-
puted as

Pr(Lλ|T = t+4t, Lstart) =
V (Gλ,t+4t ∩Rstart)
V (

⋃
x
Gx,t+4t ∩Rstart)

,

where V () measures the volume of the given set and
T is the random variable for the time passed. The
process is illustrated in figure 6.

Currently we use PHAVer [31] for reachability
analysis, but different approaches can be employed.
Regarding abstraction of hybrid models, we can
build on a lot of related work in the area of auto-
mated verification of model properties. Stursberg
et al. address the problem of online verification
of properties such as that the planned path of a
cognitive vehicle doesn’t cross the path of another
vehicle [32]. In [32] they combine Markov chains
abstracting continuous behavior with a more ad-
vanced reachability analysis.

A too coarse state space quantization can lead
to spurious solutions. Currently, the right number
of partitions must be determined empirically. Hof-
baur and Rienmüller introduced a method to intel-
ligently quantize the continuous state space based
on qualitative properties of piecewise affine systems
[33]. The method might be a useful extension to
our approach as it automatically chooses a good
number of partition elements, balancing precision
of the abstraction against tractability, and reduces
the number of spurious solutions.

Conservative Abstraction of HyPHCAs
The discretized flow Fd(L) together with the dis-

crete part of the original HyPHCA now forms a
discrete model which we call discrete flow PHCA
(dfPHCA). We define dfPHCA states just like Hy-
PHCA states as (Ŝ(t)

ΠU
, m̂(t)), with the single dif-

ference that instead of assignments to continuous
variables U we have assignments to their discrete
counterparts ΠU . The hatˆ is used to differentiate
HyPHCA states (S(t)

U ,m(t)) from dfPHCA states
(Ŝ(t)

ΠU
, m̂(t)). dfPHCA are a step in between Hy-

PHCA and PHCA, and it can be argued that for
each dfPHCA there exists an equivalent PHCA. We
refer to [5] for the specifics.

It remains to show that a dfPHCA Adf , gener-
ated as described above from a HyPHCA HA , is
a conservative abstraction in terms of the probabil-
ities of system trajectories, or formally:
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Definition 8. (Set of abstracted HyPHCA trajec-
tories) Let G : DΠU

→ GR|U| be a function that
maps assignments to discretized continuous vari-
ables ΠU to grid cells Gλ ∈ GR|U| , with DΠU

=
Dx1× . . .×Dxn the combined domain of discretized
variables x1, . . . , xn ∈ ΠU . Let θAdf be a tra-
jectory of Adf with corresponding time point se-
quence 〈ti〉, generated from a HyPHCA HA .
Then χ(θAdf ) := {∆ is a trajectory of HA |∀ ti :
(S(t)
U ,m(t)) ∈ ∆(〈ti〉)∧(Ŝ(t)

ΠU
, m̂(t)) ∈ θAdf ⇒ m(t) =

m̂(t)∧S(t)
U ∈ G(Ŝ(t)

ΠU
)} is the set of all HyPHCA tra-

jectories contained in θAdf .

Proposition 2. Let 〈oi, ci〉 be an arbitrary finite
sequence of observations and commands and 〈ti〉
the corresponding sequence of time points. Then,
for a trajectory θAdf consistent with 〈oi, ci〉 (i.e.
Pr(θAdf |〈oi, ci〉) > 0), the following holds:

∀∆ ∈ χ(θAdf ) :

fHA(∆(〈ti〉)|〈oi, ci〉) ≤ Pr(θAdf |〈oi, ci〉)

fHA(∆(〈ti〉)|〈oi, ci〉) is the density function of a
distribution over discrete-time HyPHCA trajecto-
ries, conditioned on the sequence 〈oi, ci〉.

7. Belief State Approximation for Bounding
Plan Success Probability

In section 3.3 we have seen how bounds for the
plan success probability Pr(G|o0:t,Massess) can be
computed based on an approximated belief state.
Now we look at methods to compute this approxi-
mated belief state.

7.1. General Belief State Approximation
PHCAs and dfPHCAs are probabilistic models,

i.e. they encode a distribution Pr(Xt+1|Xt) for the
possible state transitions given the current state
and a distribution Pr(Ot|Xt) over possible obser-
vations given the current state. A well known ap-
proach to compute the belief state based on these
kind of models is filtering, whereby the distribution
over system states, conditioned on observations o0:t,
is computed iteratively given the last belief state
and the observation for the current time point. This
computation can be done approximately using sam-
pling techniques or with a k-best approach. The
widely employed particle filtering (see, e.g. [28])
is an instance of the former, while a k-best belief
update is described in, e.g., [27].

The k-best enumeration approach is generally
more appropriate in settings with a dominant, nom-
inal behavior and many unlikely off-nominal be-
haviors. In this case, the distribution over states
or sequences is peaked at the nominal behavior.
If in contrast many different behaviors with small
probabilities are possible without clear domination,
e.g. when many different executions of a plan can
lead to the plan’s goal, k-best is a bad choice:
Suppose that a plan yields 100 possible execu-
tions. 10 of them are goal-violating, the other 90
goal-achieving. Suppose that the success probabil-
ity Pr(G|o0:t,Massess) is 0.8, uniformly distributed
among the 90 goal-achieving behaviors. This yields
a probability of ≈ 0.008 per goal-achieving behav-
ior. Likewise, the failure probability (0.2) is dis-
tributed uniformly among the 10 goal-violating be-
haviors, yielding 0.02 per goal-violating behavior.
Clearly, k-best fails in this case: the goal-violating
behaviors are enumerated first, yielding a lower
bound of 0 for Pr(G|o0:t,Massess) as long as k < 11,
and then only slowly increases.

The factory settings we look at are rigid enough
to assume a dominant, nominal behavior. Con-
sequently we assume that a k-best approximation
serves us better than a sampling approach.

Approximation means that unlikely states are
pruned, focussing on the more likely states. A prob-
lem with that within the context of model-based di-
agnosis can be delayed symptoms, as shown in [34]:
A currently very unlikely state is pruned, but it is
the only state consistent with observations which
become available only later (delayed). The result is
that the model becomes inconsistent as soon as the
delayed observations become available, because the
only state(s) consistent with them where too un-
likely to be kept. As solution the authors propose
to enumerate sequences of states instead of single
states. The length of the sequence N must be cho-
sen such that they include the delays.

In our prototype implementation we use such a
time window approach which generates sequences
of the length N (where N is chosen as a parame-
ter). The end of the time window coincides with
time point t + n, and the belief state at that time
point can be computed by marginalizing over the
subsets of sequences which end in the same state.
We combine it with k-best approximation, enumer-
ating the k most probable state sequences within
the time window. This is an extension of the Most
Probable Explanation Problem. Here another ad-
vantage becomes apparent, namely that a sequence
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of states can provide diagnostic information by ex-
plaining what happened in the past (i.e. within
the time window). In our example, state sequences
leading to a failure of the plan explain that this
happens because the cutter first blunts and then
breaks. After deciding that a plan is likely to fail,
this information might indicate, e.g, what can be
done to prevent it (e.g., not using this machining
station).

Enumerating the most probable trajectories
dominates the complexity of our chosen approach,
which is essentially exponential in the number of
factory components (assembly, machining, etc.)
plus the number of products scheduled times the
number of time steps considered. The various trans-
lation and model generation processes are linear in
these quantities and thus negligible.

7.2. Computing Most Probable State Sequences Us-
ing Constraint Optimization

A PHCA encodes possible system evolutions, and
sequences of states are consequently represented
by markings of the PHCA’s locations. Previous
work [35] introduced an encoding of PHCA as
soft constraints [30], and casted the problem of
most probable sequences of PHCA markings as a
soft constraint optimization problem (COP) R =
(X,D,C). Its solutions directly correspond to se-
quences of markings within a window of N time
steps.

Executing a PHCA, given a marking m(t), means
to identify possible target locations to be marked
at t + 1, probabilistically choose transitions and
check consistency of observations and commands
with transition guards as well as behavior of the
targets. Also, it involves checking for interdepen-
dences encoded in behavior PHCA constraints, e.g.,
that a vibration occurs if and only if a vibration
occurs in machining or in assembly. Finally, tar-
gets have to be marked correctly regarding, among
other things, the hierarchical structure of a PHCA
and initial marking.

These execution semantics are encoded as COP
constraints for single time points and for transitions
between time points. The COP consists of N copies
of these constraints, corresponding to the N time
steps of the time window. This unfolds the model
over N time steps as follows: X = {X1, ..., Xn} is
a set of variables with corresponding set of finite
domains D = {D1, . . . , Dn}. For all time points
t = 0..N , it consists of Π(t) ⊆ X encoding PHCA

variables, auxiliary variables (needed to, e.g., en-
code hierarchical structure) and a set of binary vari-
ables Y = {X(ti)

L1
, X

(ti)
L2

, . . .} ⊆ X representing lo-
cation markings. Y is the set of solution variables
of R. C = {C1, . . . , Cn} is a set of constraints
(Si, Fi) with scope Si = {Xi1, . . . , Xim} ⊆ X and
a constraint function Fi : Di1 × · · · ×Dim → [0, 1]
mapping partial assignments of variables in Si to
a probability value in [0, 1]. For all time steps
t = 0..N , hard constraints in C (Fi evaluates to
{0, 1} only) encode hierarchical structure as well
as consistency of observations and commands with
locations and transitions, while soft constraints in
C encode probabilistic choice of initial locations
at t = 0 and probabilistic transitions. R then
consists of O(N(|T | + |Σ| + |Π|)) variables and
O(N(|Σ| + |T |)) constraints. The k-best solutions
to R are assignments to Y which, extended to all
variables X, maximize the global probability value
in terms of the functions Fi (i.e. the best solution
has the largest probability value, the second best
the second largest etc.). These assignments corre-
spond to the most probable PHCA system trajecto-
ries and their extension to X provides assignments
to, e.g., goal-achieving commands.

Technically, the enumeration of the k most likely
sequences is done by translating the generated COP
into the weighted CSP format as used by various
solvers. We used a modified version of the soft
constraint solver toolbar [36] that implements mini-
bucket elimination to generate a search heuristic for
the problem. The heuristic is used by a subsequent
A* search to enumerate the k best solutions. This
approach is described in detail in [37]. Note that
up to using an external solver such as toolbar, all
steps (e.g. COP encoding, generating the assess-
ment model) can be done offline. Only the final
solving step is done online.

8. Prototype Implementation

We built a simplified model of the manufactur-
ing system (see figure 7) which consists only of the
machining and the assembly station and allows to
track system behavior over time, including unlikely
component faults. In particular, the machining sta-
tion can transition to a “cutter blunt” composite
location, where vibrations are caused during opera-
tion due to the blunt cutter. The assembly station
model contains a composite location which models
occasional vibrations. A sensor can detect these
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vibrations, yielding binary signals “vibration oc-
curred” and “no vibration occurred”.

8.1. Restricted Plan Assessment Scenario
Three major restrictions apply to our prototype

implementation. First, products and manufactur-
ing plans are simplified: the robot arm is reduced to
a single alloy part being cut, the schedule is reduced
to six sequential steps and the maze only consists
of the base plate and the cover (no pins). The sim-
plified plan now has actions which cut the maze,
assemble the maze and cut parts of the robot arm:
P = 〈(cut, 0), (assemble, 1), (cut, 2), (cut, 3), (cut, 4),
(cut, 5)〉 (Note that times are already mapped to
indices of time points).

Second, the assessment model cannot differenti-
ate among different products, i.e. it only “sees”
a merged product consisting of the maze and the
robot arm part. Third, the manufacturing goal is a
single feature added as binary variable to the model.
The feature is present in all cases except when the
cutter breaks. In this case, the feature is absent
and the plan considered failed.

8.2. Computing Success Probability Using Most
Probable Trajectories

For our prototype we implemented the
constraint-based k-best enumeration of most
probable state sequences or trajectories as de-
scribed in section 7.2. Rather than first computing
an approximate belief state at t + n, we sum
directly over goal-achieving/goal-violating tra-
jectories to compute an approximate success
probability and bounds of the success probability.
Goal-achieving/violating trajectories are simply
defined through the last system state in the
trajectory: if it is goal-achieving, the trajectory
is goal-achieving, otherwise it is goal-violating.
Summing over trajectories achieves the same result
as summing over states of a belief state, because
the belief state can in fact be computed from a
distribution over trajectories by summing over
trajectories leading to the same state. It is easy to
see that, instead of first summing over trajectories
leading to the same state and then summing over
goal-achieving states, one can directly sum over
goal-achieving trajectories.

In the following, we omit the model Massess as
condition in the probabilities for brevity. First, ob-
serve that

Pr(G|o0:t,Massess) =
∑
θ∈G

Pr(θ|o0:t) =
∑
θ∈G

Pr(θ, o0:t)
Pr(o0:t)

=

∑
θ∈G

Pr(θ, o0:t)∑
θ∈Θ Pr(θ, o0:t)

=
∑
θ∈G Pr(θ, o0:t)∑
θ∈Θ Pr(θ, o0:t)

.

Here, Θ is not the set of all system states but
of all trajectories within the chosen time window,
and likewise G ⊆ Θ is the set of all goal-achieving
trajectories. Let now Θ(k) be the set of k-best tra-
jectories enumerated by our external solver toolbar,
and G(k) ⊆ Θ(k) the subset of goal-achieving tra-
jectories. We see that we receive simple bounds
of Pr(G|o0:t,Massess) by replacing G with G(k) in
the above equations and approximating the denom-
inator with 1 (with G(k) ⊆ Θ(k) the set of goal-
violating trajectories among the k-best):

pl =
∑

θ∈G(k)

Pr(θ, o0:t)

pu = 1−
∑

θ∈G(k)

Pr(θ, o0:t)

The k-best trajectories can also be used to approx-
imate the denominator, which then yields this ap-
proximate success probability:

Prk(G(k)|o0:t,Massess) =

∑
θ∈G(k) Pr(θ, o0:t)∑
θ∈Θ(k) Pr(θ, o0:t)

The idea behind this is to make as much use of the
k-best trajectories as possible. For our small pro-
totype the approximation worked quite well. How-
ever, as we argue in [6], the error of the above ap-
proximation is very hard to determine. It depends
non-monotonically on k, which makes it hard to
choose a k which minimizes the error of the above
approximation.

8.3. Decision Procedure using Plan Assessment

Plans are advanced until they are finished or new
observations are available. In the latter case cur-
rently executed plans are evaluated using the pro-
cedure in figure 8. The procedure takes as input
a plan Pi, it’s goal Gi and the assessment model
as COP. It first computes the k-best solutions to
the COP using an external solver (toolbar in our
case). This results in the k most probable trajec-
tories, which it then uses to approximate the suc-
cess probability of plan Pi. Finally, it compares
the probability against the two thresholds ωsuccess

and ωfail. Now it decides among three cases: (1)
The probability is above ωsuccess, i.e. the plan will
probably succeed, (2) the probability is below ωfail,
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idle
PF = OK

Vibration = NONE

cut
PF = OK

Vibration = NONE

cutter blunt

idle
PF = OK

Vibration = OCCURRED

cut
PF = OK

Vibration = OCCURRED

failure: cutter broken
PF = FAULTY

Vibration = OCCURRED

machining

cmd = cut; 0.5

cmd = cut; 0.5

cmd = noop; 1.0

cmd = noop; 1.0

cmd = cut; 0.5

cmd = cut; 0.5

; 1.0

cmd = cut; 0.9

cmd = cut; 0.1
cmd = noop; 1.0

cmd = noop; 1.0

cmd = cut; 0.1
cmd = cut; 0.9

idle assembleidle
Vibration = NONE

no vibration
Vibration = NONE

vibration
Vibration = OCCURRED

assembly
vibration

cmd 6= noop; 0.8

cmd 6= noop; 0.2

cmd = noop; 1.0

cmd = noop; 1.0

cmd 6= noop; 0.2

cmd 6= noop; 0.8

cmd = noop; 1.0 cmd 6= noop; 0.8

cmd 6= noop; 0.2

cmd = assemble; 1.0

cmd = noop; 1.0

cmd = noop; 1.0

cmd = assemble; 1.0

Vibration = OCCURRED ⇔ machining.Vibration = OCCURRED ∨ assembly.Vibration = OCCURRED

Figure 7: Prototype PHCA of the cognitive factory. The machining and assembly station are parallel running
composite locations (indicated by dashed borders). Variables such as Vibration are local. machining.Vibration
refers globally to Vibration within composite location machining. Note: “noop” means “no operation”.
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1: procedure EvaluatePlan(R = (X,D,C),
o0:t, Pi, Gi)

2: R’ ← add constraints encoding o0:t to R
3: Θ(k) ← k-best solutions of R’ for Y
4: p ← Prk(Gi(k)|o0:t,Massess)
5: if p > ωsuccess then return
6: else if p < ωfail then
7: stop execution of Pi
8: RePlan (Pi,Θ(k))
9: else

10: stop execution of Pi
11: ReplanPervasiveDiagnosis(Pi,Θ(k))
12: end if
13: end procedure

Figure 8: Procedure that uses the success proba-
bility of plan Pi to decide whether to a) continue
with it, b) stop it because it probably won’t succeed
or c) gather more information.

i.e. the plan will probably fail or (3) the probabil-
ity is in between both thresholds, which means the
case cannot be decided. In the first case it simply
continues execution. In the second case it adapts
the plan to the new situation. This is done by
RePlan(Pi, Θ(k)), which modifies the future ac-
tions of Pi taking into account the diagnostic infor-
mation contained in Θ(k). The third case indicates
that not enough information about the system’s
current state is available. As a reaction, the proce-
dure ReplanPervasiveDiagnosis(Pi, Θ(k)) im-
plements a recently developed method called per-
vasive diagnosis [38]. It addresses this problem by
augmenting a plan with information gathering ac-
tions (we do not detail the procedures RePlan and
ReplanPervasiveDiagnosis as they are beyond
this article’s scope).

9. Results

9.1. Experiments
We ran experiments for our prototype example

scenario, where we varied the number of cut actions
after t = 2 in our example plan, yielding different
Pi. The time window size N accordingly ranges
from 2 to 6. Using our soft-constraint method, we
generated COPs with according sizes of 240 to 640
variables and 240 to 670 constraints. Figure 9 shows
the success probabilities for the Pi and k. Table 1
shows the runtime in seconds and the peak mem-
ory consumption in megabytes for computing suc-
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Figure 9: Approximate success probability (y-axis)
of plan Pi against varying usage of the machining
station (x-axis) after the observation of a vibration
at t = 2.

cess probabilities in the planning scenarios. We also
tried different values for the mini-bucket parameter
i, where higher values mean a higher cpu/memory
investment to generate better search heuristics.

As expected, with increasing use of the
machining station (more cut operations),
Prk(G(k)|o0:t,Massess) decreases. Also, run-
time increases for larger time windows. The
effect of approximation (choosing lower k) is
that Prk(G(k)|o0:t,Massess) increasingly deviates
from the exact solution. In our example, the
approximation tends to be optimistic. In general,
however, we think that Prk(G(k)|o0:t,Massess) can
be pessimistic, if success trajectories are pruned
first when decreasing k. Increasing k hardly seems
to affect the runtime, especially if the mini-bucket
search heuristic is strong (bigger i-values). For
weaker heuristics the influence increases slightly.
Memory consumption is affected much stronger
by k. Here also, a weaker search heuristic means
stronger influence of k.

9.2. Discussion

The typical scenarios that we have in mind do not
require real-time plan assessment. Rather, “online”
means that the assessment is done on, e.g., a sepa-
rate PC (such as the one we used for experiments).
The results show that a) plan assessment is in prin-
ciple a valid approach to identify harmful influences
on plans and b) the runtime/memory consumption
is within the limits of typical setups. However, they
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No. times machining used in P (window size N , #Variables, #Constraints)
k i 0 (2,239,242) 1 (3,340,349) 2 (4,441,456) 3 (5,542,563) 4 (6,643,670)
1 10 < 0.1 / 1.8 0.1 / 6.8 0.1 / 19.0 (mem) (mem)

15 0.1 / 1.9 0.3 / 4.2 0.5 / 7.8 0.5 / 16.6 0.8 / 32.0
20 0.1 / 1.9 0.5 / 5.2 3.7 / 20.1 6.5 / 34.5 9.5 / 50.7

2 10 < 0.1 / 2.1 0.1 / 11.9 0.2 / 38.5 (mem) (mem)
15 0.1 / 2.2 0.3 / 5.4 0.5 / 9.7 0.6 / 28.0 0.8 / 52.0
20 0.1 / 2.2 0.5 / 6.4 3.7 / 21.8 6.5 / 37.2 9.5 / 55.8

3 10 < 0.1 / 2.3 (e) 0.1 / 11.9 0.2 / 40.1 (mem) (mem)
15 0.1 / 2.4 (e) 0.3 / 5.4 0.5 / 11.4 0.6 / 29.9 0.9 / 55.5
20 0.1 / 2.4 (e) 0.5 / 6.4 3.7 / 23.5 6.6 / 38.3 9.5 / 57.4

4 10 (e) 0.1 12.5 0.2 / 40.1 (mem) (mem)
15 (e) 0.3 / 5.9 0.5 / 11.4 0.6 / 30.9 0.9 / 57.2
20 (e) 0.5 / 6.9 3.7 / 23.5 6.6 / 39.3 9.5 / 59.1

5 10 (e) 0.1 / 13.1 0.2 / 40.7 (mem) (mem)
15 (e) 0.3 / 6.6 0.5 / 12.0 0.6 / 33.6 0.9 / 59.5
20 (e) 0.5 / 7.6 3.7 / 24.0 6.6 / 42.8 9.5 / 63.9

10 10 (e) 0.1 / 14.0 (e) 0.2 / 43.4 (e) (mem) (mem)
15 (e) 0.3 / 6.7 (e) 0.5 / 14.7 (e) 0.6 / 36.2 0.9 / 64.8
20 (e) 0.6 / 7.7 (e) 3.8 / 26.6 (e) 6.6 / 45.8 9.6 / 68.9

Table 1: Runtime in seconds / peak memory consumption in megabytes. (e) indicates that the exact success
probability Pr(G|o0:t,Massess) could be computed with this configuration. (mem) indicates that A* ran out
of memory (artificial cutoff at > 1 GB, experiments were run on a Linux computer with a recent dual core
2.2 Ghz CPU with 2 GB RAM).

also indicate that exponential complexity is still a
problem of our approach, despite using optimized
constraint solving techniques (e.g. tree decomposi-
tion, mini-bucket elimination). One problem here is
that a number of advanced COP techniques cannot
be readily employed since it is non-trivial to adapt
them to produce k-best solutions. The bottom line
is that our approach is currently unlikely to scale
up to real application domains.

A number of future research avenues are open
to address these issues. One idea is to combine
trajectory enumeration with filtering: Choosing a
small time window with fixed N , one could shift it
stepwise to cover the whole schedule, enumerating
and summing over trajectories in each step. This
would reduce the complexity to being exponential
only in the number of components and products
(since N would be constant independently of the
schedule length). Another idea is to reduce a de-
tailed schedule to only a few important steps, e.g.
by combining repetitive actions, to fit it into a small
enough time window (≈ 15 steps). Finally, plan as-
sessment could be restricted to computing (bounds
on) product success probabilities for a fixed time
horizon only.

10. Conclusion

Within a cognitive factory setting, we described
the problem of plan assessment, which is to com-
pute bounds on the probability of success of an au-
tomatically generated manufacturing process plan
based on a predicted belief state of the system.
We presented a model-based method to solve this
problem which first enumerates the k most proba-
ble system trajectories and then computes an ap-
proximate success probability based on them. In
this method, we enumerate the trajectories by gen-
erating the k-best solutions to a probabilistic con-
straint optimization problem. Preliminary results
with a prototype implementation for our cognitive
factory scenario show that plan assessment can in-
deed guide the system away from plans which rely
on suspect system components.

In the future, we would like to fully implement
our approach, using assessment models generated
for scheduled manufacturing of multiple individu-
alized products. We also intend to fully develop
a method for automatic generation of assessment
models from a knowledge base and a given schedule.
Furthermore, we plan experiments to compare our
approach against other possible solutions of plan
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assessment, e.g. particle filters or sampling based
methods. Another interesting idea is to exploit di-
agnostic information from most probable system
trajectories to update transition probabilities in be-
havior models, for instance, to adapt to parameter
drifts or wear.
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