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Abstract

The work is devoted to the modeling of acoustic waves in multi-layered structures sur-
rounded by a fluid and consisting of different kinds of materials including piezoelectric
materials and composite multilayers. It consists of three parts. The first part describes the
modeling of an acoustic sensor by the finite element method. The existence and uniqueness
of a time-harmonic solution are rigorously established under physically appropriate assump-
tions. It is shown that the elimination of nonzero eigenvalues of the arising Helmholtz-like
system can be achieved by introducing an additional term that causes the damping effect
near the boundary. We also establish the well-posedness of the discretized problem and
the convergence of Ritz-Galerkin solutions to the solution of the exact problem. Besides,
we derive a domain decomposition schema for the numerical treatment of the problem.
Finally, the results of 3D simulations are presented.

The second part of the work presents a semi-analytical method for the fast character-
ization of plane acoustic waves in multi-layered structures. The method identifies plane
waves that can possibly exist in a given structure, determines their velocities, and com-
putes the dispersion relation curves. It handles multi-layered structures composed of an
arbitrary number of layers made of different material types. The influence of a surrounding
fluid or dielectric medium can also be taken into account. The software implementing this
approach is presented.

The third part investigates a number of issues of the homogenization theory for linear
systems of elasticity. The results presented here are exploited in the previous part for
the modeling of acoustic waves in composite materials called multilayers. Such materials
consist of huge number of very thin periodic alternating sublayers. In this part we rigorously
derive the limiting equations in the general three-dimensional case by the two-scale method
and establish an error estimate for the case where the right-hand side is in L2. The
homogenization of laminated structures is considered as a special case. For this case an
explicit formula for the elasticity tensor of the homogenized material is derived.
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Zusammenfassung

Die Dissertation beschäftigt sich mit der Modellierung akustischer Wellen in Mehrschicht-
strukturen, die aus verschiedenen Arten von Materialien bestehen. Unter anderem werden
piezoelektrische Schichten, Schichten aus speziellen Verbundwerkstoffen und die Struktur
umgebende Fluide betrachtet. Die Arbeit besteht aus drei Teilen. Der erste Teil beschreibt
die Modellierung eines akustischen Sensors mit der Finite Elemente Methode. Die Exis-
tenz und Eindeutigkeit einer zeitharmonischen Lösung werden unter aus physikalischer
Sicht vernünftigen Annahmen rigoros bewiesen. Es wird gezeigt, dass die Eliminierung
von nicht trivialen Eigenwerten des entstehenden Helmholtz-ähnlichen Systems mit der
Einführung eines zusätzlichen Terms, der die Dämpfung im Randbereich verursacht, erre-
icht werden kann. Wir analysieren auch die Ritz-Galerkin-Approximation des Problems
und beweisen die Existenz und Eindeutigkeit der Ritz-Galerkin-Lösungen, sowie die Kon-
vergenz gegen die exakte Lösung. Außerdem wird für das approximierende Problem eine
Domain Decomposition Methode hergeleitet. Schließlich präsentieren wir die Ergebnisse
numerischer Simulationen in 3D.

Der zweite Teil der Arbeit beschreibt eine semi-analytische Methode für die schnelle
Charakterisierung von ebenen akustischen Wellen in Mehrschichtstrukturen. Mit der Meth-
ode können ebene Wellen, die möglicherweise in einer gegebenen Struktur auftreten, gefun-
den werden, ihre Geschwindigkeiten bestimmt, sowie die Dispersionsrelationen berechnet
werden. Es können Mehrschichtstrukturen aus beliebig vielen Schichten verschiedener Ma-
terialarten, möglicherweise von einem dielektrischen Medium oder einem Fluid umgeben,
behandelt werden. Die für diese Methode entwickelte Anwendersoftware wird präsentiert.

Der dritte Teil untersucht einige Fragen aus der Homogenisierungstheorie der linearen
Elastizität. Die hierbei erzielten Ergebnisse werden im vorherigen Teil der Arbeit für die
Modellierung akustischer Wellen in speziellen Verbundwerkstoffen, genannt Multilayers,
verwendet. Solche Materialien bestehen aus sehr vielen sehr dünnen periodisch wechselnden
Teilschichten. In diesem Teil werden die Limesgleichungen im allgemeinen 3D-Fall mit der
Zwei-Skalen-Methode rigoros hergeleitet, sowie eine Fehlerabschätzung für den Fall, dass
die rechte Seite aus L2 ist. Die Homogenisierung der laminierten Schichtstrukturen wird als
Sonderfall betrachtet. Für diesen Fall wird eine explizite Formel für den Elastizitätstensor
des homogenisierten Materials hergeleitet.
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1 Introduction

1.1 Motivation and Object

Acoustic Wave devices have been in industrial applications for many decades and are be-
coming more and more popular. Traditionally consumed mostly in telecommunications
(mobile phones) they now conquer new increasingly growing application areas in the auto
industry (torque and tire pressure sensors), metallurgy (nondestructive testing), medicine
(chemical sensors), and domestic appliances (vapor, humidity, temperature, and mass sen-
sors).

Exploiting surface acoustic shear waves gives rise to the development of tiny sensors
with very high mass sensitivity that are especially well suitable for detecting chemicals in
liquids. Such sensors are being widely utilized in medical and technical applications.

The development of such high sensitive sensors is hardly imaginable without preliminary
mathematical modeling aimed at the optimization of the layout and size of structural
elements, identification and detailed study of relevant physical processes, and estimation
of the sensitivity and performance limits.

The work was initially motivated by the development of a biosensor at the research
center caesar. This biosensor serves for the detection and quantitative measurement of
microscopic amounts of biological substances. The underlying operating principle is based
on the generation and detection of horizontally polarized surface acoustic waves (SAW)
in a piezoelectric substrate. The substrate is a cut of a piezoelectric crystal oriented in
such a way that the excited wave is horizontally polarized. This wave is guided by an
elastic layer welded on the top of the substrate so that one can speak about Love waves
(see [47]). Mechanical displacements in such waves are free of the transversal component,
and, therefore, no appreciable energy is radiated into the contacting liquid, which makes
shear Love waves perfectly suitable for liquid sensing applications. In this area Love wave
sensors have the highest sensitivity in comparison with all the others acoustic sensors (see
[23]).

During the work on the biosensor we have developed a modeling approach that is appli-
cable to a wide range of multi-layered structures comprising those occurring in the specific
biosensor under consideration. Moreover, our methods can easily be extended to cover
other types of media constituting the layers. In particular, many physicists are interested
in the characterization of acoustic waves propagating in composite materials with very
thin alternating sublayers. A large number of the sublayers and their small thickness in
comparison with the wavelength makes any direct modeling of such materials impossible.
So that homogenization theory for elastic materials has to be involved.
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1.2 State of the Art

There exists an abundant literature on characterization of acoustic waves in crystals.
Among others, surface acoustic waves are under particular intensive study. The funda-
mental work [40] describes the connection between elasticity theory and wave propagation
including surface waves of different types. The dispersion relations are derived for two-
layered structures composed of isotropic materials. The monograph [4] contains a compre-
hensive description of elasticity theory for crystals. Mathematical methods for the study of
reflection and scattering of acoustic Rayleigh waves are presented. The book [75] presents
the linear elasticity theory for piezoelectric media and establishes relations between mathe-
matical models and engineering representations of characteristics of piezoelectric materials.
The monograph [60] treats principles of mathematical modeling of wave propagation. This
includes elasticity and piezoelectric equations for crystal media, boundary conditions, in-
terface requirements, and dispersion relations for various wave types. The excitation of
acoustic waves in piezoelectric crystals with embedded electrodes as well as wave guides
and guiding layers are considered from the mathematical and technical points of view.

The works [14], [39], [15], [31], and [32] study shear wave sensors regarding measurements
in liquids. The mathematical model developed in [14] is based on harmonic analysis. It is
assumed that the sensor is infinite in the horizontal directions. The presence of a liquid
is taken into account by an additional viscoelastic term in the wave equation. In [39],
the effect of the viscosity of the liquid on the noise of the output signal is analyzed for
the case of a small viscosity. The investigation is based on formulas from [4]. In [15], the
dependence of the sensitivity on the thickness of the guiding layer is studied using formulas
from [4]. Numerical results are in a good agreement with laboratory tests as long as the
thickness of the guiding layer does not exceed a certain value. For thick guiding layers,
large deviations from measured values arise. The same model is examined in [31] using
Fourier analysis. An effective way to analyze the dependence of the sensitivity on the liquid
viscosity is proposed in [32].

Another approach to analyze surface acoustic waves in multi-layered structures and semi-
infinite substrates is based on using orthogonal functions [13]. In particular, Laguerre
[34, 35] and Legendre polynomials [43] are of most use. The work [42] studies conceptual
advantages and limitations of the Laguerre polynomial approach. Among other things it
is shown there that Laguerre polynomial method cannot be used to study leaky surface
acoustic waves.

Much literature exists on investigation of acoustic waves in multi-layered structures by
the so-called transfer matrix method. A good overview on this subject can be found in [49].
The method introduces transfer matrices that describe the displacements and stresses at
the bottom of the layer with respect to those at the top of the layer. The matrices for all the
layers are then coupled by interface conditions to yield a system matrix for the complete
system. Thus the displacements and stresses at the bottom of the multi-layered structure
are related to those at the top of the structure. Modal or response solutions could then be
found by application of the appropriate boundary conditions. The method, first proposed
in [70], has been pursued and enhanced by many authors. The works [66, 58, 19, 65, 73]
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extend the original theory to leaky waves by introducing a real exponential factor in the
wave equation. This is achieved by allowing either the frequency or the wavenumber to
be generally complex. A number of works are devoted to the treatment of instabilities
that arise when layers of a relatively large thickness are present and high-frequency are
considered. One approach is based on a rearranging the equations in such a way that they
do not become ill-conditioned [16, 71, 1, 45, 9]. Another approach is to employ a “Global
matrix” in which a large single matrix is assembled, consisting of all of the equations for
all of the layers [36, 64, 62, 63, 48]. The work [57] presents a program for computing
dispersion relations in multi-layered structures based on the latter approach. Though the
numerical algorithm has a number of similarities with the algorithm proposed in Chapter 3
of this work, it has limitations when dealing with anisotropic materials and does not cover
piezoelectric media. The last is apparently a consequence of aiming at applications in
nondestructive testing. The transfer matrix method has been initially applied in geology.
Hence it has been focused on pure elastic structures only. Meanwhile, some extensions to
piezoelectric materials have appeared [72, 7].

The works cited above are mostly based on harmonic analysis. When applied to the
simulation of real devices, these techniques require significantly simplifying assumptions.
This limits the practical use of the models proposed. Many quantitative questions remain
unanswered, especially, if the object under consideration has a complicated geometrical
structure, e.g., if it consists of several layers with extremely different thicknesses or em-
braces other obstacles like electrodes. Moreover, in order to avoid the consideration of wave
reflections on the faces, it is often assumed that the layers are infinite in lateral dimensions.
Therefore, important effects such as the excitation of parasite frequencies caused by wave
reflections cannot be seized. The influence of internal obstacles, e.g., electrodes is not taken
into account as well.

Modeling with finite elements or volumes is more promising, because it allows to take into
account and quantitatively estimate the above-mentioned effects and nonlinear interactions
with the surrounding liquid. One of the difficulties here is the modeling of the liquid-solid
interaction. J. L. Lions [46] treats this problem by means of a variable transformation,
which yields some non local in time but well-posed integro-differential equations. Another
method for the treatment of the contact between a solid body and a liquid consist in a
suitable penalization of the interface conditions. This reduces the original problem to a
control problem [24].

Due to advances in computer performance the finite element approach to modeling of
acoustic devices became more popular during the last two decades [44, 17, 52, 59, 27, 20, 26].
However, most of the works lack the rigorous mathematical analysis of models utilized
and do not prove the convergence of numerical methods. Many works use reduced two-
dimensional models or do not consider the contacting liquid.

A theoretical investigation of linearized equations of piezoelectricity and their treat-
ment by the finite element method is given in [21] and [22]. Solvability conditions for the
time-harmonic case are analyzed. The original system of equations is transformed to the
associated Schur complement system for which a modification of the Fredholm alternative



4 1. Introduction

is proved. The works [37, 38] extend the model developed in [21] and [22] by considering the
acoustic streaming in fluid-filled microchannels located on the top surface of a piezoelectric.

The fundamental work on homogenization of linear systems of elasticity is due to Oleinik,
Shamaev, and Yosifian [56]. The book contains a lot of theoretical results. In particular,
it presents the limiting equations (though without derivation) and establishes an error
estimate for the case where the right-hand side is in H1. The rigorous derivation of the
limiting equation by Tartar’s method of oscillating test functions (see [68, 69]) can be found
in [11]. The book [33] can be referred as a comprehensive monograph on homogenization
theory of partial differential equations. The homogenization of elasticity tensors is based
here on the theory of G-convergence. Among many other things the book also derives an
explicit formula for the homogenized tensors in the case of layered materials. However, the
derivation is given for isotropic materials only.

1.3 Overview

The thesis presents two approaches to modeling of acoustic waves in multi-layered struc-
tures.

The first part of the work is devoted to the modeling of the acoustic sensor mentioned
in Section 1.1 by the finite element method. The main advantage of this method is the
ability to take into account the exact parameters of the sensor such as the shape of the
electrodes, their position, electroconductivity properties. This allows to estimate important
characteristics of the biosensor and effects caused by the scattering of waves. This approach
is described in details in Chapter 2.

The FE-model is developed under the following assumptions:

1. We consider linear material laws for solids and neglect nonlinear terms in the de-
scription of the fluid. This is reasonable because the displacements and velocities are
very small for the structure under consideration.

2. Only time-periodic solutions are considered.

3. The damping effect at the sides of the biosensor is modeled by an additional term in
the governing equations. This term is zero inside the structure and grows linearly in
some damping area as it approaches the boundaries.

4. We introduce a small term describing the dielectric dissipation in the piezoelectric
substrate (see Section 2.4). Due to its smallness, the term has no significant influence
on the result, but it plays an important role in the proof of the well-posedness of the
model while preserving the physical meaning.

5. The liquid-solid interface is treated by means of the variable transformation as de-
scribed in [46].
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The presented model is an extension and modification of the model described in [6]. Among
other things, the extended model accounts for special bristle-like layers arising in some
applications at the liquid-solid interface. The simulation of them is based on the homoge-
nization technique developed in [28]. We also provide a rigorous mathematical analysis of
the model. Beside the proof of the well-posedness the chapter investigates numerical issues.
It establishes the convergence of the Ritz-Galerkin solutions to the exact one and proposes
a numerical scheme based on domain decomposition. Finally, the results of 3D-simulations
are presented.

Though the FE-approach provides accurate results, it has a number of disadvantages.
The main disadvantage is the laboriousness of the computer implementation. The com-
putations are very high time- and resource-consuming due to a very small wavelength.
In order to resolve the wave structure appropriately, a large number of elements in the
wave traveling direction is required. The number of degrees of freedom lies in the range
of 107 − 108, which makes simulations on stand-alone ordinary computers impossible and
requires parallel computing. Another disadvantage is the inflexibility when optimizing the
constructive features of the sensor. Changes in the geometry, adding or removing layers
involve essential changes in the FE-discretization and require the complete recalculation.

These disadvantages suggested us to look for lighter-weighted and more flexible ap-
proaches to the modeling, which would allow to obtain preliminary results faster for the
price of a relaxed mathematical model. The approach described in Chapter 3 is based on
the harmonic analysis of plane waves propagating in multi-layered structures unbounded
and homogeneous in the horizontal directions. This method allows to identify traveling
waves feasible in a given structure and derive the corresponding dispersion relations, i.e.
the relations between the propagation velocity and the wave frequency. As a rule, the
analytical derivation of dispersion relations in multi-layered structures is not realizable.
Therefore the method described in this work is semi-analytical and essentially relies on
numerical procedures.

The assumptions of the unboundedness and homogeneity of the structure in the hori-
zontal directions prevent this method from the accurate simulation of real devices. The
method is not able to take into account a number of important parameters relevant to
sensors, such as the dimensions, the shape and layout of electrodes. On the other hand,
it provides very important preliminary information such as the wavelength and the dis-
placement profile in the transversal direction including the attenuation rates of waves in
the substrate and in the fluid. Such information is very important for choosing optimal
reliable finite element approximations. Besides, the assumption of the unboundedness is
quite relevant for the characterization of propagating acoustic waves, because real sensor
chips are usually embedded up to the surface in some viscose damping medium to exclude
the reflection of waves on the side and bottom faces. To some extent this is equivalent to
the above mentioned acoustic unboundedness.

As this method was initially applied to the modeling of the biosensor, it became clear
that the algorithm lying in the base of it can be used for the characterization of acoustic
waves in a much wider range of structures than that of the biosensor. Namely, the method
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can easily be adjusted to almost arbitrary multi-layered structure consisting of any finite
number of layers and can be applied for the characterization of any type of plane waves,
not only surface acoustic waves. Exploiting this idea we developed a computer program
which calculates dispersion relations in arbitrary structures specified by the user. The
program has a user-friendly interface that allows to manipulate with layers and materials
in a simple way.

Initially, the possible types of materials were limited to piezoelectric and isotropic elas-
tic materials, the surrounding medium could be absent or be a weak-compressive fluid.
Later on, reacting on the needs of simulations the list of accessible materials and media
was significantly extended. The careful examination of the electric field in the structure
forced us to enrich isotropic materials with electric properties extending the corresponding
mathematical treatment. For the same reason a dielectric surrounding media (like gas or
vacuum) was introduced. Significant efforts were put to the modeling of thin bristle-like
layers contacting with a fluid. In order to handle such layers we exploit the homogenization
technique described in [28] which enables us to reduce the problem to the case of a bulk
layer. Such layers were as well successfully integrated into the program, which involved
the entire numerical implementation of the homogenization procedures.

The necessity in another kind of homogenization arises when dealing with composite
materials consisting of a large number of periodically alternating thin sublayers. A typical
example of such materials are so called multilayers (see for example [25]). The direct
modeling of them is hardly possible due to a large number of sublayers and their small
thickness in comparison to the wavelength. Therefore the original composite materials
are replaced with an averaged one whose properties are derived as the thickness of the
repeating set of the sublayers goes to 0 and their number goes to infinity. This involves
the homogenization theory for linear systems of elasticity. This topic is the subject of
Chapter 4. In this chapter we rigorously derive the limiting equations in general three-
dimensional case by the two-scale method and establish an error estimate for the case where
the right-hand side is in L2. The homogenization of laminated structures is of particular
interest and considered as a special case. For this case an explicit formula for the elasticity
tensor of the homogenized material is derived. This enabled us to extend the presented
program for calculating acoustic waves with this kind of composite materials.

The main practical result of this work is the developed computer program that represents
a powerful modeling tool for the fast characterization of acoustic waves in multi-layered
structures. A wide range of the supported material types and the ability to simulate dif-
ferent types of waves make this tool applicable in many application domains including
geophysics, non-destructive testing, and design of acoustic devices. The ability to simulate
piezoelectric materials, bristle-like layers, and surrounding fluids makes the program espe-
cially useful for engineers working on acoustic sensors. The program can be very helpful
at early stages of designing acoustic devices because it allows to obtain many important
wave parameters very quickly. For example, one can quickly estimate the sensitivity of a
sensor depending on many construction parameters such as the thickness of layers, their
mechanical and electrical properties, the properties of the surrounding medium.
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More accurate but time-expensive simulations of acoustic sensors can be done by the
finite element method. The presented final element model of the biosensor can be applied
to a wide range of similar acoustic based devices. The crucial assumption for the well-
posedness of the model is the presence of damping area surrounding the device. As long
as this condition remains the developed theory is applicable.

Finally, the both approaches provide the most efficient way to simulate SAW devices
when applied together. The preliminary results obtained by the method based on dispersion
relations can then be used to adjust and optimize the finite element model. On the other
hand, they can be used for fast verification of results of FE-simulations.

Another result that can be useful for physicists and engineers is the rigorously derived
explicit formula for the calculation of the elasticity tensor of multilayers. The elastic
properties of multilayers are of extreme importance. There are many works devoted to the
measurement and calculation of Young’s modulus for such materials. The derived formula
can be very helpful for people working in this area.





2 Finite Element Model of Acoustic
Biosensor

2.1 Introduction

This chapter is devoted to the simulation of the biosensor mentioned in Section 1.1 by the
final element method. The biosensor serves for the detection and quantitative measurement
of a specific protein in a contacting liquid. The key role in the detection process is played
by the so-called aptamers. Aptamers are special molecules that bind to a specific target
protein selectively. They are designed based on the protein to detect.

As depicted in Figure 2.1 the biosensor consists of several layers. The bottom layer is
a substrate made of a piezoelectric material. Two groups of electrodes are deposited on
top of it. An acoustic wave is excited in the substrate by applying alternate voltage to the
input electrodes. It travels then through the whole structure towards the output electrodes
that serve to identify its characteristics at the end of the path. The surface of the top layer
contacts with the liquid. It is covered with the aptamer receptors. If the target protein is
present in the liquid, it gets caught by the aptamers so that the mass of the whole structure
increases and the wave travels slower. The arising phase shift at the end of the path is
then identified by the output electrodes.

We state a three-dimensional mathematical model that describes the biosensor structure
consisting of the following five layers (see Figures 2.1 and 2.2): a piezoelectric substrate
made of α-quarz, a guiding layer made of silicon dioxide, a gold shilding layer, a bristle-like
aptamers layer and a liquid layer considered as a weakly compressible viscous fluid. The
biosensor is embedded up to the surface into a very viscous damping medium to exclude the
reflection of waves on side and bottom faces. The full coupling between the deformation
and electric fields is assumed.

The chapter is organized as follows. Section 2.3 states the governing equations, the
boundary and interface conditions. Section 2.4 describes the derivation of the weak formu-
lation of the problem and provides an analysis of its properties. The well-posedness of the
model is then established in Section 2.5. Section 2.6 is devoted to the numerical treatment
of the model. It shows the well-posedness of the discrete problem and the convergence
of the discrete solution to the solution of the original problem. Besides, it describes the
numerical treatment by the domain decomposition approach. Finally, Section 2.7 presents
the results of the finite element simulations.
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Figure 2.1: Sketch of the biosensor.

2.2 Notation

We use the cartesian coordinate system (x1, x2, x3). The x3-axis is orthogonal to the sensor
surface; the x1-axis is parallel to the wave propagation direction.

Let u1, u2, and u3 be the displacements in the x1, x2, and x3 directions, respectively; v1,
v2, and v3 the velocity components; p the pressure; % the density.

Vectors are distinguished from scalar quantities by writing the quantity in a bold font.
For example,

u = (u1, u2, u3)T

is the displacement vector, and
v = (v1, v2, v3)T

is the velocity vector.
The Einstein’s summation convention is exploited throughout the work. The subscript

t when applied to a function denotes the derivative with respect to time.
Denote by ε(w) the symmetric part of the gradient of a vector function w, i.e.

εij(w) :=
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
.

The symmetric part of the gradient of the displacement vector is denoted by ε, i.e.

ε := ε(u).

Note that ε is the usual infinitisimal strain tensor.
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The symmetric part of an arbitraty second-rank tensor ξ is denoted by sym(ξ).

To distinguish functions and parameters related to different media we introduce the
following sub- and superscripts that indicate the medium:

• f - fluid,

• a - aptamer layer,

• s - shielding layer (usually made of gold),

• g - guiding layer (usually made of SiO2),

• p - piezoelectric substrate.

Open domains occupied by media are denoted by Ω with the corresponding subscript. By
Ωd
p, Ωd

g and Ωd
s denote the damping subdomains (see below) of Ωp, Ωg and Ωs respectively.

Neighboring domains with the interface between them are indicated by the combination
of the corresponding subscripts. For example, Ωpgs = int(Ωp ∪ Ωg ∪ Ωs). The domain
occupied by the whole device is denoted by Ω. By definition, Ω = Ωpgsaf .

We use the letter C to represent a generic positive constant that may take different
values at different occurrences.

2.3 Governing equations and Conditions

2.3.1 Governing Equations

We consider linear material laws for solids (see [75]) and neglect nonlinear terms in the
description of the fluid. This is reasonable because the displacements and velocities are
very small for the structure under consideration.

The electrodes lying on the substrate are very thin. Their thickness is in the range of
200 to 300 nm. This enables us to simplify the geometry of the structure by assuming
the electrodes to be plain. This simplification implies that the two-dimensional domain
occupied by the electrodes is a part of the plain interface between the substrate and the
guiding layer. We denote this domain by S ⊂ R2. Two plain domains occupied by two
alternating groups of the input electrodes are denoted by S1 and S2. The domains of the
output electrodes are indicated by S3 and S4. By definition S = S1 ∪ S2 ∪ S3 ∪ S4.

We also neglect the mechanical influence of the electrodes. This influence is insignificant
because the electrodes are very thin and narrow, and therefore their mass is tiny. Thus we
have no equation for them. However, their size, shape and layout determine the geometry
of the electrical boundary conditions. Hence they are still taken into account by the model.

The damping effect of the surrounding viscous medium is simulated by introducing an
additional viscous term in the governing equations. This term is zero outside some damping
domain and grows linearly as it approaches the boundaries (see Figure 2.2).
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Figure 2.2: Cross section of the biosensor.

We state now the governing equations for all the layers.

Piezoelectric Substrate.
The constitutive relations for the piezoelectric substrate in the case of small deformations
are of the form

σij =Gijklεkl − ekijEk, (2.1)

Di = εijEj + eiklεkl. (2.2)

Here, σij and εkl are the stress and the strain tensors, D and E denote the electric dis-
placement and the electric field; εkl, ekij, and Gijkl denote the material dielectric tensor,
the stress piezoelectric tensor, and the elastic stiffness tensor, respectively. The momentum
conservation law and Gauss’s law yield the following governing equations:

%utt − divσ − div(β(x)∇ut) = 0,

divD = 0.
(2.3)

Here the term with β(x) expresses the damping on the side boundaries of the device. The
function β(x) is assumed to be zero outside of the damping region Ωd

p ∪ Ωd
g ∪ Ωd

s and it
grows linearly up to some β0 > 0 towards the side boundaries of the sensor. Substituting
(2.1) and (2.2) into (2.3) yields the following governing equations for the displacements
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and the electric potential in the substrate:
%ui tt −Gijkl

∂2ul
∂xj∂xk

− ekij
∂2ϕ

∂xk∂xj
− div(β(x)∇ui t) = 0, i = 1, 2, 3,

−εij
∂2ϕ

∂xi∂xj
+ eikl

∂2ul
∂xi∂xk

= 0

in Ωp, (2.4)

where ϕ is the electric potential, i.e.

E = −∇ϕ.

Later on we will use the following important properties of the tensors G, e and ε:

• Symmetry

Gijkl = Gklij = Gjikl, εij = εji, eikl = eilk, i, j, k, l = 1, 2, 3.

• Positiveness
εijvivj > C|v|2, (2.5)

Gijklξijξkl > C(ξ : ξ), (2.6)

for all v ∈ R3, all second-rand symmetric tensors ξ and some positive constant C.

Schielding and guiding layer.
The schielding layer is conductive so that there is no electric field inside of it. The guiding
layer is an insultor, but it is very thin and the electric field at the upper surface is zero
because it contacts to the schielding layer (see Figure 2.2). For this reason we consider
the electric field in the whole guiding layer to be neglible. This implies that the stress
has no electrically originated component. Furthermore, both materials are assumed to be
isotropic. The stress tensor is then of the form

σij = λδijεkk + 2µεij,

where λ and µ are Lamé parameters. The corresponding governing equation is then

%utt − µ∆u− (λ+ µ)∇(divu)− div(β(x)∇ut) = 0 in Ωg ∪ Ωs. (2.7)

Fluid.
In the fluid layer, the Navier-Stokes equation and mass conservation equation hold:

% (vt + (v · ∇)v) =−∇p+ ν∆v + (ζ +
ν

3
)∇(divv),

%t =− div(%v),
(2.8)
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where ν and ζ are the dynamic and volume viscosities of the fluid, respectively. We exploit
now the fact that the fluid is weakly compressible and assume the following relation between
the density and pressure (see [41]):

%(p) = %0 +
∂%

∂p

∣∣∣∣
ε

(p− p0). (2.9)

Here
∂%

∂p

∣∣∣∣
ε

means the density change under a constant entropy. It is assumed to be constant.

%0 and p0 are the constant static density and pressure respectively. Futhermore, due to the
weak compressibility the changes in pressure and density are small, i.e. |p− p0| � p0 and
|%−%0| � %0. We rewrite now the system (2.8) neglecting all the terms of the second order
of smallness. Besides, we assume ν, ζ, and variations in divv are small so that the term
(ζ + ν/3)∇(divv) can also be neglected. This yields the following governing equations for
the fluid:  %0

∂v

∂t
+∇p− ν∆v = 0,

γpt + divv = 0
in Ωf , (2.10)

where γ :=
1

%0

∂%

∂p

∣∣∣∣
ε

is the compressibility of the fluid. The corresponding expression for

the stress is

σij = −pδij + ν
∂vi
∂xj

,

where δij is the Kronecker delta.

Aptamer Layer.
In order to treat the aptamer structure at the liquid-solid interface we apply the homoge-
nization technique developed in [28]. The original bristle-like structure surrounded by the
fluid is replaced by an averaged material whose properties are derived as the number of
bristles goes to infinity whereas their thickness goes to zero. The height remains constant.
We end up with a new layer with thickness equaled to the height of the aptamers. The
governing equation for this layer reads (see [28]):

%ui tt − Ĝijkl
∂2ul
∂xj∂xk

− P̂ijkl
∂2ul t
∂xj∂xk

= 0 in Ωa. (2.11)

The stress tensor of the homogenized material is of the form

σij = Ĝijkl
∂ul
∂xk

+ P̂ijkl
∂ul t
∂xk

.

Here the term containing the tensor P̂ describes the viscous damping that originates from
the fluid part of the bristle structure. The term with Ĝ represents elastic stresses. The
density % here is determined by the density of the fluid and the density of the aptamers.
We will need the following properties of Ĝ and P̂ :
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• Ĝ and P̂ are symmetric, i.e.

Ĝijkl = Ĝjikl = Ĝijlk, P̂ijkl = P̂jikl = P̂ijlk.

• P̂ is positive-definite and Ĝ is non-negative, i.e. for every symmetric second-rank
tensor Z holds:

ĜijklZijZkl > 0, P̂ijklZijZkl > C|Z|2, for some constant C > 0.

The computation of tensors P̂ and Ĝ is based on an analytical representation of solutions
of the so-called cell equation which arises in homogenization theory. The cell equation is
solved numerically by the finite element method. The computation of P̂ and Ĝ is out of
scope of this work. For more details see [28].

2.3.2 Mechanical Interface and Boundary Conditions

Figure 2.2 shows the cross section of the biosensor by the plane x2 = 0. The interfaces
between the layers are denoted by Γ1, Γ2, Γ3 and Γ4.

The mechanical conditions at the interfaces between every two contacting solid media
include (the homogenized aptamers-fluid layer is considered here as a solid medium):

1. The continuity of the displacement field u.

2. The pressure equilibrium, i.e. the continuity of σ · n, where n is the unit normal
vector to the contacting plane. On the interfaces between layers n = (0, 0, 1)T . Hence
this condition is reduced there to the continuity of σi3 for i = 1, 2, 3.

We describe now the mechanical boundary and interface conditions in details.

Interface substrate - guiding layer.
up =ug

Gi3kl
∂upl
∂xk

+ eki3
∂ϕp

∂xk
=λgδi3divug + µg(

∂ugi
∂x3

+
∂ug3
∂xi

), i = 1, 2, 3,
on Γ1.

(2.12)
Interface guiding layer - schielding layer.

ug =us,

λgδi3divug + µg(
∂ugi
∂x3

+
∂ug3
∂xi

) =λsδi3divus + µs(
∂usi
∂x3

+
∂us3
∂xi

), i = 1, 2, 3,
on Γ2.

(2.13)
Interface schielding layer - aptamer.
The homogenized aptamer layer is considered to be solid and therefore the same mechan-
ical conditions take place. The stress in the homogenized aptamer layer is calculated as
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described in [28]. We have
us =ua,

λsδi3divus + µs(
∂usi
∂x3

+
∂us3
∂xi

) = Ĝa
i3kl

∂ual
∂xk

+ P̂ a
i3kl

∂ual t
∂xk

, i = 1, 2, 3,
on Γ3.

(2.14)
Interface aptamer - fluid.
The condition of the continuity of the displacements is replaced here by the no-slip con-
dition that expresses the coupling of oscillations in the aptamer layer and fluid. The
requirement of the pressure equilibrium remains. Hence we have

uat =vf ,

Ĝa
i3kl

∂ual
∂xk

+ P̂ a
i3kl

∂ual t
∂xk

=− pfδi3 + ν
∂vfi
∂x3

, i = 1, 2, 3,
on Γ4. (2.15)

Boundary Conditions.
The boundary consists of two components, Γ0 and Γ5. The mechanical condition on Γ0

expresses the absence of force on it, i.e.

σijnj = 0, i = 1, 2, 3 on Γ0, (2.16)

where σ is calculated differently in different layers as described in Section 2.3.1 and nj are
components of the unit normal vector n to Γ5. On the external boundary of Γ5, we set
the no-slip condition for the fluid velocity, i.e.

vf
Γ5

= 0 on Γ5. (2.17)

2.3.3 Electrical Boundary Conditions

As mentioned above we assume the electric field in the guiding layer to be negligible. This
means that the electric field is involved only in the governing equation for the piezoelectric
substrate. The electrical conditions on the boundary surface of the substrate are as follows:

1. On the boundary with the external environment we assume no electric interaction.
For this reason the electric flux must be zero there. The same holds for the interface
Γ1\S since electric charges in the guiding layer are neglected. This yields the following
Neumann condition:

D · n =

(
−εij

∂ϕ

∂xj
+ eikl

∂u

∂xk

)
ni = 0 on ∂Ωp \ S. (2.18)

2. The voltage at the electrodes yields Dirichlet boundary conditions. The electrode
groups S1 and S3 are grounded, and the condition on the input electrodes S2 expresses
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the applied voltage inducing an electric field in the substrate, i.e.

ϕ(t,x)
S1

= 0, (2.19)

ϕ(t,x)
S2

=V (t) τ ε(x), (2.20)

ϕ(t,x)
S3

= 0, (2.21)

where V (t) is a prescribed exciting voltage and τ ε(x) is a cutoff function satisfying
the following condition:

• τ ε ∈ C∞0 (S2), 0 6 τ ε 6 1 and τ ε ≡ 1 outside the ε-neghbourhood of ∂S2.

Such a function can be constructed for any domain with a Lipschitz boundary. We
introduce it here artificially in order to make ϕ(t, ·)

S2
an element of C∞0 (S2). This

allows to extend it from S2 to the whole domain Ωp as a weak-differentiable function
and then to transfer the inhomogenity from the boundary to the right-hand side.

3. The voltage on S4 as a function of time is the output voltage. It is unknown and to
be determined from the solution. However it can not be an arbitrary function; the
following restrictions take place. First of all, since the electric field vanishes in the
electrodes, the electric potential must remain constant throughout S4, that is

ϕ(t,x)
S4

= const(t). (2.22)

Futhermore, in contrast to S1, S2 and S3 the voltage on S4 is not influenced from
outside, no charges are brought in or led away. This means that the total electric
flux through S4 must be zero, i.e. ∫

S4

D · n ds = 0. (2.23)

2.4 Statement of the Model

2.4.1 Additional Assumptions

In this subsection we introduce some tricks and impose additional assumptions that yield
a well-posed model.

Variable transformation.
The main obstacle when deriving a weak formulation of the problem is the no-slip condition
at the aptamer-solid interface (the first condition in (2.15)). To overcome this difficulty
we apply the method described in [46]. The basic idea is to use the velocity vector instead
of the displacement vector in solid. This is achieved by means of the following variable
transformation:

u(x, t) = u0(x) +

t∫
0

v(x, τ)dτ in Ωpgsa. (2.24)
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Here, v is a new variable describing the velocity of oscillations in the solid layers and u0 is
the initial position at the time t = 0. This variable trasformation is to perform in all the
equations for the solid layers and all the interface and boundary conditions that involve
the displacement vector. The no-slip condition in (2.15) converts then into the following
natural condition

va = vf on Γ4.

We can consider now the velocity vector v as an unknown funciton defined on the whole
domain Ω and continuous on the interfaces between the layers as required by the interface
conditions.

In the general case the substitution (2.24) makes the whole system more complicated
and requires the specification of the initial displacement u0. We avoid these difficulties by
considering only time-periodic solutions.

Time-periodic solutions.
Suppose that ω is the operating frequency of the device. This means that the applied
voltage function is of the form

V (t) = V0 sinωt.

Then it is natural to assume that the displacements are of the periodic form, i.e.

u(x, t) = v(1)(x) sinωt+ v(2)(x) cosωt in Ωpgsa. (2.25)

The corresponding expression for the velocity is

v(x, t) = ωv(1)(x) cosωt− ωv(2)(x) sinωt in Ω. (2.26)

The same form is assumed for the electric potential and the pressure, i.e.

ϕ(x, t) =ϕ(1)(x) sinωt+ ϕ(2)(x) cosωt in Ωp, (2.27)

p(x, t) = p(1)(x) sinωt+ p(2)(x) cosωt in Ωf . (2.28)

Note that (2.25) and (2.26) assume that

u0(x) = −v(2)(x) in Ωpgsa.

We can now express p(1) and p(2) through v(1) and v(2) by substituting (2.28) and (2.26)
into the second equation in (2.10). This yields

p(1)(x) =− 1

γ
divv(1),

p(2)(x) =− 1

γ
divv(2).

(2.29)

Thus, the number of unknown variables is reduced to 4. They are

• v(1) and v(2) in Ω,
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• ϕ(1), ϕ(2) in Ωp.

Dielectric dissipation.
The basic relation between the electric field E and the induced electrical displacement D
described by (2.2) is valid for slow processes. As the oscillation frequency grows significantly
this relation becomes inaccurate, because the material’s polarization does not response to
the electric field instantaneously but rather with some time delay. We take it into account
as follows.

Denote by DP the contribution to the electric displacements due to the material’s po-
larization caused by the electric field. This contribution is described in (2.2) by the term
εijEj. Suppose the electric field oscillates as

E = E(1) sinωt.

We assume then that DP oscillates at the same frequency as E but with a small phase
lag δ, i.e.

DP = D(1) sin(ωt− δ).
Here E(1) and D(1) are amplitudes related by the dielectric permittivity tensor ε as in the
static case:

D
(1)
i = εijE

(1)
j , i = 1, 2, 3.

The expression for DP takes then the form

DP
i = εijE

(1)
j cos δ sinωt− εijE(1)

j sin δ cosωt. (2.30)

Similarly, the field E = E(2) cosωt causes the electric displacements

DP
i = εijE

(2)
j cos δ cosωt+ εijE

(2)
j sin δ sinωt. (2.31)

In our case (2.27) assumes the following form for E:

E = E(1) sinωt+E(2) cosωt,

where E(1) = −∇ϕ(1), E(2) = −∇ϕ(2). In order to obtain DP in this case, we combine the
contributions described by (2.30) and (2.31). This yields

DP
i = εijE

(1)
j cos δ sinωt− εijE(1)

j sin δ cosωt+

+ εijE
(2)
j cos δ cosωt+ εijE

(2)
j sin δ sinωt =

=
(
εijE

(1)
j cos δ + εijE

(2)
j sin δ

)
sinωt+

(
εijE

(2)
j cos δ − εijE(1)

j sin δ
)

cosωt =

=
(
ε′ijE

(1)
j + ε′′ijE

(2)
j

)
sinωt+

(
ε′ijE

(2)
j − ε′′ijE

(1)
j

)
cosωt.

where ε′ := ε cos δ, ε′′ := ε sin δ. Obviously, both tensors ε′ and ε′′ are positive-definite
and symmetric. The terms with ε′ make the main contribution, whereas the terms with
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ε′′ are originated from the time delay. The latter are small and describe the energy loss.
Rewriting the above relation with ϕ(1) and ϕ(2), we obtain the following expression for the
dielectric contribution to the electric displacement:

DP
i =

(
−ε′ij

∂ϕ(1)

∂xj
− ε′′ij

∂ϕ(2)

∂xj

)
sinωt+

(
−ε′ij

∂ϕ(2)

∂xj
+ ε′′ij

∂ϕ(1)

∂xj

)
cosωt. (2.32)

In contrast to the expression that we would obtain without taking into account the phase
lag, we have here ε′ instead of ε and additional terms with ε′′ describing the dissipation of
the energy. This correction is taken in consideration when deriving the weak formulation
below.

2.4.2 Weak Formulation

We are ready now to derive the basic integral identity. In order to do it we perform the
substitutions (2.25)–(2.29) into the governing equations (2.4)–(2.11), equate the coefficients
at sine and cosine, multiply the obtained equations by test functions, and integrate them
by parts. Summing up all the derived integral identities yields
Contribution of the fluid:

−%fω2

∫
Ωf

v(1)w(1)dx+
1

γ

∫
Ωf

divv(1)divw(1)dx− ωνf
∫
Ωf

∇v(2) : ∇w(1)dx−

−%fω2

∫
Ωf

v(2)w(2)dx+
1

γ

∫
Ωf

divv(2)divw(2)dx+ ωνf
∫
Ωf

∇v(1) : ∇w(2)dx−

Contribution of the aptamer layer:

−%aω2

∫
Ωa

v(1)w(1)dx+

∫
Ωa

Ĝε(v(1))ε(w(1))dx− ω
∫
Ωa

P̂ ε(v(2))ε(w(1))dx−

−%aω2

∫
Ωa

v(2)w(2)dx+

∫
Ωa

Ĝε(v(2))ε(w(2))dx+ ω

∫
Ωa

P̂ ε(v(1))ε(w(2))dx−

Contribution of the guiding and shielding layers:

−ω2

∫
Ωgs

%v(1)w(1)dx+

∫
Ωgs

µ∇v(1) : ∇w(1)dx+

∫
Ωgs

(λ+ µ)divv(1)divw(1)dx−

−ω
∫

Ωd
gs

β(x)∇v(2) : ∇w(1)dx−
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−ω2

∫
Ωgs

%v(2)w(2)dx+

∫
Ωgs

µ∇v(2) : ∇w(2)dx+

∫
Ωgs

(λ+ µ)divv(2)divw(2)dx+

+ω

∫
Ωd

gs

β(x)∇v(1) : ∇w(2)dx−

Mechanical contribution of the substrate:

−%pω2

∫
Ωp

v(1)w(1)dx+

∫
Ωp

Gε(v(1))ε(w(1))dx+

∫
Ωp

ekij
∂ϕ(1)

∂xk

∂w
(1)
i

∂xj
dx−

−ω
∫
Ωd

p

β(x)∇v(2) : ∇w(1)dx+

−%pω2

∫
Ωp

v(2)w(2)dx+

∫
Ωp

Gε(v(2))ε(w(2))dx+

∫
Ωp

ekij
∂ϕ(2)

∂xk

∂w
(2)
i

∂xj
dx+

+ω

∫
Ωd

p

β(x)∇v(1) : ∇w(2)dx+

Electrical contribution of the substrate:

+

∫
Ωp

ε′ij
∂ϕ(1)

∂xi

∂ψ(1)

∂xj
dx+

∫
Ωp

ε′′ij
∂ϕ(2)

∂xi

∂ψ(1)

∂xj
dx−

∫
Ωp

ekij
∂v

(1)
i

∂xj

∂ψ(1)

∂xk
dx+

+

∫
Ωp

ε′ij
∂ϕ(2)

∂xi

∂ψ(2)

∂xj
dx−

∫
Ωp

ε′′ij
∂ϕ(1)

∂xi

∂ψ(2)

∂xj
dx−

∫
Ωp

ekij
∂v

(2)
i

∂xj

∂ψ(2)

∂xk
dx =

The right-hand side:

=

∫
Ωp

fψ(1)dx. (2.33)

Here w(1),w(2), ψ(1) and ψ(2) are test functions. The function f on the right-hand side
arises due to the Dirichlet condition (2.20). All the integrals over the interfaces Γ1,Γ2,Γ3,Γ4

arising after integrating the mechanical equations by parts express the contribution of the
normal components of the stress and, therefore, disappear due to the pressure equilibrium
conditions on the interfaces. All the boundary integrals vanish because of the boundary
conditions (2.16)–(2.23) and the choice of the test functions. We assume w(1),w(2) ∈ HΓ5

and ψ(1), ψ(2) ∈ HS, where

HΓ5 := {w ∈ H1(Ω;R3) : w
Γ5

= 0},

HS := {ψ ∈ H1(Ωp) : ψ
S1∪S2∪S3

= 0, ψ
S4

= const}.
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Both HΓ5 and HS are complete Hilbert spaces with respect to the inner product defined
in H1(Ω;R3) and H1(Ωp) respectively.

Let us introduce Hilbert spaces V and W by

V := (HΓ5)2 ⊕ (HS)2 .

W :=
(
L2(Ω;R3)

)2 ⊕
(
L2(Ωp)

)2
.

Suppose that v ∈ V and w ∈ W are of the form

v =
(
v(1),v(2), ϕ(1), ϕ(2)

)
, w =

(
w(1),w(2), ψ(1), ψ(2)

)
.

Then norms in V and W satisfy

‖v‖2
V =‖v(1)‖2

HΓ5
+ ‖v(2)‖2

HΓ5
+ ‖ϕ(1)‖2

HS
+ ‖ϕ(2)‖2

HS
,

‖w‖2
W =‖w(1)‖2

L2(Ω;R3) + ‖w(2)‖2
L2(Ω;R3) + ‖ψ(1)‖2

L2(Ωp) + ‖ψ(2)‖2
L2(Ωp).

Remark 2.1. Note that V is compactly embedded and dense in W since HΓ5 and HS are
compactly embedded and dense in L2(Ω;R3) and L2(Ωp) respectively.

Assuming u, v ∈ V in the form

u =
(
v(1),v(2), ϕ(1), ϕ(2)

)
∈ V , v =

(
w(1),w(2), ψ(1), ψ(2)

)
∈ W ,

we can rewrite the integral identity (2.33) as follows:

π̃(u, v) = ˜̀(v),

where π̃(·, ·) is a bilinear form on V × V representing the left-hand side of (2.33); ˜̀ is a
linear functional on V standing for the right-hand side. Then the weak formulation of the
problem is the following:

Problem 2.1. Find u ∈ V such that

π̃(u, v) = ˜̀(v) ∀ v ∈ V .

Proposition 2.2. Let u = (v(1),v(2), ϕ(1), ϕ(2)) ∈ V be a solution of Problem 2.2 and the
components of u be H2-functions.

Then the governing equations (2.4)–(2.11) are fulfilled almost everywhere in the lay-
ers. The boundary and interface conditions (2.12)–(2.23) hold almost everywhere on the
boundary and the interfaces.

Proof. In order to avoid bulky formulas we provide here only the idea of the proof that is
traditional and simple.

First, for every layer we take an arbitrary test function with the support inside the layer
and integrate (2.33) by parts. No boundary intergral arises because the support of the
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test function is inside the layer. After the integration by parts we obtain the governing
equation for the layer multiplied by the test function and integrated over the layer. Since
the test funciton is arbitrary, the governing equation must hold almost everywhere.

The continuity of the displacements and the conditions (2.16) and (2.22) are fulfilled
due to the construction of V . To show that the other interface conditions hold it is enough
to take an arbitrary test function with the support in the neighborhood of the interface,
integrate (2.33) by parts and use that the governing equations in the layers are fulfilled
almost everywhere.

Let us decompose the form π̃(·, ·) in two parts:

π̃(u, v) = ã(u, v)− b̃(u, v),

where the form −b̃(·, ·) contains the terms of (2.33) originated from the time derivatives.
These are the terms with %, they are highlighted in dark blue. The form ã(·, ·) contains all
the other terms. Note that the form b̃ is also well-defined on W ×W and ˜̀ is well-defined
on W . We investigate now the properties of ã(·, ·), b̃(·, ·) and ˜̀. We will need the following
lemma.

Lemma 2.3 (Korn’s inequality). Let Ω be a bounded Lipschitz domain, V a closed subspace
of H1(Ω;R3) and <(Ω) the space of rigid body motions on Ω. If V ∩ <(Ω) = {0}, then
there exist a positive constant C depending only on Ω such that for all v ∈ V holds:

‖v‖H1(Ω;R3) 6 C‖ε(v)‖L2(Ω;R3×3). (2.34)

The proof of Lemma 2.3 can be found for example in [56] (Theorem 2.5).

Proposition 2.4. The forms ã(·, ·), b̃(·, ·) and the functional ˜̀ possess the following prop-
erties:

(i) Boundedness. ã(·, ·) is bounded on V × V, b̃(·, ·) is bounded on W ×W (and con-
sequently on V × V), and ˜̀ is bounded on W (and on V), i.e. there exist constants
c1, c2, c3 such that for all u, v ∈ V

ã(u, v) 6c1‖u‖V‖v‖V ,
b̃(u, v) 6c2‖u‖W‖v‖W 6 c2‖u‖V‖v‖V ,

˜̀(v) 6c3‖v‖W 6 c3‖v‖V .

(ii) Non-negativity. ã(·, ·) and b̃(·, ·) are non-negative. Moreover, there exist a positive
constant α such that for all u = (v(1),v(2), ϕ(1), ϕ(2)) ∈ V the following estimates
hold:

ã((v(1),v(2), ϕ(1), ϕ(2)), (v(1)− v(2),v(2)+ v(1), ϕ(1)+ ϕ(2), ϕ(2)− ϕ(1))) >α‖u‖V , (2.35)

b̃((v(1),v(2), ϕ(1), ϕ(2)), (v(1)− v(2),v(2)+ v(1), ϕ(1)+ ϕ(2), ϕ(2)− ϕ(1))) > 0 (2.36)
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Proof. (i) The boundedness of ã(·, ·), b̃(·, ·), and ˜̀ follows from the boundedness of all the
terms in (2.33). This can easily be shown by using the Cauchy-Schwarz inequality.

(ii) The estimation (2.36) is obtained trivially from the definition of b̃. To show (2.35)
we first show that

ã((v(1),v(2),ϕ(1), ϕ(2)), (v(1),v(2), ϕ(1), ϕ(2))) >

> C(‖∇v(1)‖2
L2(Ωgs;R3×3) + ‖ε(v(1))‖2

L2(Ωp;R3×3) + ‖ϕ(1)‖2
HS

+‖∇v(2)‖2
L2(Ωgs;R3×3) + ‖ε(v(2))‖2

L2(Ωp;R3×3) + ‖ϕ(2)‖2
HS

)

(2.37)

Indeed, the negative terms in ã(u, u) have positive counterparts and vanish. The terms
originated from the elastic contribution of the piezoelectric are estimated due to the posi-
tiveness of G (see (2.6)):∫

Ωp

Gε(v(1))ε(v(1))dx > C

∫
Ωp

ε(v(1)) : ε(v(1))dx = C‖ε(v(1))‖2
L2(Ωp;R3×3).

The positiveness of ε′ and Friedrich’s inequality enable us to estimate the electric terms:∫
Ωp

ε′ij
∂ϕ(1)

∂xi

∂ϕ(1)

∂xj
dx > C

∫
Ωp

|∇ϕ(1)|2dx = C‖∇ϕ(1)‖2
L2(Ωp) > C‖ϕ(1)‖2

HS
.

The terms ‖∇v(2)‖2
L2(Ωgs;R3×3) and ‖∇v(1)‖2

L2(Ωgs;R3×3) on the right hand side of (2.37) origi-
nate from the contribution of the guiding and shielding layers. They are obtained trivially.

By the same way, using the positiveness of ε′′ and P̂ , it can easily be shown that

ã((v(1),v(2), ϕ(1), ϕ(2)),(−v(2),v(1), ϕ(2),−ϕ(1))) >

> C(‖∇v(1)‖2
L2(Ωf ;R3×3) + ‖ε(v(1))‖2

L2(Ωa;R3×3) + ‖ϕ(1)‖2
HS

+‖∇v(2)‖2
L2(Ωf ;R3×3) + ‖ε(v(2))‖2

L2(Ωa;R3×3) + ‖ϕ(2)‖2
HS

).

(2.38)

Further, for any domain Ω̃ ⊂ R3 and any u ∈ H1(Ω̃;R3) the following estimate takes place:

‖∇u‖L2(Ω̃;R3) > ‖ε(u)‖L2(Ω̃;R3). (2.39)

Indeed, for any second-rank tensor ξ we have

sym(ξ) : sym(ξ) =
1

4
(ξij + ξji) (ξij + ξji) =

1

2
ξijξij +

1

2
ξijξji 6

1

2
ξijξij +

1

4
ξijξij +

1

4
ξjiξji = ξ : ξ,

which implies (2.39). We used the Young inequality here.
Adding (2.37) to (2.38) and applying (2.39) to v(1) and v(2) on Ωgs, we obtain

ã((v(1),v(2), ϕ(1), ϕ(2)), (v(1)− v(2),v(2)+ v(1), ϕ(1)+ ϕ(2), ϕ(2)− ϕ(1))) >

> C(‖ε(v(1))‖2
L2(Ω;R3×3) + ‖ϕ(1)‖2

HS

‖ε(v(2))‖2
L2(Ω;R3×3) + ‖ϕ(2)‖2

HS
)
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We apply now the Korn inequality (2.34) to v(1) and v(2) as functions from HΓ5 defined on
the whole domain Ω and obtain (2.35). We can do this because HΓ5 is a closed subspace
of H1(Ω;R3), and obviously it does not contain any non-zero rigid transformations.

Note that we could not apply the Korn inequality in (2.37) and (2.38) to v(1) and v(2)

as functions defined on the subdomains Ωp and Ωa, because not all transformations that
are rigid locally on Ωp or Ωa are necessary excluded from HΓ5 .

Let us introduce a linear mapping Q : V → V as follows:

Q : (w(1),w(2), ψ(1), ψ(2)) 7→ (w(1)−w(2),w(2)+w(1), ψ(1)+ ψ(2), ψ(2)− ψ(1))

Further, for all u, v ∈ V , let us define

π(u, v) :=π̃(u,Qv),

`(v) :=˜̀(Qv),

a(u, v) :=ã(u,Qv),

b(u, v) :=b̃(u,Qv).

Note that by construction
π(u, v) = a(u, v)− b(u, v).

Proposition 2.5. The forms a(·, ·), b(·, ·), π(·, ·) and the functional ` possess the following
properties:

(i) Boundedness
a(·, ·) is bounded on V × V.
b(·, ·) is bounded on W ×W and consequently on V × V.
π(·, ·) is bounded on V × V.
` is bounded on W and consequently on V.

(ii) Ellipticity and non-negativity
a(·, ·) is V-elliptic.
b(·, ·) is non-negative on W ×W (and consequently on V × V).

(iii) G̊arding’s inequality
There exist constants α > 0, β ∈ R such that

π(u, u) > α‖u‖2
V − β‖u‖2

W ∀u ∈ V .

Proof. The statements (i) and (ii) follow from Proposition 2.4 and the definitions of a, b, l,
and π. The property (ii) is derived directly. In order to show (i), it suffices to prove that

‖Qu‖W 6 C‖u‖W ∀u ∈ W and ‖Qu‖V 6 C‖u‖V ∀u ∈ V
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with some appropriate positive constant C.
Let u ∈ V be of the form u = (v(1),v(2), ϕ(1), ϕ(2)). Then

‖Qu‖2
V = ‖v(1)‖2

HΓ5
+ ‖v(2)‖2

HΓ5
+ ‖ϕ(1)‖2

HS
+ ‖ϕ(1)‖2

HS
=

= ‖v(1) − v(2)‖2
HΓ5

+ ‖v(2) + v(1)‖2
HΓ5

+ ‖ϕ(1) + ϕ(2)‖2
HS

+ ‖ϕ(2) − ϕ(1)‖2
HS

6

6 2(‖v(1)‖HΓ5
+ ‖v(2)‖HΓ5

)2 + 2(‖ϕ(1)‖HS
+ ‖ϕ(2)‖HS

)2 6

6 4‖v(1)‖2
HΓ5

+ 4‖v(2)‖2
HΓ5

+ 4‖ϕ(1)‖2
HS

+ 4‖ϕ(2)‖2
HS

= 4‖u‖2
V .

Hence,
‖Qu‖V 6 2‖u‖V .

It can be shown in the same way that ‖Qu‖W 6 2‖u‖W . Therefore the boundedness of
ã, b̃, π̃ and ˜̀ implies the boundedness of a, b, π and `.

The statement (iii) follows straightforwardly from the V-ellipticity of a(·, ·) and bound-
edness of b(·, ·) on W ×W .

Let us formulate the problem in terms of the new forms.

Problem 2.2. Find u ∈ V such that

π(u, v) = `(v) ∀ v ∈ V .

Proposition 2.6. Problem 2.1 and Problem 2.2 are equivalent, i.e. u is a solution of
Problem 2.1 iff u is a solution of Problem 2.2.

Proof. It easy to see that the mapping Q admits the representation:

(Qv)T =


1 −1 0 0
1 1 0 0
0 0 1 1
0 0 −1 1

 vT

Since the matrix in this representation is non-singular, we can construct a reverse mapping
defined on the whole V . This implies that Q is a bijective transformation on V . Therefore,
if an identity holds for all {Qv | v ∈ V}, it must also hold for all v ∈ V and vice verse.

2.5 Well-Posedness of the Model

In this section we discuss the well-posedness of the problem stated above in Hadamard’s
sense. We establish that Problem 2.2 has a unique solution that depends continuously
on the boundary conditions represented by the functional `. The proof is based on a
generalization of the Lax-Milgram theorem.
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Definition. Let V be a normed space, a(·, ·) a continuous bilinear form on V ×V . We say
that the operator A ∈ L(V ,V ′) is associated to a(·, ·) if

a(u, v) = 〈Au, v〉V ′,V for all u, v ∈ V .

Such an operator always exists and acts as follows. To every fixed u ∈ V it assigns a(u, ·)
considered as a functional on V . The continuity of A follows directly from the continuity
of a(·, ·).

Denoting by A the operator associated to π(·, ·) we can reformulate Problem 2.2 as an
equation

Au = `. (2.40)

The well-posedness of the model is then equivalent to the statement that A is inversible
and the inverse operator A−1 is defined and bounded on the whole space V ′.

Theorem 2.7. Let V be a Hilbert space and A ∈ L(V ,V ′) be the operator associated to a
continuous bilinear form π(·, ·) on V × V. Further, let π(·, ·) satisfy

inf
u∈SV

sup
v∈SV

π(u, v) = : ε > 0, (2.41)

inf
v∈SV

sup
u∈SV

π(u, v) = : ε′ > 0, (2.42)

where SV := {v ∈ V : ‖v‖V = 1} is the unit sphere in V.
Then

• ε = ε′,

• A−1 ∈ L(V ′,V) exists and ‖A−1‖ =
1

ε
.

The theorem is based on the result of Nečas (see [53]). The proof of this theorem in English
can be found for example in [74] (Theorem 6.5.9).

Thus if the conditions (2.41) and (2.42) are fullfiled, Problem 2.2 has a unique solution
u for every ` ∈ V ′, and it satisfies

‖u‖V 6
1

ε
‖`‖V ′ .

The following lemma enables us to get rid of the condition (2.42).

Lemma 2.8. Let V and W be Hilbert spaces with compact dense embedding V ⊂ W. Let
π be a continuous bilinear form on V × V satisfying

π(u, u) > α‖u‖2
V − β‖u‖2

W ∀u ∈ V (2.43)

with some appropriate constants α > 0 and β ∈ R.
Then the conditions (2.41) and (2.42) are equivalent.
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See [74] (Lemma 6.5.17) for the proof.

In our case, all the conditions of the lemma are satisfied. Indeed, V is compactly em-
bedded and dense in W by Remark 2.1. The inequality (2.43) was established in Proposi-
tion 2.5. Therefore, in order to prove the well-posedness of Problem 2.2, it suffices to show
(2.41).

Remark 2.9. Let us consider the problem adjont to Problem 2.2. It reads:
Find u ∈ V such that

π∗(u, v) = `(v) ∀ v ∈ V ,
where π∗(u, v) := π(v, u) is the form adjont to π(·, ·). Obviously Theorem 2.7 and
Lemma 2.8 are applicable to π∗ to the same extent as to π. The only diffrence is that
the conditions (2.41) and (2.42) get swapped. However, since these two conditions are
equivalent by Lemma 2.8, the condition (2.41) guarantees the well-posedness of the adjont
problem as well.

Problem 2.3. Find w ∈ V such that

π(w, v) = 0 ∀ v ∈ V .

Theorem 2.10. Let w = 0 be a unique solution of Problem 2.3. Then the condition (2.41)

inf
u∈SV

sup
v∈SV

π(u, v) > 0

is fulfilled.

Proof. Suppose the claim is false. Then there exist sequences µm → 0 and um ∈ SV such
that

sup
v∈SV

π(um, v) < µm.

That is
sup
v∈SV

[a(um, v)− b(um, v)] < µm. (2.44)

Suppose that there exist M ∈ N such that for all m > M

b(um, um) = 0.

Substituting this into (2.44) and using the coercivity of a, we obtain

α = α‖um‖2
V 6 a(um, um) < µm,

where α is the ellipticity constant of a(·, ·). This inequality implies that α = 0, which is a
contradiction since α is positive by definition. We can therefore extract a subsequence of
um, that we denote by the same index m, such that

b(um, um) > 0 ∀m ∈ N.
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We can then introduce

wm :=
um√

b(um, um)
6= 0.

Note that by construction

b(wm, wm) = 1 and ‖wm‖V =
1√

b(um, um)
.

Multiplying (2.44) by
1√

b(um, um)
yields

sup
v∈SV

[a(wm, v)− b(wm, v)] < µm‖wm‖V . (2.45)

In particular, for v =
wm

‖wm‖V
we have

a(wm, wm)− 1 < µm‖wm‖2
V .

The V-ellipticity of a(·, ·) implies

(α− µm)‖wm‖2
V < 1.

Since µm → 0, this estimate means that wm is bounded in V . Therefore it contains a
subsequence that converges weakly in V to some limit w0. We denote the subsequence by
the same index m. Recall that W is compactly embedded in V and therefore

wm → w0 in W .

Since b is bounded on W ×W , this implies that

b(wm, wm)→ b(w0, w0)

and hence
b(w0, w0) = 1.

This means that w0 6= 0. We would like to show now that w0 solves Problem 2.3.

Let {vn} ⊂ SV be a sequence such that π(w0, vn) → sup
v∈SV

π(w0, v) as n → ∞. Since V is

reflexiv and SV is bounded, we can extract a subsequence of {vnk} that converges weakly
to some v0 ∈ V . Note that v0 does not have to belong to SV because SV is not closed in
the weak topology. Further, π(w0, v) at fixed w0 can be considered as a bounded linear
functional on V and therefore π(w0, vnk) → π(w0, v0). Hence π(w0, v0) = sup

v∈SV
π(w0, v).

Then (2.45) implies
π(wm, v0) = sup

v∈SV
π(wm, v) < µm‖wm‖V .
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Taking the limit as m→∞ yields

π(w0, v0) 6 0.

By construction of v0 this implies that

sup
v∈SV

π(w0, v) 6 0.

Hence,
π(w0, v) = 0 ∀ v ∈ SV .

Therefore w0 is a solution of Problem 2.3. By construction w0 6= 0. This contradicts the
condition of the theorem.

Thus, in order to ensure the well-posedness of the model, it is left to show that the
homogeneous problem has only the trivial solution. We will need the following well-known
results.

Definition. Let em be the m-th basis vector, and suppose that h ∈ R \ {0}, U, V ⊂ Rn

are such that
V + hem ⊂ U.

Further, let w be a scalar or vector function on U . Then the function

Dh
mw(x) :=

w(x+ hem)− w(x)

h
, x ∈ V.

is called the m-th difference quotient of size h.

Theorem 2.11. Let em be the m-th basis vector, and suppose that δ > 0, open domains
U, V ⊂ Rn are such that

V ± δem ⊂ U.

(i) Let w ∈ L2(U) and
∂w

∂xm
∈ L2(U). Then there exists a constant C such that

∥∥Dh
mw
∥∥
L2(V )

6 C

∥∥∥∥ ∂w∂xm
∥∥∥∥
L2(U)

(2.46)

for all 0 < |h| < δ

2
. The constant C does not depend on w.

(ii) Assume w ∈ L2(U), and there exists a constant C such that∥∥Dh
mw
∥∥
L2(V )

6 C

for all 0 < |h| < δ

2
. Then

∂w

∂xm
∈ L2(V ) and

∥∥∥∥ ∂w∂xm
∥∥∥∥
L2(V )

6 C.
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The proof of these statements can be found for example in [18].

We are ready now to prove the main theorem.

Theorem 2.12. Suppose u = (v(1),v(2), ϕ(1), ϕ(2)) ∈ V is a solution of Problem 2.3, i.e.

π(u, v) = 0 ∀v ∈ V . (2.47)

Then u = 0.

Proof. By definition of π (see also Proposition 2.6), (2.47) is equivalent to

π̃(u, v) = 0 ∀ v ∈ V . (2.48)

Our goal is to prove that (2.48) implies that (v(1),v(2)) and (ϕ(1), ϕ(2)) vanish in Ω and
Ωp respectively. We do it step by step for subdomains of Ω.

Recall that π̃ is the bilinear form representing the left-hand side of the integral identity
(2.33). Taking v in the form (−v(2),v(1), ϕ(2),−ϕ(1)) and substituting it into (2.48), we
obtain

0 = π̃(u, v) = ωνf
∫
Ωf

∇v(2) : ∇v(2)dx+ωνf
∫
Ωf

∇v(1) : ∇v(1)dx+

+ω

∫
Ωa

P̂ ε(v(2))ε(v(2))dx+ω

∫
Ωa

P̂ ε(v(1))ε(v(1))dx+

+ω

∫
Ωd

pgs

β(x)∇v(2) : ∇v(2)dx+ω

∫
Ωd

pgs

β(x)∇v(1) : ∇v(1)dx+

+

∫
Ωp

ε′′ij
∂ϕ(2)

∂xi

∂ϕ(2)

∂xj
dx+

∫
Ωp

ε′′ij
∂ϕ(1)

∂xi

∂ϕ(1)

∂xj
dx.

(2.49)

Since all the terms on the right-hand side are non-negative and the sum of them is zero,
each of them must be zero. Hence for the first two terms we have

ωνf
∫
Ωf

∇v(2) : ∇v(2)dx = ωνf
∫
Ωf

∇v(1) : ∇v(1)dx = 0

This implies ∇v(1) ≡ ∇v(2) ≡ 0 in Ωf . By definition of V v(1)
Γ5
, v(2)

Γ5
= 0. Hence

v(1) ≡ v(2) ≡ 0 in Ωf .
Since v(1) and v(2) are H1-functions, their traces on ∂Ωf must be zero as well. In

particular v(1) and v(2) are zero at the interface between the fluid (Ωf ) and the aptamer
(Ωa) layers. This enables us to use Korn’s inequality when treating the second pair of
terms from (2.49). We have

0 = ω

∫
Ωa

P̂ ε(v(i))ε(v(i))dx > Cω

∫
Ωa

ε(v(i)) : ε(v(i))dx =
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= Cω‖ε(v(i))‖L2(Ωa;R3×3) > C1‖v(i)‖H1(Ωa;R3) > 0, i = 1, 2.

Therefore v(1) ≡ v(2) ≡ 0 in Ωa.
Let us now consider the third pair of terms from the right-hand side of (2.49). They

satisfy

ω

∫
Ωd

pgs

β(x)∇v(2) : ∇v(2)dx = ω

∫
Ωd

pgs

β(x)∇v(1) : ∇v(1)dx = 0.

Since β(x) is positive in Ωd
pgs by definition, these equalities imply ∇v(1) ≡ ∇v(2) ≡ 0 in

Ωd
pgs. At the same time v(1) and v(2) are H1-functions and they vanish in the adjacent

domain Ωa. Consequently v(1) = v(2) = 0 in Ωd
pgs.

Finally, for the last two terms, we have

0 =

∫
Ωp

ε′′ij
∂ϕ(i)

∂xi

∂ϕ(i)

∂xj
dx > C

∫
Ωp

∣∣∇ϕ(i)
∣∣2 dx = C

∥∥∇ϕ(i)
∥∥
L2(Ωp;R3)

> 0, i = 1, 2.

This implies ∇ϕ(1) ≡ ∇ϕ(2) ≡ 0 in Ωp. We use now that ϕ(1), ϕ(2) ∈ HS and therefore, by
definition of HS, ϕ(1)

S
= ϕ(2)

S
= 0. Hence ϕ(1) ≡ ϕ(2) ≡ 0.

Thus, we have proven that

v(1) = v(2) = 0 in Ωf ∪ Ωa ∪ Ωd
pgs,

ϕ(1) = ϕ(2) = 0 in Ωp.
(2.50)

It is left to show that v(1) and v(2) vanish on Ωs, Ωg and Ωp (see Figure 2.3).
Due to (2.50) the integral identity (2.33) decouples into four independent equations for

v(1) and for v(2). These two pairs of equations are completely identical and not connected
by test functions. The equations are

−%sω2

∫
Ωs

v ·w dx+µs
∫
Ωs

∇v : ∇w dx + (λs + µs)

∫
Ωs

divv divw dx−

−%gω2

∫
Ωg

v ·w dx+µg
∫
Ωg

∇v : ∇w dx + (λg + µg)

∫
Ωg

divv divw dx−

−%pω2

∫
Ωp

v ·w dx+

∫
Ωp

Gε(v)ε(w) dx = 0 ∀w ∈ HΓ5 ,

(2.51)

∫
Ωp

ekij
∂vi
∂xj

∂ψ

∂xk
dx = 0 ∀ψ ∈ HS. (2.52)

The function v here is either v(1) or v(2). Since both v(1) and v(2) are determined by the
same equations, we will not differ them and write from now on just v meaning v(1) or v(2).
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Figure 2.3: Cross section of the domain. The subdomain where v = 0 is hatched.

We show now that (2.51) and the fact that v = 0 in the damping domain Ωd
pgs(:=

int Ωd
p ∪ Ωd

g ∪ Ωd
s ) imply that v = 0 in Ωpgs(:= int Ωp ∪ Ωg ∪ Ωs ).

The first step is to prove that for all n ∈ N0 the following statements hold:

(i)
∂nv

∂xn1
∈ H1(Ωpgs;R3).

(ii) There is a constant C independent on n such that∥∥∥∥∂nv∂xn1

∥∥∥∥
L2(Ωpgs;R3)

6 Cn ‖v‖L2(Ωpgs;R3) . (2.53)

We prove (i) by induction and while doing it we derive an estimate that proves (ii).
Basis. For n = 0 the statement (i) holds because v ∈ HΓ5 ⊂ H1(Ω;R3).
Inductive step. Assume now that (i) is fullfiled for some n ∈ N0 and let us prove that

this implies

∂n+1v

∂xn+1
1

∈ H1(Ωpgs;R3).

Let us first show that
∂nv

∂xn1
in place of v satisfies the integral identity (2.51). Note that
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we can put it there because by the induction hypothesis
∂nv

∂xn1
∈ H1(Ωpgs;R3). Taking an

arbitrary w ∈ C∞(Ωpgs;R3), substituting (−1)n
∂nw

∂xn1
into (2.51) as a test function and

integrating n times by parts yields

µs
∫
Ωs

∇∂
nv

∂xn1
: ∇w dx+ (λs + µs)

∫
Ωs

div
∂nv

∂xn1
divwdx+

+µg
∫
Ωg

∇∂
nv

∂xn1
: ∇w dx+ (λg + µg)

∫
Ωg

div
∂nv

∂xn1
divwdx+

+

∫
Ωp

Gε

(
∂nv

∂xn1

)
ε(w)dx =

= %sω2

∫
Ωs

∂nv

∂xn1
·w dx+ %gω2

∫
Ωg

∂nv

∂xn1
·w dx+ %pω2

∫
Ωp

∂nv

∂xn1
·w dx.

(2.54)

Note that no surface integrals arise during integration by parts. The integrals over the
side surfaces vanish because v = 0 in Ωd

pgs; the integrals over the top and bottom surfaces
are zero because the differentiation direction is orthogonal to the normal vectors. Since
(2.54) holds for all w ∈ C∞(Ωpgs;R3), it must also hold for all w ∈ H1(Ωpgs;R3) because
C∞(Ωpgs;R3) is dense in H1(Ωpgs;R3).

Denote by hp, hg, and hs the thickness of the piezoelectric, guiding, and shielding layers,
respectively. Put

hgs := hg + hs.

Then by the choice of the origin of coordinates

Ωpgs = (0, l)× (0, w)× (−hp, hgs),

where l and w are the length and the width of the biosensor respectively. Further, denote
by δ the thickness of the damping domain along x1-axis. Let

w(x) := −D−h1

(
Dh

1

∂nv

∂xn1

)
, x ∈

(
δ

2
, l − δ

2

)
× (0, w)× (−hp, hgs),

where h <
δ

2
and Dh

1 is the difference quotient of size h with respect to x1. Since v = 0

for x1 ∈ (0, δ]∪ [l− δ, l), w can be continuously extended by 0 on Ωpgs and further on the

whole domain Ω. By the induction hypothesis
∂nv

∂xn1
∈ H1(Ωpgs;R3) and hence w belongs
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to H1(Ωpgs;R3) too. Therefore, we can use w as a test function in (2.54). This yields

− µs
∫
Ωs

∇∂
nv

∂xn1
: ∇D−h1

(
Dh

1

∂nv

∂xn1

)
dx− (λs + µs)

∫
Ωs

div
∂nv

∂xn1
divD−h1

(
Dh

1

∂nv

∂xn1

)
dx−

− µg
∫
Ωg

∇∂
nv

∂xn1
: ∇D−h1

(
Dh

1

∂nv

∂xn1

)
dx− (λg + µg)

∫
Ωg

div
∂nv

∂xn1
divD−h1

(
Dh

1

∂nv

∂xn1

)
dx−

−
∫
Ωp

Gε

(
∂nv

∂xn1

)
ε

(
D−h1

(
Dh

1

∂nv

∂xn1

))
dx = −%sω2

∫
Ωs

∂nv

∂xn1
·D−h1

(
Dh

1

∂nv

∂xn1

)
dx−

− %gω2

∫
Ωg

∂nv

∂xn1
·D−h1

(
Dh

1

∂nv

∂xn1

)
dx− %pω2

∫
Ωp

∂nv

∂xn1
·D−h1

(
Dh

1

∂nv

∂xn1

)
dx.

We use now that the operation of taking Dh
1 is interchangeable with differentiation and∫

U

p ·D−h1 q dx = −
∫
U

Dh
1p · q dx

for U = Ωs,Ωg,Ωp and p, q ∈ L2(U) such that p = q = 0 whenever x < δ
2
∨x > l − δ

2
.

Using these properties we can shift D−h1 in every integral of the last integral identity to
the other multiplier. We obtain

µs
∫
Ωs

∣∣∣∣∇Dh
1

∂nv

∂xn1

∣∣∣∣2 dx+ (λs + µs)

∫
Ωs

(
divDh

1

∂nv

∂xn1

)2

dx+

+µg
∫
Ωg

∣∣∣∣∇Dh
1

∂nv

∂xn1

∣∣∣∣2 dx+ (λg + µg)

∫
Ωg

(
divDh

1

∂nv

∂xn1

)2

dx+

+

∫
Ωp

Gε

(
Dh

1

∂nv

∂xn1

)
ε

(
Dh

1

∂nv

∂xn1

)
dx =

=%sω2

∫
Ωs

∣∣∣∣Dh
1

∂nv

∂xn1

∣∣∣∣2 dx+ %gω2

∫
Ωg

∣∣∣∣Dh
1

∂nv

∂xn1

∣∣∣∣2 dx+ %pω2

∫
Ωp

∣∣∣∣Dh
1

∂nv

∂xn1

∣∣∣∣2 dx.

(2.55)

The last term on the left-hand side (lhs) is treated using the positiveness of G and Korn’s

inequality (Korn’s inequality is applicable because Dh
1

∂nv

∂xn1
is fixed at the side surfaces)

∫
Ωp

Gε

(
Dh

1

∂nv

∂xn1

)
ε

(
Dh

1

∂nv

∂xn1

)
dx > C

∫
Ωp

∣∣∣∣ε(Dh
1

∂nv

∂xn1

)∣∣∣∣2 dx >C

∥∥∥∥∇Dh
1

∂nv

∂xn1

∥∥∥∥2

L2(Ωp;R3×3)

=C

∥∥∥∥Dh
1∇

∂nv

∂xn1

∥∥∥∥2

L2(Ωp;R3×3)

.



36 2. Finite Element Model of Acoustic Biosensor

Hence for the left-hand side we have

(lhs) >µs
∥∥∥∥Dh

1∇
∂nv

∂xn1

∥∥∥∥2

L2(Ωs;R3×3)

+ µg
∥∥∥∥Dh

1∇
∂nv

∂xn1

∥∥∥∥2

L2(Ωg ;R3×3)

+ C

∥∥∥∥Dh
1∇

∂nv

∂xn1

∥∥∥∥2

L2(Ωp;R3×3)

>

>min{µs, µg, C}
∥∥∥∥Dh

1∇
∂nv

∂xn1

∥∥∥∥2

L2(Ωpgs;R3×3)

.

(2.56)

The right-hand side of (2.55) is estimated using (2.46) as follows:

(rhs) 6 max{%s, %g, %p}ω2

∫
Ωpgs

∣∣∣∣Dh
1

∂nv

∂xn1

∣∣∣∣2 dx 6 C

∫
Ωpgs

∣∣∣∣∂n+1v

∂xn+1
1

∣∣∣∣2 dx =

=C

∥∥∥∥∂n+1v

∂xn+1
1

∥∥∥∥2

L2(Ωpgs;R3)

.

(2.57)

Combining (2.56) and (2.57), we obtain∥∥∥∥Dh
1∇

∂nv

∂xn1

∥∥∥∥2

L2(Ωpgs;R3)

6 C

∥∥∥∥∂n+1v

∂xn+1
1

∥∥∥∥2

L2(Ωpgs;R3)

,

where C is some positive constant that does not depend on h. Obviously the inequality
remains valid if we take just one component of the gradient on the left-hand-side:∥∥∥∥Dh

1

∂

∂x1

∂nv

∂xn1

∥∥∥∥2

L2(Ωpgs;R3)∥∥∥∥Dh
1

∂

∂x2

∂nv

∂xn1

∥∥∥∥2

L2(Ωpgs;R3)∥∥∥∥Dh
1

∂

∂x3

∂nv

∂xn1

∥∥∥∥2

L2(Ωpgs;R3)


6 C

∥∥∥∥∂n+1v

∂xn+1
1

∥∥∥∥2

L2(Ωpgs;R3)

By Theorem 2.11 this implies that

∂

∂x1

(
∂n+1v

∂xn+1
1

)
,

∂

∂x1

(
∂n+1v

∂x2∂xn1

)
,

∂

∂x1

(
∂n+1v

∂x3∂xn1

)
∈ L2(Ωpgs;R3)

and the L2 norms of these functions are bounded by C

∥∥∥∥∂n+1v

∂xn+1
1

∥∥∥∥2

L2(Ωpgs;R3)

.

This means
∂n+1v

∂xn+1
1

∈ H1(Ωpgs;R3) and hence proves (i). Besides, this gives us the estimate

∥∥∥∥∂n+2v

∂xn+2
1

∥∥∥∥
L2(Ωpgs;R3)

6 C

∥∥∥∥∂n+1v

∂xn+1
1

∥∥∥∥
L2(Ωpgs;R3)

. (2.58)
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The constant C here is determined by the fixed model parameters (µ, %,G, ω), by Korn’s
constant, and by the constant from (2.46). The last two constants depend only on the
domain. Therefore, C does not depend on n and (2.58) holds for any n ∈ N0 with the
same constant C. We can then apply (2.58) recursively n times to obtain∥∥∥∥∂n+2v

∂xn+2
1

∥∥∥∥
L2(Ωpgs;R3)

6 Cn+1

∥∥∥∥ ∂v∂x1

∥∥∥∥
L2(Ωpgs;R3)

.

The estimate for
∂v

∂x1

is derived in the same way as above with n = 0, except that w := v

is substituted in (2.54). The arising constant is in generally different from C above because
(2.46) is not used. Hence we take the biggest of these two constants and denote it by C.
Then we have ∥∥∥∥∂nv∂xn1

∥∥∥∥
L2(Ωpgs;R3)

6 Cn ‖v‖L2(Ωpgs;R3) .

This is exactly (2.53). Thus (ii) is proved.
The next step is to show that for any s2 ∈ (0, w), s3 ∈ (−hp, hgs) the function

u(x1) :=

s2∫
0

s3∫
−hp

v(x1, x2, x3) dx2 dx3

vanishes for all x1 ∈ (0, l). Note that v ∈ H1(Ωpgs;R3) implies

v
∣∣
x1=const ∈ H1/2

(
Ωpgs ∩ {x1 = const};R3

)
.

Hence u(x1) is well-defined everywhere in (0, l). Similarly
∂nv

∂xn1
∈ H1(Ωpgs;R3). Therefore,

s2∫
0

s3∫
−hp

(
∂n

∂xn1
v(x1, x2, x3)

)2

dx2 dx3 < ∞ ∀n ∈ N0

We can then differentiate u with respect to x1 and swap the integration and differentiation.
This yields

u(n)(x1) :=
dnu(x1)

dxn1
=

dn

dxn1

s2∫
0

s3∫
−hp

v(x1, x2, x3) dx2 dx3 =

s2∫
0

s3∫
−hp

∂n

∂xn1
v(x1, x2, x3) dx2 dx3.

Using (2.53), we derive now the following estimate for u(n) in L2:

∥∥u(n)
∥∥2

L2(0, l)
=

l∫
0

(
u(n)

)2
dx1 =

l∫
0

 s2∫
0

s3∫
−hp

∂nv

∂xn1
dx2dx3


2

dx1 6
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6

l∫
0

s2∫
0

s3∫
−hp

(
∂nv

∂xn1

)2

dx2dx3dx1 6

∥∥∥∥∂nv∂xn1

∥∥∥∥2

L2(Ωpgs;R3)

6 C2n ‖v‖2
L2(Ωpgs;R3) .

For the components of u this implies∥∥∥u(n)
i

∥∥∥
L2(0, l)

6 Cn ‖v‖L2(Ωpgs;R3) , i = 1, 2, 3. (2.59)

Recall that v vanishes in the damping domain Ωd
pgs, i.e.

u(x1) = 0 = v(x1, x2, x3) for x1 ∈ (0, δ) ∪ (l − δ, l). (2.60)

We apply now Taylor’s theorem to u around the point x1 = δ/2 with the remainder term
in the integral form:

u(x1) =
n∑
k=0

u(k)(δ/2)

k!

(
x1 −

δ

2

)k
+

x1∫
δ/2

(x1 − t)n

n!
u(n+1)(t)dt, ∀x1 ∈

[
δ

2
, l

)
.

Due to (2.60) u(n)(δ/2) = 0 for all n ∈ N0. We have then

|ui(x1)| =

∣∣∣∣∣∣∣
x1∫

δ/2

(x1 − t)n

n!
u

(n+1)
i (t)dt

∣∣∣∣∣∣∣ 6
1

n!

 l∫
0

(x1 − t)2ndt


1
2
 l∫

0

(
u

(n+1)
i (t)

)2

dt


1
2

=

=
1

n!

(
(l − x1)2n+1 + x2n+1

1

2n+ 1

) 1
2 ∥∥∥u(n+1)

i

∥∥∥
L2(0, l)

6
√

2l
lnCn+1

n!(2n+ 1)
1
2

‖v‖L2(Ωpgs;R3) .

We used here Hölder’s inequality and (2.59). The inequality above holds for any n ∈ N
and the term on the right-hand side goes to zero as n→∞. Therefore,

u(x1) =

s2∫
0

s3∫
−hp

v(x1, x2, x3) dx2 dx3 = 0 ∀x1 ∈ (0, l).

Recall now that s2 and s3 were taken arbitrary from the intervals (0, w) and (−hp, hgs)
respectively. Hence,

s2∫
t2

s3∫
t3

v(x1, x2, x3) dx2 dx3 = 0 ∀x1 ∈ (0, l)

for any rectangular neighborhood (t2, s3)× (t3, s3) ⊂ (0, w)× (−hp, hgs). This means that
for every fixed x1 ∈ (0, l)

v(x1, x2, x3) = 0 a.e. in (0, w)× (−hp, hgs)

and therefore v = 0 a.e. in Ωpgs. Thus u = (v(1),v(2), ϕ(1), ϕ(2)) = 0.
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Combining Theorem 2.7, Lemma 2.8, Theorem 2.10 and Theorem 2.12, we obtain the
well-posedness result for our model.

Theorem 2.13. Problem 2.2 possesses a unique solution that depends continuously on the
functional on the right-hand side.

2.6 Numerical Treatment

2.6.1 Ritz-Galerkin Approximation

In this section we describe the discretization of the model, discuss the solvability of the
discretized problem and the convergence of its solution to the solution of the original
problem.

Denote by {VN}N∈N a sequence of finite-dimensional spaces such that

∀N ∈ N VN ⊂ V , (2.61)

∀u ∈ V inf
v∈VN

‖u− v‖V → 0 as N →∞. (2.62)

Note that V is a separable space by construction and hence such a sequence always exists.
Further, denote by SVN the unit spheres in VN , i.e.

SVN := {v ∈ VN : ‖v‖V = 1}.

We assume that VN is equiped with the norm ‖ · ‖V .

Remark 2.14. The infimum in (2.62) is reached for all fixed N ∈ N, u ∈ V and therefore
can be replaced by the minimum. Indeed, suppose {vm} ⊂ VN is a minimizing sequence
of ‖u− v‖V for some fixed u. Then we have

‖vm‖V 6 ‖vm − u‖V + ‖u‖V → inf
v∈VN

‖u− v‖V + ‖u‖V = C <∞.

This means that vm is bounded. Since VN is a finite-dimensional space, the boundedness
implies the precompactness. Therefore there exist a subsequence of {vm}, that we denote
by the same index m, and vN ∈ VN such that vm → vN in VN (and consequently in V).
Then by the triangle inequality

‖u− vm‖V − ‖u− vN‖V 6 ‖vm − vN‖V
‖u− vN‖V − ‖u− vm‖V 6 ‖vm − vN‖V

}
⇒
∣∣‖u− vm‖V − ‖u− vN‖V∣∣ 6 ‖vm − vN‖V .

Taking the limit as m→∞, we obtain ‖u− vm‖V → ‖u− vN‖V , which means that vN is
a minimizer.
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Remark 2.15. Suppose u ∈ SV . Then (2.62) implies

inf
v∈SVN

‖u− v‖V → 0 as N →∞. (2.63)

Indeed, let vN ∈ VN be a sequence of minimizers of ‖u − v‖V over v ∈ VN . They exist
due to Remark 2.14. According to (2.62) ‖u − vN‖V → 0 as N → ∞. This implies
‖vN‖V → ‖u‖V = 1. Let us define

wN :=
vN

‖vN‖
.

Note that wN ∈ SVN . We have then

0 6 inf
v∈SVN

‖u− v‖V 6 ‖u− wN‖V 6

6 ‖u− vN‖V + ‖vN − wN‖V =

= ‖u− vN‖V + 1− 1

‖vN‖
‖vN‖V .

Passing here N to ∞, we obtain (2.63).

We pose now a discrete counterpart of Problem 2.2.

Problem 2.4. Find uN ∈ VN such that

π(uN , v) = `(v) ∀ v ∈ VN .

The solution of Problem 2.4, if it exists, is called the Ritz-Galerkin solution of the original
problem (Problem 2.2).

The existence of the Ritz-Galerkin solution and its convergence to the solution of the
exact problem is based on the following theorem.

Theorem 2.16. Let {VN}N∈N be a sequence of subspaces defined as above, π(·, ·) - a
bilinear form bounded on V × V. For each N ∈ N define

εN := inf
u∈SVN

sup
v∈SVN

π(u, v).

Obviously εN > 0.
Suppose that there is ε̃ ∈ R such that

εN > ε̃ > 0 for all N ∈ N.

Then Problem 2.4 is uniquely solvable and the Ritz-Galerkin solutions uN converge to u,
i.e.

‖u− uN‖V → 0 as N →∞.
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The last statement follows directly from the quasi-best approximation property that was
first proved by Ivo Babuška in [5]. The existence and uniqueness of Ritz-Galerkin solutions
are due to Theorem 2.7.

Theorem 2.17. Let W ,V , {VN} and π(·, ·) be defined as above. Then there exist M ∈ N
and ε̃ ∈ R such that

εN := inf
u∈SVN

sup
v∈SVN

π(u, v) > ε̃ > 0 ∀N > M. (2.64)

Proof. Suppose the claim is false. Then there exist sequences µm → 0 and um ∈ SVm such
that

sup
v∈SVm

π(um, v) < µm.

Arguing as in the proof of Theorem 2.10 we can construct a sequence {wm} ⊂ V such that:

• wm is bounded in V ,

• wm ⇀ w0 6= 0 in V and consequently wm → w0 in W ,

• the following inequality holds:

sup
v∈SVm

π(wm, v) < µm‖wm‖V . (2.65)

Furthermore, in the proof of Theorem 2.10, we showed that there exist v0 ∈ V (but not
necessarily in SV) such that

π(w0, v0) = sup
v∈SV

π(w0, v).

Suppose v0 = 0. Then

0 6 inf
u∈SV

sup
v∈SV

π(u, v) 6 sup
v∈SV

π

(
w0

‖w0‖V
, v

)
=

1

‖w0‖V
π(w0, v0) = 0.

Consequently,
inf
u∈SV

sup
v∈SV

π(u, v) = 0.

On the other hand, in Section 2.5 we showed (see Theorems 2.10 and 2.12) that

inf
u∈SV

sup
v∈SV

π(u, v) > 0. (2.66)

Hence v0 6= 0. We can then define

ṽ0 :=
v0

‖v0‖V
∈ SV .
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Then the following estimate holds:

µm‖wm‖V > sup
v∈SVm

π(wm, v)

= π(wm, ṽ0) + sup
v∈SVm

π(wm, v − ṽ0) =

= π(wm, ṽ0)− inf
v∈SVm

π(wm, ṽ0 − v) >

> π(wm, ṽ0)− C‖wm‖V inf
v∈SVm

‖ṽ0 − v‖V .

We used here (2.65) and the boundedness of π. Recall that wm is bounded in V , wm ⇀ w0

and inf
v∈SVm

‖ṽ0 − v‖V → 0 as m → ∞ by Remark 2.15. Hence taking the limit as m → ∞
yields

π(w0, ṽ0) 6 0.

By construction of ṽ0 this implies

sup
v∈SV

π(w0, v) = 0.

Therefore,
inf
u∈SV

sup
v∈SV

π(u, v) = 0.

This contradicts (2.66).

Combining Theorems 2.16 and 2.17, we obtain the convergence of the Ritz-Galerkin
solutions to the solution of the original problem. The existence and uniqueness of the
Ritz-Galerkin solution take place when N is big enough.

2.6.2 Domain Decomposition

The convergence of the Ritz-Galerkin to the exact solution of the problem established
in the previous subsection enables us to use the finite element method (FEM) for the
simulation of the sensor. However the straightforward serial calculation by this method
turns to be very time- and resource-consuming. The main reason for this is the smallness of
the wavelength in comparison with the size of the sensor. For example, the wavelength at
the typical operating frequency 100 MHz is about 45µm, while the x1-length of the sensor,
i.e. the way to travel, is at least 1.8 mm. Taking 8 gridpoints per wavelength we arrive at
320 divisions in x1-direction only. Though the discretization in x2- and x3-directions does
not have to be that fine, the overall number of degrees of freedom is still significant due to
the fact that we have 8 unknown scalar functions. For example, the mesh 320 × 50 × 20
yields 2 560 000 degrees of freedom. Such an amount encourages us to develop a parallel
implementation of the model.
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Figure 2.4: Domain decomposition.

One way to bring parallelism into the implementation is to exploit parallel sparse solvers
when applying the finite element method. We used two of them - SPOOLES and PARDISO.
PARDISO provides an efficient way to solve sparse systems with symmetric multiprocessing
(SMP). SPOOLES is additionally available in a version optimized for calculation with MPI,
which makes it suitable for using on computer clusters. More details about these two
libraries can be found in [8] and [61]. Parallel sparse solvers bring more efficiency only
at the stage of the solving the sparse linear systems. They do not require any significant
change in the model to be applicable.

Another approach to parallelization is based on domain decomposition and requires some
more analysis. It can also be applied together with parallel sparse solvers. This subsection
is devoted to the description and mathematical foundation of this method.

The main idea is to split the original domain into several non-overlaping subdomains,
prescribe natural boundary conditions on the interfaces between the subdomains, solve the
problem in each domain independently, and then iteratively adjust the natural conditions
minimizing the discontinuity in the solution at the interfaces. For the sake of simplicity
we consider just two subdomains.

We note here that this approach may be significantly slower than a serial calculation and
the main reason for using it is not the speedup but the ability to handle bigger problems
due to the spreading the mesh through the computational nodes.

Let Ω1 and Ω2 be two open subdomains of Ω resulted from splitting Ω by some plane
orthogonal to x1, i.e

Ω = Ω1 ∪ Σ ∪ Ω2,
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where Σ is the interface between the subdomains (see Figure 2.4). Recall that by construc-
tion we can consider V as a Hilbert space of vector-valued H1-functions defined on Ω and
Ωp, i.e.

V = {(v,w, ϕ, ψ) ∈
[
H1(Ω;R3)

]2 ⊕ [H1(Ωp)
]2

: v
Γ5

= w
Γ5

= 0,

ϕ
S1∪S2∪S3

= ψ
S1∪S2∪S3

= 0,

ϕ
S4

= const, ψ
S4

= const}

Let us construct the Hilbert spaces V1 and V2 by restricting the functions from V on Ω1

and Ω2 respectively:

V1 := {u ∈
[
H1(Ω1;R3)

]2 ⊕ [H1(Ωp ∩ Ω1)
]2

: ∃ v ∈ V such that v
Ω1

= u},

V2 := {u ∈
[
H1(Ω2;R3)

]2 ⊕ [H1(Ωp ∩ Ω2)
]2

: ∃ v ∈ V such that v
Ω2

= u}.
The norm and the inner product in V1 and V2 are defined the same way as in V except
that the integration is performed over Ω1 and Ω2 respectively.

Similarly, let us define the bilinear forms π1(·, ·) on Ω1 × Ω1 and π2(·, ·) on Ω2 × Ω2.
They are constructed the same way as π(·, ·) on the base of the integral identity (2.33),
except that the integrations in (2.33) are performed over subdomains of Ω intersected with
Ω1 and Ω2 respectively. Obviously π1(·, ·) and π2(·, ·) possess the same properties as π(·, ·)
(see Proposition 2.5). Denote by A1 and A2 the operators associated to π1(·, ·) and π1(·, ·)
respectively.

Further, since elements of V1 and V2 are composed of H1-functions, we can consider their
traces on Σ. Define the trace operators as follows:

B1 : V1 3 (v,w, ϕ, ψ) 7→
(
v

Σ
,w

Σ
, ϕ

Ωp∩Σ
, ψ

Ωp∩Σ

)
,

B2 : V2 3 (v,w, ϕ, ψ) 7→
(
v

Σ
,w

Σ
, ϕ

Ωp∩Σ
, ψ

Ωp∩Σ

)
.

The image of B1(V1) and B2(V2) is

S := {(v,w, ϕ, ψ) ∈
[
H1/2(Σ;R3)

]2 ⊕ [H1/2(Ωp ∩ Σ)
]2

: v
Γ5∩Σ

= w
Γ5∩Σ

= 0}.

This is a Hilbert space with the inner product induced by that of H1/2. Every functional
from S ′ can be identified with some natural boundary condition on Σ. From the physical
point of view it prescribes the normal pressure and the normal electrical displacements on
the interface.

We are ready now to formulate the problems for the subdomains.

Problem 2.5. Let s ∈ S ′. Find u1 ∈ V1 such that

π1(u1, v) = `v + sB1v, ∀ v ∈ V1,

or, equivalently,
A1u1 = `+ s◦B1.
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The functional ` here is the same ` defined for the right-hand side of the integral identity
(2.33). Originally it was defined as a functional on V not on V1 and represented the
electrical boundary condition on the input electrodes. But actually ` is a L2-function with
the support lying close around the input electrodes. We assume here that the interface Σ
cuts the biosensor far enough from the input electrodes so that the Ω2-part of V-functions
does not influence the value of `. Hence, we can consider ` as a functional on V1.

Problem 2.6. Let s ∈ S ′. Find u2 ∈ V2 such that

π2(u2, v) = −sB2v, ∀ v ∈ V2.

or, equivalently,

A2u2 = −s◦B2.

The following theorem establishes the well-posedness of the problems.

Theorem 2.18. For all s ∈ S ′ Problems 2.5 and 2.6 possess unique solutions that depend
continuously on the functional on the right-hand side, i.e. the operators A−1

1 and A−1
2 exist

and they are bounded.

Proof. Since π1(·, ·) and π2(·, ·) are of the same structure as π(·, ·), the proof can be per-
formed the same way as for Problem 2.2 in Section 2.5. The only difference is that when
proving the uniqueness of the trivial solution of the homogeneous problem (see Theo-
rem 2.12) the difference quotient is to be taken not in the x1- but in the x2-direction.

Since A−1
1 and A−1

2 are well-defined, we can consider solutions u1 and u2 as functions
of s, i.e.

u1(s) =A−1
1 (`+ s◦B1),

u2(s) =A−1
2 (−s◦B2).

(2.67)

Theorem 2.19. Suppose there exists s ∈ S ′ such that the solutions u1(s) and u2(s) share
the same trace on Σ, i.e.

B1u1(s) = B2u2(s). (2.68)

Then the function

u(x) :=

{
u1(s)(x), if x ∈ Ω1,

u2(s)(x), if x ∈ Ω2

belongs to V and solves Problem 2.2, i.e.

π(u, v) = `v, ∀ v ∈ V . (2.69)

Proof. We first prove that (2.68) implies that u is a solution of Problem 2.2. Let u be of
the form (v,w, ϕ, ψ) composed from u1 = (v1,w1, ϕ1, ψ1) and u2 = (v2,w2, ϕ2, ψ2). To
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prove that u ∈ V it is sufficient to show that all the components of u are H1-functions.
Let us show that ϕ ∈ H1(Ωp). For i = 1, 2, 3 define

∂iϕ(x) :=


∂ϕ1

∂xi
(x), if x ∈ Ω1,

∂ϕ2

∂xi
(x), if x ∈ Ω2

Obviously ∂iϕ ∈ L2(Ωp). For all g ∈ C∞0 (Ωp) holds:

−
∫
Ωp

ϕ
∂g

∂xi
dx = −

∫
Ωp∩Ω1

ϕ1
∂g

∂xi
dx−

∫
Ωp∩Ω2

ϕ2
∂g

∂xi
dx =

=

∫
Ωp∩Ω1

∂ϕ1

∂xi
g dx+

∫
Ωp∩Ω2

∂ϕ2

∂xi
g dx−

∫
Ωp∩Σ

(
ϕ1

∣∣
Σ
− ϕ2

∣∣
Σ

)
g
∣∣
Σ
ni dx =

=

∫
Ωp

∂iϕ g dx,

where ni is the i-th component of the unit normal vector pointing from Ω1 to Ω2. Here
we used the integration by parts and the fact that ϕ1 Σ

= ϕ2 Σ
as follows from (2.68).

The equality above means that ∂iϕ is the weak derivative of ϕ and therefore ϕ ∈ H1(Ωp).
In the same way it can be shown that other components of u are weak differentiable and
hence u ∈ V . We can then substitute it in π(·, ·). By construction of π1 and π2 for all
v ∈ V holds:

π(u, v) =π1(u
Ω1
, v

Ω1
) + π2(u

Ω2
, v

Ω2
) =

= `v + sB1v Ω1
− sB2v Ω2

=

= `v

and therefore u satisfies (2.69).

Remark. Let u = (v(1),v(2), ϕ(1), ϕ(2)) be the solution of Problem 2.2. Assume that the
components of u are H2-functions. In this case the stress tensor σ(u) and electrical dis-
placements D(u) belong to H1 and the functional s satisfying (2.68) can be constructed
explicitely as follows

s : v = (v(1),v(2), ψ(1), ψ(2)) 7→
∫
Σ

(σ(u) · n) · v(1)ds+

∫
Σ

(σ(u) · n) · v(2)ds+

+

∫
Σ∩Ωp

(D(u) · n)ψ(1)ds+

∫
Σ∩Ωp

(D(u) · n)ψ(2)ds.
(2.70)

For this s u
Ω1

solves Problem 2.5 and u
Ω2

solves Problem 2.6. This can easily be shown
by integrating the corresponding integral identity by parts and using Proposition 2.2. In
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the general case, though, the definition (2.70) is not correct because σ and D are L2-
functions. They do not have to be weak differentiable and their traces on Σ are in general
not defined.

From the physical point of view the functional s describes the influence of the right part
of the biosensor on the left part through the surface Σ. This influence is not known a
priori, but we can solve Problems 2.5 and 2.6 for some s and estimate its quality by the
jump of the solution on the interface, i.e. by the difference B1u1(s)− B2u2(s). This leads
to the following optimization problem:

Problem 2.7. Find

inf
u1∈V1,u2∈V2

J(u1, u2) :=
1

2
‖B1u1 −B2u2‖2

S (2.71)

subject to

A1u1 = `+ s◦B1,

A2u2 = − s◦B2, s ∈ S ′.

As noted above the operators A1 and A2 are invertible and u1 and u2 can be considered
as functions of s. Inserting u1(s) and u2(s) from (2.67) in (2.71) we obtain the reduced
problem as follows:

Problem 2.8. Find
inf
s∈S′

Ĵ(s) := J(u1(s), u2(s)).

This is an unconstrained optimization problem now. We solve it iteratively by the well-
known conjugate gradient method.

Algorithm 2.1 (Conjugate gradient method).
i := 0
// Set the initial descent direction

d0 := −Ĵ ′(s0)
repeat

// Do the line search in the descent direction di by the Secant method

αi = −〈Ĵ
′(si), di〉S

〈Ĵ ′(di), di〉S

(
= − 〈Ĵ ′(si), di〉S
〈Ĵ ′(si + di), di〉S − 〈Ĵ ′(si), di〉S

)
// Move to the next point

si+1 := si + αidi

// Calculate the next descent direction

ri+1 := −Ĵ ′(si+1)

βi+1 :=
〈ri+1, ri+1〉S
〈ri, ri〉S

di+1 := ri+1 + βi+1di
i := i+ 1

until ri+1 is sufficiently small.
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Here Ĵ ′(s) denotes the Fréchet derivative of Ĵ(s) at the point s ∈ S ′. Since S is reflexive
(moreover, it is a Hilbert space), we can consider Ĵ ′(s) as an element of S. The following
theorem establishes the way to finding it.

Theorem 2.20. The functional Ĵ(s) is Fréchet differentiable in S ′. Its derivative as an
element of S can be found by

Ĵ ′(s) = B1p1(s)−B2p2(s),

where p1(s) ∈ V1 and p2(s) ∈ V2 are the unique solutions of the adjoint equations

π∗1(p1(s), v) = 〈B1u1(s)−B2u2(s), B1v〉S ∀ v ∈ V1, (2.72)

π∗2(p2(s), v) = − 〈B1u1(s)−B2u2(s), B2v〉S ∀ v ∈ V2. (2.73)

Here π∗1(·, ·) and π∗2(·, ·) are the bilinear forms adjoint to π1(·, ·) and π2(·, ·) respectively.
By definition,

π∗1(u, v) := π1(v, u) ∀u, v ∈ V1,

π∗2(u, v) := π2(v, u) ∀u, v ∈ V2.

Proof. Let us first establish the differentiability of Ĵ(s) = J(u1(s), u2(s)). The differen-
tiability of J(u1, u2) with respect to u1 and u2 is easily seen from the definition of J (see
(2.71)). The derivatives satisfy

J ′u1
(u1(s), u2(s))v = 〈B1u1(s)−B2u2(s), B1v〉S, ∀ v ∈ V1,

J ′u2
(u1(s), u2(s))v = − 〈B1u2(s)−B2u2(s), B2v〉S, ∀ v ∈ V2.

(2.74)

Further, the operators A−1
1 and A−1

2 are linear and bounded, and therefore u1(s) and u2(s)
are Fréchet differentiable with respect to s. From (2.67) we derive

u′1(s)h = A−1
1 (h◦B1) ∀h ∈ S ′,

u′2(s)h = − A−1
2 (h◦B2) ∀h ∈ S ′.

Then by the chain rule Ĵ(s) is also Fréchet differentiable, and for all h ∈ S ′ we have

〈Ĵ ′(s), h〉S′′,S′= 〈J ′u1
(u1(s), u2(s)), u′1(s)h 〉V ′1,V1

+ 〈J ′u2
(u1(s), u2(s)), u′2(s)h 〉V ′2,V2

=

= 〈J ′u1
(u1(s), u2(s)), A−1

1 (h◦B1)〉V ′1,V1
− 〈J ′u2

(u1(s), u2(s)), A−1
2 (h◦B2)〉V ′2,V2

=

= 〈A−∗1 J ′u1
(u1(s), u2(s)), h◦B1 〉V ′′1 ,V ′1 − 〈A

−∗
2 J ′u2

(u1(s), u2(s)), h◦B2 〉V ′′2 ,V ′2 .

Here A−∗1 ∈ L(V ′1,V ′′1 ) and A−∗2 ∈ L(V ′2,V ′′2 ) are operators adjoint to A−1
1 and A−1

2 respec-
tively. Introducing

p1(s) :=A−∗1 J ′u1
(u1(s), u2(s)),

p2(s) :=A−∗2 J ′u2
(u1(s), u2(s))

(2.75)
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and identifying V ′′1 with V1 and V ′′2 with V2, we obtain

〈Ĵ ′(s), h〉S′′,S′ = 〈p1(s), h◦B1 〉V ′′1 ,V ′1 − 〈p2(s), h◦B2 〉V ′′2 ,V ′2 =

= 〈h◦B1, p1(s)〉V ′1, V1
− 〈h◦B2, p2(s)〉V ′2, V2

=

= 〈h , B1p1(s)〉S′, S − 〈h , B2p2(s)〉S′, S =

= 〈h , B1p1(s)−B2p2(s)〉S′,S .

This means

Ĵ ′(s) = B1p1(s)−B2p2(s).

It is left to show that p1(s) and p2(s) defined by (2.75) and considered as elements of V1

and V2 solve (2.72) and (2.73) respectively. Indeed, (2.75) implies

A∗1p1(s) = J ′u1
(u1(s), u2(s)),

A∗2p2(s) = J ′u2
(u1(s), u2(s)).

We used here that (A∗i )
−1 = (A−1

i )∗, i = 1, 2. The relations above equate the functionals
on V1 and V2. Applying them to arbitrary elements of V1 and V2 respectively and taking
into account (2.74), we obtain

〈A∗1p1(s), v〉V ′1,V1
= 〈B1u1(s)−B2u2(s), B1v〉S ∀ v ∈ V1,

〈A∗2p2(s), v〉V ′2,V2
= − 〈B1u2(s)−B2u2(s), B2v〉S ∀ v ∈ V2.

(2.76)

For the left-hand side we have

〈A∗1p1(s), v〉V ′1,V1
= 〈p1(s), A1v〉V ′′1 ,V ′1 = 〈A1v, p1(s)〉V ′1,V1

= π1(v, p1(s)) = π∗1(p1(s), v).

Similarly,

〈A∗2p2(s), v〉V ′2,V2
= π∗2(p2(s), v).

Substituting these relations in (2.76), we discover that p1(s) and p2(s) satisfy (2.72) and
(2.73), respectively.

The existence and uniqueness of solutions to (2.72) and (2.73) is established the same
way as for Problems 2.5 and 2.6 (see Theorem 2.18 and Remark 2.9).

Thus, we obtain the following algorithm for calculating Ĵ ′(s):

Algorithm 2.2 (Calculating Ĵ ′(s)).

1. For given s find u1 and u2 by solving Problems 2.5 and 2.6, i.e.

π1(u1, v) = `v + sB1v ∀ v ∈ V1,

π2(u2, v) = − sB2v ∀ v ∈ V2.
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Layer Thickness
Aptamer layer 0.004 µm
Shielding layer 0.1 µm
Guiding layer 5.5 µm

Substrate 0.3 mm

Table 2.1: Thickness of the layers

2. Find p1 and p2 by solving the adjoint equations

π∗1(p1, v) = 〈B1u1 −B2u2, B1v〉S ∀ v ∈ V1,

π∗2(p2, v) = − 〈B1u1 −B2u2, B2v〉S ∀ v ∈ V2.

3. Calculate
Ĵ ′(s) = B1p1 −B2p2.

Remark 2.21. The well-posedness of the discrete versions of the adjoint problems can be
established the same way as it was done for the direct problems (see Section 2.6.1). The
adjoint problems can also be solved in parallel, in the same finite element setting as the
direct ones.

2.7 Simulation results

In this section we present the results of numerical simulations of the biosensor in one of
the typical configurations. The x1-length of the sensor is 1.8 mm; x2-width is 2 mm. The
thicknesses of the layers are given in Table 2.1.

The material properties are presented in Table 2.2. The tensors Ĝ, P̂ , G and e are
specified in the Voigt notation. The material constants of the piezoelectric substrate are
given in the crystallographic coordinate system. In order to get a surface shear wave
travelling in x1-direction, we take a so-called ST-cut of the quartz crystal. This cut is
made by rotating the crystal to the angle of 42.75◦ around x1-axis. The effective material
parameters, i.e. tensors G, e, and ε, are computed from the ones specified in Table 2.2 by
the corresponding coordinate transformation.

The waves are excited by the 7 pairs of the alternating input electrodes. As described
in Section 2.3 one set of them is grounded, another one is supplied with the alternating
current of the form

ϕ(x, t) = V0 sinωt,

where ω is the circular frequency related to the ordinary frequency f by

ω = 2πf.

We have done a series of simulations with the amplitude voltage V0 of 20 Volt and the
frequency f varying from 75 to 125 MHz. The excited wave travels in x1-direction and
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Layer Material Density Other parameters
[kg/m3]

Liquid Water 1000 Dynamic viscosity: 0.001 Pa·s
Compressibilty: 4.6 · 10−10 m2/N

Aptamer Homogenized 1720 Tensor Ĝ [109 N/m2] :
−0.7193717 3.357842 2.066848 0 0 0

3.357842 −0.7193717 2.066391 0 0 0
2.066848 2.066391 3.047297 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Tensor P̂ [10−2 N · s/m2] :
10.304 4.9644 6.0015 0 0 0
4.9644 12.065 5.6766 0 0 0
6.0015 5.6766 15.893 0 0 0

0 0 0 3.6534 0 0
0 0 0 0 3.6533 0
0 0 0 0 0 2.7075

Shielding Gold 19300 Young’s modulus 78 GPa, Poisson’s ratio 0.44

Guiding SiO2 2200 Young’s modulus 72 GPa, Poisson’s ratio 0.17

Substrate α-quartz 2650 Stiffness tensor G [109 N/m2] :
86.74 6.99 11.91 −17.91 0 0
6.99 86.74 11.91 17.91 0 0

11.91 11.91 107.2 0 0 0
−17.91 17.91 0 57.94 0 0

0 0 0 0 57.94 −17.91
0 0 0 0 −17.91 39.875

Piezoelectric tensor e [C/m2] :
0.171 −0.171 0 −0.0407 0 0

0 0 0 0 0.0407 −0.171
0 0 0 0 0 0

Dielectric tensor ε [10−12F/m]:
39.97 0 0

0 39.97 0
0 0 41.03

Table 2.2: Material parameters of the layers
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Figure 2.5: Shear component of v(1) in the substrate.

induces a potential difference on the 7 pairs of the alternating output electrodes on the other
end of the sensor. Though the electrodes in each subset are not connected geometrically
in our simulation, the electric potential on them is kept the same by the linking the
corresponding degrees of freedom.

The result of a simulation is a Ritz-Galerkin solution to Problem 2.4. Recall that it is a
vector of the form

(v(1),v(2), ϕ(1), ϕ(2)).

The time-dependent displacements in the solid layers and the electric potential in the
substrate are then constructed by (see (2.25) and (2.27))

u(x, t) =v(1)(x) sinωt+ v(2)(x) cosωt in Ωpgsa,

ϕ(x, t) =ϕ(1)(x) sinωt + ϕ(2)(x) cosωt in Ωp.

Figure 2.5 shows the result of the simulation at the frequency 100 MHz. All the layers
above the substrate are made invisible. The damping area is designated by the blue line.
The color scale represents the x2 component of v(1), i.e. the shear component of the wave.
As expected it is almost periodic in x1-direction and decays when approaching the damping
area. The shear component of v(2) has the same periodic structure as can be seen from
Figure 2.6. This figure shows the shear components of both v(1) and v(2) evaluated on the
middle line of the guiding layer parallel to the x1-axis.



2.7 Simulation results 53

0 0.0005 0.001 0.0015

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

v
(1)
2

v
(2)
2

x1

Figure 2.6: Shear components of v(1) and v(2) on the middle line in the guiding layer.

Figure 2.7: Component v
(1)
2 in the guiding layer and substrate evaluated at a cross section.
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Figure 2.8: Vector v(1) in the guiding layer and substrate evaluated at a cross section.

The decay rate of the wave when moving away downward from the substrate surface
can be observed in Figure 2.7. It shows a cross-section of the substrate and the guiding
layers by a vertical plane parallel to the x1-axis. One can see that the amplitude of the
displacements is the highest in the guiding layer and decays very quickly in the substrate.
Hence the computed wave is a surface wave.

Figure 2.8 provides a vector view for v(1) at the same cross-section. As expected the x1

and x3 components of v(1) are negligible small in comparison with v
(1)
2 . The same holds

for v(2). Thus the computed wave is a shear surface wave with displacements parallel to
the x2-axis.

Every pair of the input electrodes excites a wave with the wavelength depending on
the frequency. Whenever the wavelength covers the distance between the pairs positions a
whole number of times, the phases of the waves excited by the pairs coincide and resonance
takes place. A frequency at which such a wavelength is achieved is a resonant frequency.
This is also the operational frequency of the biosensor because the loss of the signal power
is minimal in this case. To find out the resonant frequency we have performed a series of
simulations with different values of the frequency and computed the so-called insertion loss
that is defined as

20 lg
V

V0

,
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where V0 is the voltage at the input electrodes as described above and V is the voltage at
the output electrodes. In our case the output electrodes belonging to S3 are grounded and
hence the output voltage is computed by

V =

√(
ϕ(1)

S4

)2

+
(
ϕ(2)

S4

)2

.

We set both the distance between the electrodes and the electrodes width to 11.25 µm.
The difference in x1 position between two neighboring pairs of electrodes is then 45 µm.
The method described in Chapter 3 predicts that the wavelength of 45 µm is achieved at
the frequency of 100 MHz (see Section 3.10.2 and Figure 3.15), i.e., the frequency of 100
MHz is resonant.

Our simulations by the finite element method confirm this. Figure 2.9 shows the ouput
voltage for different values of the frequency. The insertion loss is depicted in Figure 2.10.
Indeed, the highest value of the insetion loss is achieved at 100 Mhz.

The simulations have been carried out with a FE-Program called FeliCs that has been
developed at TU München. The sparse solver PARDISO (see [61]) has been used for solving
the arising linear systems. It proved to be quite efficient on shared memory multiprocessors
giving a speedup up to ten times at 24 threads. The mesh size varied from 320× 50× 9 to
440× 100× 20 nodes yielding more than two millions of degrees of freedom.



3 Dispersion Relations in Multi-Layered
Structures

3.1 Introduction

This chapter presents an approach to fast characterization of plain acoustic waves prop-
agating in multi-layered medium contacting with a fluid or dielectric medium. It covers
all the range of topics from the statement of the mathematical model up to the computer
implementation. The underlying assumption of the approach is the infiniteness of layers
in the horizontal directions.

Solid multi-layered structures considered here consist of any finite number of flat layers
stacked together. The top and bottom layers are either semi-infinite or contact with a
medium such as liquid, gas or vacuum. It is assumed throughout the work that the magni-
tudes considered are sufficiently small so that the linear laws describe the phenomena well
enough.

The chapter is organized as follows. Section 3.3 presents the mathematical model and the
algorithm for the calculation of plane acoustic waves in multi-layered elastic structures. The
algorithm is first stated for a simple two-layers structure consisting of a semi-infinite half-
space and a layer of finite thickness on top of it. The presented ideas are then generalized
to the case of general multi-layered structures. Section 3.4 extends the approach to the case
of piezoelectric layers. Sections 3.5 and 3.6 describe how the electro-mechanical influence
of the contacting dielectric or liquid media is taken into account. Section 3.7 shows how
the model from [28] for treating bristle-like solid-fluid interfaces can be adapted for use
with the developed algorithm. Section 3.8 is devoted to accounting for so-called periodic
multilayers. Section 3.9 describes the algorithm for building a dispersion curve on a range
of frequencies starting with a single point found at given frequency. Finally, Section 3.10 is
devoted to the computer implementation of the model. It consists of two parts. The first
part discusses numerical issues such as computational complexity and avoiding numerical
instabilities. The second part demonstrates the computer program implementing the model
on an example of a real structure.

3.2 Notation

We use the cartesian coordinates (x1, x2, x3). The direction of the wave propagation is
taken as the x1-axis. The x3-axis is orthogonal to the layers surfaces; the x2-axis is parallel
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to the surface and orthogonal to x1 as shown in Figure 3.1. If not stated otherwise, the
original of the coordinate system lies on the top surface of the bottom layer.

We number all the layers in the structure under consideration bottom-upwards starting
with 1 corresponding to the bottom layer (which may occupy a half-space). The thickness
of the n-th layer is denoted by h(n). The thickness of semi-infinite layers is +∞.

The x3-coordinate of the top surface of the n-th is denoted by τn, i.e.

τn :=
n−1∑
j=2

h(j), n > 1

Note that τn is also the x3-coordinate of the bottom surface of the (n + 1)-th layer (if
present). If the first layer is not semi-infinite, assume τ0 := −h(1).

The area occupied by the whole structure is denoted by Ω ⊆ R2. It is unbounded in the
x1- and x2-directions. The open area corresponding to the n-th layer is denoted by Ωn.
Obviously,

Ω =
N⋃
n=1

Ωn,

where N is the number of layers. We use the superscript (n) to specify that the corre-
sponding variable belongs to the n-th layer. For example, u(n) is the displacement vector
in n-th layer, u(n) is defined on Ωn.

Vectors are distinguished from scalar quantities by writing them in a bold font.
The Einstein’s summation convention is exploited throughout the work.

3.3 Elastic Multi-Layered Structures

3.3.1 Analysis of plane waves in elastic media

As mentioned above, we assume the displacements to be small so that the linear theory of
elasticity is applicable. In particular, we make use of Hook’s law that states that

σij = Gijklεkl, (3.1)

where σ and ε are the stress and the strain tensor respectively; G is the stiffness tensor.
We assume the strain tensor ε to be infinitesimal, i.e.

ε(u) =
1

2
(∇u+ (∇u)T ), (3.2)

where u is the displacement vector. As follows from mechanical considerations, the stiffness
tensor G possesses the following symmetry properties

Gijkl = Gklij = Gjikl. (3.3)
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Besides, it is positive definite, i.e.

Gijklξijξkl > 0, (3.4)

for all symmetric non-zero tensors ξ.

Remark. The positiveness property (3.4) holds also for arbitrary non-antisymmetric ten-
sors ξ. This can easily be shown using the symmetry property (3.3). Indeed,

Gijklξijξkl = 2Gijkl(ξij + ξji)ξkl = 4Gijkl(ξij + ξji)(ξkl + ξlk) > 0.

The momentum conservation law gives the following relation (no body force is assumed):

%utt − divσ = 0, (3.5)

where % is the mass density, and utt is the second derivative of the displacement vector u
with respect to time t. Combining (3.5) with (3.1) and (3.2) and taking into account the
symmetry properties of G, we obtain the following governing equation:

%utt − div(G∇u) = 0.

Rewritten in terms of components, it takes the form

%
∂2ui
∂t2
−Gijkl

∂2uk
∂xl∂xj

= 0, i = 1, 2, 3. (3.6)

A plane wave that travels in x1-direction has a displacement field of the form

u(x1, x3) = <
{
ĉ(x3)ei(κx1−ωt)

}
,

where κ is the wave number and ω is the angular frequency. The phase velocity v is defined

then as the ratio
ω

κ
. Here i is the standard imaginary unit, <{} denotes the real part of

the expression in the parenthesis. The function ĉ is a complex-valued amplitude function.
It is, however, more convenient to get rid of the complex part explicitly and to use the
following form:

u(x1, x3) = a(x3) cos(κx1 − ωt) + b(x3) sin(κx1 − ωt). (3.7)

The amplitude vector functions a and b are real-valued now. Substituting (3.7) into (3.6)
yields the following system of 6 ordinary differential equations:{

−Gi3k3 äk − (Gi1k3 +Gi3k1) ḃk +Gi1k1 ak − %v2 ai = 0, i = 1, 2, 3,

−Gi3k3 b̈k + (Gi1k3 +Gi3k1) ȧk +Gi1k1 bk − %v2 bi = 0, i = 1, 2, 3.

Here the dot denotes the differentiation with respect to the variable x̃3 = κx3. The
introduction of the variable x̃3 is caused by numerical considerations discussed in details
in Section 3.10.1. The system can be rewritten in matrix form as follows:{

−G·3·3ä− (G·1·3 +G·3·1) ḃ+
(
G·1·1 − %v2 I3

)
a = 0,

−G·3·3b̈+ (G·1·3 +G·3·1) ȧ+
(
G·1·1 − %v2 I3

)
b = 0.

(3.8)
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Here the dots at subscripts of G denote that the corresponding indices vary. In this case
two indices are always fixed and the other two vary, thus forming a matrix. In ∈ Rn×n is
the unit n× n matrix.

Remark. The matrix G·3·3 is positive definite. This follows from the positiveness of tensor
G. Indeed, for all x ∈ R3 such that x 6= 0, we have

xT G·3·3 x = xiGi3k3 xk = Gi3k3 xi xk = Gijkl xiδ3j xkδ3l,

where δij is the Kronecker symbol. Introducing tensor ξij = xiδ3j and noting that it is not
anti-symmetric for non-zero x, we obtain

xT G·3·3 x = Gijkl xiδ3j xkδ3l = Gijkl ξij ξkl > 0.

Thus G·3·3 is positive definite and therefore not singular. The system (3.8) can then be
rewritten as follows:{

ä = −G−1
·3·3 (G·1·3 +G·3·1) ḃ+G−1

·3·3
(
G·1·1 − %v2 I3

)
a,

b̈ = G−1
·3·3 (G·1·3 +G·3·1) ȧ+G−1

·3·3
(
G·1·1 − %v2 I3

)
b.

(3.9)

With the state vectors

s :=


a
b
ȧ

ḃ


the above system can be rewritten in the normal form as follows:

ṡ = A s, (3.10)

where A ∈ R12×12 has the following structure:
0 0 I3 0
0 0 0 I3

G−1
·3·3 (G·1·1−%v2 I3) 0 0 −G−1

·3·3 (G·1·3 +G·3·1)
0 G−1

·3·3 (G·1·1−%v2 I3) G−1
·3·3 (G·1·3 +G·3·1) 0

 (3.11)

We establish now an important property of this system.

Proposition 3.1. Let λ be an eigenvalue of the matrix A with the eigenvector p ∈ R12.
Let p1,p2,p3,p4 ∈ R3 be the three-dimensional components of p such that

p =


p1
p2
p3
p4

 .
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Then (−λ) is also an eigenvalue of A with the eigenvector p̂ in the form:

p̂ =


p2
p1
−p4
−p3

 .

Proof. The statement can be verified straightforwardly. Nevertheless, we provide here a
more constructive proof based on symmetry considerations.

From the physical point of view it is clear that if there is a solution of (3.10) decreasing
with depth, i.e. as x3 → −∞, then there must be a paired solution decreasing as x3 → +∞,
since the properties of the material are the same in the both directions.

To realize this idea mathematically, we define functions

â(x3) := b(−x3),

b̂(x3) :=a(−x3)

and rewrite the system (3.9) for these new functions. It can easily be seen that the system
for â and b̂ has the same coefficients as the original one. This implies that for the state
vector ŝ defined as

ŝ :=


â

b̂
˙̂a
˙̂
b


the normal form is written with the same matrix A, i.e.

˙̂s = A ŝ.

Therefore, if λ is an eigenvalue of A with the eigenvector p, then the system has a solution
â(x3)

b̂(x3)
˙̂a(x3)
˙̂
b(x3)

 =


p1
p2
p3
p4

 eλκx3 .

Hence,

s(x3) =


a(x3)
b(x3)
ȧ(x3)

ḃ(x3)

 =


b̂(−x3)
â(−x3)

− ˙̂
b(−x3)

− ˙̂a(−x3)

 =


p2
p1
−p4
−p3

 eλκ(−x3) = p̂e−λκx3 .

This is possible only if (−λ) is an eigenvalue of A with the eigenvector p̂.
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The general solution of the system (3.10) is of the form

s(x3) =
12∑
j=1

c̃jp
j
ce
λjκx3 ,

where {λj}12
j=1 ⊂ C and {pjc}12

j=1 ⊂ C12 are eigenvalues and eigenvectors of A, respectively;
{c̃j}12

j=1 are arbitrary constants.
In order to get rid of complex solutions, every combination of complex conjugated eigen-

values
c̃1

(
p1
c + ip2

c

)
e(λ1+iλ2)κx3 + c̃2

(
p1
c − ip2

c

)
e(λ1−iλ2)κx3

is replaced with the equivalent combination

c1

[
p1
c cos(λ1κx3)− p2

c sin(λ2κx3)
]

+ c2

[
p2
c cos(λ1κx3) + p1

c sin(λ2κx3)
]
,

where c1 = c̃1 + c̃2, c2 = i(c̃1 − c̃2). After renumbering the eigenvalues and eigenvectors in
such a way that the real ones go first and the complex-conjugated follow one another, the
general solution takes the following form:

s(x3) =
n∑
j=1

cj p
j
ce
λjκx3 +

+
6∑

j=n
2

+1

(
c2j−1

[
<p2j

c cos(<λ2jκx3)−=p2j
c sin(=λ2jκx3)

]
+

+ c2j

[
=p2j

c cos(<λ2jκx3) + <p2j
c sin(=λ2jκx3)

])
,

(3.12)

where cj = c̃j for the real eigenvalues; n is the number of the real eigenvalues; = denotes
taking the imaginary part. Note that n is always even. The components in the first sum
are exponential solutions, the ones in the second sum are oscillating solutions. In order to
make the notation less bulky, we denote the multipliers of cj by pj(x3), i.e.

pj(x3) =


pjce

λjκx3 if 1 6 j 6 n,

<pjc cos(<λj κx3)−=pjc sin(=λj κx3) if j > n and j is even,

<pj+1
c cos(<λj+1κx3)−=pj+1

c sin(=λj+1κx3) if j > n and j is odd.

(3.13)

The general solution is then of the form

s(x3) =
12∑
j=1

cjp
j(x3). (3.14)

Extracting the components of the state vector s corresponding to a and b, and substituting
them into (3.7), we obtain

u(x1, x3) =
12∑
j=1

cjf
j(x3) · cos(κx1 − ωt) +

12∑
j=1

cjg
j(x3) · sin(κx1 − ωt), (3.15)

where the real-valued vector functions f j(x3), gj(x3) contain the components of pj(x3)
corresponding to a and b, respectively.
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Figure 3.1: A sample structure. Half-space solid coated with an elastic layer.

3.3.2 Two-layered structure

The algorithm lying in the base of the model is demonstrated here on an example of a
structure consisting of a semi-infinite half-space solid (further refereed as substrate) coated
with an overlying plate (see Figure 3.1). Only mechanical elastic properties of materials are
taken into account here (piezoelectric materials are considered in Section 3.4). No contact
medium is assumed.

Applying the expression (3.15) to our two layers, we get
u(1)(x1, x3) =

12∑
j=1

c
(1)
j f

(1),j(x3) · cos(κx1 − ωt) +
12∑
j=1

c
(1)
j g

(1),j(x3) · sin(κx1 − ωt),

u(2)(x1, x3) =
12∑
j=1

c
(2)
j f

(2),j(x3) · cos(κx1 − ωt) +
12∑
j=1

c
(2)
j g

(2),j(x3) · sin(κx1 − ωt).
(3.16)

The solutions u(1) and u(2) in the substrate and the top layer respectively are coupled by
the conditions on the interface between them. Together with the boundary conditions they
determine the admissible values for constants {c(1)

j }12
j=1 and {c(2)

j }12
j=1, thus filtering out the

wave solutions infeasible in the whole structure.

Interface conditions. The interface conditions include the continuity of the displace-
ment field and the pressure equilibrium at the plane x3 = τ1(:= 0), i.e.

u(1) = u(2),

σ(1)n = σ(2)n,
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where

n :=

 0
0
1


is the unit vector normal to the interface plane.

Boundary conditions. As assumed the structure has no contacting media, which
means that there are no external forces acting on the top surface of it. Hence the only
boundary condition at the plane x3 = h(2) is the absence of the pressure, i.e.

σ(2)n = 0.

In the substrate we require that the amplitude of the wave decays with the depth. Math-
ematically it means that a(1)(x3), b(1)(x3)→ 0 as x3 → −∞. This can only be achieved if

no terms with <λ(1)
i 6 0 are present in the first equations of (3.16). That means that

c
(1)
i = 0 for all i such that <λ(1)

i 6 0. (3.17)

Notice that due to Proposition 3.1 this condition filters out at least a half of components
in the sum.

Combining the interface and the boundary conditions, we obtain the following system
of equations: 

σ(2)n = 0 at x3 = τ2,

u(1) = u(2) at x3 = τ1,

σ(1)n = σ(2)n at x3 = τ1,

c
(1)
j = 0 if <λ(1)

j 6 0.

(3.18)

Using (3.1) and (3.2) this system can be rewritten in terms of components as follows:

G
(2)
i3kl

∂u
(2)
k

∂xl
x3=τ2 = 0, i = 1, 2, 3,

(
u

(1)
i − u

(2)
i

)
x3=τ1 = 0, i = 1, 2, 3,(

G
(1)
i3kl

∂u
(1)
k

∂xl
−G(2)

i3kl

∂u
(2)
k

∂xl

)
x3=τ1 = 0, i = 1, 2, 3,

c
(1)
j = 0 if <λ(1)

j 6 0.

(3.19)

Substituting u(1) and u(2) from (3.16) into the first three conditions and equating the
coefficients of sin(κx1 − ωt) and cos(κx1 − ωt), we obtain a homogeneous system of 18
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linear equations for unknown coefficients {c(1)
i }12

i=1 and {c(2)
i }12

i=1. The last condition in
(3.19) makes sure that no more than 18 of them are present so that the system is not
underdetermined in general. We denote the matrix of this system by F and refer to it as
the fitting matrix of the structure. The name should suggest that it describes relations
“fitting” wave solutions in single layers to each other. Further, denote by c the vector of
all non-zero coefficients collected from the both layers. Then the system above takes the
form

Fc = 0. (3.20)

Note that in general F is not a square matrix. The system admits a non-trivial solution
iff the following equivalent conditions are fulfilled:

• The matrix F is rank deficient.

• det(F TF ) = 0.

• 0 is an eigenvalue of F TF

• λmin(F TF )

λmax(F TF )
=0, where λmin(F TF ) and λmax(F

TF ) are minimal and maximal eigen-

values of F TF , respectively.

From the computational point of view these conditions are equivalent, i.e. the checking of
them is of the same computational complexity. We make a choice in favor of the last one,
because it provides us with a quantity that shows the degree of singularity of F TF , and in
contrast to other quantities it does not scale when material parameters are scaled.

The matrix F depends on two variables, on the frequency ω and on the wave number κ.
They related to each other by the phase velocity v as follows:

κ =
ω

v
.

We assume now that the frequency ω is fixed. Then we can consider the phase velocity
v as the independent variable. We investigate now the behavior of the system (3.20) as v
varies. Let us define the function f : R+ → R+

0 by the rule

f : v 7→ λmin(F T (v)F (v))

λmax(F T (v)F (v))
. (3.21)

We will refer to this function as the fitting function of the structure. The structure admits
a plane wave propagating in the x1 direction with the phase velocity v iff

f(v) = 0.

Note that the matrix F TF is positive semidefinite. Hence its eigenvalues are non-negative
and f > 0. Thus, the problem of finding feasible wave solutions is reduced to the problem of
finding roots of a non-negative function. In practice, however, the calculation error prevents
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the fitting function from turning into zero. The calculated values usually remain positive
but may approach zero very closely. Therefore, instead of seeking for roots of the function,
it is more promising to look for its local minima close to zero. In general, the fitting
function possesses no convexity properties and may have several minima corresponding to
different wave modes.

If v is a root of the fitting function, the system (3.20) possesses a non-trivial solution
that can be found as follows:

Proposition 3.2. Let v be a root of the fitting function and c be the eigenvector of the
matrix F T (v)F (v) corresponding to λmin(v). Then c solves the system (3.20).

Proof. Since v is a root of the fitting function,

λmin(v) = 0.

Then we have

F T (v)F (v)c = λmin(v)c = 0

⇒ cTF T (v)F (v)c = 0

⇒ [F (v)c]T [F (v)c] = 0

⇒ F (v)c = 0.

That is, c solves (3.20).

When the vector of coefficients c is found, the displacement vectors u(1) and u(2) are
determined by (3.16). The wave solution is thus completely constructed. Summing up all
the steps we describe now the algorithm for finding plane wave solutions on a range of
velocities.

Algorithm 3.1.

1. Choose frequency ω, range of velocities [v0, vm] and some discretization

v0 < v1 < · · · < vm.

2. For each i = 0, . . . ,m calculate f(vi) as follows:

• For each layer n = 1, 2 do

– Build the matrix A(n)(vi) as defined in (3.11).

– Find the eigenvalues and eigenvectors of A(n)(vi).

– If n-th layer is the semi-infinite, remove the components corresponding to
non-decaying solutions (see (3.17)).
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– For complex eigenvalues extract the corresponding real solutions to obtain
the representation (3.12) with unknown coefficients c

(n)
j for the state vector

s(n).

– On the base of s(n) build the form (3.15) for u(n).
Build a similar form for ∇u(n) by differentiating (3.15).

• On the base of boundary and interface conditions (3.19) assembly the fitting
matrix F (vi).

• Calculate f(vi) as defined in (3.21).

3. Pick up an interval of velocities U containing just one root of f .

4. Find the minimum of f in U .

5. For v∗ ∈ arg min
v∈U

f(v) calculate the eigenvector c(v∗) corresponding to λmin(v∗).

6. Construct the wave solution by substituting c(v∗) in (3.16).

The algorithm is controlled by the user at two stages. First, the user chooses the prelim-
inary range of velocities to calculate the fitting function on it. Usually the approximative
range of feasible velocities is known. Second choice is the choice of a root if more than
one is present on the calculated interval. Figure 3.2 shows an example of a fitting function
with three roots corresponding to different wave types feasible in the structure.

In further sections we adapt this algorithm to structures consisting of arbitrary number
of layers of different types. When doing this, special attention is given to the checking that
the number of unknown coefficients determining the wave in the whole structure is not
bigger that the number of boundary and interface conditions. So that the fitting matrix
does not become undetermined. Otherwise, a non-trivial solution to (3.20) would exist at
any phase velocity and the algorithm would make no sense.

3.3.3 N-layered structure

Let us consider now a structure consisting of N stacked layers (see Figure 3.3). Like in
the case of two-layered structure we obtain the representation (3.15) for each layer and
derive the system (3.20) for the vector of unknown coefficients c. Algorithm 3.1 can be
used without significant changes. The only difference is the number of interface conditions
and consequently the order of the matrix F . The set of the conditions is slightly different
for three possible variants denoted in Figure 3.3 by (a), (b), and (c).

In the variant (a), the bottom layer is semi-infinite and the top layer is finite. The
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Rayleigh waves Love wave

Figure 3.2: An example of fitting function. Three roots are the wave velocities for different
wave modes feasible in the structure.
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Figure 3.3: N -layered structures
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conditions are as follows:

σ(N)n = 0 at x3 = τN ,

u(m−1) = u(m) at x3 = τm−1, m = 2 . . . N,

σ(m−1)n = σ(m)n at x3 = τm−1, m = 2 . . . N,

c
(1)
j = 0 if <λ(1)

j 6 0.

(3.22)

This system is the N -layered analog of the system (3.18). The first three lines yield
(1 + (N − 1)× 2)× 3× 2 = 12N − 6 scalar equations. The last factor 2 appears because
the coefficients of sin(κx1 − ωt) and cos(κx1 − ωt) are equated. The number of unknown
coefficients is 12 for each layer and 12N for the whole structure. Proposition 3.1 ensures
that the last condition in (3.22) filters out at least a half of coefficients for the substrate.
Hence the number of unknown coefficients does not exceed 12N − 6.

Let us now consider the variant (b). The top and the bottom layers are now both semi-
infinite (see Figure 3.3(b)). In this case, the condition on the top surface is replaced with
the requirement that the amplitude decays as x3 → +∞. Hence we have

c
(N)
j = 0 if <λ(N)

j > 0,

u(m−1) = u(m) at x3 = τm−1, m = 2 . . . N,

σ(m−1)n = σ(m)n at x3 = τm−1, m = 2 . . . N,

c
(1)
j = 0 if <λ(1)

j 6 0.

(3.23)

In comparison to the variant (a), the number of equations becomes 6 less. On the other
hand, the condition of the amplitude decaying removes at least 6 unknown coefficients due
to Proposition 3.1.

In the variant (c) no semi-infinite layers are present. Hence there are no amplitude
decaying conditions. Instead, we have boundary conditions at the top and bottom surfaces.
The system is then as follows:

σ(N)n = 0 at x3 = τN ,

u(m−1) = u(m) at x3 = τm−1, m = 2 . . . N,

σ(m−1)n = σ(m)n at x3 = τm−1, m = 2 . . . N,

σ(1)n = 0 at x3 = τ0.

(3.24)
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The number of equations in this case is equal to the number of the unknown coefficients
(= 12N).

Thus, in all the variants the number of unknowns does not exceed the number of equa-
tions. This means that the number of rows in the matrix F is not less than the number of
columns and the system (3.20) is in general not underdetermined. This enables us to treat
the multi-layered case by using the same approach based on the introduction of the fitting
function.

3.4 Introducing Piezoelectricity

Since acoustic waves in sensors are usually excited by means of piezoelectric materials,
the modeling of piezoelectric layers is extremely important. This section briefly describes
the basic relations of the linear theory of piezoelectricity and shows how the algorithm
described in the previous section is adjusted to deal with piezoelectric layers.

3.4.1 Analysis of plane waves in piezoelectric media

Again, we assume the displacements to be sufficiently small to justify the use of the linear
theory of piezoelectricity. In piezoelectric materials the mechanical stress σ is caused not
only by the mechanical strain ε but also by the electric field E (this is so-called converse
piezoelectric effect). We assume the following constitutive relation:

σij = Gijklεkl − ekijEk, (3.25)

where e is the third-order piezoelectric tensor responsible for the coupling between mechan-
ical strain and electric field. The coupling effect works in both directions, i.e. mechanical
deformations generate electrical polarization in the material (direct piezoelectric effect).
The constitutive relation for the electric displacements D is

Di = εijEj + eiklεkl, (3.26)

where ε is the dielectric permittivity tensor.
It is easily seen from Maxwell’s equations that the magnitude of the rotational component

of the electric field is negligibly small. This follows from the smallness of the wave velocity
in comparison with the speed of light. Therefore, we can represent the electric field as the
gradient of a scalar potential function, i.e.

E = −∇φ. (3.27)

The funciton φ is called the electric potential of the electric field E. Furthermore, piezo-
electric materials are insulators. Therefore no free volume charges may exist. This implies

divD = 0. (3.28)
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The tensors ε and e have the following symmetry properties:

εij = εji,

eikl = eilk, i = 1, 2, 3.

Besides, ε is positive-definite, i.e.

∀ξ ∈ R3 \ {0} εijξiξj > 0.

Substituting (3.25) into (3.5) and (3.26) into (3.28), we obtain the system of coupled
governing equations for the displacements u and the electric potential φ:

%
∂2ui
∂t2
−Gijkl

∂2uk
∂xl∂xj

− ekij
∂2φ

∂xk∂xj
= 0, i = 1, 2, 3,

−εij
∂2φ

∂xj∂xi
+ eikl

∂2uk
∂xl∂xi

= 0.

(3.29)

As in the case of elastic layers we are looking for plane wave solutions to this system in
the form

u(x1, x3) =a(x3) cos(κx1 − ωt) + b(x3) sin(κx1 − ωt),
φ(x1, x3) =α(x3) cos(κx1 − ωt) + β(x3) sin(κx1 − ωt).

(3.30)

The unknown amplitude functions a, b, α and β are assumed to be real-valued here.
Substituting (3.30) into (3.29) yields the following linear system of 8 ordinary differential
equations:

−Gi3k3 äk − (Gi1k3 +Gi3k1) ḃk +Gi1k1 ak − %v2 ai−
−e3i3 α̈− (e1i3 + e3i1) β̇ + e1i1 α = 0, i = 1, 2, 3,

−Gi3k3 b̈k + (Gi1k3 +Gi3k1) ȧk +Gi1k1 bk − %v2 bi−
−e3i3 β̈ + (e1i3 + e3i1) α̇ + e1i1 β = 0, i = 1, 2, 3,

−ε33 α̈− (ε13 + ε31) β̇ + ε11 α+

+e3k3 äk + (e1k3 + e3k1) ḃk − e1k1 ak = 0,

−ε33 β̈ + (ε13 + ε31) α̇ + ε11 β+

+e3k3 b̈k − (e1k3 + e3k1) ȧk − e1k1 bk = 0.

Note that the dot here denotes the differentiation with respect to the variable x̃3 := κx3.
The system can be rewritten in matrix form as follows:

G·3·3 e3·3 0 0
−eT3·3 ε33 0 0

0 0 G·3·3 e3·3
0 0 −eT3·3 ε33



ä
α̈

b̈

β̈

 = (3.31)
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=


0 0 −(G·1·3 +G·3·1) −(e1·3 + e3·1)
0 0 (eT1·3 + eT3·1) −(ε13 + ε31)

(G·1·3 +G·3·1) (e1·3 + e3·1) 0 0
−(eT1·3 + eT3·1) (ε13 + ε31) 0 0



ȧ
α̇

ḃ

β̇

+

+


(G·1·1 − %v2 I3) e1·1 0 0

−eT1·1 ε11 0 0
0 0 (G·1·1 − %v2 I3) e1·1
0 0 −eT1·1 ε11



a
α
b
β

 .

Proposition 3.3. The matrix (
G·3·3 e3·3
−eT3·3 ε33

)
∈ R4×4

is positive-definite.

Proof. First note that ε33 > 0. This follows from the positiveness of ε. Indeed, for ξ =
(0, 0, 1)T we get

ε33 = ξT ε ξ > 0.

Further, for all x ∈ R3, y ∈ R such that
(
xT , y

)T ∈ R4 \ {0}, we have

(
xT , y

)( G·3·3 e3·3
−eT3·3 ε33

)(
x
y

)
=
(
xT , y

)( G·3·3x+ e3·3 y
−eT3·3x+ ε33 y

)
=

= xTG·3·3x+ xTe3·3 y − y eT3·3x+ y ε33 y = xTG·3·3x+ ε33 y
2 > 0.

The last inequality follows from the positiveness of G·3·3 and ε33.

Thus the matrix on the left-hand side of (3.31) is positive-definite and therefore invert-
ible. Then we can rewrite the system (3.31) in the normal form as follows:

ṡp = Ap sp, (3.32)

where sp is the state vector defined by

sp :=
(
a1, a2, a3, α, b1, b2, b3, β, ȧ1, ȧ2, ȧ3, α̇, ḃ1, ḃ2, ḃ3, β̇

)T
∈ R16,

and Ap ∈ R16×16 is the resulting matrix. This system is the piezoelectric analog of the
system (3.10) that we derived for elastic materials. In contrast to the elastic case, the
system has additional terms and contains two more variables due to taking into account
electric and piezoelectric effects. However, the general principle of treating the system
remains the same. In particular, the equivalent of the Proposition (3.1) takes place.
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Proposition 3.4. Let λ be an eigenvalue of the matrix Ap with the eigenvector p ∈ R16.
Let p1,p2,p3,p4 ∈ R4 be the four-dimensional components of p such that

p =


p1
p2
p3
p4

 .

Then (−λ) is also an eigenvalue of Ap with the eigenvector p̂ in the form

p̂ =


p2
p1
−p4
−p3

 .

Proof. The statement can be checked by direct calculation or can be proved the same way
as Proposition 3.1.

As in the case of elastic materials (see 3.14), the general solution sp(x3) after extracting
real solutions can be expressed in the form:

sp(x3) =
16∑
j=1

cjp
j(x3), (3.33)

where pj are known real-valued vector functions with images in R16, either exponential
or oscillating (see (3.13) for the detailed form of pj). Extracting the components of sp
corresponding to the amplitude functions a, b, α and β, we obtain the following expression
for the solution pair (u, φ) with the unknown coefficients {cj}16

j=1:
u(x1, x3) =

16∑
j=1

cjf
j(x3) · cos(κx1 − ωt) +

16∑
j=1

cjg
j(x3) · sin(κx1 − ωt),

φ(x1, x3) =
16∑
j=1

cjµ
j(x3) · cos(κx1 − ωt) +

16∑
j=1

cjν
j(x3) · sin(κx1 − ωt),

(3.34)

where real functions f j, gj, µj, and νj are the components of pjp corresponding to a, b, α,
and β, respectively. The representation (3.34) is the piezoelectric analog of (3.15).

Remark 3.5. The approach used in this section to treat piezoelectric materials can be
applied without changes to dielectric materials. Dielectric materials are described by the
same equations with the coupling tensor e set to zero.



74 3. Dispersion Relations in Multi-Layered Structures

3.4.2 Piezoelectric multi-layered structure

Consider now a structure consisting of N stacked piezoelectric layers. In order to find
plane wave solutions in such a structure we proceed the same way as described in Subsec-
tion 3.3.3 for elastic layers, except that we take the system (3.32) instead of (3.10) and the
representation (3.34) instead of (3.15). This makes the number of unknown coefficients for
each layer 16 instead of 12. On the other hand, the set of conditions is enriched by the
conditions expressing the electrical consistence at interfaces and free surfaces. Eventually,
as will be shown below, the number of unknowns and the number of conditions remain
balanced.

Mechanical Conditions. The mechanical conditions at interfaces and free surfaces are
described by the same systems (3.22)–(3.24). Though, it should be emphasized here that
the stress tensor σ in these relations must be calculated by the formula (3.25), i.e. with
taking into account the contribution of the piezoelectric effect. Thus the relations

u(m−1) =u(m) at x3 = τm−1,

σ(m−1)n =σ(m)n at x3 = τm−1

take the form (compare with (3.19)) (
u

(m−1)
i − u(m)

i

)
x3=τm−1

=0, i = 1, 2, 3,(
G

(m−1)
i3kl

∂u
(m−1)
k

∂xl
+ e

(m−1)
ki3

∂φ(m−1)

∂xk
−G(m)

i3kl

∂u
(m)
k

∂xl
− e(m)

ki3

∂φ(m)

∂xk

)
x3=τm−1

=0, i = 1, 2, 3.

Substituting the expressions for u and φ from (3.34) and equating the coefficients of
sin(κx1 − ωt) and cos(κx1 − ωt), we obtain 12 linear equations for unknown coefficients

{c(m−1)
j }16

j=1, {c
(m)
j }16

j=1.

This forms 12 rows in the fitting matrix F for each pair of neighboring layers (m− 1,m).
The mechanical condition on the free surface of the top (N -th) layer takes the forms(

G
(N)
i3kl

∂u
(N)
k

∂xl
+ e

(N)
ki3

∂φ(N)

∂xk

)
x3=τN

= 0, i = 1, 2, 3. (3.35)

This condition contributes 6 more raws in the fitting matrix.

Electrical Conditions. The electrical interface conditions express the continuity of
the normal component of the electric displacement (D ·n = D3) and the continuity of the
tangent component of the electric field. Hence at the interface between layers (m− 1) and
m we have

D
(m−1)
3 =D

(m)
3 at x3 = τm−1,

E
(m−1)
1 =E

(m)
1 at x3 = τm−1.
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Substituting D and E from (3.26) and (3.27), we obtain(
ε

(m−1)
3j

∂φ(m−1)

∂xj
+ e

(m−1)
3kl

∂u
(m−1)
l

∂xk
− ε(m)

3j

∂φ(m)

∂xj
− e(m)

3kl

∂u
(m)
l

∂xk

)
x3=τm−1

=0,(
∂φ(m−1)

∂x1

− ∂φ(m)

∂x1

)
x3=τm−1

=0.

(3.36)

Note that we do not equate the x2 components of the electric field E because the electric
potential φ does not depend on x2. This means that E2 = 0 and this condition is fulfilled
automatically.

The electrical conditions on the free surface depend on the contacting medium. Here
we assume that no electrical field may exist in it (Section 3.5 considers more realistic
conditions). In this case, the following relations on the free surface of the top (and/or
bottom) layer hold: (

ε
(m)
3j

∂φ(m)

∂xj
+ e

(m)
3kl

∂u
(m)
l

∂xk

)
x3=τm =0,

∂φ(m)

∂x1
x3=τm =0,

(3.37)

where m = N for the top surface of the top layer, and m = 0 for the bottom surface of the
bottom layer.

Combining the mechanical and electrical conditions, we obtain 16 linear equations con-
necting the unknown coefficients for each pair of neighboring layers. The conditions on a
free surface (if present) give 10 scalar equations (6 mechanical + 4 electrical). On the other
hand, we have 16 unknown coefficients for each layer. Therefore, if a free surface is present,
the number of equations exceeds the number of unknowns by 2 for each free surface. That
is, we have even more equations than needed. This imperfectness is fixed in Section 3.5
by considering the electrical influence of the surroundging medium more carefully, which
requires the introduction of two more unknown coefficients.

As usual, if a semi-infinite layer is present, the condition on the free surface is replaced
with the requirement of the wave decaying. This decreases the number of equations by 10
but removes at least 8 unknowns due to Proposition 3.4. Thus the system of equations
remains not underdetermined, and the algorithm proposed remains applicable.

3.4.3 Mixed multi-layered structure

We consider now mixed multi-layered structures consisting of piezoelectric and elastic lay-
ers. From the electrical point of view elastic layers can be either conductive or dielectric.
In the former case the layer is treated as a pure elastic material as described in Section 3.3
without taking into account electrical phenomena. In the latter case it is described by
the same relations as a piezoelectric layer with the piezoelectric tensor e set to zero (see
Remark 3.5).
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Remark 3.6. From the mathematical point of view, we can treat conductive elastic layers as
a special case of piezoelectric ones by setting e and φ to zero. The electrical conditions on
free surfaces and at interfaces between conductive layers would degenerate to trivial 0 = 0,
the conditions at interfaces with piezoelectric layers would make sense as well. Thus, from
the mathematical point of view, a mixed structure could be considered as a piezoelectric
multi-layered structure.
However, from the computational point of view, treatment of conductive elastic layers as
piezoelectric ones requires redundant calculations and therefore increases the caculation
error. Hence they are treated separately.

In mixed structures we have to specify the interface conditions between layers of differ-
ent types. By Remark 3.5, only conditions at interfaces between conductive elastic and
piezoelectric layers require a special treatment.

Let the superscripts 1 and 2 denote the piezoelectric and the conductive layer, respec-
tively. The mechanical conditions at the interface remain the same as above. They consist
in the continuity of the displacement field and the pressure equilibrium. The only thing
one should keep in mind is that the stress is calculated in different ways. We have

u
(1)
i =u

(2)
i , i = 1, 2, 3,

G
(1)
i3kl

∂u
(1)
k

∂xl
+ e

(1)
ki3

∂φ(1)

∂xk
=G

(2)
i3kl

∂u
(2)
k

∂xl
, i = 1, 2, 3.

In the conductive layer there is no electric field; the electrical potential φ is not a relevant
variable for this layer. Therefore, the electrical conditions at the interface are like those
on a free surface of piezoelectric (see (3.37)), that is,

ε
(1)
3j

∂φ(1)

∂xj
+ e

(1)
3kl

∂u
(1)
l

∂xk
=0,

∂φ(1)

∂x1

=0.

It can be verified directly that the total number of unknown coefficients does not exceed
the number of equations originated from the boundary and interface conditions, does not
matter how the layers are mixed. This becomes obvious in view of Remark 3.6.

3.5 Contact with Surrounding Dielectric Medium

As mentioned above the electrical conditions (3.37) on the free surface are seldom realistic
because they assume the absence of the electric field outside the solid structure, which is
not true as a rule. In this section we assume that the free surface contacts with a dielectric
isotropic medium whose mechanical influence is negligible. It can be for example vacuum
or gas. Since the medium is isotropic, we assume the following constitutive relation:

D = ε0E, (3.38)
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where ε0 is the vacuum permittivity. Further, by Gauss’s law we have

divD = 0. (3.39)

Combining (3.38) and (3.28), we obtain Laplace’s equation for the electric potential φ, that
is,

∆φ = 0.

As usual, we are looking for plane wave solutions to this equation in the form

φ(x1, x3) = α(x3) cos(κx1 − ωt) + β(x3) sin(κx1 − ωt).

Substituting it to the Laplace equation yields two elementary differential equations for α
and β. Solving them, we obtain

φ(x1, x3) =
(
c1e
−κx3 + c2e

κx3
)

cos(κx1 − ωt) +
(
c3e
−κx3 + c4e

κx3
)

sin(κx1 − ωt),

where c1, c2, c3 and c4 are arbitrary coefficients. Note that only two of them are not zero,
since only solutions decaying as x3 → +∞ (or x3 → −∞ if the contacting medium is
located under the structure) are left.

The electrical conditions (3.37) at the top surface are corrected now as follows:(
ε

(N)
3j

∂φ(N)

∂xj
+ e

(N)
3kl

∂u
(N)
l

∂xk

)
x3=τN

= ε0
∂φ

∂x3
x3=τN

,

∂φ(N)

∂x1
x3=τN

=
∂φ

∂x1
x3=τN

,

(3.40)

where N is the index of the top layer. These modified conditions involve two additional
unknown coefficients. However, this does not make the fitting matrix underdetermined
because with the uncorrected conditions (3.37) the system had two redundant equations
(see Subsection 3.4.2).

3.6 Contact with Fluid

Assume now that the upper surface of the top layer contacts with a viscous compressible
fluid. Its motion is described by the Navier-Stokes equations

% (vt + (v · ∇)v) =−∇p+ ν∆v + (ζ +
ν

3
)∇(divv),

%t =− div(%v),
(3.41)

where v is the velocity field, p is the pressure, ν > 0 and ζ > 0 are the dynamic and volume
viscosities, respectively; % is the density of the fluid. The stress tensor σ is determined as
follows:

σik = −pδik + ν

(
∂vi
∂xk

+
∂vk
∂xi

)
+ (ζ − 2

3
ν)δikdivv. (3.42)
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The oscillations of fluid particles in acoustic waves are small (see [41]). This enables us
to neglect the non-linear term (v · ∇)v on the left-hand side. For the same reason, we
assume that the relative changes in the density and the pressure are small and admit the
form

% = %0 + %′, p = p0 + p′,

where %0 and p0 are the constant static density and pressure, respectively; %′ and p′ are
their changes in the acoustic wave. We assume that

%′ � %0, p′ � p0.

Furthermore, we assume %′ and p′ to be related linearly, that is,

%′ = αp′,

where α is a constant expressing the compressibility of the fluid. We have then

%(p′) = %0 + αp′.

Assuming %′, p′, and v to be small and neglecting all terms of the second order of smallness,
we can rewrite (3.41) as follows:

%0vt +∇p− ν∆v − (ζ +
ν

3
)∇(divv) = 0,

αpt + %0divv = 0.
(3.43)

Similar to the case of solid structures, we are looking for plain wave solutions in the form

v(x1, x3) =a(x3) cos(κx1 − ωt) + b(x3) sin(κx1 − ωt),
p(x1, x3) = f(x3) cos(κx1 − ωt) + g(x3) sin(κx1 − ωt).

Substituting this representation into the second equation in (3.43), we can express the
amplitudes f and g through a and b as follows:

f(x3) =
%0κ

αω
[a1(x3)− ḃ3(x3)],

g(x3) =
%0κ

αω
[b1(x3) + ȧ3(x3)],

where the dot denotes the differentiation with respect to x̃3 = κx3. The equations (3.43)
yield then the system only for the amplitude functions a and b. The system reads:

−ν 0 0 0 0 0
0 −ν 0 0 0 0
0 0 −µ 0 0 −γ
0 0 0 ν 0 0
0 0 0 0 ν 0
0 0 −γ 0 0 µ





ä1

ä2

ä3

b̈1

b̈2

b̈3

 =


0 0 −γ 0 0 η
0 0 0 0 0 0
−γ 0 0 η 0 0
0 0 η 0 0 γ
0 0 0 0 0 0
η 0 0 γ 0 0





ȧ1

ȧ2

ȧ3

ḃ1

ḃ2

ḃ3

+ (3.44)
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+


−µ 0 0 %0ω/k

2 − γ 0 0
0 −ν 0 0 %0ω/k

2 0
0 0 −ν 0 0 %0ω/k

2

%0ω/k
2 − γ 0 0 µ 0 0

0 %0ω/k
2 0 0 ν 0

0 0 %0ω/k
2 0 0 ν




a1

a2

a3

b1

b2

b3

 .

Here µ := ζ +
4ν

3
, γ :=

%0

αω
, and η := ζ +

ν

3
. Denote the matrices of the system by M , K,

L so that it takes the form

M

(
ä

b̈

)
= K

(
ȧ

ḃ

)
+ L

(
a
b

)
.

Remark. The matrix M is non-singular. Indeed,

detM = (−ν) · (−ν) · ν · ν · (−µ2 − λ2) = −ν4(µ2 + λ2) 6= 0.

The matrix M is thus invertible. This enables us to rewrite the system (3.44) in the
normal form as follows:

ṡf = Afsf , (3.45)

where

sf :=


a
b
ȧ

ḃ

 ∈ R12

is the state vector, and

Af :=

(
0 I6

M−1L M−1K

)
.

is the matrix of the system.

Proposition 3.7. Let λ be an eigenvalue of the matrix Af . Then (−λ) is also an eigenvalue
of Af .

Proof. This proposition is the analog of Propositions (3.1) and (3.4). The proof is quite
straightforward. The characteristic matrix of Af satisfies

(Af − λI12) =

(
−λI6 I6

M−1L M−1K − λI6

)
=

(
I6 0
0 M−1

)(
−λI6 I6

L K − λM

)
The characteristic equation is then reduced to

det

(
−λI6 I6

L K − λM

)
= 0.
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This is equivalent to

det

(
06 I6

L+ λ(K − λM) K − λM

)
= 0 ⇔ det(L+ λK − λ2M) = 0.

The matrix L+ λK − λ2M is
−µ+ λ2ν 0 −λγ %2 0 λη

0 −ν + λ2ν 0 0 %1 0
−λγ 0 −ν + λ2µ λη 0 %1 + λ2γ
%2 0 λη µ− λ2ν 0 λγ
0 %1 0 0 ν − λ2ν 0
λη 0 %1 + λ2γ λγ 0 ν − λ2µ


where %1 := %0ω/k

2; %2 := %0ω/k
2 − γ. Rearranging raws and columns, we obtain

λη −λγ %2 −µ+ λ2ν 0 0
λγ λη µ− λ2ν %2 0 0

%1 + λ2γ −ν + λ2µ λη −λγ 0 0
ν − λ2µ %1 + λ2γ λγ λη 0 0

0 0 0 0 %1 (λ2 − 1)ν
0 0 0 0 ν(1− λ2) %1

 .

Te characteristic equation is satisfied iff

det


λη −λγ %2 −µ+ λ2ν
λγ λη µ− λ2ν %2

%1 + λ2γ −ν + λ2µ λη −λγ
ν − λ2µ %1 + λ2γ λγ λη

 = 0.

This yields a polynomial equation with respect to λ. It can be seen that the polynomial
contains no terms of odd degree. That is, the equation is of the form

k8λ
8 + k6λ

6 + k4λ
4 + k2λ

2 + k0 = 0.

The statement of the proposition becomes now obvious. Indeed, if λ satisfies the charac-
teristic equation, (−λ) satisfies it as well.

We treat now the system (3.45) the same way as its elastic and piezoelectric counterparts
in Sections 3.3 and 3.4. The general solution can be expressed in the form

sf (x3) =
12∑
j=1

cjp
j(x3), (3.46)
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where pj are known real-valued vector functions, either exponential or oscillating (see (3.13)
for details). Extracting the components of sf corresponding to the amplitude functions a
and b, we obtain the following expression for v with the unknown coefficients {cj}12

j=1:

v(x1, x3) =
12∑
j=1

cjf
j(x3) · cos(κx1 − ωt) +

12∑
j=1

cjg
j(x3) · sin(κx1 − ωt). (3.47)

Here real functions f j and gj are the components of pj corresponding to a and b respec-
tively.

Similar to the case of semi-infinite elastic/piezoelectric materials we require the ampli-
tudes to decay when moving away from the surface. Proposition 3.7 ensures that at least
a half of summands in (3.46) disappears due to this requirement so that no more than 6
summands are left.

Conditions on the solid-fluid interface. The matching mechanical conditions at the
interface between the fluid and the top layer consist in the continuity of the velocities and
the pressure equilibrium. Suppose that the top layer contacting the fluid is piezoelectric
and has the index N . Then the conditions take the form

∂u
(N)
i

∂t
= vi, (3.48)

C
(N)
i3kl

∂u
(N)
l

∂xk
+ e

(N)
ki3

∂φ(N)

∂xk
=− pδi3 + ν

(
∂vi
∂x3

+
∂v3

∂xi

)
+ (ζ − 2

3
ν)δi3 divv. (3.49)

The pressure equilibrium is the same condition as at interfaces between layers, only rewrit-
ten with the stress tensor for the fluid determined by (3.42). The continuity of the velocities
condition couples the oscillations in the solid and the fluid. Note that if the top layer is
not piezoelectric, the term with e on the left-hand side of (3.49) disappears.

Additional to the mechanical conditions we have to specify the proper electrical condi-
tions at the contact interface. If the top layer is conductive, we can omit them because the
electric field vanishes in it, and the electrical properties of the fluid have no influences on
the rest of the structure. Otherwise, we treat the electrical influence of the fluid exactly
the same way as that of the dielectric medium (see Section 3.5, (3.40)). That is, we have
the following electric conditions:

ε
(N)
3j

∂φ(N)

∂xj
+ e

(N)
3kl

∂u
(N)
l

∂xk
= ε0

∂φ

∂x3

, (3.50)

∂φ(N)

∂x1

=
∂φ

∂x1

, (3.51)

where ε0 is the dielectric permittivity; φ is the electric potential of the fluid.
In contrast to the case of contact with a dielectric medium discussed in Section 3.5

we introduce here an additional variable v, which increases the total number of unknown
coefficients by 6 (see 3.46). On the other hand we have the additional condition (3.48) that
yields 6 more equations. Thus the number of equations and unknowns remains in balance.
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Figure 3.4: Bristle-like solid-fluid interface.

3.7 Bristle-Like Structure at Fluid-Solid Interface

In this section we consider again a solid contacting with a fluid, but now we assume that
the contacting surface of the solid is covered with a very thin and dense periodic bristle-
like structure (see Figure 3.4). The necessity of the investigation of such structures arises
for example when modeling the biosensor described in Section 1.1, which was the initial
motivation of the work.

We assume the height of the bristles to be very small and their density to be very high.
The direct modeling of such a structure using fluid-solid interface conditions is impossible.
Instead of that, we exploit the homogenization technique developed in [28]. We briefly
reproduce here the main results.

The main idea is to replace the bristle-like interlayer by an averaged layer whose prop-
erties are derived as the number of bristles goes to infinity whereas their thickness goes to
zero, thereby the height of the bristles remains constant.

Let ΩS be the domain occupied by the bristles and ΩF be the domain occupied by
the fluid between the bristles. Denote by Γ the interface between ΩS and ΩF . The whole
domain Ω occupied by the layer is then ΩS∪Γ∪ΩF . The structure is assumed to be periodic
in the x1- and x2-directions and independent on x3. The basic governing equations read
as follows:

%
F
vt +∇p− div(P∇v) = 0 in Ω

F
, (3.52)

αpt + %
F

divv = 0 in Ω
F
, (3.53)

%
S
utt − div(G∇u) = 0 in Ω

S
. (3.54)

These are the same equation as (3.43) and (3.6) rewritten in tensor form; %
F

and %
S

are the
densities of the fluid and the solid parts, respectively. The fourth-rank tensors P expresses
the fluid viscosity and is determined by

P∇v = ν
(
∇v +∇Tv

)
+ (ζ − 2

3
ν) I divv,
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Σ
S

Σ
F

Figure 3.5: Periodic cell Σ.

where I is the unit tensor with components Iij = δij.
The no-slip and pressure equilibrium conditions on the fluid-solid interface read:

ut =v on Γ, (3.55)

G∇u · n = (−p I + P∇v) · n on Γ. (3.56)

The condition (3.55) is the main difficulty for the mathematical treatment of the model
(3.52)–(3.56). In order to overcome it, the approach proposed by J.-L. Lions in [46] is used.
The basic idea is to use the velocity instead of the displacement in equation (3.54) as the
state variable. This is done by introducing the following integral operator:

Jtv :=

∫ t

0

v(s)ds.

The equation (3.54) takes then the form

%
S
vt − divGJt∇v = 0, (3.57)

where v = ut. The pressure p in (3.53) is expressed through the velocity v as follows:

p = −%F

α
divJtv. (3.58)

Assume that the (x1, x2)-projection of the periodic cell of the bristle structure is a square
containing just one bristle (see Figure 3.5). Denote it by Σ. Let Σ

S
be the projection of

the bristle, and Σ
F

= Σ \ Σ
S
. Further, let χ̂(x1, x2) be the Σ-periodic extension of the

characteristic function of the domain Σ
F

to R2. We define then the characteristic function
of the domain occupied by the fluid as follows:

χε(x) = χ̂
(x1

ε
,
x2

ε

)
, (3.59)

where ε is a refinement parameter. The value ε = 1 corresponds to the original structure;
the bristles become finer and their density grows whenever ε→ 0.

Using (3.59), (3.57), and (3.58), we can rewrite the original equations (3.52) – (3.54) as
one equation with discontinues coefficients in the whole domain Ω as follows:

%ε v εt − div (M ε∇vε) = 0 in Ω, (3.60)
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where

%ε := %
F
χε + %

S
(1− χε),

M ε := χεP +
(
χε
%

F

α
I ⊗ I + (1− χε)G

)
Jt.

The interface condition (3.55) is equivalent to the continuity of vε on Γ; the condition
(3.56) takes now the form

GJt∇vε · n =
(%

F

α
divJtvε · I + P∇vε

)
· n on Γε. (3.61)

The problem (3.60)–(3.61) is treated then by the two-scale method. The homogenized
material is described by the following limiting equation (see [28] for details):

%θvt − divJtĜ∇v − div P̂∇v − div

∫ t

0

ω(t− s)∇v(s) ds = 0. (3.62)

The term containing the tensor P̂ describes the viscous damping and originates from the
fluid part. The term containing the tensor Ĝ represents elastic stresses. The tensor Ĝ
is degenerate, its kernel is such that volume preserving deformations (shear deformations
in particular) do not produce elastic stresses. The integral term represents a memory
effect that is responsible for viscoelastic properties of the limiting material. It is stated
numerically that the memory effect is very weak. The system “forgets” the current history
very quickly. Therefore, the integral term on the left-hand-side of (3.62) can be dropped.
Note that the limiting material described by (3.62) is as a rule anisotropic even if the
material of the solid part of the bristle structure is isotropic. This occurs because the
limiting material inherits geometric properties of the bristle structure. The computation
of the tensors P̂ , Ĝ, and ω(τ) is based on an analytical representation of solutions of the
so-called cell equation arising in homogenization theory. The numerical calculation of them
involves the finite element method.

Substituting u = Jtv and dropping the integral, we obtain the final equation for bristle-
like layers in the form

%utt − div
(
Ĝ∇u

)
− div

(
P̂∇ut

)
= 0. (3.63)

The conditions at the interface with the underlying solid layer and the overlying fluid are
similar to those described in Sections 3.3 and 3.6, respectively. The only thing to take
into account is that the stress vector acting on the surface with the normal vector n is
expressed by

σ · n =
(
Ĝ∇u+ P̂∇ut

)
· n. (3.64)

Note that all the terms in (3.63) and (3.64) are linear with respect to u. This enables a
straightforward integration of such layers into the general scheme.
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Figure 3.6: Multilayers.

3.8 Introducing Multilayers

In this section we consider the propagation of plain acoustic waves in a material consisting of
a series of periodically alternating sublayers (see Figure 3.6). In the physical literature, such
structures are sometimes referred to as multilayers. In the last time they are intensively
investigated by physicists due to a number of very promising properties.

The sublayers are very thin, their thickness may be just a few nanometers, which is
significantly less than the wavelength. This fact and a large number of sublayers make
the direct modeling of such multi-layered structures impossible. Therefore, instead of
this, we replace the original composite material with an averaged one. The exploited
homogenization technique is described in details in Chapter 4. Here we only use the
limiting relations derived there.

We assume that the periodic set consists of M sublayers. Denote by hs the relative
thickness of the s-th sublayer such that:

M∑
s=1

hs = 1.

The stiffness tensor of the s-th sublayer denote by Gs.

As established in Chapter 4, the homogenized material is described by the same linear
elasticity equation with a constant effective stiffness tensor. Denote the stiffness tensor of
the homogenized material by Ghom. By Theorem (4.13) from Section 4.4, we have

Ghom
mnkl =

M∑
s=1

hsC
s
mnkl +

M∑
s=1

hsC
s
i3klN̂

s
imn,
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where N̂ s
imn are auxiliary variables determined by

N̂ s
imn = (Gs

·3·3)−1
iq

( M∑
r=1

hr(G
r
·3·3)−1

)−1

pq

M∑
r=1

hr(G
r
·3·3)−1

pj G
r
mnj3 −Gs

mnq3

 .
Moreover, it is proved in Theorem 4.9 that the limiting tensor Ghom possesses the same nice
properties as an ordinary stiffness tensor. That is, it is positive definite and symmetric.
These facts enable us to treat the homogenized multilayers exactly the same way as ordinary
elastic layers as described in Section 3.3. It is however useful and convenient to enrich the
computer implementation of the model by integrating a tool for the explicit computation
of the parameters of homogenized multilayers, because elastic properties of multilayers can
be interesting on their own account, regardless of acoustic waves (see e.g. [25]).

3.9 Constructing Dispersion Curves

This section describes a method for building dispersion relations, that is, relations between
the phase velocity and the exciting frequency. Algorithm 3.1 presented in Section 3.3 allows
to determine the phase velocity of an acoustic wave feasible in a given structure at a given
frequency. This yields a single point lying on the dispersion curve corresponding to the
found wave mode. In order to build the curve for a range of frequencies the algorithm
has to be run many times for different values of the frequency. Doing this by hand is
boring because every single calculation involves the choice of the interval on which the
fitting function is to minimize. Besides, it must be ensured that the velocity remains on
the dispersion curve corresponding to the same wave mode and does not jump to other
possible wave modes as the frequency changes. In order to automate this boring job we
developed a simple tool that tries to extend the found part of the curve to a wider range
of frequencies. It works as follows.

Denote the ordered collection of the found points by {(ω1, v1), (ω2, v2), ..., (ωn, vn)} such
that ωi > ωj whenever i > j. Suppose we would like to extend the curve to the interval
[ωn, ωn+m] with the step Mω such that ωn+j := ωn + j Mω, 0 < j 6 m. Assume for the
time being that n > 2. As the model states, the phase velocity at the frequency ωn+1 is a
minimizer of the fitting function calculated at this frequency. Since the fitting function is
usually not convex and may have several minimizers, the minimization interval should be
small enough to exclude non-relevant minimizers. At the same time, it must contain the
wanted one. We construct it as follows. First, on the base of the last two points, we build
the linear extrapolation of the curve (see Figure 3.9). Its value at the point ωn+1 denoted
by v is determined by:

v :=
vn−1 − vn
ωn−1 − ωn

ωn+1 +
ωnvn−1 − ωn−1vn

ωn−1 − ωn

We set then the minimization interval to [v − dl, v + dr], where dl and dr are non-negative
parameters of the algorithm specified by the user. The minimizer of fitting function on
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Figure 3.7: Extension of a dispersion curve to the interval [ωn, ωn+2] with the step Mω.

this interval is taken as vn+1. As the point (ωn+1, vn+1) is constructed we can proceed with
the construction of the point (ωn+2, vn+2) and so on.

Consider now the case n = 1. In this case we possess only one point on the curve and
therefore can not construct a linear approximation, so we take a constant approximation,
i.e. we take v := v1.

The algorithm proposed here is quite heuristic, it relies on the right choice of the param-
eters dl and dr that form the minimization interval. It is expected that the real minimizer
does not deviate much from the linear approximation. Though, if the expectation interval
is too small, it may happen that the minimizer lies outside of it. In this case the minimum
value is most likely found at the start or at the end of the interval. This allows to detect
such situations and may suggest to increase the interval. A worse situation may take place
if the interval is too large so that the fitting function has several minima on it. In this
case the point may jump to another curve corresponding to another wave mode. In order
to avoid it, it is suggested to take rather a small minimization interval (by taking smaller
values for dl and dr) and to calculate with a smaller step in frequency. The computer
program implementing the method allows user to look at the wave characteristics at every
found point and thus to detect a jump to another wave mode if it takes place.

Remark. Instead of using a linear extrapolation to build the minimization interval we
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could use extrapolations of higher order. However, in practice there is no necessity of it,
because the corrections of higher order extrapolations are insignificant in comparison with
the interval length and the reliability of the method based on the linear extrapolation can
always be improved by decreasing the frequency step Mω.

3.10 Computer Implementation

This section describes issues specific to the computer implementation of the model. The
program is written in c++ The implementation of the graphical user interface is based on
the Qt library, which makes the program portable to a wide range of platforms including
Linux and Windows. The main numerical procedures exploit LAPACK.

3.10.1 Numerical Issues

The numerical implementation of the model is quite straightforward but requires significant
efforts to ensure the numerical stability. Consider first the calculation of a fitting function
at a given frequency. We sketch it here briefly, details are discussed in previous sections.

First, for every medium of the structure considered (layer or surrounding medium) a sec-
ond order system of the linear differential equation for amplitude functions is constructed.
In can be written in the general form as follows:

M q̈ +Kq̇ + Lq = 0. (3.65)

The exact form of the matrices M,K and L depends on the material type (e.g., see (3.8),
(3.31) and (3.44)). By inverting the matrix M and introducing the state vector

s :=

(
q
q̇

)
,

the system above is reduced to the normal form:

ṡ = As, (3.66)

where

A :=

(
0 I

M−1L M−1K

)
.

Denote the dimension of A by m. m is either 12 or 16. Strictly speaking, it can also
be 4 for a dielectric medium (see Section 3.5), but in that case the solution is specified
explicitly and it is more efficiently to treat this case separately. For the exact form of A
see e.g. (3.10), (3.32), and (3.45). The solution to (3.66) is expressed by the eigenvalues
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{λj}mj=1 and eigenvectors {pj}mj=1 of A as follows (see for example (3.12)):

s(x3) =
n∑
j=1

cj p
jeλjκx3 +

+
m∑

j=n
2

+1

(
c2j−1

[
<p2j cos(<λ2jκx3)−=p2j sin(=λ2jκx3)

]
+

+ c2j

[
=p2j cos(<λ2jκx3) + <p2j sin(=λ2jκx3)

])
,

(3.67)

This representation is then used to express the physical quantities involved into the bound-
ary and interface conditions through the unknown coefficients {cj}mj=1. Equating the ap-
propriate quantities at the interfaces and free surfaces (if present) yields a linear system
for unknown coefficients (see 3.20) in the form

Fc = 0,

where F is called the fitting matrix of the structure and c is the vector of the unknown
coefficients collected from all the layers. By definition, the value of the fitting function is

λmin(F TF )

λmax(F TF )
.

If this value is zero, the eigenvector c corresponding to the eigenvalue λmin(F TF ) contains
the sought coefficients determining the wave (see Proposition 3.2). Summarizing, we can
indicate the following three operations critical from the numerical point of view:

1. The step from (3.65) to (3.66). This is done for each layer and involves the inversion
of the matrix M . This matrix is always invertible (and even positive-definite) as
shown in the corresponding propositions above. Its dimension varies from 6 × 6 for
conductive elastic, fluid, and bristle-like materials to 8×8 for piezoelectric materials.

2. The calculation of the eigenvalues and eigenvectors of A in (3.66). The dimension of
the matrix is either 12× 12 or 16× 16 depending on the material.

3. The calculation of the fitting function on the base of the composed fitting matrix F .
This involves the computation of the eigenvalues and (possibly) eigenvectors of F TF .
The dimension of the matrix F TF may be up to 16N × 16N , where N is the number
of layers.

Computational Complexity. The three procedures above have the highest computa-
tional complexity. The first and the second ones require NO(163) operations. The third
one is the most time-consuming, it requires O([16N ]3) operations. Hence the total compu-
tational complexity of the calculation of the fitting function at a single point is O([16N ]3).
The symmetry of the matrix F TF allows to reduce the number of operations, but the order
remains at O([16N ]3). Since the number of layers N lies in the range of 2 to 7 for most of
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the applications, the runtime needed for calculation of the fitting function at 1000 points
does not usually exceed a few seconds. Thus the computational efficiency of the algorithm
does not need any further improvement.

Round-off error. The main problem of the numerical implementation is the computa-
tional inaccuracy caused by the rounding error. The major source of this error are matrices
containing elements of too different orders. The inversion or calculation of eigenvalues of
such matrices are done with a significant inaccuracy. In the worst case the round-off er-
ror may completely kill the contribution of the small-order terms. The inaccurate results
are then used in further calculation causing a serious discrepancy in the final outcome.
To address this problem, we have used a number of tricks and scaling strategies as listed
below:

• Differentiation with respect to (κx3). The systems of differentiatonal equations
for amplitudes (see (3.10), (3.32), (3.45)) are built with respect to the variable x̃3 :=
κx3 instead of x3. This leads to a significantly more balanced matrices of the systems.
For example, the matrix A defined by (3.11) describes the system (3.10) for the
amplitudes a and b as functions of x̃3. Now, suppose that the differentiation are
done with respect to the variable x3. Then the matrix of the system takes the form

0 0 I3 0
0 0 0 I3

κG−1
·3·3 (G·1·1 − %v2 I3) 0 0 − κ2G−1

·3·3 (G·1·3 +G·3·1)
0 κG−1

·3·3 (G·1·1 − %v2 I3) κ2G−1
·3·3 (G·1·3 +G·3·1) 0


Though the amplitude functions found by this system are eventually the same from
the mathematical point of view, the computed solution in the latter case are less
accurate due to the factors κ (κ ≈ 105) and κ2 that introduce significant differences
in orders of matrix entries.

• Scaling the electric fields. When dealing with piezoelectric and dielectric layers
the matrices M , K, L are filled with combinations of components of the stiffness
tensor G and the dielectric tensor ε (see (3.31)). The main components of G are
usually of the order 1010, the ones of ε are of the order 10−11. To minimize this
difference in magnitudes we substitute cφ̃ for the electric potential φ and choose the
coefficient c in such a way that the components of cε are of the order 1010. We
reformulate then the system for the function φ̃ in place of φ. The matrices of the
obtained system are better balanced.

• Scaling the eigenvectors for fluid. The eigenvectors of the matrix A from (3.66)
are initially normalized. This is however not optimal when treating the solid-fluid
interface. Consider the contact conditions (3.48) and (3.49). When the eigenvectors
for the contacting fluid and solid layers are of the norm 1 the contriubution in the
fitting matrix of the right hand side is of the order 1, while the terms on the left-hand
side are of the order 108− 1010. To avoid this disbalance we multiply the normalized
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eigenvectors for the fluid by ω. This is exactly the factor that arises on the left-hand
side in (3.48) after differentiation of the displacement u with respect to time.

• Calculation in local coordinate system. Recall that the physical quantities in-
volved in interface and boundary conditions are expressed by using the representation
(3.67). The terms at unknown coefficients cj are calculated at interface planes and
free surfaces and contribute then to the fitting matrix F . The origin of a numerical
problem here are the exponential terms pjeλjκx3 with λj ∈ R. The ones calculated
at higher interface planes are of higher order than those calculated for example at
the interface plane x3 = 0. This difference may become significant when many thick
layers are present. This may lead to serious distortions in order of entries of the
fitting matrix, thereby spoiling the computational accuracy.

In order to avoid this situation we do all the calculations in a coordinate system
local for each layer. This local coordinate system is built by shifting the origin to
the bottom surface of the layer. When proceeding this way, the order of exponential
terms that appear in the fitting matrix does not grow with the height of the interface
plane. Note that the local calculation of physical quantities does not change their
values and does not lead to a different result. Indeed, the exponential terms appearing
in the fitting matrix become smaller, but the coefficients cj at these terms scale
correspondingly. Therefore, from the mathematical point of view, the result remains
the same. But from the computational point of view the calculation in the local
coordinate system allows to find it more accurate.

• Exploiting singular value decomposition. The fitting function is defined as the
ratio of the minimal eigenvalue of F TF to the maximal one. A straightforward way
to find it would be to compute the product F TF and then to find its eigenvalues.
However, this approach is numerically unstable, especially for eigenvalues close to
zero (see [30]). The mere multiplication of F T by F doubles the difference in orders
of entries. Therefore, instead of this, we find the eigenvalues of F TF by exploiting
the singular value decomposition of F . Note that F is a real matrix. Suppose it has
dimensions m× n. Its singular value decomposition is then of the form

F = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n has singular
values of F on the diagonal and zeros off the diagonal. The eigenvalues of F TF are
then the squares of the singular values of F . Indeed, the eigenvalue decomposition
of F TF satisfies

F TF = V ΣTUT UΣV T = V (ΣTΣ)V T .

This relation implies, moreover, that the columns of V are eigenvectors of F TF .
Denote the maximal and minimal singular values by σmax and σmin respectively.
Then the value of the fitting function is

λmin
λmax

=

(
σmin
σmax

)2

.
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 Substrate - ST-cut Quartz

Guiding Layer - SiO2

Shielding Layer - Gold
Aptamer Layer

Water

Figure 3.8: Example 1. A typical biosensor structure.

Actually we could even define the fitting function as the ratio of σmin to σmax (without
square). This ratio is non-dimensional as well and therefore has the same advantages.
This choice is a matter of taste.

Note that the tricks above do not just improve the computational accuracy. Some of them
are absoulutely crucial for obtaining any resonable result at all.

3.10.2 Program Description by Example

In this section we briefly describe the program implementing the model and demonstrate
some features on an example of a real structure.

Suppose we would like to investigate Love acoustic waves in the structure depicted in
Figure 3.8. This structure is one of the possible choices for the biosensor mentioned in
Section 1.1. It consists of a thick piezoelectric substrate made of ST-cut of α-quartz, a
guiding layer made of SiO2, and a very thin gold shielding layer covered with bristle-like
aptamer layer surrounded by water (for the explanation of aptamers, see Section 2.1). We
demonstrate now the program on this example. The usage of the program includes the
following steps:

1. Specification of the structure and wave frequency.

2. Calculation of the fitting function on an interval.

3. Localization of a root of the fitting function and determining it precisely. This yields
the value of the phase velocity.

4. (Optional) Examination of the wave mode.



3.10 Computer Implementation 93

Figure 3.9: Dialog for setting model parameters. Parameters for the substrate.

5. (Optional) Building the dispersion curve for the found wave mode.

1. Specification of the structure and wave frequency. The structure setup consists
of the description of the ordered set of layers and the choice of the wave frequency. The
layers are assumed to be ordered from the bottom towards the top so that each next layer
lies on the previous one. Since the gravity force is not taken into account, this direction is
relative. Therefore the reversed order of the layers should yield the same results. All the
layers except for the bottom and the top ones must be of a finite thickness. The bottom
and the top layers may be either of a finite thickness or occupy half spaces.

The parameters of the model are set in the dialog "Model Parameters" available through
the menu item Action -> Specify the Structure. It is depicted in Figure 3.9. The
dialog window consists of two parts. In the left part the set of layers and the frequency are
specified. In the right part one can input or edit parameters for each layer. The content
of the right part depends on the material type of the currently selected layer. Currently
the following material types are supported:

• Isotropic (elastic/piezoelectric)

• Anisotropic (elastic/piezoelectric)
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• Fluid

• Dielectric medium

• Bristle-like

• Periodic multilayers

The right part of the dialog in Figure 3.9 shows the parameters for the substrate. In our
example, it is a semi-infinite piezoelectric layer. The stiffness, dielectric, and piezoelectric
tensors are specified in the reference coordinate system of the crystal. The orientation of
the material is described in terms of successive rotations of the reference system. In our
example, the piezoelectric crystal is first rotated by 47.25 degrees around the X-axes and
then by 90 degrees around the Z-axes. This corresponds to the so-called ST-cut. The
order of rotations is important.

All the parameters are specified in SI units. The only exception is the frequency that
is specified in MHz instead of Hz. All the tensors are specified in Voigt’s notation. For
the sake of convinience the program provides the feature to extract material parameters
from existing saved models. This can spare a lot of time especially when dealing with
piezoelectric materials.

The Figure 3.10 depicts the dialog with the settings for the aptamer layer. The pa-
rameters of bristle-like layers consist of the elastic parameters of the bristle, parameters
of the surrounding fluid and the geometrical parameters of the elementary periodic cell
containing a single bristle. Currently two shapes of bristles are supported - round and
rectangular. The parameters width and height specifiy the relative size of a bristle. As
the parameters of the structure are submitted, the cell equation is numerically solved and
the parameters of the homogenized material are determined (see Section 3.7). The solving
takes place just once for every set of parameters and the resulting tensors are then cashed
for future use without recalculations. The cell equation is solved “on the fly” by the finite
element method on a triangular grid automatically generated for a given cell.

2. Calculation of the fitting function. As the physical setup is done we can proceed
with the calculation of the fitting function. To do this we specify the velocity interval in
the dialog Interval called by choosing the menu item Action -> Calculate. The dialog
takes three parameters: the starting velocity, the finishing velocity, and the number of
divisions (see Figure 3.11). The approximate range of values for the sought wave velocity
is usually known. In our case we take the interval [3000, 5000] and calculate the fitting
function with the step 2 m/s. Its graph is depicted in Figure 3.12.

3. Localization of a root and determining it precisely. Usually the interval for
the preliminary calculation is quite large and hence the function has several roots on it.
Different roots correspond to different wave modes. To investigate a particular root we
determine a subinterval containing it by zooming on the root (see Figure 3.12). In our case
we select the root on the right, because it will give us a Love wave. One can check that
the other two roots correspond to Rayleigh waves. When the root is localized it can be
found precisely. This is done by the command Find the minimum started from the menu
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Figure 3.10: Dialog for setting model parameters. Parameters for the aptamers.

Figure 3.11: Dialog for setting the calculation interval.
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Figure 3.12: The main window of the program.
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Figure 3.13: Local minimum of the fitting function.

Action or from the toolbar. The result is shown in Figure 3.13. The phase velocity in our
case is 4495.1854 m/s.

4. Examination of the wave mode. When the root of the fitting function is found,
all the characteristics of the corresponding wave can easily be established. The dialog in
Figure 3.14 shows the most important properties of the wave. Among other things it shows
the displacements in layers depending on the phase. This enables to determine the wave
mode. In our case only the u2 component of the displacements is not zero, i.e. only shear
displacements parallel to the interface planes are present. This corresponds to a Love wave.
By the same way one can find out that the root of the calculated fitting funciton on the
left yields a Rayleigh wave. Note that the actual thickness of the layers is not taken into
account when drawing the displacements graphs. Otherwise very thin layers would not be
visible at all. For the semi-infinite layers like substrate the graphs are drawn only up to
depth of 5 wavelengths. This is usually more than enough because by construction the
amplitudes decay exponentially with the depth.

5. Building the dispersion curve for the found wave. The found velocity in pair
with the frequency yields a single point on the dispersion curve. We proceed then with
the construction of the dispersion curve on some interval by the algorithm described in
Section 3.9. We start with the point found at frequency 100 MHz and build the curve up
to 150 MHz with the step 5 MHz. For the algorithm’s parameters dl and dr responsible for
the expectation velocity interval, we take 50 m/s. The dialog for the curve construction
with the resulting curve is depicted in Figure 3.15. We can now continue to extend the
function in any direction starting from any found point with an arbitrary step. For each
found point we can open the wave properties dialog and take a look at the corresponding
wave. This way we can ensure that no jump to another wave mode occurred during the
extension process. And if such a jump takes place the corresponding points can be deleted
and the curve building can be repeated more carefully with a smaller frequency step. These
features make a construction of dispersion curves simple, fast, and reliable.
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Figure 3.14: Properties of the found wave.



3.10 Computer Implementation 99

Figure 3.15: Dialog for building dispersion curve.





4 Homogenization of Linear Systems of
Elasticity

4.1 Introduction

This chapter is devoted to the modeling of composite elastic periodic materials by exploiting
the theory of homogenization. The materials under consideration are composed of several
anisotropic materials mixed at the microscopic level. Besides, we assume that they have a
periodic microstructure (see Figure 4.1) and the cell of periodicity is cubic. The smallness
of the cell makes the direct modeling of the elastic behaviour of such materials impossible.
For example, the cell might be smaller than the length of an acoustic wave. To overcome
this difficulty one replaces the original composite material by the homogenized one that is
described by the limiting equation obtained as the cell size ε goes to zero. The limiting
equations for homogenized linear systems of elasticity are not new. They can be found
for example in [56], though without derivation, and in [11], where they are obtained by
Tartar’s method of oscillating test functions (see [68, 69]). We derive these equations by
the two-scale method of Ngutseng (see [54]) and Allaire (see [3]). The derivation follows
[50], where the analogous results are obtained for the scalar case.

Our original motivation for the investigating homogenized elastic structures was the
necessity of the modelling the wave propogation in so-called multilayers, i.e. in laminated
materials with periodic microstructure (see Figure 4.2). Such materials can be considered
as a special case of composite periodic materials, where the homogenization takes place
only in one direction. This restriction causes significant simplifications in the cell equation
and enables us to derive an explicit numerical scheme to calculating the effective material
moduli of the homogenized material.

A natural questions that arises when replacing the original composed material with the
homogenized one is how close is the solution of the homogenized problem to the solution
of the original one. It is shown in [56] that if the right-hand side belongs to H1 and the
boundary between the composing materials is smooth, then the difference between the
original solution and the first approximation estimated in H1-norm is O(

√
ε). However in

real applications, the right-hand side is not weakly-differentiable as a rule. This motivated
us to derive an estimate for the case when the right-hand side is in L2. We also drop
the assumption of smooth boundaries between the materials replacing it by a weaker one.
These changes resulted in a weaker estimate making it O( 3

√
ε).

The chapter is organized as follows. In Section 4.3 we derive the limiting equations and
investigate their properties. The case of laminated structures is considered in Section 4.4.
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In this section we establish an explicit formula for the numerical calculation of the stiffness
tensor of the homogenized system. Finally, Section 4.5 is devoted to the investigation of
the rate of convergence.

4.2 Notation

We use the following notation throughout the chapter:

Y = [0, 1]3 ⊂ R3 is a closed unit cube;

〈a〉U =
1

|U |

∫
U

a(ξ)dξ is the mean value of a function a over a domain U ;

Cn#(Y ) is the space of all Y -periodic Cn(R3) functions;
L2

#(Y ) is the completion of C∞# (Y ) with respect to the norm of L2(Y );
H1

#(Y ) is the completion of C∞# (Y ) with respect to the norm of H1(Y )
with the zero mean value, i.e. ∀u ∈ H1

#(Y ) 〈u〉 = 0;
H(div; Ω) :=

{
f ∈ L2(Ω;R3)

∣∣ divf ∈ L2(Ω)
}

;
δij is the Kronecker symbol.

If not otherwise stated, the indices i, j, k, l,m, n assume values 1, 2, 3. Throughout this
chapter we adopt the Einstein summation convention, i.e. we sum over repeated indices.

For the sake of convenience we use C as a generic positive constant that can take different
values at different occurrences.

Throughout the chapter we operate with sequences {εn}∞n=1 of positive real numbers
converging to zero as n → ∞. Whenever there is no risk of ambiguity we omit the index
n and write just ε. Moreover, in most of the cases we keep the same notation for the
extracted subsequences.

4.3 Limiting Equations

Let Ω be an open bounded area in R3 with Lipschitz boundary ∂Ω and ε be the size of the
cubic cell. The static linear elasticity equation augmented with the zero Dirichlet boundary
condition reads: −

∂

∂xl

(
Gε
ijkl(x)

∂uεi
∂xj

)
= fk(x) in Ω,

uε = 0 on ∂Ω.

(4.1)

Here uε(x) is the displacement vector, Gε is the elastic stiffness tensor. Since the mate-
rial consists of periodically repeated cells composed of materials with constant properties,
the tensor Gε is a εY -periodic piecewise constant function of x. To make the material
parameters independent of ε, we move this dependence to the argument by introducing

Gijkl(x) := Gε
ijkl(εx).
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"

Composite material Homogenized material

Periodic cell Y

0

Figure 4.1: Homogenization approach.

Further, assume f ∈ L2(Ω;R3). The weak formulation of (4.1) is then
∫
Ω

Gijkl

(x
ε

) ∂uεi
∂xj

(x)
∂vk
∂xl

(x) dx =

∫
Ω

fk(x)vk(x)dx ∀v ∈ H1
0 (Ω;R3),

uε ∈ H1
0 (Ω;R3).

(4.2)

Let us define the bilinear form aε : H1(Ω;R3)×H1(Ω;R3) 7→ R by

aε(u, v) :=

∫
Ω

Gijkl

(x
ε

) ∂ui
∂xj

(x)
∂vk
∂xl

(x) dx. (4.3)

The static elasticity problem for the composite material read then as follows.

Problem 4.1. Find uε ∈ H1
0 (Ω;R3) such that

aε(uε, v) = 〈f, v〉L2(Ω;R3) ∀v ∈ H1
0 (Ω;R3).

The new defined tensor Gijkl(y) is Y -periodic. Due to mechanical considerations, for all
y ∈ Y it is symmetric and positive definite, i.e.

Gijkl(y) = Gklij(y) = Gjikl(y)
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and
Gijkl(y)ξijξkl > C(y)ξijξij

for all second-rand symmetric tensors ξ. Moreover, since Gijkl(y) is piecewise constant on
Y , it takes only a finite number of values, the constant on the right-hand side can be made
independent on y by taking the maximum over Y . Hence, we have

Gijkl(y)ξijξkl > Cξijξij ∀ y ∈ Y, ξ-symmetric. (4.4)

The symmetry of G enables us to rewrite aε as follows:

aε(u, v) =

∫
Ω

Gijkl

(x
ε

)
εij(u)εkl(v) dx, (4.5)

where ε(u) is the symmetric part of ∇u, that is,

εij(u) :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Applying (4.4) and Korn’s inequality (see Lemma 2.3) to (4.5), we obtain

aε(u, u) > C1

∫
Ω

|ε(u)|2 dx > C2‖u‖2
H1(Ω;R3) ∀ u ∈ H1

0 (Ω;R3),

where the constants C1, C2 > 0 do not depend on ε. This means that aε is elliptic on
H1

0 (Ω;R3)×H1
0 (Ω;R3) and the constant of ellipticity is independent on ε. The boundedness

of aε follows from the boundedness of G(y) on Y and holds for all functions from H1(Ω;R3).
That is,

|aε(u, v)| 6 C‖u‖2
H1(Ω;R3)‖v‖2

H1(Ω;R3) ∀ u, v ∈ H1(Ω;R3).

The well-posedness of Problem 4.1 follows then from the Lax-Milgram theorem.

Theorem 4.1. For all ε > 0 Problem 4.1 has a unique solution uε and

‖uε‖H1(Ω;R3) 6 C‖f‖L2(Ω;R3) (4.6)

where the constant C > 0 on the right-hand side does not depend on ε.

We investigate now the behaviour of uε as ε goes to zero. We will need the following
definition.

Definition. Let {εn}∞n=1 be a sequence of positive real numbers (most of the time we
will omit the subscript n) converging to 0. A sequence {uε} ⊂ L2(Ω) is said two-scale
convergent to a limit u0 ∈ L2(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y) dy dx (4.7)
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for all ψ ∈ L2(Ω; C#(Y )). We denote two-scale convergence by

uε →
2
u0.

A sequence of vector-valued functions {uε} ⊂ L2(Ω;RN) is said two-scale convergent to
u0 ∈ L2(Ω× Y ;RN) if uεi two-scale converges to u0

i for all i = 1, .., N .

The following three results are well-known and can be found for example in [50] (Theo-
rems 3, 8, and 13).

Theorem 4.2. Let g ∈ L2(Ω; C#(Y )). Then g
(
x,
x

ε

)
is a measurable function on Ω and∥∥∥g (x, x

ε

)∥∥∥
L2(Ω)

6 ‖g(x, y)‖L2(Ω;C#(Y )).

Theorem 4.3. Let {uε} be a sequence in L2(Ω) that two-scale converges to u0 ∈ L2(Ω×Y ).
Then

lim
ε→0

∫
Ω

uε(x)ψ
(x
ε
, x
)
dx =

∫
Ω

∫
Y

u0(x, y)ψ(y, x) dy dx

for all ψ ∈ L2
#(Y ; C(Ω)).

Theorem 4.4. Let {uε} be a sequence in H1
0 (Ω) such that

uε ⇀ u0 in H1(Ω).

Then {uε} two-scale converges to u and there exist a subsequence ε′ and u1 ∈ L2(Ω;H1
#(Y ))

such that
∇uε′ →

2
∇u0 +∇yu

1.

We are ready now to derive the limiting equations.

Theorem 4.5. Let {uε} be a sequence of solutions of Problem 4.1, ε→ 0. Then there is a

subsequence of {εn}∞n=1 (that we still denote ε), u0 ∈ H1
0 (Ω;R3), and u1 ∈

[
L2(Ω;H1

#(Y ))
]3

such that

uε ⇀ u0 in H1(Ω;R3),

∇uε →
2
∇u0 +∇yu

1,

and (u0, u1) satisfies∫
Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

] [
∂v0

k

∂xl
(x) +

∂v1
k

∂yl
(x, y)

]
dy dx =

∫
Ω

fk(x)v0
k(x)dx (4.8)

for all (v0, v1) ∈ H1
0 (Ω;R3)×

[
L2(Ω;H1

#(Y ))
]3

.
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Proof. First note that Theorem 4.1 implies that {uε} is bounded. Since H1(Ω;R3) is a
reflexive space, we can extract a subsequence (that we still denote ε) such that

uε ⇀ u0 in H1(Ω;R3) (4.9)

for some u0. We apply now Theorem 4.4 and discover that there exist a subsequence (still

denoted by ε) and u1 ∈
[
L2(Ω;H1

#(Y ))
]3

such that

∇uε →
2
∇u0 +∇yu

1. (4.10)

Let us now show that the limiting functions u0 and u1 satisfy (4.8). Consider v of the form

v(x) = v0(x) + εv1
(
x,
x

ε

)
,

where v0 ∈ C1
0(Ω;R3) and v1 ∈

[
C∞0 (Ω; C1

#(Y ))
]3

. Obviously v ∈ H1
0 (Ω;R3). Substituting

v as a test function into the integral identity in (4.2) yields∫
Ω

Gijkl

(x
ε

) ∂uεi
∂xj

(x)
∂v0

k

∂xl
(x) dx + ε

∫
Ω

Gijkl

(x
ε

) ∂uεi
∂xj

(x)
∂v1

k

∂xl

(
x,
x

ε

)
dx+

+

∫
Ω

Gijkl

(x
ε

) ∂uεi
∂xj

(x)
∂v1

k

∂yl

(
x,
x

ε

)
dx =

=

∫
Ω

fk(x)v0
k(x)dx+ ε

∫
Ω

fk(x)v1
k

(
x,
x

ε

)
dx.

To treat the second term on the right-hand side, we use the Cauchy-Schwarz inequality
and Theorem 4.2. We get

ε

∣∣∣∣∣∣
∫
Ω

fk(x)v1
k

(
x,
x

ε

)∣∣∣∣∣∣
2

6 ε ‖f‖2
L2(Ω;R3)

∥∥∥v1
k

(
x,
x

ε

)∥∥∥2

L2(Ω;R3)
6

6 ε ‖f‖2
L2(Ω;R3)

∥∥v1
k(x, y)

∥∥2

L2(Ω;C#(Y ))
→ 0.

This means that the second term on the right-hand side goes to zero. In order to pass the
left-hand side to the limit, we exploit (4.9) and (4.10) and apply Theorem 4.3. This yields∫

Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

]
∂v0

k

∂xl
(x) dy dx

+

∫
Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

]
∂v1

k

∂yl
(x, y) dy dx =

∫
Ω

fk(x)v0
k(x)dx.

Due to the density of C1
0(Ω) in H1

0 (Ω) and C∞0 (Ω; C1
#(Y )) in L2(Ω;H1

#(Y )), this implies

that (4.8) holds for all (v0, v1) ∈ H1
0 (Ω;R3)×

[
L2(Ω;H1

#(Y ))
]3

.
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Note that the convergence result is proved only for some subsequence of ε. In order
to prove it for the whole sequence, we show that (4.8) is uniquely solvable and hence
the limiting functions u0 and u1 are the same for all the subsequences. We will need the
following version of Korn’s inequality for periodic functions

Lemma 4.6 (Korn’s inequality for periodic functions). For all v ∈ H1
#(Y ;R3) the following

estimate holds:
‖v‖H1

#(Y ;R3) 6 C‖εy(v)‖L2(Ω;R3×3),

where the constant C does not depend on v; εy(v) is the symmetric part of ∇yv, that is,

εyij(v) :=
1

2

(
∂vi
∂yj

+
∂vj
∂yi

)
.

The proof can be found for example in [56] (Theorem 2.9).

Theorem 4.7. The equation (4.8) is uniquely solvable in H1
0 (Ω;R3)×

[
L2(Ω;H1

#(Y ))
]3

.

Proof. The proof is based on the Lax-Milgram theorem. Let us define the Hilbert space

V := H1
0 (Ω;R3)⊕

[
L2(Ω;H1

#(Y ))
]3

and the bilinear form

b(U, V ) :=

∫
Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

] [
∂v0

k

∂xl
(x) +

∂v1
k

∂yl
(x, y)

]
dy dx

for all U = (u0, u1), V = (v0, v1) ∈ V . In order to prove the statement, it is enough to show
that b(·, ·) is bounded and V-elliptic. Let us first prove the V-ellipticity. Let U = (u0, u1)
be an arbitrary element of V . Put

ξij(x, y) := εij(u
0) + εyij(u

1) =
1

2

(
∂u0

i

∂xj
(x) +

∂u0
j

∂xi
(x)

)
+

1

2

(
∂u1

i

∂yj
(x, y) +

∂u1
j

∂yi
(x, y)

)
,

where εyij(u
1) is the symmetric part of ∇yu

1. The symmetry and positive-definiteness of G
imply

b(U,U) =

∫
Ω

∫
Y

Gijkl(y) ξij(x, y) ξkl(x, y)dy dx > C

∫
Ω

∫
Y

ξij(x, y)ξij(x, y)dy dx =

= C

∫
Ω

|ε(u0)|2
∫
Y

dy dx+ C

∫
Ω

∫
Y

|εy(u1)|2dy dx+ C

∫
Ω

εij(u
0)

∫
Y

εyij(u
1)dy dx =

= C‖ε(u0)‖2
L2(Ω;R3×3) + C

∫
Ω

‖ε(u1)‖2
L2(Y ;R3×3)dx.
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The third term disappeared because∫
Y

∂u1
i

∂yj
(x, y)dy = 0 ∀ i, j ∀x ∈ Ω.

This can easily be proved by integrating by parts and using the Y -periodicity of u1. The
rest two terms are estimated by Korn’s inequalities, that is, by Lemma 2.3 and Lemma 4.6.
Hence we obtain

b(U,U) > C
(∥∥u0

∥∥2

H1(Ω;R3)
+
∥∥u1
∥∥2

[L2(Ω;H1
#(Y ))]

3)
)

= C
∥∥(u0, u1)

∥∥2

V .

The V-ellipticity of b(·, ·) is thus established. The boundedness follows from the bounded-
ness of G and is proved by the Cauchy-Schwarz inequality. We have

|b(U, V )| 6
∫
Ω

∫
Y

|Gijkl(y)|
∣∣∣∣∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

∣∣∣∣ ∣∣∣∣∂v0
k

∂xl
(x) +

∂v1
k

∂yl
(x, y)

∣∣∣∣ dy dx 6

6 C

∫
Ω

∫
Y

∣∣∇u0 +∇yu
1
∣∣2 dydx

1/2∫
Ω

∫
Y

∣∣∇v0 +∇yv
1
∣∣2 dydx

1/2

6

6 2C

∫
Ω

∣∣∇u0
∣∣2 dx+

∫
Ω

∫
Y

∣∣∇yu
1
∣∣2 dydx

1/2∫
Ω

∣∣∇v0
∣∣2 dx+

∫
Ω

∫
Y

∣∣∇yv
1
∣∣2 dydx

1/2

6

6 C‖U‖V‖V ‖V .

Thus, b(·, ·) is V-elliptic and bounded. Applying the Lax-Milgram theorem, we see that
(4.8) possesses a unique solution.

Thus, the limiting functions are uniquely determined. Therefore the convergence takes
place for the whole sequence of solutions. The following theorem provides a more convenient
way to the calculation of the limiting functions u0 and u1.

Theorem 4.8. Let {uε} be a sequence of solutions of Problem 4.1, u0 ∈ H1
0 (Ω;R3) and

u1 ∈
[
L2(Ω;H1

#(Y ))
]3

be the limiting functions, that is,

uε ⇀ u0 in H1(Ω;R3),

∇uε →
2
∇u0 +∇yu

1.

Then u0 and u1 possess the following properties:
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• u1 admits the representation

u1
i (x, y) = Nimn(y)

∂u0
m

∂xn
(x), (4.11)

where N·mn(y) ∈ H1
#(Y ;R3) are unique solutions of the so-called cell equations∫

Y

Gijkl(y)
∂Nimn

∂yj
(y)

∂v1
k

∂yl
(y) dy = −

∫
Y

Gmnkl(y)
∂v1

k

∂yl
(y) dy ∀v1 ∈ H1

#(Y ;R3). (4.12)

• u0 satisfies the limiting equation∫
Ω

Ghom
mnkl

∂u0
m

∂xn
(x)

∂v0
k

∂xl
(x) dx =

∫
Ω

fkv
0
k dx ∀v0 ∈ H1

0 (Ω;R3) (4.13)

with

Ghom
mnkl :=

∫
Y

Gmnkl(y)dy +

∫
Y

Gijkl(y)
∂Nimn

∂yj
(y)dy. (4.14)

Proof. As established in Theorem 4.5, u0 and u1 satisfy (4.8). Since v0 and v1 are inde-
pendent, (4.8) splits up in two equations as follows:∫

Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

]
∂v0

k

∂xl
(x)dy dx =

∫
Ω

fk(x)v0
k(x)dx,

∫
Ω

∫
Y

Gijkl(y)

[
∂u0

i

∂xj
(x) +

∂u1
i

∂yj
(x, y)

]
∂v1

k

∂yl
(x, y)dy dx = 0.

(4.15)

We are looking for u1 in the form

u1(x, y) = N·mn(y)
∂u0

m

∂xn
(x), (4.16)

with some unknown N·mn(y) ∈ H1(Ω;R3). Substituting it in (4.15) yields∫
Ω

∫
Y

Gijkl(y)

[
δmiδnj +

∂Nimn

∂yj
(y)

]
∂u0

m

∂xn
(x)

∂v0
k

∂xl
(x)dy dx =

∫
Ω

fk(x)v0
k(x)dx,

∫
Ω

∫
Y

Gijkl(y)

[
δmiδnj +

∂Nimn

∂yj
(y)

]
∂u0

m

∂xn
(x)

∂v1
k

∂yl
(x, y)dy dx = 0.

Let us define

Ghom
mnkl :=

∫
Y

Gijkl(y)

[
δimδjn +

∂Nimn

∂yj
(y)

]
dy.
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Note that this definition is equivalent to (4.14). Then the first equation takes the form∫
Ω

∫
Y

Ghom
mnkl

∂u0
m

∂xn
(x)

∂v0
k

∂xl
(x)dy dx =

∫
Ω

fk(x)v0
k(x)dx.

The second equation holds for all v1 ∈
[
L2(Ω;H1

#(Y ))
]3

, in particular for all v1 that are
constant with respect to x. In this case it can be rewritten as follows:∫

Ω

∂u0
m

∂xn
(x)

∫
Y

Gijkl(y)

[
δmiδnj +

∂Nimn

∂yj
(y)

]
∂v1

k

∂yl
(y)dy dx = 0 ∀v1 ∈ H1

#(Y ;R3).

We require now that for all fixed m,n∫
Y

Gijkl(y)

[
δmiδnj +

∂Nimn

∂yj
(y)

]
∂v1

k

∂yl
(y)dy = 0 ∀v1 ∈ H1

#(Y ;R3). (4.17)

This is equivalent to (4.12), that is,∫
Y

Gijkl(y)
∂Nimn

∂yj
(y)

∂v1
k

∂yl
(y)dy = −

∫
Y

Gmnkl(y)
∂v1

k

∂yl
(y)dy ∀v1 ∈ H1

#(Y ;R3).

It is left to show that (4.12) is uniquely solvable inH1
#(Y ;R3) for allm,n. This is done again

by the Lax-Milgram theorem. The proof of the ellipticity is similar to that of Theorem 4.7.
It is based on Lemma 4.6. The boundedness is obtained straightforwardly by applying the
Cauchy-Schwarz inequality.

Thus, the existence and uniqueness of N·mn are established, the suppositions (4.16) and
(4.17) are justified.

As one can see the limiting equation (4.13) is of the same form as the elasticity equation
for some constant material. We ensure now that the homogenized tensor Ghom possesses
the same properties as a normal stiffness tensor.

Theorem 4.9. Tensor Ghom is

(i) symmetric, i.e.

Ghom
mnkl = Ghom

nmkl = Ghom
klmn

(ii) positive-definite, i.e.

Ghom
mnklξmnξkl > 0

for all symmetric non-zero second-rang tensors ξ.
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Proof. (i). The first equality follows from the corresponding symmetry of G. Since

Gmnkl = Gnmkl

and N·mn are uniquely determined by (4.12), we have

Nmn = Nnm.

The equality Ghom
mnkl = Ghom

nmkl follows then from the definition of Ghom (see (4.14)).
We prove now that Ghom

mnkl = Ghom
klmn. Since

Gmnkl = Gklmn,

the first terms of Ghom
mnkl and Ghom

klmn in (4.14) coincide and it is enough to show that for all
m,n, k, and l ∫

Y

Gijkl(y)
∂Nimn

∂yj
(y)dy =

∫
Y

Gpqmn(y)
∂Npkl

∂yq
(y)dy, (4.18)

where p and q are integer indices taking values from 1 to 3. We used them here instead of i
and j to avoid the confusion in the following derivation. Let m,n, k, and l be fixed. Taking
in (4.12) first v1 = N·kl and then v1 = N·mn and using the symmetry of G, we obtain

−
∫
Y

Gpqmn(y)
∂Npkl

∂yq
(y)dy = −

∫
Y

Gmnpq(y)
∂Npkl

∂yq
(y)dy =

=

∫
Y

Gijpq(y)
∂Nimn

∂yj
(y)

∂Npkl

∂yq
(y) dy =

∫
Y

Gpqij(y)
∂Npkl

∂yq
(y)

∂Nimn

∂yj
(y) dy =

= −
∫
Y

Gklij(y)
∂Nimn

∂yj
(y)dy = −

∫
Y

Gijkl(y)
∂Nimn

∂yj
(y)dy.

The equality (4.18) is thus proved and (i) is established.
(ii). Let ξ be a symmetric second-rang tensor. We have

Ghom
mnklξmnξkl = ξmn

∫
Y

Gijkl(y)

[
δimδjn +

∂Nimn

∂yj
(y)

]
ξkl dy. (4.19)

Taking v1(y) = ξpqN·pq(y) in the cell equation in form (4.17) yields∫
Y

Gijkl(y)

[
δmiδnj +

∂Nimn

∂yj
(y)

]
ξpq
∂Nkpq

∂yl
(y)dy = 0 ∀m,n.

Multiplying it by ξmn and adding to (4.19), we obtain

Ghom
mnklξmnξkl = ξmn

∫
Y

Gijkl(y)

[
δimδjn +

∂Nimn

∂yj
(y)

] [
ξkl + ξpq

∂Nkpq

∂yl
(y)

]
dy =
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=

∫
Y

Gijkl(y)

[
ξij + ξmn

∂Nimn

∂yj
(y)

] [
ξkl + ξpq

∂Nkpq

∂yl
(y)

]
dy =

∫
Y

Gijkl(y)Zij(y)Zkl(y) dy > 0,

where

Zij(y) := ξij + ξmn
∂Nimn

∂yj
(y). (4.20)

The inequality is not strict because Z is not necessarily symmetric. Thus Ghom is non-
negative. Let us show that it is strictly positive. Suppose

Ghom
mnklξmnξkl = 0.

This implies that
Gijkl(y)Zij(y)Zkl(y) = 0 a.e. in Y.

Due to the symmetry of G this is equivalent to

Gijkl(y)
1

2
(Zij(y) + Zji(y))

1

2
(Zkl(y) + Zlk(y)) = 0 a.e. in Y.

Since G is positive definite for all y ∈ Y , this means that

∀ i, j Zij(y) + Zji(y) = 0 a.e. in Y.

Integrating this equality over Y and taking into account that Nimn are Y -periodic functions,
we obtain

∀ i, j 0 =

∫
Y

(
ξij + ξmn

∂Nimn

∂yj
(y)

)
dy +

∫
Y

(
ξji + ξmn

∂Njmn

∂yi
(y)

)
dy = ξij + ξji = 2ξij.

Thus ξ = 0. Therefore Ghom is positive definite.

4.4 Homogenization of Laminated Structures

In this section we consider composite materials periodic only in one direction and homo-
geneous in others (see Figure 4.2). We assume that the material is rotated in such a way
that the periodic direction is parallel to x3. This is a special case of periodic composite
materials considered in the previous section. In this case the cell stiffness tensor G depends
only on y3 and independent on y1 and y2. This simplification enables us to derive explicit
formulas for calculating Ghom.

We will need the following well-known result.

Lemma 4.10 (Poincaré’s inequality). Let U be a bounded connected domain in Rn having
Lipschitz boundary, 1 6 p 6 ∞. Then there exists a constant C, depending only on n, p,
and U , such that

‖u− 〈u〉U‖Lp(U) 6 C ‖∇u‖Lp(U)

for each function u ∈ W 1,p(U).



4.4 Homogenization of Laminated Structures 113



x3 x2
x1

Figure 4.2: Laminated periodic material.

Theorem 4.11. Suppose that the cell stiffness tensor G(y) is independent of y1 and y2.
Then for all m,n functions N·mn are independent of y1 and y2 and satisfy the following
one-dimensional cell equations:

1∫
0

Gi3k3(y3)
dNimn

dy3

(y3)
dwk
dy3

(y3) dy3 = −
1∫

0

Gmnk3(y3)
dwk
dy3

(y3) dy3

∀w ∈ H1
#([0, 1];R3).

(4.21)

In this case, the homogenized stiffness tensor takes the form

Ghom
mnkl =

1∫
0

Gmnkl(y3) dy3 +

1∫
0

Gi3kl(y3)
∂Nimn

∂y3

(y3) dy3. (4.22)

Proof. Let us first show that (4.21) is uniquely solvable for all m,n. This can easily be
done by the Lax-Milgram theorem. The boundedness of the corresponding bilinear form
is established by the Cauchy-Schwarz inequality. The ellipticity is due to the positiveness
of the matrix G·3·3 and the Poincaré inequality (see Lemma 4.10). The positiveness of the
matrix G·3·3 follows from the positiveness of G. Indeed, for any vector ξ we have

Gi3k3ξiξk = Gijkl(δj3ξi)(δl3ξk) = GijklZijZkl > 0,

where Zij := δj3ξi. The equality is reached only if Z is antisymmetric, that is,

δj3ξi = −δi3ξj.

In this case ξ1 = δ33ξ1 = −δ13ξ3 = 0. Similarly ξ2 = 0 and ξ3 = −ξ3, i.e. ξ3 = 0. We
discover therefore that Gi3k3ξiξk = 0 implies ξ = 0. Thus the matrix G·3·3 is positive
definite and therefore by the Lax-Milgram theorem (4.21) is uniquely solvable.
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Recall that N·mn(y) are unique solutions of the general cell equation (4.12). If we show
that the solutions of (4.21), considered as functions on Y , solve (4.12), it would mean that
N·mn are independent on y1 and y2 and can be found by (4.21). Let us substitute N·mn(y3)
into (4.12) and check if the equality holds for any arbitrary v1 ∈ H1

#(Y ;R3). We must
check the following relation:∫

Y

Gi3kl(y3)
∂Nimn

∂y3

(y3)
∂v1

k

∂yl
(y) dy

?
= −

∫
Y

Gmnkl(y3)
∂v1

k

∂yl
(y) dy.

This is equivalent to

1∫
0

Gi3kl(y3)
∂Nimn

∂y3

(y3)

 ∫
[0,1]2

∂v1
k

∂yl
(y) dy1dy2

dy3
?
= −

1∫
0

Gmnkl(y3)

 ∫
[0,1]2

∂v1
k

∂yl
(y) dy1dy2

dy3.

By introducing

w(y3) :=

∫
[0,1]2

v1(y) dy1dy2 ∈ H1
#([0, 1];R3)

the relation can be rewritten as

1∫
0

Gi3k3(y3)
∂Nimn

∂y3

(y3)
∂wk
∂y3

(y3) dy3
?
= −

1∫
0

Gmnk3(y3)
∂wk
∂y3

(y3) dy3.

This is exactly (4.21). Therefore the equality takes place. Thus N·mn(y3) are solutions of
(4.12) and the theorem is proved.

Lemma 4.12. Let U := [0, 1] and a ∈ L2
#(U) be such that∫

U

a(ξ)
dϕ

dξ
(ξ) dξ = 0 ∀ϕ ∈ H1

#(U). (4.23)

Then

a = 〈a〉U in L2
#(U),

that is, a is constant almost everywhere on U .

Proof. For all ϕ ∈ H1
#(U) we have∫

U

〈a〉U
dϕ

dξ
(ξ) dξ = 〈a〉U

∫
U

dφ

dξ
(ξ) dξ = 〈a〉U · 0 = 0.
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Subtracting this from (4.23), we obtain∫
U

[a(ξ)− 〈a〉U ]
dϕ

dξ
(ξ) dξ = 0 ∀ϕ ∈ H1

#(U). (4.24)

Let us take the function ϕ in the form

ϕ(ξ) =

ξ∫
0

a(z) dz − 〈a〉U · ξ.

We claim that this function is 1-periodic. Indeed,

ϕ(ξ + 1) =

ξ+1∫
0

a(z) dz − 〈a〉U(ξ + 1) = ϕ(ξ) +

ξ+1∫
ξ

a(z)dz − 〈a〉U =

= ϕ(ξ) +

∫
U

a(z)dz − 〈a〉U = ϕ(ξ).

It can be directly proved that ϕ is weakly differentiable and

dϕ

dξ
(ξ) = a(ξ)− 〈a〉U ∈ L2

#(U).

We can then substitute it in (4.24). This yields∫
U

[a(ξ)− 〈a〉U ] [a(ξ)− 〈a〉U ] dξ = 0,

which implies
a = 〈a〉U in L2

#(U).

We derive now an explicit formula for the calculation of Ghom. First let us rewrite (4.21)
as follows

1∫
0

Gijk3(y3)

[
δmiδnj + δj3

dNimn

dy3

(y3)

]
dwk
dy3

(y3) dy3 = 0.

Since this equality holds for all w ∈ H1
#([0, 1];R3), we can apply Lemma 4.12. We have

then almost everywhere on [0, 1]

Gijk3(y3)

[
δmiδnj + δj3

dNimn

dy3

(y3)

]
= Dmnk ∀m,n, k,
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where Dmnk are some unknown constants. Simplifying the relation above, we obtain the
following system of linear algebraic equations for every pair (m,n):

Gi3k3(y3)
dNimn

dy3

(y3) = Dmnk −Gmnk3(y3).

Note that the matrix of this system Gi3k3(y3) is the same for all m and n. Moreover, it is
positive definite (see the proof of Theorem 4.11) and therefore invertible. Hence it holds:

dNimn

dy3

(y3) = (G·3·3(y3))−1
ik [Dmnk −Gmnk3(y3)] . (4.25)

We integrate now this expression over [0, 1]. The left-hand side disappears because Nimn

are 1-periodical. Then for the vectors Dmn· we obtain 1∫
0

(G·3·3(y3))−1dy3

Dmn· =

∫
Y

(G·3·3(y3))−1Gmn·3(y3)dy3.

Since G·3·3(y3) is a symmetric positive definite matrix for all y3, so is the inverse matrix
(G·3·3(y3))−1 and hence the matrix 1∫

0

(G·3·3(y3))−1dy3


is also positive definite. We can then invert it and obtain

Dmn· =

 1∫
0

(G·3·3(y3))−1dy3

−1 1∫
0

(G·3·3(y3))−1Cmn·3(y3)dy3.

Substituting this expression in (4.25) yields

dN·mn
dy3

(y3) =

= (G·3·3(y3))−1


 1∫

0

(G·3·3(y3))−1dy3

−1 1∫
0

(G·3·3(y3))−1Gmn·3(y3)dy3 − Gmn·3(y)

. (4.26)

We exploit now the fact that the cell consists of a finite number of sublayers described
by constant tensors and therefore the tensor Gmnkl(y3) is piecewise constant. Denoting by
N s
·mn(y3) the restriction of N·mn(y3) to the s-th sublayer we can rewrite (4.26) for the s-th

sublayer as follows:

dN s
·mn

dy3

(y3) = (Gs
·3·3)−1

(∑
r

hr(Gr
·3·3)−1

)−1∑
r

hr(Gr
·3·3)−1Gr

mn·3 − Gs
mn·3

 , (4.27)
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where Gs and Gr are the elasticity tensors for the s’th and r’th sublayers respectively; hr

is a normalized thickness of the r’th sublayer such that
∑
r

hr = 1. All the summations are

taken over the sublayers. Note that the right-hand side of (4.27) does not depend on y3.

This implies that the functions
dN s

imn

dy3

(y3) are constant and functions N·mn are piecewise

linear. Denoting

N̂ s
·mn :=

dN s
·mn

dy3

(y3),

we rewrite the expression (4.22) for the tensor G as follows:

Gmnkl =
∑
s

hsGs
mnkl +

∑
s

hsCs
i3klN̂

s
imn.

We formulate now this final result as a theorem.

Theorem 4.13. Suppose that the periodic cell is composed of M sublayers characterized
by the stiffness tensors G1, ..., GM with the relative thicknesses h1, ..., hM . Then the ho-
mogenized material is characterized by the stiffness tensor Ghom that is determined by

Ghom
mnkl =

M∑
s=1

hsGs
mnkl +

M∑
s=1

hsGs
i3klN̂

s
imn, (4.28)

where

N̂ s
·mn = (Gs

·3·3)−1

( M∑
r=1

hr(Gr
·3·3)−1

)−1 M∑
r=1

hr(Gr
·3·3)−1Gr

mn·3 − Gs
mn·3

 . (4.29)

4.5 Rate of Convergence

Throughout this section we denote by uε the sequence of solutions of Problem 4.1 as ε→ 0

and by u0 ∈ H1
0 (Ω;R3) and u1 ∈

[
L2(Ω;H1

#(Y ))
]3

the limiting functions as described in
Theorem 4.8. In that theorem we established the following convergence results:

uε ⇀ u0 in H1(Ω;R3),

∇uε →
2
∇u0 +∇yu

1.

Since H1(Ω;R3) is compactly embedded in L2(Ω;R3), the first result implies that

uε → u0 strongly in L2(Ω;R3).

Besides, it implies the weak convergence for the gradients, that is,

∇uε ⇀ ∇u0 weakly in L2(Ω;R3×3).
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In order to get the strong convergence here, we have to add an extra term, the so called
corrector. Put

u1ε(x) := u0(x) + εu1
(
x,
x

ε

)
.

We will refer to this function as the first approximation of uε. Using (4.11), it can be
rewritten as

u1ε(x) = u0(x) + εN·mn

(x
ε

) ∂u0
m

∂xn
(x). (4.30)

Recall that by definition N·mn ∈ H1
#(Y ;R3) and

∂u0
m

∂xn
(x) ∈ L2(Ω). Hence the products

N·mn

(x
ε

) ∂u0
m

∂xn
(x) may not be weakly differentiable and u1ε does not necessarily lie in

H1(Ω;R3). But under some additional assumptions u1ε does belong to H1(Ω;R3) and it
can be shown that ∥∥uε − u1ε

∥∥
H1(Ω;R3)

→ 0.

In this section we investigate the conditions sufficient for u1ε to be in H1(Ω;R3) and
estimate the rate of the convergences in H1.

For the sake of convenience let us put here again the limiting equations for u0 and N·mn.
As follows from Theorem 4.8, u0 ∈ H1

0 (Ω;R3) is a unique solution of the homogenized
equation ∫

Ω

Ghom
mnkl

∂u0
m

∂xn
(x)

∂v0
k

∂xl
(x) dx =

∫
Ω

fkv
0
k dx ∀v0 ∈ H1

0 (Ω;R3), (4.31)

N·mn ∈ H1
#(Y ;R3) are unique solutions of the cell equations∫

Y

Gijkl(y)
∂Nimn

∂yj
(y)

∂v1
k

∂yl
(y) dy = −

∫
Y

Gmnkl(y)
∂v1

k

∂yl
(y) dy ∀v1 ∈ H1

#(Y ;R3). (4.32)

So far we have not made any assumptions about the smoothness of ∂Ω; it only had to be
Lipschitz. From now on we assume that ∂Ω is of class C2. This enables us to increase the
regularity of the solution to (4.31). The following theorem holds:

Theorem 4.14. Let Ω be a domain in R3 with a boundary ∂Ω of class C2, let f ∈ L2(Ω;R3).
Then the solution u0 to (4.31) belongs to the space H2(Ω;R3).

This theorem can be found for example in [10] (see Theorem 6.3-6).
Hence u0 ∈ H2(Ω;R3). However, this is still not enough for u1ε to be in H1(Ω;R3). We

need also a higher regularity of N·mn. It is shown in [56] that a higher regularity takes
place if the boundaries between the materials composing the unit cell are smooth. More
formally, denote by Y1, ...YM the open subdomans of Y corresponding to the composing
materials 1, ...M and repeated periodically in all the direction such that

M⋃
i=1

Y i = R3, Y =
M⋃
i=1

Yi ∩ Y .
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Following [56], we say that a Y -periodic function belongs to class Ĉ if it has bounded
derivatives of any order in Yi, i = 1, ...,M . Note that the tensor function G(y) belongs
to Ĉ because it is constant in any Yi. The following result is due to [56] (Theorem 6.2,
Chapter I).

Theorem 4.15. Let w ∈ H1
#(Y ;R3) be a solution of∫

Y

Aijkl(y)
∂wi
∂yj

(y)
∂v1

k

∂yl
(y) dy = −

∫
Y

Fkl(y)
∂v1

k

∂yl
(y) dy ∀v1 ∈ H1

#(Y ;R3),

where Aijkl(y) and Fkl(y) belong to Ĉ.
Further, suppose that the boundaries ∂Y1, ..., ∂YM are smooth.

Then w also belongs to Ĉ, that is, w is piecewise smooth with bounded derivatives in any
Yi, i = 1, ...,M .

Combining Theorems 4.14 and 4.15, we discover that if ∂Ω and ∂Yi are smooth, then
u0 ∈ H2(Ω;R3) and N·mn ∈ Ĉ. Hence u1ε ∈ H1(Ω;R3). Under these assumptions the
following estimate can be shown.

Theorem 4.16. Let Ω, {Yi}Mi=1, uε, u0, u1ε and f be defined as above. Suppose that

1. ∂Ω is smooth,

2. ∂Yi are smooth for all i = 1, ...,M ,

3. f ∈ H1(Ω;R3).

Then there is a positive constant C such that∥∥uε − u1ε
∥∥
H1(Ω;R3)

< C
√
ε.

The theorem is proved in [56] (Theorem 1.2, Chapter II). However, the condition f ∈
H1(Ω;R3) is seldom fulfilled in real applications. We derive now an estimate for the
case where f ∈ L2(Ω;R3). Besides, we also drop the requirement of smoothness of the
boundaries ∂Yi replacing it by a weaker condition. Before formulating the main result, we
first prove some auxiliary propositions.

Lemma 4.17 (Stampacchia). Let ϕ be a nonnegative, nonincreasing function defined on
[c0, ∞). Suppose that there exist constants C > 0, α > 0, and β > 1 such that

ϕ(d) 6
C

(d− c)α
ϕ(c)β

for all d > c > c0.
Then there exist c1 such that

ϕ(c) = 0 ∀ c > c1.
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The lemma is due to Stampacchia (see [67], Lemma 4.1).

Theorem 4.18. Let A ∈
(
L∞# (Y )

)3×3
be a positive definite and symmetric matrix for

almost all y ∈ Y , g ∈ L2
#(Y ;R3). Then the problem∫

Y

A(y)∇u(y) · ∇ϕ(y) dy =

∫
Y

g(y) · ∇ϕ(y) dy ∀ϕ ∈ H1
#(Y ) (4.33)

is uniquely solvable in H1
#(Y ).

Futhermore, if g ∈ L∞# (Y ;R3), then u ∈ L∞# (Y ).

Proof. The solvability and uniqueness of (4.33) in H1
#(Y ) is due to the Lax-Milgram the-

orem and the Poincaré inequality. To prove that g ∈ L∞# (Y ;R3) implies u ∈ L∞# (Y ), we
exploit the ideas from [12].

Suppose that g ∈ L∞# (Y ;R3) and u ∈ H1
#(Y ) is the unique solution of (4.33). Let c be

an arbitrary positive number from R. Let us define

uc(y) :=


u(y)− c if u(y) > c,

0 if |u(y)| < c,
u(y) + c if u(y) 6 −c.

We would like to show now that uc ∈ H1(Y ). This is not obviously and can not be shown
straightforwardly because the sets

{y ∈ Y : u(y) > c}, {y ∈ Y : |u(y)| < c}, {y ∈ Y : u(y) 6 −c}

do not have to possess a piecewise smooth boundary and we can not integrate by parts.
Instead of it, we exploit a roundabout characterization ofH1-functions. It is known (see [55]
and [51], § 1.1.3) that the restriction of a H1-function to almost every line parallel to the
coordinate directions, possibly after modifying the function on a set of measure zero, is
absolutely continuous. This means that the pointwise gradient exists almost everywhere.
Moreover, it agrees with the weak gradient. Then the pointwise gradient of uc also exists
almost everywhere and

∇uc(y) =

{
∇u(y) if |u(y)| > c

0 if |u(y)| < c.

Obviously, ∇uc belongs to L2(Y ;R3) and uc belongs to L2(Y ). This implies that uc ∈
H1(Y ). Moreover, uc is Y -periodic and hence uc − 〈uc〉Y ∈ H1

#(Y ).
Let us further define

Sc(u) := {y ∈ Y : |u(y)| > c} .
Note that Sc(u) is measurable. For the sake of brevity, we will omit the argument, writing
just Sc. Since uc − 〈uc〉Y ∈ H1

#(Y ), it can be used as a test function in (4.33). This yields∫
Y

A∇u · ∇uc dy =

∫
Y

g · ∇uc dy =

∫
Sc

g · ∇uc 6
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6 ‖g‖L2(Sc;R3)‖∇uc‖L2(Sc;R3) 6 C|Sc|
1
2‖∇uc‖L2(Y ;R3)

On the other hand, since A is positive definite, we have∫
Y

A∇u · ∇uc dy =

∫
Sc

A∇uc · ∇uc dy =

∫
Y

A∇uc · ∇uc dy > C‖∇uc‖2
L2(Y ;R3).

Combining the last two inequalities, we get:

|Sc| > C‖∇uc‖2
L2(Y ;R3). (4.34)

We exploit the fact that H1(Y ) is continuously embedded in L4(Y ) (see [2]) and derive an
estimate for ‖∇uc‖2

L2(Y ;R3) as follows:

‖uc − 〈uc〉Y ‖2
L2(Sc) =

∫
Sc

(uc − 〈uc〉Y )2 dy 6

6

∫
Sc

12 dy

 1
2
∫
Sc

(uc − 〈uc〉Y )4 dy

 1
2

6 |Sc|
1
2‖uc − 〈uc〉Y ‖2

L4(Y ) 6

6 |Sc|
1
2C ‖∇(uc − 〈uc〉Y )‖2

L2(Y ;R3) = C|Sc|
1
2‖∇uc‖2

L2(Y ;R3).

Substituting this result into (4.34), we obtain

C|Sc|
3
2 > ‖uc − 〈uc〉Y ‖2

L2(Sc) =

∫
Sc

(uc − 〈uc〉Y )2 dy =

=

∫
Sc

u2
c dy − 2〈uc〉Y

∫
Sc

uc dy +

∫
Sc

〈uc〉2Y dy =

= ‖uc‖2
L2(Sc) − 2〈uc〉Y

∫
Y

uc dy +

∫
Sc

〈uc〉2Y dy >

> ‖uc‖2
L2(Sc) − 2〈uc〉2Y ,

which implies
C|Sc|

3
2 + 2〈uc〉2Y > ‖uc‖2

L2(Sc). (4.35)

The next property follows from the definition of uc and Sc:

∀d > c ‖uc‖2
L2(Sc) > ‖uc‖2

L2(Sd) > (d− c)2|Sd|.

Combining this with (4.35) yields

∀d > c |Sh| 6
C|Sc|

3
2 + 〈uc〉2Y

(d− c)2
. (4.36)
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We derive now an estimate for 〈uc〉Y by the Hölder inequality (recall that uc ∈ L4(Y ) due
to the Sobolev embedding). We have

〈uc〉Y =

∫
Y

uc dy =

∫
Sc

uc dy 6

∫
Sc

1
4
3 dy

 3
4
∫
Sc

u4
c dy

 1
4

6

6 |Sc|
3
4

∫
Y

u4
c dy

 1
4

= |Sc|
3
4‖uc‖L4(Y ) 6 C|Sc|

3
4‖uc‖H1(Y ) 6 C|Sc|

3
4‖u‖H1

#(Y ).

Substituting this estimate in (4.36), we finally get

∀d > c |Sd| 6
C‖u‖H1

#(Y )

(d− c)2
|Sc|

3
2 . (4.37)

Let us now consider the mapping c 7→ |Sc|. This is a nonnegative nonincreasing real
function. Using Lemma 4.17, we obtain that there exists c0 such that

∀c > c0 |Sc(u)| = 0.

This means that ‖u‖L∞# (Y ) < ∞.

Theorem 4.19. Let g ∈ L2
#(Y ;R3) be a vector field satisfying∫

Y

gl(y)
∂ϕ

∂yl
(y) dy = 0 ∀ϕ ∈ H1

#(Y ). (4.38)

Then there exists a skew-symmetric matrix α ∈ H1
#(Y ;R3×3) such that

gj = 〈gj〉Y +
∂αij
∂yi

.

Moreover, if g ∈ L∞# (Y ;R3) then α ∈ L∞# (Y ;R3×3).

Proof. The first part is based on the following result from [33]. It is proven there (p. 6–7)
that if g ∈ L2

#(Y ;R3) satisfies (4.38), then it admits the representation

gj = 〈gj〉Y +
∂αij
∂yi

,

where αij ∈ H1
#(Y ), 〈αij〉Y = 0, αij = −αji. We define now a vector potential h by

h := (α23, α31, α12)T .
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Obviously h ∈ H1
#(Y ;R3). It can be verified directly that

∂αij
∂yi

= (curlh)j

and hence
g = 〈g〉Y + curlh. (4.39)

Moreover, by construction of αij (see [33], p. 6–7 for details), it can be checked straightfor-
wardly that

divh = 0.

Let us now show that g ∈ L∞# (Y ;R3) implies h ∈ L∞# (Y ;R3). Let ϕ be an arbitrary vector
function from ϕ ∈ C∞# (Y ;R3). Multiplying (4.39) by curlϕ and integrating over Y , we
obtain ∫

Y

(g − 〈g〉Y ) · curlϕdy =

∫
Y

curlh · curlϕdy =

=

∫
Y

h · curl (curlϕ) dy +

∫
∂Y

(ν × h) · curlϕds =

∫
Y

h · (−Mϕ+∇divϕ) dy =

=

∫
Y

∇h : ∇ϕdy −
∫
∂Y

h · ∇ϕν ds−
∫
Y

divh divϕdy +

∫
∂Y

divϕ h · ν ds =

=

∫
Y

∇h : ∇ϕdy,

where ν is the outward unit normal to ∂Y . The boundary terms in the derivation above
vanish because h and ϕ are Y -periodic. We have then that h satisfies∫

Y

∇h : ∇ϕdy,=
∫
Y

(g − 〈g〉Y ) · curlϕdy (4.40)

for all ϕ ∈ C∞# (Y ;R3). By definition C∞# (Y ;R3) is dense in H1
#(Y ;R3) and hence (4.40)

holds also for all ϕ ∈ H1
#(Y ;R3). Taking ϕ = (ϕ1, 0, 0)T we obtain∫

Y

∇h1 · ∇ϕ1 dy,=

∫
Y

(g − 〈g〉Y ) ·
(

0,−∂ϕ1

∂y3

,
∂ϕ1

∂y2

)T
dy ∀ϕ1 ∈ H1

#(Y ).

This is equivalent to∫
Y

∇h1 · ∇ϕ1 dy,=

∫
Y

(0, g3 − 〈g3〉Y , −g2 + 〈g2〉Y )T · ∇ϕ1 dy ∀ϕ1 ∈ H1
#(Y ).

By Theorem 4.18 this implies that h1 ∈ L∞# (Y ). Similarly, taking ϕ = (0, ϕ2, 0) and
ϕ = (0, 0, ϕ3), we discover that h2 ∈ L∞# (Y ) and h3 ∈ L∞# (Y ). Hence, by definition of h,
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we have that α12, α13, α23 ∈ L∞# (Y ). Since the matrix α is skew-symmetric, this means
that α ∈ L∞# (Y ;R3×3).

Theorem 4.20 (Estimate in H1(Ω;R3)).

Let Ω be an open bounded Lipschitz domain, and let uε, u0, N·mn, u1ε, and f be defined as
above. Suppose that

1. ∂Ω is of class C2,

2. ∀m,n N·mn ∈ W 1,∞
# (Y ;R3),

3. f ∈ L2(Ω;R3).

Then there is a positive constant C such that∥∥uε − u1ε
∥∥
H1(Ω;R3)

< C 3
√
ε. (4.41)

Proof. The proof partly repeats the proof of Theorem 4.16 with necessary modifications
caused by the weaker regularity assumptions. We exploited also some ideas from [33]
(Section I.4).

First note that since N·mn ∈ W 1,∞
# (Y ;R3) and u0 ∈ H2(Ω;R3), the first approximation

u1ε(x) = u0(x) + εN·mn

(x
ε

) ∂u0
m

∂xn
(x)

belongs to H1(Ω;R3) and for all i, j

∂u1ε
i

∂xj
(x) =

∂u0
i

∂xj
(x) +

∂Nimn

∂yj

(x
ε

) ∂u0
m

∂xn
(x) + εNimn

(x
ε

) ∂2u0
m

∂xn∂xj
(x),

where y := ε−1x. Let the form aε(·, ·) be given by (4.3). We take now an arbitrary
v ∈ H1

0 (Ω;R3) and derive an estimate for aε(uε − u1ε, v). We have

aε(uε − u1ε, v) =

∫
Ω

Gijkl

(x
ε

)[∂uεi
∂xj

(x)− ∂u1ε
i

∂xj
(x)

]
∂vk
∂xl

(x) dx =

=

∫
Ω

Gijkl

(x
ε

) ∂uεi
∂xj

(x)
∂vk
∂xl

(x) dx −
∫
Ω

Gijkl

(x
ε

) ∂u1ε
i

∂xj
(x)

∂vk
∂xl

(x) dx =

=

∫
Ω

Ghom
ijkl

∂u0
i

∂xj
(x)

∂vk
∂xl

(x) dx −
∫
Ω

Gijkl

(x
ε

) ∂u1ε
i

∂xj
(x)

∂vk
∂xl

(x) dx =
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=

∫
Ω

[
Ghom
ijkl

∂u0
i

∂xj
(x)−Gijkl

(x
ε

)(∂u0
i

∂xj
(x) +

∂Nimn

∂yj

(x
ε

) ∂u0
m

∂xn
(x)

)]
∂vk
∂xl

(x) dx+

+ε

∫
Ω

Gijkl

(x
ε

)
Nimn

(x
ε

) ∂2u0
m

∂xn∂xj
(x)

∂vk
∂xl

(x) dx =

=

∫
Ω

∂u0
m

∂xn
(x)

[
Ghom
mnkl −Gmnkl

(x
ε

)
−Gijkl

(x
ε

) ∂Nimn

∂yj

(x
ε

)] ∂vk
∂xl

(x) dx+

+ε

∫
Ω

Gijkl

(x
ε

)
Nimn

(x
ε

) ∂2u0
m

∂xn∂xj
(x)

∂vk
∂xl

(x) dx =

=

∫
Ω

∂u0
m

∂xn
(x)gmnkl

(x
ε

) ∂vk
∂xl

(x) dx + ε

∫
Ω

Gijkl

(x
ε

)
Nimn

(x
ε

) ∂2u0
m

∂xn∂xj
(x)

∂vk
∂xl

(x) dx,

where

gmnkl (y) := Ghom
mnkl −Gmnkl(y)−Gijkl(y)

∂Nimn

∂yj
(y).

Note that ∀m,n, k, l gmnkl ∈ L∞# (Y ) because N·mn ∈ W 1,∞
# (Y ;R3) and Gmnkl ∈ L∞# (Y ).

Moreover, due to (4.32),∫
Y

gmnkl

∂v

∂yl
dy = 0 ∀ v ∈ H1

#(Y ) ∀m,n, k,

and, by definition of Ghom (see (4.14)),

〈gmnkl 〉Y = 0 ∀m,n, k, l.

Then by Theorem 4.19, gmnkl admits the representation

gmnkl =
∂αmnklr

∂yr
∀m,n, k, l, (4.42)

where the matrix αmnk·· ∈ H1
#(Y ;R3×3) ∩ L∞# (Y ;R3×3) is skew-symmetric for all m,n, k,

that is,
αmnklr = −αmnkrl .

Moreover, (4.42) implies that the sum
∂αmnklr

∂yr
∈ L∞# (Y ). We can then derive that for all

m,n, k, l the product
∂u0

m

∂xn
(x)αmnkl·

(x
ε

)
belongs to H(div; Ω) and

∂

∂xr

(
∂u0

m

∂xn
(x)αmnklr

(x
ε

))
=

∂2u0
m

∂xn∂xr
(x)αmnklr

(x
ε

)
+

1

ε

∂u0
m

∂xn
(x)

∂αmnklr

∂yr

(x
ε

)
∈ L2(Ω).
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Hence,

∂u0
m

∂xn
(x)gmnkl

(x
ε

)
= ε

∂

∂xr

(
∂u0

m

∂xn
(x)αmnklr

(x
ε

))
− ε
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Substituting this relation into the expression for aε(uε − u1ε, v) above yields

aε(uε − u1ε, v) =
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(4.43)

Let us consider the first term on the right-hand side. Recall that
∂u0
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)
∈

H(div; Ω). Since αmnklr = −αmnkrl , we have that
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)
also belongs to H(div; Ω).

Then by the Green theorem for functions from H(div; Ω), we obtain
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Since C∞0 (Ω) is dense in H1
0 (Ω), the equailty above holds also for ϕ ∈ H1

0 (Ω). Therefore,
for the first term on the right-hand side of (4.43) we have∫
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Swapping the indices l and r and putting αmnkrl = −αmnklr on the right-hand side, we discover
that the first term on the fight-hand side of (4.43) must be zero. The other two terms are
estimated by the Cauchy-Schwarz inequality. Finally we obtain∣∣aε(uε − u1ε, v)

∣∣ 6 Cε‖v‖H1(Ω;R3). (4.44)

If the difference uε − u1ε were in H1
0 (Ω;R3)

3
, we could substitute it into the estimate

above in place of v and derive an estimate for ‖uε − u1ε‖H1(Ω;R3) by the ellipticity of
aε. Unfortunately u1ε does not have to vanish on ∂Ω. In order to avoid this difficulty,
we construct an auxiliary function wε ∈ H1

0 (Ω;R3) that approximates u1ε, and derive
estimates for the differences uε − wε and wε − u1ε.
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Denote by Ωε the internal ε-neighborhood of ∂Ω, that is,

Ωε := {x ∈ Ω | ρ(x, ∂Ω) < ε} ,

where ρ(x, ∂Ω) is the distance from x to ∂Ω. Further, let τ ε be a family of cutoff functions
from C∞0 (Ω) satisfying

1. 0 6 τ ε 6 1, τ ε ≡ 1 on Ω \ Ωε,

2. ε |∇τ ε| 6 C, where C does not depend on ε.

A family of functions with these properties can always be constructed (see [29], Theo-
rem 1.4.2). We define now
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and estimate the difference wε − u1ε as follows:
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Since N·mn ∈ W 1,∞
# (Y ;R3) and the product ε

∂τ ε

∂xj
(x) is bounded by construction of τ ε, we

obtain
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. (4.45)

The first and third terms are O(ε) as ε → 0. To get the rate of the convergence for
the second term, we exploit the fact that H1 is continuously embedded in L6 for three-
dimensional domains with a C1 boundary. Hence, by the Hölder inequality, we have
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(4.46)



128 4. Homogenization of Linear Systems of Elasticity

Combining this estimate with (4.45) yields (assumed ε < 1)

‖wε − u1ε‖H1(Ω;R3) 6 C 3
√
ε. (4.47)

Let us now estimate the difference uε − wε. Using (4.44), (4.47) and the boundedness of
aε, we get

aε(uε − wε, uε − wε) = aε(uε − u1ε, uε − wε) + aε(u1ε − wε, uε − wε) 6

6Cε‖uε − wε‖H1(Ω;R3) + C‖wε − u1ε‖H1(Ω;R3)‖uε − wε‖H1(Ω;R3) 6

6C 3
√
ε‖uε − wε‖H1(Ω;R3).

Since aε is elliptic, this implies

‖uε − wε‖H1(Ω;R3) 6 C 3
√
ε.

Finally we obtain

‖uε − u1ε‖H1(Ω;R3) 6 ‖uε − wε‖H1(Ω;R3) + ‖wε − u1ε‖H1(Ω;R3) 6 C 3
√
ε.

This completes the proof of Theorem 4.20.

Remark. The power 1/3 in the final estimate arises due to the Sobolev embedding of H1

in L6. If u0 possesses a higher regularity, this estimate can be improved. In particular, if
u0 ∈ W 2,p(Ω;R3) for some p > 3, we have that

∂u0
m

∂xn
∈ W 1,p(Ω) ⊂ C(Ω).

and hence
∂u0

m

∂xn
is bounded. The estimate (4.46) turns then to

∫
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dx 6 Cε,

and the final estimate is
‖uε − u1ε‖H1(Ω;R3) 6 C

√
ε.



5 Conclusion

A three-dimensional mathematical model of an acoustic biosensor is developed. The
model takes into account all the important structural components described by different
physical laws. In particular, the surrounding liquid and the bristle-like layers at the solid-
liquid interface are taken into account. The model provides time-periodic solutions only,
which is conventional in acoustic applications because of linear behavior of materials at
small deformations. The well-posedness of the model is rigorously established. In particu-
lar, it is mathematically proved that the elimination of nonzero eigenvalues of Helmholtz-
like system can be achieved by posing special boundary conditions that physically express
the contact of the sensor’s side faces with a very viscose medium.

Since no assumptions about the polarization of the wave vector or the attenuation rate
in the substrate are made, the model can easily be adjusted to simulate a wide range of
acoustic devices surrounded by damping areas.

Along with pure theoretical investigation, the Ritz-Galerkin discretization of the problem
is analyzed. The well-posedness of the discretized problem and the convergence of the
Ritz-Galerkin solution to the exact one are established. Thus, the application of the finite
element method is mathematically founded.

A numerical scheme based on a domain decomposition approach is developed. This is
motivated by a large scale of the discretized problem. The proposed method is slower
than the straightforward calculation, but it allows to handle a finer discretization without
running out of the memory by distributing the discretized domain over several groups of
nodes or clusters.

Finally, the results of 3D simulations are presented. The simulations have been car-
ried out by the FE-program FeliCs developed at the Chair of Applied Mathematics of TU
München. In order to increase the computational efficiency, the program has been enriched
by parallel linear solvers making possible the parallel computation on high-performance
clusters. Besides, in scope of the project VIOLA, we have developed a special version of
FeliCs that is able to compute on several heterogeneous clusters simultaneously. Using
this program, we have carried out a number of simulations based on the domain decom-
position scheme distributing the subdomains over the clusters located in different cities.
However, the most of the simulations have been performed on the linux cluster of Leibniz-
Rechenzentrum.

A semi-analytical method for the fast characterization of acoustic waves in multi-layered
structures is developed. The method allows us to identify plane waves that can possibly
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exist in a given structure, compute their velocities and derive the dispersion relations. It
can handle multi-layered structures composed of an arbitrary number of layers of different
materials types. The method is efficient for the analysis of surface waves in very thick
layers. In this case, layers are modeled as semi-infinite and only attenuating wave modes
are considered. This allows to filter out negligible parasitic wave modes caused by the
reflection from the bottom of a layer.

Beside elastic isotropic and anisotropic non-smart materials, the method is also able to
treat piezoelectric materials and surrounding fluid media. For a more realistic modeling
of piezoelectric layers, dielectric properties of non-piezoelectric adjacent layers or media
(like gas or vacuum) can be taken into account. A special type of material is proposed to
handle thin bristle-like interlayers arising in some sensors at the liquid-solid interface. The
modeling of such layers is based on homogenization results presented in [28].

Another kind of homogenization is applied to handle composite materials consisting of
a large number of periodically alternating thin sublayers. Here, the limiting equations are
rigorously derived by the two-scale method for the general three-dimensional case. In the
case of a layered structure, an explicit formula for the elasticity tensor of the homoge-
nized material is obtained. This formula can be very useful for engineers and physicists
investigating the elastic properties of multilayers. Furthermore, an error estimate for the
important case where the right-hand side is from L2 is established.

The method of dispersion relations is implemented in a computer program that provides a
powerful modeling tool applicable in many areas. Concerning acoustic sensors, the program
can be used for a fast analysis of many basic characteristics such as wavelength, velocity
profiles, attenuation rate, sensitivity depending on crystal properties and thicknesses of
the layers, and so on. A more accurate analysis of a sensor can be performed by the finite
element method. In this case, the preliminary values obtained by the program can be used
to adjust and optimize the finite element model. On the other hand, the program can be
used for fast verification of finite element simulations.

In future, we plan to enrich the finite element model of the biosensor by taking into
account not only electrical but also mechanical and geometrical properties of the electrodes.
Another direction of the work is the homogenization of piezoelectric laminated structures.
As in the case of elastic multilayers, we hope to derive here an explicit formula for the
stress piezoelectric and dielectric tensors of the homogenized material.
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