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I

Optimal Shape Design of Shell Structures

Abstract

Numerical shape optimization is a general and highly efficient tool to im-
prove mechanical properties of structural designs. Especially shell struc-
tures seriously profit by geometries which allow for load carrying by mem-
brane action instead of bending. The most important modeling step of
shape optimization problems is the correct shape parametrization. It is well
known that classical parametrization techniques like CAGD and Morphing
require time consuming remodeling steps. This thesis shows that FE-based
parametrization is well suited to define large and flexible design spaces
with a minimal modeling effort. The resulting optimization problems are
characterized by a large number of design variables which requires a so-
lution by gradient based optimization strategies. Adjoint sensitivity for-
mulations are applied to reduce the numerical effort of sensitivity analy-
sis. Derivatives of FE-quantities like stiffness matrices or load vectors are
computed by semi-analytic derivatives supplemented by correction factors
based on dyadic product spaces of rigid body rotation vectors. Besides
the efficient sensitivity analysis the large number of design variables also
require regularization methods to control curvature of the optimal geom-
etry and mesh quality. The maximum curvature is determined by filter
methods based on convolution integrals whereas the mesh quality is im-
proved by geometrical and mechanical mesh optimization methods. Sim-
ulation and shape optimization of thin and long span shell structures re-
quire consideration of nonlinear kinematics. It is shown by theoretical in-
vestigations and illustrative examples that geometrically nonlinear shape
optimization yields to much more efficient designs than the classical linear
approaches. The presented optimization strategy combines nonlinear path
following methods with the design changes during the optimization pro-
cedure. This extended approach permits efficient solution of geometrically
nonlinear structural optimization problems. Several real life examples from
civil engineering and automotive industry prove efficiency and accuracy of
the presented shape optimization strategy. They motivate frequent appli-
cations of shape optimization utilizing FE-based parametrization in order
to improve efficiency, quality and environmental compatibility of current
technical designs.



II

Optimale Formgebung von Schalenstrukturen

Zusammenfassung

Numerische Formoptimierung ist ein allgemeines und hocheffizientes
Werkzeug, um mechanische Eigenschaften von Strukturentwürfen zu
verbessern. Besonders Schalenstrukturen profitieren erheblich von Ge-
ometrien, welche einen Lastabtrag über Membrankräfte anstatt Biegemo-
menten ermöglichen. Der wichtigste Modellierungsschritt eines Formop-
timierungsproblems ist die richtige Formparametrisierung. Es ist bekannt,
dass hier klassische CAGD bzw. Morphingtechniken aufwändiger Remo-
dellierungsschritte bedürfen. Diese Arbeit zeigt, dass die FE-Netz basierte
Formparametrisierung sehr gut geeignet ist, um große und flexible Ent-
wurfsräume mit einem minimalen Modellierungsaufwand zu definieren.
Die daraus resultierenden Optimierungsprobleme weisen eine große An-
zahl von Designvariablen auf, wodurch deren Lösung mit gradienten-
basierten Optimierungsstrategien notwendig ist. Die adjungierte Sensitivi-
tätsanalyse wird angewendet, um den numerischen Aufwand der Gradi-
entenberechnung zu reduzieren. Die Ableitungen der FE-Parameter wer-
den durch semi-analytische Formulierungen berechnet, die durch Korrek-
turfaktoren, basierend auf den dyadischen Produkträumen der Starrkör-
perrotationsvektoren, ergänzt werden. Neben einer effizienten Sensitivi-
tätsanalyse verlangt die große Anzahl der Optimierungsvariablen auch
Regularisierungstechniken, um die Krümmung und die Netzqualität der
optimalen Lösung zu kontrollieren. Hierbei wird die maximale Krüm-
mung über ein auf der Theorie der Faltungsintegrale beruhendes Filter-
verfahren bestimmt, während die Netzqualität durch geometrische bzw.
mechanische Netzregularisierungsverfahren sichergestellt ist. Simulation
und Formoptimierung von dünnen, weitgespannten Schalenstrukturen
erfordert die Berücksichtigung nichtlinearer Kinematik. Durch theore-
tische Betrachtungen und entsprechende Beispiele wird gezeigt, dass die
Berücksichtigung nichtlinearer Kinematik zu deutlich effizienteren Ent-
würfen führt. Die vorgestellte Optimierungsstrategie verbindet nichtlin-
eare Pfadverfolgungsmethoden mit der Geometrieänderung während des
Optimierungsprozesses. Dieser erweiterte Ansatz erlaubt eine effiziente
Lösung geometrisch nichtlinearer Optimierungsprobleme. Einige Beispiele
aus dem Bauingenieurwesen und dem Automobilbau zeigen das Poten-
tial und die Genauigkeit der vorgestellten Optimierungsstrategie. Sie
motivieren eine häufige Anwendung der Formoptimierung mit FE-Netz
basierter Parametrisierung um die Effizienz und die Umweltverträglichkeit
der heutigen technischen Entwürfe zu verbessern.
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Chapter 1

Introduction

1.1 Motivation

Structural optimization is a discipline that combines mathematics and me-
chanics in order to find optimal designs. But what does the term "optimal"
mean? Generally, the optimum describes the best possible solution in the
relation between parameters and properties. The optimal state denotes a
combination of parameters that does not allow for further improvement of
properties. Thus, it is the final state where no evolution takes place any-
more. For engineers it is an awesome imagination to reach such a point
because it means that all progress has come to an end. Will all engineers be
unemployed in the future?

A detailed look at natural designs shows that all of them fit into their re-
spective environments in a fascinating way but none of them is optimal.
In nature optimal designs can not exist because evolution never ends but a
stop of evolution is the necessary condition for an optimal point. In general,
each natural design is subjected to permanent evolution which is mainly
driven by changing environments. But also in scenarios where environ-
mental conditions are constant continuous evolution takes place. Thus,
natural designs are not optimal but usually very close to optimality for the
current environment. Otherwise they would have been eliminated due to
the evolutionary process.

Another important property, one could say the most important property,
of natural designs is their efficiency. It is a fact, that more efficient designs
have a larger probability to survive in the evolutionary process. Since this
process lasts for millions of years the actual designs are very efficient. Thus,
the natural evolution process can be formulated as permanent improve-
ment of efficiency which directly yields to optimality.

Similar to natural designs the improvement of structural efficiency is a
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proper way to solve technical optimization problems. Efficiency of tech-
nical designs is usually formulated via structural properties like geometry,
weight, stiffness, stress distribution, frequency behavior, deformation, etc.
The basic goal of structural optimization is to formulate an evolution pro-
cess that improves specific structural properties. Usually, this evolution
process is constrained by other structural properties where the combina-
tion of of design goal and constraints can be viewed as mathematical de-
scription of structural efficiency.

Improvement of structural properties requires their description in a flex-
ible and robust way. The Finite Element Method (FEM) provides a gen-
eral framework to solve the governing differential equations efficiently and
with sufficient accuracy. For this reason numerical structural optimization
strategies are closely related to Finite Elements.

It was mentioned that the natural evolution process provides the basis for
mathematical optimization strategies. But the actual existing, nearly opti-
mal designs can additionally serve as reference solution for the developed
methods. The example depicted in figure 1.1 shows an experimental hang-
ing model developed by Heinz Isler and a respective numerical optimiza-
tion result. Hanging models allow for an experimental form finding of
free form shells. These shell geometries work mainly in membrane action
which ensures highly efficient load carrying behavior. Hanging models are

(a) Experimental hanging form [SB03] (b) Numerical hanging form

Figure 1.1: Hanging forms

applied by Heinz Isler, Antoni Gaudi, Frei Otto [OT62], [OS66], Felix Can-
dela and many others in order to develop efficient shell geometries.

Another class of natural optimal designs are soap films which form a min-
imal surface with zero mean curvature that connects the given boundaries.
A soap bubble, which has no boundary, is also a minimal surface because its
spherical form encloses the internal volume by a minimal surface content.
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Soap films find their shape by surface tension which allows for a transfer
of this load carrying mechanism to membrane structures made of fabric
material, c.f. [BR99], [BFLW08]. In general, the shape of these membranes
is determined by the boundaries and if the prestress is isotropic and the
boundary is fixed, the resulting membrane structures are also minimal sur-
faces with zero mean curvature.

(a) Experimental soap film [SB03] (b) Numerical minimal surface

Figure 1.2: Membrane design by soap film analogy

It is a matter of fact that the shape variety developable by physical exper-
iments is limited. But numerical optimization strategies formulated in an
abstract framework do not know about such limits. They can be applied to
all types of technical designs in order to improve structural efficiency. Only
such highly efficient designs allow for further ecological development of
technology because they require only a minimal amount of material and
energy during their life cycle. Structural optimization is a flexible, accurate
and highly efficient tool to develop structural designs which derogate the
environment as few as possible.

1.2 Objectives

The main objective of the present work is the development of fully reg-
ularized shape optimization techniques using Finite Element (FE) based
parametrization for geometrically linear and nonlinear mechanical prob-
lems. The resulting optimization problems have to be solved with gradient
based optimization strategies utilizing efficient adjoint sensitivity analysis
and exact semi-analytical derivatives.

Chapter 2 presents a short introduction to differential geometry and non-
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linear continuum mechanics. This is necessary for the presented mesh reg-
ularization methods (chapter 6) and the optimization of geometrically non-
linear problems (chapter 7). The derivations are compact and by far not
complete. More information is presented in the referenced literature.

Shape parametrization is one of the most important modeling steps during
specification of shape optimization problems. The huge modeling effort of
CAGD, Morphing and Shape Basis Vector methods is a serious drawback.
FE-based shape parametrization is a general approach that requires only a
minimal modeling effort. By using this method the optimization problem is
defined on a large design space that does not implicitly restrict the optimal
design. Optimization problems with a large amount of design variables
require efficient gradient based solution strategies. First order optimization
algorithms using adjoint sensitivity analysis are well suited to solve this
type of optimization problems, c.f. chapters 3 and 4.

Gradient based optimization strategies require differentiation of FE-data
like stiffness and mass matrices, force vectors, etc. Application of analyt-
ical derivatives yields to complex and inefficient formulations especially
for sophisticated elements like nonlinear shells with EAS, ANS, or DSG en-
hancements. Semi-analytical sensitivity analysis approximates analytical
derivatives by finite differences. It is well known, that this approach re-
sults in approximation errors which significantly disturb the accuracy of
the gradients. Chapter 5 presents a simple, efficient and robust strategy
to prevent this error propagation. The method utilizes correction factors
based on dyadic product spaces of rigid body rotation vectors. Several
benchmark problems show the accuracy of the corrected gradients and the
element insensitive formulation.

Regularization techniques are an essential part of structural optimization
methods formulated by FE-based parametrization. Topology, sizing and
shape optimization methods depend on effective and robust regularization
techniques in order to stabilize the solution process and to prevent mesh
dependent results. Application of filter methods for smoothing of gradi-
ent data is a well known technique in topology optimization. Chapter 6
presents a filter method based on convolution integrals and its application
to shape optimization problems. Type and radius of the utilized filter func-
tion are simple and robust parameters which control the curvature of the
optimal design. Accurate sensitivity analysis with respect to design vari-
ables defined by FE-based parametrization requires an optimal shape of
the elements. This is ensured by mesh regularization methods also pre-
sented in chapter 6. Geometrically and mechanically based strategies are
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introduced and their application to shape optimization of shell structures
is shown.

The predominant number of existing optimization strategies is limited to
linear mechanical models. But there exists a large number of mechanical
problems that cannot be described by linear theories. Chapter 7 presents an
approach that combines nonlinear path following strategies and gradient
based shape optimization. The introduced algorithm restricts the number
of necessary function evaluations to a minimum which is essential for a
reasonable solution time. It is shown that application of a geometrically
nonlinear objective function and consistent differentiation yields to more
efficient design updates and therefore to more efficient optimal designs.
Especially in scenarios where shell structures work in membrane action
nonlinear kinematics allow for much more reliable optimal results.

The difference between geometrically linear and nonlinear shape optimiza-
tion is also investigated by the first example of chapter 8. Here the geome-
try of the well known Kresge Auditorium is optimized in order to show
the potential that is hidden in most of the existing buildings. Additionally,
the suitability of the developed methods to real life civil engineering opti-
mization problems is shown. Aerospace and automotive industry are also
promising application fields for shape optimization strategies utilizing FE-
based parametrization. Two examples provided by the Adam Opel GmbH
show the application in the field of bead optimization. Improving mechan-
ical properties of thin metal sheets by draw beads is a well known and
highly efficient strategy. The crucial and nontrivial problem is the optimal
shape of the bead structure. The results of the presented examples prove
that shape optimization based on FE-based parametrization is well suited
to develop highly efficient, robust and mesh independent bead structures
with a minimal modeling effort.

This thesis finishes with some remarks about modeling and numerical ef-
fort, parallelization and application to industrial problems. Numerical effi-
ciency and the easy parallelization of the presented algorithms allows their
application to huge shape optimization problems with 106 or even more
design variables. This allows for the solution of large scale industrial opti-
mization problems in a reasonable time.



Chapter 2

Continuum Mechanics

This chapter presents the basic formulations of differential geometry and
continuum mechanics of solids. The derivations are restricted to mechani-
cal problems showing large translations and rotations but small strains. All
formulations and the examples of the following chapters are also restricted
to elastic material behavior formulated by the St.Venant-Kirchhoff material
model. The presented relations focus on 3-d free form surfaces with their
descriptions of geometry and kinematics.

As a matter of course this chapter provides only a small part of continuum
mechanics and differential geometry. Much more detailed introductions
to continuum mechanics can be found in [Hol00], [Hau02] and [BW08].
More information about differential geometry is presented in [Car76] and
[Hsi81].

2.1 Differential Geometry

Differential geometry is a tool to describe the geometry of complex three di-
mensional bodies. Geometrically nonlinear mechanics require the formu-
lation of the initial geometry and the deformed geometry denoted by refer-
ence configuration and actual configuration respectively. To avoid confu-
sion in defined quantities the reference configuration is described by capital
letters. Lower case letters are used for the actual configuration.

Bodies with curved boundaries are conveniently described via curvilinear
coordinates θ. In the following chapters this coordinate definition is used
for the applied shell and membrane elements as well as for specified nodal
design variables. The reference configuration describes the undeformed
state by reference coordinates X. The base vectors in this configuration are
denoted by Gi. They are defined as partial derivatives of the reference po-
sition vector X with respect to the curvilinear coordinates θi. The index i is
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Figure 2.1: Geometry and kinematics of curved 2-d bodies

defined as i ∈ {1,2} for two dimensional structures like shells and mem-
branes and i ∈ {1,2,3} for three dimensional structures like solids.

Gi =
∂X

∂θi
= X,i . (2.1)

The actual configuration describes the deformed geometry based on the
reference coordinates X and the displacement field u via

x = X + u. (2.2)

The base vectors of the actual configuration gi are defined as the partial
derivative of the actual coordinates x with respect to θi.

gi =
∂x

∂θi = x,i . (2.3)

Definition of base vectors in reference and actual configuration allows com-
putation of covariant metric coefficients in reference configuration and ac-
tual configuration by

Gij = Gi · Gj and gij = gi · gj (2.4)

respectively. The contravariant metric coefficients follow from simple ma-
trix inversion of the covariant metric coefficients by

Gij = {Gij}−1 and gij = {gij}−1. (2.5)
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Covariant and contravariant base vectors are related by the well known
Kronecker delta. This relation holds in the reference as well as in the actual
configuration. It is formulated by

Gi · Gj = gi · gj = δ
j
i with δ

j
i = 0 ∀ i 6= j, δ

j
i = 1 ∀ i = j. (2.6)

Specification of contravariant metric coefficients permits a straight forward
computation of the contravariant basis vectors in reference configuration

Gi = GijGj (2.7)

and actual configuration
gi = gijgj. (2.8)

Based on metric coefficients and base vectors the metric tensor (unit tensor)
is defined by

G = GijG
i ⊗ Gj = GijGi ⊗ Gj. (2.9)

The metric tensor substitutes the usual unit tensor I = ei ⊗ ej which is not
applicable to geometry representation in curvilinear coordinates.

Shell and membrane formulations often require the definition of the sur-
face normal in reference and actual configuration denoted by G3 and g3

respectively. The surface normal coordinates are not separated in covariant
and contravariant descriptions. Usually the vectors G3 and g3 are L2 nor-
malized. In the reference configuration they follow from the cross product
of the reference basis vectors by

G3 =
G1 × G2

|G1 × G2|
= G3 =

G1 × G2

|G1 × G2| . (2.10)

The computation of the actual surface normal vector reads as

g3 =
g1 × g2

|g1 × g2|
= g3 =

g1 × g2

|g1 × g2| . (2.11)

More detailed information about geometry description in curvilinear coor-
dinates and computation of curvatures can be found in [Wüc07] and the
references therein.

2.2 Kinematics

Kinematic equations relate displacements and rotations of a structure with
the shape modification of a material point. The kinematic equations are
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formulated with respect to the reference configuration which is common
practice in solid mechanics.

The displacement field u describes the geometry modification from refer-
ence to actual configuration by

u = x − X. (2.12)

Transformations between reference and actual configuration are performed
via the deformation gradient F. This unsymmetric second order tensor is
defined as

F =
∂x

∂X
. (2.13)

Application of chain rule of differentiation to equation (2.3) allows the
transformation of the covariant basis vectors from the reference configu-
ration to the actual configuration by

gi =
∂x

∂X

∂X

∂θi
= FGi. (2.14)

Modification of equation (2.14) permits direct computation of the deforma-
tion gradient by the covariant basis vectors of the actual configuration and
the contravariant basis vectors of the reference configuration

F = gi ⊗ Gi. (2.15)

A complete survey of relations between deformation gradient and basis
vectors is presented in [Bis99] and [Wüc07].

The definition of the deformation gradient and metric tensor affords the
formulation of strain measures usable for geometrically nonlinear prob-
lems. In solid mechanics the strains are mostly formulated on the reference
configuration by the Green-Lagrange strain tensor E defined by

E =
1
2

(

FTF − G
)

. (2.16)

Usually the tensor product FTF is defined as right Cauchy Green deforma-
tion tensor by C = FTF. The push forward of the Green-Lagrange strain
tensor to the actual configuration is defined as Euler-Almansi strain ten-
sor A. This operation applies the inverse deformation gradient F−1 and its
transposed F−T by

A = F−TEF−1. (2.17)

Green-Lagrange as well as Euler-Almansi strains are not well suited to
handle large strain problems. Therefore Hencky or Biot stresses should
be used. The mechanical problems discussed in this thesis are restricted
to small strains. Thus, the kinematic relations are formulated by Green-
Lagrange or Euler-Almansi strains respectively.
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2.3 Material Law

The material law establishes the relation between strains and stresses.
Stress and strain measures are formulated as energetically conjugate pairs
which allows the expression of energy quantities by products between
stress and strain. The formulation in curvilinear coordinates additionally
require the stress description in covariant basis vectors to eliminate the
metric influence in scalar products.

The second Piola-Kirchhoff stress S and Green-Lagrange strain E are an
energetically conjugated pair related by the fourth order material tensor C

formulated in reference configuration

S = C · E with C = CijklGi ⊗ Gj ⊗ Gk ⊗ Gl . (2.18)

Linear elastic and isotropic material behavior for geometrically nonlinear
problems is expressed by the Saint-Venant-Kirchhoff material model with
two Lamé constants λ and µ. They can be expressed by the material pa-
rameters Young’s modulus E and Poisson’s ratio ν with the formulations

λ =
E · ν

(1 + ν) · (1 − 2ν)
and µ =

E
2(1 + ν)

. (2.19)

The Lamé constants allow a straight forward formulation of the material
tensor components Cijkl by

Cijkl = λGijGkl + µ
(

GikGjl + GilGkj
)

(2.20)

2.4 Equilibrium Equations

The governing equation to describe equilibrium in structural mechanics of
closed systems is balance of linear momentum. It enforces that the change
of body momentum is equal to the sum of all forces acting on this body.
Detailed derivation of balance principles can be found in [Hol00].
The local form of the static momentum balance is defined by

div(FS) + ρb = 0 (2.21)

with density ρ, volume forces b and the divergence with respect to the ref-
erence configuration div(·).

The formulation of equation (2.21) as boundary value problem of structural
mechanics requires Dirichlet boundary conditions

u = û on Γu (2.22)
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and Neumann boundary conditions

t = t̂ on Γt (2.23)

with Γu ∩ Γt = 0.

The set of balance equation, kinematic relation, constitutive relation and
boundary conditions completely describes structural models. But the direct
solution for the unknown displacement field u is only possible for specific
geometries and boundary conditions. The reformulation of the boundary
value problem in a weak form provides the basis for a spatial discretization
of the problem by finite elements. The discretized form of the boundary
value problem can be solved for arbitrary geometries and boundary condi-
tions.

2.5 Weak Form

The balance equation (2.21) and the Neumann boundary conditions (2.23)
are reformulated to an integral expression. It is enforced that the residuum
of this relation weighted with test functions vanishes in an integral sense.

∫

VX

(−div(FS) − ρb) wdΩX +

∫

∂VX

(t − t̂)wdΓt = 0 (2.24)

with VX ⊂ ΩX and Γt ⊂ ∂ΩX . By definition the test functions w have to
fulfill the Dirichlet boundary conditions on Γu. ΩX and ∂ΩX describe the
reference domain and the boundary of the reference domain respectively.
After application of Cauchy’s theorem and the Gaussian integral theorem
[Hol00] equation (2.24) is reformulated to

∫

VX

(

SFT · grad(w)
)

dΩX =

∫

VX

ρbwdΩX +

∫

∂VX

t̂wdΓt (2.25)

where grad(·) denotes the gradient with respect to the reference configura-
tion. The term FTgrad(w) is defined as virtual Green strain

S · (FTgrad(w)) = S · 1
2
(FTgrad(w) + (grad(w))TF) = S · δE (2.26)

where the virtual Green strain is the Gateaux differential of the Green La-
grange strain tensor in the direction of w.

The weak formulation of the boundary value problem of structural me-
chanics is defined as:
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Find u ∈ Vû such that ∀w ∈ V
∫

VX

S · δEdΩX −
∫

VX

ρbwdΩX −
∫

∂VX

t̂wdΓt = 0. (2.27)

Vû and V describe the spaces for the test functions. They are defined by

Vû = {u ∈ H1(ΩX) : u = û on Γu} and (2.28)

V = {u ∈ H1(ΩX) : u = 0 on Γu}. (2.29)

The space H1(ΩX) defines the Sobolev space of function with square inte-
grable values and first derivatives in ΩX. From equation 2.28 follows that
applied Dirichlet boundary conditions must be compatible with the test
functions. More information about Sobolev spaces which defines the math-
ematical basis of the Finite Element discretization method can be found in
[BS94]. The mechanical interpretation of equation 2.27 is that a the energy
of a system in equilibrium does not change by the variation δE, which holds
at all extremum points of (2.27).

2.6 Finite Element Discretization

Equation (2.27) formulates the weak form of the nonlinear boundary value
problem continuously. Due to discretization by finite elements the con-
tinuous problem is approximated by a discrete problem where distributed
quantities are expressed by discrete nodal values and shape functions. Free
form surfaces are usually discretized by quadrilateral or triangle elements.
The basic element properties follow from the implemented kinematic as-
sumptions, e.g. Kirchhoff hypothesis or Reissner-Mindlin hypothesis for
shell elements. The applicability of the elements for certain mechanical
problems and their locking behavior strongly depends on the kinematic as-
sumptions and the internal degrees of freedom. For detailed formulations
of the applied membrane and shell elements is referred to [Wüc07] and
[Bis99] respectively.

The resulting nonlinear set of algebraic equations has to be linearized, e.g.
by a linear Taylor series expansion which allows the solution by an iter-
ative Newton-Raphson procedure until the computed displacement field
fulfills the equilibrium condition with sufficient accuracy. This procedure
is elaborated frequently in standard textbooks ([ZTZ00], [BLM00], [Bat95],
etc.) and should not be repeated here.



Chapter 3

The Basic Optimization

Problem

The formulation of complex mechanical processes in abstract, complete and
reasonable optimization models is the most important step of structural op-
timization. Usually, an optimization problem is characterized by an objec-
tive function and several constraints. In many cases even the formulation of
these functions requires a deep knowledge of the optimization strategy that
should be applied. Another crucial point is the specification of the design
variables. Based on this choice special optimization strategies like sizing,
shape or topology optimization have to be applied. The type of applicable
mathematical optimization algorithms is determined not by the type but by
the number of design variables and by the differentiability of the response
functions. Usually, gradient based strategies are better suited for a large
number of design variables, whereas zero order methods are applicable to
problems where gradients cannot be computed. Several successful opti-
mization strategies are based on optimality criteria which usually yield to
very fast and robust solution procedures.

This chapter is intended to introduce the most basic components of struc-
tural optimization problems like optimization strategies, optimization al-
gorithms, response functions, sensitivity analysis and state derivatives.
This allows precise and clear presentations of more detailed topics of struc-
tural optimization in the following chapters. Additional information to the
short introductions presented here can be found in the classical textbooks
of shape optimization, e.g. [HG92], [Aro04], [Kir92] and [Van84].
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3.1 Standard Formulation of Structural Optimization

Problems

Each mechanical optimization problem can be formulated in the standard
form

Minimize f (s, u),

such that gi(s, u) ≤ 0,

hj(s, u) = 0,

sl ≤ s ≤ su

s ∈ Rn

i = {1, .., ng}
j = {1, .., nh}

(3.1)

with the design variable vector s, the state variables (e.g. displacements) u,
objective function f , inequality constraints g, equality constraints h and the
lower and upper side constraints to the design variables sl and su respec-
tively.

The design variable type characterizes the basic properties of a structural
optimization problem. Basic types of variables are material parameters,
cross section parameters, geometrical parameters and density distribution
in the domain. The choice of parameter type yields to different optimiza-
tion strategies introduced in section 3.3. The size n of the design space Rn

specifies the number of independent variables. They determine the appli-
cable optimization algorithms as well as the numerical effort, c.f. section
3.2.

The objective function or cost function is the measure to judge the quality of
the current design. Objectives can be formulated by several sub-functions
which yields to multi-objective optimization problems. In general these
type of optimization problems need the definition of an additional rule
to select the best solution from all solutions on the Pareto front [EKO90].
All the following derivations and examples are based on a single objective
function.

The inequality constraints gi and the equality constraints hj specify the
feasible domain, where the number of applied inequality constraints and
equality constraints are denoted by ng and nh, respectively. During the op-
timization process an inequality constraint may become active, inactive or
redundant. Equality constraints are only active or redundant. A basic prop-
erty of the optimization problem is that the number of active constraints
must be smaller or equal to the number of design variables.

Subsequently, objective function and constraint equations are often de-
noted as response functions because of their basic property: the description
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of a structural response. Common response functions in structural opti-
mization problems are compliance, mass, stress, eigenfrequency, buckling
load and more. A detailed description of several, frequently used response
functions is presented in section 3.4.

3.1.1 Lagrangian Function

The reformulation of the set of equations in (3.1) to a single function is
denoted as Lagrangian function. The Lagrangian function is formulated in
the primal variables s and the dual variables λ and µ. The minimization of
(3.1) yields to a saddle point with the same function value as the original
objective but without specification of external constraint equations. The
general formulation of the Lagrangian function reads as

L(s, u, λ, µ) = f (s, u) +
ng

∑

i=1

λi · gi(s, u) +
nh

∑

j=1

µj · hj(s, u); λi > 0, µj 6= 0.

(3.2)
Active constraints defined in (3.1) are zero by definition whereby the La-
grangian function merges to the objective for arbitrary Lagrange multipli-
ers λ and µ. Equation 3.2 provides the basis for several constraint opti-
mization strategies like Penalty Methods ([HG92])or Augmented Lagrange
Multiplier Methods (c.f. section 4.7.2).

3.1.2 Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker Conditions (KKTC) define necessary optimality
conditions for the stationary point of the Lagrangian function. They are
defined as partial derivatives of the Lagrangian function with respect to
the design variables s and the Lagrange multipliers λ and µ respectively.

∇s f (s, u) +
ng

∑

i=1

λi∇sgi(s, u) +
nh

∑

j=1

µj∇shj(s, u) = 0 (3.3)

λi∇λi
L(s, u, λ, µ) = λigi(s, u) = 0 (3.4)

∇µ j L(s, u, λ, µ) = hj(s, u) = 0 (3.5)

λi ≥ 0 (3.6)

Equations 3.4, 3.5 and 3.6 enforce that constraints must be active at the
optimum. Inequality constraints require the distinction between active and
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inactive constraints. Active inequality constraints are characterized by

λi ≥ 0 and gi(s, u) = 0. (3.7)

The product of the constraint value gi and the respective Lagrange multi-
plier λi is always equal to zero. Thus, the value of the Lagrangian function
(3.2) is not affected. Inactive inequality constraints are defined by

λi = 0 and gi(s, u) < 0. (3.8)

Also in this case the product of Lagrange multiplier and constraint value is
equal to zero but inactive constraints are not considered in the Lagrangian
function. The set of active inequality constraints together with the non-
redundant equality constraints is commonly denoted as active set of con-
straints.

Equation 3.3 formulates an equilibrium between the objective gradient and
the scaled constraint gradients. This equilibrium condition is visualized
in figure 3.1. The picture shows a two dimensional optimization problem

g1 = 0
g2 = 0

feasible domain
g1 < 0, g2 < 0

infeasible domain
g1 > 0, g2 > 0

�

∇ f

�

/
W

s∗

−∇ f (s∗)

λ1 · ∇g1(s∗)
λ2 · ∇g2(s∗)

Figure 3.1: Graphical interpretation of KKTC at the optimum

with a linear objective f and two convex nonlinear inequality constraints g1

and g2. The optimum at design point s∗ is clearly a constrained optimum
defined by g1 = g2 = 0. In this example equation 3.3 is established by
−∇ f = λ1 · ∇g1 + λ2 · ∇g2.
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3.1.3 Dual Function

As introduced in section 3.1.1 the Lagrangian function is defined in primal
variables s and dual variables λ and µ. Provided that primal variables can
be expressed via dual variables by

s = s(λ, µ) (3.9)

the Lagrangian function L merges to the dual function D by

L(s(λ, µ), u, λ, µ) = D(u, λ, µ) = min
s

L(s, u, λ, µ). (3.10)

The dual function allows solution of the optimization problem via maxi-
mization of D with variables λ and µ.

In general, it is not possible to express the primal variables explicitely in
dual variables as denoted in equation (3.9). Whenever response functions
can be formulated as separable functions, the primal variables can be ex-
pressed in dual variables. Equation 3.11 presents an example for a separa-
ble function.

f (s) = f1(s1) + f2(s2) + f3(s3) + ... + fn(sn) (3.11)

Global approximation methods like the Method of Moving Asymptotes
(MMA) [Sva87], [Sva02] are designed in order to allow a formulation of the
dual function. Linear programming (LP) methods approximate the nonlin-
ear optimization problem by linear functions. These methods also allow
for a straight forward formulation of the dual function.

Uzawas method [AHU58], [Ble90] is a well known iterative approach that
incorporates the dual function in the solution of the constrained optimiza-
tion problem. Each iteration step of Uzawas method contains two major
steps:

1. Compute new design sk by minimization of the Lagrangian function
(3.2) for fixed Lagrange multipliers

2. compute new Lagrange multipliers by maximization of the dual func-
tion (3.10) for the actual design sk

The staggered minimization-maximization procedure of Uzawas method
directly computes the stationary point of the Lagrangian function.
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3.2 Optimization Strategies

There exists are variety of algorithms to solve the problem formulated in
equation 3.1. In general, these algorithms can be separated according to
the order of information they take into account. Zero order methods solve
the optimization problem based on function evaluations of the response
functions. First order methods utilize function evaluations and the first or-
der derivatives of the system response with respect to the design variables.
Second order methods additionally work with second order derivatives.
Usually, the order of information is a measure for efficiency of the opti-
mization strategy.

3.2.1 Zero Order Optimization Strategies

Zero order methods are applied for highly complex optimization problems
where mechanical problem and objective cannot be described in a closed
form, e.g. process optimization or optimization of car design for crash
analysis. Another application field of zero order strategies are problems
with discontinuous derivatives, e.g. optimization problems with discrete
variables. In both cases it is not possible to compute continuous gradients
which prevents application of gradient based strategies. Thus, zero order
optimization methods are applied for this type of problems. These meth-
ods can be separated in biological methods, e.g. evolutionary strategies or
genetic algorithms and stochastic methods.

Evolutionary Strategies

Evolutionary strategies are models of the natural evolution process which
is well formulated in the term "Survival of the Fittest" published by Herbert
Spencer in 1864. The basic steps in evolutionary optimization algorithms
are initialization, mutation and selection. In the initialization process a par-
ent and a descendant are described by a set of genes. The genes of the par-
ent describe the starting design of optimization. In the mutation process
the parent produces a new descendant with slightly modified genes where
the deviations are independent and to a certain amount random. Due to
selection the parent of the next generation is chosen based on capacity of
survival. The process of mutation and selection is repeated until conver-
gence of the optimization problem.

Genetic Algorithms

Genetic algorithms are based on evolutionary strategies but with more
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complex mutation and selection mechanisms. The general formulation sep-
arates the following steps: initialization, selection, recombination and mu-
tation. The initialization defines a set of m individuals. Each individual is
represented by its genotype consisting of the genes. For genetic algorithms
the genotype is coded in a binary bit string. In the selection phase two
parents are chosen from the individuals based on fitness or contribution to
the objective. In the recombination step a new generation of m individuals
is generated. The genes of the descendants are estimated by crossover of
parent genes with random modifications. Due to mutation the bits of the
genotype are slightly modified by random processes. The steps selection,
recombination and mutation are repeated until convergence of the opti-
mization problem.

The basic drawback of biological optimization strategies is the numerical
effort for large optimization problems. This effort is related to the number
of individuals and the complexity of fitness evaluation. For acceptable
convergence the number of individuals in each generation must be large
enough to allow a good measurement of genotype modifications. Hence,
fitness evaluation is necessary for many individuals in each optimization
step. For structural optimization problems the fitness of an individual
is related to the structural properties usually formulated in a system of
equations. Thus, the equation system has to be solved for each individual
in each optimization step which results in a huge numerical effort. More
detailed information about evolutionary strategies and genetic algorithms
is presented in [Sch95] and [Aro04].

Stochastic Algorithms

The basic goal of stochastic search algorithms is to find the global mini-
mum of the objective, also for non convex functions, c.f. section 4.1. There
exist several stochastic search methods like Monte Carlo Method, Multi-
start Method, Clustering Method, Simulated Annealing and many more.
Basically all stochastic methods consecutively perform a global search and
a local search. The global search localizes possible regions for minima. This
allows for global convergence behavior. The local search finds the mini-
mum in a specific region. This improves efficiency of the method due to
reduced number of function evaluations. It is referred to [Aro04] for more
information about stochastic search algorithms.

In general, stochastic algorithms need a huge number of function evalua-
tions to converge. For large structural optimization problems with many
design and state variables this yields to long computation times because
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nearly all response function evaluations need the solution of an equa-
tion system. This property causes inefficiency of biological and stochastic
search methods for the solution of structural optimization problems.

An efficient method to improve the convergence behavior of stochastic
search strategies is the construction of response surfaces based on the func-
tion evaluations. This allows for consideration of undetermined parame-
ters which are tackled by the so called Robust Design methods, c.f. [Jur07]
and the reference therein. The response surfaces can additionally be used
to compute gradient information, which reduces the number of necessary
function evaluations significantly. Unfortunately this means the loss of
global convergence behavior.

3.2.2 Gradient Based Optimization Methods

In the following, gradient based optimization strategies denote methods
that utilize derivatives of response functions with respect to the design
variables to compute an improved design. Gradient computations on re-
sponse surfaces computed by global approximation techniques are not dis-
cussed here.

The gradients or sensitivities can be computed by several different methods
introduced in section 4.3. Based on the gradients of the response functions
at a specific design all methods utilize a characteristic method to compute
a design update direction. The final design update is then computed by
the scaling of the design update direction with the step length factor. In
general, this step length factor is determined by a one dimensional line
search, c.f. section 4.8. A well known exception of this rule is Newtons
method which directly computes a search direction with optimal length.
This search direction can be applied directly as design update.

Gradient based optimization strategies can be separated in direct meth-
ods and local approximation methods. Direct methods solve the optimiza-
tion problem established in (3.1) directly. This may result in bad conver-
gence behavior due to ill posed problem formulations. Local approxima-
tion methods compute at each step an approximation of the optimization
problem in order to ensure proper consideration of constraints or efficient
search directions. Reasonable local approximations (e.g. by penalty factors)
improve the robustness of the problem seriously and permit efficient solu-
tion strategies. A second characterization of gradient based optimization
methods offers their applicability to constrained optimization problems. In
general, constrained optimization problems are more difficult to solve than
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Direct Methods Local Approximation Methods

Unconstrained Constrained Constrained
Steepest Descent Feasible Direc-

tions
Method of Moving
Asymptotes

Conjugate Gradi-
ents

Gradient Pro-
jection

Exterior / Interior Penalty
Methods

Variable Metric Simplex Augmented Lagrange
Multiplier

Table 3.1: Summary of first order methods

unconstrained problems which yields to more complex solution algorithms
and slower convergence.

First Order Methods

First order methods apply first order gradients but no second order gradi-
ents in the computation of the search direction. The most important first or-
der methods are listed in table 3.1. Famous direct optimization methods for
unconstrained problems are the Steepest Descent (SD) and the Conjugate
Gradient (CG) Method. In most cases the CG-method yields to faster con-
vergence with a minimal increase in numerical effort compared to steepest
descent algorithms. More information about both methods can be found
in sections 4.6.1 and 4.6.2. Variable Metric Methods [Van84] or quasi New-
ton methods are based on approximations of the Hessian or the inverse
Hessian. They are usually even more efficient than CG-methods. The
most famous update schemes are the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update and the Davidon-Fletcher-Powell (DFP) update. There ex-
ist two different derivations for the update schemes which consecutively
improve the approximation of the Hessian or the inverse Hessian by first
order derivatives [Aro04]. The approximation of the inverse Hessian is nu-
merically more efficient because the evaluation of the search direction re-
duces to a matrix vector product. Approximating the Hessian itself leads
to a system of equations which has to be solved in order to compute the
search direction. In contrast to exact Newton methods quasi Newton meth-
ods need a line search (c.f. section 4.8) to ensure convergence. Establish-
ing the full Hessian or inverse Hessian requires huge amounts of memory
because both matrices are in general dense. Efficient implementations of
quasi Newton methods use ’memory less’ algorithms which store only the
update vectors and not the full matrix. In many algorithms the Hessian
or inverse Hessian update starts with the identity matrix. A more efficient
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approach for the initialization of the matrix is presented in [Ble90].

The Method of Feasible Directions (MFD) is straight forward extension of
the CG algorithm to constrained optimization problems. As soon as a con-
straint violation is monitored the next design update contains gradient in-
formation of the violated constraint which yields to a design update di-
rection pointing back into the feasible domain. This approach permits ro-
bust and fast implementations but it never leaves the feasible domain and
thus it cannot start at infeasible points. The basic theory of the feasible
directions method and a suitable implementation is presented in section
4.7.1. The Augmented Lagrange Multiplier (ALM) method is also a popu-
lar constrained optimization algorithm. This method is based on a penal-
ization of the constraint terms in the Lagrangian function. The influence
of the penalty term on the overall solution decreases as soon as the algo-
rithm reaches the optimum. It is referred to section 4.7.2 for more infor-
mation about this method. The Exterior / Interior Penalty Function Meth-
ods, the Gradient Projection Method and the Simplex Method are further
well known optimization strategies which are not presented in detail here.
More information about these methods and possible application fields are
shown in [HG92]. The Method of Moving Asymptotes (MMA) approxi-
mates the original optimization problem by a convex function which shows
an asymptotic behavior close to lower and upper boundaries. This approx-
imation allows for an easy derivation of the dual function and robust so-
lution algorithms. More detailed information about MMA is presented in
[Sva87], [Sva02], [Ble90], [Ble93] and [Dao05].

In general, first order methods are convenient for the solution of structural
optimization problems. They need a small number of iteration steps and
a small number of function evaluations compared to zero order methods.
Each iteration step of a first order method usually consists of a first order
sensitivity analysis and a few number of system evaluations for the line
search. Adjoint formulations of sensitivity analysis allow an efficient gra-
dient computation for many objective functions, c.f. section 4.3.

Second Order Methods

Second order methods utilize first order derivatives and second order
derivatives (stored in the Hessian matrix) to compute a design update. In
general, evaluation of second order information improves the quality of the
search direction but the computation is very time consuming and storage
of the Hessian matrix needs much memory. Highly non convex optimiza-
tion problems also reduce the worthiness of second order gradients. This
drawback is circumvented by application of local approximation methods.
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The most important second order optimization algorithms are listed in ta-
ble 3.2.

Unconstrained Constrained
Newtons method Sequential Quadratic Pro-

gramming (SQP)

Table 3.2: Summary of second order methods

Newton methods are based on a second order Taylor series expansion of the
stationary condition of the objective at a specific point. This directly results
in a linear system of equations which has to be solved for the next design
update. Due to the exact linearization of the problem Newtons method
does not need a line search. Additionally, it shows quadratic convergence
behavior close to the optimum. The basic drawback of this approach is the
computation of second order derivatives to establish the symmetric Hes-
sian. In general, it needs computation of n(n + 1)/2 second order deriva-
tives where n is the number of design variables. This tremendous numeri-
cal effort motivates formulation of quasi Newton methods which are based
on approximations of the Hessian or the inverse Hessian by first order
derivatives. More detailed information about Newton and quasi Newton
methods as well as illustrative examples are presented in [Aro04].

The straight forward extension of Newton methods to constrained op-
timization problems is the Sequential Quadratic Programming (SQP)
method also denoted as Constrained Variable Metric (CVM) or Recursive
Quadratic Programming (RQM) methods. SQP methods apply a second
order Taylor series expansion of the Lagrangian function (3.2) which yields
to a Hessian containing second order objective derivatives and first order
constraint derivatives. Thus, the objective is approximated quadratically
whereas constraints are approximated only linearly. The BFGS update is
also applied for SQP methods to reduce the numerical effort to compute
the Hessian with the consequence of a necessary line search. SQP methods
are explained in detail in [Ble90], [Dao05], [Aro04] and [HG92].

3.3 Design Variables

The choice of design variables defines basic properties of the optimization
problem. Based on the design variables structural optimization problems
are separated in material, sizing, shape and topology optimization. The
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Figure 3.2: Fiber angles and stacking sequence of composite material

numerical effort of the sensitivity analysis as well as the overall robustness
of the optimization problem is strongly related to the choice of design vari-
ables.

3.3.1 Material Optimization

Material optimization problems utilize material parameters as design vari-
ables whereas topology and geometry of the structural model remain con-
stant. Examples for material variables are distribution of concrete reinforce-
ment, direction of fiber angles or layer sequence in composite materials,
c.f. figure 3.2. It shows the layer sequence of a composite structure where
each layer is characterized by a different fiber angle. The derivatives of the
response functions with respect to material variables are related to the ma-
terial description only which ends up in relatively simple formulations. In
several material optimization problems design variables are not continuous
parameters, e.g. specified fiber angles or number of plies. Differentiation
with respect to such parameters yields to integer programming problems,
c.f. [HG92], [Aro04].

A very flexible method of material optimization is the so called Free Ma-
terial Optimization (FMO) introduced by Bendsøe et. al. in [BGH+94].
In [GLS09] this method was also applied to shell structures. In FMO ap-
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proaches the components of the elasticity tensor are applied as optimiza-
tion variables. This usually results in an artificial optimal material tensor.
But the transfer of this optimal material to an existing material is a chal-
lenging postprocessing step.

3.3.2 Sizing Optimization

Sizing optimization is used to investigate the optimal dimension of cross
section parameters, which in detail are related to the applied structural
model. The cross section of truss structures is defined by the cross section

Figure 3.3: Cross section designs of a truss beam structure

area. Beam structures also carry bending loads which requires definition of
more complex cross sections, e.g. by width and height or the second mo-
ment of inertia. Wall and shell structures usually define their cross section
by the thickness. Due to constant model geometry and model topology
differentiation of the response function with respect to sizing parameters
results in facile and efficient formulations. A simple sizing optimization
problem is sketched in figure 3.3. It shows three different cross section
types for specific parts of a truss structure with specified geometry and
topology. During the sizing optimization process the optimal dimension of
each cross section is evaluated. The possible result is a structure with mini-
mal weight that fulfills constraints with respect to maximum displacements
and stresses.
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3.3.3 Shape Optimization

Shape optimization problems employ the governing geometry variables of
a shape parametrization as optimization variables, e.g. nodal coordinates
of finite elements, control point coordinates of CAD models or morphing
boxes or amplitudes of shape basis vectors. The topology of the structure

Figure 3.4: Shape designs of a truss beam structure

(connectivity of elements) remains unchanged which prevents the gener-
ation of holes. Figure 3.4 motivates a simple shape optimization problem
of a truss beam structure. It can be easily observed that the topology (con-
nectivity) of all three designs is equal although the geometry and, there-
fore, the load carrying behavior changes completely. Formulation of shape
derivatives results in complex and time consuming algorithms compared
to material or sizing variables whereby algorithmic complexity is strongly
related to the applied finite elements. In general, response functions of
shape optimization problems are highly non-convex especially for thin and
lightweight structures caused by large differences in efficiency of load car-
rying mechanisms, e.g. load transfer via bending or membrane action. An-
other source of non-convexity is the interaction of different local design
modifications. A famous example are bead optimization problems where a
large number of possible bead designs shows nearly equivalent structural
properties.
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3.3.4 Topology Optimization

The most flexible optimization problem is obtained by application of topol-
ogy optimization methods. In such problems neither the geometry nor the
topology of the structure are predefined. Basic parameters of topology op-

Figure 3.5: Topologies of a truss beam structure

timization problems are the design space and the boundary conditions of
the mechanical model. The optimization method computes the most effi-
cient material distribution in the design space. This idea is illustrated by
the truss structures in figure 3.5. All three designs are suitable to transfer
the load to the supports whereas the material distribution in the design
space is totally different.

The most famous topology optimization method is SIMP 1 (c.f. [Ben89])
which establishes a heuristic relation between material properties like
Young’s modulus and material density. In this approach the density of each
single element is specified as independent optimization variable which ne-
cessitates application of regularization methods, c.f. chapter 6. Application
of SIMP to minimum compliance problems yields to the optimal Michell
[Mic04] type structures. The predominant number of applications of topol-
ogy optimization are related to continuum models discretized by wall or
solid elements. An application to shell structures is basically possible, c.f.
[Kem04] but these results need serious interpretation.

Many structural optimization problems require a combination of differ-
ent design variables. Material and sizing parameters are well suited for

1Solid Isotropic Material with Penalization
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a mixed formulation with shape parameters, c.f. [Rei94] whereas combina-
tions with topology optimization methods are much more difficult.

3.4 Response Functions

Objective and constraints specified in equation 3.1 are commonly denoted
as response functions. In general, these scalar functions depend on opti-
mization variables s and state variables u. Application of gradient based
optimization strategies requires differentiability to compute first order and
second order gradients, c.f. section 3.2.2. The optimization problems and
solution algorithms described here utilize a single objective function only.
Optimization problems with several objectives can be solved by multiob-
jective optimization algorithms, c.f. [EKO90]. Another possibility is a re-
formulation via summation of the weighted objectives

f (s, u) =

num f
∑

i

wi · fi(s, u) (3.12)

with the single objectives fi and corresponding weighting factors wi.
It is also possible to reformulate the single functions by the so called
Kreisselmeier-Steinhauser (KS) function, c.f. [KS79]

f (s, u) = −1
ρ

ln

[num f
∑

i

e−ρ· fi(s,u)

]

(3.13)

with the parameter ρ controlling the closeness of the KS-function to the
smallest objective. The objectives of eigenfrequency or buckling optimiza-
tion problems are commonly formulated by KS-functions. More detailed
information about application of the KS-function is presented in [HG92].

In the following sections several linear and nonlinear response functions
and their first order derivatives are described in detail, whereby the terms
"linear" and "nonlinear" are related to the underlying mechanical model.
Geometrically linear structural mechanics models are used to solve prob-
lems with small deformations, which allow to neglect the displacement in-
fluence on structural properties like stiffness. Nonlinear models incorpo-
rate the nonlinear effect of the displacement field on mechanical properties
which allows a more realistic computation of structural response.
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3.4.1 Mass

Many structural optimization problems are related to the mass of the struc-
ture, either as objective or as constraint. Structural mass m is a function of
the design but not a function of the state variables

f (s) = m(s). (3.14)

The first order derivative of the mass with respect to the design variable i
can be computed by

d f
dsi

=
dm
dsi

. (3.15)

Design variables determining structural mass are usually related to sizing
variables, geometry variables and material density. Simple mass optimiza-
tion problems without further constraints or variable bounds in trivial de-
signs (zero cross section values, zero densities). Application of mass opti-
mization to the shape of a shell or membrane structure with constant thick-
ness permits investigation of the well known minimal surface problems if
suitable constraints are defined on the boundaries. Minimal surface prob-
lems may also be solved by several other methods:

• Closed analytical formulation which is only possible for specific
shapes of the surface boundaries

• Numerical solution applying membrane models [BFLW08], [Wüc07],
[Ble90]

• Experimental solution via soap film analogy [OS66]

Figures 3.6 and 3.7 show the initial geometry and the final result of a Scherk
like minimal surface. This type of minimal surface was discovered by Hein-
rich Ferdinand Scherk in 1835. The length, width and height of this special
example are all equal. The minimal surface is computed by a mass min-
imization problem of a shell structure with constant thickness. The opti-
mization converges at the minimal surface without specification of further
constraints.

Another famous minimal surface is the catenoid depicted in figure 3.9. The
catenoid as minimal surface was discovered by Leonard Euler in 1740. This
shape connects two planar circles by the rotation of the catenary curve
around the axis specified by the center points of the circles. The initial
geometry of the shape optimization problem has a height to radius ratio
equal to 1.3158 which is close to the analytical limit of the catenoid surface,
c.f. [Lin09].
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Figure 3.6: Initial Scherk surface Figure 3.7: Final Scherk surface

Figure 3.8: Initial catenoid surface Figure 3.9: Final catenoid surface

3.4.2 Stress

The stress at a specific material point is related to the element strains and
the material law according to equation 2.18. In structural optimization the
stress is mostly applied as constraint to prevent overstressing of the mate-
rial at a specific point. Application of stress constraints results in a redis-
tribution of stress peaks to a larger region and therefore to a reduction of
maximum stresses.

Often it is necessary to formulate the stress state at a point by a scalar quan-
tity. Therefore equivalence stress hypothesis like the von Mises hypothesis,
Tresca hypothesis or Rankine hypothesis are well suited. Subsequently, the
von Mises equivalence stress is utilized. It is often applied for ductile ma-
terials like steel under static or quasi static loading. The von Mises stress of
a three dimensional continuum is specified by

σv =

√

1
2

[(σI − σI I)2 + (σI I − σI I I)2 + (σI I I − σI)2] (3.16)
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with the principal stresses σI , σI I and σI I I . It is obvious that a hydrostatic
stress state causes a zero von Mises stress whereas deviatoric stress states
cause high von Mises stresses.

The stress of a specific material point is a function of design and state vari-
ables

f (s, u) = σv(s, u) (3.17)

The stress derivative is formulated by the chain rule

d f (s, u)

dsi
=

∂σv

∂si
+

∂σv

∂u

∂u

∂si
(3.18)

where ∂u/∂si denotes the state derivative introduced in section 3.5. From
equation 3.18 it follows that the von Mises stress has to be derived with re-
spect to the design variable si and the displacement field u. In the following
the derivative of the von Mises stress with respect to the design variable si

is presented. It applies in the same way to the derivative with respect to
the displacements.

∂σv

∂si
=

1

2
√

1
2 [(σI − σI I)2 + (σI I − σI I I)2 + (σI I I − σI)2]

·

[

2σI
∂σI

∂si
+ 2σI I

∂σI I

∂si
+ 2σI I I

∂σI I I

∂si
−

σI

(
∂σI I

∂si
+

∂σI I I

∂si

)

− σI I

(
∂σI

∂si
+

∂σI I I

∂si

)

− σI I I

(
∂σI

∂si
+

∂σI I

∂si

)]

(3.19)

A big challenge in structural optimization problems subjected to stress con-
straints is the number of active constraints. Usually, more and more stress
constraints become active as the design reaches the optimum. Therefore,
more and more gradients have to be computed and stored.

One possibility to circumvent this problem is the limitation of the sensitiv-
ity analysis to design variables close to the element with an active stress
constraint. This idea is motivated by the fact that design modification close
to the element with an active stress constraint have a big influence on this
stress. Hence, the sensitivity analysis of design variables close to the ele-
ment results in large gradients compared to design variables far away from
this special element. The approximation error of this approach decreases
with an increasing number of design variables considered in the sensitivity
analysis.

Another possibility to reduce the number of active stress constraints is the
formulation of integral stress quantities [Sch05]. In such approaches the
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element stresses are integrated over a specific domain. Thus, a single con-
straint equation controls the stress level of an entire domain. Another ben-
efit of integral stress measures is the improved robustness of the gradients.
Stress gradients computed on a single Gauss point are extremely sensitive
to design modifications which often cause numerical instabilities. Obvi-
ously, an integral stress measure is not as precise as the measurement of
the stress at a specific Gauss point. This has to be considered while specifi-
cation of the limit stress.

3.4.3 Linear Buckling

Linear buckling analysis allows to approximate the failure load of struc-
tural systems. The computation of exact critical loads requires a full non-
linear analysis which is much more time consuming, c.f. section 3.5.2. The
linear pre-buckling analysis provides good failure load approximations for
structures with a nearly constant stiffness until failure. In the predominant
number of applications the buckling analysis overestimates the real failure
load, hence it is in general non-conservative.

The linear pre-buckling problem is based on the solution of the eigenprob-
lem

(K − λKg)φ = 0 (3.20)

with the linear stiffness K, the geometric stiffness Kg, the buckling mode
φ and the inverse of the buckling load multiplier λ. The goal of buckling
optimization is mostly the increase of the buckling load 1/λ, which yields
to the response function

f (s) = λ(s). (3.21)

The computation of the first order derivative of (3.21) is based on a pre-
multiplication of equation 3.20 with φT . The resulting scalar function fb

fb(s, u, λ, φ) = φT(K − λKg)φ = 0. (3.22)

is used to compute the first order sensitivities. They follow by application
of the chain rule of differentiation to

d fb

dsi
= φT

(
∂K

∂si
− λ

∂Kg

∂si
− λ

∂Kg

∂u

∂u

∂si
− Kg

∂λ

∂si

)

φ+




2φT(K − λKg)

︸ ︷︷ ︸

0






∂φ

∂si
= 0, (3.23)
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wherein the displacement derivative of geometric stiffness is often ne-
glected. A normalization of buckling modes such that φT

i Kgφi = 1 allows
a reformulation of equation 3.23 to

dλ

dsi
= φT

(
∂K

∂si
− λ

∂Kg

∂si

)

φ, (3.24)

which permits a straight forward computation of first order buckling value
derivatives. In many buckling optimization problems a whole set of buck-
ling modes has to be optimized. In such cases the objective is formulated by
several buckling load factors, e.g. by the Kreisselmeier-Steinhauser func-
tion, c.f. page 28. The KS-objective function for a set of i buckling loads is
defined by

f (s) = −1
ρ

ln
∑

i

e−ρ·λi(s). (3.25)

The first order derivatives computed by

d f
dsi

=
1

∑

i e−ρ·λi(s)
·
∑

i

(

e−ρ·λi · ∂λi

∂si

)

(3.26)

contain the derivatives of the buckling loads computed in (3.24).

Subsequently, a simple buckling optimization example of a quadratic flat
plate discretized with shell elements is presented. The boundary conditions
are applied according to the well known Euler case 4 where the boundaries
perpendicular to the load axis are not supported. The smallest buckling

(a) Mode I (b) Mode II

(c) Mode III (d) Mode IV

Figure 3.10: Buckling modes of quadratic plate

values of the initial geometry and the corresponding buckling modes are
presented in table 3.3 and figure 3.10 respectively. The buckling load factors
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are normalized with respect to the value of mode I. It should be noted that
the fourth buckling value is 2.66 times larger than the first buckling value.

The goal of the optimization problem is to increase the buckling load, with-
out further constraints. The objective is formulated by a KS-function con-
sisting of the fourth lowest buckling modes. The design variables are the
coordinates of the FE-nodes, hence a shape optimization problem is solved.
Figure 3.11 shows the optimized geometry after 10 iteration steps of a
steepest descent algorithm, c.f. section 4.6.1. It is obvious that this ge-

Figure 3.11: Buckling optimized geometry of quadratic plate problem

ometry reacts much stiffer on the modes depicted in figure 3.10. This is
substantiated by table 3.3 which compares the initial and the optimized
buckling load values. Besides the tremendous increase of buckling loads

Mode nmb. Initial geometry Optimized geometry
I 1.00 14.84
II 1.58 16.17
III 2.08 17.26
IV 2.66 17.38

Table 3.3: Buckling load factors

the bandwidth of the optimized buckling loads should be mentioned. It
is a general property of optimization that the bandwidth of optimized re-
sponse values is significantly reduced, compared to initial values. Without
special care, optimized structures react much more sensitive to imperfec-
tions than non-optimized ones.

3.4.4 Eigenfrequency

Eigenfrequency analysis allow to investigate vibration behavior of struc-
tures. It is often requested that structural eigenfrequencies do not corre-
spond to loading frequencies, otherwise resonance effects occur. A speci-
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fied number of eigenfrequencies are usually computed by solution of the
eigenvalue system

(K − λM)φ = 0 (3.27)

with the linear stiffness matrix K the mass matrix M, the eigenvalues λ

and the eigenmodes φ. The eigenvalues of equation 3.27 are related to the
eigenfrequencies F by

F =

√
λ

2π
. (3.28)

Optimization of eigenfrequency problems is usually related to an increase
of the lowest eigenfrequencies or to a maximization of the distance to a
target frequency. Therefore, a response function is directly related to an
eigenfrequency

f (s) = F(s). (3.29)

Differentiation of this response function by applying the chain rule follows
to

f (s)

dsi
=

F(s)

dsi
=

1

4π
√

λ

dλ

dsi
. (3.30)

The computation of first order derivatives of the eigenvalues λ with respect
to a design variable si following the ideas presented in equations 3.21 and
3.22 gives

dλ

dsi
= φT

(
∂K

∂si
− λ

∂M

∂si

)

φ, (3.31)

Similar to linear buckling optimization problems also eigenfrequency op-
timization problems often consider more than one eigenvalue. Hence, the
objective may be formulated by a KS-function according to (3.25) with its
first order derivative defined in (3.26).

3.4.5 Linear Compliance

The response function of linear compliance or linear strain energy is used to
improve structural stiffness. In general, structures optimized with respect
to strain energy utilize very efficient load carrying mechanisms. Compli-
ance optimization is often combined with a constraint on structural mass
to prevent an increase of stiffness via an increase of mass. Mostly, com-
pact structures have a smaller strain energy than filigree structures. The
combination of compliance minimization with a mass constraint is applied
extensively for topology optimization problems following Michells theory
[Mic04], c.f section 3.3.4.
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Linear compliance can be formulated in a discrete form via

f (u, s) =
1
2

uTKu, (3.32)

with the linear stiffness K and the displacement field u. This formulation
of compliance is valid for geometrically linear problems. The first order
derivative of (3.32) with respect to a design variable si is defined as

d f
dsi

=
1
2

uT ∂K

∂si
u + uTK

∂u

∂si
. (3.33)

The corresponding state derivative ∂u/∂si is defined in section 3.5.1. Com-
pliance optimization problems with shape variables are sensitive to finite
elements that suffer from locking phenomena, c.f. [Dao05], [Cam04]. In
such cases the structure gains stiffness by optimization of locking modes
which is obviously a pure numerical effect.

The following example shows a linear compliance optimization of a shell
structure. The initial geometry represents a flat quadratic plate of linear
elastic material. The structure is Navier supported at the four corner nodes
and subjected to dead load acting perpendicular to the initially flat plate.
The optimization goal is minimization of compliance (3.32) by variation of
vertical nodal coordinates without further constraints. The shell thickness
remains constant during the optimization process. It is well known that a

Figure 3.12: Stiffness optimized geometry of linear quadratic plate problem

flat point wise supported shell structure subjected to loads which act nor-
mal to the shell surface transfers the loads via bending and transverse shear
to the supports. These load carrying mechanisms are much more inefficient
than a load transfer via membrane and inplane shear forces. The structure
displayed in figure 3.12 works to a large amount by membrane and in-
plane shear forces and is therefore much stiffer than the flat initial design.
This results in smaller displacements and therefore to a much smaller strain
energy, c.f. equation 3.32.
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The small increase in mass due to the increased surface area of the opti-
mized geometry yields to an increased dead load. This increased load acts
like a constraint that prevents designs with an unlimited height. The spec-
ified gravitation load and the shell stiffness define an optimal design with
a minimal compliance. If the height of the structure is increased above
this limit point the increase of load cannot be compensated by an increased
stiffness anymore. Thus, the compliance would increase again.

3.4.6 Nonlinear Compliance

Whenever the deformation field has a serious influence on mechanical
properties or boundary conditions equation 3.32 cannot be applied for op-
timizing structural stiffness. In these cases a nonlinear representation of
internal energy has to be applied.

Geometrically nonlinear structural

-

6

u

f

u0

f0

Figure 3.13: Nonlinear load displace-

ment curve

problems are characterized by a non-
linear relation between load and dis-
placement, e.g. by the curve de-
picted in figure 3.13. A numeri-
cally sufficient integration of inter-
nal energy requires a computation
of the full load-displacement curve
by very small load increments. It is
obvious that this approach is very
time consuming. Another draw-
back of this method is that the load-
displacement curve changes completely after application of a design up-
date during optimization. Hence, the full load displacement curve has
to be computed again. The tremendous numerical effort of the exact ap-
proach motivates an approximation of the internal energy of nonlinear
system by a few number of points on the load-displacement curve or by
available tangent information. The most simple approximation is depicted
in figure 3.13. It approximates the internal energy by the integral of a linear
function established between the origin and an arbitrary point on the load-
displacement curve characterized by the load f0 and the corresponding
displacement u0. The computation of this approximated integral is carried
out by the equation

f (u, s) =
1
2

(
fext

0

)T
u0, (3.34)
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with the external forces of the system fext
0 . The first order derivative of this

response function is defined by

d f
dsi

=
1
2

(
∂fext

0

∂si

)T

u0 +

(
1
2

∂fext
0

∂u
u0 +

1
2

fext
0

)T
∂u

∂si
(3.35)

with the state derivative ∂u/∂si defined in section 3.5.2. The shape op-
timization of geometrically nonlinear problems is elaborated in detail in
chapter 7.

The following example of nonlinear compliance optimization investigates
the structural model specified in section 3.4.5. The only difference is the
load which is scaled by a factor of 1000 to obtain a significant displacement
field. The goal of the optimization problem is minimization of nonlinear
compliance (3.34) by variation of vertical nodal coordinates and constant
shell thickness. There are no further constraints applied to the optimiza-
tion problem. The optimized geometry is depicted in figure 3.14. It shows

Figure 3.14: Stiffness optimized geometry of nonlinear quadratic plate problem

some significant differences compared to the optimization result of the lin-
ear problem, c.f. figure 3.12. Close to the corner nodes and the center of
the edges the latter one is only simply curved whereas the nonlinear opti-
mization result is doubly curved. This difference has a tremendous effect
on the critical load of the structure which is significantly higher for dou-
bly curved geometries. The differences of linear and nonlinear compliance
optimization problems are elaborated in detail in chapter 7 and by the ex-
ample presented in section 8.2.

The selection of response functions presented in this section is of course
not complete. Each function which describes a desired structural property
is applicable as response function in an optimization problem. Usually, the
response functions have to evaluated several times during the optimiza-
tion process. This motivates formulations that allow for numerically effi-
cient evaluation in order to reduce the overall solution time. Application
of gradient based optimization strategies additionally requires continuous
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differentiability of the response function with respect to the design vari-
ables.

3.5 State Derivative

The first order derivative of the state variables (here the displacements u)
with respect to a design variable si is denoted as state derivative. The re-
sponse function derivatives specified in (3.18), (3.33) and (3.35) require the
definition of the state derivative ∂u/∂si. In general, the computation of the
state derivative depends on the structural model.

3.5.1 Linear State Derivative

The computation of the linear state derivative is based on the equilibrium
condition of linear models formulated via

r(u, s) = K(s)u − fext(s) = 0. (3.36)

Differentiation of linear equilibrium with respect to a design variable re-
sults in the relation

dr

dsi
=

∂K

∂si
u − ∂fext

∂si
+ K

∂u

∂si
= 0 (3.37)

which can be reformulated to the linear state derivative

∂u

∂si
= K−1

(
∂fext

∂si
− ∂K

∂si
u

)

︸ ︷︷ ︸

f∗lin

. (3.38)

The vector f∗lin is commonly denoted as pseudo load vector because a sys-
tem evaluation with this vector as right hand side results in displacement
derivatives instead of displacements. The computation of the linear state
derivative is necessary for derivatives of response functions related to lin-
ear compliance (equation 3.33) and stress (equation 3.18) if a linear mechan-
ical model is used.

3.5.2 Nonlinear State Derivative

The equilibrium of geometrically nonlinear problems cannot be described
by equation 3.36 due to the dependency of the stiffness matrix on the dis-
placements. The resulting nonlinear stiffness matrix is denoted as tangen-
tial stiffness matrix Kt. It is defined as the partial derivative of the residual
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forces r(u, s) with respect to the displacement field u. The residuum fol-
lows from the equilibrium condition

r(u, s) = fint(u, s) − fext(u, s) = 0 (3.39)

with the internal forces fint and the external forces fext. The equilibrium
is fulfilled if the structural displacements and the external load specify a
point on the load displacement curve, c.f. figure 3.13. The first order total
derivative of (3.39) with respect to the design variables s is formulated via

dr

dsi
=

∂fint

∂si
+

∂fint

∂u

∂u

∂si
−

(
∂fext

∂si
+

∂fext

∂u

∂u

∂si

)

= 0. (3.40)

This equation can be reformulated to obtain the nonlinear state derivative
by

∂u

∂si
=

(
∂fint

∂u
− ∂fext

∂u

)

︸ ︷︷ ︸

Kt

−1 (
∂fext

∂si
− ∂fint

∂si

)

= K−1
t

(
∂fext

∂si
− ∂fint

∂si

)

︸ ︷︷ ︸

f∗nln

(3.41)

with the tangential stiffness matrix Kt and the nonlinear pseudo load vector
f∗nln. The nonlinear state derivative formulated in (3.41) is necessary for the
derivative of the nonlinear compliance function specified in equation 3.35
and for the derivative of the stress response function (equation 3.18) if the
underlying mechanical model is geometrically nonlinear.

3.6 Optimality Criteria

Instead of taking derivatives of response functions and applying math-
ematical optimization algorithms the Optimality Criteria (OC) methods
evaluate a problem specific heuristic criterion to find the optimal design.
Hence, OC-methods have to be designed for each specific class of prob-
lems. A general application of an optimality criterion is not possible. If an
optimality criterion can be found it usually provides a very fast and effi-
cient solution of the problem.

The most likely oldest OC-method is the Fully Stressed Design (FSD) con-
cept. It was originally designed for truss structures and postulates that the
structure with the minimal weight is also the structure with the maximum
stress in all members. Based on this assumption an iteration algorithm can
be designed which converges to the minimal weight design for all statically
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determined truss structures. If applied to statically undetermined struc-
tures FSD converges to improved but not to optimal designs. Additionally,
it is not straight forward to consider constraints, e.g. displacement limits.
More information about the fully stressed design concept is presented in
[HG92] and [Har08]

Another successful class of OC-methods are the bionic growth rules. These
methods are inspired by natural structures like trees, bones or teeth. The
designers of bionic growth rules argue that the nature had much time to
find the best designs of their structures and that non-optimal designs are
eliminated by the evolutionary process. The design update of the bionic
growth rule presented in [Mat90] is based on the assumption that opti-
mal shapes exhibit homogeneous surface stresses. Application of this rule
to weight minimization problems results in a redistribution of material to
highly stressed regions. Bionic growth rules are successfully applied for
several types industrial optimization problems.

The Updated Reference Strategy (URS) is designed for the form finding
of membrane structures [BR99]. From the optimization point of view it
can be considered as OC-method designed for weight minimization of sur-
face structures. The URS postulates that the minimal surface represents
the geometry which allows equilibrium of a 2-d isotropic stress field with
the boundary. If the full boundary is fixed the value of applied isotropic
prestress does not affect the final geometry. The URS is a very efficient ap-
proach to solve the problems depicted in figures 3.7 and 3.9. In the last
years it was enhanced to consider boundary cables, anisotropic prestress
and internal pressure. This allows computation of more realistic membrane
structures which are no mathematical minimal surfaces anymore [WB05],
[Wüc07], [Lin09]. A detailed introduction to the updated reference strategy
and its application as mesh regularization method is presented in chapter
6. Except of the mentioned mesh regularization approach no OC-methods
are applied in the optimization problems investigated in this thesis.



Chapter 4

Gradient Based Shape

Optimization

This chapter presents a detailed introduction to numerical shape optimiza-
tion with gradient based optimization strategies. The proposed methods
focus on their suitability to large optimization problems. This is neces-
sary because FE-based shape parametrization techniques are investigated
which usually yield to huge design spaces. It is shown that efficient sensi-
tivity analysis strategies, first order optimization methods and line search
algorithms using polynomial approximations can be combined to highly ef-
ficient solution algorithms for constrained and unconstrained optimization
problems. FE-based shape parametrization circumvents the crucial prob-
lem of proper design space formulations. This chapter is supplemented by
chapters 5 and 6 which provide additional information to specific topics of
sensitivity analysis and necessary regularization techniques. The proposed
methods are efficient, robust and generally applicable.

4.1 Convexity and Uniqueness

Convexity and uniqueness are mathematical terms to describe the curva-
ture of a function and the number of extremum points of this function. A
function is denoted as convex if all lines specified between two arbitrary
points on the function have no intersection with the function. Hence, the
function depicted in figure 4.1 is convex whereas the function in figure 4.2
is non-convex.

The convexity of a response function in structural optimization depends on
the type of the function and on the type of variables. Response functions
utilized for gradient based shape optimization of large systems are usually
highly non-convex. Thus, they exhibit many local minima minl where one
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of these is also the global minimum ming, c.f. figure 4.2.

The convexity of response functions and the uniqueness of optimal results
are topics of active discussions in the optimization community. Strictly
speaking there is no guarantee that gradient based optimization algorithms
find the global optimum ming. In the predominant number of applications
they will just find a local minimum minl. This motivates developers of
zero order methods to emphasize the global convergence behavior of their
algorithms. Unfortunately zero order methods are not applicable to large
optimization problems, c.f. section 3.2.1.

There exist several methods to reduce the non-convexity of a response func-
tion. First of all it is the function definition itself. In many cases integral for-
mulations run much smoother than local discrete parameters. Thus, the de-
sired structural property should be quantified in an integral formulation, if
possible. Also, the type of shape parametrization and the number of design
variables have a big influence on the convexity of the response function. In
general, the number of variables should be reasonable for the actual prob-
lem but it should not be needlessly increased. The regularization methods
presented in chapter 6 are also well suited to reduce the negative effects of
non-convex response functions.

The probably most important approach to influence optimal designs of gra-
dient based optimization methods is the choice of the initial design. Usu-
ally, small changes in the initial design provide a good estimation of the ro-
bustness of the full optimization model. Especially for shape optimization
problems small modifications of the initial design sometimes cause surpris-
ing effects. It is well known that the specification of the initial design is a
very time consuming part of the modeling procedure. Hence, variations of
initial designs are not always performed.
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4.2 Shape Parametrization

As denoted in the previous section the type of shape parametrization has
a big influence on the solution of the optimization problem. The shape
parametrization of a geometry provides the space of possible designs de-
noted as design space. It is obvious that the optimized geometry is re-
stricted to the chosen design space. Hence, the definition of a small design
space limits the optimizer to a small set of geometric variations.

In the predominant number of applications the geometry of an optimiza-
tion problem is specified by coordinates of a set of control points X̄i and the
respective shape functions Ni. Thus, the geometry in the reference config-
uration X (c.f. figure 2.1) can be formulated by

X =
∑

j

NjX̄j. (4.1)

The coordinates of the control points are defined as design variables si.
The different shape parametrization methods described in this section are
mainly characterized by the choice of control points and the choice of shape
functions.

4.2.1 CAD

Shape parametrization via Computer Aided Design (CAD) methods is well
established in industry. The control points of CAD models specify the so
called control polygon where the control points are not necessarily inter-
polated by the final shape. There exist many possibilities to specify the
shape functions of CAD models, e.g. polygons, splines, B-splines or Coons
patches. Actually, many commercial codes use Non Uniform Rational B-
Splines (NURBS) to specify curves, surfaces or volumes. Application of
NURBS functions allows for a large variety of geometries with only a small
number of parameters, c.f [PT97].

General drawbacks of CAD parametrizations are the time consuming mod-
eling and remodeling steps during optimization which cannot be auto-
mated. The remodeling is necessary whenever the optimal geometry can-
not be represented by the current parametrization. Another challenge of
CAD parametrizations are continuity requirements across patch bound-
aries which are not easy to ensure.

In general, CAD parametrizations result in a relatively small number of
design variables and therefore to a robust optimization problem. More in-
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formation about CAD parametrization of shape optimization problems is
presented in [Ble90] and [Sch05].

4.2.2 Shape Basis Vectors

Application of shape basis vectors for shape parametrization directly uti-
lizes selected FE-nodes as control points. Hence, there is no need for an
additional CAD model. Similar to CAD parametrizations the shape func-
tions can be specified by polygons, splines or B-splines. It is important to
specify the full set of shape functions up to the desired degree. Otherwise
the geometry representation might not be complete. A characteristic prop-
erty of shape basis vectors is their definition over the full mesh and not
only over the nodes that determine the shape of the structure. Hence, there
is no general need to apply mesh regularization algorithms.

The basic drawbacks of shape basis vectors are similar to the drawbacks of
CAD parametrizations, namely, the complicated and time consuming mod-
eling and remodeling. Another complicated and time consuming step is the
transfer of the optimized FE-mesh into a CAD model for further design or
machining. Construction of shape basis vectors and implementation issues
are discussed in [Har08].

4.2.3 Morphing

Morphing techniques are another tool to specify general mesh deforma-
tions without an underlying CAD model. They are originally designed for
image manipulation. Application of morphing as shape parametrization
method is based on the separation of the FE-mesh in morphing boxes. In
each box a set of control points is specified. The number of morphing boxes
with their control point coordinates specify the design space. Shape func-
tions of a desired order are specified by the control points in the morphing
box. Similar to shape basis vectors also the shape functions in the morphing
boxes are defined over the full mesh. Thus, mesh regularization methods
are not absolutely necessary. More information about morphing techniques
and the representation in commercial codes is presented in [Har08].

4.2.4 Topography

The shape parametrization techniques specified in previous sections are
applicable to 1-D, 2-D surface and 3-D solid geometries. Topography op-
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timization is based on a special shape parametrization of plate or shell
structures. It is used to optimize bead structures where predefined bead
geometries are utilized to define the design update. Thus, the continuous
design update specified over the design variables is approximated by the
interaction of a set of fixed update functions. A general problem of topog-
raphy optimization is the high mesh distortion after application of the bead
functions. Distorted elements have a serious influence on the quality of the
structural response. Additionally, the examples investigated in [Har08] and
[Sch05] show a loss of symmetry in initially symmetric problems. Similar
to topology optimization the final design has to be carefully interpreted to
derive a mechanically useful structure. More information about commer-
cial topography optimization software is presented in [Har08] and [Sch05].
A more theoretical introduction and implementation issues are presented
in [Dao05].

4.2.5 FE-based

FE-based shape parametrization provides a maximum size of design space
and needs minimal effort during modeling phase. In this approach the
nodes and ansatz functions of the FE-mesh are used as design variables
and shape functions, respectively. Obviously, it is sufficient to specify the
coordinates of those nodes as design variables that influence the geometry.

This should be visualized by figure 4.3a which shows a cube discretized
with hexahedrons and cutted by the plane A. The coordinates related to
surface normal directions nj with j ∈ {1..Nnc} indicate those coordinates
that determine the geometry of the cube. The coordinates related to sur-
face tangential planes or interior 3-D directions tk with k ∈ {1..Ntc} de-
fine the discretization of the cube but not its geometry. Following the gen-
eral concept of shape derivatives which was originally formulated by the
french mathematician Jaques Hadamard only the variation of coordinates
nj should affect the system response. The derivative of response functions
with respect to the coordinates tk should give zero because these coordi-
nates do not affect the shape. Due to the approximating character of finite
elements the indicated derivatives result in spurious values different from
zero. This effect is even amplified by incorrect element responses caused
by locking phenomena. Finally, the complete optimization result would be
seriously affected by deficiencies of the finite elements. Hence, it is much
more convenient to specify the optimization variables si only from the set
of normal coordinates nj (sj ∈ {n1, n2, ..., nNnc}). The tangential coordinates
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Figure 4.3: Design variables for shape derivatives

tk are controlled by mesh regularization schemes proposed in chapter 6. In
general, this method of separation of nodal coordinates can be applied to
all kind of finite element models.

Of course also shell structures allow specification of coordinates that affect
the shape and coordinates that just control the discretization. This separa-
tion is based on local cartesian coordinate systems established at the ele-
ment nodes. These coordinate systems define the surface normal and the
tangent plane. Thus, one obtains the set of normal coordinates nj and the
set of tangential coordinates tk which specify geometry of the shell and dis-
cretization of the mesh, respectively. To prevent the mentioned ill posed
optimization problems the optimization variables si are chosen from the
set of normal coordinates, si ∈ {n1, n2, ..., nNnc}. By this definition a vertex
node (node A in figure 4.3b) has a maximum number of three optimization
variables whereas an edge node (node B in figure 4.3b) has a maximum
number of two optimization variables. The inner nodes of a shell struc-
ture (node C in figure 4.3b) have only one coordinate which determines the
actual geometry. Hence, this normal direction is specified as optimization
variable.

Due to the mentioned drawbacks of CAD parametrization, shape basis vec-
tors and morphing the FE-based shape parametrization is utilized for the
following derivations and examples. It should be emphasized that appli-
cation of FE-based shape parametrization requires regularization methods
to control the wave length of the response gradients and the mesh quality.
These regularization methods are presented in chapter 6. Additionally, ef-
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ficient sensitivity analysis methods are required due to the huge number of
design variables for large FE-models. In this context adjoint formulations
are presented in section 4.3.4.

FE-based parametrization permits the most flexible design spaces that fit
optimal to the mechanics of the structural model. This is the basis of high
quality shape optimization results with a perfect relation to structural prop-
erties.

4.3 Sensitivity Analysis

The term sensitivity describes the effect of an input variation on the output.
Knowledge of sensitivities of systems or processes is an important issue in
nearly all fields that utilize mathematical models to formulate complex pro-
cesses, e.g. natural or financial sciences. For shape optimization problems
the sensitivity analysis describes the evaluation of derivatives of response
functions with respect to design variables. The existing approaches to com-
pute these response gradients are summarized in table 4.4. In the follow-

Analytical, Semi-Analytical, Exact Semi-Analytical

Direct Adjoint

Direct AdjointGlobal Finite Difference

Discrete Variational

Sensitivity Analysis

Figure 4.4: Methods for sensitivity analysis

ing sections theory and implementation of the depicted sensitivity analysis
methods are compared. They differ significantly with respect to numerical
effort and accuracy.
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4.3.1 Global Finite Difference

The global finite difference method approximates the derivative of a re-
sponse function by a finite difference formulation. In many cases a simple
forward finite difference step is applied

∂ f
∂si

≈ f (u, s + ∆si)− f (u, s)

∆si
(4.2)

where s + ∆si specifies the disturbance of the structure in direction of vari-
able si. Global finite difference approximations of response derivatives can
be implemented very easy even for response functions which do not per-
mit analytic differentiation. The basic drawbacks of this method are the
tremendous numerical effort and the approximation error. Equation 4.2
requires two complete function evaluations for the approximation of one
derivative. Mostly, each function evaluation corresponds to the solution
of an equation system. In general n + 1 system evaluations are necessary
to compute the derivatives of n design variables by first order finite differ-
ence approximations. Thus, sensitivity analysis by global finite differences
is very time consuming and, therefore, only applicable for a few number of
design variables.

4.3.2 Variational vs. Discrete

In contrast to the global finite difference approach variational and further
discrete sensitivity analysis methods utilize analytical derivatives. The ba-
sic difference between these methods is the sequence of discretization and
differentiation. In the variational approach the continuous formulation of
the governing equations are derived and then discretized. The basic goal of
variational sensitivity analysis is the formulation of a pseudo load vector.
Application of this vector as right hand side of a standard finite element
problem allows for computation of the state derivative, c.f. section 3.5.
Thus, the sensitivity analysis can be performed without modifications of
existing FE-codes. Variational formulations also permit adjoint sensitivity
analysis which has great advantages for optimization problems with a large
number of design variables and a small number of response functions, c.f
section 4.3.4. Variational sensitivity analysis is a convenient approach in
combination with existing FE-codes. The basic drawback is the poor flex-
ibility and the problem that the pseudo load vector has to be derived and
implemented separately for each mechanical problem. More information
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about variational sensitivity analysis is presented in [HG92], [Cam04] and
[Dao05].

The discrete sensitivity analysis is based on a differentiation of the dis-
cretized governing equations. Thus, discrete methods need more informa-
tion from finite element codes, e.g. the state variables, the stiffness matrix
or external forces. For several response functions these additional informa-
tion can be used to derive very efficient formulations for the sensitivities.
Due to these benefits and the existing access to all types of finite element
data the discrete sensitivity analysis is used in the following.

4.3.3 Direct Sensitivity Analysis

According to figure 4.4 variational and discrete sensitivity analysis can be
derived in the direct and the adjoint formulation. The direct approach is
based on an explicit evaluation of the state derivative for each design vari-
able, c.f. equations 3.38 and 3.41. It should be noted that the state deriva-
tive is independent of the response function. It just depends on the me-
chanical model and the actual design variable. The computation of n state
derivatives for n design variables by the direct approach needs the solu-
tion of n systems of equations. Additionally, n state derivatives have to
be stored. The direct approach is beneficial when the stored state deriva-
tives are applied in many response functions. In detail the numerical effort
compared to the adjoint approach is smaller when the number of design
variables is smaller than the number of response functions. For shape opti-
mization problems with FE-based parametrization this is almost never the
case. These problems are usually characterized by a huge number of design
variables and a small number of response functions. Thus, the direct sen-
sitivity analysis is not applicable to these problems due to the tremendous
numerical effort and the memory requirements.

4.3.4 Adjoint Sensitivity Analysis

The adjoint formulation of the sensitivity analysis is numerically much
more efficient for problems with a large number of design variables and
a small number of response functions. In general, it requires the solution
of n systems of equations for the derivative of n response functions. This
should be illustrated by two examples where the first one is related to a de-
fined target displacement of a single node. It is assumed that the mechani-
cal model is described by the nonlinear equilibrium equation, c.f. equation
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3.39. The response function is specified by the minimization of the nodal
displacement

f (s, u) = ut → min. (4.3)

Computing the derivative with respect to a design variable si gives

d f
dsi

=
∂ f
∂si

+

(
∂ f
∂u

)T ∂u

∂si
=

(
∂ f
∂u

)T ∂u

∂si
(4.4)

where ∂ f /∂si is equal to zero in this special example. Using the nonlinear
state derivative specified in (3.41) allows for the formulation of the direct
derivative

d f
dsi

=

(
∂ f
∂u

)T

K−1
t f∗nln. (4.5)

with the tangential stiffness Kt and the nonlinear pseudo load f∗nln. Instead
of solving the system of equations for the nonlinear pseudo load the for-
mulation can be modified such that the equation system is solved for the
displacement derivative of the objective. Thus, the equation system has
to be solved only once and not for each pseudo load vector. Exploiting
the symmetry of the tangential stiffness the resulting adjoint derivative is
specified by

d f
dsi

=

(

K−1
t

∂ f
∂u

)T

︸ ︷︷ ︸

λT

f∗nln. (4.6)

Hence, the sensitivity analysis for the simple displacement function can be
performed by evaluation of a scalar product between the adjoint variable λ

and the pseudo load vector f∗nln.

The reformulation of (4.5) to (4.6) requires symmetry of the tangential stiff-
ness matrix. This requirement is fulfilled for weak forms (c.f. equation 2.24)
that are symmetric bilinear forms ([BS94]) which is the case when test func-
tions are similar to shape functions. This approximation method is com-
monly denoted as Bubnov-Galerkin method. Discretization of these weak
forms yields to so called self adjoint operators which can be formulated in
a symmetric matrix.

In a second example the adjoint sensitivity analysis of the linear compli-
ance (3.32) is presented. Substituting the linear state derivative (3.38) in the
linear compliance derivative (3.33) gives

d f
dsi

=
1
2

uT ∂K

∂si
u + (Ku) K−1f∗lin. (4.7)
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Once again the symmetry of the stiffness matrix allows a reformulation

d f
dsi

=
1
2

uT ∂K

∂si
u + uTKK−1

︸ ︷︷ ︸

I

f∗lin. (4.8)

Substitution of the linear pseudo load by the explicit formulation ( equation
3.38) allows a further modification to

d f
dsi

= −1
2

uT ∂K

∂si
u + uT ∂fext

∂si
. (4.9)

It can be observed that the derivative of the linear compliance formulated
in equation 4.9 does not require any global operation. The whole analysis
is done by element data which allows for extremely fast algorithms.

The presented examples substantiate the benefits of adjoint sensitivity anal-
ysis compared to direct sensitivity analysis. The adjoint formulations allow
a much faster computation and require only a small amount of memory.
Thus, all the examples presented here utilize adjoint formulations for sen-
sitivity computation.

The following two sections investigate the derivatives of element data with
respect to the design variables. Usually, the adjoint formulations permit an
element wise computation of the gradients. Therefore, element data like
stiffness matrix, load vectors or stresses have to be derived.

4.3.5 Analytical Sensitivity Analysis

The analytical sensitivity analysis is based on exact analytical differentia-
tion of element quantities. The analytical derivative of a linear stiffness
matrix is used to present the basic procedure. Usually a stiffness matrix
can be expressed by

K =

∫

Vi

BTDB|J|dVi (4.10)

with the B-operator B, the material matrix D, the determinant of the Jaco-
bian |J| and the domain for the numerical integration Vi. The analytical
derivative of this equation with respect to a shape variable is found by ap-
plication of the product rule

∂K

∂si
=

∫

Vi

(
∂B

∂si

)T

DB|J|dVi +

∫

Vi

BT ∂D

∂si
B|J|dVi+

∫

Vi

BTD
∂B

∂si
|J|dVi +

∫

Vi

BTDB
∂|J|
∂si

dVi. (4.11)
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The constant element integration domain Vi does not give a derivative with
respect to the design variables.

In case of sizing optimization the derivatives are much simpler because
B-operator and mostly also the material matrix do not depend on sizing
variables. It is obvious that implementation of equation 4.11 gives lengthy
and relatively complicated element routines. Due to the serious numerical
effort of dense matrix products the computation of analytical shape deriva-
tives needs significantly more time compared to the computation of a stan-
dard stiffness matrix, c.f. [Kim90]. The derivation of analytical derivatives
of element data requires a deep knowledge of the element formulation, es-
pecially for complicated elements like nonlinear shells with EAS and ANS
extensions. The complexity of these formulations and the significant nu-
merical effort motivate the approximation of analytical derivatives by finite
differences which can be applied to any formulation in a black-box kind of
standard application..

4.3.6 Semi-Analytical Sensitivity Analysis

The substitution of analytical derivatives by finite differences should over-
come the basic drawbacks of analytical sensitivity analysis, namely the
complicated formulations that prevent a sensitivity analysis if the element
routines are inaccessible. Also the semi-analytical approach is introduced
at the example of the linear stiffness matrix. The analytical derivative de-
fined in (4.11) can be approximated by a first order equation

∂K

∂si
≈ K(u, si + ∆s) − K(u, si)

∆s
(4.12)

or a second order equation

∂K

∂si
≈ K(u, si + ∆s) − K(u, si − ∆s)

2∆s
(4.13)

where the terms first order and second order are related to the decrease of
the approximation error for decreasing perturbations ∆s. The basic bene-
fit of semi-analytical sensitivity analysis is the small programming effort
and the predictable numerical effort. It is obvious that a stiffness deriva-
tive needs approximately twice the time of a standard stiffness evaluation.
Another advantage is that existing element routines do not have to be mod-
ified.

The drawback of each finite difference method are approximation errors
and round-of errors. The derivative suffers from approximation errors
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whenever the perturbation ∆s is too large. If the perturbation is too small
round-of errors disturb the result. Usually, the range of suitable perturba-
tions has to be investigated for each application.

Application of finite difference methods to derivatives of element data
shows a very specific type of approximation error. This error is related to
the rigid body rotation vectors of the elements where elements with higher
order shape functions like Bernoulli beams and Kirchhoff plates behave
significantly more sensitive. Chapter 5 presents a method to eliminate this
type of approximation errors by an efficient method independent of the
specific element formulation. The resulting exact semi-analytical sensitiv-
ity analysis permits a robust and efficient approximation of the element
derivatives with minimal approximation errors.

4.4 Side Constraints

Side constraints limit the admissible range of design variables, e.g. allow-
able shell thickness or beam cross sections of sizing optimization problems.
Shape optimization problems utilize side constraints to describe the max-
imum constructed space of the optimal structure. In many applications
these constraints are necessary to prevent trivial results, e.g. zero cross sec-
tions. In general, side constraints are not treated as "real" constraints in the
optimization problem, c.f. equation 3.1. In detail, they do not enter the
Lagrangian function (3.2) and the Karush-Kuhn-Tucker conditions (3.3) -
(3.5). A reason for this is the simple structure of side constraints that allows
for a simplified treatment. Another reason is the huge number of side con-
straints that are usually defined. In many problems each variable has an
upper and a lower side constraint. In these cases the number of constraints
would be at least two times the number of variables which would end in a
very expensive solution process. Thus, the side constraints are treated for
each optimization algorithm in a specific manner. The implementation in
MMA methods is presented in [Dao05].

Following the idea of "move limits", first order gradient methods like Con-
jugate Gradient (section 4.6.2), Feasible Direction (section 4.7.1) or Aug-
mented Lagrange (section 4.7.2) allow the abidance of side constraints by
limitations in the design update step. This approach is simple, very effi-
cient and robust for moderate design update steps which are necessary for
constrained optimization problems anyway.

The basic procedure of this approach is visualized in figure 4.5. It shows a
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simplified shape optimization problem with the geometry at iteration step
i characterized by the points N1, N2 and N3.

The depicted geometrical con-
constraint
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�

�

�

∆X
∆X

∆X

n1

n2

n3

Figure 4.5: Constrained design update

straint is treated as side constraint
of the design variables formulated
at the points N1, N2 and N3. It may
result from limitations of the con-
structed space. The application of
the pure design update ∆X yields
to the geometry depicted by the
dashed line. Obviously it violates
the constraint near point n2. There-
fore the design update is modified
such that the point n2 is placed directly on the boundary of the constraint.
The resulting geometry described by the points n1, n2 and n3 is feasible
and can be used to compute the design update of the next iteration step
i + 1. This general concept is usually denoted as trust region concept.

The following example visualizes the introduced procedure by the catenoid
problem presented in section 3.4.1 where the initial catenoid design has a
radius equal to 0.5. It is enhanced by a cylinder with the radius equal to 0.4
representing a geometrical constraint. It is obvious that the optimal solu-
tion depicted in figure 3.9 cannot be reached anymore because it would vi-
olate the constraint. The constrained optimum shown in figure 4.7 touches

Figure 4.6: Initial catenoid design Figure 4.7: Constrained catenoid

the cylinder in the middle of the catenoid. It represents a minimal surface
under a geometric constraint. In general, sets of geometrical primitives like
cylinders, spheres, boxes, cones and tori are well suited to describe complex
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limits of constructed spaces. The exact analytical implementations of these
primitives allow for fast and exact algorithms to treat these constraints as
side constraints of the optimization problem.

4.5 Size Effects in Response Gradients

The basic output of each optimization algorithm is the design update which
can be interpreted as design velocity with the iteration steps as time steps.
Gradient based optimization algorithms utilize derivatives of response
functions to compute the design update. Thus, any inaccuracy in the gra-
dient fields also appears in the design update. Due to the non-convexity
of the response function the disturbed design update may result in another
local minimum. Such local minima are usually inferior to the minima re-
sulting from undisturbed gradients.

The following example investigates an important source of these inaccu-
racies, namely the parametrization. Figure 4.8 shows a section of a sim-
ple two dimensional domain of linear elastic material with constant thick-
ness and density. The lower boundary of this domain is fixed and the up-
per boundary is subjected to a constant vertical displacement field u. The
shape of Ω is determined by the shape of the design boundary Γs which
is initially a straight line. It is obvious that the derivative for instance of
mass (3.15) and compliance (3.33) with respect to vertical coordinates y
have to be constant over Γs. Variational sensitivity analysis (c.f. section
4.3) gives exactly the desired constant gradient field. Here the derived an-
alytical equations are discretized. Discrete sensitivity analysis methods do
not result in constant gradient fields because the derivatives are affected
by the parametrization of the domain. This effect appears for analytical as
well es semi-analytical derivatives.

The influence of the parametrization on discrete sensitivities is investigated
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by a truss and a membrane finite element for shape gradients of mass and
compliance. The general procedure applies in the same way to other ele-
ment types, other types of design variables and other response functions.

Truss model

The truss element depicted in figure 4.9 is defined by extensional stiffness
EA, density ρ and length l. The length of the truss is formulated in a general
way by

l =
√

(x2 − x1)2 + (y2 − y1)2. (4.14)

The model has one degree of freedom namely the x-displacement of node
2. Application of the nodal force f results in the nodal displacement u. In
the following, the gradients of structural mass and linear strain energy are
investigated with respect to their dependence on the length l of the truss
element. It is referred to sections 3.4.1 and 3.4.5 for more information about
these response functions. The differentiation is performed with respect to
one design variable namely the x-coordinate of node 2 denoted by x2. The
mass of a truss element is defined by

me = ρ · A · l. (4.15)

Substitution of (4.14) in (4.15) and differentiation with respect to the design
variable x2 yields to the gradient of structural mass

dme

dx2
= ρ · A

dl
dx2

= ρ · A
x2 − x1

l
. (4.16)

It is easy to verify that the value of the mass gradient depends on the length
l of the element.

Under the assumption of constant nodal loads the derivative of linear struc-
tural strain energy is defined by

dg
dx2

= −1
2

u
dK
dx2

u. (4.17)

Expressing the truss stiffness by EA/l and substitution of the length deriva-
tive specified in (4.16) allows for a specific formulation of the strain energy
derivative

dg
dx2

= −1
2

u
∂K
∂l

∂l
∂x2

u = −1
2

u
[

−EA
l2

x2 − x1

l

]

u =
EA(x2 − x1)

2l3 u2. (4.18)

Obviously, also the gradient of linear strain energy depends on the size
of the element. It should be clearly emphasized that the size effect in the
two gradients is of different order. Whereas the element length shows up
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linearly in the mass derivative it is cubic in the strain energy derivative.
Hence, the strain energy gradients are much more affected by element sizes
than mass gradients.

Membrane model

For sake of simplicity the investigation of the membrane element is re-
stricted to rectangular flat quadrilaterals. Other shapes would require nu-
merical integration which prevents the presentation of analytic formulas.

The wall element depicted in figure
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Figure 4.10: Wall model

4.10 is used subsequently. It is sup-
ported such that the only remain-
ing degrees of freedom are the nodal
displacements u6 and u8. Each of
these dofs is subjected to a constant
nodal load f such that u6 = u8. The
kinematic relation is established by
a linear elastic material with Pois-
son’s ratio ν = 0. Similar to the
truss model the gradients of element
mass and linear strain energy were

computed. The differentiation is performed with respect to the element
height b which serves as design variable.

The mass of the applied rectangular wall element is defined as

me = ρ · a · b · t. (4.19)

Differentiation with respect to the element height b yields to the result

dme

db
= ρ · a · t, (4.20)

which still contains the element width a. Thus, the presented mass deriva-
tive of a rectangular wall element depends linearly on the element size.

Due to the supports the stiffness matrix of the wall element is reduced to a
2x2 matrix defined as

K =

[

K66 K68

K86 K88

]

(4.21)

with the components

K66 = K88 =
Et
12

(
4a
b

+
2b
a

)

and K68 = K86 =
Et
12

(
2a
b

− 2b
a

)

, (4.22)
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c.f. [Wer01]. Differentiation of linear strain energy requires the stiffness
matrix derivative which are specified by the components

dK66

db
=

dK88

db
=

Et
12

(

−4a
b2 +

2
a

)

and
dK68

db
=

dK86

db
=

Et
12

(

−2a
b2 − 2

a

)

.

(4.23)
Computation of the strain energy derivative by equation 4.9 results in the
relation

dg
db

= −1
2

[

u6

u8

]T [
∂K66
∂b

∂K68
∂b

∂K86
∂b

∂K88
∂b

][

u6

u8

]

. (4.24)

A constant nodal load does not have a shape derivative. Therefore, the
external load term of equation 4.9 does not appear in (4.24). Substitution of
(4.23) in (4.24) and taking into account that u6 = u8 = u the above equation
can be simplified to

dg
db

=
Eta
2b2 u2. (4.25)

It is easy to verify that also the presented shape derivative of a wall element
suffers from element size effects. In this case the derivative increases lin-
early with an increasing element width a. In contrast to that the derivative
decreases quadratically with an increasing element height b.

In general gradient fields of each parametrization suffer from size effects.
For complicated element formulations and parametrizations these effects
are complex and hard to identify. They depend

• on the type of parametrization (CAD, Morphing, FE-based, ...),

• on the type of finite element,

• on the type of design variable and

• on the type of response function.

The above statements are illustrated by several numerical experiments.
Therefore the 2-d domain depicted in figure 4.8 is discretized by three dif-
ferent meshes shown in figure 4.11. These discretizations are applied to

(a) Structured (b) Structured2 (c) Unstructured

Figure 4.11: Discretizations of 2-d Domain
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compute the shape gradient on the boundary Γs for structural mass and
linear strain energy. The y-coordinates of the FE-nodes on Γs are chosen as
design variables. The graphs in figure 4.12 and 4.13 show the normalized
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Figure 4.12: Mass gradients
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Figure 4.13: Strain energy gradients

mass gradients and the strain energy gradients on Γs. It is obvious that the
discretization has a tremendous influence on the gradients. The only graph
that shows the desired constant behavior belongs to the discretization de-
picted in figure 4.11a. The other two graphs show a serious influence due
to the different element sizes. In this special example the size effect is re-
stricted to the width of the elements at the boundary Γs. Hence the graphs
of the discretizations depicted in figure 4.11b and 4.11c are equal. These
investigations show that the influence os different parametrizations has to
be considered carefully in optimization algorithms. In the following, three
different remedies were motivated:

1. Securing of good mesh quality.

2. Application of curvature information.

3. Gradient scaling by dual shape functions.

A good mesh quality is the simplest way to reduce the disturbing influence
of size effects for FE-based parametrizations. In detail it is necessary to
ensure

• nearly equal element sizes,

• best possible aspect ratios,

• symmetric discretizations of symmetric geometries.
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CAD or morphing parametrizations require a nearly equal size of CAD
elements and morphing boxes respectively. Additionally, the number of
finite elements in each parametrization object should be nearly equal.

A well known way to include a proper variable scaling in optimization
algorithms is the application of Newton or quasi Newton methods. These
methods compute the search direction by

s
(k)
d = −H−1∇ f (k). (4.26)

where H denotes the exact or approximated Hessian matrix containing the
second order derivatives. The curvature of the response function at the
design s(k) allows for proper scaling of the gradients and highly efficient
search directions.

Following the main ideas of variational sensitivity analysis motivates the
application of dual element basis functions to compute proper gradient
scaling factors. As mentioned earlier, the variational sensitivity analysis
does not show size effects in the gradients. Since the equations were dis-
cretized after differentiation the respective nodal values represent the sam-
pling points of a distributed sensitivity field. Discrete Sensitivities of re-
sponse functions with respect to coordinates of FE-nodes represent con-
sistent nodal values of this sensitivity field but not the sampling points.
Thus, the goal is to compute the unknown distributed sensitivity field from
known nodal values. The dual basis functions of finite elements allow
for the computation of distributed quantities from consistent nodal values.
They are able to reconstruct e.g. surface loads from consistent nodal forces
of this load. This provides a promising basis for the efficient derivation
of gradient scaling factors. Then, the scaled gradients do not include dis-
turbing discretization effects and ensure computations of efficient search
directions without the necessity of second order information.

4.6 Unconstrained Optimization Algorithms

In general optimization algorithms are separated according to their suit-
ability to constrained optimization problems. Unconstrained optimization
algorithms can only be applied to unconstrained optimization problems.
In this class of problems neither inequality constraints nor equality con-
straints are defined, c.f. equation 3.1. But side constraints can be considered
by most unconstrained optimization algorithms by simple modifications.
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Unconstrained optimization strategies compute for the current optimiza-
tion step k a design update d(k) based on the objective gradient ∇ f (k) which
is defined by

∇ f (k) =
d f (s(k))

ds
(4.27)

with the actual design sk. The design update is computed by scaling of the
search direction sd with the step length parameter α, c.f. section 4.8

d(k) = α(k)s
(k)
d (∇ f (k)). (4.28)

The method how to compute the search direction is specific for each opti-
mization algorithm. Unconstrained optimization algorithms are seldomly
applied in practical applications because most of the optimization prob-
lems contain constraints. But the ideas of unconstrained methods are uti-
lized in many sophisticated constrained optimization algorithms.

4.6.1 Method of Steepest Descent

The most simple unconstrained optimization algorithm is the method of
Steepest Descent (SD). It computes the search direction at step k by

s
(k)
d = −∇ f (k). (4.29)

Thus, it is always ensured that the objective can be improved. The basic
drawback of the SD method is bad convergence if the curvature of the ob-
jective with respect to the design variables differ seriously. This ends up
in the well known zigzagging behavior and slow convergence rate. Vari-
able scaling is a simple and efficient approach to prevent these convergence
problems. The method of steepest descent can be extended to the Con-
straint Steepest Descent (CSD) method which is applicable to constrained
optimization problems, c.f. [Aro04]. The general steepest descent optimiza-
tion algorithm is depicted in figure 4.14.

4.6.2 Method of Conjugate Gradients

Application of the Conjugate Gradient (CG) algorithm is also a method to
improve the convergence rate of the steepest descent approach. The search
direction of the CG method incorporates the curvature of the objective by
the parameter β such that

s
(k)
d = −∇ f (k) + βs

(k−1)
d . (4.30)
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Figure 4.14: CG / SD optimization algorithm

The parameter β can be computed by the current and the previous objective
gradients

β =
∇ f (k) · ∇ f (k)

∇ f (k−1) · ∇ f (k−1)
. (4.31)

For most optimization problems the CG method shows a faster conver-
gence than the steepest descent method. In general, the faster convergence
preponderates the increased numerical effort of computation of β and the

storage of the old search direction s
(k−1)
d and turns out to be numerically

more efficient.

The basic implementation of the Steepest Descent and the Conjugate Gra-
dient method is illustrated in figure 4.14. The algorithm is converged if the
maximum number of iterations is reached or if the L2 norm of the gradient
vector is smaller than a specified tolerance tol.
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4.7 Constrained Optimization Strategies

4.7.1 Method of Feasible Directions

Methods of Feasible Directions [Zou60] are direct methods of first order.
In general, they do not require evaluation of Lagrange multipliers. The
Method of Feasible Direction (MFD) computes a search direction such that
the next design is feasible

s
(k)
d · ∇gi(s(k)) ≤ 0 (4.32)

and usable
s
(k)
d · ∇ f (s(k)) ≤ 0. (4.33)

The optimization problem is converged if one of these conditions can not
be fulfilled. Conditions 4.32 and 4.33 are visualized in figure 4.15.

Additionally, equations

gi

� ∇ f
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∇gi

R sd

sk
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feasible

usable

feasible and
usable

Figure 4.15: Method of Feasible Direction

4.32 and 4.33 require a
feasible initial design.
This is a serious draw-
back because in many
practical applications
feasible designs are not
easy to define. However,
there exist several meth-
ods to compute feasible
designs by the method
of feasible directions, c.f.
[HG92] and [Van84]. The

benefit of the method is that all intermediate solutions are feasible. Thus,
the optimization procedure can be terminated at each step. In any case
one obtains a feasible and improved design from the optimizer. There exist
many publications about improvements of feasible direction methods re-
garding robustness (e.g. [SS93]), treatment of infeasible initial designs (e.g.
[PTM77]) and improvement of convergence (e.g. [KC00]). Actual feasible
direction methods are very powerful and robust optimization strategies.
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The determination of the search direction sd is usually formulated by the
linear problem:

Maximize β

such that ∇ f (s(k)) · sd + β ≤ 0,

∇gi(s(k)) · sd + βθi ≤ 0,

− 1 ≤ sdj
≤ 1

i = {1, .., ng
act}

j = {1, .., ndv}

(4.34)

where ng
act and ndv denote the number of active constraints and the number

of design variables respectively.

In equation 4.34 the parameter θi specifies a push-off factor that controls
the angle between the tangent at the constraint gi and the search direction
sd. The directions determined by θi = 0 and θi → ∞ describe the tangent
on constraint gi and the tangent on the objective f respectively, c.f. [Van84].
The linear problem specified in (4.34) is usually solved efficiently and fast
by the well known Simplex method. Unfortunately, the feasible direction
strategy defined so far is not well suited for application to large shape op-
timization problems with FE-based parametrization. The reasons are:

• Size of linear problem
Usually, the linear problem specified in (4.34) yields to a dense co-
efficient matrix with the dimension (ng

act + 1 × ndv). Such a matrix
requires a huge amount of memory for a large number of design vari-
ables and many constraints.

• Inadequate smoothness
As described in chapter 6 the FE-based parametrization requires
smooth geometries and, therefore, also smooth search directions sd.
Here, a smooth search direction specifies a design update that results
in a smooth geometry after its application. In this context the term
smooth is related to the curvature of the surface geometry. The solu-
tion of the above defined linear problem yields to non-smooth search
directions because the necessary constraint sd · sd ≤ 1 is nonlinear
and, therefore, not applicable to the Simplex solver.

The remedy for both problems is based on the idea of Lagrange multipliers
(3.2), c.f. [Zou60] and [Van84]. The main idea is the transfer of the linear
problem defined in (4.34) to

Maximize p · y

such that Ay ≤ 0,

y · y ≤ 1

(4.35)
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established for design s(k) where

y =
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




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
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.

.
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




(4.36)

This nonlinear problem is equivalent to the linear problem stated as

Bu + v = c (4.37)

with B = −AAT, c = −Ap and the initial solution v = c and u = 0. The
desired search direction follows finally by

y = p − ATu. (4.38)

The solution of (4.37) instead of (4.34) is much more efficient and the com-
puted search direction is much more reliable. The benefit in efficiency is
related to the coefficient matrix B which is significantly smaller than the
matrix A which is used in problem 4.35. The search direction is more reli-
able because it is based on a linear combination of objective gradient and
constraint gradients. Whenever all considered gradients fulfill specified
continuity requirements the search direction also fulfills these continuity
requirements because it turns out to be a weighted sum of these gradients.

The parameters θi are continuously adapted during the optimization pro-
cess in order to ensure a search direction that points into the feasible do-
main and additionally allows for a sufficient improvement of the objective.
Additionally, a phenomenon called "zigzagging" is avoided by continuous
adaption of the push-off factors. This phenomenon is caused by a sequence
of active and inactive constraints and usually results in bad convergence
behavior. Vanderplaats suggests in [Van84] the application of the update
formula

θi =

[

1 − gi(s(k))

ǫ

]2

θ0 (4.39)

with ǫ < 0 for the modification of the push-off factors. The parameter ǫ

specifies a small tolerance region around the constraint boundary gi(s(k)) =

0. As soon as the constraint i reaches the tolerance level (gi(s(k)) = ǫ) it
becomes active and θi = 0. The push-off factor increases quadratically until
θi = θ0 (mostly θ0 = 1) as the constraint reaches the level gi(s(k)) = 0. The
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size of the tolerance region depends on the type of the constraint. Highly
nonlinear functions, e.g. stresses require a value of ǫ ≈ −0.05 whereas
nearly linear functions, e.g. mass are robustly tackled by ǫ ≈ −0.005.

The flow chart of an MFD optimization algorithm is given in figure 4.16.
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Figure 4.16: MFD optimization algorithm

4.7.2 Augmented Lagrange Multiplier Method

The Augmented Lagrange Multiplier (ALM) Method is an algorithm for
constrained optimization problems using first order gradients and La-
grange multipliers. Like in other penalty methods (c.f. [HG92], [Van84]) the
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constraint problem is solved by several unconstrained optimization steps.
The unconstrained problem is formulated by an augmented Lagrangian
function which tends to the original objective close to the constrained opti-
mum.

The ALM Method was originally developed for equality constrained opti-
mization problems but there exist several enhancements regarding inequal-
ity constrained problems. The following derivations focus on application
for inequality constraints. In contrast to interior point methods like the
Method of Feasible Directions the ALM Method does not require a feasi-
ble initial design. Moreover, it is not seldom that the algorithm works for
many optimization steps in the infeasible domain until it reaches feasible
designs.

Basically, the minimization of the constrained optimization problem (3.1) is
substituted by unconstrained minimization of an augmented Lagrangian
function stated as

LA(s(k), λ, rp) = f (s(k)) +

ng
act∑

i=1

(
λiΨi + rpΨ

2
i

)
(4.40)

with

Ψi = max
[

gi(s(k)),− λi

2rp

]

. (4.41)

Equation 4.40 is similar to the standard Lagrangian function (3.2) except
of the last term but both equations tend to the objective function for the
constrained optimum where gi(s(k)) → 0. The function Ψi specified in
(4.41) is necessary to consider that the constraint gi(s(k)) may be active or
inactive during the optimization process.

The ALM Method minimizes (4.40) where the Lagrange multipliers λi are
updated continuously. As final result one obtains the optimal design that
fulfills all constraints, the set of active constraints and the respective La-
grange multipliers. The first order derivative of (4.40) with respect to the
design variables s is specified by

dLA(s(k), λ, rp)

ds
= ∇LA(s(k), λ, rp) = ∇ f (s(k)) +

ng
act∑

i=1

(
λi∇Ψi + 2rpΨi∇Ψi

)

(4.42)
with

∇Ψi =







∇gi(s(k)) if gi(s(k)) > − λi
2rp

0 if gi(s(k)) < − λi
2rp

.
(4.43)
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The search direction sd of the ALM Method is usually specified by the neg-
ative gradient of the augmented Lagrangian

s
(k)
d = −∇LA(s(k), λ, rp). (4.44)

During the optimization process the Lagrange parameters and penalty fac-
tors are updated by

λ
(k+1)
i = λ

(k)
i + 2r(k)

p max

[

gi(s(k+1)),− λ
(k)
i

2r(k)
p

]

(4.45)

and
r(k+1)

p = γr(k)
p with γ ≥ 1 and r(k+1)

p < rmax
p (4.46)

respectively. Similar to other approximation techniques like penalty meth-
ods or Sequential Quadratic Programming (SQP) Methods some additional
assumptions are necessary to compute the step length in the line search, c.f.
section 4.8. The objective function is generally not well suited because it
does not account for the constraints. The Langrange function (equation 3.2)
is also not appropriate because it is a saddle function. SQP Methods usually
apply special merit functions which approximate the optimum and serve
as measure for the determination of the step length. ALM Methods provide
the augmented Lagrangian which is convex close to the optimum for suf-
ficiently large penalty factors. Therefore, the line search can be formulated
by polynomial interpolation of the augmented Lagrangian as presented in
[Van84].

The implementation of the ALM Method for inequality constraint problems
is presented in figure 4.17. It shows the basic algorithmic steps and the ref-
erences to the respective formulas. More information about ALM Methods
is presented in [HG92] and [Van84].

There exist several other constrained optimization methods, e.g. the
Method of Moving Asymptotes (MMA) and the Sequential Quadratic Pro-
gramming Method (SQP). In [Dao05] the MMA approach was applied to
constraint shape optimization problems with FE-based parametrization.
This approach works well if the the problem allows a sufficient approxi-
mation of the move limits. The SQP Method is a second order approach
which employs approximated second order derivatives. This method was
not applied here because of two major disadvantages.

• In general, the first order response derivatives with respect to FE
parameters are not smooth. The necessary continuity is established
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Figure 4.17: ALM optimization algorithm

by the regularization methods presented in chapter 6. Consequently,
the approximation of second order derivatives suffers seriously from
non-smooth first order gradients. Hence, the second order informa-
tion of the Hessian matrix is of minor quality only and may be mis-
leading.

• Structural optimization with FE-based parametrization results in
large design spaces and therefore to numerically expensive sensitiv-
ity analysis procedures. The numerical effort as well as amount of
required memory of SQP Methods is significantly larger than for first
order methods because of the Hessian matrix.
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4.8 Line Search

The intermediate result of each optimization step is the search direction sd.
The line search algorithm computes the step length α which is used as scal-
ing parameter to specify the design update, c.f. equation 4.28. Obviously,
the line search parameter should be chosen such that the design update
results in a maximum reduction of the objective. Thus, the step length de-
termination is a one dimensional optimization problem. Many mathemat-
ical optimization procedures do not require an exact determination of the
step length. An adequate approximation is mostly sufficient and requires
much less numerical effort. There exists a large variety of one dimensional
optimization strategies which are in general applicable for a step length
approximation.

The Golden Section Method is an interval search method that applies zero
order information [Van84]. It requires unimodal functions and an inter-
val containing the minimum. The interval size is sequentially decreased
such that the minimum remains in the resulting interval. For each step
the Golden Section Method requires only one additional function evalua-
tion. The iteration is terminated when the interval size reaches a predefined
limit. In general, the FE-based parametrization leads to highly non-convex
optimization problems which do not provide unimodal functions for the
line search procedure. Thus, the Golden Section Method is not applicable
to this type of problems.

The Armijo test [Aro04] is an inaccurate line search method that requires
only a minimal number of function evaluations. The Armijo test is passed
when the objective is sufficiently decreased for a reasonable step size. This
check is based on the function value at the initial position and the first or-
der gradients. As presented in chapter 6 these gradients are usually not
smooth. Due to this the extrapolation based on gradient information may
be misleading.

Polynomial interpolations are a powerful class of one dimensional opti-
mization algorithms. These methods are usually based on zero and/or first
order information. Higher order methods like cubic or quartic interpola-
tions are mostly based on first order information which may disturb the
results seriously as explained before. But the quadratic interpolation can
be effectively formulated by only zero order data. This ensures a very ro-
bust approach with a minimum number of function evaluations. The basic
properties of this approach are depicted in figure 4.18.
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The computation starts at the current design expressed by the objective

value f (k)
0 .

Two subsequent design

α(k)0.5α0 α0

-
α

6

0

f

f (k)
0

f (k)
1

f (k+1)
0

f (k)
2

Figure 4.18: Quadratic line search

updates by α = 0.5α0

and α = 1.0α0 provide

the function values f (k)
1

and f (k)
2 . The prede-

fined parameter α0 de-
termines the search in-
terval and additionally
serves as upper bound
to the step length param-
eter α(k). Whenever the
computed step length is
larger than α0 the step
length for the next itera-
tion step is computed by

α(k) = α0. Based on the known objective values f (k)
0 , f (k)

1 and f (k)
2 and the

step length α0 the optimal step length α(k) can be computed by

α(k) =
3 f (k)

0 − 4 f (k)
1 + f (k)

2

4( f (k)
0 − 2 f (k)

1 + f (k)
2 )

α0 (4.47)

If the computed step length is smaller than zero the procedure is repeated
for a decreased step length parameter α0. This quadratic line search re-
quires three function evaluations per step if 0 ≤ α(k) ≤ α0. In this case

the functions values for f (k)
1 , f (k)

2 and f (k+1)
0 have to be evaluated. In the

case that α(k) ≥ α0 only two function evaluations are necessary because the

updated design is already expressed by f (k+1)
0 = f (k)

2 .



Chapter 5

Exact Semi-Analytical

Sensitivity Analysis

This chapter presents a straightforward and generally applicable method
for detection and elimination of errors in semi-analytical design sensitivi-
ties for any kind of FE formulation. As motivated in section 4.3.6 the semi-
analytical approach has many advantages in application. The only serious
disadvantage is the approximation error due to the finite size of the per-
turbation. Unfortunately, these small errors in the computation of element
derivatives increase seriously when these derivatives are used in further
computations. Thus, application of semi-analytical sensitivities requires
correction methods to minimize this error amplification.

The basic effects of the mentioned approximation errors can be shown via
beam elements, e.g. with Euler-Bernoulli kinematics and Timoshenko kine-
matics. Additionally, these simple elements offer the possibility to empha-
size the consequences of the approximation errors by analytical computa-
tions of the error terms. These two element types show serious differences
in the errors of the sensitivities. The ideas gained by the simple 1-d ele-
ments are easily extended to 3-d solid or shell elements.

5.1 Motivation

By choice of a small but finite perturbation parameter ∆s in the element
derivatives either truncation or approximation errors occur. These er-
rors have serious influence on the accuracy of the sensitivity analysis.
Barthelemy and Haftka observed in [BH88] two different types of errors.

For elements with Euler-Bernoulli or Kirchhoff kinematics, the numerical
error of displacement sensitivities with respect to shape design variables
increases inversely proportional to the square of the size of the perturbed
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elements. The source of inaccuracy is the approximation of the pseudo
load vector (3.38) (c.f. [BH88]), which is the load that must be applied to
the structure to obtain the displacement sensitivity field. For the above
mentioned elements the sensitivity displacement field is not a reasonable
displacement field for the model and its boundary conditions. The dis-
placement sensitivity to a length dimension is dominated by shear rather
than bending. These shear components cause large components in the
pseudo load vector. Furthermore, small truncation errors are included in
the pseudo load which amplify into large errors in the displacement sensi-
tivities (c.f. [Lun94]).

A second type of error is related to long span structures subjected to bend-
ing. This inaccuracy occurs for all element formulations and is caused by
the rotation of the elements. In this case the errors of the displacement
sensitivities with respect to a length dimension increase rapidly with the
length of the structure.

There exists a great variety of methods which try to eliminate the above
mentioned problems, c.f. the review in [vKHK05]. Haftka and Adelmann
([HA89]) use central differences instead of forward differences to decrease
the approximation error. Cheng, Gu and Zhou ([CGZ89]) propose an al-
ternate forward backward approximation scheme which also decreases the
approximation error. Cheng, Gu and Wang ([CGW91]) introduced a second
order correction method. None of these methods can completely eliminate
the accuracy problem. ’Exact’ sensitivities are obtained due to a method de-
rived by Olhoff, Rasmussen and Lund ([ORL92], [LO93], [LO94], [Lun94]),
which computes correction factors for a premultiplication. The applica-
tion of the so called natural method was proposed by Mlejnek ([Mle92]).
Within this approach the modal description is used which offers an easy
identification and elimination of the error terms. Cheng and Olhoff de-
rived a method for the computation of correction factors for the stiffness
matrix derivative. They showed in ([CO93]) a direct dependency between
the rigid body rotation vectors and the approximation errors. Based on
these two approaches van Keulen and de Boer ([vKdB98] and [dBvKV02])
introduced the method of exact differentiation of rigid body modes which
also eliminates the errors completely. However, this method depends on
the specific finite element formulation. Thus, it has to be derived and pro-
grammed for each element separately. This property prevents a straight-
forward implementation in existing finite element codes.
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5.2 Problem Description

The source of the accuracy problems in the semi-analytical sensitivity anal-
ysis is shown within this section. Euler-Bernoulli and Timoshenko formu-
lations are used to derive the error terms analytically. Additionally, conse-
quences on discretized beam structures are shown by two examples.

Recalling the work of Mlejnek ([Mle92]) it is assumed that a free, unsup-
ported structure can undergo rigid body translations and rotations. These
so called "zero eigen vectors" φ do not introduce any forces, i.e.:

Kφ = 0 (5.1)

The partial derivative of Equation (5.1) with respect to a design variable s
yields:

∂K

∂s
φ + K

∂φ

∂s
= 0 (5.2)

By a premultiplication with φT one obtains:

φT ∂K

∂s
φ + φTK

∂φ

∂s
= 0 (5.3)

Applying (5.1) in (5.3) gives the rigid body condition for the derivative of
the stiffness matrix.

φT ∂K

∂s
φ = 0 (5.4)

This condition holds for rigid body translation vectors (φt) as well as for
rigid body rotation vectors (φr):

φT
t

∂K

∂s
φt = 0; φT

r
∂K

∂s
φr = 0. (5.5)

The approximation of the exact derivative of the stiffness matrix by first
order forward and first order central finite difference expressions yields:

∂K

∂s
≈ K(s + ∆s) − K

∆s
=

∆K f

∆s
;

∂K

∂s
≈ K(s + ∆s) − K(s − ∆s)

2∆s
=

∆Kc

2∆s

(5.6)

and as described in the following one observes for the rigid body condi-
tions (5.51) and (5.52):

φT
t

∆K f

∆s
φt = 0; φT

t
∆Kc

2∆s
φt = 0;

φT
r

∆K f

∆s
φr 6= 0; φT

r
∆Kc

2∆s
φr 6= 0 !!!

(5.7)
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Figure 5.1: Dofs of beam elements
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Figure 5.2: Length perturbation by ∆L

In general, the prerequisite for the rigid body rotation is not fulfilled ex-
actly if the partial derivative is approximated by a finite difference formu-
lation. Subsequently, the error terms for the linear Euler-Bernoulli and the
Timoshenko beam element are derived analytically to identify the error be-
havior. Based on the definition for the nodal degrees of freedom which is
specified in figure 5.1 the stiffness matrix for a linear Euler-Bernoulli beam
takes the well known format:

Kb = EI









12
L3 − 6

L2 − 12
L3 − 6

L2

− 6
L2

4
L

6
L2

2
L

− 12
L3

6
L2

12
L3

6
L2

− 6
L2

2
L

6
L2

4
L









, (5.8)

with the Young’s modulus E and the second moment of inertia I. The quan-
tity EI is denoted as bending stiffness. The derivative of Kb with respect to
the length L is defined by:

∂Kb

∂L
= EI









− 36
L4

12
L3

36
L4

12
L3

12
L3

−4
L2 − 12

L3
−2
L2

36
L4 − 12

L3 − 36
L4 − 12

L3

12
L3

−2
L2 − 12

L3
−4
L2









(5.9)

The first order forward and central finite difference approximations (c.f.
equation 5.6) of the derivative are given by equations 5.10 and 5.11 respec-
tively, where the length increment is taken as ∆L. As motivated before the
error in the semi-analytical sensitivities is related to the rigid body rotation
vector φr. For a rotation around the center of a geometrically linear 2-d
beam element (point a in figure 5.1) this vector is given by:

φT
r =

[
L
2 θ θ − L

2 θ θ
]

(5.12)
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∆K
f
b

∆L
= EI











−12(3L2+3L∆L+(∆L)2)
(L+∆L)3L3

6(2L+∆L)
(L+∆L)2L2

12(3L2+3L∆L+(∆L)2)
(L+∆L)3L3

6(2L+∆L)
(L+∆L)2L2

6(2L+∆L)
(L+∆L)2L2

−4
(L+∆L)L

−6(2L+∆L)
(L+∆L)2L2

−2
(L+∆L)L

12(3L2+3L∆L+(∆L)2)
(L+∆L)3L3

−6(2L+∆L)
(L+∆L)2L2

−12(3L2+3L∆L+(∆L)2)
(L+∆L)3L3

−6(2L+∆L)
(L+∆L)2L2

6(2L+∆L)
(L+∆L)2L2

−2
(L+∆L)L

−6(2L+∆L)
(L+∆L)2L2

−4
(L+∆L)L











(5.10)

∆Kc
b

2∆L
= EI











12(3L2+∆L2)
(L+∆L)3(−L+∆L)3

12L
(L+∆L)2(−L+∆L)2

−12(3L2+∆L2)
(L+∆L)3(−L+∆L)3

12L
(L+∆L)2(−L+∆L)2

12L
(L+∆L)2(−L+∆L)2

4
−L2+∆L2

−12L
(L+∆L)2(−L+∆L)2

2
−L2+∆L2

−12(3L2+∆L2)
(L+∆L)3(−L+∆L)3

−12L
(L+∆L)2(−L+∆L)2
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(L+∆L)3(−L+∆L)3

−12L
(L+∆L)2(−L+∆L)2

12L
(L+∆L)2(−L+∆L)2

2
−L2+∆L2

−12L
(L+∆L)2(−L+∆L)2

4
−L2+∆L2











(5.11)

Applying the rigid body test by pre- and postmultiplying the approxi-
mated derivatives with the vector φr yields:

φT
r

∆K
f
b

∆L
φr =

12EI∆Lθ2

(L + ∆L)3 ;

φT
r

∆Kc
b

2∆L
φr =

12EI∆L2(3L2 + ∆L2)θ2

(L2 − ∆L2)(L + ∆L)2(L − ∆L)2 .

(5.13)

Additionally, the stiffness matrix, the exact derivative and the approxi-
mated derivatives of the linear Timoshenko beam are provided. A reduced
1-point integration is used to prevent the well known shear locking effects
of this element formulation.

Kt =









GA
L −GA

2 −GA
L −GA

2

−GA
2

EI
L + GAL

4
GA
2 − EI

L + GAL
4

−GA
L

GA
2

GA
L

GA
2

−GA
2 − EI

L + GAL
4

GA
2

EI
L + GAL

4









(5.14)
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∆K
f
t

∆L
=










− GA
(L+∆L)L 0 GA

(L+∆L)L 0

0 GAL2+GAL∆L−4EI
4(L+∆L)L 0 GAL2+GAL∆L+4EI

4(L+∆L)L
GA

(L+∆L)L 0 − GA
(L+∆L)L 0

0 GAL2+GAL∆L+4EI
4(L+∆L)L 0 GAL2+GAL∆L−4EI

4(L+∆L)L










(5.16)

∆Kc
t

2∆L
=










− GA
L2−∆L2 0 GA

L2−∆L2 0

0 −4EI+GAL2−GA∆L2

4(L2−∆L2)
0 4EI+GAL2−GA∆L2

4(L2−∆L2)

GA
L2−∆L2 0 − GA

L2−∆L2 0

0 4EI+GAL2−GA∆L2

4(L2−∆L2)
0 −4EI+GAL2−GA∆L2

4(L2−∆L2)










(5.17)

∂Kt

∂L
=









−GA
L2 0 GA

L2 0

0 − EI
L2 + GA

4 0 EI
L2 + GA

4
GA
L2 0 −GA

L2 0

0 EI
L2 + GA

4 0 − EI
L2 + GA

4









(5.15)

The so called shear stiffness is defined by the parameter GA with the shear
modulus G and the cross section area A.

The rigid body test is also applied to the approximated derivatives of the
Timoshenko beam element. This results in the following error terms for the
first order forward and central finite difference approaches:

φT
r

∆K
f
t

∆L
φr =

GA∆Lθ2

L + ∆L
;

φT
r

∆Kc
t

∆L
φr = −GA∆L2θ2

L2 − ∆L2 .

(5.18)

It becomes obvious, that the approximations of the stiffness matrix deriva-
tive do not fulfill the rigid body test neither for Euler-Bernoulli nor for Tim-
oshenko kinematics. A more detailed inspection of the error terms (equa-
tions 5.13 and 5.18) shows a less critical behavior of the central difference
approximations. Here, the errors are decreased by a factor of ∆L/L as com-
pared to the forward finite differences. However, one has to provide an
additional stiffness matrix for the configuration K(s − ∆s). The prescribed
errors have serious influences on the accuracy of displacement sensitivi-
ties. This is shown by the following two examples. Subsequently, only first
order forward finite differences are applied to show the error propagation
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of the semi-analytic approach. Therefore, the superscript f used so far is
omitted to simplify the formulations.

5.2.1 Model Problem I

The first example [BH88] considers a cantilever beam of length L = 1 under
a tip moment. The number of elements n varies from 1 to 20.

Thus the length of each sin-

� -

�

M=1
- x

?u1

L = 1

EI = 1, GA = 1

Figure 5.3: Cantilever with tip moment

gle element Le decreases with
L/n. The goal is to determine
the sensitivity of the tip dis-
placement u1 with respect to
the length of the beam for the
different discretizations. The
analytical Euler-Bernoulli so-
lution is compared to the nu-
merical Euler-Bernoulli and Timoshenko results. The analytical solution of
the displacement function u(x) and its derivative u′(x) of MP I ends up in
the equations:

u(x) =
Mx2

2EI
and

du(x)

dx
= u′(x) =

Mx
EI

(5.19)

respectively. Thus, one obtains for the sensitivity of the tip displacement u1

u′(x = L) =
ML
EI

= 1. (5.20)

The semi-analytical sensitivities of the Euler-Bernoulli and the Timoshenko
elements are computed by

dub

dL
≈ K−1

b

(

−∆Kb

∆L
ub

)

and

dut

dL
≈ K−1

t

(

−∆Kt

∆L
ut

)

respectively.
(5.21)

The parameter ∆L is defined as p · Le with p = 1 · 10−04 and the element
length Le = L/n. As depicted in figure 5.4 the sensitivity error of the Euler-
Bernoulli beam elements is much more amplified than for the Timoshenko
beam elements. Furthermore the graph increases quadratically with the
number of elements. This effect was also recognized by Barthelemy and
Haftka in [BH88] and many others. The sensitivities of the Timoshenko
beam do not show such inaccuracies. The reason of this behavior are the
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error terms formulated in (5.13) and (5.18). The error of the Euler-Bernoulli
beam increases dramatically (third power in the denominator) if the length
of the element Le tends to zero. The denominator of the right hand side
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Figure 5.4: dub/dL and dut/dL for MP I

of equation 5.18a is only linear and hence, the error propagation does not
show this behavior. Thus, this kind of error has a tremendous effect to
elements with higher order kinematic assumptions. Later it is shown that
these general observations can be extended to more dimensional problems
including plates and shells with Reissner-Mindlin kinematics respectively.

A second type of error (c.f. [BH88]) is shown by example II.

5.2.2 Model Problem II

The second example also considers a cantilever beam. In contrast to Model
Problem I the length of the beam L and the tip moment M are not constant.
Instead of the beam length the length of elements Le is constant (Le = 1).
Thus, the length of the beam varies by L = n · Le with n ∈ {1..20}. The tip
moment decreases by M = 1/n. Bending and shear stiffness are constant
(EI = GA = 1).

Also in this example the sensitivity of the tip displacement with respect
to the beam length is compared for analytical and semi-analytical calcu-
lations. Timoshenko and Euler-Bernoulli beam elements are applied for
the numerical simulations and the analytical result is computed by the
Euler-Bernoulli beam theory. The derivative of the displacement function
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at x = L is given by:

du(x = L)

dx
= u′(x = L) =

ML
EI

. (5.22)

Substituting the expressions L = Le · n and M = 1/n in Equation (5.22)
yields to:

du(x = L)

dx
= u′(x = L) =

Le · n
n · EI

=⇒

u′(x = L) =
Le

EI
= 1.

(5.23)

Thus, the exact result is equal to 1, for an arbitrary beam length. Accord-
ing to Model Problem I the numerical results are computed by equations
5.21a and 5.21b. The results of this example are depicted in figure 5.5. It is
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Figure 5.5: dub/dL and dut/dL for MP II

interesting to see that the numerical results of the Euler-Bernoulli beam as
well as of the Timoshenko beam show inaccuracies. These errors increase
quadratically with the beam length. Obviously, this behavior is also caused
by the error terms (5.13) and (5.18). Due to the problem setting of this ex-
ample the tip displacement as well as the rotation angle θ of each element
increase with increasing beam length. The error terms depend quadrati-
cally on the rotation vector which results in in the depicted behavior.

The inaccuracies of the displacement sensitivities of Timoshenko and Euler-
Bernoulli beam elements can be resumed to the following two statements:

1. Bending driven models (i.e. Euler-Bernoulli beams, Kirchhoff shells)
show accuracy problems in the displacement sensitivities with in-
creasing discretization density. Shear driven models like Timoshenko
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beams or Reissner-Mindlin shells do not show this effect. The order
of the shape functions does not affect this approximation error. This
can also be shown for membrane elements, e.g. with bilinear and
biquadratic formulations respectively.

2. Models with moderate rigid body rotations of the elements also show
accuracy problems in the approximated displacement derivatives.
This type of inaccuracy appears for all kind of elements because it
is related to the rotation angle.

The following section provides an efficient method to correct the errors con-
tained in the approximated displacement sensitivities.

5.3 Exact Semi-Analytical Sensitivities

This section presents an effective and straightforward method to compute
a modified stiffness matrix derivative which satisfies the rigid body test,
c.f. (5.7)b. The basic idea is to modify the approximated stiffness matrix
derivative by another matrix based on the dyadic products of element rota-
tion vectors. Subsequently, the method is introduced for the 1-d case. It can
easily be extended to 2-d and 3-d problems. Furthermore, the derivations
concentrate on the forward finite difference approximations.

The goal is to compute a factor a such that the modified stiffness matrix
derivative ∆K∗ fulfills the rigid body condition

φT
r (

∆K

∆L
+ aφrφT

r
︸ ︷︷ ︸

∆K∗

)φr = 0. (5.24)

This gives the form:

φT
r

∆K

∆L
φr + a(φr · φr)(φr · φr) = 0 =⇒

a = − φT
r

∆K
∆L φr

(φr · φr)(φr · φr)

(5.25)

By applying this procedure to the Euler-Bernoulli and Timoshenko beam
element one obtains the parameters:

ab = − 48EI∆L
θ2(Le + ∆L)3(L4

e + 8L2
e + 16)

and (5.26)

at = − 4GA∆L
θ2(Le + ∆L)(L4

e + 8L2
e + 16)

(5.27)
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respectively. The result is a modified approximation of the stiffness matrix
derivative, called ∆K∗ which satisfies the rigid body condition (equation
5.7b)

φT
r (∆K∗)φr = 0 with

∆K∗ =
∆K

∆L
+ aφrφ

T
r .

(5.28)
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(a) Model Problem I
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(b) Model Problem II

Figure 5.6: Modified sensitivities for Model Problems I and II

A repeated computation of the model problems results in the graphs de-
picted in figures 5.6a and 5.6b. The only modification in the algorithm is
the exchange of the term ∆K

∆L by ∆K∗ in equations 5.21a and 5.21b. One can
easily see that the errors disappear completely for Euler-Bernoulli as well
as for Timoshenko beam elements. The remaining difference between the
analytical and the numerical results is caused by the approximation error.
The order 1 · 10−04 corresponds to the perturbation factor, c.f. page 79.

The method introduced so far can be extended to 2-d and 3-d elements in a
straightforward manner. Therefore, equation 5.24 is generalized to:

φiT

r (
∆K

∆s
+ ajkφj

rφkT

r
︸ ︷︷ ︸

∆K∗

)φl
r = 0, ∀i, j, k, l ∈ {1..nr}. (5.29)

with the number of rigid body rotation vectors nr and the perturbation
∆s. This leads to a system of equations which has to be solved. The size
depends on the number of dimensions and the orthogonality conditions
between the rigid body rotation vectors.
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5.3.1 Orthogonalization of Rotation Vectors

The set of corresponding rigid body rotation vectors can be found by in-
spection for every available FE-formulation without any problem. How-
ever, these rigid body rotation vectors are in general not orthogonal. This
affects the efficiency of the evaluation of equation 5.29 seriously. A refor-
mulation of this equation results in

φiT

r (
∆K

∆s
)φl

r + φiT

r (ajkφj
rφkT

r )φl
r = 0, ∀i, j, k, l ∈ {1..nr}. (5.30)

By a further manipulation of the second term one obtains

φiT

r (
∆K

∆s
)φl

r
︸ ︷︷ ︸

bil

+ ajk(φi
r · φj

r)
︸ ︷︷ ︸

cij

(φk
r · φl

r)
︸ ︷︷ ︸

ckl
︸ ︷︷ ︸

dijkl

= 0, ∀i, j, k, l ∈ {1..nr}. (5.31)

This expression can be reformulated to a linear system of equations of the
form

ajkdijkl = −bil , ∀i, j, k, l ∈ {1..nr} (5.32)

with ajk as unknown parameters. This formulation can be written in a 9x9
system of equations for 3-d finite elements (nr = 3), e.g.

−b11 = a11d1111 + a12d1121 + a13d1131 + ... + a33d1331. (5.33)

Using the symmetry conditions cij = cji and ckl = clk simplifies equation
5.33 to a 6x6 system of equations which is still expensive to be solved.

Subsequently, a method is introduced which simplifies the computation of
the modification terms significantly. The basic idea of this method is to
orthogonalize the rotation vectors by linear considerations.

In the further investigations it is assumed that the rigid body rotation vec-
tors φi

r, i ∈ {1,2,3} with the property φi
r · φ

j
r 6= 0, ∀i 6= j are given. Thus,

this set of vectors is non-orthogonal. A set of orthogonal vectors has to ful-
fill the condition φi

r · φ
j
r = 0 for i 6= j. The first step is to find a vector φ2∗

r

which follows from
φ2

r = αφ1
r + φ2∗

r . (5.34)

The necessary condition φ1
r · φ2∗

r = 0 gives an equation for the parameter α

α =
φ1

r · φ2
r

(φ1
r )

2
(5.35)
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The vector φ3∗
r with φ1

r · φ3∗
r = 0 and φ2∗

r · φ3∗
r = 0 is computed by

φ3
r = γφ1

r + βφ2∗
r + φ3∗

r . (5.36)

The requirement φ1
r · φ3∗

r = 0 and φ2∗
r · φ3∗

r = 0 gives the equations to
evaluate γ and β

γ =
φ1

r · φ3
r

(φ1
r )

2
and β =

φ2∗
r · φ3

r

(φ2∗
r )2

. (5.37)

The vector φ3∗
r can now be

6

*6
-

φ1
r

αφ1
r

φ2∗
r

φ2
r

Figure 5.7: Orthogonalization of φ2
r

computed by equation 5.36.
Finally, one obtains a set of
three orthogonal vectors φ1

r ,
φ2∗

r and φ3∗
r . It is benefi-

cial for the subsequent for-
mulations to normalize the
vectors ({φ1

r φ2∗
r φ3∗

r } −→
{φ1

rnφ2∗
rnφ3∗

rn}). In the sequel
it is assumed that these vectors
are orthonormal basis vectors.

The implementation of the new rotation vectors in equation 5.31 permits
the following serious simplification

φiT

rn(
∆K

∆s
)φl

rn
︸ ︷︷ ︸

bil

+ ajk(φi
rn · φj

rn)
︸ ︷︷ ︸

δij

(φk
rn · φl

rn)
︸ ︷︷ ︸

δkl

= 0, ∀i, j, k, l ∈ {1..nr}. (5.38)

The final result can be found by a further straightforward reformulation

ail = −bil , ∀i, l ∈ {1..nr}. (5.39)

Under the assumption of orthonormal vectors φi
rn the computation of the

modification parameter ail is reduced to a matrix vector product and a
scalar product between two vectors. Of course, one has to provide the
orthonormal vectors. Nevertheless, this approach is much more efficient
than the solution of a 6x6 system of equations. Finally, the modified stiff-
ness matrix derivative ∆K∗ follows from equation 5.29.

5.4 Application to 3-d Model Problems

Three dimensional shell elements with Reissner-Mindlin kinematics are
used to discretize the model problems of the following sections. The ba-
sic properties of the shell formulation are briefly introduced subsequently.
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As it is well known shell models of the Reissner-Mindlin type can be used
to analyze thin to moderate thick shells because shear deformation is con-
sidered. The technical advantage of this type of shell elements is that dis-
placement and rotation fields are discretized independently which allows
for simple shape functions of only C0 continuity for the prize of shear lock-
ing problems. To avoid those additional considerations have to be made.
Here, the Enhanced Assumed Strain (EAS) method is used which is a pow-
erful and general approach to fix several geometrical locking phenomena,
c.f. [Kos04].

The Reissner-Mindlin shells employed here are formulated by 6 degrees of
freedom per node. Three translations of the shell midplane are completed
by three displacements of the shell director. Figure 5.9 shows the definition
for a single node P. The nodal translations are called ux, uy and uz. The
deformation of the director from the initial configuration A3 to the current
configuration A3d is governed by the degrees of freedom α, β and γ. One

�
�O

K

6 A3e4
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A3e3
P

A3e1
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A3e2
P

A3P

e2 e3

e4e1

P

Figure 5.8: Interpolated director

crucial point is the definition of the director. In general, the surrounding
elements ek around a node P contribute to the direction of the normal at
this node which gives rise to the following equation:

A3P =

∑nae
k=1 A3

ek
P

|∑nae
k=1 A3

ek
P |

(5.40)

The parameter nae specifies the number of neighboring elements to node
P. Figure 5.8 shows a graphical interpretation of equation 5.40. The unique
director A3P is computed by the normals of the neighboring elements A3ei

P

with i ∈ {1...nae}. Here the parameter nae is equal to four. Consequently
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Figure 5.9: Nodal DOF of a 6 parameter Reissner-Mindlin shell

the stiffness matrix of a shell element depends on the directors of the ele-
ment nodes which in turn are affected by the coordinates of the surround-
ing nodes. A more detailed description of this shell formulation can be
found in [Bis99] and the references therein.

Because of the complex relation to system degrees of freedom the analyt-
ical sensitivity of the element stiffness matrix is very cumbersome to de-
termine. The suggested semi-analytical approach appears to be exact and
significantly more efficient at the same time.

5.4.1 Sensitivity Analysis

The derivatives of the applied objective (3.32) with respect to the design
variable are computed by a semi-analytical (SA), an exact semi-analytical
(ESA) and a global finite difference (GFD) formulation. The GFD of the
compliance F with respect to the design variable s serves as reference result.
It is computed by

dF
ds

≈ F(s + ∆s) − F(s)
∆s

−→ ∆FGFD . (5.41)
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The basis for the formulation of the semi-analytical derivative is given by
equation 4.9. Here the analytical derivative of the stiffness matrix is ap-
proximated by a finite difference formulation:

dF
ds

≈ −1
2

uT K(s + ∆s) − K(s)
∆s

u

= −1
2

uT ∆K

∆s
u −→ ∆FSA.

(5.42)

Again, the semi-analytical derivatives show the errors mentioned in section
5.2. The stiffness matrix derivative is modified as shown in section 5.3 to
give exact semi-analytical derivatives. They are computed by

dF
ds

≈ −1
2

uT
∆K∗u −→ ∆FESA, (5.43)

with ∆K∗ according to equation 5.29.

The examples of the following sections are chosen to show the behavior
of the semi-analytical and the exact semi-analytical sensitivities compared
to the global finite differences. They consider simple cantilever problems
comparable to the motivation examples presented in section 5.2.

The basic goal of the following examples is to investigate the approxima-
tion errors of the semi-analytical and the exact semi-analytical approach.
GFD results of both formulations serve as reference solution. The semi-
analytical and the exact semi-analytical sensitivities are scaled by the GFD
results to obtain the graphs of the subsequent diagrams:

∆FSA
scal =

∆FSA

∆FGFD and ∆FESA
scal =

∆FESA

∆FGFD . (5.44)

5.4.2 Model Problem III

The third model problem of this chapter treats a cantilever beam of length
Lb = 1. The width and the thickness are specified by 1.0 and 0.1 respec-
tively. The beam is clamped at x = 0 and loaded by a static nodal load
f = 2 f 1 + 5 f 2 = 1 with f 2 = 2 f 1 at x = Lb. Kinematics and material
law are defined by linear formulations. Rectangular shell elements with
Reissner-Mindlin kinematics are used to discretize the structure. The ge-
ometry of the cantilever is fixed but the number of elements varies for the
subsequent investigations. The number of elements in length direction is
modified between 1 and 16, but the number of elements in width direction
remains constant. Figure 5.10 shows an example with 3 element rows in
length direction.
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Figure 5.10: Model Problem III

This example considers the influence of a tip perturbation ∆s for a decreas-
ing element edge length. Here, the perturbation is constant over the tip of
the beam. The perturbation is computed by ∆s = p with p = 1 · 10−05.
Table 5.1 shows the corresponding edge length of the elements Le, the per-

n Le ∆s ∆s/Le

1 1 1E-05 1E-05
2 0.5 1E-05 2E-05
4 0.25 1E-05 4E-05
8 0.125 1E-05 8E-05

16 0.0625 1E-05 1.6E-04

Table 5.1: Perturbation parameters for MP III

turbation ∆s and the relation between perturbation and characteristic ele-
ment length for the increasing number of elements. This relation becomes
larger as the number of elements increases. The influence of the factor
∆s/Le on the sensitivities is visualized in figure 5.11. It shows the scaled
semi-analytical and exact semi-analytical sensitivities. It becomes obvious,
that the semi-analytical sensitivities show a linearly increasing error. The
source of this error is the increasing factor ∆s/Le. Another problem formu-
lation where this factor would be kept constant does not show such a error
propagation. The graph of the exact semi-analytical sensitivities does not
show any difference to the reference result. Thus, the sensitivity errors of
this model problem are completely cured.
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Figure 5.11: Scaled sensitivities for Model Problem III

5.4.3 Model Problem IV

The next example is also related to a cantilever beam. It is also clamped
at x = 0 but loaded by nodal forces f (n) = 2 f 1(n) + 5 f 2(n) with f 2(n) =

2 f 1(n) at x = Lb. The applied elements are equal to Model Problem III,
also the number of elements n varies between 1 and 16 (n ∈ {1..16}). In
contrast to the former examples the length of the beam increases by the
number of elements, because the length of the elements remains constant
(Le = 1.0). The goal of this model problem is the investigation of the in-

� -Lb = n · Le

?f 1(n)
???
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?
f 1(n)f 2(n)
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�

	

1

-�Le = 1

Figure 5.12: Model Problem IV

fluence of an increasing beam length on the approximation of the sensitivi-
ties. Obviously, the displacement field influences the sensitivities obtained
by equations 5.41, 5.42 and 5.43. Hence, the results are not comparable for
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an increasing beam length due to the increasing deformation. To disable
the influence of an increasing displacement field on the results one has to
ensure that the tip displacement remains constant. This prerequisite de-
mands a decreasing tip load f (n) for an increasing beam length Lb. The
linear Euler-Bernoulli beam theory results in the following equation for the
tip displacement of a cantilever beam subjected to a tip load:

u =
f · L3

b

3 · EI
. (5.45)

Enforcing u to be constant, the load for an arbitrary beam length follows
from

f =
3 · EI · u

L3
b

. (5.46)

The resulting tip loads f (n) for the specific beam lengths L = n · Le are
listed in table 5.2.

Lb Tip Load f
1 1
2 0.125
4 0.015625
8 0.001953
16 0.000244

Table 5.2: Tip load f (n)

n Le ∆s ∆s/Le

1 1.0 1E-05 1E-05
2 1.0 1E-05 1E-05
4 1.0 1E-05 1E-05
8 1.0 1E-05 1E-05
16 1.0 1E-05 1E-05

Table 5.3: Perturbation for MP IV

The perturbation ∆s is computed by ∆s = p · Le = p · 1.0. Hence, the pertur-
bation as well as the relation between perturbation and element length are
independent of the beam length as listed in table 5.3. The scaled sensitivi-
ties for Model Problem IV are depicted in figure 5.13. Obviously, the error
in the semi-analytical sensitivities increases quadratically with an increas-
ing beam length. This behavior could be expected because the graphs in
figure 5.5 show a similar behavior. These two figures can be compared be-
cause the configuration of Model Problem II is nearly equivalent to Model
Problem IV, except of the element types.

The graph of the exact semi-analytical sensitivities indicates that the pro-
posed correction method effectively eliminates the undesired effects.
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Figure 5.13: Scaled sensitivities for Model Problem IV

5.5 Summary

Influence of element type, element length and element rotation on the com-
putation of semi-analytic sensitivities are investigated by the examples of
this section. Additionally, the performance of the correction method in-
troduced in section 5.3 was demonstrated. Based on the results of Model
Problems I - IV the following statements are made.

• The accuracy problems of the semi-analytic sensitivities depend on
the kinematic assumptions of the elements. Elements with the same
kinematics like Euler-Bernoulli beams and Kirchhoff shells as well as
Timoshenko beams and Reissner-Mindlin shells behave analogously.

• The crucial factor for the accuracy of the approximated derivatives is
the ratio between perturbation and element length (∆s/Le). If the
ratio is small enough, even the semi-analytical sensitivity analysis
might be good enough.

• In most cases the results of the exact semi-analytical sensitivity anal-
ysis are nearly identical with the analytical solutions. The only error
which remains in the derivatives is the approximation error of the
finite difference formulation. This error can not be avoided.

• The numerical effort for the modification of the stiffness matrix
derivative is negligible due to the orthogonalization of the rotation
vectors.
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• Further approaches for the elimination of errors in semi-analytical de-
sign sensitivity analysis are based on higher order approximations,
e.g. central differences. The crucial disadvantage of these methods
are additional perturbation steps which lead to an increasing compu-
tation time.

• The procedure to compute the improved approximation of the
stiffness matrix derivative is independent from the specific FE-
formulation. The only information which is necessary is the defini-
tion of the nodal degrees of freedom to specify a set of rigid body
rotation vectors. Thus, the method is applicable to all kind of Finite
Elements without significant implementation effort.



Chapter 6

Regularization of Shape

Optimization Problems

It is well known [HG92], [BWDC05] that structural optimization prob-
lems formulated on large design spaces require regularization methods
to achieve reliable results. Coarse parametrization methods like CAGD
or Morphing are one possibility to regularize the optimal results. Obvi-
ously, the optimal result is limited by such coarse parametrizations. FE-
based parametrizations necessarily require regularization methods to en-
sure reliable mesh independent results and to satisfy e.g. manufacturing or
aesthetic constraints. These regularization methods can be separated into
out-of-plane regularization and in-plane regularization. The out-of-plane
regularization is applied to the source of the design update namely the re-
sponse gradients, c.f. equation 4.28. The in-plane regularization is applied
to ensure robust and reliable grids during the optimization process. Hence,
these methods only change the discretization of the geometry but not the
geometry itself. A more detailed motivation of the separation of design
parameters can be found in section 4.2.5.

The proposed out-of-plane regularization method applied to the response
function gradients is presented in section 6.2 whereas the developed in-
plane regularization method is introduced in section 6.3.

6.1 Motivation

As introduced before the necessity of out-of-plane regularization is based
on non-smooth response function gradients. Independently of the type of
differentiation (analytical, semi-analytical or global finite difference) the
gradients are not smooth. In this context the term "smooth" is related to
a geometrical curvature measure because in shape optimization problems
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the smoothness of the gradients directly affects the smoothness of the ge-
ometry. If the gradients are not smooth the geometry in the next optimiza-
tion step will be also not smooth. Obviously, a disturbed geometry will
cause non-smooth gradients again. Without out-of-plane regularization
this procedure continues until the whole mechanical model is irregular.
Since the separation in large or small curvatures is highly problem spe-
cific it is impossible to specify a fixed allowable curvature limit. Hence, the
out-of-plane regularization method must be able to influence the curvature
of the gradient fields by a simple and robust approach.

There exist several reasons for the development of non-smooth gradient
fields. In general, this effect is caused by mathematical properties of the
underlying function spaces, by kinematics and load carrying behavior of
the specific mechanical model and by deficiencies of the applied finite ele-
ment formulations:

• The derivatives of response functions (objectives and constraints) are
not as smooth as the functions itself. This is caused by the fact that
the derivatives of a function exhibit larger local curvatures than the
function itself. There exist only few exceptions from this statement
e.g. trigonometric functions. A more detailed introduction into this
topic can be found in [MP05]

• Especially for stiffness maximization of shell structures there exists
an intrinsic interaction between local and global improvements of
the objective. This results in local regions with high curvatures (local
stiffeners like beads) and other regions with nearly flat geometries.

• The applied finite elements may also abet non-smooth gradient fields.
This is caused by incorrect element responses, e.g. if the elements
suffer from locking phenomena. Unstructured grids with different
element aspect ratios may also show such an behavior. These effects
can be decreased by application of elements which give reliable re-
sponses (hybrid elements, EAS elements [Cam04] ) or by grids with
reasonable element aspect ratios.

The above mentioned observations of shape optimal finite element mod-
els are well known since many years. In industry this problem is solved
by CAD approaches with coarse geometry models. Hence, the maximum
curvature of the geometry is limited by the CAD model. It is obvious that
the improvement of the applied objective is also limited by the coarse ge-
ometry model. However, there exist several approaches to overcome the
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problem of non-smooth gradient fields. They are mostly applied to FE-
based optimization strategies and are able to improve the smoothness of
the gradients.

Mohammadi [Moh97] as well as Jameson and Martinelli [JM98] propose a
local smoothing operator which projects the disturbed gradient fields to a
C1 continuous gradient field. This is realized by repeated solution of the
following system of equations:

(I − ǫ∇)
d
∼
f

dsl
=

d f
dsl

(6.1)

with the non-smooth derivatives d f
dsl

and the projected derivatives d
∼
f

dsl
. The

parameter ǫ controls the end of the iteration procedure by setting ǫ = 0 if
the convergence criterion is reached. The term ∇ d f

dsl
specifies the curvature

of the objective function, which is eliminated by the above mentioned it-
erative procedure. Mohammadi, Jameson and Martinelli apply this local
second order projection method for shape optimization of fluid problems.
In such applications the appearance of shock fronts yields to locally irreg-
ular gradient fields.

Azegami and Kaizu [AK07] developed the so called "Traction Method". The
aim of this method is to compute a smooth gradient field by solution of a
linear elastic boundary value problem defined in the original domain and
loaded with the non-smooth gradient field. The authors note that appli-
cation of this method is possible to shape as well as to topology optimiza-
tion problems. Additionally this method decreases the size effect of the
parametrization presented in section 4.5.

Bendsøe and Sigmund [BS03] propose a so called sensitivity filter to de-
crease the mesh dependency of topology optimization problems. Within
this approach the sensitivity of a single design variable is modified by a
weighted average of the sensitivities in a fixed neighborhood

∂
∼
f

∂sl
=

1

sl
∑N

m=1

∼
Hm

N∑

m=1

∼
Hmsm

∂ f
∂sl

, (6.2)

where N is the number of elements in the filter domain. Bendsøe and Sig-
mund define the weight factor (convolution operator) as

∼
Hm = rmin − dist(l, m). (6.3)

The parameter rmin controls the radius of the filter operator and dist(l, m)

specifies the distance between element l and element m. Elements m with



6.2. PROJECTION OF SENSITIVITIES 97

dist(l, m) > rmin are not considered in the smoothed gradient of element l.
The authors apply this method to topology optimization problems with the
SIMP approach which treats the density of element l as design variable sl .
Although the authors do not provide a mathematical prove of this methods
it produces robust results with only a little amount of extra CPU time.

Materna and Barthold [MB08] apply a method based on configurational
forces e.g. for in plane mesh regularization. Here, they compute variational
sensitivities for the internal potential energy with respect to the coordinates
of the finite element nodes. The final result of the procedure is a grid that
provides a lower internal energy for the mechanical model and hence a
more accurate result.

The Poisson regularization is often applied in reconstruction of measured
surface data [AN07], e.g. by laser scanning methods and in image pro-
cessing. In the context of surface reconstruction the data suffer from noise
which is unavoidable in measuring processes. This noise is eliminated by
application of the Poisson equation which includes the Laplace operator.
Application of the Laplacian to the measured data extracts the local cur-
vature which is sequentially reduced by an update scheme. One crucial
point in such applications is the detection of sharp edges which must not
smoothed out.

6.2 Projection of Sensitivities

In this section a robust, efficient and reliable projection method for non-
smooth gradient fields is presented. The method is based on the mathe-
matical theory of convolution integrals which is well known since many
years.

In order to show the tremendous effects of multimodal response functions
on the gradient fields the simple one dimensional function depicted in fig-
ure 6.1 is applied. It shows the function f (x) = (x − 2)2 which is called
"Basic Response". This function is disturbed by the noise function n(x) =

0.3 ∗ sin(5x). The sum fd(x) = f (x) + n(x) = (x − 2)2 + 0.3 ∗ sin(5x) gives
a "Disturbed Response" also visualized in figure 6.1. The effect of the noise
function n(x) increases tremendously after differentiation of f and fd. The
derivative of the Basic Response (d f (x)/dx = 2x − 4) shows a completely
different behavior compared to the derivative of the Disturbed Response
(d fd(x)/dx = 2x − 4 + 1.65 ∗ cos(5.5x)). The former one shows constant
slope and no curvature whereas the latter one exhibits large differences in
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Figure 6.1: Objective with noise

slope and curvature. It is easy to observe that gradient based optimization
strategies suffer seriously from such wavy gradient fields.

This simple example motivates the development and emphasizes the cru-
cial importance of filter methods for gradient based optimization schemes.
In general, small perturbations of response functions can not be prevented,
e.g. due to the approximating character of FE-models. After differentiation
of these response functions the error dominates the whole gradient field
and actually prevents accurate design updates. These disturbed design up-
dates often point to local minima with poor structural properties. Since
the errors are much more visible in the gradients fields than in the func-
tion itself the filter method is conveniently applied to the gradient fields.
This motivation shows that regularization techniques are necessary for FE-
based parametrization schemes in order to ensure robust and stable opti-
mization methods and best possible results.

6.2.1 Theory of Convolution Integrals

The proposed projection or smoothing operator is based on convolution
[Yos80] of the disturbed gradient field d fd/dsi with a filter function g writ-
ten as d fd/dsi ∗ g. It is defined as the integral of the product of these func-
tions:

d f
dsi

= (
d fd

dsi
∗ g)(si) =

∫

Rn

d fd

dsi
(si − τ)g(τ)dτ, (6.4)

whereas Rn represents the n dimensional domain of the filter function and
τ states as local variable of g. For shell optimization problems the gradient
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field d fddsi as well as the filter function g are 2-d functions. Hence, the
convolution of these functions is defined by integration over the area of the
filter function g. An application of this approach to 3-d models (discretized
by bricks) needs a volume integral.

The filter function g can be considered as a mollifier with several charac-
teristic properties. It is non negative, has compact support and the integral
∫

gdτ is equal to 1. In mathematics mollifier functions are also infinitely
often continuously differentiable. For application as filter function for non-
smooth gradient fields this property is not necessary. Further important
properties of convolution integrals are commutativity f ∗ g = g ∗ f , asso-
ciativity f ∗ (g ∗ h) = ( f ∗ g) ∗ h, associativity with scalar multiplication
a( f ∗ g) = (a f ) ∗ g = f ∗ (ag) and the differentiation rule D( f ∗ g) =

D f ∗ g = f ∗ Dg. The support of the smoothed function d f /dsi is slightly
enlarged compared to d fd/dsi, cf. Figure 6.5. Additionally, the difference
in L1 norm between the original and the smoothed function is bounded by
a positive constant.

Example I

The first example shows the application of four filter functions (constant,
linear, quadratic, cubic) and three filter radii (0.25, 0.75, 1.25) to smooth the
derivative of the disturbed response d fd(x)/dx presented in figure 6.1. The
filter functions are sketched in figure 6.2. The filter functions are symmetric
and they are defined over the domain 2r. In general, also exponential func-
tions are applicable as filter functions. In contrast to simple polynomials
such functions are infinitely often continuously differentiable.
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(a) Constant filter function
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(b) Linear filter function
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(c) Quadratic filter function
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(d) Cubic filter function

Figure 6.3: Smoothed sensitivities

Figure 6.3 shows the results of application of the four types of filter func-
tions to the disturbed derivative function (figure 6.1). In general, all filter
functions are able to smooth the gradient function effectively. Obviously
the disturbed function d fd(x)/dx becomes smoother if the filter radius of
the filter functions becomes larger. This is shown exemplary by the graphs
of the filter radius r = 0.75. Very good correlation is observed for all filter
functions if the filter radius is increased to r = 1.25. However, for this kind
of periodic noise function the graph of the constant filter function (figure
6.3a) shows minimal oscillations. Obviously the obtained results depend
on the kind of basic response and noise function. Application of other noise
functions may yield to slightly different results but the influence of noise
effect is decreased seriously.

6.2.2 Application as Filter Function

The filter method introduced in (6.4) is defined for continuous functions.
In finite element analysis only discrete function values at the nodes are
available. The reformulation of the convolution integral to discrete values
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Figure 6.4: 2-d Filter functions with radius r=3

d fd/dsi , g : D with D ⊆ Z reads as

d f
dsi

= (
d fd

dsi
∗ g)(si) =

∑

k∈D

d fd

dsi
(si − k)g(k) (6.5)

For smoothing of discrete response functions of finite element models the
set D is defined by the set of optimization variables at finite element nodes.

According to the 1-d filter functions depicted in figure 6.2 the respective
2-d functions are drawn in figure 6.4 for filter radius r = 3. Obviously, the
integral of the several filter functions is not equal to 1. This is considered
by a scaling of the RHS of equation (6.5) with 1/

∫
gdτ.

Example II

Figure 6.5 visualizes a basic property of smoothing operations by convo-
lution namely the enlarged support of the smoothed function. The two
dimensional and constant function fc in figure 6.5a has the value 1 in the
domain 6 < x < 15, 6 < y < 15 and the value 0 elsewhere. The function
fs plotted in figure 6.5b is obtained by convolution of fc with a linear filter
function with radius equal to 3 (cf. figure 6.4b). The result shows a clear
smoothing in the support region of function fc. But the convolution yields
to an enlarged support of function fs. This function has nonzero values in
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(a) Initial function fc
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(b) Smoothed function fs

Figure 6.5: Enlarged support due to smoothing operator

the domain 4 < x < 17, 4 < y < 17. In general, the size of the enlarged
support depends on the radius of the filter function, a large filter radius
yields to a big shift in the support region and vice versa. For applications
to optimization problems this effect becomes visible near the boundary of
the gradient field because the design space of a mechanical model is limited
and, hence, the enlarged support of the sensitivity field can not be modeled
by this space.

Example III

The last example of this section shows the application of 2-d filter func-
tions to a mathematical model problem. Figure 6.6a shows a biquadratic
example function defined over the domain lx ≤ x ≤ Lx, ly ≤ y ≤ Ly with
lx = ly = 1 and Lx = Ly = 20 by

fbq(x, y) =
2650((x − Lx)(x − lx)(y − Ly)(y − ly))2

LxLy(LxLy − 2Lx − 2Ly + 4)
(6.6)

This function has the value 0 at x = 1 ∧ x = Lx∀y ∈ {ly..Ly} and at
y = 1 ∧ y = Ly∀x ∈ {lx ..Lx}. The function reaches its maximum at
x = Lx/2 ∧ y = Ly/2. A random function frand(x, y) = rand{−1..1} de-
fined over lx < x < Lx, ly < y < Ly is added to (6.6) to simulate the noise
which is contained in the sensitivity fields of mechanical response func-
tions. The sum fbq + frand = f n

bq is shown in figure 6.6b. The global charac-
teristics of the basic function fbq (e.g. global maximum) are also visible in
the disturbed function, but local information cannot be extracted from it.

Like in Example I constant, linear, quadratic and cubic filter functions with
a variable filter radius are applied to smooth the disturbed function. The
goal is to obtain the best approximation of fbq by smoothing the func-
tion f n

bq. The resulting functions are called f s
f ilt,r for the four different fil-

ter functions f ilt ∈ {constant, linear, quadratic, cubic} and the filter radii
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(b) Noisy function f n
bq

Figure 6.6: 2-d Quadratic example function
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Figure 6.7: Error propagation of Example III

r ∈ {1,2,3,4}. The quality of the smoothed functions is measured by three
performance criteria.

• the L1 norm of the difference between the basic function fbq and the
result of the filtering process f s

f ilt,r,

• the mean of mean curvature of the nodes of f s
f ilt,r where the sum of

mean curvature of all nodes is divided by the number of nodes,

• and the maximum mean curvature of f s
f ilt,r.

The L1 norm, equation 6.7, of the difference between the smoothed result
and the basic function fbq shows for all types of filter functions ( f unc) a
similar behavior with only minor differences, cf. figure 6.7a.

Nr, f unc
L1

=
∑

x

∑

y

| fbq(x, y) − f s
f ilt,r(x, y, f ilt, r)| (6.7)
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The linear and the cubic filter functions with a radius of 2 are able to de-
crease the error. For the quadratic filter function the error remains constant
and for constant filter function the error becomes larger. With an further in-
creasing filter radius r the L1 norm increases also. This is caused by the fact
that a small part of the basic response is smoothed out by the filter func-
tion. This small part can be considered as the smoothing error. The amount
of smoothing error is related to the size of the filter radius. The different
graphs in figure 6.7a show that the type of filter function has also influ-
ence on the smoothing error. The best results in terms of the L1 norm are
obtained by cubic filter functions where constant filter functions yield to
worst results. In general, the smoothing error can not be measured directly
because the basic function (without noise) is usually not known.

Figure 6.7b shows the mean curvature of the basic function (constant
graph) and the mean curvatures of the smoothed functions. Also in this fig-
ure the graphs of the different filter functions show a similar behavior. All
four filter functions are able to reduce the mean curvature in the result effi-
ciently. For filter radii r ≥ 4 the mean curvature of the smoothed results is
smaller than for the basic function. This phenomenon is also caused by the
smoothing error because the high curvature regions of the basic response
fbq are partially smoothed out.

The third criterion to be evalu-
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ated is the maximum mean cur-
vature shown in figure 6.8. The
basic response function fbq has a
maximum mean curvature of 0.88.
The resulting curvature values for
the smoothed functions show a
similar behavior. An increasing
filter radius r gives a decreased
mean curvature where the linear,
quadratic and cubic filter func-

tions reach the value of the basic function for r = 4. The curvature reduc-
tion of the constant filter function is not as effective as for the other filter
functions.

Based on the results visualized in figures 6.7a, 6.7b and 6.8 f s
cubic,4 is the best

agreement between good approximation of basic response function fbq and
smoothing of the noise.

The smoothed function f s
cubic,4 depicted in figure 6.9b shows a very good

correlation to the basic function fbq. The basic properties of fbq like max-
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Figure 6.9: Smoothing results

imum at x = 10, y = 10 and fbq = 0 at the support are also reflected by
f s
cubic,4. This can be identified in more detail in figure 6.9a. This diagram

shows the function values of fbq, f n
bq and f s

cubic,4 along the cutting line at
x = 10. The graph of f s

cubic,4 is not influenced by the noise function and
shows only minor differences to fbq. But near the boundary at x = 0 and
x = 20 the mentioned boundary effect (cf. Example III) is also contained
in the smoothed result. Nevertheless, the filtered function f s

cubic,4 is a good
approximation of fbq that eliminates the disturbing influence of the noise
very effectively.

The application of convolution integrals as filter method for disturbed gra-
dient fields yields to smooth sensitivity distributions which can be directly
utilized for the design update. But near the boundary or in regions with
high curvatures the smoothing error prevents exact approximations of the
gradients if the filter radius is too large. This problem can be reduced by
multiple filter operations with a smaller filter radius. Another modification
of the original filter algorithm is the application of elliptical filter functions
near the boundary. By this method the enlargement of the support can be
decreased significantly.

6.3 Mesh Regularization

In contrast to the out-of-plane regularization method introduced in the pre-
vious section the mesh regularization is denoted as in-plane-regularization
method. The basic goal is to ensure robust and reliable FE-meshes in order
to disturb the direct sensitivity analysis as less as possible.
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Figure 6.11: "Optimal" Solutions

6.3.1 Motivation

Figure 6.10 shows the initial configuration of a simple beam optimization
problem. The circular structure is supported at nodes 1 and 7 and loaded by
a force f at node 7. The optimization goal is stiffness maximization for the
given boundary conditions where the straight connection between nodes
1 and 7 is the optimal solution. The optimization variables are the normal
nodal coordinates of nodes 2..6. Now, it is assumed that the direction of
the design variables remains constant during the optimization procedure.
Obviously, there exists an arbitrary number of discretizations to represent
the optimal geometry. Two possible meshes are depicted in figures 6.11a
and 6.11b.

In 6.11a the nodes 2..6 are co-

Y

K
6

�

*

-1

2

3
4

5

6

7

d2

d3

d4
d5

d6

f

Figure 6.10: Initial configuration

alesced at the center of the
structure. Thus, the length
of the inner elements tends
to zero and the length of the
outer elements tends to the ra-
dius of the initial configura-
tion. Therefore, the geometry
of the optimal solution is cor-
rect but the mechanical model

is irregular. However, this discretization is the result of the optimiza-
tion problem with the specified assumptions. Obviously, the optimization
strategy has to be supplemented with an in-plane regularization method
to avoid such irregular results. Another optimal solution is presented in
figure 6.11b. It also shows the correct geometry but now with a feasible
mechanical model. This result is obtained by the in-plane regularization
approach introduced in section 6.3.4. Within this method the necessary
mesh adaption is distributed over the whole model. This ensures stable
element aspect ratios and therefore robust and reliable results.

Based on this simple example the basic properties of a mesh regularization
method can be stated. Each mesh regularization method should improve
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the mesh quality and it has to preserve the geometry. This leads to methods
that allow for a floating FE mesh over the geometry managed by suitable
projection operators. The determination of mesh quality strongly depends
on the special application and the applied finite elements. In many cases
the quality of quadrilaterals and hexahedrons is determined by the inner
angles which should be close to 90 degrees. Triangles or tetrahedrons with
good quality usually have nearly equal edge lengths.

Mesh regularization methods are distinguished in geometrical and me-
chanical approaches. Pure geometrical methods are based on a local crite-
rion which improves the mesh locally. Mechanical methods solve the mesh
optimization problem by an auxiliary mechanical model. Usually, both
methods require the solution of an additional system of equations which
requires significant numerical effort. The presented geometrical methods
may also be formulated in an explicit scheme which does not require the
solution of an equation system. Unfortunately, the convergence of such ex-
plicit formulations is rather poor but the application to shape optimization
problems does not require too small convergence tolerances.

6.3.2 Geometrical Methods

Geometrical mesh regularization methods apply a local criterion for mesh
improvement. A famous class of geometrical methods are the Laplace
smoother [ZTZ00]. These methods are based on the computation of the
center of gravity of point clouds. Usually, they are robust and stable and
require only a small numerical effort.

The basic principles and a suitable implementation should be visualized
by the simple example sketched in figure 6.12. It shows a simple irregular
grid spanned by the nodes ni with i ∈ {1..10}. The goal of the mesh reg-
ularization is to modify the position of node n1 denoted with x1 such that
the quality of the mesh is improved.

The most simple Laplace operator is the so called Umbrella Operator. This
operator determines the optimal position of an inner node by the average
position of the surrounding nodes expressed by

x̃∗1 =
1
N

10∑

i=2

xi (6.8)

where N denotes the number of neighboring nodes, here N = 9. This op-
erator works well for regular grids spanned by triangles, quadrilaterals,
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Figure 6.12: Mesh regularization by Laplace smoother

tetrahedrons or hexahedrons. It is obvious that this method fails for irreg-
ular grids. In the above sample grid this would end up in a nodal position
x̃∗1 closer to the nodes n6 and n7 instead of the center of the grid.

A simple and robust enhancement of the umbrella operator is the inclusion
of the center of gravity weighted by the area content. This modification
allows for application of the umbrella operator to irregular grids. Compu-
tation of area and center of gravity for arbitrary element types is possible
but not straight forward. Triangles or tetrahedrons offer a simple and very
efficient computation of these data. This motivates an auxiliary triangula-
tion of the neighborhood of node n1 to compute area content and center
of gravity by simple geometrical elements. The example grid depicted in
figure 6.12 can be triangulated by 9 elements where the additional element
edges are marked by dashed lines. The investigated node is member of
each element which yields to element e1 consisting of the nodes {n2, n3, n1}
The optimal position of node n1 is now computed by

x̃1 =
1
N

9∑

j=1

Ajsj (6.9)

where N denotes the number of neighboring elements and j defines a
counter over these elements. The parameters sj and Aj denote the cen-
ter of gravity and the area content of element ej, respectively. It is easy
to verify that this simple enhancement increases the application fields of
the umbrella operator significantly. The implementation of the area con-
tent additionally offers the opportunity to consider properties of the initial
discretization during the optimization process. This effectively prevents an
effect called over-smoothing.
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6.3.3 Mechanical Methods

In contrast to geometrical methods the class of mechanical methods for-
mulate an auxiliary mechanical problem leading to an improved mesh. In
general, two mechanical theories are applied, elasticity theory and poten-
tial field theory.

Elasticity Theory

There exist several methods to formulate mesh regularization schemes
based on elasticity theory. The class of pseudo elastic continuum models
consider the mesh motion at the boundary as Dirichlet boundary condi-
tion. They are often applied in Fluid Structure Interaction (FSI) problems
where the fluid is described by Arbitrary Lagrangian Eulerian (ALE) meth-
ods. Here, the mesh motion of the structural boundary has to be transferred
to the fluid grid. Mesh regularization methods based on elastic contin-
uum models are limited to small mesh deformations because of large ele-
ment distortions close to the Dirichlet boundary. On the other hand these
methods show robust behavior at concave boundaries. Instead of model-
ing continua the discrete spring analogy formulates a net of discrete spring
elements that connect the nodes. The springs are subjected to an initial
strain and compensate boundary movements by new equilibrium states in
the cable net. Usually the application of cable nets results in smaller mesh
deformation at the boundaries compared to continuum models.

Another possible formulation of the discrete spring analogy is provided by
the so called Force Density method[Sch74], [Lin99a], [Lin99b]. Such meth-
ods model the grid as cable net consisting of prestressed ropes. Scaling of
the prestress with respect to a specified reference length results in mechani-
cally motivated mesh regularization schemes that do not require a material
formulation. In general, such methods allow for very large mesh deforma-
tions but they have problems at concave boundaries due to overlapping
phenomena.

Potential Field Theory

The potential field theory is a common model to describe electric, gravita-
tion, magnetic and aerodynamic fields, respectively. The governing equa-
tion of this theory is the Poisson equation including the Laplace operator. A
basic property the modeled field is that the field lines show a very smooth
and regular behavior. This motivates the application of potential field the-
ory as mesh regularization method.
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6.3.4 Minimal Surface Regularization

In this section the Minimal Surface Regularization (MSR) method is pre-
sented in detail. Basically, this method belongs to the class of mechanical
mesh regularization methods. It is shown that this approach allows for
large mesh deformations where the distortion of each single element is as
small as possible. The theory of this method is related to the well known
form finding problem ([OT62], [OS66]).

This class of problems can be investigated by experiments, by mathematics
and by mechanics via the soap film analogy, the solution of the Plateau
problem and by form finding of membrane structures ([BR99]), respec-
tively. The goal of the latter approach is to find an equilibrium shape for
given boundary and prestress in the domain by the governing principle of
virtual work:

δw =

∫

Ω

σ :
∂(δu)

∂x
dΩ = t

∫

a
σ : δu,x da = 0 (6.10)

with the membrane thickness t which is assumed to be thin and constant,
the prescribed Cauchy stress σ = σαβgα ⊗ gβ with the local directions α

and β and the derivative of the virtual displacement with respect to the
geometry of the actual surface u,x. The applied notation is introduced in
chapter 2. Expressing u,x by the deformation gradient

δu,x =
∂(δu)

∂x
=

∂(δx)

∂X
· ∂X

∂x
= δF · F−1 (6.11)

permits the formulation of the form finding problem in the reference for-
mulation

δw = t
∫

A
(F · S) : δFdA = 0 (6.12)

where the second Piola Kirchhoff stress tensor is related to σ by

S = detFF−1 · σ · F−T = detFσαβGα ⊗ Gβ = SαβGα ⊗ Gβ. (6.13)

Equations 6.10 and 6.12 are solved numerically by the Finite Element
Method. Therefore, geometry and displacements are discretized by stan-
dard displacement elements by piecewise interpolation of nodal coordi-
nates

X =
nel∑

k=1

Nk(θ1, θ2)X̄k, x =
nel∑

k=1

Nk(θ1, θ2)(X̄k + ūk) (6.14)
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and nodal displacements

u =
nel∑

k=1

Nk(θ1, θ2)ūk, (6.15)

respectively. Here the upper bar denotes nodal values and N are standard
C0 continuous shape functions.

The nodal displacement components are defined as free discrete parame-
ters of form finding. They are arranged in a column vector b of dimension
n which denotes the number of degrees of freedom in the system. Hence,
variation of any entity means variation with respect to the free parameters.
This yields to the following formulations for the variation of the deforma-
tion gradient

δF =
∂F

∂br
δbr = δgα ⊗ Gα =

∂gα

∂br
δbr ⊗ Gα (6.16)

and the covariant basis vector

δgα = δx,α =
∂gα

∂br
δbr =

nel∑

k=1

Nk,α
∂ūk

∂br
δbr, (6.17)

respectively. In the above equations br is the rth component of b, i.e. the rth

degree of freedom of the discretized problem.

By discretization of (6.12) one obtains a nonlinear set of n equations:

∂w
∂br

= t
∫

A
(F · S) :

∂F

∂br
dA = 0. (6.18)

It is well known that linearization of the form finding problem defined by
(6.18) results in a singular system matrix due to the undetermined tangen-
tial position of the nodes. This deficiency can be overcome by stabilization
methods like geometrical constraints or methods of numerical continua-
tion. In the latter approach the idea is to modify the original problem by
a related one, which fades out in the vicinity of the solution. The Updated
Reference Strategy (URS) ([BR99]) applies equation 6.12 and a homotopy
parameter λ to stabilize the singular formulation in (6.18). Therefore, the
modified stationary condition reads as

δwλ = λt
∫

A
detF(σ · F−T) : δFdA + (1 − λ)t

∫

A
(F · S) : δFdA = 0. (6.19)

The stabilization effect is based on the prescribed PK2 stresses S that are
related to a constant reference configuration during the solution process.
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Since the reference configuration is updated during the iteration procedure
the difference between actual and reference configuration fades out. The
value of the homotopy factor λ can be chosen such that 0 ≤ λ < 1. For
λ = 1 the stabilization term would not work and the system of equations
would be singular. For decreasing values of lambda the solution process
becomes more and more stable but the speed of convergence decreases. It
is also possible to perform the whole computation only with the stabiliza-
tion term (λ = 0 in (6.19)). This approach results in a linear system of equa-
tions and is the generalized version of the force density method [Sch74],
[Lin99a], [Lin99b], [MM98]. The URS turns out to be an extremely stable
and robust solution algorithm and provides the basis for the proposed MSR
formulation.

So far the discrete system of equations (6.19) is nonlinear in the terms of the
discretization parameters br. It is solved iteratively by consistent lineariza-
tion using the Newton-Raphson method. Linearization of (6.19) with λ = 0
is formulated by

LIN
(

∂w
∂br

)

= t
∫

A
(F · S) :

∂F

∂br
dA+

∆bst
∫

A

∂

∂bs

(

(F · S) :
∂F

∂br

)

dA = 0. (6.20)

with r, s ∈ {1, .., n}. Reformulation of (6.20) yields to the problem: Find the
unknown geometry x such that the vector of unbalanced forces f is equal to
zero.

K(x)u = f(x) with

{

K = t
∫

A(F,s ·S) : F,r dA
f = −t

∫

A(F · S) : F,r dA
(6.21)

The geometry of the actual configuration follows from the reference con-
figuration X and the incremental displacements u by x = X + u. Stiffness
matrix K and vector of unbalanced forces f depend on membrane thick-
ness t, second Piola Kirchhoff stress tensor S, deformation gradient F and
derivatives of deformation gradient F,r and F,s where the subscripts r and
s indicate the degrees of freedom of the model, e.g. the unknown nodal
positions. It should be clearly indicated that the stiffness matrix K and the
vector of unbalanced forces f are related to the mesh regularization prob-
lem only. The solution of the underlying structural problem is governed by
a different set of equations. According to membrane theory the tangential
prestress is defined as boundary condition of the governing PDE. Equa-
tion (6.21) is solved iteratively until the solution is converged (|∆u| < tol)
where the reference configuration is updated at each iteration step. When
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the solution is convergend the reference configuration X is nearly equal to
the actual configuration x.

The URS based form finding approach introduced so far was extended
by adaptive prestress modification to prevent numerical problems for ill-
posed formulations [WB05], [Wüc07] where equilibrium geometries for
isotropic prestresses do not exist. These kind of problems often result in
extreme element distortions which end up in numerical problems. The rea-
son for this mesh distortions is the fact that the element prestress S in (6.21)
does not depend on the element geometry. In the following a method is
presented that allows for an adaptive prestress update in each element. By
this approach the stress update rule can be defined in a way that the size
and the shape of the elements fulfills defined quality criteria as good as
possible. This extension allows a generalization of the URS approach to
a effective mesh regularization method applicable to all kind of finite ele-
ments.

Figure 6.13 defines the applied configurations for the derivation of the MSR
algorithm. The covariant basis vectors for the initial and the actual config-
uration are specified as G0α and gα respectively. The maximum allowed
element deformation is specified by the covariant basis vectors of the limit
configuration Gmaxα. There exist several possibilities to specify the limit
configuration:

• In several application it is sufficient to apply the best possible element
shape as limit configuration. The best possible shapes for quadrilat-
eral and triangles are the unit square and the unit triangle respec-
tively. In this case all elements that are regularized try to reach the
repective optimal shapes as close as possible.

• Whenever properties of the initial mesh should be preserved dur-
ing the mesh regularization process the optimal element shapes are
scaled with the initial volume of the respective element. In this case
it is ensured that regions with specific mesh densities keep their el-
ement sizes during mesh regularization whereas the element shapes
where improved.

• Instead of using auxiliary optimal elements as limit configuration the
initial element geometries itself can be used. By this approach the
regularized mesh shows only minimal differences to the initial grid.

The introduced basis systems can be transformed in principal directions in-
dicated by a tilde. Transformations between initial and actual configuration



6.3. MESH REGULARIZATION 114

�

6
i

O

initial configuration

∼
G02

∼
G01

G02

G01

6

-

�

:

actual/reference configuration

∼
g1

∼
g2

g2

g1

�

j

*

z

limit
configuration

∼
Gmax1

∼
Gmax2

Gmax2

Gmax1

6

*

Ft,
∼
Ft

Fmax,
∼
Fmax

Figure 6.13: Configurations for MSR

and initial and limit configuration are indicated by Ft and Fmax respectively.

Element shape control of the MSR method is based on the principal
stretches of the elements in the reference configuration. The deformation at
iteration step k is defined by the total deformation gradient Fk

t :

Fk
t = gk

α ⊗ Gα
0 (6.22)

The subscripts and superscripts α ∈ {1,2} indicate the plane co- and con-
travariant basis vectors, respectively. The total right Cauchy Green tensor
Ct follows from the deformation gradient by

Ct = FT
t Ft (6.23)

where the iteration counter k is omitted for simplicity. The element distor-
tion is measured by principal stretches which follow from the eigenvalues
of the right Cauchy Green tensor by the equation

(Ct − λ2
i I)

∼
Ni = 0. (6.24)

The principal stretches are denoted by γtα with α ∈ {1,2}. These param-
eters are compared with predefined limit stretches γmaxα and γminα

. If the
principal stretches violate these bounds the element prestresses are modi-
fied by the factors βα:

βα =

{
γmaxα

γtα
if γtα > γmaxα

γminα
γtα

if γtα < γminα

with α ∈ {1,2} (6.25)
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The general stress update procedure can be formulated by a nested se-
quence of pull back and push forward operations:

1. apply prestress to limit configuration

2. perform pull back operation to initial configuration

3. compute push forward operation to actual configuration

Smod =
∼
Ft

∼
F
−1

maxS
∼
F
−T

max

∼
F

T

t with







∼
Ft =

[

γt1 0
0 γt2

]

∼
Fmax =

[

γmax1 0
0 γmax2

] (6.26)

The deformation gradients
∼
Ft and

∼
Fmax (cf. Figure 6.13) define the trans-

formation of the principal directions from the initial configuration to the
actual configuration and the limit configuration, respectively. After sub-
stitution of (6.25) in (6.26) one obtains a simple equation for the modified
prestress Sαβ

mod:

Sαβ
mod =

Sαβ

βαββ
with α, β ∈ {1,2}. (6.27)

The modification of the prestress during the iterative solution procedure
ensures that the principal deformation of all elements does not exceed the
region defined by γmax and γmin. If an element becomes too large during the
regularization process the prestress is increased. Otherwise if an element
becomes too small the prestress is decreased. This results in a model where
the necessary mesh deformation is distributed to all elements in the mesh.

The regularization method introduced so far computes the equilibrium
shape for a given boundary and a given prestress with a limited element
distortion. But in the context of shape optimization this approach is ap-
plied to a known geometry which should be preserved. Here the geometry
is defined by nodal coordinates and respective directors. This constraint is
fulfilled by application of the MSR approach to the set of tangential coordi-
nates. In general there exist several possibilities to include such constraints
in the formulation like Lagrangian multipliers or Penalty methods. In the
proposed MSR method the normal degree of freedom at each node is elim-
inated by the Master Slave Method. Due to the reduced number of dofs
the system of equations is smaller and the solution is more efficient. The
transformation rules are formulated in a unsymmetric matrix T. The num-
ber of rows and columns corresponds to the original number of dofs and
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the reduced number of dofs respectively. By this matrix T the constrained
stiffness matrix K∗ and the constrained vector of unbalanced forces can be
computed by

K∗ = TTKT and f∗ = TTf respectively. (6.28)

The solution of the linearized system of equations K∗u∗ = f∗ gives the
constrained vector of incremental displacements. The back transformation
to a cartesian metric is computed by u = Tu∗.

Application of the MSR method for mesh stabilization during the FE-based
shape optimization process yields to robust element aspect ratios without
large local element distortions. Such meshes are the crucial prerequisite
for accurate sensitivity responses. Thus, the MSR method and the sensitiv-
ity filter allow accurate sensitivity analysis during the whole optimization
procedure.

6.4 Model Problem V

The fifth model problem investigates the general effects of the proposed
sensitivity filter and the mesh regularization methods. The mechanical
model describes a cantilever made from a pipe of linear elastic material dis-
cretized by Reissner-Mindlin shell elements. One end of the pipe is Navier
supported whereas the other end is subjected to constant nodal forces in
vertical direction. The dimensions of the initial structure are: length = 20,
diameter = 2 and thickness = 0.01, c.f. figure 6.14a.

Optimization goal is minimization of linear compliance (3.32) with constant
structural mass. The design variables are the normal coordinates at each
node. At both ends of the structure the design update is restricted such that
the length of the cantilever remains constant. The optimization problem is
solved by the ALM optimizer presented in section 4.7.2.

It is obvious that the solution without any regularization (figure 6.14b) is
completely useless. The only difference to the initial design is a high mesh
distortion which results in an improved stiffness. However, this stiffness
improvement is a pure numerical and erroneous effect. Additionally, the
absence of the sensitivity filter results in highly mesh dependent results. A
modified discretization would lead to a completely different design which
is unacceptable.

Application of the proposed sensitivity filter yields to a clearly improved
and structural meaningful optimization result. The design depicted in fig-
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(a) Initial geometry

(b) Optimal geometry without any regularization

(c) Optimal geometry with sensitivity filter but without mesh regularization

(d) Optimal geometry with full regularization

Figure 6.14: Designs for Model Problem V

ure 6.14c shows a significant improved stiffness whereas the mass is equal
to the initial design. A closer look to the mesh quality in the marked re-
gions shows the necessity of tangential mesh regularization. Especially at
both ends of the cantilever the elements are seriously distorted. As men-
tioned earlier such distortions result in a disturbed gradient field.

Figure 6.14d occupies that the discretization can be improved further. Here
the proposed mesh regularization method is applied to ensure the best pos-
sible discretization for the optimal geometry. It is easy to verify that at the
support region as well as at the loaded end of the beam the elements show
nearly perfect aspect ratios. In this example the structural strain energy
was decreased by a factor of 2.2 without increasing structural mass. At the
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same time the tip displacement is reduced by a factor of 2.1.

6.5 Model Problem VIa

The second model problem of this chapter intends to demonstrate the mesh
independency of the optimal solutions. It shows a quadratic plate with cor-
ner support and central loading by four nodal forces f according to Figure
6.15. The specified geometry is discretized by 1600 (Mesh I), 6400 (Mesh II)
and 14400 (Mesh III) elements, respectively. The goal of the optimization
problem is to maximize the stiffness of the structure. The shape derivatives
are regularized with the projection method introduced in section 6.2.2. For
this example cubic filter functions (figure 6.4d) with a radius r = 5 are ap-
plied.

The optimal geometry specified by the different discretizations is presented
in figure 6.16. It is characterized by a membrane dominated load carrying
behavior utilizing eight bead like structures that transfer the load from the
center to the supports near the corners. The mesh independency of the re-
sults is more clearly shown by the graphs in figure 6.17. Here, the cross
sections along the paths P1 and P2 are compared for the three discretiza-
tions. It is easy to verify that the three different discretizations describe
nearly the same geometry. Only along path P1 some minor differences be-
tween Mesh I and the finer grids are visible. A possible reason is the small
filter radius which controls the curvature of the geometry. In general, a suf-
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(a) Mesh I

(b) Mesh II

(c) Mesh III

Figure 6.16: Optimal design for Model Problem VIa

ficient number of elements is required to ensure a robust approximation of
highly curved geometry regions. Obviously, Mesh I is a little bit too coarse
for this small filter radius. Along path P2 the curvature is small enough so
that the coarse grid of Mesh I allows for a good approximation too.

Figure 6.18a shows the convergence of the objective for the three discretiza-
tions where the function values are scaled with respect to the initial designs.
Obviously, all optimizations converge to the same result. Even convergence
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Figure 6.17: Path plots for Model Problem VIa
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Figure 6.18: Convergence of objectives for Model Problems VIa and VIb

to the minimum does not show any difference.

6.6 Model Problem VIb

This model problem is related to the previous Model Problem VIa but here
the influence of an increasing filter radius on the optimization result should
be demonstrated. Again the quadratic plate problem depicted in figure 6.15
is investigated. Instead of varying the mesh density this example uses a
fixed mesh with 40x40 elements (Mesh I). All other parameters of the me-
chanical problem and the optimization model are similar to Model Problem
VIa. Filter radii of of size 5, 10, 15 and 20 are applied and their effects on
the optimal geometries are visualized.

Figure 6.19 compares the optimal geometries along the paths P1 and P2. Es-
pecially the optimal geometries along path P1 are significantly influenced
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by the size of the filter radius. It can be observed that the curvature of the
optimal geometry decreases when the filter radius increases. Thus, applica-
tion of a large filter radius yields to smooth geometries whereas a small fil-
ter radius allows for wavy geometries. Comparing figures 6.19a and 6.19b
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Figure 6.19: Path plots for Model Problem VIb

shows that a smaller filter radius does not automatically yield to wavy ge-
ometries. Along path P2 the varying filter radius has only a small influ-
ence on the optimal geometries. The reason is that the optimal geometry
along path P2 is less wavy than the optimal geometry along path P1. Such a
smooth optimal geometry would be only affected if the filter radius would
be significantly increased.

The previously presented optimization results show that the radius of the
filter function is an appropriate tool to control the curvature of the optimal
result. But the more important question is if the size of the filter radius
does also influence the quality of the optimum. The quality of an optimum
is usually measured by the value of the applied objective function. Fig-
ure 6.18b clearly shows that all optimal geometries exhibit nearly the same
objective value and convergence behavior. Thus, there exist many nearly
equivalent solutions for the presented optimization problem. Obviously,
this statement is problem dependent and not always true. Nevertheless,
many shape optimization problems have a significant number of possible
solutions with nearly equal mechanical properties. This offers the possibil-
ity to the designer to choose between several solutions which look different
but act similar.
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6.7 Summary

This chapter introduces a full stabilized formulation for FE-based shape op-
timization problems. The motivation, the detailed derivation and the ap-
plication of normal and tangential regularization methods were presented.
The basic properties of the proposed approach are summarized in the fol-
lowing statements.

• The sensitivity filter and the mesh regularization method are appli-
cable to all kind of shape optimization problems, independent from
type of objective, constraints or mechanical model.

• The introduced filter method is based on the well known mathemati-
cal theory of convolution integrals. The method offers a direct control
of the smoothness of the optimal geometry. Model Problem VIa and
VIb show that the proposed filter method guarantees mesh indepen-
dent results and provides an upper limit to the maximum curvature
of the optimal design.

• Exact numerical response of the mechanical model requires robust
element aspect ratios. This is ensured by the proposed mechanically
motivated mesh regularization algorithm. Here, the necessary mesh
distortion is distributed equally over the whole mesh. Hence, the
geometry of each single element is distorted as less as possible.



Chapter 7

Shape Optimization of

Geometrically Nonlinear

Problems

Nonlinear analysis methods allow for a very accurate modeling of struc-
tural behavior. This accuracy is enabled due to formulation of structural
equilibrium in the deformed configuration, c.f. figure 2.1. The equilib-
rium has to be calculated by iterative procedures because the governing
equations are nonlinear. There exist several types of nonlinearities e.g. ma-
terial nonlinearities, contact, or geometrical nonlinearities. In this chap-
ter only geometrically nonlinear problems are investigated but the derived
methods are applicable to all kind of nonlinear problems that allow for
analytic differentiation of response functions. Geometrical nonlinear prob-
lems show serious deformations which require their consideration in the
equilibrium formulation. Such models permit an exact computation of the
load-displacement behavior, the limit load and post-buckling properties.
Additionally, the influence of imperfections on the structural characteris-
tics can be analyzed. A basic property of nonlinear analysis are the time
consuming solution algorithms. Usually they require the computation of
several load steps where each step requires several equilibrium iterations.
A more detailed introduction to nonlinear analysis and the basic solution
strategies can be found in [ZTZ00], [BLM00] and [Bat95].

Structural optimization of geometrically nonlinear models incorporates the
nonlinear behavior in the response functions and also in the sensitivity
analysis. Such problems where often solved by SAND (Simultaneous Anal-
ysis and Design) formulations [AW05]. SAND formulations apply the state
variables, such as displacements, as optimization variables in addition to
the classical design variables. The governing equilibrium equations are
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treated as equality constraints.
Smaoui and Schmit [SS88] propose an integrated approach for minimum
weight design of geometrically nonlinear truss structures. They incorpo-
rate constraints with respect to displacements, stresses and buckling be-
havior. The structural equilibrium equations are treated as equality con-
straints. A generalized reduced gradient (GRG) method [Van84] was used
to solve the constrained optimization problem.
Haftka and Kamat [HK89] compare simultaneous and nested approaches
for geometrically nonlinear truss problems. The authods apply several op-
timization algorithms like penalty methods, projected Lagrangian methods
and GRG methods to the constrained problems.
Ringertz also presents simultaneous approaches to solve geometrically
nonlinear optimization problems [Rin89], [Rin92], [Rin95]. In the latter
publications the author applies the methods to shell models whereas the
predominant number of publications consider truss examples. However,
only a few number of sizing design variables are applied in the examples.
The constrained optimization problems are solved by an SQP method.
Another application related to nonlinear shell problems is presented by
[SL05]. This publication investigates SIMP based topology optimization
of layered shell structures modeled by Mindlin elements. The authors use
a NAND approach with adjoint sensitivity analysis to compute first order
gradients that are subjected to a MMA optimization algorithm. Several ex-
amples compare the geometrical nonlinear results with the linear results.

Shape optimization of shell problems with respect to the critical load is
presented by R. Reitinger in [Rei94]. Here, the shape parametrization is
realized by Bézier splines. Topology optimization of shells and solids with
respect to nonlinear stiffness is investigated by R. Kemmler in [Kem04].
The following sections refer to both approaches more precisely.

7.1 General Optimization Goals

Similar to geometrically linear formulations the basic goal of geometrically
nonlinear optimization is the improvement of structural properties. Impor-
tant objectives of nonlinear structures are limit load and structural stiffness.

Usually, the critical load follows from a full analysis of the load-
displacement path by path following methods. Another strategy is the
semi-definite programming method which directly calculates critical loads
from an equilibrium point close to the critical load. Formulation of the
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critical load by this method allows for differentiation with respect to de-
sign variables. Thus, the critical load can be directly applied as response
function, c.f. [Rei94]. Drawbacks of this approach are the high numerical
effort of semi-definite programming methods, the complicated behavior at
bifurcation points and the sensitive algorithms.

Another way to improve the critical load implicitly is the improvement of
structural stiffness. Usually, stiffer structures show a more effective load
carrying behavior with smaller deformations and therefore also an im-
proved critical load. The basic advantage of this method is that structural
stiffness can be formulated much easier and much more robust than the
critical load. The disadvantage is that there is no guarantee that the critical
load improves if structural stiffness is improved. Nevertheless, the latter
approach has been applied successfully to topology optimization problems
in [Kem04]. Therefore, the following investigations concentrate on stiffness
optimization instead of direct optimizing the critical load.

7.2 Response Functions for Structural Stiffness

Common measures for structural stiffness are compliance and strain en-
ergy. In geometrically linear problems both measures yield to equal values
because of the linear load-displacement relation. Therefore, both quan-
tities are often not distinguished. In geometrically nonlinear problems
the load displacement relation is in general nonlinear, c.f. figure 7.1 and
strain energy and compliance describe different structural properties. Due
to nonlinearity the exact evaluation of structural strain energy or com-
pliance at a specified load level requires an accurate integration of the
load-displacement relation. A possible numerical integration of the load-
displacement curve utilizing four load levels and the trapezoidal rule is
visualized in figure 7.1. It is obvious that such approaches require a suf-
ficient number of sampling points. These number of sampling points has
to recomputed in each optimization step in order to evaluate the objective.
Thus, direct evaluation of the internal energy is very time consuming and,
therefore, not applicable to large structural optimization problems. More
information about nonlinear stiffness formulations is presented in [Kem04].

In order to reduce the effort of strain energy computation approximation
methods are frequently applied. A numerically very efficient approxima-
tion method is depicted in figure 7.2. This approach is based on a triangular
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approximation of strain energy and compliance which can be expressed by

f (u, s) =
1
2

(f∗ext)
T

u∗ (7.1)

where the external load f∗ext contains the specified load factor λ∗. In this
method strain energy and compliance yield to the same value again. This is
visualized by the graphs c1, c2 and c3 which characterize load-displacement
curves of three different designs where all three designs show the same dis-
placements for the specified load level λ∗. All designs yield to the same
response value but the exact evaluation of strain energy and compliance
results obviously in different values. A similar approximation is presented
in [BPS00] and [Kem04] where the authors suggest the name ’End Compli-
ance’ for this formulation. It is obvious that this triangular approximation
does not guarantee precise values for the strain energy. But the application
as response function does not require a precise absolute value. In structural
optimization the response function values are applied to measure the qual-
ity of design modifications. Therefore, relative quantities are used which
may be also related to approximations. The basic advantages of a response
function specified in (7.1) are efficient evaluation and differentiation. The
differentiation is presented in detail in the next section whereas the for-
mulation of an extended nonlinear path following method is introduced in
section 7.5.
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7.3 Sensitivity Analysis

Differentiation of equation 7.1 with respect to a design variable si is ex-
pressed by

d f
dsi

=
1
2

(
∂f∗ext

∂si

)T

u∗ +

(
1
2

∂f∗ext

∂u
u∗ +

1
2

f∗ext

)T ∂u

∂si
. (7.2)

Substitution of the nonlinear state derivative defined by equation 3.41 in
the above formulation gives the direct derivative formulation

d f
dsi

=
1
2

(
∂f∗ext

∂si

)T

u∗ +

(
1
2

∂f∗ext

∂u
u∗ +

1
2

f∗ext

)T

K−1
t

(
∂f∗ext

∂si
− ∂f∗int

∂si

)

. (7.3)

It is easy to verify that this formulation is numerically expensive if the
matrix-vector products are solved from right to left and if many design
variables have to be considered.

By the adjoint approach as introduced in equation 7.4 the effort is dramati-
cally reduced.

d f
dsi

=
1
2

(
∂f∗ext

∂si

)T

u∗ +

[

K−1
t

(
1
2

∂f∗ext

∂u
u∗ +

1
2

f∗ext

)]T

︸ ︷︷ ︸

λT

f∗nln (7.4)

Obviously the right hand side of the adjoint equation system does not de-
pend on the design variables. Thus, the adjoint vector λ has to be com-
puted only once per response function and can be used for the complete
sensitivity analysis of this response function by element based operations.

7.4 Structural Imperfections

In reality, perfect structures do not exist but in many structural analysis
problems perfect structures are assumed. In linear analysis problems the
influence of small imperfections might by negligible but in nonlinear prob-
lems they are essential. In general, imperfections may be caused by man-
ufacturing tolerances, varying boundary conditions (supports, loads) or
varying material properties. Geometrically nonlinear structures acting in
membrane action are sensitive to geometrical imperfections.

Usually, the exact shape of the imperfections is not known but the achiev-
able tolerances are mostly known. Thus, a common procedure is to com-
pute the imperfection form based on scaled eigenmodes of the initial struc-
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ture. Structural eigenvalue analysis can be performed by a linear pre-
buckling analysis defined by

(
K − λKg

)
φ = 0. (7.5)

More information about linear buckling analysis is presented in section
3.4.3. Another possibility is the solution of the eigenproblem

(Kt − λI) φ = 0. (7.6)

with the tangential stiffness Kt and the identity matrix I. It should be
noted that the eigenvalues in equations 7.5 and 7.6 describe different quan-
tities. Usually a scaled set of the n smallest eigenmodes is applied as im-
perfection. The scaling factors ai are chosen according to the sign of the
eigenmodes and the estimated tolerance tol. Finally the imperfection mode
∆Ximp can be calculated by

∆Ximp =
tol

|∑n
i=1 aiφi|L1

n∑

i=1

aiφi. (7.7)

The nonlinear analysis is then performed with the imperfect geometry Ximp

computed by X + ∆Ximp.

In general it is also possible to consider imperfections during structural op-
timization. The goal of such optimization problems is to derive structural
designs with small imperfection sensitivity. This requires quantification
and differentiation of imperfection sensitivity and imperfection modes, re-
spectively. The differentiation of eigenmodes is presented in [HCK86],
[BSS94] and [HG92]. Integration of imperfection sensitivity in structural
optimization is investigated in [Kem04] and [Rei94].

7.5 Simultaneous Analysis and Optimization

In this section a solution algorithm for simultaneous nonlinear analysis and
optimization is presented. This algorithm has the general goal to minimize
the number of necessary system evaluations because they are mainly re-
sponsible for the effort of the whole optimization problem. The basic steps
of this procedure are visualized by the load-displacement curves in figure
7.3 and by the flow chart in figure 7.4.

The optimization starts by following the load displacement path of the ini-
tial design X0. If the defined load level λ∗ is reached the load is kept con-
stant for the following steps. In figure 7.3 this load level λ∗ was reached
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Figure 7.3: Geometrically nonlinear optimization procedure

after four load steps. After reaching the desired load level the first op-
timization step computes the objective value f 0 by equation 7.1 and the
design update d0 to reach the improved design X1 by X1 = X0 + d0. Dur-
ing the line search procedure the new displacement field u5 is computed.
This allows for computation of the new objective f 1 and for the new de-
sign update d1. The described procedure is repeated until the optimization
problem is converged.

For each new design Xi an eigenvalue analysis according to (7.6) has to
be performed. If the smallest eigenvalues are positive it is ensured that
there exist no critical point below the actual load level. Due to the design
modifications it cannot be precluded that such critical points appear during
optimization. In this seldom case the optimization has to be repeated with
a different start design or different regularization parameters.

After convergence of the optimization procedure the influence of structural
imperfections has to investigated. Therefore the optimal structure is dis-
turbed by an imperfection mode according to section 7.4. A final analysis
of the full load-displacement curves of perfect and imperfect optimal struc-
tures show the critical loads as well as the influence of the imperfection on
the optimal design. Usually optimized structures are more sensitive to im-
perfections than their initial design. This is caused by the more efficient and
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more sensitive load carrying behavior by membrane forces and the higher
loads that an optimal structure is able to carry.

Finish optimization
?

Check convergence
Compute new objective f j

?

All eigenvalues > 0 -no EXIT!

Perform eigenvalue analysis
?

Equilibrium state found?
Compute equilibrium state

Reduce design update
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Update design
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?

Determine search direction
?

Perform sensitivity analysis
?

Start optimization, compute f 0
?

Compute load steps until λ∗?

Start optimization

-j = j + 1

no

6

�

yes
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yes
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Figure 7.4: Simultaneous analysis and optimization procedure
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7.6 Model Problem VII

The example presented in figure 7.5 was chosen to demonstrate the ba-
sic properties of the proposed geometrically nonlinear optimization proce-
dure.

nt

r=1000 l=
20

00

x
yz

t=5

Figure 7.5: Tunnel shell
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Figure 7.6: Load displacement curve

It describes a cylindrical tunnel shell with radius equals 1000mm and
length equals 2000mm. The shell is discretized by 1500 Reissner-Mindlin
shell elements with 5mm thickness. The material is described by St.Venant-
Kirchhoff material with Young’s modulus equal to 210000N/mm2 and Pois-
son’s ratio equals 0.3. The structure is subjected to dead load in negative
z-direction and supported along the straight edges as shown in figure 7.5.

It is well known that there exists a critical load level where the structure
snaps through. The load-displacement curve of the tunnel shell under dead
load is depicted in figure 7.6. Here the load factor is plotted against the
absolute z-displacement of node nt depicted in figure 7.5. One observes
the critical load factor of the perfect design close to 51. Unfortunately this
load level results in huge displacements of more than 400mm.

The imperfection sensitivity of this geometry is investigated by another
nonlinear analysis where the perfect cylindrical structure is disturbed by
the sum of eigenmodes presented in figure 7.7. The resulting imperfec-
tion mode is calculated by equation 7.7 with an imperfection tolerance
tol=1.0mm and a1, .. , a4=1.0. Thus, the imperfection size corresponds to
0.1% of the cylinder radius. The nonlinear analysis of the imperfect design
results in the load-displacement curve also depicted in figure 7.6. It is easy
to verify that the imperfect design reacts slightly stiffer compared to the
perfect design. But the more interesting difference between both geome-
tries is the critical load. The critical load factor of the imperfect design is
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(a) Eigenmode 1 (b) Eigenmode 2

(c) Eigenmode 3 (d) Eigenmode 4

Figure 7.7: Eigenmodes of cylindrical tunnel shell

close to 19 and therefore 2.7 times smaller than the critical load factor of
the perfect design. This example shows that the cylindrical tunnel shell is
highly sensitive to geometrical imperfections.

In the following a shape optimization is performed in order to improve
stiffness and critical load of the tunnel, c.f. section 7.2. The coordinates in
direction of surface normals of all unsupported nodes are chosen as design
variables which gives a set of 1519 optimization variables. The optimiza-
tion of the perfect tunnel geometry was performed with a load factor λ∗

equals to 15 which corresponds to 30% of the critical load of the circular
tunnel. A further increased load level results in convergence problems dur-
ing the line search procedure. The computed gradients are smoothed by the
proposed filter method (c.f. section 6.2) where cubic filter functions with
a radius equal to 500mm are applied. The optimization was performed
by a CG-optimizer, c.f. section 4.6.2. Suitable step lengths follow from a
quadratic line search procedure with initial step length α0 = 10mm, c.f.
section 4.8.

The optimal design of the defined optimization problem is presented in
figure 7.8. It is obtained after 30 optimization steps. Especially in the center
region it shows serious differences compared to the initial design. Here, the
arch geometry changed from a circular to a catenary curve which could be
expected. The arches at both ends of the tunnel do not change their shape
seriously. The arch geometries at the center of the tunnel and at one end are
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Figure 7.8: Optimal tunnel geometry

compared to their initial shape in figure 7.9a. These path plots show that
the height of initial and optimal structures are nearly equal but the shape of
the tunnel cross section changes seriously. The catenary curve at the center
of the tunnel corresponds to the optimal shape of an arch under dead load
which can be verified analytically and by experiments. The shape at both
ends of the tunnel differs from the catenary curve. This is caused by the
Poisson effect which governs the structural response at the tunnel ends.
The improved objective function is depicted in figure 7.9b. It shows that the
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Figure 7.9: Optimal design of Model Problem VII

structural strain energy formulated by equation 7.1 is reduced significantly
during the optimization procedure. After 30 optimization steps the optimal
structure contains only 0.07% of the initial strain energy.

In the following the critical load and the imperfection sensitivity of the op-
timal structure should be investigated. The load-displacement curves of
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the perfect and imperfect optimal design are computed until failure occurs.
The imperfection mode is computed by summation of the four smallest
eigenmodes of the optimal tunnel geometry. The shape of these modes is
similar to eigenmodes of the initial design shown in figure 7.7. Also for
this imperfection mode the absolute tolerance is specified by 1.0mm. The
resulting load-displacement curves are presented in figure 7.10. It is easy
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Figure 7.10: Load displacement curve

to verify that the critical loads of the optimized geometries are significantly
higher compared to the imperfect initial design (figure 7.6). Much more
important is the tremendous improvement of stiffness which results in a
significant reduction of displacements. After reaching the respective criti-
cal loads also the optimized structures fail by buckling mode 1, c.f. figure
7.7.

The analysis of the optimal design subjected to the imperfection mode
shows a slightly decreased critical load and a smoother transition in the
failure mode. Comparing figures 7.6 and 7.10 one can verify that the re-
duction of the critical load due to imperfections of the optimal design is
much smaller than for the initial design. Hence, in this model problem the
optimal design is less imperfection sensitive than the initial design.

7.7 Summary

This chapter presents an efficient and robust method to combine nonlin-
ear path following strategies with gradient based shape optimization. The
derivations and the example show that consideration of nonlinear kine-
matics in the sensitivity analysis results in highly efficient designs. It has to
be stated that the solution of geometrically nonlinear shape optimization
problems is numerically much more expensive compared to geometrically
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linear problems. This is caused by the more complicated system evalua-
tion which requires several iterations until convergence. Additionally, the
size of the maximum step length in the line search procedure is in gen-
eral smaller. Figure 7.3 shows the iteration procedure for a fixed load level
λ∗. Especially for weak initial designs and large load levels there might be
a significant difference between the displacements of the current and the
updated design. Whenever these differences are too large the nonlinear
analysis does not converge. This problem can be solved by smaller step
lengths which yield at the same time to more iteration steps and therefore
to an increased numerical effort.



Chapter 8

Examples

The examples discussed in this chapter illustrate performance and appli-
cation fields of the presented optimization algorithms, the parametrization
technique, the sensitivity analysis, the sensitivity filter and the mesh regu-
larization methods. The optimization tasks are motivated by real life prob-
lems from civil engineering and automotive industry.

8.1 L-shaped Cowling

This shape optimization example was originally proposed by D. Emmrich
in his PhD thesis [Emm05]. It describes the stiffening of a bending domi-
nated cowling structure by beads. The geometry, the material data and the
supports are equal to the model proposed in [Emm05].

The cowling structure is clamped near

Figure 8.1: Cowling geometry

both sides of the upper blank. The
length of each clamping is equal to
2.5mm. In contrast to the problem pro-
posed by Emmrich the loading acts per-
pendicular to the lower flat part of the
cowling. In [Emm05] the loading acts as
a tension force in z-direction. Thus, the
lower flat part of the cowling transfers
the loads via membrane loading. For
the optimization example shown here

the loading acts in x-direction. This results in a bending load of the whole
structure. It should be noted that the chosen thickness and geometry result
in a very thick shell with an radius to thickness ratio of 10.

The goal of this optimization problem is minimization of linear compliance
(3.32) with geometric constraints. These constraints limit the height of the
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resulting beads to 2.5mm. Furthermore it is enforced that the dimensions
(width and height) of the cowling remain constant. The optimization vari-
ables are defined as the directors of the FE-nodes. The optimization starts
with the initial design depicted in figure 8.1.

This relatively simple shape optimization problem should be used to visu-
alize

• the effect of a varying filter radius and

• the mesh and parametrization independency of the proposed meth-
ods.

Therefore, the results of three different filter radii (r=1mm, r=2mm and
r=3mm) are compared. The parametrization independency is investigated
by FE-models with 1650, 3735 and 6600 shell elements.

8.1.1 Filter Radius as Design Tool

The influence of the filter radius is shown on the finest discretization with
6600 finite elements and 6771 design variables. Figure 8.2 compares the
optimal geometries after 30 iteration steps. The dependency on the filter
radius is clearly visible. The bead structure obtained for r=1mm shows lo-
cal beads at both sides of the cowling and a relatively flat inner part. This
results in an explicit bead structure that is well suited to transfer the load
to the supports. Increasing the filter radius (c.f. figure 8.2b and 8.2c) gives
an increased bead width. The resulting geometries show reduced curva-
tures and a smoother shape. But the crucial question is how much does
the increased filter radius affect the mechanical properties of the structure?
In this example the mechanical properties are measured by the compliance

design |d| scaled |d| compliance scaled compliance
initial 0.742 1.0 1.666 1.0

r=1mm 0.047 0.063 0.113 0.068
r=2mm 0.033 0.044 0.079 0.047
r=3mm 0.045 0.061 0.109 0.065

Table 8.1: Displacements and compliance of cowling designs

and the displacements at the loaded node. The convergence plot depicted
in figure 8.2d shows that all the three optimizations reach nearly the same
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(a) r=1mm (b) r=2mm

(c) r=3mm (d) Convergence of objective

Figure 8.2: Optimal cowling geometries

objective value after 30 iteration steps. The specific values are listed in
columns 4 and 5 of table 8.1. They differ only slightly compared to the
initial compliance value . A similar behavior is observed by comparing the
displacement norms of the loaded node. These displacements show that
all three designs are efficient improvements of the initial design but the
displacements of the optimized designs are nearly equal.

Comparing compliance and displacements substantiates that a variation of
the filter radius yields to different designs with similar mechanical proper-
ties. Thus, the filter radius can be used as a design tool to explore the space
of optimal solutions. All the resulting designs are efficient improvements
of the initial model with similar performance. Finally, the designer can
choose between different optimal designs according to his own subjective
measures.
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(a) mesh 1650 (b) mesh 3735

(c) mesh 6600 (d) Convergence of objective

Figure 8.3: Mesh independent optimal geometry

8.1.2 Mesh and Parametrization Independency

In order to show the parametrization independency of the proposed opti-
mization method a fixed filter radius of 2mm is chosen. The cowling geom-
etry is discretized by three grids with 1650, 3735 and 6600 shell elements.
The parametrizations defined by these three grids contain 1736, 3864 and
6771 optimization variables, respectively. The optimization results are vi-
sualized in figure 8.3. Obviously, all three optimization problems give the
same result. The only difference is the parametrization that is applied to
represent the optimal geometry. This is also shown by the convergence
graphs depicted in figure 8.3d. The three optimization problems show a
similar convergence behavior and reach the same optimum with a a com-
pliance value of approximately 0.07.

It should be stated that the parametrization independency is only obtained
if the optimal geometry can be represented with sufficient accuracy. It is
well known that a sufficient mesh density of finite element analysis de-
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pends on the geometry, the boundary conditions, the applied finite ele-
ments, etc. In structural optimization also the applied response functions,
the constraints and the filter radius have to be considered before chosing
a parametrization. Thus, establishing general guidelines for a sufficient
mesh density is not possible.

Nevertheless, many optimization problems result in parametrization inde-
pendent solutions if the edge length of the finite elements lele and the filter
radius r fulfill the relation

r
lele

> 4. (8.1)

Thus, the whole filter function spans at least over 8 elements. This usually
ensures a relatively smooth approximation of the optimal geometry.

The property of parametrization independency is very important for shape
optimization methods. It ensures that the optimal design is not restricted
by the chosen design space. Parametrization independency can only be
obtained if regularization methods like the proposed sensitivity filter are
applied. Common parametrization techniques like CAGD, Morphing or
shape basis vectors do not contain such approaches. Thus, the opti-
mal results obtained by these methods strongly depend on the chosen
parametrization.

8.2 Kresge Auditorium

The Kresge Auditorium is situated on the campus of the Massachusetts
Institute of Technology. The reinforced concrete structure was finished in
1955 based on the design of the famous architect Eero Saarinen.

Figure 8.4: Kresge Auditorium (wikipedia.org)
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(a) FE-model of the Kresge Auditorium (b) Scaled deformation under dead load

Figure 8.5: Analysis of original Kresge Auditorium

The shape of the structure is one-eight of a sphere rising to a height of
approx. 14m with a span of approx. 50m. One basic property of this shell
structure is the small thickness which increases from 8.5cm at the center to
14cm at the supports. As presented in figure 8.4 massive edge beams with
a height of nearly 100cm are necessary to stabilize the structure at the free
edges.

The structural behavior of the original Kresge Auditorium under dead load
is investigated by the following analysis. To show the basic deficiencies of
the shape the edge beams are omitted. The shell thickness is assumed to
be constant with a value of 5cm. 1200 bilinear Reissner-Mindlin shell ele-
ments with a linear elastic material formulation are applied for discretiza-
tion. The values for Young’s modulus, Poisson’s ratio and density are
chosen according to usual concrete parameters with 30E09N/m2, 0.2 and
2400kg/m3 respectively. For the subsequent computations the Assumed
Natural Strain (ANS) method is used to prevent locking problems. Single
point constraints on displacement degrees of freedom are defined on the
three boundary nodes at the corners of the structure.

Figures 8.5a and 8.5b show the original spherical geometry as well as a
scaled displacement plot. It is easy to see that the distribution of structural
stiffness is very inhomogeneous. The center region shows nearly no defor-
mation whereas the boundary arches and the corner regions are deformed
seriously. In the original structure these deformations are prevented by
variation of shell thickness and massive edge beams. Based on the depicted
structural displacements it can be stated that the chosen shape is not opti-
mal. Especially the boundary arches and the support regions offer serious
potential to optimization.

In the following, FE-based shape optimization is used to improve the load
carrying behavior of the structure. The strain energy is an appropriate mea-
sure to describe the efficiency of load carrying behavior. In this example the
linear (equation 3.32) and nonlinear (equation 7.1) strain energy formula-
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(a) Linear strain energy

(b) Nonlinear strain energy

Figure 8.6: Optimal shapes for Kresge Auditorium

tions are applied as objective functions in order to discuss the respective
results. The design space is described by the normal directions of the inner
shell nodes and the vertical directions of the nodes situated on the bound-
ary arches. This ensures that the area below the cupola remains unchanged.
Gradients of linear and nonlinear strain energy are filtered by cubic filter
functions with a radius of 10m which corresponds to 20% of the span. Mesh
quality is controlled by the regularization method introduced in section 6.3.

The optimal shapes shown in figure 8.6 are serious improvements of the
original geometry. Both designs carry most of the loads by membrane ac-
tion whereas the load carrying of the Kresge Auditorium is dominated by
bending, especially near the corners. A detailed investigation of the de-
picted designs shows significant differences. Minimization of linear com-
pliance (figure 8.6a) gives an inhomogeneous design with serious local cur-
vature. This is caused by the fact that during optimization the designs are
dominated by bending. In the geometrically linear optimization the bend-
ing stiffness is increased by increasing local curvature. Due to the non-
convexity of the response function these curvatures prevent a convergence
to the analytical reference solution. The wave length of the linear optimiza-
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tion result is related to the filter radius. Modifications of the filter function
would result in different wave designs.

The geometrically nonlinear analysis is formulated in the deformed config-
uration where additional membrane stiffness is activated. This additional
membrane stiffness influences the gradients and also the design updates.
All intermediate designs and also the final design show less curvature and
work nearly completely in membrane action compared to geometrically
linear designs. The nonlinear result is closely related to the analytical re-
sult of a hanging form [BWDC05]. It shows the typical anticlastic shape
which is known from form finding of membrane structures. In the non-
linear optimization the filter radius has only a small influence because the
gradients are already relatively smooth.

In order to compare the efficiency of the different designs (figures 8.5a, 8.6a
and 8.6b) three geometrically nonlinear analysis are performed to evaluate
the structural behavior. The resulting load displacement curves are pre-
sented in figure 8.7. They show the vertical displacement of the center point
for an increasing load factor. It is easy to verify that the original geometry
of the Kresge Auditorium reacts very soft. Due to the displacements de-
picted in figure 8.5b the structure is not able to transfer higher loads to the
supports.

The design obtained by geometrically linear optimization shows a much
better load carrying behavior at least for small load factors. Increasing the
load factor results in a serious weakening of the structure and to increased
displacements. Here a load factor of 0.76 results in a vertical displacement
of 0.1m. The displacements close to the support region are even larger.

The best load displacement behavior is obtained by the analysis of the non-
linearly optimized design (figure 8.6b). This structure reacts extremely stiff
and shows a sudden failure for a load factor of 0.85. The most important
property are the small displacements of only 1.3cm at the failure load. This
proves the efficiency of the shape optimization based on nonlinear kine-
matics. The resulting designs show superior structural properties and aes-
thetic qualities compared to linear results.

A crucial question of highly optimized thin shell structures is their sensitiv-
ity to geometrical imperfections. In general, stiffer structures (figures 8.6a
and 8.6b) are more sensitive than weaker structures (figure 8.5a). In the fol-
lowing the imperfection sensitivity of each design is determined by a non-
linear analysis of a perturbed design. The respective imperfection mode is
computed by a combination of the four smallest eigenmodes, c.f. equation
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Figure 8.7: Load displacement behavior

7.7. The imperfection tolerance is defined by 2.5cm which corresponds to
one half of the shell thickness. The resulting load displacement curves are
also plotted in figure 8.7. It is easy to verify that the imperfect optimal de-
signs react slightly weaker than the perfect designs. The critical load of the
nonlinear optimization result decreases from 0.85 to 0.82 whereas the linear
optimized design shows an even smaller imperfection sensitivity.

It can be summarized that the final design of the shape optimization pro-
cedure considering nonlinear kinematics is characterized by optimal struc-
tural properties, small imperfection sensitivity and high aesthetic quality.
A slightly enlarged shell thickness near the corners would result in an ex-
tremely efficient long span structure which is able to resist dead, snow and
wind load with a minimal weight. FE-based structural optimization utiliz-
ing nonlinear kinematics is the best suited tool to develop such powerful
structures.

8.3 Car Hat Shelf

Structural optimization is a very important issue in automotive industry.
The large number of different components, the decreasing design cycles
and the mass production provide a broad application field for topology,
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shape and sizing optimization. In general, optimization goals in automo-
tive industry are related to weight minimization, reduction of CO2 emis-
sion, cost minimization, improved crash safety, improved stiffness, etc. The
optimization of crash behavior is a very important and also a very chal-
lenging objective. Unfortunately it is mostly impossible to derive a direct
relation between crash parameters like intrusions or accelerations and the
design variables like blank thicknesses or shape parameters of the car body.
Hence, the crash optimization is mostly based on response surface models
which are constructed by design of experiments (DOE) methods. Other
objectives like improved stiffness of car components or optimization of fre-
quency behavior are well suited for gradient based optimization strategies.
Thus, the presented examples show the performance of FE-based shape op-
timization of thin metal structures which are typically applied to form the
car body. The mechanical properties of these structures are predominantly
defined by their shape. It is shown that an optimal shape guarantees highly
efficient load carrying and frequency behavior. This ensures structural effi-
ciency and minimal weight which yield to minimal CO2 emissions.

There exist several implementations of bead optimization strategies in com-
mercial optimization software. The company "FE-Design GmbH" uses a
method based on trajectory lines of bending moments [Emm05] in their
software "TOSCA Structure". According to these trajectories the geometry
is modified by predefined bead shapes. The basic drawback of this ap-
proach is that it does not incorporate the modified load carrying behavior
during design changes.

The software package "OptiStruct" developed by the company "Altair Engi-
neering, Inc." uses the so called topography optimization (c.f. section 4.2.4)
to determine bead patterns. In this method a set of radial shape functions
is applied to the mesh. The final bead structure is derived as a combination
of shape deformations based on these functions.

The optimization software "Genesis" developed by "Vanderplaats Research
and Development, Inc." applies a set of shape basis vectors [Lei10] to de-
scribe shape modifications. The resulting geometries are comparable to the
results of topography optimization. They are less reliable due to mesh de-
pendency and large element distortions. These results provide only a very
abstract suggestion of a bead pattern and need serious interpretation by
experienced designers.

The following example the FE-based parametrization technique is applied
to frequency optimization of a hat shelf structure. The author thanks the
Adam Opel GmbH for providing geometry and reference results. Figure
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Figure 8.8: Car hat shelf and surrounding components

8.8 shows the hat shelf with some surrounding components. The holes for
the loudspeakers (a) and the back window (b) are clearly visible. The fre-
quency behavior of the inner car body is mainly responsible for the sound
level inside the car. Structures that show resonance behavior with external
excitations are very displeasing.

Before starting the shape optimization the frequency behavior of the hat
shelf is analyzed. Therefore the hat shelf is extracted from the car body
where single point constraints are applied at the positions of the spot welds
in order to model structural supports. The geometry is discretized by
Reissner-Mindlin shell elements with a thickness of 1mm and linear elastic
material with Young’s modulus equal to 210000N/mm2 and Poisson’s ratio
equals 0.3. The modal analysis is performed by solution of the eigenvalue
problem (equation 3.27) for the five smallest eigenvalues. Figure 8.9 shows
the initial geometry as well as the respective eigenmodes. One can clearly
see that the modes are mainly restricted to the flat inner part of the hat shelf.
The front and back parts of the structure as well as the region around the
loud speakers have a significantly higher stiffness because of their curved
shape. The flat inner part has only a very small stiffness which yields to the
depicted modes.

The mode distribution also provides a good estimation for a well suited
design space in the following shape optimization. The main goal of the
optimization is to improve the eigenfrequencies of the structure. Thus, the
normal coordinates of all FE-nodes in the flat inner part are defined as de-
sign variables whereas the rest of the structure remains unchanged. This
ensures an effective stiffening of weaker structural parts and allows for a
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(a) Geometry (b) Mode I

(c) Mode II (d) Mode III

(e) Mode IV (f) Mode V

Figure 8.9: Modal analysis of hat shelf structure

considerably improved frequency behavior.

Many car body components are manufactured by deep drawing processes
which motivates the improvement of the structure by draw beads. Such
beads are mainly characterized by their height and their width. During
shape optimization the allowable bead height of 8mm is enforced by proper
variable bounds whereas the bead width is controlled by the filter radius
of 40mm. The optimization goal of eigenfrequency maximization is formu-
lated by the minimization of the function

f (s) = −
5∑

j=1

wjFj (8.2)

with the eigenfrequencies Fj specified by equation 3.28 and a set of weight-
ing factors wj = 1.0. The derivative of (8.2) follows to

d f
dsi

= −
5∑

j=1

wj
dFj

dsi
(8.3)
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Figure 8.10: Frequency optimization of hat shelf

and provides the basis for the search direction computed by the conjugate
gradient method, c.f. section 4.6.2.

The convergence of the objective function and the development of the con-
sidered eigenfrequencies is shown in figures 8.10a and 8.10b, respectively.
Both figures verify the effective improvement of the frequency behavior.
The smallest eigenfrequency is increased by a factor of 2.1 which is a se-
rious improvement for this type of structures. Figure 8.10b additionally
shows that there occurs no mode switching during the optimization pro-
cess. This phenomenon has to be avoided because of its negative effects on
stability and convergence of the optimization process. The resulting bead

Figure 8.11: Optimized Bead Structure

structure is depicted in figure 8.11. It shows an efficient stiffening of the
weak structural parts by connecting these areas with stiffer regions. These
connections are realized by beads that allow for easy identification and in-
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terpretation. Size and height of the beads additionally permit a quantifica-
tion of their importance. The central X-shaped bead structure is the most
important because it effectively reduces all 5 considered eigenmodes, c.f.
figure 8.9b-f. Near the boundary of the structure the beads are relatively
small. They mainly decrease the higher modes IV and V. During translation
of the computed optimal geometry into a specific bead design they could
be even neglected without serious degradation of structural frequency be-
havior.

The presented example shows that the concept of shape optimization with
FE-based parametrization is ideally suited to solve eigenfrequency opti-
mization problems with a minimum amount of modeling effort. The re-
sulting bead structures improve the frequency behavior significantly such
that no resonance behavior with external excitations occurs anymore. Fig-
ure 8.11 proofs that the optimal bead design is mesh independent and reli-
able. Due to the high mesh quality these structures ensure exact numerical
results and easy interpretability.

8.4 Luggage Trunk Ground Plate

The second bead optimization example is also provided by the Adam Opel
GmbH. It shows the stiffness optimization of the luggage trunk ground
plate by draw beads. This structure carries the luggage load and addition-

Figure 8.12: Back view of car body
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ally serves as cover for the spare wheel. Figure 8.12 shows a back view into
the respective car body. The luggage trunk, its surroundings and the fas-
tener for the screw above the spare wheel are easy to identify. This trunk
plate is usually made of a thin metal sheet which is stiffened by some beads.
Unfortunately there exists a huge variety of possible bead structures which
improve the mechanical properties of the design. Usually the design en-
gineer creates a proper bead structure based on experience and former de-
signs. But in general, the bead design created by a numerical shape opti-
mization scheme is significantly better.

Before starting the bead optimization procedure the mechanical model has
to be analyzed. Therefore the ground plate is subjected to a vertical surface
load. The displacements at the points where the ground plate is connected
to the surrounding car body are constrained by single point constraints,
c.f. figure 8.13. The structure is discretized by Reissner-Mindlin shell ele-
ments with a thickness of 1.0mm and linear elastic material with Young’s
modulus equal to 210000N/mm2 and Poisson’s ratio equals 0.3. Figure 8.13
shows a contour plot of the displacements for the applied surface load. It

Figure 8.13: Displacements of luggage trunk ground plate

is easy to observe that the displacements concentrate on the flat inner parts
of the structure whereas the displacements on the left are larger than the
displacements on the right. This is caused by the non-symmetric fastener
of the spare wheel screw which acts as a local stiffener. In general the load
carrying of this design is dominated by bending which results in relatively
large displacements and stresses.

The main goal of the shape optimization process is to decrease the displace-
ments by improving structural stiffness. This aim is conveniently formu-
lated by the linear strain energy, c.f. equation 3.32. For this component the
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(a) Design space (b) Convergence of objective

Figure 8.14: Optimization of luggage trunk ground plate

bead height is limited to 4mm in order to guarantee a maximum loading
capacity. Higher beads would increase the structural stiffness but they also
would decrease the volume of the luggage trunk. The filter radius which
controls the bead width is chosen with 30mm. Figure 8.14a shows the de-
sign space of this optimization problem by the hatched domain. All inner
FE-nodes except of the support nodes and the region around the fastener of
the spare wheel screw are design nodes. The design space is formulated by
the vertical coordinates of the design nodes. Beside bead height and bead
width the orientation of the beads serves as additional design parameter.
Figure 8.15 visualizes three possible bead geometries for the bead height
of 4.0mm. The influence of the bead orientation on the objective and on

(a) Bead height -4mm (b) Bead height -2mm - +2mm (c) Bead height +4mm

Figure 8.15: Bead orientations

the resulting bead structure is investigated by the following three results.
Figure 8.14b proves that all 3 optimizations yield to a similar results but the
convergence speed shows significant differences. Especially the optimiza-
tion run with the bead height -4mm needs more iteration steps to reach
an adequate minimum. This is caused by the fact that the unconstrained
search direction predominantly points in positive z-direction and therefore
directly towards the constraints. During the optimization procedure the
search direction changes its direction to the negative z-direction and the
geometry updates start to develop. Finally, the quality of the optimum is
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(a) Bead height +4mm

(b) Bead height -2mm - +2mm

(c) Bead height -4mm

Figure 8.16: Bead structures for luggage trunk ground plate

nearly as good as the optimum of the optimization run with bead height
+4mm. Figure 8.16 compares the bead structures that result from the dif-
ferent bead orientations. It can be easily observed that all bead structures
are characterized by high quality, easy interpretability and mesh indepen-
dency. Although the geometry of the bead designs look slightly different all
three results ensure an effective improvement of the mechanical properties
of the structure.
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This is another example that shows the non-convexity of general shape op-
timization problems. Many of these problems have several minima with
very similar structural properties. Beside the classical objectives and con-
straints the optimization algorithm has to be formulated such that the final
results additionally fulfill constraints with respect to aesthetic quality, man-
ufacturability and mesh independency. If such an optimum is found it is
usually a tremendous improvement of the initial design and therefore an
satisfactory solution of the optimization problem.



Chapter 9

Summary

The methods presented in this thesis are an important contribution to shape
optimization with FE-based parametrization. It was shown that optimiza-
tion problems formulated on a large design space supplemented by ad-
ditional regularization operators result in general, robust and very efficient
optimization results. The proposed methods require only a minimum mod-
eling effort and can be applied to many different optimization problems.
The investigated examples show an application to problems from civil en-
gineering and automotive industry. In general, each FE-based simulation
can provide a basis for FE-based optimization as soon as direct relations
between optimization goals and design parameters can be derived. Utiliz-
ing this relation the adjoint sensitivity analysis allows for a very efficient
computation of gradient information. With this data the most powerful
optimization strategies can be applied in order to compute highly efficient
designs. These designs show the large potential which is usually hidden
in non-optimized structures. It is a basic objective of each engineer to de-
velop designs that are as efficient as possible. Shape optimization methods
applying FE-based parametrization and regularization are very powerful
tools to achieve this goal.

9.1 Modeling Effort

In the past, the large modeling effort for parametrization of shape optimiza-
tion problems, e.g. by CAGD, Morphing or Shape Basis Vectors, was a se-
rious drawback that prevents a broad application of these methods. It was
shown that FE-based parametrization is a general and easy parametrization
technique for many types of optimization problems. This method requires
only a minimal effort, does not need time consuming reparametrization
steps and can be easily integrated in automated processes. Additionally
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the optimization problem is defined on a large design space which does
not restrict the optimal shape of the investigated structure. Also the pro-
posed regularization methods require just a minimum amount of modeling
effort. They provide effective control mechanisms for the geometry and the
discretization which is a prerequisite for successful application of FE-based
parametrization techniques.

9.2 Numerical Effort

The solution of optimization problems is in general more expensive than
a simple analysis of the respective mechanical problem. The most time
consuming components of gradient based optimization strategies are sen-
sitivity analysis and system evaluations. The relation of these components
with respect to numerical effort is mainly governed by the number of re-
sponse functions, the number of design variables and the number of de-
grees of freedom in the mechanical problem. By application of FE-based
parametrization the latter two quantities are usually characterized by the
same magnitude. It can be stated that the numerical effort of the adjoint
sensitivity analysis (c.f. section 4.3.4) for a few number of response func-
tions becomes negligible for large mechanical problems with more than 106

degrees of freedom under the prerequisite that the adjoint variables can be
computed by simple backsubstitution. Usually, the numerical effort for the
solution of a system of equations increases quadratically with the size of
the equation system, at least for direct solvers. But the effort for the adjoint
sensitivity analysis increases just linearly with the number of design vari-
ables and the number of response functions. Thus, the numerical effort of
large optimization problems is usually dominated by the number of system
evaluations. The required number of these evaluations is mainly governed
by the line search procedure, c.f. section 4.8. Usually, line search methods
based on approximation techniques provide the best compromise between
accuracy and efficiency.

9.3 Parallelization

Gradient based optimization strategies based on FE-based parametrization
and adjoint sensitivity analysis are ideally suited for application to mas-
sive parallel computer environments. Such architectures are formed by
many separate computers called nodes which are connected by powerful
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network systems. These computers require a spatial decomposition of the
optimization problem and the mechanical problem. Then the full problem
can be solved by the parallel computer where the communication between
the processes can be realized by the Message Passing Interface (MPI). All
of the presented optimization strategies including system evaluation, sensi-
tivity analysis and regularization were implemented in a fully parallelized
way to ensure optimal scalings. Thus, the solution time of shape optimiza-
tion problems can be reduced by adding more nodes. In the same way
restrictions with respect to main memory can be circumvented by a fine
grained domain decomposition. The parallel implementation of shape op-
timization algorithms permits the solution of very large problems with 106

or even more design variables in an adequate time.

9.4 Applicability to Industrial Problems

The examples presented in chapter 8 show the applicability of the proposed
methods to industrial shape optimization problems. The computed results
are robust, mesh independent and highly qualitative. In the past, the com-
plicated and time consuming parametrization derogates a broad applica-
tion of shape optimization techniques in industry. Topology optimization
problems are always formulated by FE-based parametrization which re-
sults in wide spread application fields in many disciplines. By utilization
of the proposed regularization techniques FE-based shape optimization re-
quires nearly no modeling effort which allows for many new application
fields in the future. Due to parallel implementation of the algorithms huge
optimization problems formulated on highly complicated mechanical sce-
narios can be solved in proper time.

A very important part of industrial optimization problems is the back
transformation of the optimized geometry into CAD formats. This can be
done either by experienced designers or by automatic tools which transfer
mesh data to tensor product formulations like NURBS.

9.5 Outlook

The proposed optimization framework is generally applicable to many op-
timization problems. The type of optimization is mainly characterized by
the objective and the optimization variables. Several response functions
and their derivatives are presented in section 3.4. Following the presented
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ideas with respect to adjoint differentiation many other functions can be
formulated and derived. Thus, a broad spectrum of different optimization
problems can be solved.

The proposed algorithms and examples are related to shape optimization
problems using geometrical parameters as design variables. Nearly all of
the presented methods are also applicable to sizing and material optimiza-
tion. Usually, these optimization problems and especially the sensitivity
analysis are less complex than optimization with respect to geometrical pa-
rameters. Especially the presented sensitivity filter applies in the same way
to thickness optimization problems of shells preventing the well known
checkerboard modes.

An important and yet unsolved problem is presented in section 4.5. It de-
scribes the size effects that result from the chosen parametrization in the
discrete sensitivity analysis, c.f. section 4.3.2. In FE-based shape optimiza-
tion problems this effect becomes visible for unstructured grids in combi-
nation with large size differences of the finite elements. Efficient methods
to reduce these negative effects are presented in section 4.5. Nevertheless
this effect has to be investigated by future research.
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