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Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. habil. Boris Lohmann

2. Univ.-Prof. Dr. techn. Romanus Dyczij-Edlinger,

Universität des Saarlandes

Die Dissertation wurde am 01.07.2010 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Maschinenwesen am 20.10.2010 angenommen.





ABSTRACT

This dissertation delivers a contribution to the field of order reduction of large-scale

nonlinear models of electromagnetic devices. In particular, it enables applying model

order reduction techniques to an important class of electromagnetic devices that contain

moving components and materials with nonlinear magnetic properties. Such devices in-

clude among others rotating electrical machines, electromagnetic valves, electromagnetic

solenoids, and electromechanical relays.

The presented methods exploits the trajectory piecewise linear (TPWL) approach in ap-

proximating the nonlinear dependency of materials properties on the applied magnetic

field. Additionally, the model nonlinearity that is caused by the movement of the device

components is handled using a novel approach that updates the electromagnetic (EM)

field model permanently according to the new components positions.

The order of the large-scale electromagnetic field model is reduced by approximating

the original electromagnetic field distribution by a linear combination of few virtual field

distributions that are found using the proper orthogonal decomposition (POD) approach.

The challenge of selecting the number and the position of the linearization points in the

TPWL model is tackled using a new approach that considers the change in the magnetic

properties of the device materials among all the simulated state-vectors.

The new presented methods are extended to enable generating parametric reduced or-

der models of moving nonlinear EM devices. Such models enable a fast and accurate

prediction of the behavior of the EM device and its variations that result from changing

the values of its design parameters. Additionally, several algorithms for generating an

optimal reduction subspace of the parametric model are presented and compared.

Finally, an approach for overcoming the challenge of generating reduced order models

of EM devices while considering the strong influence of their power electronics driving

circuits is introduced and applied to the example of a rotating electrical machine coupled

to a power electronics driving circuit.

The new methods presented in this work are validated by applying them on the exam-

ples of three industrial devices. An electrical transformer, an electromagnetic valve, and

a rotating electrical machine.
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Chapter 1

INTRODUCTION

The design and development of electromechanical devices based on their computer sim-

ulation models have been gaining an increasing interest in the last two decades. This

is due to the advantages of this trend in reducing the device development time, and in

decreasing the number of expensive hardware prototypes in comparison to conventional

design methods. However, the aforementioned advantages can be only exploited when

the simulation models are able to predict of the behavior of the modeled devices accu-

rately.

An important class of simulation models is based on applying the spatial discretization

methods to the physical laws that govern the behavior of the modeled devices. Such

models are commonly able to meet the requirements on the modeling accuracy. Such

models include among others the models generated using the finite elements method

FEM, boundary elements method BEM, finite difference method FDM, finite volume

method, etc. The common factor among all previous methods is that the spatial dis-

cretization of the governing physical laws often produces a large system of linear or

nonlinear equations. Therefore, performing a simulation using one of the aforemen-

tioned models can be very expensive in the sense of computational effort.

Nevertheless, the high accuracy of the aforementioned simulation models has motivated

the developers to consider the design of sophisticated technical systems. Such systems

might contain several interacting devices. Therefore, the simulation of those systems

requires coupling several devices’ models in a so called system simulation. However, the

requirements for simulating a system of coupled high dimensional models can rapidly
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go beyond the available time and computational resources.

Model order reduction techniques present a solution for the complexity-accuracy dilemma.

This is due to their ability to generate compact simulation models - having low number

of equations - starting from the original high complexity ones. The accuracy of the gen-

erated models can be guaranteed in some segments of the frequency domain or around

several trajectories in the time domain.

1.1 Thesis Contribution

Electromagnetism is one of the fields where model order reduction techniques have been

receiving a growing interest. Their ability to generate compact simulation models of

electromagnetic devices starting from their spatially discretized linear models has been

demonstrated in several works [14], [67], [68], [60], [22]. Less focus has been put on

applying model order reduction techniques to the nonlinear models of electromagnetic

devices. A major contribution in this field is the work in [51], in which the authors

applied the trajectory piecewise linear models approach TPWL [54] to generate a com-

pact approximation model of a magnetic device with nonlinear materials properties.

However, a crucial issue that has not been addressed in most of the previous works is

to consider the movement of the modeled device components in the generation of the

reduced order models. This can be traced back to the significant changes that occur in

the electromagnetic field model upon the movement of the modeled device components.

In this work, we propose a new approach that enables considering components move-

ment and the nonlinear properties of magnetic materials in the reduced order models

of electromagnetic devices. The approach exploits model order reduction techniques to

approximate the large scale nonlinear models of the electromagnetic field by reduced

order ones having a much lower number of equations. The reduced order EM field mod-

els are weakly coupled to the mechanical equations in order to simulate the movement

of the device components. The position information that are obtained from solving the

mechanical equations are used to update the position dependent terms in the reduced

order EM field model.

The contributions of this dissertation can be summarized as follows:
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• A new approach for generating reduced order models for electromagnetic devices

contain moving components and materials with nonlinear magnetic properties is

introduced.

• An algorithm for selecting the number and the position of the linearization points

in the trajectory piecewise linear TPWL model is presented. The proposed al-

gorithm is based on observing the change in the materials properties during the

simulation.

• An approach for generating parametric reduced order models of moving nonlinear

electromagnetic devices is presented.

• An approach for coupling the reduced order models of moving nonlinear electro-

magnetic devices to external power electronics driving circuits is presented.

• An approach for exploiting the generated reduced order models of moving nonlinear

electromagnetic devices in performing a multiobjective design optimization of the

underlying device is introduced.

The presented results in this work open the way for applying model order reduction

techniques to the compact modeling of an important class of electromagnetic devices.

Rotating electrical machines, electromagnetic valves, and electromagnetic relays are few

examples on the industrial devices that can be addressed using the new presented results.

1.2 Dissertation Overview

In chapter 2, a comprehensive overview on the numerical modeling of electromagnetic

devices is presented. The weak electromechanical coupling approach that is exploited

for modeling the components movement is reviewed. In addition, the nonlinear behav-

ior of some magnetic materials is discussed and supported with examples. The chapter

is continued by deriving the high order nonlinear model of electromagnetic field, and

illustrating its common input and output signals.
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The third chapter revisits order reduction methods for both linear and nonlinear dy-

namic systems. The trajectory piecewise linear TPWL approach [53] and the proper

orthogonal decomposition POD approach are reviewed in more details, since they rep-

resent the base of the approaches and algorithms that are presented in this work. The

advantages of using the two previous approaches in the model order reduction of of

electromagnetic devices are listed.

In chapter 4, we address the issue of reducing the order of linear models of electro-

magnetic devices using Krylov subspace approaches. A special focus is given to the

generation of reduced order models that are able to reproduce the input-output behav-

ior of both the current driven and the voltage driven electromagnetic field models. The

two latter models are required for simulating electromagnetic devices in which the ex-

citation signal type is varied from voltage to current and vice versa during the device

operation.

A novel approach for generating reduced order models of electromagnetic devices that

contain moving components and materials with nonlinear magnetic properties is pre-

sented in chapter 5. A new algorithm for selecting the number and the position of

the linearization points in the trajectory piecewise linear TPWL model is introduced.

Additionally, the generated reduced order models are exploited in performing a multi-

objective design optimization of an industrial electromagnetic device.

In chapter 6, a method for generating parametric reduced order models of moving non-

linear electromagnetic devices is presented. Moreover, three different algorithms for

generating the reduction subspace of the parametric models are presented, and their

performance is compared by applying them to a numerical example.

The seventh chapter addresses the challenge of considering the strong influence of the

driving power electronics circuits on the behavior of the modeled devices. An approach

for generating fast and compact reduced order models of electromagnetic devices con-

sidering the coupling to the power electronics driving circuits is presented. The afore-

mentioned approach is applied to generate a reduced order model of a rotating electrical

machine coupled to a three phase rectifier.

Finally, the dissertation is concluded with a summary of the results and an outlook on

the possible future works.
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Chapter 2

NUMERICAL MODELING OF

ELECTROMAGNETIC DEVICES

2.1 Modeling of Electromechanical Systems

The dynamic analysis of electromechanical systems including motion requires the solu-

tion of the coupled electromagnetic-mechanical equations. However, in a large class of

industrial applications, the state variables of the mechanical equations are much slower

than those of the electromagnetic field equations. Thus, if the simulation time step is

chosen to be small enough, then the two systems of equations can be solved alternat-

ingly in the so called weak electromechanical coupling approach [30, 33, 34] which is

graphically illustrated in Fig. (2.1) .

Electromechanical System

Electromagnetic
Subsystem

Maxwell Equations

Mechanical
Subsystem

Newton Motion
Equations

EM Force, EM Torque

New Positions/Velocities

Figure 2.1: Decoupling the electromechanical system model into two interacting elec-
tromagnetic and mechanical subsystems.

The main steps of the weak electromagnetic coupling scheme are briefly reviewed in the

following three paragraphs.
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2.1.1 Solving the electromagnetic field equations

All modeling approaches of electromagnetic fields can be traced back to the Maxwell’s

equations, which are written in their differential form as:

rot �H = �g +
∂ �D

∂t
(2.1)

rot �E = −∂ �B

∂t
(2.2)

div �B = 0 (2.3)

div �D = ρ (2.4)

where �B is the magnetic induction field, �H is the magnetic field, �E is the electric field,

�D is the displacement current, �g is the free electric current densities, and ρ is the free

electric charge densities.

The four Maxwell equations are commonly used together with the following relations in

the modeled materials:

�D = ε0
�E + �P (2.5)

�B = μ0

(
�H + �M

)
(2.6)

�g = �gs + κ
(

�E + �v × �B
)

(2.7)

where �P is the electric polarization, �M is the magnetization, �gs is the impressed current

densities, κ is the specific electric conductivity, ε is the permittivity, and �v is the velocity

vector of the moving bodies within the magnetic field �B.

In the class of electromagnetic devices that are considered in this work, most of the

device energy is carried by the magnetic field. Therefore, a common simplification of

Maxwell’s equations in this case is the magneto(quasi)static formulation, in which the

displacement current, �D and its time derivative
∂ �D

∂t
are neglected. This can be formally

realized by setting ε0 → 0, �P = 0 in the equation (2.5), and setting the density of free

space charges ρ = 0.

The derivation of a spatially discretized model of electromagnetic field based on the
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equations (2.1)-(2.7) can be found in several references [12, 20, 33, 55]. In this paragraph,

the detailed derivation will be skipped since it is out of the scope of this work. However, it

can be briefly said that in low frequency limits, the spatial discretization of the transient

formulations of electromagnetic field using one of the finite discretization methods (e.g.

the finite elements FE, finite difference FD, or the coupled finite element boundary

elements BEM-FEM) commonly produces a large scale systems of nonlinear ordinary

differential equations or differential algebraic equations [15]. By applying one of the

time integration schemes, the values of the EM field variables can be found and the

corresponding magnetic forces and torques can be calculated.

2.1.2 Solving the mechanical equations

Based on the calculated values of magnetic forces and torques, the mechanical equations

can be solved in order to update the device components positions. If the movement of

rigid bodies is considered, the movement of an object can be described as a translation

of its center of gravity with respect to a reference coordinate frame, and a rotation of

its own coordinate frame with respect to the reference frame. Therefore, a maximum

number of six equations per moving object are required for describing its movement in

3D space.

The translational movement can be modeled using Newton’s motion equations:

Mẍ + Dẋ + Kmx = fmag (2.8)

where M,D,Km are respectively the mass, damping, and the stiffness matrices of the

mechanical equations, and x is the position vector of the device components.

Similarly, the rotational movement of the device components can be modeled using

Euler’s equations, in which the input signals are the electromagnetic torques that have

been calculated from the solution of the EM field equations.
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2.1.3 Updating the electromagnetic field equations according

to the new components positions

When one or more of the device components move, the electromagnetic field model

has to be adapted according to the new relative positions of the device components.

Several strategies can be exploited to perform this adaptation. In the remeshing ap-

proach [36], a new discretization mesh with a possibly new number of nodes has to

be generated whenever the device components change their positions. Whereas in the

sliding mesh approach [13], which is particularly popular for handling rotational move-

ment, the unknown variables that are located on the interfaces between the moving

objects are permutated upon components rotation. Finally, in the coupled boundary

elements finite elements method BEM-FEM, a group of boundary matrices have to be

recalculated whenever the device components change their positions. After updating

the electromagnetic field equations, a new simulation cycle can be started according to

the aforementioned three steps.

It is worth mentioning that solving the equations of the large-scale nonlinear model of

EM field is the most time and computer resources consuming step in the weak elec-

tromagnetic coupling scheme. Therefore, a significant speed up in the simulation time

can be achieved when approximating the large-scale electromagnetic field model by a

compact one having much lower number of equations.

Motivated by this fact, this research work exploits model order reduction techniques in

building low order electromagnetic models based on their original large-scale spatially

discretized ones. The coupled BEM-FEM is chosen to generate the full order models of

EM field. This is due to its advantages in keeping both the number and the ordering

of the electromagnetic field variables constant during the components movement, as it

will be shown later on in this chapter.

However, before moving to the modeling details, it is helpful to present a brief overview

on the definition of linear and nonlinear electromagnetic systems.
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2.2 Linear Electromagnetic Systems

In this work, an electromagnetic system is referred as linear when the relation between

the magnetic field strength �H and the magnetic flux density �B is linear in all the

materials that are contained in the modeled device:

�H = ν �B (2.9)

This linearity condition imposes that the value of the magnetic reluctivity ν is material-

wise constant and do not depend on the value of the applied magnetic field, as it is

shown in Fig. 2.2.(a).
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Figure 2.2: A figure illustrating the magnetic reluctivity of chosen linear and nonlinear
nonlinear magnetic materials

2.3 Nonlinear Electromagnetic Systems

In a large class of materials that are used for manufacturing electromagnetic devices,

the magnetic reluctivity ν is not material-wise constant, instead its values in the same
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material is dependant on the amplitude of the applied magnetic filed at the evaluation

points. Consequently, the relation between the magnetic field strength vector �H and

the magnetic flux density vector �B becomes nonlinear:

�H = ν
(
‖ �B‖

)
�B (2.10)

The dependency of the magnetic reluctivity ν on the applied magnetic field is commonly

extracted from measurements, an example of such a dependency is shown in Fig.2.2.(b).

In this chapter and throughout the whole work, we denote electromagnetic devices that

contain materials with nonlinear magnetic properties as nonlinear electromagnetic sys-

tems.

2.4 The Electromagnetic Field Model Using the BEM-

FEM Method

When applying the BEM-FEM method to the spatial discretization of Maxwell’s equa-

tions in 3D space, the model parts containing electrically conducting materials or mag-

netic materials are discretized using finite elements. Whereas, air regions inside the

device geometry or surrounding it are not discretized with finite elements, and the

behavior of electromagnetic field in those regions is modeled using boundary integral

equations.

Theoretically, the spatial discretization can be carried out using a nodal-elements-based

approach [35], [56] or an edge-elements-based one [52]. The latter approach is based

on treating the variables of the EM field as differential forms [12], which has proven to

produce the right solution of Maxwell problems [16]. However, the detailed comparison

between the two approaches is out of the scope of this work.

The modeling scheme reviewed here starts from the potential based magneto(quasi)static

formulation of Maxwell equations, which assumes that the magnetic induction field is

equal to the rotation of the magnetic vector potential field:

�B = rot �A (2.11)
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The advantage of this assumption is that it guarantees fulfilling Maxwell’s equation

(2.3). Now, the remaining Maxwell’s equations can be reformulated considering the

simplification assumptions in paragraph 2.1.1 as:

rot ν rot �A = �g (2.12)

where:

�A = magnetic vector potential

ν = magnetic reluctivity ν = ν( �A)

In the previous paragraph, we have seen that the magnetic reluctivity ν in a large class

of materials is dependant on the magnetic induction field �B. Therefore, the reluctivity ν

becomes directly dependant on the magnetic vector potential �A according to the equation

(2.11). This dependency describes the magnetic saturation effects in materials, and it

forces a nonlinearity in the final spatially discretized model equations:

[
C 0

0 0

]
d

dt

[
a(t)

q(t)

]
+

[
K(a) −T

H(x) G(x)

][
a(t)

q(t)

]
=

[
r(t)

rγ(t)

]
(2.13)

where:

a = degrees of freedom of the magnetic vector potential

q = Neumann data of the exterior boundary problem

C = damping matrix (describes Eddy current losses).

K(a) = field dependent stiffness matrix

T = constant boundary matrix

H(x),G(x) = position dependent boundary matrices

r = contribution of the impressed current density

rγ = contribution of the external sources of magnetic vector potential

x = the position vector of the device components

For the sake of clarity in the derivations in the coming paragraphs, the following nota-
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tions will be made:

Ĉ =

[
C 0

0 0

]
, K̂(a,x) =

[
K(a) −T

H(x) G(x)

]
, â(t) =

[
a(t)

q(t)

]
, r̂(t) =

[
r(t)

rγ(t)

]
(2.14)

Consequently, the equation (2.13) can be written as:

Ĉ
d

dt
â(t) + K̂(a,x)â(t) = r̂(t) (2.15)

2.5 Time Discretization Scheme

In general, the modeling of electromagnetic devices including Eddy currents often pro-

duces systems of stiff differential equations [25], which are known to have large difference

in the dynamics of their fastest and and slowest state-variables. The time integration of

stiff differential equation using explicit approaches requires selecting a very small simula-

tion time steps, which increases the computational costs of the simulation. Therefore, it

is recommendable to use implicit approaches for the time integration of stiff differential

equations.

In the BEM-FEM modeling approach [33, 55], the implicit Backward-Euler method is

used for the time integration of the equations system (2.15) as follows:

ât+Δt = ât + Δt
dâ

dt

∣∣∣∣
t+Δt

(2.16)

Ĉât+Δt = Ĉ ât + Δt Ĉ
dâ

dt

∣∣∣∣
t+Δt

Ĉât+Δt = Ĉât + Δt
[
− K̂ (at+Δt,xt+Δt) ât+Δt + r̂t+Δt

]
ât+Δt =

[
Ĉ + Δt K̂ (at+Δt,xt+Δt)

]−1 (
Ĉât + Δt r̂t+Δt

)
(2.17)

It is clear that the nonlinear equations system (2.17) can not be solved directly due to

the term K̂ (at+Δt,xt+Δt) which depends on both the unknown solution vector ât+Δt and

the unknown position vector xt+Δt. However, in the weak electromechanical coupling

approach, the electromagnetic field equations are solved for a small enough simulation

time step assuming that the device components did not move. Hence, the matrices G
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and H in (2.14)-(2.17) are determined based on the position vector xt, and are assumed

to be known when solving the nonlinear equation (2.17). Therefore, the dependency of

the matrix K̂ (a,x) on the position vector x will be skipped from the notation in the

next paragraph.

2.6 Solving the Nonlinear Equation System

One of the most efficient methods for solving large scale system of nonlinear equations is

the Newton-Raphson method [50]. This method uses iteratively the gradient information

of a function to find its minimum. In [33, 55], the Newton-Raphson method is exploited

for solving the nonlinear equations system (2.17) by minimizing the residuals vector

between its left and right hand side as follows:

e (ât+Δt) =
[
Ĉ + Δt K̂ (ât+Δt)

]
ât+Δt −

(
Ĉât + Δt r̂t+Δt

)
(2.18)

The optimization algorithm starts with an initial guess of the solution vector ât+Δt,

a common approach is to take the value of the previous time step. Then, it exploits

iteratively the derivative of the error function (2.18) with respect to the solution vector

at+Δt to find its minimum. The aforementioned derivative can be calculated using the

product rule as:

de (ât+Δt)

dât+Δt
= Δt

d

dâ
K̂(â)

∣∣∣∣
ât+Δt

ât+Δt +
[
Ĉ + Δt K̂ (ât+Δt)

]
(2.19)

The first term in (2.19) can be calculated based on (2.14) as:

d

dâ
K̂(â)

∣∣∣∣
ât+Δt

ât+Δt =

[
J (at+Δt) 0

0 0

]
(2.20)

The matrix J(a) will be denoted in this work as the Jacobian matrix. Its value at a

given solution vector ai can be evaluated by:

J(ai) =
d

da
K(a)

∣∣∣∣
ai

ai (2.21)
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Now, in each Newton-Raphson iteration, the solution vector ât+Δt is updated using the

derivative information (2.19) as follows:

ânew
t+Δt = ât+Δt − η

[
de (ât+Δt)

dât+Δt

]−1

e (ât+Δt) (2.22)

where η is a relaxation parameter that is automatically adapted during the Newton-

Raphson iterations in order to speed up the convergence. The iterative search is con-

tinued until the residuals vector e (ât+Δt) becomes small enough so that the solution

vector ât+Δt can be considered, within the user defined tolerance, as the solution of the

backward Euler integration (2.17).

2.7 Calculating the nonlinear stiffness matrix K(a)

and the Jacobian matrix J(a)

Due to the importance of the nonlinear stiffness matrix K(a) and the Jacobian matrix

J(a) for the model order reduction approaches that will be presented in this work, the

procedure for their generation will be briefly summarized in the following steps:

1. The magnetic vector potential field �A is generated based on the current state-

vector a(t) and the spatial discretization form functions.

2. The magnetic flux density field �B is calculated by applying the rotation operand

to the magnetic vector potential field �B = rot �A.

3. The magnetic reluctivity ν and its derivative
dν

d‖B‖ are calculated at several points

– called the Gaussian points – in each of the finite elements in the model. The

calculation is done based on the magnitude of the magnetic flux density vector

‖ �B‖ at the corresponding evaluation point and on the measured reluctivity curve

of the considered magnetic material (e.g. Fig. 2.2.(b)).

4. The calculated values of the magnetic reluctivity ν at all the evaluated Gaussian

points are used together with the spatial discretization form functions in building
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the nonlinear stiffness matrix K(a) at the state vector a.

5. The calculated derivative
dν

d‖B‖ at all the evaluated Gaussian points are used

together with the spatial discretization form functions in building the derivative

matrix J(a) =
d

da
K(a)

∣∣∣∣
a

a.

The values of the magnetic reluctivity ν at all the Gaussian points can assembled in a

vector ν ∈ R
e1, where e1 is equal to the number e of finite discretization elements in

the model multiplied by the number of Gaussian point pro element. In similar way, the

derivative of the magnetic reluctivity
dν

d‖B‖ at all the evaluated Gaussian points can be

assembled in a vector dν ∈ R
e1 .

Now, knowing that discretization form functions that are used for the spatial discretiza-

tion of the equation (2.12) remain constant during the simulation, then it can be easily

concluded that the main difference among the matrices K(a) at different state-vectors

can be traced back to the difference in their corresponding magnetic reluctivity vec-

tors ν. Similarly, the difference among the J(a) matrices at different state-vectors can

be related to the difference in their corresponding derivative vectors of the magnetic

reluctivity dν.

2.8 Excitation Signals

Electromagnetic fields can be generated for example by applying voltage or current

signals to the terminals of electrical excitation coils in the considered EM devices. Al-

ternatively, in certain class of electrical machines, the rotational movement of permanent

magnets produces a time varying electromagnetic field.

Such excitation signals are modeled in the right hand side of the EM field model (2.13),

in such a way that the vector r(t) models the contributions of all sources of current

densities that are located in the regions discretized by the finite elements, whereas, the

rγ(t) models the contributions of the current density sources that are located outside

the FEM regions (i.e. the regions that are not included in the spatial discretization).

In this work, we will consider without the loss of generality, that all sources of current
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densities are modeled using finite elements and therefore are included in the vector r(t).

Hence, the vector rγ(t) is considered to be equal to zero in all the derivations and ex-

amples that will be presented in this work.

In the following paragraphs, the modeling of the main types of excitation signals of

electromagnetic devices is briefly reviewed.

2.8.1 Excitation using current driven coils

If we assume that the modeled EM device contains m different excitation coils that are

connected to m different current sources i1(t), . . . , im(t), then the excitation vector r(t)

in the model (2.13) can be written as:

r(t) =

B︷ ︸︸ ︷[
b1 . . . bm

]⎡⎢⎢⎣
i1(t)

...

im(t)

⎤
⎥⎥⎦ (2.23)

where each of the vectors bi ∈ R
n describes the distribution of current density in the ith

excitation coil.

2.8.2 Excitation using voltage driven coils

If all the excitation coils of the modeled EM device are connected to voltage sources,

then the value of the current ik(t) flowing in the kth excitation coil can be calculated

based as [55]:

uk(t) = bT
k ȧ(t) + Rkik(t) (2.24)

where Rk is the Ohmic resistance of the kth excitation coil, uk(t) is the voltage signal

applied to its terminals, and the term bT
k ȧ(t) describes the eddy current losses in the

kth excitation coil [55].

By calculating the excitation currents values from (2.24) and substituting them in (2.23)



2.9. Calculating Electromagnetic Forces and Torques 17

we get:

r(t) = −BB̃T ȧ + B̃

⎡
⎢⎢⎣

u1(t)
...

um(t)

⎤
⎥⎥⎦ (2.25)

where B̃ =
[

b1

R1
, . . . , bm

Rm

]
. The term −BB̃T ȧ can be moved to the left hand side of

the model (2.13) which results in a modified damping matrix C̃ =
[
C + BB̃T

]
.

2.8.3 Excitation using permanent magnets

If we assume that the permanent magnets have a constant remanence value during the

simulation, then the excitation vector r(t) becomes time independent and can be written

as:

r(t) = ppm (2.26)

However, the movement of permanent magnets, which will be considered later in this

work, causes the generation of time varying electromagnetic field.

It is worth mentioning that in many industrial applications, the modeled electromagnetic

devices can have a combination of all the three aforementioned excitation types.

2.9 Calculating Electromagnetic Forces and Torques

In order to model the movement of the components of an EM device, the electromagnetic

forces and torques that are acting on those components have to be calculated. A known

method for calculating electromagnetic forces is to integrate Maxwell stress tensor [30],

[35] over the surface sk of an object k as follows:

�fmag,k =

∫
sk

(
�fn + �ft

)
ds (2.27)

�fn =
1

2

(
B2

n

μ0
− μ0H

2
t

)
�n, �ft = Bn

�Ht (2.28)
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where:

�n = unit vector in the normal direction

μ0 = magnetic permeability in vacuum

The tangential vector �Ht and the normal induction Bn can be calculated from the

solution vectors a of the electromagnetic field model (2.13). The spatially discretized

form of the equations (2.27)-(2.28) can be formulated as:

fmag,k =
[

aT qT
] R̃(k)︷ ︸︸ ︷[

R̃11 R̃12

R̃21 R̃22

][
a

q

]
(2.29)

where the index k denotes the kth device object for which the EM force is calculated.

The matrix R̃(k) is constant and does depend on the components positions.

An alternative formulation of fmag,k can be found by solving the algebraic equations

in (2.13) for q(t) considering that rγ(t) = 0 as has been discussed in the previous

paragraph:

q(t) = G−1(x)H(x)a(t) (2.30)

Now the value q(t) cab be substituted in (2.29), after a simple rearrangement of the

terms, it can be easily seen that the electromagnetic force can be written as:

fmag,k = aT R(x)a (2.31)

The matrix R depends now on the position x of the device components due to the

dependency of the G and H matrices that are used in the solution (2.30) of q(t) on the

position vector x.

The magnetic torques can be derived in a very similar way, and the resulting spatially
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discretized form can be written as:

τmag,k =
[

aT qT
] S̃(k)︷ ︸︸ ︷[

S̃11 S̃12

S̃21 S̃22

][
a

q

]
(2.32)

and can be reformulated after eliminating the variables q(t) as:

τmag,k = aT S(x)a (2.33)
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Chapter 3

MODEL ORDER REDUCTION

In this chapter, a brief overview on the main approaches of model order reduction of

both linear and nonlinear dynamic systems is presented. The trajectory piecewise linear

TPWL approach together with the proper orthogonal decomposition POD approach

are reviewed in more details since they represent the basis for the new methods and

approaches that are presented in this work.

3.1 Model Order Reduction of Linear Systems

In the last two decades, several methods for reducing the order of linear time invariant

(LTI) systems have been developed and applied in various application fields. In this brief

overview, the main approaches in this field are revisited. For more detailed information,

the reader is referred to [6].

For the sake of simplicity, we will consider the case of a high order LTI system (3.1)

having a single input and a single output. However, the generalization to the case of

multi-input multi-output systems is straight forward.

{
Eẋ = Ax + bu,

y = cTx
(3.1)

The matrix A ∈ R
n×n in (3.1) is called the system matrix, and is known as well in other

application fields as the stiffness matrix, E ∈ R
n×n is the damping matrix, b ∈ R

n is

the input vector, u is the system input signal, c ∈ R
n is the system output vector , y is

the system outputs signal, and finally x ∈ R
n is the state variables vector.
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Before we start discussing order reduction methods, we review the concept of the Petrov

Galerkin projection, since it is the fundament of many order reduction methods.

3.1.1 The Petrov Galerkin projection

Given a high dimensional state-vector of a dynamic system x(t) ∈ R
n, the main idea of

the Galerkin Petrov projection is to find a new representation of x(t) using a much lower

number of variables than the ones contained in x(t). This can be done by expressing x(t)

as a linear combination of q � n vectors that are assembled in the so called projection

matrix V ∈ R
n×q. The new representation can be formally written as x(t) = Vxr(t)

where xr(t) ∈ R
q is reduced order state vector .

In general, the aforementioned approximation is not exact, and is often accompanied

with an approximation error that varies depending on the optimality of the choice of

the vectors of the matrix V.

Replacing the state vector in the LTI system (3.1) by its low order approximation gives:

{
EVẋr = AVxr + bu + ε(t),

y = cTVxr,
(3.2)

where ε(t) is the error vector that results from the low rank approximation of x(t). It

is clear that the system (3.2) is over determined as it has a number of equation n that

is larger than the number of unknown variables in xr(t). Therefore, in order to find

a unique solution to (3.2), the latter system has to be projected on a second subspace

whose basis vectors are orthogonal to the residuals vector ε(t) in order to force the

projection of ε(t) onto the second subspace to zero.

If we assume that the basis vectors of the second subspace are assembled in the projection

matrix W ∈ R
n×q, then the system (3.2) after projecting it on the subspace spanned by

the columns of W can be written as:{
WTEVẋr = WTAVxr + WTbu

y = cTVxr

(3.3)

where Er = WTEV,Ar = WTAV,br = WTb, cr = cTV, are respectively the matrices

and vectors of the reduced order model (3.3).
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Most of the order reduction approaches follow the same projection procedure. However,

they use different approaches for generating the projection matrices W,V.

It is worth mentioning that in the cases where the two projection matrices are equal

W = V then the aforementioned projection procedure is called the Galerkin projection.

3.1.2 Truncated balanced realization TBR

This method is based on sorting the state-variables of the dynamic system (3.1) ac-

cording to their contribution to the system’s input-output behavior, and truncating the

state-variables which do not have a significant contribution. Two energy gramian ma-

trices are used to quantify the contribution of the state variables. The first one is called

the controllability gramian, it describes the amount of energy needed to be injected in

the considered inputs in order to drive each of the state-variables to a required value

and is defined by the following integral:

P =

∫ ∞

0

eAτbbT eAT τdτ (3.4)

The second matrix is called the observability gramian, it describes the contribution of

each of the state-variables to the energy of the considered outputs, and is given by:

Q =

∫ ∞

0

eAT τcTceAτdτ (3.5)

The two previous integrals can be calculated by solving the following two Lyapunov

equations which have the dimensions of the original model:

AP + PAT + bbT = 0

ATQ + QA + ccT = 0
(3.6)

In order to balance both of the energy contributions that are described in the controlla-

bility and the observability gramians, a state balancing transformation matrix T [44, 45]

is found and applied to the system (3.1) in order to make the controllability and observ-

ability gramians diagonal, equal, and having the Hankel singular values (HSV) on their

diameter. Finally, the truncation of the states variables that correspond to the smallest
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Hankel singular values in the transformed system results in the reduced order model.

The aforementioned procedure can be carried out by generating two suitable projection

matrices W and V [39], and reducing the order of the system (3.1) by projecting it on

the subspaces spanned by the columns of the projecting matrices.

The main advantage of the TBR approach is that it preserves the stability [6] in the

reduced order model, in addition to the existence of a global apriori error bound be-

tween the original and reduced systems [26]. However, its main disadvantage is the high

computational cost that is required for solving the two Lyapunov equations. There-

fore, several research efforts have been concentrated on finding a computationally cheap

approximation to their solution [29, 47].

3.1.3 Krylov-subspace based approaches

In Laplace domain, the transfer function of the LTI system (3.1) is given by:

H(s) =
y(s)

u(s)
= cT (sE− A)−1b, (3.7)

and can be expanded using the Neumann expansion series as:

H(s) = cT

∞∑
i=0

(
A−1Es

)i
A−1b =

∞∑
i=0

mis
i (3.8)

with mi being the ith moment [6, 28] of the transfer function H(s) calculated at an

expansion point s0 = 0:

mi = cT
(
A−1E

)i
A−1b, i = 0, 1, · · · . (3.9)

The moments, by definition, are the negative coefficients of the Taylor series expansion

of the transfer function about the point s0 = 0, and can be calculated for any other

expansion point s0 �= 0 by:

ms0
i = cT

(
(A − s0E)−1 E

)i
(A − s0E)−1 b, i = 0, 1, · · · . (3.10)
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The aim of order reduction by Krylov-subspace methods is to find a reduced order model

of order q � n, whose moments match some of the moments of the original one [23].

This family of methods is also known as moment matching.

A numerically robust and efficient way to calculate this reduced order model is based

on applying a projection to the original model,

{
WTEVẋr(t) = WTAVxr(t) + WTbu(t),

y(t) = cTVxr(t),
(3.11)

by means of the projection matrices, V and W with WTV = I.

For the generation of the projection matrices, the Krylov subspace, defined in e.g. [6] is

used,

Kq(A1,b1) = span{b1,A1b1, · · · ,Aq−1
1 b1}

where A1 ∈ R
n×n is a matrix, and b1 ∈ R

n is called the starting vector.

It can be shown that if the projection matrices are chosen such that,

colspan(V) ⊂ Kq

(
(A − s0E)−1E, (A− s0E)−1b

)
,

colspan(W) ⊂ Kq

(
(A − s0E)−TET , (A− s0E)−TcT

)
,

then 2q moments around s0 match and the method is known as the two-sided Krylov.

Whereas, if only one Krylov subspace is used for the projection by choosing W = V,

then only q moments match between the full order model and the reduced order model,

and the method is know as the one-sided Krylov.

For the numerical computation of the matrices V and W, the known Lanczos or Arnoldi

or one of their modified versions are employed. For more details, see e.g. [6, 58] and the

references therein.

3.1.4 Proper orthogonal decomposition POD

In the last two paragraphs, we have seen that both of the balanced truncation and the

Krylov-subspace based approaches exploit the information contained in the matrices

of the LTI system (3.1) in generating the reduction subspace. In contrast to that,

the proper orthogonal decomposition POD approach uses the information contained in
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multiple observations of the state-vector x(t) of a dynamic system in building the low

dimensional reduction subspace.

If a number of p observations of the state-variables vector x(t) ∈ R
n of a dynamic system

are assembled in a so called snapshots matrix:

X =
[
x1, . . . ,xp] X ∈ R

n×p

then the POD approach enables approximating the high dimensional observations in X

by a linear combination of a low number of orthogonal vectors

X̂ = VXr such that X̂ ≈ X

where

V = [v1, . . . ,vq] V ∈ R
n×q

Xr = [xr1, . . . ,xrp] Xr ∈ R
q×p

}
q < rank (X) .

In general, the POD approach can be used to find a low rank approximation of any type

of high dimensional observations. Therefore, its usage has been very popular in various

application fields, such as signal processing [4, 66], data compression, process identifi-

cation, speech data classification [37]. Moreover, its ability to formulate the behavior

of dynamic systems as a function of a low number of orthogonal vectors [8] has made it

popular method for reducing the order of both linear and nonlinear dynamic systems,

such as heat transfer model [7, 46], fluid dynamics models [11, 21], aerodynamics models

[5].

There are several popular approaches to construct the orthogonal vectors of the matrix

V based on the information contained in the snapshots matrix, such as the principal

components analysis PCA, the Karhunen-Loeve decomposition KLD, and the singular

values decomposition SVD. However, the authors in [40] have proved the equivalence of

the three methods.

In the SVD-based approach, the optimal low rank approximation of X is formulated

as a matrix approximation problem. The approximation accuracy can be expressed in



3.1. Model Order Reduction of Linear Systems 27

minimizing a certain norm of the error matrix:

E = X −VXr

This minimization problem can be exactly solved by finding the singular values decom-

position X = UΣWT and letting the projection matrix V to be equal to the matrix

U, and considering Xr = ΣWT as the reduced order snapshots matrix. However in

order to get a low rank approximation of X, only the first q columns of the matrix U

are included in the projection matrix V. This in turns guarantees minimizing both the

2-induced and the Frobenius norms of the error matrix:

min ‖E‖F = min ‖X −VXr‖F =

(
rank X∑
i=q+1

σ2
i (X)

)1/2

(3.12)

assuming that σq > σq+1

It can be clearly seen in (3.12) that the approximation optimality can be improved by

taking more columns of U in the matrix V. Therefore, a trade off between the required

approximation accuracy and the dimensionality of the reduced order approximation has

to be found. This trade off can be determined by giving the required level of accuracy

(e.g. maximum allowed error norm in (3.12)) and finding the required number of basis

vectors to achieve it.

It is worth mentioning that in the case where the number of snapshots is smaller than

the dimensions of the observed systems, the optimal basis vectors can be found in a

cheaper way by performing an eigenvalues decomposition of the autocorrelation matrix

Ψ = XTX, and using the resulting eigenvectors to construct the optimal basis vectors

of V as shown in [6].

It should be stressed that the optimality of the POD approximation is only guaranteed

for the vectors that are contained in the snapshots matrix X. Therefore, in order

to achieve a good approximation of the behavior of a dynamic system, the system

has to be simulated using suitable excitation signals u(t) in order to generate enough

observations [x1, . . . ,xp] that represent the dominant behavior of the dynamic system

in the considered segments of the state space.
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3.2 Model Order Reduction of Nonlinear Systems

In contrast to the field of order reduction of linear time invariant systems where several

order reduction methods have been developed and exploited in a wide range of applica-

tion domains, the field of order reduction of nonlinear dynamic systems has been far less

investigated. This can be traced back on one hand to the difficulty of finding an accurate

and computationally efficient approximation of the nonlinearities in the original system,

and on the other hand due to the problem of finding an optimal reduction subspaces of

nonlinear dynamic systems which is still a challenging issue.

In the following paragraphs, we present a simplified categorization of some of the well

known methods in this field according to their approach in representing the nonlinearity

in the reduced order model.

For more information on model order reduction approaches of nonlinear dynamic sys-

tems, the readers are referred to the two comprehensive surveys [43, 48] and the refer-

ences therein.

3.2.1 Back projection based methods

Given a nonlinear dynamic system of the form:⎧⎨
⎩

d

dt
g (x) = f (x) + b (x) u

y = cTx
(3.13)

in which x ∈ R
n is the state variables vector, g : R

n → R
n, and f : R

n → R
n,b : R

n →
R

n are nonlinear functions depending on the state vector, u is a time dependant input

signal, c ∈ R
n is the system output vector, and finally y is the system output signal.

In the back projection method [7, 31, 32] , the nonlinear functions of the high order

nonlinear system (3.13) are included directly in the reduced order model, with the main

difference that the state variables vector x is approximated in the reduced order model

by a linear combination x ≈ Vxr of the columns of the projection matrix V ∈ R
n×q as



3.2. Model Order Reduction of Nonlinear Systems 29

follows: ⎧⎨
⎩

d

dt
VTg (Vxr) = VT f (Vxr) + VTb (Vxr) u

ŷ = cTVxr

(3.14)

Preserving the nonlinear function of the original model (3.13) in the reduced order model

(3.14) imposes projecting the reduce order state vector xr back on the original large di-

mensional state space x ≈ Vxr in each simulation time step in order to evaluate the

nonlinear functions. Therefore, we refer to this class of methods by the back projection

based methods.

The projection matrix V can be generated using any of order reduction methods of

LTI systems applied to a linearization of the nonlinear system [42], or by applying the

proper orthogonal decomposition [11, 61], or by exploiting the extension of the balancing

methods to nonlinear dynamic system [59].

The direct inclusion of the original nonlinear functions in reduced order model (3.14)

has the advantage of eliminating the approximation error that usually results from ap-

proximating the nonlinear functions, which is the case in most of the other approaches.

However, this approach suffers from the following disadvantages:

• The computational costs of simulating the reduced order nonlinear model (3.14)

is not necessarily lower than simulating the original high order nonlinear system

(3.13), since solving the equations of the model (3.14) imposes projecting several

vectors on the original high order state-space and projecting them back on the

reduction subspace in each simulation time step. The simulation cost becomes

even higher when using implicit approaches for the time integration of the system

(3.14) as has been demonstrated in [54].

• In the cases where the nonlinear functions are not given in the form of analytic

functions, and instead, their evaluation in each simulation step requires calling

other simulation tools such as finite elements tools, then including the reduced

order model (3.14) in system level simulation tools becomes very cumbersome.
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3.2.2 Polynomial approximation - Volterra series

Given a nonlinear dynamic system of the form:⎧⎨
⎩

d

dt
x = f (x) + g (x) u

y = cTx
(3.15)

in this class of methods, the nonlinear functions in (3.15) are approximated using high

dimensional polynomial expansions, such as Taylors series or power series of the form:

f(x) = f(x0) + A1 (x − x0)
(1) + A2 (x − x0)

(2) + A3 (x − x0)
(3) + · · ·

g(x) = g(x0) + G1 (x − x0)
(1) + G2 (x − x0)

(2) + G3 (x − x0)
(3) + · · ·

(3.16)

where:

(x − x0)
(1) = (x − x0) ∈ R

n

(x − x0)
(2) = (x − x0) ⊗ (x − x0) ∈ R

n2

(x − x0)
(k) = (x − x0) ⊗ (x − x0) · · · ⊗ (x − x0) ∈ R

nk

(3.17)

with ⊗ being the Kronecker product operator, x0 ∈ R
n is the expansion point in the

state-space of the model (3.15), and Ak ∈ R
n×nk

, Gk ∈ R
n×nk

are tensors of kth order.

In practice, and in order to keep the dimensionality of the approximation (3.16) within

the limits of the available memory storage and computational power, only the first

few terms in the expansion (3.16) are considered in the approximation of the original

nonlinear functions . However, lessening the number of the considered terms in the

approximation often reduces the size of its validity region. This in turn restricts the use

of this approach to approximate dynamic systems with weak nonlinearity.

An additional difficulty that accompanies using this approach is the lack of computation-

ally efficient order reduction approaches that consider the higher order terms in (3.16)

in the reduction procedure. The authors in [9, 49] have proposed a Krylov subspace

based model order reduction approach that considers the higher order terms of the ex-

pansion series (3.16) by transforming the system (3.15) to a bilinear system using the

Carleman bilinearization [57], then reducing its order using Krylov subspace techniques.

Additionally, the same authors have presented a theoretical proof for the matching of
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the so called multimoments of the kernels of the Volterra-Wiener series [57] between

the full order bilinear system and the reduced order one. However, the dimensions of

the resulting bilinear system may rapidly goes beyond the available memory storage

capacity and computational power.

3.2.3 Trajectory based methods

This class of methods is based on approximating the nonlinear functions in a nonlinear

system of the form: ⎧⎨
⎩

d

dt
g (x) = f (x) + bu

y = cTx
(3.18)

by a weighted sum of their polynomial expansions (3.16) at multiple expansion points

{x1,x2, · · ·xs1} in the state-space.

Two approaches can be categorized under this class of methods, the trajectory piecewise

linear TPWL approach [54] and the trajectory piecewise polynomial TPWP approach

[19]. The TPWL approach uses only the first two terms from the expansion series (3.16)

in the approximation of the nonlinear functions, whereas the TPWP utilizes additionally

the higher order terms in the expansion series.

3.2.4 Selection criteria of a model order reduction method for

moving nonlinear electromagnetic devices

In this work, the TPWL approach has been selected as a base for developing a new

approach for the automatic generation of accurate reduced order simulation models of

moving nonlinear electromagnetic devices. The selection is made in favor of the TPWL

approach due to:

1. Its ability to approximate nonlinear dynamic systems with strong nonlinear be-

havior by performing several linearization at multiple points in the state-space of

the considered model.
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2. Its advantage in preventing the exponential increase in the dimensions of the ap-

proximation of the nonlinear functions, which is a major disadvantage of both the

Volterra series and the trajectory piecewise polynomial approaches.

3. The existence of several well established order reduction approaches that can be

applied to reduce the order of the linearized models.

4. The reduced order model that are generated using the TPWL approach can be eas-

ily imported in any system level simulation tool that is capable of solving ordinary

differential equations.

3.3 Trajectory Piecewise Linear Model TPWL

The generation of a reduced order model of a nonlinear dynamic system (3.18) using the

TPWL approach [53, 54] can be carried out according to the following scheme which is

graphically illustrated in Fig. 3.1:

1. Calculate the transient response of the high order nonlinear model (3.18) to one

or more selected excitation signals. The path of the state-variable vector x(t) in

the state-space is called a trajectory, and the trajectories that are generated in

this step are called training trajectories.

2. Apply a certain algorithm for selecting a group of linearization points {x1,x2 · · · ,xs1}
from all the calculated points on the training trajectories.

3. Linearize the nonlinear functions in (3.18) at the selected linearization points.

4. Reduce the order of all the linearized models from the order n to the order q <<

n by applying one of the well known order reduction approaches of linear time

invariant dynamic systems.

5. Define suitable weighting functions, and approximate the original model (3.18) by

a weighted sum of all the reduced order linearized models.
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Figure 3.1: A schematic diagram illustrating the procedure of generating a reduced order
model of a nonlinear dynamic system using the TPWL approach.

In the next paragraphs, the aforementioned generation steps of a reduced order TPWL

model are detailed.

3.3.1 Selecting the training trajectories

Theoretically, in order to achieve a global approximation of the nonlinear functions in

the high order nonlinear system (3.18), the training trajectories should visit all the

regions in the state-space where the nonlinearities show different behavior. In practice,

it is inefficient to do so due to the unaffordable computational costs of performing a

large number of simulations using a high order nonlinear model.

In fact, in a large class of industrial systems, a few number of distinguished excitation

signals are commonly used for driving a certain electromagnetic device. This limitation

in the excitation signals can be mainly traced back to the limitations in the capabilities

of the corresponding electrical driving circuits. Such excitation signals together with

some of their variations are very good choice for generating the training trajectories,
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since this enables approximating the most interesting behavior of the nonlinear system.

We stress at this points that the reduced order models that are generated using TPWL

can interpolate well among the training trajectories, however, they are typically not

capable of extrapolating the behavior of the original model (3.18) at the regions are far

away from all the training trajectories.

3.3.2 Selecting the linearization points

In this step of the TPWL generation scheme, a subset of linearization points {xi ∈
R

n i = 1, . . . , s1} are chosen from the group of all simulation points on the training

trajectories. The selection of the number and the location of the linearization points

has a major influence on the approximation accuracy of the generated TPWL model.

The simplest selection approach is to select all the points on the training trajectories

in the group of linearization points. However, doing so increases the computational

costs of generating the TPWL models and might increase as well the simulation costs

of the generated reduced order TPWL model. The authors in [53] have proposed a

selection algorithm that expands the group of linearization points successively during

the generation of the training trajectories using the high order model (3.18) as follows:

1. given an initial state vector x0, a positive number δ > 0, and a user defined number

of linearization point s1 > 1;

2. Add the initial state-vector x0 to the group of linearization points, and set i = 1;

3. Simulate the high order nonlinear system (3.18), during the simulation, if the

current state-vector x(t) is far enough from all the previous linearization points

min
1≤j≤i

(
‖x(t) − xj‖

‖xj‖

)
(3.19)

then add the current point to the group of linearization points xi+1 = x(t), and

set i := i + 1;

4. If i < s return to step 3.
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An obvious disadvantage of this algorithm is that it does not exploit any information

regarding the nonlinearities of the underlying system. Therefore, even if the underlying

system is purely linear, then this algorithm will produce a group of linearization points.

The same authors proposed an error estimator based selection algorithm which exploits

the Hessian matrix (i.e. the second order derivative of the nonlinear function with

respect to the state variables vector). However, the Hessian matrix in a system of order

n is in general a tensor of the third order having the dimensions (n × n × n), which

makes its calculation prohibitively expensive for large scale systems.

A third algorithm for the selection of the linearization points is proposed in [63], and it

proceeds as follows:

1. Linearize the nonlinear model (3.18) at all the calculated points on the training

trajectories. Each linearized model at a linearization point xi is of the form (3.21).

2. Reduce the order of all the linearized models using a suitable reduction method.

3. Remove the similar reduced order linearized models, where two linearized models

at two distinguished linearization points xi,xj are considered to be similar if for

a user defined positive numbers ε, δ1, δ2 the following three conditions hold:

‖Gri −Grj‖
‖Gri‖

< ε,
‖Ari − Arj‖

‖Ari‖
< δ1,

‖xri − xrj‖
‖xri‖

< δ2, (3.20)

where the ‖.‖ indicates the standard Frobenius vector/matrix norm, and the subscript

r refers to the reduced order matrices and vectors.

The major advantage of the aforementioned approach is its incorporation of information

regarding the nonlinear behavior of the system (3.18) at different simulation points, this

is done by comparing the reduced order Jacobian matrices Ari, Gri at all the simulation

points. However, this approach suggests reducing the order of all the linearized models

before selecting the linearization points. This is disadvantageous, since significant in-

formation in the full order Jacobian matrices Jacobian matrices Ar, Gr get lost after

the reduction. Moreover, the high computational costs accompanied with linearizing

the nonlinear system at all simulation steps, reducing their order, and comparing them
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according to the criteria (3.20) is an additional disadvantage of this approach.

3.3.3 Linearizing the nonlinear functions

A nonlinear dynamic system (3.18) of order n can be linearized by expanding its nonlin-

ear functions at a certain point xi ∈ R
n using a polynomial series expansion (3.16), and

taking only the first two terms from the expansion series in the function approximation.

This results in a dynamic system of the form:

d

dt
(g(xi) + Gi (x − xi)) = f(xi) + Ai (x − xi) + bu (3.21)

where the matrices Gi ∈ R
n×n,Ai ∈ R

n×n are the Jacobian matrices of the nonlinear

functions g(x), f(x) respectively:

Gi =
dg(x)

dx

∣∣∣∣
xi

Ai =
df(x)

dx

∣∣∣∣
xi

(3.22)

In many numerical simulation tools, the Jacobian matrices are calculated during the

simulation in order to enable solving the nonlinear model equations using fast search

algorithms such as Newton-Raphson. However, extracting those matrices, especially

from commercial modeling tools, is not a trivial task.

After performing the linearization at all the s1 selected linearization points, the high

order nonlinear model (3.18) can be approximated by a weighted sum of all the linearized

model:

s1∑
i=1

αi (x)Gi
d

dt
x =

s1∑
i=1

αi (x) [f(xi) + Ai (x − xi)] + bu (3.23)

where the α1, . . . , αs1 are the weighting coefficients which determine the contribution of

each of the linearized models to the overall model in every simulation step.

3.3.4 Reducing the order of the linearized Models

It can be seen that trajectory piecewise linear approximation model (3.23) still has the

same high order as the original nonlinear model (3.18). The order reduction of the
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TPWL model (3.23) might seem from the first glance to be straight forward. However,

the situation is a bit more complicated, since the required order reduction approach

should be able to generate a reduction subspace that produces an optimal low order

approximation of all the linearized models in the TPWL model (3.23).

Two Krylov-subspace based algorithms for reducing the order of the TPWL model

have been proposed in [53]. The first algorithm suggests generating a Krylov-reduction

subspace at the first linearized model in (3.23) and using it for reducing the order of

all other linearized models. However, the matching of moments is only guaranteed for

the first linearized model. Therefore, if the other linearized models in the TPWL model

have significantly different dynamic behavior than the first linearized model, then the

approximation accuracy of the reduced order TPWL will not be satisfactory.

The second algorithm considers generating Krylov subspaces for each of the linearized

models as follows:

1. set Vagg = [ ], i = 1

2. Build the following Krylov subspaces for the ith linearized model:

colspan(V1) ⊂ Kq

(
A−1

i Gi,A
−1b
)
,

colspan(V2) ⊂ Kq

(
A−1

i Gi,A
−1 (f (xi) −Aixi)

) (3.24)

using the Arnoldi algorithm. The first Krylov subspace is necessary in order to

guarantee the matching of q moments of the transfer function connecting the model

input u to the system output y, whereas the second Krylov subspace is necessary

to guarantee the matching of moments of the transfer function connecting the

constant vector fi to the system output y.

3. Set Vagg = [Vagg, V1, V2, xi];

4. If i < s1 then set i = i + 1 and return to 2.

5. Remove the redundant information from the columns of Vagg by orthogonalizing

its vectors using singular values decomposition and keeping only the orthogonal

vectors that are accompanied with the largest singular values.
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The resulting redundancy free matrix Vagg is expected to approximate the Krylov re-

duction subspaces of all the linearized models, therefore, it is used for reducing the order

of all the linearized models in the TPWL model (3.23).

Alternatively, in [27], the simulated state-vectors of the high order nonlinear model

(3.18) are exploited by the proper orthogonal decomposition POD approach in generat-

ing a projection matrix V ∈ R
n×q, which is used for reducing the order of all linearized

models in the TPWL model (3.23).

Finally, in [64], the square-root truncated balanced realization TBR [39] is applied to

only to one linearized model to generate two projection matrices V ∈ R
n×q, W ∈ R

n×q.

The two latter matrices were used in the next step for reducing the order of all linearized

models in the TPWL model (3.23).

All the aforementioned methods produce two projection matrices V ∈ R
n×q and W ∈

R
n×q or one projection matrix V ∈ R

n×q i.e. W = V. And the final reduced order

TPWL model can be generated by applying the Petrov Galerkin projection – that has

been reviewed in the subsection 3.1.1 – to project the high order TPWL model onto the

subspaces spanned by the columns of the two projection matrices:

s1∑
i=1

αi (x)WTGiV
d

dt
xr =

s1∑
i=1

αi (x)
[
WTAiVxr + WT f(xi) − WTAixi

]
+ WTbu.

(3.25)

Now, by considering that:

Gri = WTGiV, Ari = WTAiV, fri = WT (f(xi) −Aixi) , br = WTb

the final reduced order TPWL model ca be written as:

s1∑
i=1

αi (x)Gri
d

dt
xr =

s1∑
i=1

αi (x) [Arixr + fri] + bru (3.26)
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3.3.5 The choice of weighting functions

When simulating the response of the TPWL model (3.26) to a certain excitation signal

u(t), the values of the weighting coefficients {α1, . . . , αs1} have to be calculated at each

simulation time step in order to determine the contributions of each of the linearized

models in (3.26) to the overall approximation. The calculation of the weighting coeffi-

cients is done based on the distance between the current state vector x(t) and all the

linearization points {x1, . . . ,xs1} as it is graphically illustrated in Fig. 3.2:

(α1, . . . , αs1) = α
(
x(t), {x1, . . .xs1}

)
(3.27)

The weighting function α should be constructed in such a way that the ith linearized

model in (3.26) gets a higher weighting value αi when the state variables vector x(t) ap-

proaches the linearization point xi. Later on, the values of all the
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Figure 3.2: Linearizing a nonlinear dynamic system at several linearization points {xi ∈
R

n i = 1, . . . , 16} along two simulation trajectories. The shaded balls symbolically
represent the validity region of each of the linearized models, and the dashed blue lines
represent the distance vectors between the current simulation point x(t) and all the
linearization points

weighting coefficients have to be normalized in such a way that their sum is always equal
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to one:

s1∑
i=1

αi = 1 (3.28)

In this work, similar to [54], the Gaussian functions are used as weighting functions.

The detailed weighting scheme can be summarized in the following steps:

1. Calculate the Euclidian distances between the current state variables vector x(t)

and all the linearization points: di = ‖x(t) − xi‖2 for i = 1, . . . , s1.

2. Find the smallest distance value dmin = min(d1, . . . , ds1), and use it to normalize

all the calculated distance values: d̃i = di/(dmin + ε) for i = 1, . . . , s1, where ε is a

very small number added in order to avoid the division by zero if dmin = 0.

3. Calculate the values of the weighting coefficients w̃i = e−d2
i /2ξ2

for i = 1, . . . , s1,

where ξ is the user defined standard deviation constant of the Gaussian function.

4. Normalize the weighting coefficients wi =
w̃i∑s1

i=1 w̃i
for i = 1, . . . , s1 in order to ful-

fill the condition (3.28).

The value of the standard deviation constant ξ determines the decaying rate of a weight-

ing coefficients when the state vector x(t) moves away from their corresponding lineariza-

tion points, its effect on the TPWL approximation will be illustrated in the following

example.

3.3.6 Illustrating example

In order to illustrate the basic idea of the TPWL approach in approximating a nonlinear

function by a weighted sum of linearized functions, and in order to demonstrate the

influence of both selecting the linearization points and setting the parameters values in

the weighting function on the approximation accuracy, we consider the example of a



3.3. Trajectory Piecewise Linear Model TPWL 41

simple nonlinear function depending on one unknown variable:

f(x) = tanh(0.05x) + 0.0002x + 1 (3.29)
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Figure 3.3: Approximating a nonlinear function by different weighted sums of linearized
functions

The linearized function of (3.29) at a certain linearization point xi can be calculated as:

l(x) = f(xi) +
df

dx

∣∣∣∣
x0

(x − xi)

= (0.0502 − 0.05 tanh2(xi))x − (0.0502 − 0.05 tanh2(xi))xi + y(xi)

= kix + gi

(3.30)

The function f(x) is linearized at five linearization points in the range x ∈ [−150, 150],

namely at the points xi = [−100,−50, 0, 50, 100]. The linearized functions together with

the function itself are graphically illustrated in Fig. 3.3.(a).

The function f(x) can be approximated as a weighted sum of the five linearized models:

f̃(x) =

5∑
i=1

wi(x) [kix + gi] (3.31)
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in which the weighting coefficients are calculated according to the weighting scheme that

has been discussed in the previous paragraph.

Two TPWL approximation functions f̃1(x) and f̃2(x) of the form (3.31) are generated at

the same five linearization points. In the first TPWL model f̃1(x) the standard deviation

value in the weighting function is set to ξ = 0.1 , whereas in the approximation function

f̃2(x) the standard deviation value is set to ξ = 0.6.
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Figure 3.4: The weighting coefficients {w1(x), . . . , w5(x)} of the linearized models in the
TPWL model, dashed lines corresponds to ξ = 0.6 , solid lines corresponds to ξ = 0.1

The influence of the standard deviation parameter ξ on the form of the weighting co-

efficients of the linearized models in (3.31) is shown in 3.4. It can be seen that the

value ξ = 0.6 forces a slow decay of the weighting coefficients when the variable x moves

away from their corresponding linearization points. The slow decay causes an increas-

ing overlap among the linearized models. This means that some linearized models will

still contribute to the piecewise linear approximation even though the variables x is not

located in the neighborhood of their corresponding linearization points. This behavior

can be observed for example in the region x ∈ [−125,−150] where the weighting func-

tion w4(x) of the linearized model l4(x) still has a relatively large value, which causes a

deterioration of the approximation accuracy of f̃2(x) in this region as it can be seen in

Fig. 3.3.(b).

In contrast, in the case of ξ = 0.1, the weighting coefficients decays much faster when
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the variable x moves away from their corresponding linearization points. Therefore, the

weighting coefficients of the linearized functions l1(x), l2(x), l3(x), l4(x) have almost zero

values in the region x ∈ [−125,−150], and only the weighting coefficient w5(x) is active

and has a value equal to 1, since its corresponding linearization point x5 = −100 is the

nearest to x values in the considered range.

It should be stressed at this point that it is hard to make a general statement on the

optimal choice of the parameters of the weighting functions, since a certain tuning of

those parameters can achieve good interpolation behavior for some nonlinear functions,

and bad for others. However, in all the considered applications in this work, the small

values of ξ has always achieved better approximation results.

Finally, in order to demonstrate the importance of selecting the number and the positions

of linearization points on the accuracy of the TPWL model, tow further linearization

points at xi = −25, xi = 25 are added to the TPWL model (3.31), and the value ξ = 0.1

is selected in the weighting function. It can be clearly seen in Fig. 3.3.(b) that the

resulting TPWL model f̃3(x) produces the best approximation of the original nonlinear

function (3.29).
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Chapter 4

MODEL ORDER REDUCTION OF

LINEAR EM DEVICES

4.1 Overview

In this chapter, we address the issue of generating fast and accurate reduced order

models of linear electromagnetic systems that are modeled using the coupled boundary

element-finite elements method (BEM-FEM). A special focus is given to electromag-

netic devices in which the excitation signal type is changed from current to voltage and

vice versa during their operation. The input-output behavior of such devices changes

significantly when switching the applied excitation signal type from voltage to current

or vice versa. This change in the behavior represents a challenge for applying the Krylov

based model order reduction techniques, since the generated reduced EM field models

should be able to reproduce the original input-output behavior of both the high order

current driven and the high order voltage driven models. Moreover, they should enable

a simple procedure for switching the excitation signal type during the simulation run.

In the following paragraphs, we derive both the voltage driven and the current driven

models of linear electromagnetic devices. Then, we prove that the input Krylov sub-

spaces of both the voltage driven model and the current driven model are equivalent for

any arbitrary number of model inputs. This equivalence allows reducing the order of

both models by projecting them onto the same input Krylov subspace. Additionally, it

significantly simplifies the procedure of switching the excitation signal type during the

device simulation using the reduced order models. The proof presented in this chapter

has been in published in our work [1].
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ν1, κ1

ν2, κ2

ν3, κ3

Figure 4.1: A symbolic representation of a spatially discretized electromagnetic device
with three segments

It is worth mentioning that the movement of the modeled device components is not

considered in this chapter since it causes a nonlinearity in the device model. The lat-

ter nonlinearity in addition to the nonlinearity due to the material properties will be

considered in details in the following chapter.

4.2 The High Order Linear EM Field Model

If we assume that all modeled device components have fixed positions and do not move

under the effect of electromagnetic or mechanical forces, then the matrices G and H in

the model (2.13) become constant. Additionally, if we assume that the device model

can be subdivided to � different regions, each region contains a different linear magnetic

material which is characterized by a magnetic reluctivity νi and an electrical conductivity

κi as it is shown for example in Fig. 4.1, then the spatially discretized electromagnetic
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field model (2.13) can be written as:

[
C 0

0 0

]
d

dt

[
a(t)

q(t)

]
+

[
K −T

H G

][
a(t)

q(t)

]
=

[
r(t)

rγ(t)

]
(4.1)

where the damping matrix C and the stiffness matrix K can be calculated respectively

as a sum of the individual matrices in the different subregions:

C =

�∑
i=1

κ1C1 + · · ·+ κmCm

K =

�∑
i=1

ν1K1 + · · ·+ νmKm

(4.2)

Several outputs can be calculated as functions of state variables of the large scale linear

system (4.2). However, in this section we restrict ourselves to the outputs that can be

calculated as a linear combination of the state variables:

y(t) = lTa(t) (4.3)

where l is the system output vector, and the algebraic variables q(t) in general do not

contribute directly to the typical linear output functions of electromagnetic systems.

4.3 Handling the Singularity

The spatially discretized electromagnetic field model (4.2 ) is a large scale system of

differential algebraic equations (DAE). In control theory, dynamic systems that are

modeled using DAEs are called singular systems:

{
Eẋ(t) = Ax(t) + bu(t) such that det(E) = 0.

y(t) = lT x
(4.4)

Singular systems represent a real challenge for applying model order reduction ap-

proaches, and they have to be transformed, in general, to some special canonical forms
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before reducing their order. A popular transformation that has been exploited in several

works [10, 41, 62] is the Weierstrass transformation [24, 38], which aims at separating

a singular dynamic system (4.4) with a regular matrix pencil (det(λC − A) �= 0) to a

fast subsystem and a slow subsystem:⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = Jx1(t) + b1u(t)

Nẋ2(t) = x2(t) + b2u(t)

y(t) = lT1 x1 + lT2 x2

(4.5)

where the matrix N is nilpotent (i.e Nν = 0, ν >= 1 is the nilpotency index). Conse-

quently, the system transfer function can be written as:

G(s) = lT1 (sI − J)−1b1 + lT2 (sN− I)−1b2 = G1(s) + G2(s) (4.6)

The authors in [10, 41, 62] have suggested reducing the order of the slow subsystem

G1(s) using some of the well known order reduction techniques. Moreover, they have

stressed on keeping the order of the fast subsystem G2(s) unchanged, in order to guar-

antee producing a good approximation of the original system. However, the aforemen-

tioned approaches suffer from several disadvantages that limit its application to solve the

problem of reducing the order of linear models of electromagnetic device (4.2). Those

disadvantages can be summarized in three points:

• The high computational costs and the ill-conditioning of the computational prob-

lem of finding the Weierstrass transformation matrices.

• Reducing the order of the slow subsystem G1(s) only may not produce a, suffi-

ciently, low dimensional approximation of the original system, since the order of

the fast subsystem G2(s) ,which is not reduced, may still to be high.

• The state variables of the transformed system loose their direct physical interpre-

tation.

Therefore, and considering the above mentioned limitations of applying the Weierstrass

transformation based approach to electromagnetic system, we propose to handle the
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singularity of the system (4.2) by eliminating the algebraic equations. This can be done

by solving the algebraic equations for q(t):

q(t) = −G−1Ha(t) + G−1rγ(t) (4.7)

and substituting its value in (4.2):

Cȧ(t) +
[
K + KBEM

]
a(t) = r(t) + TG−1rγ(t) (4.8)

where:

KBEM = TG−1H (4.9)

The matrix KBEM is called the boundary matrix, its value remains constant when mod-

eling electromagnetic devices with non-moving components. The input signal rγ(t) cor-

responds to the contribution of sources of current density that are located in vacuum

and not included in the spatial discretization. However, through out the whole work, all

sources of current density are included in the vector r(t). Therefore, the input vector is

equal to rγ(t) = 0 in all the considerer systems.

4.4 Krylov Subspace Based Order Reduction

The order of the model (4.8) is already reduced in comparison to the order of the model

(4.2) due to the elimination of the algebraic variable q(t) . However, the system (4.8)

is still a high dimensional model. Therefore, in this section, we investigate applying the

Krylov based model order reduction techniques to achieve a significant reduction in the

order of the model (4.8).

At this point, we assume –without loss of generality– that the sources of EM field ex-

citation are electrical coils with homogenous current densities throughout their cross

sections. Then, depending on the type of the applied excitation signals (voltage, cur-

rent), two variant formulations for the models (4.8) can be derived.
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4.4.1 Current driven model

Under the assumption that the modeled EM device contains m different excitation coils

connected to m different current sources i1(t), . . . , im(t), the linear model (4.8) can be

written as:

Ccȧ(t) +
[
K + KBEM

]
a(t) =

[
b1 . . . bm

]⎡⎢⎢⎣
i1(t)

...

im(t)

⎤
⎥⎥⎦ , (4.10)

where each of the vectors bi ∈ R
n describes the distribution of the current density in the

i-th excitation coil. The transfer function matrix describing the input-output behavior

from each of the m inputs to any linear output of the form y(t) = lTa, can be written

as:

Gc(s) = lT (sCc − A)−1 B. (4.11)

with B = [b1 . . . bm], and A =
(
K + KBEM

)
.

4.4.2 Order reduction of the current-driven model

By expanding the transfer function (4.11) as a Laurent series about a given point s0, its

moments can be calculated. Setting Ac
s0

= (A − s0C
c), the expanded transfer function

can be rewritten as:

Gc(s) = lT
(
Ac

s0

)−1
B + lT

(
Ac

s0

)−1
Cc
(
Ac

s0

)−1
B(s − s0)

+ lT
((

Ac
s0

)−1
Cc
)2 (

Ac
s0

)−1
B(s − s0)

2 + . . .

+ lT
((

Ac
s0

)−1
Cc
)q−1 (

Ac
s0

)−1
B(s − s0)

q−1 + . . .

(4.12)

leading to the general expression of the moments of the system (4.10),

mc
i = lT

(
(Ac

s0
)−1Cc

)i
(Ac

s0
)−1B i = 0, 1, · · · . (4.13)
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Now, based on the previous section and equation (4.13), the system (4.10) can be reduced

from order n to order q << n using a one-sided Krylov subspace method where the

columns of the projection matrix V span the following subspace:

Kc
q1

(
(
Ac

s0

)−1
Cc,
(
Ac

s0

)−1
B) =

span
{(

Ac
s0

)−1
B,
(
(Ac

s0
)−1Cc

)
(Ac

s0
)−1B, . . . ,

(
(Ac

s0
)−1Cc

)q−1
(Ac

s0
)−1B

} (4.14)

This choice guarantees the matching of the first q
m

moments of the transfer functions

of the original and reduced models. Accordingly, the resulting current-driven reduced-

order model can be calculated by replacing the original state vector a in (4.10) by its

approximated value a ≈ Wca
c
r as follows:

WT
c CcWcȧ

c
r(t) + WT

c

[
K + KBEM

]
Wca

c
r(t) = WT

c B

⎡
⎢⎢⎣

i1(t)
...

im(t)

⎤
⎥⎥⎦ , (4.15)

with colspan(Wc) ⊂ Kc
q1

.

4.4.3 Voltage driven model

Now, if all the excitation coils of the modeled EM device are connected to voltage sources,

the value of the current ik(t) flowing in the k-th excitation coil can be calculated from

[55]:

ik(t) = bT
k ȧ(t) − uk(t)

Rk

, (4.16)

where Rk is the Ohmic resistance of the k-th excitation coil, and uk(t) is the voltage

signal applied to its terminals. By substituting the excitation currents values from (2.24)

in (4.10) and assuming that B̃ =
[

b1

R1
, . . . , bm

Rm

]
, the formulation of the voltage driven
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EM field model is found to be:

[
C + BB̃T

]
ȧ(t) +

[
K + KBEM

]
a(t) = B̃

⎡
⎢⎢⎣

u1(t)
...

um(t)

⎤
⎥⎥⎦ ., (4.17)

with its transfer function

Gv(s) = lT (sCv − A)−1 B̃, (4.18)

where Cv =
(
Cc + BB̃T

)
.

4.4.4 Order reduction of the voltage driven model

Similar to the current-driven model case, and by setting Av
s0

=
(
A − s0C

c − s0BB̃T
)

the transfer function of the voltage-driven model expanded about s0 can be shown to

be:

Gv(s) = lT
(
Av

s0

)−1
B̃ + lT

(
Av

s0

)−1
Cv
(
Av

s0

)−1
B̃(s − s0)

+ lT
((

Av
s0

)−1
Cv
)2 (

Av
s0

)−1
B(s − s0)

2 + . . .

+ lT
((

Ac
s0

)−1
Cv
)q−1 (

Av
s0

)−1
B̃(s − s0)

q−1 + . . .

(4.19)

Accordingly, the moments of this system can be calculated as:

mv
i = lT

(
(Av

s0
)−1Cv

)i
(Av

s0
)−1B̃ i = 0, 1, · · · . (4.20)

Hence, the voltage-driven model (4.17) can be reduced by projection in a similar way

to the current-driven model using the following Krylov subspace:

Kv
q1

(
(
Av

s0

)−1
Cv,
(
Av

s0

)−1
B̃) =

span
{(

Av
s0

)−1
B̃,
(
(Av

s0
)−1Cv

)
(Av

s0
)−1B̃, . . . ,

(
(Av

s0
)−1Cv

)q1−1
(Av

s0
)−1B̃

} (4.21)

This choice guarantees the matching of the first q
m

moments of the transfer functions

of the original and reduced models. Accordingly, the resulting current-driven reduced-
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order model can be calculated by replacing the original state vector a in (4.17) by its

approximated value a ≈ Wva
v
r as follows:

WT
v

[
C + BB̃T

]
Wvȧ

v
r(t) + WT

v

[
K + KBEM

]
Wva

v
r(t) = WT

v B̃

⎡
⎢⎢⎣

u1(t)
...

um(t)

⎤
⎥⎥⎦ , (4.22)

with colspan(Wv) ⊂ Kv
q1

.

4.4.5 The equivalence of the input Krylov subspaces

As they involve different matrices and vectors, the input Krylov subspaces (4.14), (4.21)

involved in the reduction of the current and voltage-driven models seem to be different.

However, by closely examining the connections between the involved matrices and vec-

tors, it can be shown that these two subspaces are equal when calculated at the same

expansion point s0.

Theorem 1: The input Krylov subspaces of the current-driven model Kc
q1

and that of

the voltage-driven model Kv
q1

are equal.

Proof: Let Mi and Ni be the basic blocks of the Krylov subspace Kc
q1

and Kv
q1

respectively. It is shown that the two subspaces span the same space by proving that

the i-th basic block of the second one can be written as a linear combination of the first

i blocks of the first one.

Recall the Woodbury formula [65] employed generally to reformulate the inverse of the

sum of two matrices,

(M + PQ)−1 = M−1 − M−1P
(
I + QM−1P

)−1
QM−1, (4.23)
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where M ∈ R
n×n is an arbitrary invertible matrix and P ∈ R

n×m, Q ∈ R
m×n are

arbitrary matrices. Applying this formula to inverse the matrix Av
s0

in (4.21) results in:

(
Av

s0

)−1
=
(
Ac

s0
− s0BB̃T

)−1

=
(
Ac

s0

)−1 − s0

(
Ac

s0

)−1
B
(
I + s0B̃

T
(
Ac

s0

)−1
B
)−1

B̃T
(
Ac

s0

)−1

=
(
Ac

s0

)−1 − s0

(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
,

(4.24)

where Ds0 =
(
I + s0B̃

T
(
Ac

s0

)−1
B
)−1

∈ R
m×m.

The starting vectors block of the input Krylov subspace (4.14) of the current driven

model is given by:

M1 =
(
Ac

s0

)−1
B. (4.25)

The starting vectors block for the subspace (4.21) of the voltage driven model is given

by:

N1 =
(
Ac

s0
− s0BB̃T

)−1

B̃ =
(
Ac

s0

)−1
B̃ − s0

(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
B̃

=
(
Ac

s0

)−1
BΦ1 = M1Φ1.

(4.26)

where Φ1 =
(
diag

(
[ 1
R1

, . . . , 1
Rm

]
)
− s0Ds0B̃

T
(
Ac

s0

)−1
B̃
)
∈ R

m×m.

The second vectors block of the input Krylov subspace (4.21) is given by:

N2 =
((

Ac
s0

)−1 − s0BB̃T
)−1 (

Cc + BB̃T
)(

Ac
s0
− s0BB̃T

)−1

B̃

=
((

Ac
s0

)−1 − s0

(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
)(

Cc + BB̃T
) (

Ac
s0

)−1
BΦ1

=
(
Ac

s0

)−1
Cc
(
Ac

s0

)−1
BΦ1 −

(
Ac

s0

)−1
BDs0B̃

T Ã−1
s0

Cc
(
Ac

s0

)−1
BΦ1s0

+
(
Ac

s0

)−1
BB̃T

(
Ac

s0

)−1
BΦ1

−
(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
BB̃T

(
Ac

s0

)−1
BΦ1s0

=
(
Ac

s0

)−1
Cc
(
Ac

s0

)−1
BΦ1 +

(
Ac

s0

)−1
BΦ2

= M2Φ1 + M1Φ2

(4.27)
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with Φ2 =
(
−Ds0B̃

T
(
Ac

s0

)−1
Cc
(
Ac

s0

)−1
BΦ1s0

+B̃T
(
Ac

s0

)−1
BΦ1 − Ds0B̃

T
(
Ac

s0

)−1
BB̃T

(
Ac

s0

)−1
BΦ1s0

)
∈ R

m×m.

Now consider that Nq−1 = Mq−1Φ1 + · · ·+ M1Φq−1, for Nq we have:

Nq =

((
Ãs0 − s0BB̃T

)−1 (
Cc + BB̃T

))
Nq−1

=
((

Ac
s0

)−1 − s0

(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
)(

Cc + BB̃T
)(

Mq−1Φ1 + · · ·+ M1Φq−1

)
=
(
Ac

s0

)−1
CcVq−1Φ1 + · · ·+

(
Ac

s0

)−1
CcM1Φq−1

+
(
Ac

s0

)−1
BB̃ (Mq−1Φ1 + · · · + M1Φq−1)

−
(
Ac

s0

)−1
BDs0B̃

T
(
Ac

s0

)−1
(
C + BB̃T

)
(Mq−1Φ1 + · · ·+ M1Φq−1) s0

= MqΦ1 + Mq−1Φ2 + · · · + M1Φq.

(4.28)

This part of the proof is completed by induction.

Remark 1: The presented proof considers the most general case of MIMO systems with

an expansion point s0 �= 0. The subspaces of Theorem 1 are also equal for the SISO

case and/or s0 = 0.

Consequently, the order of the voltage driven model and the current driven model can

be reduced using the same input Krylov subspace, e.g. (4.14), while still guaranteeing

the matching of the first q
m

moments between each of the original models and their

corresponding reduced ones.

In order to illustrate the advantages of the presented proof, we assume that the response

of a linear electromagnetic to a given voltage signal is simulated using the voltage driven

reduced order model (4.22). During the simulation time interval t0 → ts the value of

the state vector evolves from its initial value to a new value av
r(t0) → av

r(ts). At the

time point ts we assume that the excitation signal is switched from voltage to current.

Therefore, the simulation has to be continued using the current driven reduced order

model (4.15). However, in order to calculate the initial conditions ac
r(ts) for the sim-



56 Chapter 4: MOR of Linear Electromagnetic Devices

ulation using (4.15) the current state of device model av
r(ts) has to be projected onto

the subspace of the current driven model. This can be done by projecting av
r(ts) back

onto the full order space a(ts) ≈ av
r(ts) and then projecting the result onto the subspace

of the current driven model ac
r(ts) ≈ WT

c Wva
v
r(ts). It is clear that the transformation

between the subspace is accompanied with an approximation error as the back projec-

tion on the full order subspace does not reproduce the exact high order state vector.

Moreover, the transformation matrices WT
c Wv and WT

v Wc have to be saved and loaded

during the simulation. In contrast, the presented proof enables projecting both models

(4.10),(4.17) onto the same subspace, this means that the state vectors ac
r(ts) = av

r(ts).

4.4.6 Numerical example

In this section, the results presented in this work are employed to perform a fast simula-

tion of the behavior of electromagnetic field in the electrical transformer shown in Fig.

4.2. The transformer circuit contains beside the transformer itself a voltage source, and

a current limiter. The resistors R1 and R2 represent respectively the Ohmic resistances

of the primary and secondary transformer coils. The terminals of the secondary coil in

this example are not connected to a load, i.e i2(t) = 0. This results in an electromagnetic

system having only one excitation coil, and consequently one input, i.e. m = 1.

current
limiter

u1v(t)

R1 R2

u2

i1 i2

bT
1 ȧ bT

2 ȧ

Figure 4.2: Electrical circuit containing an electrical transformer, a current limiter, and
a voltage source v(t).

The current limiter is only activated when the absolute value of the primary current i1(t)

reaches the maximum allowed value imax. During its activation, it adjusts the terminal
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voltage u1(t) of the primary coil in order to avoid that the primary current exceeds imax,

as follows: {
i1 = +imax, if i1 > imax;

i1 = −imax, if i1 < −imax.
(4.29)

The simplest and most common way to model the influence of the current limiter on

the behavior of the transformer circuit is to consider it, in its activation intervals, as

a constant current sources, i.e. i1 = ±imax. Therefore, the excitation signal has to be

switched from a voltage signal to a current signal in the time intervals during which the

current limiter is activated. Now, in the time intervals during which the current limiter

is not activated, it passes the voltage signal generated by the voltage source directly to

the primary coil, i.e. u1(t) = v(t).

A spatially discretized model of the electromagnetic field in the electrical transformer

is generated using the coupled BEM-FEM method. The generated model is a high

dimensional system of differential algebraic equations DAEs (4.2) of order n = 3186.

The singularity of the system is handled by eliminating the algebraic part. This in turn

transforms the DAEs system (4.2) to a system of ordinary differential equations (4.8) of

order n = 2614. All the magnetic materials that are included in the transformer model

are assumed to have linear magnetic properties. An input Krylov subspace (4.14) of the

current driven model (4.10) is generated using the Arnoldi algorithm at the expansion

point s0 = 0. Both the current-driven model (4.10) and the voltage driven one (4.17) are

reduced using a one-sided method (V = W) from order n = 2614 to order n = 20 by the

same projection matrices calculated from the input Krylov subspace generated in the

previous step. This in turn guarantees the matching of the first 20 moments between the

transfer functions of the full order models (4.10),(4.17) and their corresponding reduced

order models as proven in the previous section.

We remind at this point that the common aim of model order approaches is to approx-

imate the original state vector of a system by a linear combination of a low number of

optimally chosen basis vectors, i.e. a = Var. This means that the original distribution

of the electromagnetic field in the electrical transformer can be approximated in the
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(a) First vector (b) Second vector (c) Third vector

Figure 4.3: The figures (a)-(c) illustrate the electromagnetic field distribution that cor-
responds to the first three vectors of the input Krylov subspace of the current driven
transformer model

reduced-order models by a weighted combinations of the twenty vectors of the input

Krylov subspace. Hence, it is interesting to illustrate some of those basis vectors. In

Figure 4.3, the electromagnetic field distributions corresponding to the first three vectors

of the involved Krylov subspace are graphically illustrated.

After generating the reduced order models, their performance is validated by comparing

the corresponding simulation results to the ones obtained by the original high-order

models. The first simulation run is carried out using the full order models (4.17), (4.10).

At the beginning, the simulation run is started using the voltage driven model (4.17) with

the input voltage signal being equal to u1(t) = v(t) = 100 sin 2000t, as shown in Fig. 4.4.

During the progress of simulation, the value of the primary current starts to rise until it

reaches the maximum allowed current value imax = 4A. At this point, the current limiter

is activated and starts maintaining the primary current value at its maximum allowed

value i1 = imax. Therefore, the simulation is continued from this point on using the

current-driven model (4.10) with an input signal amplitude of i1 = 4A. The last value

of the state vector a(t) is used as an initial condition for simulating the current-driven

model, as both models have the same states. The simulation is switched back again to the

voltage-driven model as soon as the value of the sinusoidal voltage signal v(t) becomes

smaller than the terminal voltage u1(t) of the primary coil. The switching cycle from

voltage to current and vice versa is repeated according to the aforementioned switching

algorithm until the end of the simulation as shown in Fig. (4.4). The second simulation

run is performed using the generated reduced order electromagnetic field models. The
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Figure 4.4: A comparison between the simulation results of the full order electromagnetic
field models n = 3186 (solid lines) and the reduced order models n = 20 (dashed
lines). The shaded regions represent the intervals during which the simulation is carried
out using the current drive models, whereas the other regions represent the intervals
during which the simulation is performed using the voltage driven model. The gray line
represents the signal of the voltage source v(t).

switching logic between the reduced-order voltage-driven and current-driven models is

carried out according to the same switching algorithm used for the full order models. At

each switching point between the voltage driven model and the current driven model,

the current value of the reduced order state vector ar(t) is used as an initial condition for

solving the model equations in the next simulation step. No coordinate transformation

is required at this point, since both the current-driven and the voltage-driven models

are projected to the same subspace. This is in fact one of the major benefits of the

results presented in this paper.
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Full Order Models Reduced Order Models

order n = 3186 n = 20

number of simulation steps 300 300

simulation step size 20 μsec 20 μsec

simulation time 127.43 sec 0.1451 sec

Table 4.1: The simulation time of the full order electromagnetic field model of an elec-
trical transformer versus the reduced order model

Finally, the simulation results using the reduced order models that are illustrated in

Fig. (4.4) show that the reduced-order model of order n = 20 produces an excellent

approximation of the simulation results using the original high order model of order

n = 3186, while being almost 900 times faster as listed in Table 4.1.
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Chapter 5

MODEL ORDER REDUCTION OF

MOVING NONLINEAR EM DEVICES

5.1 Overview

In this chapter, we present a novel approach for generating fast and accurate reduced

order models of electromagnetic devices that contain moving components and magnetic

materials with nonlinear properties. The approach exploits model order reduction tech-

niques to approximate the high order nonlinear models of the electromagnetic field by

reduced order ones having a much lower number of equations. The reduced order EM

field models are weakly coupled to the mechanical equations in order to model the move-

ment of the device components. The position information that are obtained from solving

the mechanical equations are used in each simulation time step to update the position

dependent terms in the reduced order EM field model.

In the first step in this chapter, the trajectory piecewise linear models approach TPWL

[53] is exploited in approximating the nonlinearity in the EM field model that is caused

by the dependency of the materials properties on the applied EM field. A novel al-

gorithm for the optimal selection of the number and the position of the linearization

points in the TPWL method is presented. The proposed selection algorithm exploits

the changes in the materials properties at the different simulation points in determining

both the number and the positions of the linearization points in the TPWL model.

In the second step, the work is extend to consider the nonlinearity in the high order elec-

tromagnetic field model that is caused by the movement of the device components. This

kind of nonlinearity occurs in a large class of electromagnetic devices such as rotating
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electrical machines and electromagnetic valves, and it poses a new challenge to model

order reduction approaches as it depends on the state-variables of the weakly coupled

mechanical equations. In order to tackle this challenge, a novel approach that enable

updating the EM field model during the simulation according to the new components

positions is introduced. The performance of the new approach is demonstrated by ap-

plying it to generate a reduced order model of an electromagnetic valve. The reduced

order model is exploited later on to perform a multiobjective optimization of the design

of the modeled device.

5.2 The High Order Nonlinear EM Filed Model

In chapter 2, we have reviewed the modeling of electromagnetic devices using the coupled

boundary elements finite elements method BEM-FEM, and we have shown that the

spatially discretized EM field model (2.13) is a large scale system of nonlinear differential

algebraic equations. The algebraic variables vector q(t) can be eliminated from (2.13)

by solving the algebraic equations according to (4.7),(4.9). We remind at this point that

in this work, we consider that all sources of current density are included in the vector

r(t). Therefore, the input vector is equal to rγ(t) = 0 in (4.7).

Under the previous assumption, the final high order model can be written as:

Cȧ(t) +
[
K (a) + KBEM(x)

]
a(t) = r(t) (5.1)

The dependency of the stiffness matrix term K (a) in (5.1) on the state variables a

of electromagnetic field can be traced back the dependency of the magnetic reluctivity

ν in the modeled materials on the value of the applied electromagnetic field, as it is

shown for example in Fig 2.2.(b). Additionally, the dependency of the stiffness matrix

term KBEM(x) on the position vector x of the device components originates from the

dependency of the boundary matrices G(x) and H(x) in (4.9) on the positions of the

device components.

The computational cost of performing a simulation using the model (5.1) is in general

very high, since calculating the model response to a given input signals requires solving

a high order system of nonlinear equations using iterative search strategies as it has
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been discussed in the chapter 2.

5.3 Model Order Reduction of Nonlinear Electro-

magnetic Devices

The high computational cost of simulating the behavior of electromagnetic field using

the model (5.1) can be significantly decreased when approximating the high order model

(5.1) by a low order one having much lower number of equations. For this purpose, this

section is concentrated on developing a new scheme for generating fast and accurate re-

duced order models of electromagnetic devices starting from their high order nonlinear

models (5.1).

Modeling of the components movement will not be considered at this step, and will be

considered later on in this section. Therefore, the matrix KBEM at this step is considered

to be constant.

The trajectory piecewise linear TPWL approach is a very suitable choice for approx-

imating the nonlinearity in the EM field model (5.1) that is caused by the nonlinear

behavior of magnetic materials. This is due to its numerous advantages that have been

discussed in details in the paragraph 3.2.4. The main concept of the TPWL approach

is based on approximating a high order nonlinear system by weighted sum of reduced

order linearized models. Therefore, we start this section by performing a linearization

of the EM field models (5.1) at a given linearization point.

5.3.1 Linearizing the EM field model

The nonlinear model (5.1) can be linearized at a chosen point ai ∈ R
n in the state-

space by linearizing its nonlinear stiffens function f (a) = K(a)a. If we assume that

the function f (a) ∈ R
n is infinitely differentiable in the neighborhood of ai, then the

function can be expanded as a Taylor series:

f (a) = K(a)a = f (ai) +
df (a)

da

∣∣∣∣
ai

(a − ai) +

∞∑
k=2

f (k) (ai)

k!
(a − ai)

k (5.2)
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where f (k)(ai) denotes the kth derivative of the function f (k)(a) evaluated at the point ai,

the term (a − ai)
k is the Kronecker product (a − ai)

k =

k times︷ ︸︸ ︷
(a − ai) ⊗ · · · ⊗ (a− ai), and

k ! is the factorial of k.

In the linearization of the function f (a), only the first two terms in the expansion series

(5.2) are considered. The higher order derivatives terms are not taken into account due

to their large dimensionality, which makes the computational cost of their calculation

and storage very expensive.

By substituting the function f (a) by its value K(a)a in the first two terms in the Taylor

series we get:

f (a) = K(a)a ≈ K(ai)ai +
d

da
[K(a)a]

∣∣∣∣
ai

(a − ai)

≈ K(ai)ai +

[
d

da
K(a)

∣∣∣∣
ai

ai + K(ai)

]
(a− ai)

≈
[

d

da
K(a)

∣∣∣∣
ai

ai + K(ai)

]
︸ ︷︷ ︸

Li

a +

[
− d

da
K(a)

∣∣∣∣
ai

ai

]
ai︸ ︷︷ ︸

gi

(5.3)

where the term Li ∈ R
n×n is the Jacobian matrix of the function f(a) = K(a)a evaluated

at the expansion point ai ∈ R
n:

Li =

[
d

da
K(a)

∣∣∣∣
ai

ai + K(ai)

]
= J(ai) + K(ai) (5.4)

and the matrix J(ai) ∈ R
n×n is the derivative of the matrix K(a)i multiplied by the

state-vector ai:

J(ai) =
d

da
K(a)

∣∣∣∣
ai

ai (5.5)

and finally the term gi ∈ R
n is a vector given by:

gi = J(ai)ai (5.6)
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After performing the linearization, the nonlinear stiffness function f(a) can be approxi-

mated locally in the neighborhood of a linearization point ai by:

K(a)a ≈ Lia + gi (5.7)

and the corresponding linearized electromagnetic field model at ai can be written as:

Cȧ +
[
Li + KBEM

]
a(t) + gi = r. (5.8)

By linearizing the model (5.1) at several linearization points {a1, . . . , as1} in its state

space, the nonlinear model (5.1) can be approximated by a weighted sum of all the

linearized models:

Cȧ +

s1∑
i=1

αi (a) [Lia + gi] + KBEMa = r (5.9)

where {α1, . . . , αs1} are the weighting coefficients that determines the contribution of

each of the linearized models to the overall model (5.9) at each simulation step. The

values of the weighting coefficients are calculated in each simulation time step as a

function of the distance between the current state vector a(t) and all the linearization

points:

(α1, . . . , αs1) = α
(
a(t), {a1, . . .as1}

)
(5.10)

The weighting function (5.10) is constructed according to the same scheme that has

been presented in the paragraph 3.3.5.

5.3.2 Selecting the linearization points

The selection of the number and the positions of the linearization points has a major in-

fluence on the approximation accuracy of the TPWL model (5.9), since the latter model

approximates the original nonlinear function f(a) = K(a)a in (5.9) by a weighted sum

of the linearized models.

It is clear that increasing the number of linearization points in the TPWL model im-
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proves its approximation accuracy. However, the final aim is to generate reduced order

models that are as compact as possible. This in turn implies including only few lin-

earized models in (5.9) in order to keep the computational cost that is required for both

generating and simulating the TPWL model in acceptable bounds. Moreover, many

linearized models (5.8) at different linearization points might be very similar, hence,

including such models in the TPWL model (5.9) will only increase the computational

costs of its generation without achieving any improvement in its approximation accu-

racy.

In chapter 3, we have reviewed several algorithms [53, 63] for selecting the linearization

points in the TPWL model, and we have discussed their major advantages and limita-

tions. In this paragraph, we present a new algorithm for selecting the number and the

location of the linearization points along the simulated training trajectories, with the

aim of achieving an optimal trade off between the number of linearized models in the

TPWL model (5.9) and its approximation accuracy.

If we assume that the total number of simulation points that are located on the training

trajectories is equal to s, the aim of the proposed selection algorithm is to find a minimal

number of linearization points s1 < s in the TPWL model (5.9) while still achieving a

very good approximation to the original nonlinear model (5.1).

By taking a closer look to the linearized model (5.9), it can be easily seen that the lin-

earized models at distinguished linearization points can differ only in their corresponding

stiffness matrix Li (5.4) and the vector gi (5.6). The difference in the value of the matrix

Li (5.4) at two linearization points can be directly traced back to the difference in their

corresponding stiffness and Jacobian matrices K(ai) , J(ai). Whereas the difference in

the value of the vector gi (5.6) at two different linearization points can result from a

difference in the corresponding J(ai) matrices or due to the difference in the values of

two linearization points themselves. However, any significant difference in the lineariza-

tion point ai causes a difference in the matrix J(ai). Therefore, comparing the matrices

K(ai) J(ai) at the different linearization points can be used as a base for selecting the

linearization points.

In the paragraph 2.7, we have shown that the value of the matrix K(ai) at a linearization

points ai is directly dependant on the value of the corresponding magnetic reluctivity

vector ν. Similarly, the value of the J(a) at a linearization points (ai) is directly de-
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pendant on the corresponding vector of the derivative of the magnetic reluctivity with

respect the amplitude of the magnetic induction field dν =
dν

d‖B‖ .

Motivated by the aforementioned facts, it can be concluded that the difference between

the linearized models at different linearization points ai can be directly found by com-

paring their corresponding vectors νi, dνi.

Algorithm 1 Selection algorithm for the linearization points in the TPWL model

1: Given a number of s simulated state-vectors {a1, a2, . . . , as}, and their corresponding
magnetic reluctivity vector {ν1, ν2, . . . , νs}, and the corresponding vector of deriva-
tive of the magnetic reluctivity {dν1, dν2, . . . , dνs}, assuming that the vectors are
ordered according to the Euclidean norm of the magnetic reluctivity vectors i.e.
{‖ν1‖ < ‖ν2‖ < . . . , ‖νs−1‖ < ‖νs‖} .

2: Initialize the group of selected linearization points with the linearization point a1

which corresponds to the state in which the device materials have the lowest norm
of the magnetic reluctivity (i.e. lowest saturation state), and the linearization point
as which corresponds to the state in which the device materials have the highest
norm of the magnetic reluctivity (i.e. highest saturation state).

3: for j ← 2, s − 1 do
4: Calculate the Euclidian distances between dνj and all the corresponding dν vec-

tors of the selected linearization points.
5: If all the calculated distances are larger than a user defined threshold value τ1,

then add the vectors aj to the group of the selected linearization points.
6: end for

The proposed selection algorithm selects the linearization points depending on the

change in the properties of magnetic materials among the simulated state-vectors. The

two vectors a1 and as are of a high importance for the TPWL approximation, since

the first vector a1 corresponds to the physical state in which the modeled device has

the lowest saturation values among all the simulated state-vectors, whereas the second

vector as corresponds to the physical state in which the modeled device has the highest

saturation values among all the simulated state-vectors.

Besides selecting the two previous vectors, the proposed algorithm selects the lineariza-

tion points that are accompanied with the most distinguished vectors dν of the deriva-

tives of the magnetic reluctivity.
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The advantages of the presented selection algorithm are:

1. Its physical interpretability, since it exploits the changes of the material properties

– the magnetic reluctivity ν and its derivative dν – as selection criteria.

2. The proposed algorithm enables selecting the linearization points before perform-

ing model order reduction. This is a major advantage in comparison with the

algorithm in [63], in which the reduced order linearized models are compared in

order to determine the linearization points that will be selected. Consequently, the

selected linearization points in [63] can vary depending on the applied model order

reduction approach, and depending on the order of the reduced order models.

3. The algorithm presented in [63] requires performing a model linearization and order

reduction of the linearized model at all simulated state-vectors. In contrast, our

proposed algorithm requires performing model linearization and order reduction

at only the selected linearization points. This advantage produces a significant

saving in the computational cost that is required for the generating the reduced

order model.

4. The proposed algorithm can be used for selecting the linearization points on the

fly during the simulation of the full order nonlinear model. This can be done by

initializing the group of selected linearization points (step 2 in the algorithm 1)

with the first simulated state-vector, and applying the steps 3 → 5 of the algorithm

1 during the simulation.

5. The presented algorithm can be applied to other physical modeling domains by

replacing the magnetic reluctivity and its derivative by other materials property

vectors, such as the thermal conductivity and its derivative with respect to the

temperature in the nonlinear thermal modeling field.

5.3.3 Numerical example

In order to demonstrate the performance of the presented algorithm for selecting the

linearization points in the TPWL model, we apply it to a numerical modeling example.
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The task in this example to generate a fast and accurate reduced order model of the

electromagnetic valve shown in Fig. 5.1.

�x �x

�Core

�Coil

�Anchor

Figure 5.1: A simple electromagnetic device consisting of: a magnetic core, a moving
anchor, a coil, and a mechanical spring (not shown in the figure). The 3D model (left)
is shown for illustration purposes, whereas the spatially discretized 2D axis-symmetric
model (right) is used for the device simulation.

The device consists mainly of a coil, a core, and an anchor. The core and the anchors

are assumed to be made of materials having nonlinear magnetic properties (shown in

Fig. 2.2).(b). The coil is assumed to be made of copper, which have linear magnetic

properties (i.e ν is constant).

The device is modeled using a two dimensional axis-symmetric model and spatially dis-

cretized using the coupled BEM-FEM method. The spatial discretization resulted in

a system of nonlinear differential algebraic equations DAEs (2.13) of order n = 837.

The algebraic part is removed by elimination according to (4.7) producing a system of

nonlinear ordinary differential equations (5.1) of order n = 629.

The anchor is separated from the magnetic core using a mechanical spring that tries to

keep the anchor away from the core. However, at this step, the anchor is considered to

be fixed at the initial position x0 = 0 since the movement of the device components is

not considered yet.

The vector r(t) in the model (5.1) contains in general the contributions of the electro-

magnetic field sources. In this example, we assume that the excitation coil is connected

to a voltage source u(t), therefore, based on (2.25), the input signal r(t) can be expressed
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as:

r = −bbT

R
ȧ +

b

R
u (5.11)

where the vector b ∈ R
n describes the distribution of the impressed current in the

excitation coil region and R is the Ohmic resistance of the excitation coil. By replacing

the value of the excitation vector r(t) in the model equation (5.1) we get:

[
C +

bbT

R

]
ȧ +
[
K (a) + KBEM

]
a =

b

R
u (5.12)

The high order nonlinear model (5.12) can be approximated by a TPWL model of the

same order as follows:[
C +

bbT

R

]
ȧ +

s1∑
i=1

αi (a) [Lia + gi] + KBEMa =
b

R
u (5.13)

The output output signal considered in this paragraph is electromagnetic force acting

on the anchor (2.31).

Four simulation runs have been performed using both the high order nonlinear model

(5.12) and the high order TPWL model (5.13). The order of the model (5.13) is deliber-

ately not reduced at this step, in order to illustrate the effect of selecting the linearization

points on the approximation accuracy of the TPWL model without invoking an addi-

tional approximation error due to the order reduction.

In all the four simulation runs, the simulation step size was chosen to be Δt = 5μs, and

the number of simulation steps per run is set to 400. The aforementioned settings of

the have been applied to both models (5.12) ,(5.13).

The four voltage excitation signals that have been used in the four simulation runs to-

gether with the resulting electromagnetic forces are shown in Fig. (5.2). Due to the

limited editorial space, the results of the four simulation runs are shown on the same

time axis.
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Figure 5.2: A figure illustrating the approximation accuracy of the full order TPWL
model (green solid line) in comparison to the full order nonlinear model (blue solid line)
using different settings of the linearization points selection parameter τ1. The triangular
markers indicates the position of the selected linearization points
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The algorithm 1 is applied to select a group of linearization points in the TPWL approx-

imation model (5.13) from the total number of 1600 simulated state-vectors. Different

values of the selection parameters τ1 = 0, 0.1, 0.2, 1.0 have been applied. This resulted in

a number of selected linearization points equals to 1600, 288 , 198, 90 respectively. The

positions of the selected linearization points are marked with the triangular markers in

Fig. 5.2.

All the simulation results shows that the full order TPWL approximation model (5.13)

achieves a good approximation of the original nonlinear model (5.12). Moreover, the

simulation results show that the proposed linearization points selection algorithm has

succeeded in reducing the number of linearization points in the model (5.13) from 1600

possible points to s1 = 288 points by setting the selection parameters τ1 = 0.1, and to

reduce it further to s1 = 198 with τ1 = 0.2 while maintaining a very good approximation

accuracy. Increasing the selection parameter τ1 = 1.0 reduces the number of selected

linearization points further s1 = 90 , however, the approximation accuracy starts to

degrade.

For the purpose of graphical illustration, the derivative vectors of the magnetic reluc-

tivity dν are shown in Fig. 5.3 at three selected linearization points.

(a) (b) (c)

Figure 5.3: Figure(a) illustrates the derivative of the magnetic reluctivity dν at the
physical state in which the modeled materials device have the lowest saturation values
among all the simulated state-vectors. Figure (b) illustrates dν at the physical state
in which the modeled device materials have the highest saturation values among all the
simulated state-vectors. Figure (c) illustrates dν at one of the selected linearization
points.
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5.3.4 Reducing the order of the TPWL model

After selecting the linearization points in the TPWL model (5.9), the order of all the

linearized models has to be reduced. For this purpose, several model order reduction

approaches can be exploited as has been discussed in the paragraph 3.3.4.

In this work, the proper orthogonal decomposition POD approach, that has been re-

viewed in the paragraph 3.1.4, is exploited for reducing the order of all the linearized

models in the TPWL model (5.9). The choice of the POD reduction approach is moti-

vated by:

1. Its ability to reduce the order of both nonlinear dynamic systems. This feature

is of a high importance to our work since the model describing the input/output

behavior of the electromagnetic field remains nonlinear due to the quadratic de-

pendency of the output signals such as electromagnetic forces (2.31) and torques

(2.33) on the state-vector of the TPWL model (5.9).

2. Its cheap computational costs in comparison with the approach proposed in [53]

which requires generating Krylov based subspace at each linearized model in the

TPWL model (5.9).

3. Its straight forward applicability to reduce the order of parametric models of elec-

tromagnetic devices as it will be shown in chapter 6.

When applying the proper orthogonal decomposition approach to reduce the order of

electromagnetic field models, it approximates the state-vector of the electromagnetic

field model by a linear combination of a low number q of optimally chosen virtual state-

vectors. Those vectors are assembled column-wise in the projection matrix V ∈ R
n×q.

The procedure of generating a reduction subspace using the POD approach starts by

assembling all the simulated state-vectors of the high order nonlinear EM field model

(5.1) in the so called snapshots matrix X = [a1, a2, . . . , as] ∈ R
n×s. Then, the POD

algorithm is applied to find the best low rank approximation of all the vector in the
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snapshot matrix X in the sense of the Frobenius error norm:

min ‖E‖F = min ‖X− VXr‖F =

(
rank X∑
i=q+1

σ2
i (X)

)1/2

(5.14)

assuming that σq > σq+1

with σi being the ith singular value of the matrix X, and Xr = [ar1, ar2, . . . , ars] ∈ R
q×s

is the reduced order snapshots matrix.

Now, if we consider for example the voltage driven TPWL model (5.13), the order of all

the linearized models can be reduced by projecting them onto the subspace spanned by

the columns of the matrix V according the Galerkin projection approach (reviewed in

paragraph 3.1.1). Consequently, the reduced order TPWL model can be written as:

[
Cr +

brb
T
r

R

]
ȧr +

s1∑
i=1

αi (ar) [Lriar + gri] + KBEM
r ar =

br

R
u (5.15)

and the order of the output equation (2.31) for calculating the electromagnetic force is

reduced to :

fmag = aT
r Rrar (5.16)

and the order of the equation (2.24) for calculating the current flowing in the excitation

coil can be reduced to:

i =
u

R
− bT

R
ȧr (5.17)

where ar ∈ R
q is the reduced order state-vector which has much lower number of vari-

ables than state-vector a ∈ R
n of the original model (5.13). The reduced order matrices

and vectors of the TPWL model (5.15) are given by:

Cr = VTCV, Lri = VTLiV, KBEM
r = VTKBEMV, gri = VTgi, br = VTb,

Rr = VTRV.
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5.3.5 Numerical example

In this example, a reduced order TPWL model of the electromagnetic valve that has

been presented in the paragraph 5.3.3 is generated. For this purpose, four distinguished

input voltage signals (solid lines in Fig. 5.5) are applied to the nonlinear EM field

model (5.12) for generating the training trajectories. Additionally, in order to evaluate

the performance of the generated reduced order EM field model away from the training

trajectories, four different voltage input signals (dashed lines in Fig. 5.5) are applied

to the nonlinear EM field model (5.12) for generating the validation trajectories. In all

simulation runs, the simulation step size was chosen to be Δt = 5μs, and the number of

simulation steps per run is set to 400. The aforementioned settings have been applied

later on to the reduced order model.

The high order nonlinear EM field model (5.12) is linearized at a number s1 = 198 of

linearization points along the training trajectories. The number and the positions of the

linearization points is determined using the proposed selection algorithm with τ1 = 0.2.

(a) (b) (c) (d) (e) (f)

Figure 5.4: The figures (a)-(f) illustrate respectively the magnetic vector potential field
that correspond to the first six vectors in the projection matrix V.

The order of the resulting TPWL model (5.13) is reduced from the order n = 629 to the

order n = 10 using the POD approach. The 1600 simulated state-vectors along the four

training trajectories are approximated using the POD approach by a linear combination

of columns of a projection matrix containing ten vectors V ∈ R
629×10. The magnetic

vector potential fields that corresponds to the first six vectors in the projection matrix

V are shown in Fig. 5.4.
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Figure 5.5: Comparing the simulation results of an electromagnetic valve using a nonlin-
ear EM field model of order n = 629 (blue lines) versus a reduced order EM field model
of order n = 10 (green lines). The solid lines represent the input/output signals of the
training trajectories. Whereas, the dashed lines represent the input/output signals of
the validation trajectories.

The projection matrix V is used to reduce the order of the high order TPWL model

(5.13) and the order of the output equations that calculate the EM force on the anchor

(2.31) and the current in the excitation coil (2.24).

The response of the electromagnetic valve to the eight voltage input signals in Fig.

5.5 is simulated using the reduced order TPWL model (5.15) and the reduced order

output equations (5.16), (5.17). The simulation results in Fig. 5.5 show an excellent

matching between the results achieved using the nonlinear EM field model n = 629

and the ones achieved using the reduced order TPWL model n = 10 at almost all the

training and validation trajectories. A slight difference in the resulting electromagnetic

force is noticed in some of the validation trajectories. This deviation indicates that
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the original nonlinear model (5.12) shows a nonlinear behavior along the validation

trajectories which can not be well approximated as a weighted sum of the reduced order

linearized models in (5.15). However, this small deviation can be easily alleviated – if

required – by expanding the group of s1 linearized models in the TPWL model (5.15)

with few additional linearized models (5.8) along the new validation trajectories.

It is worth mentioning that in all the eight simulation runs, the simulation using the

reduced order model (5.15) was almost 40 − 50 times faster in the required simulation

time than the full order nonlinear model (5.12) as it is shown in the Table 5.1.

Excitation

Signal

Simulation Time (sec)

Full Order Reduced Order
Nonlinear Model TPWL Model

n = 629 n = 10

1 40.0 1.37
2 40.3 1.36
3 48.0 1.36
4 64.6 1.35
5 62.3 1.36
6 63.5 1.35
7 64.8 1.37
8 68.9 1.37

Table 5.1: The simulation time of a full order nonlinear model n = 629 versus the
simulation time of a reduced order model n = 10

5.4 Considering Components Movement

Electromagnetic devices that contain moving components are very wide spread in mod-

ern industrial applications. Such devices include among others rotating electrical ma-

chines, electromagnetic valves, electromagnetic solenoids, and electromechanical relays.

Despite the importance of this class, the issue of considering the movement of the elec-

tromagnetic device components in the generation of their reduced order models has not

been addressed so far according to our best knowledge. In our work [2], we presented a

new approach that enables considering the effect of the components movement on the
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reduced order models of electromagnetic devices. In the following paragraphs, the afore-

mentioned approach is detailed, and its performance is analyzed using several numerical

examples.

In general, the movement of EM device components can be caused by the induced elec-

tromagnetic forces, or by any other types of applied forces. When one or more of the

device component moves, the corresponding EM field model has to be adapted accord-

ing to the new relative positions of device components. This adaptation in BEM-FEM

method implies updating the values of the boundary matrices G and H [33, 55], since

both matrices describe the mutual influence among the state-variables that are located

on the surfaces of the device components, which is directly affected by the components

movement as it can be graphically seen in Fig. 5.6.

(a) (b)

Figure 5.6: The movement of the device components leads to a change in the mutual
influence among the nodes that are located on the components’ surfaces.

The dependency of the G and H matrices on the components positions causes a similar

dependency in the matrix KBEM(x) = G−1(x)H(x) in the EM field model (5.1), and

in the matrices R(x) and S(x) that are used for calculating the electromagnetic forces

(2.31) and torques (2.33) respectively. The term KBEM(x) in the nonlinear EM field

model (5.1) is considered as an additional source of nonlinearity. However, in contrast

to conventional nonlinearities, the term KBEM is not dependant on the state-vector of

the nonlinear model (5.1) itself, but on the state-vector x of the weakly coupled me-

chanical equations (2.8).

In most industrial applications, the movement of device components is restricted to a

translation along a predefined movement trajectory as it is the case in electromagnetic
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valves shown in Fig. 5.6(a), or restricted to rotation around a predefined axis as it

is the case in rotating electrical machines. Therefore, if the position dependant ma-

trices KBEM(x), R(x), and S(x) are sampled at several points {x1, . . . ,xs2} along the

known movement trajectories of the design components, then the boundary matrix in

the nonlinear model (5.1) can be approximated as a weighted sum of all the sampled

matrices:

KBEM(x) =

s2∑
j=1

βj(x)KBEM
j (5.18)

Similarly, the matrices that are used for calculating electromagnetic forces fmag (2.31)

and electromagnetic torques τmag(2.33) can be approximated as:

R(x) =

s2∑
j=1

βj(x)Rj (5.19)

S(x) =

s2∑
j=1

βj(x)Sj (5.20)

the weighting function β should be constructed in such a way that it gives a higher

weighting value βj for the position dependent matrices KBEM
j ,Rj,Sj when the position

vector x(t) approaches their corresponding sampled position point xj during the simu-

lation run.

Based on the approximations (5.18)-(5.20), the high order nonlinear electromagnetic

field model (5.1) can be approximated by:

Cȧ +

s1∑
i=1

αi(a)[gi + Lia] +

s2∑
j=1

βj(x)KBEM
j a = r(t) (5.21)

fmag = aT

[
s2∑

j=1

βj(x)Rj

]
a (5.22)
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τmag = aT

[
s2∑

j=1

βj(x)Sj

]
a (5.23)

(α1, . . . , αs1) =α
(
a, {a1, . . .as1}

)
(5.24)

(β1, . . . , βs2) =β
(
x, {x1, . . .xs2}

)
(5.25)

s1∑
i=1

αi = 1

s2∑
j=1

βj = 1

The position vector x(t) of the device components can be calculated at each simulation

time step by solving the mechanical equations (2.8).

5.4.1 Selecting the sampling points of the position dependant

matrices

Selecting the number and the positions of the sampling points of the matrices KBEM(x),

R(x), and S(x) has a significant influence on the approximation accuracy of the model

(5.21)-(5.23). Including a large number s2 of the aforementioned sampling points in the

model (5.21)-(5.23) improves its approximation accuracy, however it increases the com-

putational cost for its generation, since creating the matrix KBEM(x), R(x), and S(x)

at each sampling point requires inverting the fully occupied G(x) matrix according to

(4.9).

However, the possible movement paths of the device components are known in advance

in almost all industrial EM device. Therefore, it is a suitable choice to sample the po-

sition dependant matrices uniformly along those movement paths. The choice of the

number s2 of sampling points is can be easily done by increasing it successively until

the required approximation accuracy is reached. The effect of varying the parameter s2

on the approximation accuracy of the reduced order EM device model is demonstrated

on a numerical example later on in this chapter (Fig. 5.8).

One should note that electromagnetic devices that have components with complex ge-

ometrical surfaces such as electrical machines Fig. (5.6).(b) requires a higher number

s2 of sampling points in order to achieve a good approximation accuracy. In contrast,
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devices with components having simple surfaces such as the EM valve in (5.6)(a) can

be well approximated using a small number s2 of sampling points.

It is worth mentioning that the suitable choice of the interpolation function β could

theoretically help reducing the required number s2 of sampling point. However, some

weighting functions might fit some devices geometries better than others, and it is not

trivial to find a universally optimal weighting function. Therefore, in this work, the

same weighting function (paragraph 3.3.5) that is used for interpolating the linearized

models in (5.21) is used for interpolating the position dependant matrices.

5.4.2 Model order reduction

The order of the approximation model (5.21)-(5.22) can be reduced using the proper

orthogonal decomposition approach. The reduction procedure starts with filling the

snapshots matrix with the simulated state-vectors of the high order nonlinear EM field

model (5.1). The latter state-vectors are generated from the coupled simulation of the

nonlinear EM field model (5.1) with the mechanical equations (2.8). In the next step, all

the simulated state-vectors are approximated with a linear combination of the vectors of

a projection matrix V ∈ R
n×q that is generated by the POD approach. The projection

matrix V is used to reduce the order of all the matrices and vectors in the approximation

model (5.21) using the Galerkin projection (paragraph 3.1.1). Consequently, the final

reduced order electromagnetic field model can be written as:

Crȧr +

s1∑
i=1

αi(ar)[gri + Lriar] +

s2∑
j=1

βj(x)KBEM
rj ar = rr (5.26)

fmag = aT
r

[
s2∑

j=1

βj(x)Rrj

]
ar (5.27)

τmag = aT
r

[
s2∑

j=1

βj(x)Srj

]
ar (5.28)
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where a ≈ Var, a ∈ R
n, ar ∈ R

q, and q � n. The matrices and vectors of the reduced

order model are given by:

Cr = VTCV, Lri = VTLiV, KBEM
rj = VTKBEM

j V, gri = VTgi, rr = VTr,

Rrj = VTRjV, Srj = VTSjV.

The final reduced order model of the electromagnetic field (5.21), -(5.28) is of order q

(i.e. having q variables in its state-vector ar) which is much lower than the order n of

the original model (5.1),(2.31),(2.33). Therefore, it offers a significant reduction in the

required simulation time and computational resources.

Separating the approximation of the position dependent terms KBEM, R, and S from

the apprximation of the EM field dependent term L, g in the model (5.26)-(5.28) allows

the user to control the approximation accuracy of both types of nonlinearities indepen-

dently. Moreover, the reduced order EM field model (5.26)-(5.28) can be coupled to any

parametric mechanical model that simulates the components movement. This in turns

makes the overall coupled electromagnetic-mechanical models parametric, and therefore

enables exploiting it in performing a design optimization of electromechanical devices

as it will be shown later on in this chapter.

The simulation cycle of the overall reduced order device model can be performed ac-

cording to the following algorithm:

Algorithm 2 Simulating the reduced order models of electromagnetic devices

1: define initial conditions a0
r = VTa0, x0, ẋ0

2: define a simulation time vector
[
t1, t2, . . . , tN

]
3: set i = 0
4: set ai

r = a0
r , xi = x0, ẋi = ẋ0

5: for i ← 0, N − 1 do
6: Calculate the weighting coefficients (α1, . . . , αs1) = α

(
ai

r, {ar1, . . .ars1}
)

at the
reduce order state-vector ai

r

7: Calculate the weighting coefficients (β1, . . . , βs2) = β
(
xi, {x1, . . .xs2}

)
at the po-

sition xi

8: Simulate the reduced order EM field model (5.26) in the time span [ti, ti+1] to find
ai+1

r

9: Calculate f i+1
mag using (5.27) and/or τ i+1

mag using (5.28)
10: Simulate the mechanical equations in the time span [ti, ti+1] to find xi+1, ẋi+1

11: set i = i + 1, ai
r = ai+1

r , xi = xi+1, ẋi = ẋi+1

12: end for
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5.4.3 Numerical example

In this paragraph, we apply the new developed method to the generation of a reduced

order model of an industrial electromagnetic device with a moving component and ma-

terials with nonlinear magnetic properties. For this purpose, the electromagnetic valve

which was presented in the paragraph 5.3.3 is considered. The anchor and the core of

the electromagnetic valve are made of a material with nonlinear magnetic properties.

The valve’s anchor is able to move towards the core under the effect of the induced

electromagnetic force. The latter movement is restricted to a one dimensional transla-

tion along the x-axis. The mechanical bumps at the end of both movement directions

limit the anchors movement to the range x ∈ [0, 400]μm. The anchor is separated from

the core by a mechanical spring that tries to keep the anchor away from the core. The

spring is pre-tensioned, therefore, it produces a force fs(x0) = 4 N at the initial position

x0 = 0. The spring force is given at any position point x ∈ [0, 400]μm by the linear

relation fs = fs(x0) + kx, where k = 10 KN/m is the stiffness constant of the spring.

Accordingly, the mechanical equation that describes the anchor movement can be writ-

ten as:

mẍ + kx = fmag − f(x0) (5.29)

where m = 12g is mass of the moving anchor and no damping parameter is considered

in the mechanical equation .

The generation process of the reduced order electromagnetic field model starts by gen-

erating the training trajectories. For this purpose, four voltage excitation signals are

applied to the terminals of the excitation coil in the device model. Those signals are

illustrated in the blue solid lines in Fig. 5.7. Consequently, four simulation runs are per-

formed using the high order nonlinear EM field model (5.1) coupled to the mechanical

equations (5.29). The input vector r(t) in the EM field model (5.1) is evaluated using

(2.25). The simulation step size is chosen to be Δt = 5μs, and the number of simulation

steps per run is set to 700. The aforementioned settings of the have been applied later

on to the reduced order model.

Due to the limited editorial space, the input/output signals for both the training and

validation trajectories are plotted on the time axis.
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The EM force acting on the moving anchor is evaluated using the quadratic function

(2.31), and the coil current is calculated using the relation (2.24). The position of the

moving anchor and its velocity can be calculated from the solution of the mechanical

equations (5.29).

After generating the training trajectories, the number and the positions of the lineariza-

tion points are chosen from all the simulated 2800 state-vectors along the training tra-

jectories using our proposed selection algorithm with τ1 = 0.02. This has resulted in

selecting a total number of s1 = 497 linearization points. The high order nonlinear

model (5.1) is linearized according to (5.8) at all the selected linearization points.

The position dependent matrices KBEM(x) and R(x) are sampled at s2 = 20 uniformly

distributed position points along the anchor movement path [0 − 400μm].

The 2800 simulated state-vectors along the training trajectories are assembled in snap-

shots matrix and a projection matrix V ∈ R
629×40 containing q = 40 vectors is generated

using the proper orthogonal decomposition approach POD.

The matrix V has been used to reduce the order of all the matrices and vectors in the

approximation model (5.21) and the output equations (5.22) , (2.24) resulting in the

final reduced order electromagnetic field model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Cr +

brb
T
r

R

]
ȧr +

s1∑
i=1

αi (ar) [Lriar + gri] +

s2∑
j=1

βj(x)KBEM
rj ar =

br

R
u

fmag = aT
r

[
s2∑

j=1

βj(x)Rrj

]
ar

i =
u

R
− bT

R
ȧr

(5.30)

The electromagnetic valve is simulated using the reduced order EM field model (5.30)

coupled to the mechanical equation (5.29) by applying the same excitation signals that

have been used for generating the training trajectories.

The simulation results in Fig. 5.7 show an excellent matching between the results

achieved using the full order and the reduced order models considering all the four

considered system outputs.
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Figure 5.7: Simulation results of an electromagnetic valve with a moving anchor using
a nonlinear model of order n = 629 (blue lines) versus a reduced order model of order
n = 40 (green lines). The solid lines represent the input/output signals of the train-
ing trajectories. Whereas, the dashed lines represent the input/output signals of the
validation trajectories.
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Excitation

Signal

Simulation Time (sec)

Full Order Reduced Order
Nonlinear Model TPWL Model

n = 629 n = 40

1 67.6 6.9
2 181.5 6.4
3 188.0 7.6
4 201.6 7.3
5 224.2 6.8
6 215.6 9.4
7 220.8 7.6

Table 5.2: The simulation time of the full order nonlinear model versus the simulation
time of the reduced order model including motion

For the purpose of validation, three further simulation runs are carried out using both

the full order model (5.1) coupled to the mechanical equation (5.29) and the generated

reduced order model (5.30) coupled to same mechanical equation. In the first and third

validation runs, the input voltage signals are chosen to have different amplitudes to the

ones used in the model generation. Whereas in the second validation run, the same

excitation signal used in the fourth training trajectory is applied, however, the stiffness

constant of the mechanical spring is doubled to k = 20 KN/m.

The simulation results in Fig. 5.7 show a very good matching among the outputs of

the full order and the reduced order device models, with the reduced order model being

approximately 10 − 30 times faster than the original model in all simulation runs as it

is shown in the table 5.2.

It is should be stressed at this point that applying excitation signals that significantly

differ in their shapes and amplitudes from the signals that have been used for generating

the training trajectories can cause a degradation in the approximation accuracy of the

reduced order model. This behavior is expected, since such input signals can drive the

simulation trajectories to new regions of the state space of the original nonlinear EM

field model (5.1). In those regions, the behavior of the nonlinear function K(a)a is

unknown to the model (5.30) and can not be well approximated as a weighted sum of

the existing s1 linearized models. However, this degradation can be easily alleviated
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by linearizing the original nonlinear EM field model (5.1) at several points along the

new simulation trajectories, and appending the new linearized models to the ensemble

of linearized models in (5.15) after reducing their order.

This flexibility in expanding the validity regions of the generated reduced order models

without the need to repeat the model generation procedure from the very beginning is

considered as one of the major advantage of the proposed method.

The effect of varying the s2 parameter

In order order to demonstrate the effect of varying the parameter s2 on the accuracy

of the generated reduced order model, three simulation runs are performed using the

reduced order EM field model (5.30) coupled to the mechanical equation (5.29).
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Figure 5.8: An example showing the effect of varying the number of sampling points of
the position dependent matrices on the accuracy of the reduced order EM device model.
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The value of the parameter s2 has been set to s2 = 2, s2 = 10, and s2 = 20 in the three

simulations respectively. The simulation results in Fig. 5.8 show that the approximation

model (5.30) with s2 = 2 fails in achieving a good approximation of the original model

(5.1) due to the very poor approximation of the position dependant matrices KBEM(x)

and R(x). In contrast, the model (5.30) with s2 = 10 achieves a very good accuracy

regarding the simulated anchor position signal, however, the induced electromagnetic

force signal is not smoothly approximated due to the interpolation error of matrices

KBEM(x) and R(x). Finally, the best approximation results have been achieved using

the setting s2 = 20.

5.4.4 Multiobjective design optimization

In many industrial applications, electromagnetic devices are parts of complex systems

containing for example mechanical or hydraulic components. Therefore, for a given elec-

tromagnetic device, the design of the surrounding mechanical or hydraulic components

can be optimized in order to achieve an optimal performance of the whole system.

In this paragraph, the reduced order model (5.30) of the electromagnetic valve is ex-

ploited to perform a multiobjective optimization of the design of a mechanical component

in the valve, namely the mechanical spring.

The spring design has a significant influence on the performance criteria of an electro-

magnetic valve, such as its opening and closing time. The design of the mechanical

spring in this example is defined by two design parameters, namely its pre-tensioning

force p1 = fs(x0) and its mechanical constant p2 = k. The goals of the design opti-

mization is to find a spring design that achieves a fast valve opening and closing time

while generating a minimal amount of Ohmic losses in the excitation coil. Therefore,

two design objectives are minimized, the total time needed for opening and closing the

valve using the given excitation signal, and the total Ohmic losses in the excitation coils

J = Rcoil

∫ T

0
i2(t)dt.

The performance of each design is evaluated using the reduced order model (5.30) cou-

pled to the mechanical equation (5.29). The variation of the spring design parameters

affects directly the mechanical equation (5.29). The optimization run is carried out us-

ing the ε-MOEA multiobjective optimization algorithm [18]. A total number of 20000
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designs have been evaluated during the optimization run.
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Figure 5.9: Two objectives design optimization results using a reduced order model of
the electromagnetic valve.

The multiobjective optimization algorithm aims at improving both design objectives

simultaneously, and to find all the Pareto optimal designs at which no improvement

of one design objective is possible without worsening the second design objective. The

Pareto optimal designs are marked with red circles in Fig. 5.9. Four of the Pareto

designs are validated using the full order nonlinear model (5.1) coupled to (5.29). The

validation results marked with green circles in Fig. 5.9 show a very good matching with

the results calculated using the reduced order device model. The total time required for

performing the optimization was almost 55 hours using one CPU. The evaluation of the

same number of design variants using the full order nonlinear model would have taken

approximately 2500 hours (104 days) using one CPU. This remarkable speed up factor

shows the benefit of integrating the use of the proposed reduced order models in the

design process of electromagnetic devices.
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5.5 Switching the Excitation Signal Type Between

Voltage & Current

In many industrial applications, electromagnetic devices are excited using a mixture

of voltage signals and current signals following sophisticated control strategies. For

example, some electromagnetic valves are driven using a constant voltage signal until

the maximum allowed current is reached, then the controller regulates the coil current

at its maximum allowed value. In order to simulate such a case, it is necessary to switch

the excitation signal type from voltage to current and vice versa during the simulation

run.

The electromagnetic field model that is excited using a current signal is given by:

Cȧ +
[
K (a) + KBEM(x)

]
a = bi (5.31)

whereas, the electromagnetic field model that is excited using a voltage signal is given

by:

[
C +

bbT

R

]
ȧ +
[
K (a) + KBEM(x)

]
a =

b

R
u (5.32)

It is clear that the current driven EM field model (5.31) and voltage driven EM field

model (5.32) have different input/output behavior, and consequently they require, the-

oretically, different projection matrices for reducing their order. However, if we succeed

in finding an optimal projection matrix for both models, then their corresponding re-

duced order models will share the same state-vector. This in turn significantly eases the

process of switching the excitation signal type from current to voltage and vice versa

during the device simulation using the reduced order models, as it will be shown in the

following example.

We assume that the electromagnetic valve is simulated starting from the time step t = 0

using the voltage driven EM field model (5.32). The applied excitation signal is a con-

stant voltage signal of amplitude u = 45 volts, as it is shown in Fig. 5.10. During the

progress of the simulation, the coil current value increases until it reaches the maximum

allowed current value Imax = 10 Amperes. At this moment the controller regulates the
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current at its maximum allowed value Imax = 10 Amperes, therefore the valve is sim-

ulated starting from the time step ts1 using the current driven EM field model (5.31)

with a constant current excitation signal Imax. The value of the state-vector a(ts1) can

be used as an initial conditions for the current driven model (5.31) since both models

(5.31), (5.32) share the same physical state-vector (i.e. the magnetic vector potential

field). At a certain moment ts2 = 0.7ms, the excitation signal is switched back again

to a voltage signal of amplitude u = 0, therefore, the value of the state-vector a(ts2) is

used as an initial conditions for the voltage driven model (5.32), and the simulation is

continued till reaching the time point tend.

Now, if all the state-vectors that are simulated using both models (5.31), (5.32) are

assembled in the snapshots matrix:

X =

[
voltage driven︷ ︸︸ ︷
a0, . . . , as1,

current driven︷ ︸︸ ︷
as1+Δt, . . . , as2,

voltage driven︷ ︸︸ ︷
as2+Δt, . . . , aend

]
(5.33)

then the proper orthogonal decomposition approach POD, can be exploited to generate

a projection matrix V that provides an optimal low rank approximation of all the

simulated state-vectors along the whole simulation trajectory a(t0) → a(ts1) → a(ts2) →
a(tend). The generated projection matrix V can be used to generate a current driven

reduced order EM field model:

Crȧr +

s1∑
i=1

αi (ar) [Lriar + gri] +

s2∑
j=1

βj(x)KBEM
rj ar = bri (5.34)

and a voltage driven reduced order EM field model:

[
Cr +

brb
T
r

R

]
ȧr +

s1∑
i=1

αi (ar) [Lriar + gri] +

s2∑
j=1

βj(x)KBEM
rj ar =

br

R
u (5.35)

Now, both reduced order models (5.35), (5.34) share the same state-vector. Therefore,

when switching the excitation signal type from current to voltage and vice versa during

the simulation, the last simulated state-vector using one of the models can be used as

an initial values vector for the simulation using the other model, without the need of

performing any subspace transformation.
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Figure 5.10: Simulation results of an EM valve using a reduced order model n = 40
coupled to the mechanical equation (green line) versus the results generated using the
high order nonlinear model n = 629 coupled to the mechanical equation (blue line).
The excitation signal type is switched from voltage to current and vice versa during the
simulation run.
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Finally, it is worth mentioning that the device simulation using the using the high order

nonlinear models (5.31), (5.32) coupled to the mechanical equation required a total

simulation time of 321 seconds. Whereas the same simulation using the reduced order

(n = 40) EM field models (5.35), (5.34) coupled to the mechanical equation has required

a total time of 9.89 seconds.
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Chapter 6

PARAMETRIC MOR OF MOVING

NONLINEAR ELECTROMAGNETIC

DEVICES

6.1 Overview

In this chapter, we extend our work to generate fast and accurate parametric reduced

order models of moving nonlinear electromagnetic devices. Such models are able to ap-

proximate the high order models of electromagnetic devices and their variations under

materials nonlinearity, components movement, and the change of design parameters of

the modeled device.

Additionally, we address the issue generating an optimal reduction subspace for the

high order parametric models. For this purpose, three different algorithms based on the

proper orthogonal decomposition POD are presented, and their performance is compared

by applying them to the order reduction of a parametric model of an electromagnetic

device.

Finally, a new approach for selecting the positions of the training points of the para-

metric reduced order model in the design parameters space is introduced.

It is worth mentioning that the presented results in this chapter have been partially

published in our work [3]



96 Chapter 6: Parametric MOR of Moving Nonlinear Electromagnetic Devices

6.2 The High Order Parametric Approximation Model

Let p ∈ R
m be a vector containing a number of m design parameters of an EM device.

When applying the BEM-FEM method, the parametric spatially discretized EM field

model can be written as:⎧⎨
⎩ C(p)ȧ +

[
K(a,p) + KBEM(x,p)

]
a = r(p)

fmag = aT R(x,p) a
(6.1)

where the vector r(p) contains the contributions of all sources of current densities in the

modeled device, such as the contributions of electrical excitation coils that are connected

to current/voltage sources, in addition to the contribution of permanent magnets, as has

been discussed in paragraph 2.8.

For the sake of notation clarity, the electromagnetic force is assumed to be calculated

for one moving device component. The extension for the case of multiple components

is straight forward. Under this assumption, the mechanical equations describing the

movement of one rigid device components is give by:

m(p)ẍ + d(p)ẋ + km(p)x = fmag (6.2)

where m, d, km are respectively the mass, the damping, and the stiffness constants of the

mechanical equations, and x is the state variable describing the position of the moving

device component. The dependency of the matrices C,K,KBEM,R and the vector r

in (6.1) on the vector p of design parameters is ,in general, very complex, and their

derivatives with respect to the vector p are typically not available.

However, at a given point in the design parameter space p ∈ R
m, the high order nonlinear

electromagnetic field model (6.1) can be accurately approximated in the neighboring

regions of some training trajectories by reduced order approximation model (5.26)-(5.27)

according to the approach presented in the previous chapter. Now, when applying the

aforementioned scheme to generate reduced order EM field models at s3 different points

{p1, . . .ps3} in the design parameters spaces, then the high order parametric model (6.1)
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can be approximated by:

s3∑
k=1

γk(p)Ckȧ +
s3∑

k=1

γk(p)
s1∑

i=1

αi(a)[gk,i + Lk,ia]

+

s3∑
k=1

γk(p)

s2∑
j=1

βj(x)KBEM
k,j a =

s3∑
k=1

γk(p)rk (6.3)

fmag = aT

[
s3∑

k=1

γk(p)
s2∑

j=1

βj(x)Rk,j

]
a (6.4)

such that

s1∑
i=1

αi = 1,

s2∑
j=1

βj = 1,

s3∑
k=1

γk = 1.

6.3 The Weighting Function

The weighting function γ has a very important influence on the approximation accuracy

of the model (6.3) (6.4). This importance increases even more if a low number of model

training points s3 in the design parameters space p ∈ R
m is selected. In contrast, if a

large number s3 of sampling points is chosen, then good approximation results can be

achieved using simple weighting functions.

In general, the weighting function γ should be constructed in such a way that it gives

higher weighting value γk for the matrices and vectors in (6.3) (6.4) that are sampled

at design points in the design parameters space that are near to the currently simulated

design point p.

In this work, we have chosen the special weighting chosen ζ(p, a) = γ(p)α(a), η(p,x) =

γ(p)β(x) in approximating the dependency of the matrices and vectors of the original

model (6.1) on the design parameters vector p. This selection is not unique, and different

weighting schemes ζ(p, a), η(p,x) can be exploited. However, the optimal choice of

weighting functions is out of the scope of this work. Nevertheless, it would be an

interesting field to be investigated in future research works.

In the presented numerical example in this chapter, the weighting function γ is chosen
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to be linearly dependent on the Euclidian distance between the current design parameter

point and all the s3 design points at which the model (6.3) (6.4) is trained. The choice

of a linear weighting function is made due to its simplicity. However, this would be an

additional field where further research efforts are required.

6.4 Building the Global Projection Subspace

In the previous chapter, we have shown that the proper orthogonal decomposition ap-

proach can be efficiently applied to reduce the order of the high order nonlinear models

of electromagnetic field. The application of the POD approach can be directly extended

to the case of order reduction of the parametric model (6.3), (6.4). This is due to

the ability of the POD approach to approximate all the simulated state-vectors of the

parametric model (6.1) at different points in the design parameters space by a linear

combination of the vectors of an optimal projection matrix.

In this paragraph, we present three different algorithms for finding the optimal orthog-

onal vectors of the projection matrix using the POD approach, and we analyze their

advantages and limitations. Thereafter, the performance of the three algorithms is com-

pared by applying them to reduce the order of a parametric approximation model (6.3),

(6.4) for an electromagnetic valve.

Algorithm 3 Generating the global projection subspace

1: Initialize the snapshots matrix with an empty matrix X = [ ].
2: for i ← 1, s3 do
3: Add all the simulated state-vectors of the ith design to the snapshots matrix

X = [X, ai
1, . . . , a

i
s],

4: end for
5: Apply the POD approach to approximate all the state vectors in the snapshots ma-

trix by a linear combination of a low number q of orthogonal vectors. The orthogonal
vectors are the columns of the projection matrix V ∈ R

n×q.

X ≈

V︷ ︸︸ ︷[
v1,v2, . . . ,vq

] [ design 1︷ ︸︸ ︷
ar1, . . . , ars,

design 2︷ ︸︸ ︷
ar1, . . . , ars, . . . ,

design s3︷ ︸︸ ︷
ar1, . . . , ars

]
.
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The algorithm 3 is based on using the POD approach in building a reduction subspace

that utilizes an optimal low rank approximation of all the simulated state vectors at the

s3 points in the design parameters space.

However, if the order n of the original parametric model (6.1) is very high and the

overall number of simulated state-vectors in the snapshots matrix X is high as well, then

the dimensions of the snapshots matrix X become very large. Consequently, applying

the POD approach for generating the projection matrix V that provides the best low

rank approximation of all the state-vectors in the snapshots matrix X becomes very

computationally expensive and possibly not doable.

The algorithm 4 presents a solution for the aforementioned problem by utilizing a two

steps strategy. In the first step, the POD approach is applied individually at each

of the s3 design points to find a projection matrix that provides an optimal low rank

approximation of the simulated state-vectors of (6.1) at the considered point. Then in

the second step, the POD approach is applied to find the final projection that provides an

optimal low rank approximation of the vectors of all the calculated projection matrices

from the first step.

Algorithm 4 Generating the global projection subspace

1: Initialize the group of all projection matrices with an empty matrix Vall = [ ].
2: for i ← 1, s3 do
3: Apply the POD approach to find a projection matrix Vi that provides an optimal

low rank approximation of all the simulated state-vectors of the model (6.1) at
the ith design point.

design i︷ ︸︸ ︷[
a1, . . . , as

]
≈

Vi︷ ︸︸ ︷[
v1,v2, . . . ,vqi

] design i︷ ︸︸ ︷[
ar1, . . . , ars

]
.

4: Add the vectors of the projection matrix Vi to the group of all projection matrices
Vall = [Vall,Vi],

5: end for
6: Apply the POD approach to find the final projection matrix V ∈ R

n×q that provides
an optimal low rank approximation of all the vectors in the group Vall.

The computational cost of the algorithms 4 is much lower than the one of the algorithm

3 in the cases where the parametric model (6.1) has a very large order n and the overall
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number of the simulated state-vectors is very large. However, its major disadvantage is

the very slow decay rate of the singular values when applying the POD to the matrix

Vall. This can be traced back to the fact that all the vectors that are contained in the

group Vall =
[
V1,V2, . . . , Vs3

]
have a norm equal to one, since they result from applying

a singular values decomposition to their corresponding state-vectors. Therefore, when

applying the second POD step to the matrix Vall, then all the vectors in Vall are almost

equally important. This makes the decay rate of the singular values very slow.

A solution to this problem is presented in the algorithm 5, in which each vector in the

local projection matrices Vi is scaled by its corresponding singular value before adding it

to the matrix Vall. Therefore, the importance of each vector in Vall with respect to the

approximation of its corresponding group of simulated state-vectors is preserved. Now,

when applying the second POD step to the matrix Vall, the singular values decay much

faster than the case of the algorithm 4. Moreover, the vectors of the final projection

matrix V generated using this algorithm are very similar results to the that are generated

using the algorithm 3, as it will be shown in the following numerical example.

Algorithm 5 Generating the global projection subspace

1: Initialize the group of all projection matrices with an empty matrix Vall = [ ].
2: for i ← 1, s3 do
3: Apply the POD approach to find a projection matrix Vi that provides an optimal

low rank approximation of all the simulated state-vectors of the model (6.1) at
the ith design point.

design i︷ ︸︸ ︷[
a1, . . . , as

]
≈

Vi︷ ︸︸ ︷[
v1,v2, . . . ,vqi

] design i︷ ︸︸ ︷[
ar1, . . . , ars

]
.

4: Scale each vector vj in the generated projection matrix Vi with its corresponding
singular value σj that results from the proper orthogonal decomposition.

5: Add the vectors of the matrix Vi after scaling them with their corresponding
singular values to the group of all projection matrices

Vall =
[
Vall,

Ṽi︷ ︸︸ ︷[
σ1v1, . . . , σqi

vq1

] ]
6: end for
7: Apply the POD approach to find the final projection matrix V ∈ R

n×qthat provides
an optimal low rank approximation of all the vectors in the group Vall.
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Finally, the matrix V that has been generated using one of the three presented algo-

rithms can be used to reduce the order of the sampled matrices and vectors in (6.3)(6.4)

from the order n to the order q � n, by projecting them onto the subspace spanned

by its columns according to the Galerkin projection that has been discussed in the

paragraph 3.1.1.

s3∑
k=1

γk(p)Crkȧr +
s3∑

k=1

γk(p)
s1∑

i=1

αi(ar)[grk,i
+ Lrk,i

ar]

+

s3∑
k=1

γk(p)

s2∑
j=1

βj(x)KBEM
rk,j

ar =

s3∑
k=1

γk(p)rrk
i (6.5)

fmag = aT
r

[
s3∑

k=1

γk(p)
s2∑

j=1

βj(x)Rrk,j

]
ar (6.6)

6.5 Numerical Example

In this paragraph, a parametric reduced order model of the electromagnetic valve pre-

sented in the paragraph 5.3.3 is generated. Three geometrical design parameters are

varied in the full order nonlinear model (6.1), namely the radius of the moving anchor

p1 , its thickness p2, and the position of the coil along the x-axis p3.

(a) p1min (b) p1max (c) p2min (d) p2max (e) p3min (f) p3max

Figure 6.1: The figures (a)-(f) illustrate six different geometries of the electromagnetic
valve. The geometries are generated by setting one of the three design parameter to its
minimum or maximum value.
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The two parameters p1, p2 have a direct influence on the anchor mass in the equation

(6.2) as it can be clearly seen in Fig. 6.1. The dependency of the anchor’s mass on

its radius and thickness in (6.2) is calculated in this example using simple geometrical

relations.

In the three dimensional design parameter space p ∈ R
3, a total number of s3 = 125 sam-

pling points are chosen as training points for the model (6.3) (6.4). The training points

are uniformly distributed in the parameter space p ∈ R
3 using a five-levels full factorial

design of experiment DoE scheme [17]. All the s3 sampled designs were simulated using

the same excitation signal, the same size of the simulation time step Δt = 5μs, and the

same number of simulation steps s = 700. The aforementioned settings have been used

later on for simulating the reduced order models as well.

At each of the s3 = 125 designs, the nonlinear model (6.1) is linearized at a number of

linearization points that are determined using the selection algorithm 1 with τ1 = 0.02.

The number of required linearization points was between 55-75 points per design point.

The position dependent matrices KBEM(x), R(x) were extracted at s2 = 20 uniformly

distributed positions within the movement range [0, 400]μm. This has resulted in a total

number of 20 × 125 = 2500 distinguished position dependant matrices KBEM(x), R(x).

Finally, three different projection matrices V1,V2,V3 are are generated using the al-

gorithms 3, 5, and 5 respectively. Each of the three matrices is theoretically expected

to provide an optimal low rank approximation of all the 125 × 700 = 87500 simulated

state-vectors. We remind at this point that the order of the nonlinear model (6.1) in

this example is n = 629.

Three distinguished parametric reduced order models (6.5)(6.6) of order n = 50 are

generated by projecting the parametric high order approximation model (6.3), (6.4) of

order n = 629 on the subspaces spanned by the columns of the matrices V1,V2,V3

respectively.

In the next step, the three reduced three reduced order models coupled weakly to the

mechanical equation (6.2) are used to perform a device simulation. The simulations are

carried out at the same s3 = 125 design points at which the three parametric models

(6.5)(6.6) were generated, and using the same voltage excitation signal that was used

for the model training. The simulation results in Fig. 6.3 have shown that the first and

the third parametric reduced order models whose order was reduced using the reduction
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algorithms 3 and 5 respectively produce an excellent matching to the results of the orig-

inal high order nonlinear model (6.1). Moreover, it can be clearly seen in the Fig. 6.2

that the magnetic vector potential field that corresponds to vectors of the matrices V1

and V3 are almost identical. This indicates that the algorithm 3 and algorithm 5 build

almost identical projection matrices. However, the algorithm 5 has a major advantage

in comparison to the algorithm 3 in its required computational effort when both the

order of the parametric model and the number of simulated state-vector are very large.

(a) First six vectors of the projection matrix V generated using the algorithm 3

(b) First six vectors of the projection matrix V generated using the algorithm 4

(c) First six vectors of the projection matrix V generated using the algorithm 5

Figure 6.2: The figures (a), (b), and (c) illustrate the magnetic vector potential field
that correspond to the first six vectors in the projection matrix V. The projection
matrix V is generated in the figures (a),(b),(c) according to the algorithms 3, 4, and 5
respectively.
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In contrast, the parametric reduced order model whose order was reduced using the

reduction algorithms 4 fails in approximating the behavior of the original high order

nonlinear model (6.1) as it is shown in Fig. 6.4. This indicate that its corresponding

projection matrix V2 does not produce an optimal approximation of the state-vectors of

the original high order parametric model (6.1). Moreover, the magnetic vector potential

field that corresponds to the vectors of the projection matrix V2 are very different to

their corresponding vectors of the matrices V1 and V3 in Fig.6.2. This proves that when

applying a two steps POD approach, it is essential to scale the generated vectors of the

local projection matrices with their corresponding singular values before applying the

second POD step, as we have proposed in the algorithm 5.

It is worth mentioning that in all the simulation runs, the simulation using the generated

parametric reduced order model (6.5), (6.6) took 30-40 times less simulation time than

the high order nonlinear model (6.1).

In the next step, the parametric reduced order model that is generated using the projec-

tion matrices V1 is simulated at several points in the design parameters space p ∈ R
3

that are different from the s3 = 125 training points. The simulation results in Fig. 6.5

show that the approximation accuracy of the reduced order model varies from a vali-

dation point to another. This is can be interpreted by the fact that in some regions of

the parameters space, the behavior of the modeled device is very sensitive to the change

in the values of design parameters. This implies that those critical regions have to be

sampled with a higher density of training points during the model generation. Moreover,

the device behavior can be more sensitive to the change in a certain design parameter

than others. This imposes again sampling such a parameter in finer steps during the

model generation.

It is clear that increasing the number of design points s3 in the parametric reduced

order model (6.5),(6.6) improves its approximation accuracy. However, doing this leads

to a significant increase in the required computational effort for the model generation

process. Therefore, a compromise has to be made between the desired model accuracy

and the corresponding computational costs for its generation.

Additionally, in most industrial applications, the regions of the design parameters space

in which the modeled electromagnetic device shows an optimal behavior – i.e. achieves

the expected design goals – are much more important to be accurately approximated
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Figure 6.3: Simulation results of the full order nonlinear model n = 629 coupled to
the mechanical equation (blue solid line) versus the ones of the parametric reduced
order model n = 50 coupled to the mechanical equation (green solid line) at different
training points in the parameters space. The result achieved using the algorithms 3 and
5 are almost identical, therefore, only the results achieved using the algorithm 3 are
illustrated.
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Figure 6.4: Simulation results of the full order nonlinear model n = 629 coupled to the
mechanical equation (blue solid line) versus the ones of the parametric reduced order
model n = 50 coupled to the mechanical equation (green solid line) at different training
points in the parameters space. The projection matrix that is used for reducing the
order of the parametric model is generated using the reduction algorithm 4.
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Figure 6.5: Simulation results of the full order nonlinear model coupled to the mechanical
equation n = 629 (blue solid line) versus the ones of the parametric reduced order model
n = 50 coupled to the mechanical equation (green solid line). The simulation are carried
out at design points in the parameters space that are different from the s3 = 125 training
points.
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using parametric reduced order models. Therefore, in the next paragraph, we propose

a new strategy for generating fast parametric reduced order models of electromagnetic

devices with a main focus on increasing the approximation accuracy of in the optimal

regions of the design parameters space.

6.6 Controlling the Generation of Parametric Re-

duced Order Models Using Multiobjective De-

sign Optimization Strategy

In this section, we propose a new strategy for controlling the generation of parametric

reduced order models using a multiobjective design optimization strategy. The aim of

the proposed strategy is to guarantee generating parametric reduced order models that

have high approximation accuracy in the regions of design parameters space in which

the modeled electromagnetic device achieves the best performance.

The proposed scheme starts with generating a parametric reduced order model (6.5),(6.6)

of the modeled device at a relatively low number s3 of training points in the design

parameters space. The latter model coupled to the mechanical equation (6.2) is used

for evaluating the design objective functions during the optimization process run. The

full order nonlinear EM field model coupled to the mechanical equation (6.2) is used

periodically for validating the best designs that have been found by the optimization

algorithm. If the validation shows a large deviation between the results of the full order

and the reduced order models, then the number s3 of training points in the parametric

reduced order model (6.5),(6.6) is expanded by the new design points at which large

deviations are detected.

In this way, the accuracy of the parametric reduced order model (6.5),(6.6) is increased

successively in the optimal regions of the design parameters space in which the modeled

design shows the best performance.

The aforementioned approach is summarized in the following algorithm:
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Algorithm 6 A strategy for controlling the generation of parametric reduced order
models using a multiobjective design optimization strategy

1: Sample the design parameters space p with an initial number s3 of design points
using one of the well known design of experiment DoE schemes [17].

2: Build a parametric reduced order model (6.5), (6.6) at the s3 sampled designs points.
3: for i ← 1, N do
4: Run the multiobjective optimization algorithm to optimize the p design parame-

ters, and evaluate the objective functions using the parametric reduced order EM
field model coupled to the mechanical equations (6.2).

5: After τ number of optimization iterations, use the original high order nonlinear
model (6.1) coupled to (6.2) to validate the best designs found by the optimization
algorithm.

6: In case of large deviation between the high order and reduced order models, expand
the parametric reduced order EM field model by adding new design points p at
which the validation error is found to be larger than the user defined error bound.

7: end for

6.7 Numerical Example

In this section, the strategy for generating parametric reduced order models using a mul-

tiobjective design optimization is applied to the example of an electromagnetic valve.

Five parameters where varied during the optimization process, namely the thickness of

the anchor p1, the position of the coil along the x-axis p2, the number of windings in the

excitation coil p3, the stiffness of the mechanical spring p4, and the pre-tension force of

the mechanical spring p5. The resistance of the excitation coil Rcoil is dependent on the

number of windings p3.

Two objective functions were to be minimized, the total time needed for opening and

closing the valve using a given voltage excitation signal, and the total Ohmic losses in

the excitation coil during an opening-closing cycle J = Rcoil(p)
∫ T

0
i2(t)dt.

All the simulation runs in this example are carried out using the same voltage excitation

signal, the same size of the simulation time step Δt = 5μs, and the same number of

simulation steps 450.

Two design optimization runs were carried out using the ε-MOEA multiobjective opti-

mization algorithm [18]. In the first run, the design objective functions were evaluated

using the full order nonlinear EM field model (6.1) coupled to the mechanical equation
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(6.2). After 8 hours run time, during which 350 designs were evaluated, the optimization

algorithm succeeded in finding 5 designs near to the Pareto optimal front, however the

latter designs did not cover more than 25% of the length of the Pareto optimal front. It

took almost 34 hours and 2250 design evaluations to detect the whole Pareto optimal

front that is shown in Fig. 6.6.
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Figure 6.6: Optimization results using the full order nonlinear model coupled to the
mechanical equation versus the results found using the proposed optimization strategy.

Alternatively in the second run, 3 hours were required for generating the parametric

reduced order model (6.3),(6.4) of order n = 50 at s3 = 27 design points. The generated

reduced order model coupled to the mechanical equation (6.2) was used for evaluating

the design objective functions. It took 4 hours to: evaluate 650 designs, validate 29

designs using the full order model (6.1) coupled to the mechanical equation, and to

append all the 29 validated designs to the model (6.5),(6.6) according to the algorithm

6. The number of iterations at which the optimization results were validated using the

full order model coupled to the mechanical equation is set to τ = 100.

It can be clearly seen in Fig. 6.6 that the proposed optimization strategy succeeded

in detecting 12 designs that cover almost 70% of the regions near to the true Pareto

optimal front. This was achieved in a shorter time (7 hours in total), and using far less
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number of design evaluations of the full order model (46 evaluations) compared to the

first optimization run.

It should be stressed at this point that the main aim of the proposed strategy to generate

fast parametric reduced order models that are specially accurate in the optimal regions

of the design parameters space. Such models can be efficiently used for simulating and

optimizing the design of the overlying complex systems. However, if the aim is only to

perform a design optimization of the modeled device, and not to generate a parametric

reduced order device model, then this strategy is not necessarily faster than performing

a design optimization using the original model (6.1) coupled to the mechanical equa-

tion (6.2). This is due to the fact that generating parametric reduced order models of

electromagnetic devices can be, in some cases, very computationally expensive.
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Chapter 7

COUPLING THE REDUCED ORDER

MODELS TO EXTERNAL NONLINEAR

CIRCUITS

7.1 Overview

Power electronics circuits are widely used in many industrial applications to drive and

control electromagnetic devices. The computer based simulation of such devices requires

modeling the behavior of electromagnetic field in the considered devices, together with

the behavior of their corresponding power electronic driving circuits. The coupling be-

tween the electric equations describing power electronic circuits and the equations of

the electromagnetic field model increases the computational costs of the overall circuit-

device simulation. This increase becomes more significant in the cases where power

electronic circuits contain components having nonlinear characteristics such as diodes,

transistors, etc.

In this chapter, we extend our proposed method to generate reduced order models of

moving nonlinear electromagnetic devices including their driving power electronic cir-

cuits. The accuracy of the generated reduced order device-circuit models is demonstrated

using an example of a rotating electrical machine coupled to a power electronics circuit.



114 Chapter 7: Coupling the Reduced Order Models to External Nonlinear Circuits

7.2 The Coupled Electric Machine-Rectifier System

In this section, we address the modeling of an electromagnetic device including its driving

power electronic circuit. For this purpose, we consider the example of an automotive

alternator, which consists of a rotating electrical machine coupled to a power electronics

rectifier. Alternators exist almost in all conventional vehicles, they are mainly used to

charge the vehicle’s battery. An alternator can be divided in two main subsystems: the

electrical machine, and the power electronics rectifier circuit. The rotor of the electrical

machine is mechanically coupled to the rotating shaft of the main combustion engine.

Therefore, the rotation engine shaft causes the rotation of the rotor of the electrical

machine. The power electronics rectifier circuit converts the three phases alternating

current at the terminals of the machine to a direct current. The latter current is used

to charge the car battery as it is shown in Fig. 7.1.

R
i3

R

i1

R

i2

Rd Rd Rd

Rd Rd Rd

D1 D3 D5

D2 D4 D6

Battery

il2

il3

il1up2
up1

up3

Iout

Figure 7.1: An electric diagram showing a three phases electric machine coupled to a
three phases rectifier circuit.
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7.3 The Rectifier Circuit Model

The rectifier circuit can be modeled using different approaches having different accuracy-

complexity levels. However, the detailed modeling of the rectifier is out of the scope

of this work, since the presented method can be applied any rectifier model. A simple

approach for modeling the electric behavior of the rectifier is to switch between several

simple analytical models that are derived at the different operation states of the recti-

fier. Each operation state is identified by a unique combination of diodes that are in

conduction state.

In most of automotive alternators, the six distinguished operational states shown in the

Table 7.1 can be identified:

Rectifier Operation State Conducting diodes Condition

1 D1, D3, D6 il1 > 0, il2 > 0, il3 < 0
2 D1, D4, D6 il1 > 0, il2 < 0, il3 < 0
3 D1, D4, D5 il1 > 0, il2 < 0, il3 > 0
4 D2, D4, D5 il1 < 0, il2 < 0, il3 > 0
5 D2, D3, D5 il1 < 0, il2 > 0, il3 > 0
6 D2, D3, D6 il1 < 0, il2 > 0, il3 < 0

Table 7.1: A table illustrating the six distinguished operation states of a three phase
full bridge rectifier connected to an automotive alternator

where the currents il1 , il2 , il3 are called the line currents and are calculated directly

from the currents i1, i2, i3 that are flowing the in the stator coils of the E-machine by

il1 = i1 − i2 , il1 = i2 − i3 , il1 = i3 − i1 as it is shown in the circuit in Fig. 7.1.

In each of the six operation states in the Table 7.1, the rectifier can be modeled by

applying Kirchhoff’s second law (loops rule) to the electric machine-rectifier circuit in

Fig. 7.1. This results in the following equation systems in each of the six operation

state:
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⎢⎢⎣

u1p

u2p

u3p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−2Rd Rd Rd

Rd −2Rd Rd

Rd Rd −2Rd

⎤
⎥⎥⎦
⎡
⎢⎢⎣

i1

i2

i3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−ud (i1 − i2) − ud (i3 − i1)

+ud (i1 − i2) + ud (i2 − i3)

−ud (i2 − i3) + ud (i3 − i1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

−ub

+ub

0

⎤
⎥⎥⎦

(7.2)
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Rectifier model at the operation state 4 :⎡
⎢⎢⎣

u1p

u2p

u3p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−2Rd Rd Rd

Rd −2Rd Rd

Rd Rd −2Rd

⎤
⎥⎥⎦
⎡
⎢⎢⎣

i1

i2

i3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

+ud (i1 − i2) + ud (i3 − i1)

−ud (i1 − i2) + ud (i2 − i3)

−ud (i2 − i3) − ud (i3 − i1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

+ub

0

−ub

⎤
⎥⎥⎦

(7.4)
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Rectifier model at the operation state 6 :⎡
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where ub is the voltage of the car battery. The voltage drop across a conducting diode

is divided into a linear part represented by the resistance Rd and a nonlinear part

represented by the nonlinear relation (7.7) which is graphically illustrated in the Fig.

7.2:

ud(id) = nut log

(
id
is

+ 1

)
(7.7)

The parameters n, ut, is are the characteristic parameter of a diode, with n being the

emission coefficient, ut the thermal voltage, and is the reverse bias saturation current of

the considered diode.
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Figure 7.2: A typical nonlinear characteristic curve of a diode.

After deriving the rectifier models in its six operational states, the rectifier can be molded

in its overall operation range by switching among the six models (7.1)-(7.6) during the

simulation run. The switching criteria are the values of the line currents il1 , il2 , il3 as it
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is shown in the Table 7.1.

It is clear in Fig. 7.1 that the voltages up1, up2, up3 at the terminals of the stator coils

do not depend only on the state of the rectifier, but they depend as well on the state of

electromagnetic field in the E-machine. Therefore, the voltages up1, up2, up3 couple the

electromagnetic field model of the E-machine to the electric model of the three phase

rectifier.

7.4 Electromagnetic Field Model in the E-Machine

Several types of electrical machines can be used in automotive alternators, such as

the electrically excited machines, or the permanent magnets excited machines, etc. In

this example, the permanent magnets excited synchronous machine (PSM) is chosen.

However, the approach presented in here can be applied straight forward to other types

of electrical machine .

The geometry of the chosen machine is shown in Fig. 7.3.(a). The rotor of the machine

contains 12 engraved permanent magnets that serves as a source of electromagnetic field

excitation. The rotor is mechanically coupled to the shaft of the combustion engine,

therefore, its rotates during the vehicle run and produces a time varying electromagnetic

field. The latter field induces an electric voltage in the three coils in the stator. The

value of the induced voltages and currents in the stator coils depends on the state of

magnetic field in the machine and on the state of the rectifier as has been discussed in

the previous chapter.

The behavior of electromagnetic field in the PSM machine is modeled using the BEM-

FEM method. This produced a nonlinear system of differential algebraic equations

(2.13). By eliminating the algebraic equations form the model (2.13) according to (2.30),

the machine model has become a large scale system of nonlinear differential equations

of the form (7.8):
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(a) (b)

Figure 7.3: A 2D model of a permanent magnets excited synchronous machine.

Cȧ +
[
K(a) + KBEM(φ)

]
a = b1i1 + b2i2 + b3i3 + ppm (7.8)

where φ ∈ [0 − 360] is the angular position of the rotor. The vectors b1,b3,b3 describe

respectively the distribution of current density in the three stator coils. The term

ppm is a constant vector describing the contribution of the permanent magnets to the

electromagnetic field excitation.

The induced voltages at the terminals of the stator coils up1, up2 , up3 can be calculated

according to (2.24) as: ⎧⎪⎪⎨
⎪⎪⎩

up1 = Ri1 + bT
1 ȧ

up2 = Ri2 + bT
2 ȧ

up3 = Ri3 + bT
3 ȧ

(7.9)

where R is the Ohmic resistance of a stator coil.

Finally the induced electromagnetic torque on the surface of the rotor τmag can be

calculated by:

τmag = aTS(φ)a (7.10)
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7.5 Solving the Coupled Electromagnetic Field- Elec-

tric Circuit Model

In the electromagnetic field model (7.8), the unknown variables are the state variables

of electromagnetic field a ∈ R
n and the values of the three excitation current signals

i1, i2, i3 that are flowing in the stator coils. The values of currents i1, i2, i3 can be

only determined when solving the equations of the electromagnetic field model (7.8)

simultaneously with the corresponding equations of the rectifier model (7.1)-(7.6) in

each simulation time step. However, both of the aforementioned equation systems are

nonlinear with respect to their unknown variables, therefore, their simultaneous solution

imposes using iterative solving strategies. Such strategies update the values of the state-

vector of electromagnetic field a ∈ R
n and the values of the currents i1, i2, i3 iteratively,

until the values of the voltages up1, up2, up3 that results from the rectifier equation (7.1)-

(7.6) and the EM filed equations (7.9) become equal in each simulation time step.

The aforementioned iterative strategies imposes solving the equations of the high order

EM field model (7.8) for each updated values of the currents i1, i2, i3, which increases the

computational cost of simulating the machine-rectifier system significantly in comparison

to simulating the machine alone.

7.6 Generating a Reduced Order Model for the Cou-

pled E-machine-Rectifier System

The high computational cost of solving the equations of the EM field model (7.8) simul-

taneously with the rectifier equations (7.1)-(7.6) can be remarkably reduced. This can

be done by approximating the high order nonlinear electromagnetic field model (7.8)

by a fast reduced order model, while guaranteeing that the reduced order model is still

able to approximate the high order model (7.8) accurately in the relevant regions of the

state-space.

The reduced order model of the electromagnetic field in the E-machine can be generated

using the scheme presented in the chapter 5. The resulting model of order q � n is
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given by:

Crȧr +
s1∑

i=1

αi(ar)[gri + Lriar] +
s2∑

j=1

βj(φ)KBEM
rj ar = br1i1 + br2i2 + br3i3 + prpm

(7.11)

⎧⎪⎪⎨
⎪⎪⎩

up1 = Ri1 + bT
r1ȧr

up2 = Ri2 + bT
r2ȧr

up3 = Ri3 + bT
r3ȧr

(7.12)

τmag = aT
r

[
s2∑

j=1

βj(φ)Srj

]
ar (7.13)

such that the weighting coefficients are calculated from the following weighting functions:

(α1, . . . , αs1) =α
(
ar, {ar1, . . .ars1}

)
(7.14)

(β1, . . . , βs2) =β
(
φ, {φ1, . . . φs2}

)
(7.15)

s1∑
i=1

αi = 1

s2∑
j=1

βj = 1

where a = Var, a ∈ R
n, ar ∈ R

q, and q � n.

The matrices and vectors of the reduced order model are given by:

Cr = VTCV, Lri = VTLiV, KBEM
rj = VTKBEM

j V, gri = VTgi, br1 = VTb1,

br2 = VTb2, br3 = VTb3, Rrj = VTRjV.

The generated reduced order model (7.11) is able to approximate the original model

along and in the neighboring regions of the training trajectories. Therefore, the latter

trajectories should be generated using coupled machine-rectifier simulation runs.

The projection matrix V ∈ R
n×q is generated using the proper orthogonal decomposition

POD. The snapshots matrix of the POD approach is generated by assembling all the

state-vectors of the high order nonlinear model (7.8) that have resulted from the coupled

machine-rectifier simulation.
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The reduced order model (7.11),(7.12) enables solving the EM field equations coupled

to the rectifier equations (7.1)-(7.1) within a significantly shorter time than the case of

using the original high order model.

7.7 Numerical Example

This example addresses the issue of generating a fast and accurate reduced order model

of an automotive alternator, with a special focus on considering the strong coupling

between the E-machine model and the rectifier circuit model.

In the first step, the electrical machine shown in Fig. 7.3 is modeled using the BEM-

FEM method. This produced a nonlinear system of differential algebraic equations

(2.13) of order n = 22548. By eliminating the algebraic equations form the model

(2.13) according to (2.30), the machine model becomes a large scale system of nonlinear

differential equations of order n = 19716 of the form (7.8).

The high order EM field model (7.8) coupled to the rectifier model (7.1)-(7.6) is used for

generating three distinguished training trajectories. Those trajectories were generated

at three distinguished angular velocities w of the rotor, namely w = 1200 revolutions per

minute (rpm) , w = 1800 rpm, w = 3000 rpm respectively. The angular velocity of the

rotor is assumed, without the loss of generality, to be constant during each simulation

run. Under this assumption, the angular position of the rotor is given by:

φ =

(
360

60

)
wt + φ0 (7.16)

where φ0 is the initial position of the rotor at the beginning of the simulation, its value

is set in this example to zero φ0 = 0.

The simulation time step is chosen in all the performed simulation runs to be equal to

Δt = 0.5/w, in such a way that rotor rotates 0.5 degrees in each simulation step.

The position dependant matrices KBEM(φ), S(φ) are extracted at s2 = 720 angular

positions that are uniformly distributed in the range φ ∈ [0, 360[.

Our proposed selection algorithm 1 has been applied for the selection of linearization

points along the training trajectories. The algorithm 1 has selected a number of 180

linearization points in the range φ ∈ [0, 90[ along each training trajectory. The latter
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selection was unchanged even upon varying the value of the selection parameter τ1 in the

rage [0.1, 1]. This can be traced back to the symmetry in the geometry of the electrical

machine. This symmetry causes the repetition of same electromagnetic field distribution

after a period of 90 degrees if the angular velocity remains constant. This shows that

the algorithm 1 selects only distinguished linearized models.

The nonlinear term K(a)a in (7.8) is linearized at the s1 = 3 × 180 = 540 selected

linearization points along the three training trajectories.

All the simulated state-vectors of the high order electromagnetic field model (7.8) on the

training trajectories are assembled in the snapshots matrix. Then, the proper orthogonal

decomposition POD approach is applied to find a projection matrix V ∈ R
19716×70 which

provides the best low rank approximation of all the state-vectors that are contained in

the snapshots matrix. The magnetic vector potential field that corresponds to the first

ten vectors in the projection matrix V ∈ R
19716×70 are shown in Fig. 7.4.

Figure 7.4: The ten figures illustrate respectively the magnetic vector potential field
that correspond to the first ten vectors in the projection matrix V.

A reduced order model of the electric machine (7.11), (7.12), (7.13) of order q = 70 is

generated. The reduction is carried out by projecting all the extracted matrices and

vectors onto the subspace spanned by the columns of the matrix V, as has been shown

in the previous paragraphs.



124 Chapter 7: Coupling the Reduced Order Models to External Nonlinear Circuits

0
15
30
45
60

−15
−30
−45
−60
−75

30 60 90

Rotor Angle
[degree]

C
oi

ls
C

ur
re

nt
s

[A
] �

3000 rpm

�
1200 rpm

�1800 rpm

0
5

10
15

−5
−10
−15

30 60 90

Rotor Angle
[degree]

C
oi

ls
V
ol

ta
ge

s
[V

]

0

2.5

5.0

7.5

0 30 60 90

Rotor Angle
[degree]

E
le

ct
ro

m
ag

ne
ti

c
T
or

qu
e

[N
m

]

�1800 rpm
�1200 rpm
�3000 rpm

Figure 7.5: Simulating an automotive alternator using a high order nonlinear machine
model n = 19716 coupled to the rectifier circuit model (blue lines) vs. using a reduced
order machine model n = 70 coupled to the rectifier circuit model (green lines).

The simulation results in Fig. 7.5 shows that the reduced order model (7.11)-(7.13) of

order n = 70 coupled to the rectifier model (7.1)-(7.6) produces an excellent approx-

imation of the results of the original nonlinear model (7.8)-(7.10) of order n = 19716

coupled to the same rectifier model (7.1)-(7.6).

The same comparison is carried out at two further angular velocities w = 10000 rpm,

2500 rpm whose trajectories were not included in the training trajectories of the reduced

order EM field model (7.11). The simulation results shown in Fig. 7.6 show a very good
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matching between the results achieved using the full order model (7.8) and the ones

achieved using the reduced order model (7.11) for the angular velocity w = 2500 rpm.
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Figure 7.6: Simulating an automotive alternator using a high order nonlinear machine
model n = 19716 coupled to the rectifier circuit model (blue lines) vs. using a reduced
order machine model n = 70 coupled to the rectifier circuit model (green lines).

A larger approximation error can be noticed for the simulation at w = 10000 rpm. This

is due to the fact that the nonlinear behavior of electromagnetic field in the electrical

machine at this angular velocity is unknown to the reduced order model (7.11). However,

this approximation error can be easily alleviated by linearizing the nonlinear term K(a)a
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at new linearization points along the simulation trajectory w = 10000 rpm, and adding

the new linearized models after reducing their order to the reduced order EM field model

(7.11).

The CPU time required for solving the electromagnetic field equation coupled to the

rectifier equations using both the full order EM field model and the reduced order one

are illustrated in Table 7.2. The results show that the reduced order E-machine-rectifier

model is almost 1000 times faster than the full order coupled model.

Simulation Time (sec)

Angular Full Order EM Field Model Reduced Order EM Field Model
Velocity (rpm) Coupled to the Rectifier Model Coupled to the Rectifier Model

n = 19716 n = 70

1200 4140 4.75
1800 4015 4.43
3000 4072 4.48
10000 4201 4.67
2500 4101 4.53

Table 7.2: Simulation time: full order nonlinear EM field model coupled to the rectifier
model versus the reduced order EM field model coupled to the rectifier model

The simulation results presented in this chapter show that the proposed reduced order

model of electromagnetic field can be efficiently applied in the reduced order modeling

of electromagnetic devices including their power electronics driving circuits.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this work, a new method for generating reduced order models of electromagnetic de-

vices that contain moving components and materials with nonlinear magnetic properties

is presented. The new method enables applying model order reduction techniques to

generate fast and accurate reduced order models of a large class of electromagnetic de-

vices. Such devices include among others rotating electrical machines, electromagnetic

valves, and electromechanical relays.

The nonlinearity in the high order electromagnetic field model that is caused by the

nonlinear properties of magnetic materials is approximated using the trajectory piece-

wise linear TPWL approach. The movement of the device components is modeled using

a novel approach that couples the reduced order electromagnetic field model to the me-

chanical equations, in such a way that the reduced order EM field model is adapted in

each simulation time step according to the new components positions. The order reduc-

tion is carried out by approximating the original electromagnetic field distributions by

a linear combination of few virtual EM field distributions, which are found using the

proper orthogonal decomposition POD.

Then, the challenge of determining the number and the positions of the linearization

points in the TPWL model is tackled. This is done by introducing a new selection algo-

rithm that observes the changes in the device materials properties during the simulation,

and accepts a new linearization point only if the magnetic properties of materials at this

point is distinguished from all the other linearization points.

The presented method is extended to generate parametric reduced order models of mov-

ing nonlinear EM devices. Moreover, several algorithms for generating the reduction
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subspace for the parametric models are introduced and compared. The issue of select-

ing the positions of the training points of the parametric reduced order model in the

design parameters space is addressed, and a novel scheme based on a multiobjective

optimization strategy is proposed.

Finally, an approach for generating reduced order models of electromagnetic devices

including their power electronics driving circuits is presented. The performance of this

approach is demonstrated on the example of a rotating electrical machine coupled to a

rectifier circuit.

In the future research, it would be of high interest to develop computationally efficient

methods for reducing the order of large scale systems of differential algebraic equations,

since eliminating the algebraic variables from the system model, which is the approach

followed in this work, can be very computationally expensive if the number of the alge-

braic equations is large.

Moreover, the choice of weighting functions in the TPWL models and in the paramet-

ric reduced order models would be a very interesting research field. Since developing

optimal weighting functions could enable reducing the number of required linearization

points in the TPWL models, or reducing the number of required training points in the

design parameters space for the parametric reduced order models.

Apart from that, it would be interesting to extend the application of the proposed al-

gorithm for selecting the linearization points in the TPWL model from electromagnetic

modeling domain to other physical modeling domains, such as thermodynamics and

fluid dynamics. In this case, the change in the relevant material properties, such as the

thermal conductivity in thermodynamics or viscosity in fluid dynamics, can be observed

and exploited as a base for selecting the linearization points.
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