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my “Doktorvater”, Dr.-Ing. Kolja Kühnlenz, who always supported me with his immense

experience and invaluable advice, took the time for all my questions, and made me believe

in myself. I sincerely thank Prof. Dr.-Ing./Univ. Tokio Martin Buss, who gave me the op-

portunity to conduct research in an inspiring working environment, for his encouragement

and trust.

I would like to thank Prof. Alexander Borst from the Max-Planck-Institute of Neurobiol-

ogy in Martinsried for his guidance in neurobiology and valuable discussions. I would also

like to thank all the students who contributed to this thesis: Markus Achtelik, Wolfgang

Bremer, Martin Gradzki, Ye Kang, Wei Li, Xiaodong Liu, Andereas Plafka, Haiyan Wu,

Lei Ying, Lei Zhang, and Ke Zou for their extraordinary assistance and efforts. Special

thanks go to my office colleague Micheal Scheint for his friendship and encouragement, his

patience with my difficultly understandable German, and helping me know more about

Germany and Munich. Great thanks also go to the other ACE team members – Andrea

Bauer, Klaas Klasing, Georgios Lidoris, Quirin Mühlbauer, Florian Rohrmüller, Stefan
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Abstract

The development of unmanned aerial vehicles has in recent years become a focus of active

research, since they can extend the operating capability in a variety of areas such as

military, industrial, and civilian domains. This work aims to establish a heterogeneous air-

ground multi-robot system consisting of a vision-guided quadrotor and a mobile ground

robot in order to study various aspects of a flying system.

Quadrotors have advantages such as a simple and robust mechanism as well as holonomic

dynamics, which, however, exhibit challenging motion estimation and flight control prob-

lems. Technological approaches for accurate and high-frequency pose/motion estimation

as well as stable and effective control for the quadrotor and bio-inspired vision strategies

for flight control are studied in this thesis.

To achieve highly accurate and high-frequency pose/motion estimation which serves

as a precondition for high-performance control, a continuous-discrete extended Kalman

filter is applied for multi-sensor multi-rate fusion of visual and inertial information, con-

sidering thorough data synchronization. Thereby, switching between marker-based pose

estimation and optical-flow-based motion estimation is conducted for different quadrotor

positions. Moreover, based on the careful adaptation of various controllers, an integrated

nonlinear control design combining integral backstepping and sliding mode controllers is

accomplished for a complete flight scenario consisting of take-off, hovering, tracking, and

landing on the moving ground robot. Sensor data processing and control algorithms are

completely integrated on-board. Furthermore, insect-inspired qualitative motion detection

is extended and implemented on a high-performance FPGA platform, while the quan-

titative motion estimation is proposed and extensively investigated taking flight control

performance into account. The substantial advantages of this work are a novel system con-

figuration, significant improvements in quadrotor pose/motion estimation in terms of high

accuracy and high sample rate, enhanced control performance in relation to effectiveness

and integrity, as well as advanced exploration in insect-inspired flight control. One of the

first autonomous quadrotors only using on-board sensors comprising a monocular camera

and IMUs is developed and its performance is extensively evaluated in simulations and

real-time experiments.

The contributions significantly advance the state of the art in motion estimation and

control of a vision-guided autonomous flying system and serve as a signpost for future

research.
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Zusammenfassung

Die Entwicklung von unbemannten Luftfahrzeugen ist ein wichtiger Schwerpunkt der ak-

tuellen Forschung geworden, weil sie die Fähigkeiten der Menschen in vielen Bereichen wie

dem Militär, der Industrie und dem Zivilleben erweitern können. Diese Arbeit befasst sich

mit der Entwicklung eines heterogenen Luft-Boden Multi-Roboter-Systems bestehend aus

einem sichtgeführten Quadrocopter und einem mobilen radbasierten Roboter.

Ein Quadrocopter besitzt eine einfache und robuste Mechanik sowie eine holonome Dy-

namik, welche dennoch eine anspruchsvolle Bewegungsschätzung und Flugregelung erfor-

dert. In dieser Arbeit werden technische Ansätze für eine genaue und hochfrequente Lage-

und Bewegungsschätzung, eine stabile und effektive Regelung sowie biologisch inspirierte

bildbasierte Strategien zur Flugregelung entwickelt.

Um eine hochgenaue und hochfrequente Lage- und Bewegungsschätzung des Quadro-

copters zu erzielen, welche eine Voraussetzung für hohe Regelgüte darstellt, wird ein

kontinuierlich-diskreter erweiterter Kalman-Filter verwendet, der visuelle und inertiale

Daten mit verschiedenen Abtastraten fusioniert. Dazu wird eine sorgfältige Datensyn-

chronisierung durchgeführt. Die auf Markern basierende Lageschätzung und die auf op-

tischem Fluss basierende Bewegungsschätzung werden abhängig von der Position des Qua-

drocopter schaltend kombiniert. Auf der Grundlage einer sorgfältigen Anpassung unter-

schiedlicher Regler wird ein integrierter nichtlinearer Reglerentwurf, der einen Integral-

Backstepping-Regler und einen Sliding-Mode-Regler kombiniert, für ein vollständiges Sze-

nario vorgeschlagen, das Abheben, Schweben, Verfolgen und Landen des Quadrocopters

beinhaltet. Sensordatenverarbeitung und Reglungsalgorithmen sind komplett on-board in-

tegriert. Darüber hinaus wird eine von Insekten inspirierte qualitative Bewegungsdetektion

erweitert und auf einer leistungsfähigen FPGA Plattform umgesetzt, während die quan-

titative Bewegungsschätzung präsentiert und unter der Berücksichtigung der Regelgüte

ausführlich untersucht wird. Die wesentlichen Beiträge dieser Arbeit sind Methoden zur

multisensorischen Bewegungsschätzung, Lageregelung, biologisch inspirierte Ansätze zur

bildbasierten Geschwindigkeitsmessung und Kollisionsvermeidung auf Basis von insekten-

artigem Sehen sowie die Systemintegration. Hierdurch wird eine signifikante Verbesserung

der Schätz- und Regelgüte des Quadrocopters in Bezug auf Genauigkeit und Frequenz so-

wie eine Verringerung des Rechenaufwands durch biologisch motivierte Modelle erreicht.

Die Leistungsfähigkeit des autonomen Quadrocopters wird in zahlreichen Simulationen

und Echtzeit-Experimenten evaluiert.

Die Beiträge erweitern den Stand der Technik in der Bewegungsschätzung und der

Regelung von bildbasierten autonomen Flugsystemen und dienen als Wegweiser für die

zukünftige Forschung.
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1 Introduction

The development of Unmanned Aerial Vehicles (UAVs) has in recent years become a focus

of active research, since they can extend the operating capability in a variety of areas such

as military, industrial, and civilian domains. Above all, Micro Air Vehicles (MAVs) have

gained a great interest in the robotics domain because of their small size and possible

applications in indoor, complex, everyday environments. In order to study various aspects

of a flying system, a quadrotor is chosen as the platform used in this work due to its

robust mechanism and holonomic dynamics, which exhibit challenging motion estimation

and control problems for autonomous flight.

Since vision is one of the most powerful tools for information acquisition and is widely

used in most biological organisms such as humans and animals for autonomous navigation,

vision-guided flight and navigation are considered able to overcome the aforementioned

challenges. Moreover, insect-vision-inspired neurobiological models in particular are ex-

pected in the further development of MAVs.

Fig. 1.1: An air-ground multi-robot system containing a mini-quadrotor and a mobile ground
robot with two active markers.

A heterogeneous air-ground multi-robot system is developed as a test-bed, containing

a quadrotor and a wheeled ground robot (see Fig. 1.1). This thesis aims to establish a

1



1 Introduction

vision-guided flying system containing accurate pose/motion estimation as well as stable

and effective control, such that this vision-guided MAV can conduct a complete flight

scenario including take-off, hovering, tracking, and landing stably and safely with the

help of the ground robot. Furthermore, bio-inspired vision strategies for flight control are

investigated as an attractive alternative to traditional paradigms. The main challenges

faced in developing the envisioned flying system are summarized below.

1.1 Challenges

The important issues in developing an autonomous vision-guided flying system consist

of pose/motion estimation based on on-board sensors, control design of the non-linear

dynamic system, and performance improvement in terms of efficiency considering the lim-

itations of MAVs. The former two issues remain in the traditional design and control of a

flying system, while a biologically inspired technology is considered for the latter one. The

main challenges for an advanced exploration at those points considered in this thesis are

summarized in this section.

Accurate Pose/Motion Estimation without External Sensors

A significant and fundamental challenge in developing UAVs is to extract and fuse useful

information in a robust manner in order to achieve accurate and real-time pose/motion

estimation, which serves as a basis for a stable control design and effective navigation

performance. The control of UAVs relies on the knowledge of position, velocity, and

orientation. However, the drift of inertial sensors commonly equipped on UAVs leads to

errors during time-discrete integration, making steadily accurate estimation of the absolute

pose nearly impossible. Aiming at applications without using external sensors, such as

Global Positioning System (GPS) or external tracking systems, an on-board vision sensor

is selected to cooperate with the on-board Inertial Measurement Units (IMUs).

Compared to the IMUs, vision sensors have advantages such as accurate pose estimation

without propagating errors. However, due to the limited field of view and relatively low

sampling rate as well as relatively complex data processing, visual data are not sufficient for

pose/motion estimation of a highly dynamic flying system in which high-frequency noise,

vibrations, and disturbance occur. A high-frequency and accurate fusion of the IMU data

and vision information from an on-board monocular camera without any other additional

sensors is still missing. Moreover, to achieve autonomous behavior with less time delay

in an unlimited workspace, information processing – which is normally accomplished in a

ground station – should be conducted on-board.

Control Issues for an Under-Actuated System with Fast, Non-Linear

Dynamic Behavior

Although quadrotors have major advantages in robust mechanical design and holonomic

dynamics, stable and effective control is very demanding. First, a quadrotor is an under-

actuated system, which means that the number of its actuators is lower than its Degrees

2
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Of Freedom (DOFs). Theoretically, the control of such systems is more complex than

that of fully actuated systems. Moreover, the non-linear dynamic behavior makes stable

control and guidance of a quadrotor challenging due to highly unstable dynamics, high-

degree axes coupling, and nonlinear disturbance caused by linearization of the nonlinear

dynamics. Furthermore, the time delay strongly influences the control performance due

to the very fast dynamics of the quadrotor. In addition, a simplified control structure is

desired due to hardware limitations such as small payloads and limited on-board processing

power.

Moreover, for a complete flying behavior including take-off, hovering, tracking, and

landing on a mobile ground robot, the individual prerequisites and requirements of each

flight phase should be considered. An integrated control design is envisioned which has

only been partially investigated up to now in the literature.

Limited Payload and On-Board Computational Capacity During

Highly Dynamic Self-Motion

For all the MAVs, limitations such as small payloads and limited on-board computational

capacity are major problems. Moreover, the highly dynamic self-motion of MAVs also needs

a real-time response to the environment. Those challenges require efficient computation

and implementation of motion estimation and control algorithms. One possibility is turning

to biological models such as flying insects, e.g. Drosophila melanogaster and Calliphora

vicina, which possess photoreceptors with high temporal resolution which they use for

dynamic visuomotor pose and gaze stabilization, as well as navigation in 6 DOFs.

However, the transfer of neurobiological results to technical systems such as the quadro-

tor requires the adaptation of models to typical dominant and preferred system motion

and suitable hardware and implementation to ensure the effectiveness of the algorithms.

Moreover, the biologically inspired motion detection only provides a qualitative description

of motion, while 3D motion reconstruction and quantitative estimation are desired to serve

as motion feedbacks for technical systems to realize closed-loop control. How the qualita-

tive characteristics of biological modeling can be transferred into normally quantitatively

controlled technical systems remains an intriguing open question.

1.2 Main Contributions and Outline of the Thesis

In this thesis, various aspects of the development of an autonomous flying quadrotor facil-

itated by a mobile ground robot according to the aforementioned challenges are explored.

Fig. 1.2 illustrates the main contributions and the outline of this thesis. After the state of

the art is surveyed in Chapter 2, traditional quadrotor control problems are investigated

first. Chapters 3 and 4 solve the multi-sensory pose/motion estimation and control design

problems, respectively. In contrast, Chapter 5 explores the quadrotor motion estimation

and control problem from an insect-inspired perspective and brings new insights into the

development of flying systems.

3
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Fig. 1.2: Outline of the thesis.

Multi-Sensory Pose/Motion Estimation

One of the fundamental but challenging problems of flight control is accurate pose and

motion estimation of the aerial vehicle. To deal with the drift problem of on-board IMUs

and be able to acquire more information about the other agent – the mobile ground robot

– in the environment, a monocular camera facing downwards is installed on the quadrotor.

Vision sensors have, however, the disadvantages of limited field of view, low sampling rates,

and complex image processing, all of which are unfavorable for pose and motion estimation

of a highly dynamic system. In Chapter 3, which seeks to obtain accurate pose/motion

estimation of a highly dynamic quadrotor relying only on on-board sensors, a thoroughly

designed high-frequency fusion of the inertial data and the vision data is accomplished.

Based on multi-modal sensor information, a continuous-discrete Extended Kalman Filter

(EKF) is applied for the multi-sensory multi-rate data fusion, where the high-frequency

IMU data drive the process model and the low-rate vision data correct the estimation.

Data synchronization is completely conducted based on the accurately measured time

delay. Moreover, switching between marker-based pose estimation and optical-flow-based

motion estimation is implemented for different situations. Various real-time experiments

considering the quadrotor tracking the mobile ground robot show that 1) high accuracy and

high frequency of the pose/motion estimation in dynamic behaviors are obtained through

the multi-sensory multi-rate data fusion; 2) one of the first autonomous quadrotors based

on minimal on-board sensors and the complete integration of sensor data processing is

achieved.

Effective and Integrated Control Design for a Complete Flight

Scenario

Based on the accurate and high-frequency pose and motion estimation in Chapter 3, a sta-

ble and effective control design is investigated in Chapter 4. Quadrotors themselves exhibit

a challenging control problem due to non-linear, under-actuated, highly unstable dynam-

ics, time delay due to data processing, as well as the limited payload and computational
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capacity requiring a simple control structure. Up to now, most state-of-the art works have

only considered the control design in simulations, while the other standard works that con-

sider real system implementation use a much simplified system model in limited scenarios.

Chapter 4 aims at designing, implementing, and discussing adequate control structures for

the quadrotor, to overcome the aforementioned challenges and to improve the quadrotor

flying behavior in an integrated manner. The system model used here is more complex, in

order to preserve the original interdependency of system states. A Proportional-Integral-

Derivative (PID) controller, an optimal Linear Quadratic (LQ) controller, and non-linear

controllers such as backstepping-based controllers and sliding mode controllers are care-

fully adapted to the quadrotor system and discussed. Based on the simulation results, an

integrated control design is accomplished for quadrotor take-off, hovering, tracking, and

landing on the mobile ground robot and evaluated in real-time experiments. The main

contributions presented in Chapter 4 are 1) the adaptation, implementation, and real-time

evaluation of various control strategies based on a complex system model; 2) an integrated

control design considering controller combinations proposed and evaluated in the complete

flying scenario for the first time.

Insect-Inspired Motion Detection and Estimation for Flight Control

After Chapters 3 and 4 solve the flight control problems in a traditional manner, Chapter

5 focuses on insect-inspired motion detection and estimation as an efficient alternative

extension. The fundamental findings in biology and neuroscience show that insects have a

small but efficient and sensitive visual system for real-time flight stabilization and control.

This would provide an excellent solution for the development of MAV on-board vision,

which requires simple and fast computation due to limited payload, restricted compu-

tational capacity, and fast self-motion. In Chapter 5, the novel vision and visuomotor

behavior models inspired by biological paradigms are extended first, in order to adapt to

the typical dominant and preferred motion patterns of the quadrotor. Two new Recep-

tive Fields (RFs) for rotation detection are proposed. High-speed implementation using

compatible hardware – a Field Programmable Gate Array (FPGA) platform – is accom-

plished to obtain the effectiveness of the neurobiological algorithms. The performance of

the implementation is sufficient to deal with a video frame rate of 350 fps for a frame size

of 256× 256 pixels. The respective motion estimation is established using Look-Up Tables

(LUTs) and extensively explored considering the influences of specific parameters such as

perception difference between flies and cameras, lighting conditions, as well as the spatial

frequency and spectrum of input images. Closed-loop control and obstacle avoidance are

exploratively studied and show a promising possibility of fully controlling MAVs based on

insect-like vision in future work. The twofold contributions in Chapter 5 are: 1) extension

of efficient qualitative motion detection and its high-speed implementation on an FPGA

platform; 2) explorative investigation of quantitative motion estimation for flight control.

The novel system configuration, significant improvements in quadrotor pose/motion esti-

mation in terms of high accuracy and high frequency, enhanced control performance in

relation to effectiveness and integrity, as well as advanced exploration in insect-inspired

5



1 Introduction

flight control contribute to the establishment and further development of an efficiently

controlled vision-guided flying system. Evaluations and demonstrations are carried out in

various simulations and real-time experiments.
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To achieve effectively and efficiently controlled flight of a quadrotor, different aspects such

as accurate pose/motion estimation as well as a stable and effective control design should

be established. Both of them play an essential role in the whole system. Furthermore,

considering biological models for quadrotors with a small size and flexible dynamics, bio-

inspired vision guidance strategies are also envisioned to improve the system performance

or lower computational cost.

In this chapter, various flying platforms, above all, quadrotor helicopters, are introduced

in Section 2.1 first. Then, sensor configurations and algorithms for quadrotor pose/motion

estimation are reviewed in Section 2.2. After that, control strategies are surveyed in Section

2.3. In Section 2.4, biologically inspired further development of flying systems is described.

Finally, a summary discussing the current state of the art is given in Section 2.5.

2.1 Standard Quadrotor Platforms

Currently, Unmanned Aerial Vehicles (UAVs) are a major focus of active research, since

they can extend the operating capability in a variety of areas. Due to small sizes and

flexible dynamics, Micro Air Vehicles (MAVs) have also become a popular research field

in the robotics domain. Fig. 2.1 shows three different kinds of MAV platforms: the fixed-

wing, the rotary-wing, and the flapping-wing platforms. In this thesis, subjects considered

are restricted to one kind of MAV: quadrotor helicopters. Quadrotor platforms have been

developed both in the commercial domain and in the research domain, introduced in this

section.

EPFL AVInc.UMD

Fig. 2.1: Various MAV platforms. Left: a fixed-wing MAV – the microflyer from EPFL [130];
middle: a rotary-wing MAV from UMD [59]; right: a flapping-wing MAV – the
Microbat from AeroVironment [77].
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2.1.1 Commercial Platforms

Some well-known commercial quadrotor platforms with different characteristics are sum-

marized in Fig. 2.2.

a) b) c) d) e)

Fig. 2.2: Commercial quadrotor platforms (from left to right): a) Draganflyer X4 from Dra-
ganfly Innovations Inc. [5]; b) Hummingbird from Ascending Technologies GmbH
[3]; c) md4-200 from Microdrones GmbH [8]; d) Parrot AR Drones from Parrot [2];
e) Mikrokopter MikroKopter [6].

The Draganflyer X4 from Draganfly Innovations Inc. is one of the most commonly used

quadrotor platforms in industry, government, and research [42, 94, 123, 128] and has been

designed to carry wireless cameras via remote control [5]. The Hummingbird quadrotor

from Ascending Technologies GmbH is small, lightweight, and developed to work safely in

indoor environments [3], and used as the platform in this thesis and other research works

[25, 131]. Quadrotors from Microdrones GmbH [8] are made completely of carbon fiber

reinforced plastics, for low weight and high robustness. At 2010 International CES Exhibit,

the Parrot AR. Drone was exhibited. This platform is controlled via iPhoneTM or iPod

touch R© and can detect the user’s movements and provide the user with the camera view

on the screen in real time [2]. In addition, a self-construction project called MikroKopter

serves as a quadrotor fan community [6].

2.1.2 Research Projects

Various platforms have also been developed or modified at universities and institutes for

research and education. Some recent ones are given in Fig. 2.3.

A cm-scale rotorcraft called Mesicopter was developed at Stanford University which flies

on its own power and carries sensors for atmospheric research or planetary exploration [85].

In contrast, the X4-flyer, developed at the Australian National University [104, 105], is

much heavier than most existing experimental quadrotor platforms, weighing 4 kg with

a payload of 1 kg. In [20, 21], a commercially available Roswell Flyer or HMX-4 flyer

is used which is now discontinued in the market. A small quadrotor vehicle developed

at the Centre d’Energie Atomique (CEA) in France is used in [39, 61, 62] for visual servo

systems and is capable of stationary and quasi-stationary flight. An outdoor test bed called

STARMAC was also developed at Stanford University comprising a set of autonomous

quadrotor helicopters for testing multi-agent algorithms and control design [72, 73]. In [35],

a quadrotor platform named OS4 was designed. Various control strategies are implemented

for Vertical Take-off and Landing (VTOL) behavior. Moreover, a quadrotor using minimal

sensing for autonomous indoor flight is introduced in [109]. In [118], a quadrotor platform
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a)                            b)                             c)                                d)

e)                            f)                              g)                               h)

Fig. 2.3: Quadrotor projects for research and education. a) Mesicopter, Kroo et al., Stanford
[85]; b) X4-flyer, Pounds et al., ANU [104, 105]; c) HMX-4 flyer, Altug et al., Penn
[20, 21]; d) STARMAC, Hoffmann et al., Stanford [72, 73]; e) OS4, S. Bouabdallah,
ETH [35]; f) Guenard et al., CEA [39, 61, 62]; g) Roberts et al., EPFL [109]; h) M.
J. Stepaniak, OHIO [118].

is capable of lifting a payload of 10 lb and is the largest unmanned quadrotor to fly without

tethers.

2.2 Multi-Sensory Pose/Motion Estimation

The fundamental and essential prerequisite for a successful autonomous flying behavior is

accurate pose/motion estimation in real time based on sensor information. Aiming at this,

various sensor configurations have been taken into account on the one hand; on the other

hand, data fusion of multiple sensor modalities has become a promising research focus in

MAVs. These two issues are surveyed in this section.

2.2.1 Multiple Sensor Modalities

Up to now, a variety of sensors have been applied to quadrotors for pose and motion

estimation.

Inertial Measurement Units (IMUs)

One of the most widely used sensors on aircrafts are on-board IMUs, such as gyroscopes

and accelerometers. The control of MAVs during autonomous flight relies on knowledge

of variables like position, velocity, and orientation, which can be partly calculated using

information provided by on-board inertial sensors. They measure the linear acceleration

and angular velocity of the platforms. The pose estimation is then conducted through

dead reckoning of the sensor signals.
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However, the drift of inertial sensors leads to errors during time-discrete integration,

making a steadily accurate estimation of the absolute pose nearly impossible [131]. There-

fore, IMUs are commonly not used alone but always cooperate with additional sensors.

Global Positioning System (GPS)

Most works deploy GPS as an external reference to obtain accurate position information

of the platforms. It is practical for outdoor applications [72, 74, 92]. However, in the

environments where no reliable GPS signal is available, such as indoors, in cluttered urban

environments, in battlefields, or on other planets, other sensors should be applied instead.

Vision Systems

Vision is one of the strongest information origins. Despite more complex information

processing and transfer, vision has become a focus of the research of MAVs.

- External Vision Systems External vision systems have been applied to estimate plat-

form position/orientation and can achieve a more accurate estimation in indoor or ur-

ban environments than GPS. Platforms are commonly equipped with artificial markers

[20, 25, 115, 131]. However, autonomous flying without external sensors is the focus of this

work. Therefore, external vision systems are not investigated further in this thesis.

- On-Board Vision Systems To achieve a fully autonomous flying behavior, on-board

vision systems have been applied.

A novel two-camera method is proposed for estimating the full 6 Degrees Of Freedom

(DOFs) of a quadrotor in [21]. One camera is mounted on the quadrotor, while the other

pan-tilt one is located on the ground. Colored blobs are attached to both the ground

camera and the bottom of the quadrotor for tracking. Moreover, these two cameras are

set to see each other. A purely vision-based pose estimation is achieved.

In [79], an edge-based visual tracking system using a quadrotor equipped with an on-

board forward-looking camera is realized.

In [123], a monocular on-board camera is set to face specified moire patterns to get the

relative position and orientation of the quadrotor. However, this application is too specific

due to the complex target patterns.

The CEA quadrotor is deployed as a platform for visual servoing in [39]. A camera

is mounted on the quadrotor, observing four black planar marks on the ground as visual

markers. The image data are transmitted by a wireless analog link to the ground station,

which executes the control law.

A vision-based attitude and position estimation for a quadrotor helicopter is imple-

mented in [96], where three dark colored targets are used and the altitude is controlled

manually using a joystick. The flying behavior is therefore semi-autonomous.

An optical-flow-based terrain-following behavior of a VTOL UAV is considered in [70],

in which an on-board camera provides the optical flow (using the Lucas-Kanade method

[89]) when facing the ground assumed planar, on-board IMUs facilitate the extraction of

the translational component of the optical flow, and the forward speed of the quadrotor is
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assumed to be ensured by an additional sensor. However, the low sampling rate of 15Hz

and large time latencies hold back the system performance to some extent.

In [48], a visual memory containing ordered key images based on natural landmarks

(Harris corners) is constructed for visual navigation of a quadrotor equipped with an on-

board fisheye camera. A vision-based control law enables the quadrotor to successively

reach visual waypoints during its navigation.

One of the first autonomous flying systems is established in [41], in which a vision-guided

quadrotor using a single on-board camera is capable of take-off, hovering, and tracking a

planar artificial landmark. The information processing is completely on-board.

Some works also use stereo cameras to provide the position of the UAVs based on stereo

vision [19, 23, 78].

Other Commonly Used Sensors

Some other sensors have also been applied as additional sensors: laser range finders for

indoor localization and obstacle avoidance [60, 69], infrared range sensors for wall following

[91] or collision avoidance [109], ultrasonic sensors for measuring vehicle altitude [35, 109]

and obstacle avoidance [35], compasses for measuring the yaw angle of the platform [128],

and pressure sensors for altitude estimation [3].

However, due to the limited payload, only lightweight micro sensors can be applied.

Furthermore, due to the working principles, the measurement ranges of lasers, infrared

sensors, and sonars are limited. As a result, they can only be applied in a specified space

with structure.

2.2.2 Multi-Sensory Data Processing

Strong evidence from biological systems indicates that multiple sensory modalities, e.g.

vision, touch, and balance, are commonly used to guide the movement. Taking insects as

an example, it is critically important to fuse the vision and inertial sensing for localization

and motion estimation. These sensors are able to overcome the limitations and deficiencies

of each other. Digital camera chips and IMUs, such as micro-machined gyroscopes and

accelerometers, are now commodities, and can provide robust estimates of self-motion as

well as 3D scene structure without any external infrastructure [47]. Based on these, various

techniques have been developed for UAV control using multi-sensory information [35, 46].

Without Data Fusion

Some works use multiple sensors to obtain independent, complementary information. Data

fusion is not further conducted. In [25], three kinds of sensors are used: an on-board

sonar pointed at the ceiling for quadrotor height estimation, an on-board laser for position

and yaw angle estimation, and an off-board monocular camera with a fisheye lens, which

captures the quadrotor with two on-board colored markers, for quadrotor position and yaw

angle estimation as a redundancy for the laser. In [35], the altitude control is only based

on a downward-looking sonar, while another four sonars are used for obstacle avoidance.
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With Data Fusion

If the sensor information overlaps or is dependent on each other, an elaborate data fusion

is necessary. Data fusion algorithms such as the Kalman filter (KF) and its extensions,

particle filter, as well as multi-sensor multi-rate data fusion are introduced in [95]. Various

fusion techniques and applications in the literature are surveyed below.

- Complementary Filter Complementary filters have been developed to deal with the

problem of data fusion for aerial vehicles. In [128], a complementary filter is used to

fuse the data from accelerometers, the compass sensor, and the gyro sensors, while a

nonlinear complementary filter uses IMU and dynamic pressure measurements to achieve

high-frequency attitude estimates for a fixed-wing UAV [57].

- KF For linear systems, KF can be used to combine multi-sensory data for better es-

timation of system state, for example fusion of visual and wheel odometry data [146] or

fusion of visual and inertial data [110].

- Extended Kalman Filter (EKF) Since quadrotors perform a non-linear dynamic be-

havior, an EKF has been used for data fusion. In [19], an EKF combines the quadrotor’s

pitch and roll angles with odometry data from a stereo camera or a laser at 50Hz. The ve-

hicle position, velocity, acceleration, and biases of the IMUs are estimated. For a helicopter

with different process models as a quadrotor, an EKF functions as a mixed continuous-

discrete time filter and uses visual data to correct the position and attitude estimation of

the IMUs [129]. For motion estimation, optical flow information is fused with IMU data by

an EKF in [80]. Quadrotor motion control is achieved based on optical flow in [80] using

a downward-looking camera and IMUs. A KF is used to integrate angular velocity and

optical flow as well as estimate translational components of the optical flow and vehicle

angular velocity. Then, an EKF uses the translational optical flow to recover translational

motion and structure parameters. As stated in the paper, the self-motion and height of

the quadrotor are still recovered modulo some unknown scale factors, which can be solved

by, for example, a static pressure sensor for relative height measurements.

- Particle Filter A particle filter is used to fuse the visual data and the on-board IMU

data, in order to estimate 3D quadrotor position with respect to the target in [39].

If the data to be fused are from sensors with different sampling rates, multi-rate fu-

sion should be accomplished. In [107], a theoretically sound multi-rate fusion of visual

data at a lower frequency and inertial data at a higher frequency is proposed in order to

estimate the orientation of the camera. A system observer and prediction architecture

considering different and complementary sampling frequencies are designed to use vision

data to compensate for the errors of the integrated gyro signals. As stated in the paper,

this algorithm can be extended to other DOFs. However, it has not yet been evaluated in

real-time experiments.
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2.3 Quadrotor Control Design

A quadrotor helicopter is an unstable system with non-linear dynamics. Based on accurate

pose estimation, controllers should be elaborated to enable a stable flying behavior. Due

to the under-actuated characteristic, control design is very interesting and challenging. In

this section, various control strategies in the literature are summarized first. Afterwards,

control design for cooperative air-ground multi-robot systems is taken into account.

2.3.1 Overview of Control Strategies

In most existing works, the nonlinear dynamic model of a quadrotor is analyzed first.

Then, various control techniques are applied considering characteristics of their own plat-

forms. Above all, various control strategies such as control using the Lyapunov theory,

Proportional-Integral-Derivative (PID) controllers, Linear Quadratic (LQ) controllers, the

backstepping technique, and the sliding mode technique have been surveyed and evaluated

in simulations and on the test-bench in [35]. A combination of PID and backstepping-

based controllers – integral backstepping [36] – is successfully applied to the quadrotor for

taking-off, hovering, landing, and collision avoidance.

PID Controller

Generic PID controllers are commonly used as benchmarks to evaluate quadrotor flying

performance. Many previous works, whose focus is not the control design, have applied

independent PID controllers for simplicity [60, 109]. Moreover, considering the zero dy-

namics of the quadrotor, the Proportional-Derivative (PD) control law can be derived from

the dynamic model [21]. Proportional (P) controllers have been applied for altitude and

yaw angle control [22]. An adaptive control extension based on PD controllers for tracking

maneuvers is proposed in [106].

LQ Controller

The LQ controller is a kind of optimal control strategy for linear systems. For the non-linear

dynamics of quadrotors, systems should be linearized. In [72], an LQ controller is used

for inner loop attitude control of the quadrotor STARMAC and implemented on-board.

Another LQ controller has also been simulated in [35]. For spatial trajectory tracking,

an LQ servo controller is applied in [115] augmented by a KF. However, due to system

reduction, orientation control is not possible. In [19], an LQ controller has been used to

enable a stable hovering of the platform in a small, local environment.

Backstepping-Based Controller

The backstepping technique is commonly used for system processes with recursive depen-

dency, in which some system states are controlled by the other states [83]. Analyzing

the dynamic model of the quadrotor, it can be seen that some states fulfill this prereq-

uisite. Therefore, backstepping-based controllers are widely applied for quadrotor control

[21, 35, 90, 93, 115]. One of the advantages of the backstepping technique is that the
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stability is guaranteed through Lyapunov functions. However, most evaluations have only

been conducted in simulations.

Sliding Mode Technique

Sliding mode control (SMC) is another Lyapunov-based method for nonlinear systems and

is a form of variable structure control. Considering its advantages such as robustness and

ensuring Lyapunov stability, SMC has been applied in quadrotor control [35, 37, 53, 125].

But as stated in [35], the sliding mode technique does not provide excellent results, partly

due to the switching nature of the controller, which seems to be ill-adapted to the dynamics

of the quadrotor. To eliminate chattering when applying SMCs, saturation nonlinearity

is also considered in [72]. As for backstepping-based controllers, most works have only

considered them in simulations.

Modifications based on the aforementioned controllers are also performed. Besides a

PD controller for the yaw angle, nonlinear controllers for roll and pitch angle control based

on nested saturations are designed in [42] which stabilize integrators in cascade (angle,

angular velocity, linear displacement, and linear velocity in x- or y-direction). Similar

research can also be found in [56].

In most of the aforementioned works, the quadrotors’ positions and yaw angles are

controlled in a position-based manner. In the works which deploy on-board cameras to

observe landmarks, the control problem has also been formulated as an image-based visual

servoing problem [39, 61].

2.3.2 Air-Ground Multi-Robot Control

In recent years more and more autonomous multi-robot systems have been applied in mil-

itary, industry, and civilian domains [101]. Especially for search-and-rescue or inspection

tasks, cooperation between UAVs and Unmanned Ground Vehicles (UGVs) is desired and

can provide 3D sensing of the environment and more flexibility than other homogeneous

robot systems. Examples include the development of an air-ground robotic ensemble for

environmental monitoring applications [55], the heterogeneous robot group consisting of

a robotic helicopter and multiple wheeled ground robots [120], a semi-autonomous UGV

aided by a UAV which flies ahead of the UGV to detect holes and other obstacles [117],

coordination of multiple UAVs and multiple UGVs [43, 44, 74], landing of a helicopter on a

moving target [112], multiple quadrotors equipped with on-board cameras capable of track-

ing a ground vehicle cooperatively [29], the teleoperated vision-based unmanned air-ground

vehicles consisting of a quadrotor and a UGV called VolksBot [121], and the multi-robot

platform consisting of a helicopter, a ground vehicle, and a quadrotor helicopter designed

in [119] aiming at facilitating the development of multi-vehicle control algorithms. Some

recent works also consider indoor cooperation of quadrotors and mobile ground robots for

autonomous navigation and mapping [27, 81] and tracking multiple ground robots [68].

In most works, flying systems serve as a central/global control unit and provide informa-

tion for the ground robots. In this thesis, however, feedforward control of the quadrotor

by tracking the mobile ground robot is considered. The ground robot sends its motion

information to the quadrotor, in order to facilitate the quadrotor performance.
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2.4 Insect-Like Vision on MAVs

In recent years, applying bio-inspired algorithms or techniques to technical systems has

become a tendency of robotics research. For the development of MAVs, flying insects

with small sizes and flexible dynamics have become the most appropriate biological model,

since they are extremely capable of efficient information processing and robust navigation

in complex environments. They use information derived from optical flows for navigation

and the motor control is based on this kind of relative data rather than absolute quantity

of motion.

2.4.1 Findings and Modeling in Biology

The sensing systems of insects have been extensively explored in biology. For example, a

fly’s panoramic vision system comprises at its front end several thousand photoreceptors

feeding into a 2D array of motion detecting neurons which the animal uses for dynamic

visuomotor pose and gaze stabilization and navigation in 6 DOFs. A survey of visual

motor computations in insects is given in [116].

The Reichardt detector [32, 54, 67, 71, 99, 108], also called the Elementary Motion

Detector (EMD), is a well-known model which describes, at an algorithmic level, the pro-

cess of local motion detection in the fly, leading from non-directional input to a direction

selective output. In a structure of the fly brain called “lobula plate”, large neurons are

found which integrate these local motion signals and additionally form extensive connec-

tions amongst themselves [33, 64]. These neurons have large RFs and respond best to

particular flow-fields such as those occurring during certain maneuvers of the fly in free

flight [49, 84]. To overcome the sensitivity of the previously proposed correlation-based

algorithms to certain undesired image properties such as contrast, a model with multiple

layers of non-linear dynamic adaptive components is proposed in [40], based on the known

neuron responses of fly brains during ego-motion. More robust performance is investigated

for natural images.

2.4.2 Technical Realizations

In engineering applications such as robotics, driver assistance systems, or surveillance

systems, a camera system is usually used as a sensor to gather information about the

environment. Motion perception based on the fly’s vision system is computationally cheap

and, thus, particularly suited for those real-time applications.

In [76], a bee-inspired navigation mechanism for goal-directed aerial navigation is pro-

posed. The combination of course stabilization and an EMD-based visual odometer is

applied to a blimp-type robotic platform equipped with a panoramic camera, which is

however much more easily controlled than other platforms, such as quadrotors.

Insect-inspired flying robots have been studied with the focus on biological principles

such as the motion commands generated by low-resolution vision and gyroscopic data, the

course stabilization, and the obstacle avoidance in [130]. A fixed-wing airplane equipped

with several miniature cameras and a gyroscope is used as a testbed.
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In [45], a quadrotor is enabled to autonomously navigate in a corridor-like environment

with texture-rich walls and floor. On-board accelerometers and a sonar provide the altitude

information, while an on-board camera with a 360◦ field of view provides wide-field optical

flow. Additionally, an optical flow sensor is ventrally mounted on-board the quadrotor. The

vehicle heading, lateral position, and forward velocity are controlled based on estimates

from the decomposed patterns of the optical flow field.

A coaxial helicopter is used in [65] to test insect-inspired control algorithms. The vehicle

is captured by an off-board camera. Then, the respective sensory inputs are simulated in

a virtual 3D environment and used to control the yaw angle of the aerial vehicle.

2.4.3 High-Speed Implementations

In addition to optimizing the motion estimation algorithms based on insect-like vision, it

is also necessary to select suitable hardware.

In [111], a new EMD circuit implemented on MAVs has been designed by using Field

Programmable Analog Array (FPAA). In addition, several EMD-based models have been

developed based on Very-Large-Scale-Integrated (VLSI) circuits.

In [88], a low-power VLSI chip is described which consists of a one-dimensional array

of EMDs to perform motion computation. In [71], a biologically inspired VLSI system for

the measurement of self-motion is introduced.

Later, a single-chip analog VLSI sensor that can detect imminent collisions was designed

and tested [66].

Recently, Field Programmable Gate Arrays (FPGAs) are favored by engineers in im-

plementing EMDs. In [97], a real-time algorithm for estimating motion vectors is imple-

mented. In [26], an FPGA implementation of a bio-inspired visual sensor is introduced.

However, all these implementations perform motion detection with relatively low resolu-

tions and low frame rates.

Working with a relatively high resolution (127 × 100 pixels) at a relatively high frame

rate (200Hz), an FPGA-based smart camera module with a small dimension is presented

in [82].

2.5 Summary

Vision guidance may be the most elegant solution for a flying system. However, vision-

based pose estimation for a quadrotor platform without external GPS or a global sensor is a

very challenging problem. Up to now, only a few works have applied a monocular on-board

camera with IMUs to achieve accurate pose estimation without additional sensors such as

lasers or sonars. The reasons are, on the one hand, that quadrotors have specific flying

characteristics: A displacement in a horizontal direction is accomplished by the pitch or

roll of the body, which results in a large variation of the camera view field. On the other

hand, common scenarios using on-board monocular cameras in the literature are VTOL

and hovering, in which the camera’s limited field of view is not as critical as the tracking

and landing scenarios considered in this thesis.
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Controlling an under-actuated system with fast, non-linear dynamic behavior is also

a demanding task. Most state-of-the-art works have shown simulated behaviors or per-

formance on test-benches, which are, however, quite different to real world experiments.

Real-time experiments have only been restrictedly conducted and only VTOL or hovering

has been realized. Few works have explored a complete, integrated scenario, especially

feedforward control scenarios aided by a ground robot as a mobile reference.

Although the advantages of insect flying behavior have been extensively explored in bi-

ology, realizations in technical systems are still limited. Closed-loop control based on quan-

titative motion estimation and sufficient implementation are missing as yet. Due to their

low computational cost, performing high sensibility and robust motor control, bio-inspired

algorithms are definitively going to provide a promising future for MAV development.
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3 Multi-Sensory Pose/Motion
Estimation

A significant challenge in developing Unmanned Aerial Vehicles (UAVs) is accurate estima-

tion of their pose and motion by means of extracting and fusing useful sensor information

in a robust manner. Most flying platforms including the quadrotor used in this thesis are

equipped with Inertial Measurement Units (IMUs). However, the drift of inertial sensors

leads to errors during time-discrete integration, making steadily accurate estimation of the

absolute pose nearly impossible.

Vision, as one of the strongest information origins, can provide a large amount of infor-

mation about position, velocity, and orientation, and is commonly used in most biological

organisms such as in humans and animals for self-localization and navigation. Compared

to IMUs, vision sensors have advantages such as accurate pose estimation without propa-

gating errors.

However, due to the limited field of view and relatively low sampling rate as well as

relatively complex data processing, visual data are not sufficient for pose/motion estimation

and control of a highly dynamic flying system in which high-frequency noise and vibrations

occur. Therefore, high-frequency and accurate multi-sensory pose/motion estimation for

a quadrotor which serves as a basis for a controlled behavior is investigated.

In this chapter, aiming at obtaining accurate pose/motion estimation of a highly dy-

namic quadrotor relying only on on-board sensors, a thoroughly designed high-frequency

fusion of the inertial sensors and the vision sensor is accomplished. Based on multi-modal

sensor information, a continuous-discrete Extended Kalman Filter (EKF) is applied for the

multi-sensory multi-rate data fusion, where the high-frequency IMU data drive the process

model and the low-rate vision data correct the estimation. Complete data synchronization

is conducted based on the accurately measured time delay. Various real-time experiments

considering the quadrotor tracking the mobile ground robot show that 1) high accuracy and

high frequency of the pose/motion estimation in dynamic behaviors are obtained through

the multi-sensory multi-rate data fusion; 2) one of the first autonomous flying quadrotors

based on minimal on-board sensors and the complete on-board integration of sensor data

processing is achieved.

The remainder of this chapter is organized as follows. First, the system hardware con-

figuration is briefly introduced in Section 3.1. Then, the problem addressed in this chapter

and the derivation of the quadrotor dynamic model are described in Section 3.2. After

that, IMU data processing, visual data processing including marker-based pose estimation

and optical-flow-based motion estimation, and the multi-sensory data fusion are described

in Section 3.3. In Section 3.4, experimental evaluation is conducted and presented. A

discussion and a summary are given in Sections 3.5 and 3.6, respectively.
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3.1 System Overview

3.1 System Overview
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Fig. 3.1: System overview. Left: a quadrotor equipped with an ARM-processor, actuators,
sensors, and an ATOM-board; right: a mobile ground robot equipped with marker-
s/texture, sensors, actuators, and an embedded computer.

The overall air-ground multi-robot system designed in this thesis is illustrated in Fig. 3.1.

A quadrotor is equipped with minimal sensors (IMUs and a monocular camera), efficient

actuators (motors and propellers) as well as on-board processing and control units (an

ARM-processor and a board with an ATOM CPU referred to as “ATOM-board” in this

thesis). Aiming at cooperative task accomplishment, a ground robot is applied to be a

mobile external reference and facilitate the flying agent – the quadrotor. Note that in this

system, no ground station is used. The quadrotor and the mobile robot are autonomous.

3.1.1 Quadrotor

The Hummingbird quadrotor from Ascending Technologies GmbH [3] was chosen as the

hardware platform for this work (see Fig. A.1 in Appendix A). The off-the-shelf controller

offers a 1 kHz control frequency and motor update rate, which enables fast responses to

changes in the environment. The configuration of the quadrotor is basically the same as

described in [63].

Actuators

Two pairs of rotors spin clockwise and anticlockwise respectively. They are directly driven

by high-torque DC brushless motors that are electronically commutated by optimized

controllers to achieve fast responses.
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3 Multi-Sensory Pose/Motion Estimation

(1) Going up (2) Moving forwards

(3) Moving rightwards (4) Rotating clockwise

(1) Lifting                                      (2) Flying forwards

(3) Flying rightwards                      (4) Rotating clockwise

Fig. 3.2: Flying upwards (1), forwards (2), rightwards (3), and clockwise (4) by changing the
rotating velocities of the respective rotors. The red bars on the quadrotor frame
indicates the front rotors. The half filled bars near the rotors indicate the individual
rotor rotating speed.

The flying motion of a quadrotor is determined by the rotational speeds of the four

motors (see Fig. 3.2). If the rotating velocities of all four motors are increased by the same

amount, the quadrotor flies upwards. When the left motor is faster than the right one, the

quadrotor rolls around the front and back wings, and flies rightwards. Analogously, the

quadrotor can pitch around the left and right wings due to the speed difference between the

front and the back motors. The motion in the horizontal plane is realized by the pitch and

roll angles. The yaw rotation around the vertical axis is caused by the difference between

the angular momentum generated by these two pairs of rotors. Therefore, the quadrotor is

an under-actuated system which has, through controlling the four rotor speeds, 6 Degrees

of Freedom (DOFs) but only four control variables, namely the pitch angle, the roll angle,

the yaw angle velocity, and the thrust.

On-Board Sensors

The main sensors on the quadrotor platform used in this thesis are on-board IMUs and a

monocular camera.

– IMUs The inertial sensors on the quadrotor consist of three orthogonal gyroscopes

measuring the angular velocity for each rotation axis and three orthogonal accelerometers

measuring the acceleration for each translation axis. The absolute roll and pitch angles

are estimated on-board by fusing the acceleration vector and angular speeds. A relative

yaw angle is estimated by integrating the angular speed measured by the yaw gyroscope.
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3.1 System Overview

– Camera With respect to the limited payload of the quadrotor, a light “Firefly MV”

from Point Grey Research Inc. [103] is selected as the on-board camera (see Fig. A.4 in

Appendix A). The key parameters of the camera are listed in Tab. A.1. This camera faces

downwards to acquire position information of the mobile ground robot.

On-Board Computational Units

The quadrotor comprises an ARM-processor to operate an off-the-shelf controller which sta-

bilizes all three axes of rotation (roll, pitch, and yaw) with three independent Proportional-

Derivative (PD) controllers for each angle at a frequency of 1 kHz, as the quadrotor itself

is unstable during flight [63]. This controller exclusively uses IMU data as feedback and

cannot be modified. In this work, this controller is called the inner-loop controller.

Although the errors due to time-discrete integration are small at the rate of 1 kHz, an

outer control loop is needed to compensate for the drift and to control all 6 DOFs of the

quadrotor. A small board with an ATOM CPU of Intel Corp. (1.6GHz Dual Core) called

Flying Netbook developed by Ascending Technologies GmbH is installed on the quadrotor.

It is capable of outer-loop control computation, sensor data processing, and data fusion,

which makes autonomous flight possible. The on-board camera is connected via a Universal

Serial Bus (USB) interface with the ATOM-board, while the data transfer between the

ARM-processor and the ATOM-board is via Universal Asynchronous Receiver Transmitter

(UART). The control design is the focus of Chapter 4 and not further investigated in this

chapter.

3.1.2 Mobile Ground Robot

In this air- and ground-based multi-robot system, a Pioneer P3-DX mobile robot from

Mobile Robots Inc. [10] is used to operate on the floor (see Fig. B.1 in Appendix B). This

robot platform is 44×38×22 cm in dimensions with two drive wheels with a diameter of

16.5 cm each. The maximum speed is 1.6m/s. It is equipped with different sensors such

as laser, sonars, and a camera. The control of the robot is achieved by programming an

embedded computer. To complete the data fusion and improve the control performance,

motion information of the ground robot is transmitted to the quadrotor via wireless Local

Area Network LAN using User Datagram Protocol (UDP). The details of this robot can

be found in Appendix B. The pose/motion estimation and control of this mobile ground

robot is not the focus of this thesis and is not investigated further.

In order to robustly detect the ground robot from the quadrotor’s perspective, two

active markers are mounted on the robot. The center point of these markers is referred

to as the reference position of the ground robot. Moreover, since the deck of the pioneer

robot is too small for the quadrotor to stand on it, a 80×80 cm planar board with texture

is mounted on the robot as the platform for take-off and landing.
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3 Multi-Sensory Pose/Motion Estimation

3.2 Problem Definition and Quadrotor Dynamic Model

3.2.1 Problem Definition

In the literature, the quadrotor pose/motion estimation using on-board vision systems has

been proposed in the following manners:

– Some works additionally use other sensors such as ranging sensors [35, 73, 131] to

acquire complementary or redundant information and facilitate vision-based estima-

tion, which causes an increasing payload and higher computation complexity.

– Some other works consider stereo cameras [19, 23, 78], multi-camera configuration

[21], or fish-eye cameras [48]. This results in high cost and critical calibration prob-

lems.

– Quadrotors in most works are not exactly autonomous, which means the input images

are normally transmitted to a ground station for image processing and computation

of the control law which should be sent back to the quadrotors, resulting in time

delay and a limited workspace [39, 79, 123].

– Most works only present Vertical Take-Off and Landing (VTOL) without references

[35, 70] or use static external references [39, 96]. Few works use mobile external

references [81, 123], which brings difficulty to the system due to the quadrotor’s

flying characteristics and the limited field of view of the camera.

To overcome the difficulties raised in the existing works, this chapter focuses on the problem

of how to use a minimal sensor combination – on-board IMUs and a monocular camera at

different rates – to obtain accurate pose/motion estimation. Here, a high frequency of the

estimation is envisioned, as it is essential for tracking a mobile reference and the following

control performance. Moreover, various aspects facilitating the estimation accuracy, such

as complete on-board computation, noise variance investigation, as well as thorough time

delay analysis and sensor data synchronization, should be conducted.

3.2.2 Quadrotor Dynamic Model

To obtain the quadrotor position and orientation at any one instant, a detailed derivation

of its kinematic and dynamic formulations is necessary. In this section, the quadrotor

dynamic model is derived.

Reference Frames

Since the parameters needed for the analysis of quadrotor dynamics are specified in different

coordinate frames, various frames of reference, illustrated in Fig. 3.3, are defined first. The

definitions and transformations are described below.
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Fig. 3.3: Frames of reference. The inertial frame SI , the object frame So, the quadrotor body
frame Sb, the camera frame Sc, and the image plane frame Si.

Note: For simplification, the following expressions are used:

s(·) ⇔ sin(·), c(·) ⇔ cos(·), and t(·) ⇔ tan(·).

– The Inertial Frame of Reference SI For the sake of convenience, the origin and the

XI/YI-plane of the initial reference frame is fixed on the ground, which is assumed to be

plane, while the ZI-axis perpendicularly points down to the ground plane. A 3D point in

the inertial frame is denoted by Ip ∈ R3. An object located on the XI/YI-plane has only

three DOFs: the 2D position and the orientation.

– The Object Frame So The object frame is defined with respect to the ground robot,

which is equipped with two markers. The origin is the center of the markers with the

coordinate Ipr = [Ixr Iyr −24 cm]T (24 cm refers to the height of the ground robot). The

subscribe r denotes the ground robot. The ground robot is a non-holonomic system and

consists of a forward linear motion and an angular motion around its vertical axis. The

Xo-axis points out the forward direction of the ground robot, which has a relative angle
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3 Multi-Sensory Pose/Motion Estimation

Ωr around the ZI-axis with respect to XI according to the right hand rule. The Zo-axis

is the vertical axis and coincident with the ZI-axis. The linear velocity and acceleration

of the ground robot in the current object frame are denoted by vr = [vr 0 0]T and

ar = [ar 0 0]T , respectively, while the angular velocity and acceleration in the current

object frame are denoted by Ω̇r and Ω̈r, respectively.

The homogeneous transformation matrix between SI and So can be formulated as fol-

lows:
IT o =

[
IRo

Iro

0T 1

]
(3.1)

with the rotation matrix:

IRo = Rot(ZI , Ωr) =




cΩr −sΩr 0

sΩr cΩr 0

0 0 1


 , (3.2)

and the translation vector is the same as the position vector of the ground robot in the

inertial frame:
Iro = Ipr = [Ixr Iyr −24 cm]T . (3.3)

The markers on the top of the ground robot are mounted with a distance of δ with each

other. Each marker has a radius of 2 cm. The marker center positions op1/2 in the object

frame are as follows:

op1 = [0 − δ

2
−2 cm]T and op2 = [0

δ

2
−2 cm]T . (3.4)

– The Quadrotor Body Frame Sb The quadrotor body frame has its origin at the center

of the gravity of the quadrotor. The Xb-axis points out the nose of the airframe, the Yb-axis

points out the right wing, and the Zb-axis points out the belly.

As the mobile ground robot is used as an external reference for the quadrotor, the

relationship between So and Sb can be formulated as follows:

oT b =

[
oRb

orb

0T 1

]
. (3.5)

The rotation matrix oRb is calculated through chained rotations using the Tait-Bryan

angles, namely the yaw, pitch, and roll angles, illustrated in Fig. 3.4. After a translational

displacement of orb = opq = [oxq oyq ozq]
T , the body frame is coincident with the object

frame first and labeled as body frame Sb1 . Note that the subscribe q denotes the quadrotor.

The body frame Sb1 is rotated with the yaw angle Ψ ∈ [−π, π) around the current Zb1-axis

into the body frame Sb2 . After that, Sb2 is rotated with the pitch angle Θ ∈ [−1
2
π, 1

2
π]

around the current Yb2-axis into the body frame Sb3 . Then, Sb3 is rotated with the roll

angle Φ ∈ [−1
2
π, 1

2
π] around the current Xb3-axis into the actual body frame Sb. Finally,

the rotation matrix bRo of the transformation between the object frame and the quadrotor
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Fig. 3.4: Transformation between the object frame So and the body frame Sb facilitated by
intermediate frames Sb1 , Sb2 , and Sb3 .

body frame is given by

bRo = bRb3 · b3Rb2 · b2Rb1 · b1Ro

= Rot(Xb3 , Φ) · Rot(Yb2 , Θ) · Rot(Zb1 , Ψ) · Rot(Xo, 0
◦)

=




cΘcΨ cΘsΨ −sΘ

sΦsΘcΨ− cΦsΨ sΦsΘsΨ + cΦcΨ sΦcΘ

cΦsΘcΨ + sΦsΨ cΦsΘsΨ− sΦcΨ cΦcΘ


 . (3.6)

Then,
oRb = (bRo)

T . (3.7)

– The Camera Frame Sc Since the camera looking downwards is firmly mounted on the

quadrotor, the camera frame Sc is coincident with the body frame of the quadrotor Sb

based on a translation vector. The origin is located at the lens center of the camera.

– The Image Frame Si The image frame has its origin located at the principle point of

the input image. The unit vector Yi along the image horizontal direction directs the right

rotor of the quadrotor, and the unit vector Xi points out the front rotor.

Quadrotor Dynamic Modeling

In this work, the relative pose of the quadrotor with respect to the mobile ground robot

in the multi-robot system is to be estimated and controlled. To derive the kinematic and

dynamic expressions, the following state variables of the quadrotor are defined:
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3 Multi-Sensory Pose/Motion Estimation

– Position x y z The quadrotor position with respect to the mobile ground robot

opq = [x y z]T in the Xo-, Yo-, and Zo-directions are denoted by x = oxq, y = oyq, and

z = ozq for simplicity. A positive height of the quadrotor with respect to the ground robot

is denoted by h = −z.

Since the 3D trajectory of the quadrotor in the inertial frame is also of particular interest,

in the experimental results presented in the thesis, the quadrotor position [Ix Iy]T and

heading IΨ are also illustrated.

– Linear Velocity ẋ ẏ ż The linear velocity oṗq = [ẋ ẏ ż]T is defined in the object

frame.

The absolute position of the quadrotor in the inertial frame Ipq can be calculated via

coordinate transformation:

Ipq = Ipr + IRo · opq, (3.8)

where Ipr represents the absolute position of the ground robot in the inertial frame. After

differentiating Eq. 3.8, the velocity of the quadrotor in the inertial frame can be expressed

by

I ṗq = I ṗr + IṘo · opq + IRo · oṗq, (3.9)

and its extended form is as follows:




I ẋ

I ẏ

I ż


 =




vr

0

0


 + IṘo ·




x

y

z


 + IRo ·




ẋ

ẏ

ż


 , (3.10)

where from Eq. 3.2

IṘo =



−sΩr · Ω̇r −cΩr · Ω̇r 0

cΩr · Ω̇r −sΩr · Ω̇r 0

0 0 0


 . (3.11)

– Linear Acceleration ẍ ÿ z̈ The linear acceleration of the quadrotor in the object

frame is denoted by op̈q = [ẍ ÿ z̈]T .

According to Eq. 3.9, the acceleration of the quadrotor in the inertial frame can be

expressed by

I p̈q = I p̈r + IR̈o · opq + 2 · IṘo · oṗq + IRo · op̈q. (3.12)

Then, the linear acceleration of the quadrotor in the object frame op̈q = [ẍ ÿ z̈]T can be

calculated as follows:

op̈q = IR−1
o · (I p̈q − I p̈r − IR̈o · opq − 2 · IṘo · oṗq), (3.13)

where from Eq. 3.2

IR−1
o =




cΩr sΩr 0

−sΩr cΩr 0

0 0 1


 , (3.14)
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and

IR̈o =



−cΩr · Ω̇2

r − sΩr · Ω̈r sΩr · Ω̇2
r − cΩr · Ω̈r 0

−sΩr · Ω̇2
r + cΩr · Ω̈r −cΩr · Ω̇2

r − sΩr · Ω̈r 0

0 0 0


 . (3.15)

Defining linear velocity of the quadrotor in the body frame as [u v w]T , the linear

accelerations of the quadrotor in the inertial frame and in the body frame have the following

relationships:

I ṗq = IRb ·



u

v

w


 . (3.16)

Neglecting the time derivative of the rotation matrix due to quadrotor symmetry and

small angle velocity, the linear acceleration of the quadrotor in the inertial frame I p̈q can

be written as

I p̈q = IRb ·



u̇

v̇

ẇ


 , (3.17)

where IRb = IRo · oRb.

However, the measurements [ax ay az]
T from the IMUs are the linear accelerations of

the quadrotor in the body frame without consideration of gravitational acceleration. Note

that 


u̇

v̇

ẇ


 =




ax

ay

az


 + bRI ·




0

0

g


 . (3.18)

Therefore, the linear acceleration of the quadrotor in the inertial frame I p̈q can be written

as

I p̈q = IRb ·



ax

ay

az


 +




0

0

g


 . (3.19)

The linear velocity of the ground robot in the inertial frame is written as

I ṗr = IRo ·



vr

0

0


 , (3.20)

while the linear acceleration of the ground robot in the inertial frame I p̈r can be written

as

I p̈r = IṘo ·



vr

0

0


 + IRo ·




ar

0

0


 . (3.21)
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Substituting Eqs. 3.14–3.21 into Eq. 3.13, op̈q can be written as follows:

op̈q =




ẍ

ÿ

z̈


 =




ẍtrans + ẍrot

ÿtrans + ÿrot

−sΘ · ax + sΦcΘ · ay + cΦcΘ · az + g


 (3.22)

with

ẍtrans = cΘcΨ · ax + (sΦsΘcΨ− cΦsΨ) · ay + (cΦsΘcΨ + sΦsΨ) · az − ar,

ÿtrans = cΘsΨ · ax + (sΦsΘsΨ + cΦcΨ) · ay + (cΦsΘsΨ− sΦcΨ) · az,

ẍrot = (Ω̇r)
2 · x + Ω̈r · y + 2Ω̇r · ẏ,

ÿrot = −Ω̈r · x + Ω̇2
r · y − 2Ω̇r · ẋ− Ω̇r · vr.

(3.23)

– Orientation Φ Θ Ψ The quadrotor orientation (attitude) is represented using the roll

angle Φ, the pitch angle Θ, and the yaw angle Ψ, which are described in the definition of

the quadrotor body frame with respect to different reference frames.

– Angular Velocity Φ̇ Θ̇ Ψ̇ The angular velocity measured by the on-board gyroscopes

p, q, and r are defined around the Xb-, Yb-, and Zb-axis in the body frame. Note that p, q,

and r are the velocities of standard Euler angles, while Φ, Θ, and Ψ are Tait-Bryan angles.

They are defined in different frames. Therefore,

p 6= Φ̇,

q 6= Θ̇,

r 6= Ψ̇. (3.24)

Moreover, the yaw angle Ψimu derived from the integration of the angular velocity mea-

sured by the yaw gyroscope is aligned with the inertial frame, while Ψ is defined with

respect to the ground robot. Therefore,

Ψ = Ψimu − Ωr. (3.25)

Then, the Ψ̇ defined as the angular velocity around the Zo-axis is the difference between

the Ψ̇imu and the robot angular velocity Ω̇r given by:

Ψ̇ = Ψ̇imu − Ω̇r. (3.26)

The relationship between p, q, r and Φ̇, Θ̇, Ψ̇imu can be formulated as follows:




p

q

r


 = Rot(Xb3 , Φ̇) ·




Φ̇

0

0


 + Rot(Xb3 , Φ) · Rot(Yb2 , Θ̇) ·




0

Θ̇

0




+Rot(Xb3 , Φ) · Rot(Yb2 , Θ) · Rot(Zb1 , Ψ̇imu) ·



0

0

Ψ̇imu


 . (3.27)
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Eq. 3.27 can be simplified by assuming that Φ̇, Θ̇, and Ψ̇imu are very small. Then,

Rot(Xb3 , Φ̇) = Rot(Yb2 , Θ̇) = Rot(Zb1 , Ψ̇imu) = E, (3.28)

where E denotes a unit matrix. Then, similar to [28], the following equations are obtained:




p

q

r


 =




1 0 −sΘ

0 cΦ sΦcΘ

0 −sΦ cΦcΘ


 ·




Φ̇

Θ̇

Ψ̇imu


 , (3.29)

and based on Eq. 3.26




Φ̇

Θ̇

Ψ̇ + Ω̇r


 =




1 sΦtΘ cΦtΘ

0 cΦ −sΦ

0 sΦ
cΘ

cΦ
cΘ


 ·




p

q

r


 . (3.30)

The derived dynamic expressions will be used to formulate the system equation and

measurement equation required by EKF-aided data fusion.

3.3 Multi-Sensory Multi-Rate Data Fusion

Vision sensors and IMUs have their own advantages and drawbacks, which are nevertheless

complementary to each other. For quick motion, IMUs are accurate and sensitive in a short

time, whereas vision sensors are not adequate due to the relatively low frame rate and the

limited bandwidth. Motion blur in input images also causes large measurement uncertainty.

In contrast, for slow motion, IMUs have an unavoidable measurement uncertainty due to

high-frequency noise and drifts, while vision sensors are more accurate. Therefore, multi-

sensory data fusion is raised into the agenda.

Moreover, the quadrotor has its specific flying characteristic that motion in the hori-

zontal plane is realized by pitch and roll angles. With small pitch and roll, the camera’s

field of view changes a lot. If the pose estimation result is poor or not fast enough, the

ground robot may be lost from the camera’s field of view. Therefore, a high frequency of

data fusion is also a critical issue.

Fig. 3.5 illustrates the sensor data processing procedure. The linear acceleration and

velocity as well as the attitude in the inertial frame (also partly in the object frame) can

be computed from IMU data, while the position, heading, and their variation rates in

the object frame can be obtained from vision data. They partly overlap and should be

fused together in order to achieve more accurate pose/motion estimation. An EKF [127]

is desired to be the dynamic optimization filter for the multi-sensory data fusion. As

discussed in [24, 30], the unmodeled dynamics and uncertainties are more significant than

the linearization errors. Therefore, the unscented Kalman Filter (KF) introduced in [124]

is not selected in this case.

In this section, IMU data processing and image processing are introduced, respectively.

Then, the details of data fusion using a continuous-discrete EKF is described. An essential

aspect in the fusion process – the data synchronization – is discussed later.
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3.3.1 IMU Information Processing

IMUs are one of the most commonly used on-board sensors for aerial vehicles. On the

quadrotor used in this thesis, the on-board IMUs consist of three orthogonal accelerome-

ters and three orthogonal gyroscopes. The former measure the linear acceleration of the

quadrotor in the body frame, while the latter measure the angular velocity of the quadrotor

in the body frame.

The framework of the strap-down inertial navigation system introduced in [47] is

adopted. As shown in Fig. 3.5, the linear acceleration in the body frame is forwarded

into a Low-Pass (LP) gravity detector filter. Using this filter, the sudden accelerations are

eliminated and the gravity vector is detected. Together with angular velocity [p q r]T

measured by the gyroscopes, the body rotation in the inertial frame is updated. Then, the

pitch angle Θimu and the roll angle Φimu are obtained.

The on-board estimated angles Θimu and Φimu are not the same angles as the pitch

and roll angles Θ and Φ defined in the previous section. After the LP filter, the force

for compensating for the gravity in ZI-/Zo-direction is detected, which is denoted by its

resulting acceleration Ia:

Ia =




0

0

−g


 . (3.31)

Furthermore, considering the coordinate transformation in Eq. 3.6, the projection of Ia
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into the quadrotor body frame can be formulated as follows:

ba = bRI · Ia =




cΘcΨimu cΘsΨimu −sΘ

sΦsΘcΨimu − cΦsΨimu sΦsΘsΨimu + cΦcΨimu sΦcΘ

cΦsΘcΨ + sΦsΨimu cΦsΘsΨimu − sΦcΨimu cΦcΘ







0

0

−g




=




gsΘ

−gsΦcΘ

−gcΦcΘ


 . (3.32)

Then, Ψimu, Θimu, and Φimu can be expressed by:

Ψimu = Ψ + IΩr,

Θimu = arcsin(
[1 0 0] · ba

|ba| ) = Θ,

Φimu = arcsin(
[0 1 0] · ba

|ba| ) = arcsin(−sΦcΘ). (3.33)

Therefore,

Ψ = Ψimu − Ωr,

Θ = Θimu,

Φ = arcsin(−sΦimu

cΘimu

). (3.34)

The resulting roll angle Φ and pitch angle Θ are further forwarded as inputs for vision-

based quadrotor pose estimation in Section 3.3.2. Ωr can be initially ignored in the IMU

measurements and will be corrected by vision data.

Having the attitude [Φ Θ Ψ]T and the linear acceleration [ax ay az]
T measured

by accelerometers in the body frame, the linear acceleration in the body frame can be

computed according to Eq. 3.18. After a correction of gravity, the pure linear acceleration

in the inertial frame is obtained. Linear velocity in the inertial frame is computed through

integration of the acceleration. This high-frequency IMU-based estimation is used to drive

the system process model in the EKF-aided data fusion.

To calculate the linear acceleration and angular velocity of the quadrotor in the object

frame, the feedforward information from the ground robot is needed, which is considered in

Chapter 4. In this chapter, it is regarded as noise. A correction based on vision information

is applied and introduced in the next section.

3.3.2 Marker-Based Pose Estimation

To achieve a robust detection of the ground robot from the quadrotor’s view, conventional

feature detection is abandoned. Artificial markers are designed and mounted on the ground

robot. The criteria for an appropriate marker are 1) simple and robust segmentation from

its background; 2) independence from lighting conditions; 3) omni-directional detection;

4) low image processing cost.
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Fig. 3.7: Design of active markers (left) and a lightened view (right).

An overview of the marker-based pose estimation is illustrated in Fig. 3.6, consisting

of image calibration using parameters based on a previous calibration process using Cam-

era Calibration Toolbox for Matlab, marker detection, marker Center Of Gravity (COG)

computation, quadrotor pose estimation, and iterative optimization.

Design of the Active Markers

Two active markers are mounted on a rigid frame (see Fig. 3.7). To be more independent

from light conditions, the basic idea is to illuminate the markers as brightly as possible,

while reducing the exposure time of the camera. This method reduces the influence of

ambient light as well as distractors which might have the same color as one of the mark-

ers. During the initial experiments using high-power Light Emitting Diodes (LEDs), some

problems occurred. When far from the camera, the LEDs appeared as only a few pixels,

which made the recognition prone to error. When close to the camera, the LEDs were

too bright, so the color information was lost. The small angles of beam of the LEDs also

caused problems when the camera viewed the LEDs from the side. These problems are

solved by using table-tennis balls which disperse the light of the LEDs diffusely. Two

high-power surface mounted LEDs are placed on each side of a printed circuit board which

is then inserted into the center of the table-tennis balls. As a result, a homogeneous “light

bubble” can be recognized by the camera as a circle from all directions of view. Fig. 3.7

shows the design (left) and a lightened view of the markers (right).
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Marker Detection

For each marker, its 2D image region and the COG are calculated for estimating the 3D

reconstruction afterwards. The following steps are performed for each marker in each

image.

First of all, the input image is transformed from RGB into YUV color space, which yields

one luminance (Y) channel and two chrominance (U, V) channels. The advantage of the

YUV color space is that the search for colors can be performed independently of lighting

conditions. For each color, a minimum luminance Ymin and valid ranges for chrominance

values Umin, Umax, Vmin, and Vmax are determined. Each pixel that falls within these ranges

during the search is called a hit.

To avoid errors caused by false positives, a robust filter is applied: Only the hits whose

image coordinate ix = (ix, iy) is close to the median of the coordinates will be considered

in the calculation of the COG.

ixCOG =

[
ixCOG

iyCOG

]
=

1

M

M∑
j=1

ixj (3.35)

with

|median(ix)− ixj |< ε ∧ |median(iy)− iyj |< ε, (3.36)

where M denotes the number of hits that match the conditions and ixCOG the resulting

COG. Once a valid COG is found, a Region Of Interest (ROI) is determined based on

this position and the current motion estimate (see Fig. 3.5). The search in the next time

step then only takes place in this region. This reduces computation time enormously and

disturbances outside the ROI are automatically filtered out.

For the case that a marker is not detected completely, the COG of a marker shifts

although the marker itself does not. Thus, the accuracy of recognizing the markers can be

further improved by assuming a simple model for each marker: The markers are bullets, so

a circle in the binary image gained from the thresholds above is expected. To reconstruct

the real center of a marker using this model, three steps have to be performed (see Fig. 3.8):

1) Correcting the foreground : A combination of the morphological operations dilation and

erosion (the morphological opening) with a 5×5 circle-structuring element is applied to

the image. Gaps in the foreground will be closed, but the main structure will be kept

approximately. 2) Edge filtering : To get only the border limiting the marker which a circle

can be fitted into, edge filtering is done using a Laplace filter. 3) Fitting the circle: Now,

the image is ready to fit a circle into the edges found in the step before. The equation of a

circle in 2D can be written as: (ix− ix0)
2 + (iy − iy0)

2 = r2. The parameters to optimize

are the circle center coordinate ix0, iy0 and the radius r. This nonlinear problem can be

rewritten into a linear problem by a substitution:

ix
2 − 2ixix0 + ix0

2 + iy
2 − 2iyiy0 + iy0

2 = r2 (3.37)

⇔ 2ixα + 2iyβ + γ = ix
2 + iy

2 (3.38)

with

ix0 = α, iy0 = β, r2 − ix0
2 − iy0

2 = γ. (3.39)
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The coordinates gained from the edge filtering above can now be inserted into Eq. 3.37,

which leads to the following system of equations that can be solved by the method of linear

least squares using the pseudo-inverse:




2ix1 2iy1 1
...

...
...

2ixm 2iym 1


 ·




α

β

γ


 =




ix
2
1 + iy

2
1

...

ix
2
m + iy

2
m


 , (3.40)

where m denotes the number of the pixels on the edge. The center of the circle ix0 and iy0

as well as its radius r can now be derived from the substitution Eq. 3.39. The deviations

of the center of the markers to the real centers are reduced significantly using this method,

especially on partially covered markers.

3D Quadrotor Pose Estimation

As mentioned in Section 3.2, the position coordinates of the markers op1/2 in the object

frame So have the following values:

op1 =




0

−δ/2

−2 cm


 and op2 =




0

δ/2

−2 cm


 . (3.41)

The transformation of marker positions op1/2 from the object frame So via the quadrotor

body frame Sb to the camera frame Sc can be formalized as follows:

cp
′
1/2 = cT b · bp

′
1/2

= cT b · bTo · op
′
1/2, (3.42)

with (·)′ indicating a homogeneous coordinate, where

bT o =

[
bRo opq

0 1

]
, (3.43)

The positions of the markers in the camera frame are denoted by cp1 = [cx1 cy1 cz1]
T

and cp2 = [cx2 cy2 cz2]
T . The matrix bRo indicates the rotation matrix from the object

frame So to the quadrotor body frame Sb, and can be computed using the yaw, pitch, and
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roll angles Ψ, Θ, and Φ based on Eq. 3.7. The yaw angle is computed using an iterative

estimation algorithm introduced later. The other two angles are obtained from IMU data

mentioned in Eq. 3.33 in Section 3.3.1. The matrix cT b is the homogeneous transformation

matrix from the quadrotor body frame Sb to the camera frame Sc and is constant. The

position of the quadrotor opq = [oxq oyq ozq]
T with respect to the ground robot is to be

determined.

From the visual information, the 2D positions of the markers in the image frame

ip1 = [ix1 iy1]
T and ip2 = [ix2 iy2]

T are computed using the algorithms introduced

in the previous section. According to the pinhole camera model with a focal length f , the

following relation can be easily derived:

ip1/2 = [
cx1/2

cz1/2

f
cy1/2

cz1/2

f ]T . (3.44)

Substituting cp1/2 = [cx1/2 cy1/2 cz1/2]
T in (3.42) and (3.44), four equations for three

unknown variables of opq are obtained. Using the least squares method, opq is found and

used in the iterative optimization of the pose estimation result later.

For the experimental evaluation, the absolute quadrotor position Ipq is computed as

follows:

Ip
′
q = IT o · op

′
q, (3.45)

where IT o is obtained using the ground robot pose feedback with respect to the inertial

frame SI based on Eq. 3.1.

Iterative Optimization

To obtain an accurate quadrotor yaw angle Ψ and position [x y z]T based on the 2D marker

positions, the gradient descent algorithm is used to iteratively estimate and optimize Ψ,

x, y, and z.

Firstly, a prior yaw angle Ψ− is computed using image data containing the 2D marker

positions ip1/2 = [ix1/2 iy1/2]
T as follows:

Ψ− = atan2
(
(ix2 − ix1), (iy2 − iy1)

)
, (3.46)

Then, using the pitch and roll angle Θ and Φ as well as Ψ−, a prior rotation matrix
bR−

o and a prior quadrotor body position op
−
q are calculated as described above.

After that, bR−
o and op

−
q are used to compute 2D marker positions ip

−
1/2. Then, ip

−
1/2 is

compared with ip1/2. The gradient descent algorithm is used here to find an optimal Ψ∗

iteratively, until ip
−
1/2 ≈ ip1/2. Concurrently, the quadrotor position opq is optimized as

well.

It is worth mentioning that the iterative optimization method used here is very compu-

tationally efficient and, therefore, does not impair the total computational performance.

3.3.3 Optical-Flow-Based Motion Estimation

During quadrotor take-off and landing, there are phases in which the quadrotor is near the

surface of the mobile ground robot. For the case that the markers cannot be completely
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Fig. 3.9: Sketch of points of interest selection.

and robustly detected in the camera field of view, optical-flow-based motion estimation is

applied. Then, the quadrotor pose is estimated by integration of the motion estimation.

Two steps are contained: 1) computation of optical flow; 2) motion reconstruction based

on the optical flow. In this section, Pyramidal implementation of the Lucas-Kanade algo-

rithm (PLK) [38] in combination with the image Jacobian matrix and the least squares

optimization method are applied to set up a visual odometry system and estimate the

camera as well as the quadrotor ego-motion.

Optical Flow Algorithms

The Lucas-Kanade algorithm is a classic differential optical flow technique [89]. An im-

proved version PLK can work robustly and efficiently to compute optical flow. One advan-

tage of the PLK algorithm is its ability to handle a large pixel motion exactly with local

sub-pixel accuracy.

First, image points of interest are selected as follows. The size of images is 188 × 120

pixels and an image window of 90 × 90 pixels around the principal point is selected. In

this image window, 36 image points of interest are homogeneously selected. Around each

image point of interest, an image ROI of 17×17 pixels is constructed. The optical flow for

this image point of interest is calculated by matching the image ROI of the previous frame

in an extended search window containing 24 more pixels in both directions in the current

frame. It can be considered in a way that optical flows of 36 points of interest have been

computed in total with a better accuracy. The search window is set relatively large, since

if the quadrotor is near the surface of the ground robot, the field of view is limited and

the image contrast is not sufficient. Outlier cancellation based on the RANdom SAmple

Consensus (RANSAC) algorithm is applied to select 24 final points of interest.

The camera frame rate is 60Hz. However, due to the computational time of PLK

algorithm, a total rate of 15Hz is obtained. The last two consecutive images at 60Hz

of an image sequence of 4 images are used to compute the optical flow. The maximum

inter-frame motion is 24 pixels/frame, and the maximum detectable quadrotor motion in
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XI-/YI-directions at the lowest altitude is approximately 1m/s.

Motion Estimation

The PLK optical flow algorithm determines the optical flow for predefined image points of

interest and the camera ego-motion can be computed by using the image Jacobian matrix

J , which combines the motion of a 3D point χ on the landing surface of the mobile robot

in the camera frame and its projection point ζ in the image plane (illustrated in Fig. 3.10)

as follows [75]:

[
iẋζ

iẏζ

]
=




f
zχ

0 − ixζ

zχ
− ixζ ·iyζ

f

f2+ix
2
ζ

f
−iyζ

0 f
zχ

− iyζ

zχ
−f2+iy

2
ζ

f
ixζ ·iyζ

f ixζ




︸ ︷︷ ︸
J

·




Tx

Ty

Tz

ωx

ωy

ωz




, (3.47)

where [iẋζ iẏζ ]
T denotes the motion of the point ζ in the image plane and f is the focal

length. zχ is the perpendicular distance between the 3D point χ and the camera center
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along the optical axis as follows:

zχ = [0 0 1] · cpχ (3.48)

with the 3D coordinate of χ in the camera frame cpχ. The relative motion of the image

point χ with respect to the camera is represented by [Tx Ty Tz ωx ωy ωz]
T .

Since the image points of interest are predefined and f is constant, in order to compute

the relative motion between the camera and the landing surface, zχ should be determined

for every image point of interest. The computation of zχ is based on the rules of similar

triangles as follows.

The position of the point ζ with respect to the camera frame can be written

cpζ = [ixζ iyζ f ]T . (3.49)

According to the similar triangle rules, the following equations are built:

[0 0 1] · oRc · cpζ

[0 0 1] · opc

=

√
cpζ

T · cpζ√
cpχ

T · cpχ

(3.50)

and

f

zχ

=

√
cpζ

T · cpζ√
cpχ

T · cpχ

, (3.51)

where cpχ is the position of χ in the camera frame and the multiplication with [0 0 1]

selects the z-component of a position vector.

By combining Eq. 3.50 and 3.51, zχ can be solved as

zχ = f ·

√
cpχ

T · cpχ√
cpζ

T · cpζ

= f · [0 0 1] · opc

[0 0 1] · oRc · cpζ

. (3.52)

The relationship cT q between the camera frame and the quadrotor frame can be derived

from system calibration. Here based on reasonable assumption, oRc and oRb are assumed

to be identical. Then, Eq. 3.52 is rewritten as

zχ =
f · ([0 0 1] · opc)

−ixζ · sΘ + iyζ · sΦ · cΘ + f · cΦ · cΘ . (3.53)

The optical flow on 24 image points of interest χ1 to χ24 and their projections ζ1 to ζ24
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will be calculated and an overdetermined system of linear equations is obtained :




iẋζ1

iẏζ1
...

iẋζ24

iẋζ24




=




f
zχ1

0 − ixζ1

zχ1
− ixζ1

·iyζ1

f

f2+ix
2
ζ1

f
−iyζ1

0 f
zχ1

− iyζ1

zχ1
−f2+iy

2
ζ1

f
ixζ1

·iyζ1

f ixζ1

...
...

...
...

...
...

f
zχ24

0 − ixζ24

zχ24
− ixζ24

·iyζ24

f

f2+ix
2
ζ24

f
−iyζ24

0 f
zχ24

− iyζ24

zχ24
−f2+iy

2
ζ24

f
ixζ24

·iyζ24

f ixζ24




︸ ︷︷ ︸
J24

·




Tx

Ty

Tz

ωx

ωy

ωz




. (3.54)

where an image Jacobian matrix J24 of 48×6 for 24 image points of interest is built. Then

the relative motion of the camera with respect to the camera frame can be solved by

−




Tx

Ty

Tz

ωx

ωy

ωz




= −(J24
T · J24)

−1 · J24
T ·




iẋζ1

iẏζ1
...

iẋζ24

iẋζ24




. (3.55)

Since oRc and oRb are assumed to be identical, the angular motion of the camera and

quadrotor are also identical. The linear motion of the quadrotor oṗq = [ẋ ẏ ż]T is

expressed by

oṗq = oRb · bṗq = oRb ·

−




Tx

Ty

Tz


 +




ωx

ωy

ωz


× bpc


 , (3.56)

where bpc denotes the camera position in the body frame.

Then, the position of the quadrotor in the object frame at time t from time t0 is

computed by

opq(t) = opq(t0) +

∫ t

t0

˙opq(t) · dt. (3.57)

3.3.4 Data Fusion Using a Continuous-Discrete EKF

To achieve high-frequency and accurate pose/motion estimations, an EKF is applied for

multi-sensory data fusion. The most common form of KF is the discrete-time KF. But the

IMU data and images have different data rates and, therefore, arrive asynchronously. An-

other unusual form, namely continuous-discrete KF, mentioned in [114], is more convenient

than the former one. The prediction of the current system state seems to be continuous,

using the IMU data arriving at a higher rate than images to drive the system model. The

marker-based pose estimation is used in the stage of correction and in the discrete form at

a lower frame rate, as it is synchronized with the latest IMU data.

Note that optical-flow-based motion estimation is used for the case that the quadrotor
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is near the ground robot and cannot robustly and completely detect the markers. Since

the quadrotor pose is computed based on motion integration, drift also occurs, which is

however smaller than IMU drift. Therefore, only the marker-based pose information is

fused with IMU data, providing a reasonable correction.

In the data fusion using a continuous-discrete EKF, the predicted, a priori estimates

are denoted by “(̂·)−”, while the updated, a posteriori estimates are denoted by “(̂·)”.

Process Model

The system state x ∈ Rn, where n = 9, contains the quadrotor position and linear velocity

in the object frame as well as the quadrotor orientation represented by the roll, pitch, and

yaw angles:

x = [x y z ẋ ẏ ż Φ Θ Ψ]T . (3.58)

The system is a non-linear process. According to Eqs. 3.22, 3.23, and 3.30, the system

process equation can be formulated as follows:

ẋ = [ẋ ẏ ż ẍ ÿ z̈ Φ̇ Θ̇ Ψ̇]T

= f(x,u, ω)

=




ẋ

ẏ

ż

ẍtrans + ẍrot

ÿtrans + ÿrot

−sΘ · ax + sΦcΘ · ay + cΦcΘ · az + g

p + sΦtΘ · q + cΦtΘ · r
cΦ · q − sΦ · r

sΦ
cΘ
· q + cΦ

cΘ
· r − Ω̇r




+ ω, (3.59)

where ẍtrans, ẍrot, ÿtrans, and ÿrot are defined in Eq. 3.23, u denotes the measurement input

from the high-frequency IMU data and the feed-forward information from the ground robot

given by

u =
[
ax ay az p q r ar Ω̇r Ω̈r

]T

, (3.60)

and ω denotes the process noise, which is assumed to be a zero mean multi-variant normal

distribution with covariance Q.

The system equation above can be linearized as follows:

x(t) ≈ x̂(t)− + F · (x(t−∆t)− x̂(t−∆t)) (3.61)

where x(t) denotes the actual state vector at time t, x̂(t)− denotes the approximate state

computed using Eq. 3.59, and x̂(t − ∆t) is an a posteriori state estimate after the EKF

processing at time t−∆t. The system matrix F is the Jacobian matrix of partial derivatives
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of f with respect to x and can be formulated as follows:

F [j,l,t] =
∂f [j]

∂x[l]

(x̂(t−∆t), u(t−∆t), 0)

=




0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

Ω̇2
r Ω̈r 0 0 2Ω̇r 0 a1 a2 a3

−Ω̈r Ω̇2
r 0 −2Ω̇r 0 0 a4 a5 a6

0 0 0 0 0 0 a7 a8 0

0 0 0 0 0 0 a9 a10 0

0 0 0 0 0 0 a11 0 0

0 0 0 0 0 0 a12 a13 0




, (3.62)

where j, l ∈ {1, · · · , 9} and a1 to a13 are calculated as follows:




a1

a2

a3

a4

a5

a6

a7

a8




=




0 cΦsΘcΨ + sΦsΨ −sΦsΘcΨ + cΦsΨ

−sΘcΨ sΦcΘcΨ cΦcΘcΨ

−cΘsΨ −(sΦsΘsΨ + cΦcΨ) −cΦsΘsΨ + sΦcΨ

0 cΦsΘsΨ− sΦcΨ −(sΦsΘsΨ + cΦcΨ)

−sΘsΨ sΦcΘsΨ cΦcΘsΨ

cΘcΨ sΦsΘcΨ− cΦsΨ cΦsΘcΨ + sΦsΨ

0 cΦcΘ −sΦcΘ

−cΘ −sΦsΘ −cΦsΘ




·



ax

ay

az


 (3.63)

and 


a9

a10

a11

a12

a13




=




0 cΦtΘ −sΦtΘ

0 sΦ
(cΘ)2

cΦ
(cΘ)2

0 −sΦ −cΦ

0 cΦ
cΘ

− sΦ
cΘ

0 sΦ
cΘ

tΘ cΦ
cΘ

tΘ



·



p

q

r


 . (3.64)

Measurement Model

The marker-based pose estimation provides the measurements of quadrotor position and

its yaw angle without drifts in the object frame So at a frame rate of 15Hz. Then, the

system measurement is formulated as follows:

z =

[
opq

Ψ

]
=




x

y

z

Ψ


 , (3.65)
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3 Multi-Sensory Pose/Motion Estimation

and the system observation equation is formulated as a discrete system given by

zk = H · x(tk) + νk (3.66)

with k denoting the kth measurement, ν denoting the measurement noise, which is as-

sumed to be a zero mean multivariate normal distribution with covariance R, and the

measurement transition matrix

H =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1


 . (3.67)

Continuous-Discrete Data Fusion

The system state is continuously predicted first:

x̂(t +4t)− ≈ x̂(t)− + ˙̂x(t)
− · 4t, (3.68)

where
˙̂x(t)

−
= f(x̂(t)−, u(t),0) (3.69)

and

4t → 0, (3.70)

The new state error covariance matrix P 1 is given by

P (t +4t)− = P (t)− + (F (t)P (t)− + P (t)−F T (t) + Q) · 4t. (3.71)

To reduce the error caused by linearization of the non-linear system model, the update

period of the IMU data Timu
2 is divided into N identical time intervals. Let

4t =
Timu

N
. (3.72)

For newly arriving IMU data, the prediction process in time 4t will be iteratively carried

out N times. For instance, if the refreshing period of the IMU data Timu is about 10ms

and the iteration number N is set to 100, the prediction period is about 0.1ms. By using

this technique, remarkable errors caused by linearization can be avoided and the remaining

inaccuracy remains negligible.

For the correction stage, the predicted system state is updated with the time-discrete

measurements zk:

Lk = P (tk)
−HT (R + HP (tk)

−HT )−1, (3.73)

P (tk) = (E −LkH)P (tk)
−, (3.74)

x̂(tk) = x̂(tk)
− + Lk(zk −Hx̂(tk)

−), (3.75)

1P is symmetrical and positive definite
2T must not be constant
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where L is the Kalman gain, k is the index of the kth measurement, tk indicates the

corresponding system time for the kth iteration, and E denotes a unit matrix.

Noise Investigation

The derivation of the EKF is based on white Gaussian system and measurement distur-

bance, but the main error source in this work is the sensor error of the IMUs, which does

not fulfill this precondition. In [100] the sensor model of an accelerometer3 is given by4:

z = z̃ + ρ · z̃ + σ + ωr, (3.76)

where z is the sensor output, z̃ is the actual acceleration (the ground truth), ρ is the scale

factor 5, σ is the measurement bias or zero offset, and ωr is the random noise. The sensor

error ez can then be expressed by

ez = z − z̃ = ρ · z̃ + σ + ωr. (3.77)

This sensor error is colored non-Gaussian measurement noise and cannot be observed by

a noise shaping filter [86].

Another non-negligible error source is the estimation error of the roll and pitch angles,

which is also non-Gaussian.

Fortunately, as mentioned in [95] and [31], the EKF can still be applied in such cases

with non-white non-Gaussian disturbance and give sensible results, but the covariance

matrices Q and R should be tuned carefully.

Some criteria for the parameter tuning of the EKF are introduced in [18]. Since the

state of the quadrotor cannot be fully observed by the available equipment, the generative

approach, maximizing the joint likelihood of all the data, is not suited. To get a more

accurate estimation of the states, the criterion minimizing the residual prediction error for

the external ground truth is deployed.

This technique searches for the covariance matrices Q and R, which minimize the

quadratic error between the ground truth and the estimates:

〈Q,R〉 = argmin
Q,R

K∑
j=0

(z̃j −Hx̂(tj))
T G(z̃j −Hx̂(tj)), (3.78)

where z̃ = [x̃ ỹ z̃ Ψ̃]T denotes the ground truth, K indicates the number of the involved

measurements, and G is the weighting matrix6 and determines the importance of every

single element in z̃.

Assuming that all external measurements have about the same accuracy, giving the

3Gyroscopes have the similar model.
4Only the significant terms are considered.
5ρ is usually expressed in polynomial form to include non-linear effects.
6Or inverse of the noise covariance matrix of the external measurements, which are taken as ground truth.

43



3 Multi-Sensory Pose/Motion Estimation

  USB

Camera

UART Interface

Inner-Loop Controll-

   er and Actuators
IMUs

Buffering and

Marker Detection

The 1st Data

Synchronization 

Marker-Based

Pose Estimation

  The 2nd Data

Synchronization 
   Data Fusion 

        (EKF)

T
d1

T
d2

T
d4

T
d5

T
d3

T
d3

T
d6

T
d7

ATOM-Board

15 Hz 100 Hz

Outer-Loop

 Controller

T
d8

Fig. 3.11: The processing frequency in each system block and the overall system time delay,
listed in Tab. 3.1. The measurement details of the time delay are shown in Appendix
A.

identical weighting factor, Eq. 3.78 is simplified to:

〈Q,R〉 = argmin
Q,R

K∑
j=0

(z̃j −Hx̂(tj))
T (z̃j −Hx̂(tj)). (3.79)

In Section 3.6, Q and R are experimentally determined to minimize the error between

the ground truth and the estimated values.

3.3.5 Synchronization Aspect

The IMU and vision data are provided by different sensors. They are properly asyn-

chronous, making accurate pose and motion estimation impossible. To deal with this

problem, the IMU and vision data should be synchronized with each other. The time de-

lays of sensor data and data transfer are shown in Fig. 3.11 and Tab. 3.1. The measuring

procedure is described in Appendix A.

As shown in Fig. 3.11, the multi-sensor data should be synchronized at two points:

synchronization before marker-based pose estimation and synchronization before EKF-

aided data fusion.

The 1st Data Synchronization

To carry out marker-based pose estimation, marker positions in images from the camera

and on-board estimated Φimu and Θimu angles are required. Here, the IMU data are
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3.3 Multi-Sensory Multi-Rate Data Fusion

Symbol Data Time Delay

Td1 Vision data ≈20ms
Td2 2D marker position ≈80ms
Td3 IMU data, Φimu, Θimu ≈30ms
Td4 Synchronized data ≈80ms
Td5 Pose estimates ≈90ms
Td6 Synchronized data ≈40ms
Td7 Fused data ≈65ms
Td8 Control commands ≈90ms

Tab. 3.1: Detailed data transfer and time delay at each step according to Fig. 3.11.

predicted or interpolated to synchronize with the vision data, in order to obtain a smoother

marker-based motion estimation.

The camera samples current marker positions every 16.67ms7 and the shutter is then

opened for the desired exposure time. After preparation for transfer, the captured image is

sent to the ATOM-board. To avoid unexpected expired images, the buffer on the ATOM-

board is set to get data on demand – until the system requires new images, the buffer

would not receive data. Data in the buffer are fetched by the image processing program a

little later after arriving. For detection of the markers in the image, complex computation

has to be executed, which takes a relatively long time, resulting in a total time delay Td2

of approximately 80ms.

The IMUs on the quadrotor measure the accelerations and rotation velocities. These

data are used to estimate the Φimu and Θimu angles. The IMU data at an appropriate

moment are picked up as soon as the 2D marker position is achieved. The data are

synchronized according to the image data. Therefore, Td4 ≈ Td2.

The actual time labels8 Tv of the vision data and Te of the estimated Φimu and Θimu

can be calculated by considering the processes described above and the current time label.

In fact, the angle estimations arrive mostly with less time delay, so it is more reasonable

to synchronize the angles with the vision data. Then, more interpolations are carried out

than predictions, which are less accurate.

A buffer is used to save the last L angle estimations based on IMU data and the time

label of the estimation is Te,l, l ∈ N and 1 ≤ l ≤ L. L is chosen large enough, so that

Te,1 ≤ Tv.

• If Tv ≥ Te,k and Tv < Te,k+1, where 1 ≤ k ≤ L − 1, then interpolation is conducted

as follows:

Φ(Tv) = Φ(Te,k) +
Φ(Te,k+1)− Φ(Te,k)

Te,k+1 − Te,k

· (Tv − Te,k) (3.80)

Θ(Tv) = Θ(Te,k) +
Θ(Te,k+1)−Θ(Te,k)

Te,k+1 − Te,k

· (Tv − Te,k) (3.81)

7It runs at 60 Hz.
8Time labels of data sampling.
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• If Tv ≥ Te,L, then prediction is conducted as follows:

Φ(Tv) = Φ(Te,L) +
Φ(Te,L)− Φ(Te,L−1)

Te,L − Te,L−1

· (Tv − Te,L) (3.82)

Θ(Tv) = Θ(Te,L) +
Θ(Te,L)−Θ(Te,L−1)

Te,L − Te,L−1

· (Tv − Te,L) (3.83)

The 2nd Data Synchronization

For the continuous-discrete EKF, the measurement with the time delay Td5 used in the

correction stage should be synchronized with the last prediction with the time delay Td3.

Since the IMU measurements are more recent than the marker-based pose estimation, the

latter one has to be predicted. [52] gives an advisable approach to solving this problem:

The state estimation from the EKF can be used to drive the system measurement forward.

The synchronized data are based on IMU data: Td6 ≈ Td3

Tm,k is the time label of the current system measurement; Toe,k−1 and Toe,k are for

the last and current optimal (a posteriori) estimations. Then, the measurement can be

predicted by

z(Toe,k) = z(Tm,k) +
x̂s(Toe,k)− x̂s(Toe,k−1)

Toe,k − Toe,k−1

· (Toe,k − Tm,k), (3.84)

where

x̂s =




x̂

ŷ

ẑ

Ψ̂


 . (3.85)

represents the selected a posteriori system state estimation.

After this multi-sensory fusion, more accurate position, orientation, and velocity infor-

mation is achieved. With this recursive filter, the pose estimation is enabled at a higher

frequency, which results in smoother control performance. The system also gives better

responses to the sudden disturbance after coupling the IMU data to the closed control

loop.

3.4 Performance Evaluation

Real-time experiments were conducted for the evaluation of the multi-sensory pose estima-

tion. The experimental environment is shown in Fig. 3.12. In this section, first the ground

truth and system calibration setup for the real-time experiments are described. Then,

the synchronization of IMU data and vision data is conducted, through which a smoother

motion estimation is obtained. After that, the marker-based pose/motion estimation with-

out an EKF is investigated, which is followed by the EKF-aided pose/motion estimation.

A hovering behavior with a fixed desired pose and a tracking behavior with time-variant
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Fig. 3.12: Experimental environment.

desired pose are presented and discussed. Finally, the motion estimation results based on

optical flow are shown.

3.4.1 Ground Truth and System Calibration

To evaluate the pose/motion estimation and following control performance in Chapter 4, a

position/motion sensing system called VisualeyezTM II VZ4000 from Phoenix Technologies

Incorporated [11] was used, which recorded the 3D positions of four markers mounted on

the quadrotor frame. A similar quadrotor pose calculation used in the previous work

[131] was conducted and regarded as the ground truth of the actual flying trajectory and

flying direction. Based on the ground truth from the tracking system and quadrotor pose

estimation using the algorithm described previously, a system calibration of coordination

transformation between the quadrotor, the ground robot, and the tracking system was

accomplished. More information about this tracking system can be found in Appendix C.

3.4.2 Data Synchronization

In Section 3.3, the necessity of and the algorithm for multi-sensory data synchronization

were discussed. The details of the time delay measurement is described in Appendix A,
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Fig. 3.13: Marker-based motion estimation using unsynchronized data.
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Fig. 3.14: Marker-based motion estimation using synchronized data.

while the data synchronization results are shown here.

To evaluate data synchronization at different points, suitable criteria should be consid-

ered. For the evaluation of the first data synchronization between 2D marker positions

and estimated Φimu and Θimu angles, marker-based motion estimation using the derivative

of obtained position is used. The motion is expected to be smooth and limited. With

absolutely synchronized data, the location of the quadrotor should be well-estimated. In

other words, cluttered motion indicates unsynchronized data.

The motion estimation using unsynchronized data is illustrated in Fig. 3.13. Due to

the time difference between estimated Φimu and Θimu angles and marker positions, no

reasonable motion can be observed.

In Fig. 3.14 the estimated Φimu and Θimu angles and marker positions are synchronized

and the motions ẋ and ẏ are represented. For the motion estimation along ZI-/Zo-axis,

other error sources, e.g. inaccurate IMU measurement in ZI-/Zo-direction causing great
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Fig. 3.15: Marker-based pose estimation.
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Fig. 3.16: Marker-based pose estimation error.

oscillation, angle estimation error, and marker position errors, are more dominant than

unsynchronized data. Further techniques have to be considered, such as an EKF.

Analogously, the second data synchronization before EKF-aided data fusion was also

conducted for improved pose/motion estimation.

3.4.3 Marker-Based Pose/Motion Estimation

In this section, the marker based pose estimation without using an EKF is investigated

first. A hovering experiment at desired position [x y h]T = [0 0 1]T m and with desired

yaw angle Ψ = 0deg was carried out.
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Fig. 3.17: Estimation error of the roll-angle Φ and the pitch-angle Θ.

In Fig. 3.15, the estimation results and the actual values (the ground truth) are illus-

trated by dashed lines and wide solid lines, respectively, which almost overlap with each

other. Since the position of four markers mounted on the quadrotor were transferred to

the tracking system sequentially, small errors in position estimation of one marker may

cause a relatively large error in the yaw angle determination by using the tracking system.

Therefore, obvious disturbance of the actual values of the yaw angle is noticed. In this

case, the marker-based yaw angle estimation is more reliable than the ground truth.

The estimation errors are illustrated in solid lines in Fig. 3.16. The absolute estima-

tion errors ex and ey in the Xo-/Yo-directions are less than 0.04m. The altitude is more

accurately estimated with a maximum error eh of 0.02 m. In spite of the measurement

disturbance of the ground truth, the absolute Ψ estimation error eΦ is less than 5 deg.

Furthermore, Root Mean Square (RMS) error is used here to evaluate the quality of the

pose estimation:

eRMS =

√
e2
1 + e2

2 + · · ·+ e2
k

k
, (3.86)

where eRMS is the RMS error, e1 · · · ek are estimation errors of the kth measurement. The

RMS errors eRMS,x, eRMS,y, eRMS,h, and eRMS,Ψ are 0.015m, 0.014 m, 0.01 m, and 1.5 deg,

respectively, illustrated by the dashed lines in Fig. 3.16. It is concluded that the marker

based pose estimation is very accurate.

In Fig. 3.17 the estimated Φ and Θ angles are compared with the ground truth. The

relatively large oscillations of the ground truth are due to the same problem caused by the

tracking system as that in the yaw angle. These angle estimation errors are the main error

sources of the pose estimation inaccuracy.
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Fig. 3.18: Pose estimation result using the first set of EKF parameters.
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Fig. 3.19: Pose estimation errors using the first set of EKF parameters.

3.4.4 EKF-Aided Pose/Motion Estimation

The EKF-aided pose/motion estimation is investigated in this section. Using the tuned

EKF, hovering and tracking behaviors of the quadrotor were exhibited where Proportional-

Integral-Derivative (PID) controllers were used. Detailed control design will be introduced

in Chapter 4.

EKF Parameter Tuning

Before using the EKF to fuse multi-sensory data, the noise covariances of the EKF have

to be tuned first. The covariance matrices Q and R, which indicate the reliability of the

51



3 Multi-Sensory Pose/Motion Estimation

0 10 20 30 40
−0.5

0

0.5
x 

[m
]

0 10 20 30 40
−0.5

0

0.5

x 
[m

]

0 10 20 30 40
−0.5

0

0.5

y
 [

m
]

0 10 20 30 40
−0.5

0

0.5

y
 [

m
]

0 10 20 30 40
0.8

1

h
 [

m
]

0 10 20 30 40
0.8

1

h
 [

m
]

0 10 20 30 40
−10

0

10

t [s]

Ψ
 [

d
e

g
]

0 10 20 30 40
−10

0

10

t [s]
Ψ

 [
d

e
g

]

Actual value

Marker-based estimation

Actual value

EKF estimation

Fig. 3.20: Pose estimation result using the second set of EKF parameters.
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Fig. 3.21: Pose estimation errors using the second set of EKF parameters.

system prediction and system measurements, respectively, determine the performance of

this iterative filter. They are assumed to be diagonal in this thesis.

Experiments were conducted for the parameter tuning. To better reflect the true state

of a flying quadrotor, the quadrotor was set to hover over the ground robot. As discussed

in Section 3.3, the EKF parameters should be tuned such that the residual prediction error

is minimized. Several different series of parameters were applied in experiments. Then,

they were tuned with respect to stochastic descent of the estimation error. RMS error was

used here to evaluate the quality of the pose estimation.

To simplify this process, the R matrix can be roughly predetermined. Considering the

error analysis of the marker-based pose estimation in Section 3.4.3, the terms corresponding
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3.4 Performance Evaluation

to x, y, and z estimations have an order of magnitude from 10−4 m2, and Ψ estimation has

a covariance about 1 deg2.

Fig. 3.18 and 3.20 illustrate the pose estimation of the quadrotor during hovering using

marker-based estimation (left) and using the EKF (right) with two different parameter

sets, while the respective estimation errors and RMS errors are illustrated in Fig. 3.19 and

3.21. For the first parameter set, the estimation error of the EKF is more significant than

that of the marker-based estimation. By using the second parameter set, both estimation

errors are approximately identical to each other, characterizing a better performance of

the EKF pose estimation than the former one. Note that if the tracking system gives more

continuous pose measurements, not stepwise, the EKF estimation should perform better

than the marker-based estimation.

Since the tracking system does not provide smooth pose ground truth, no sensible

motion information can be obtained as the ground truth. In order to find the parameters,

which give more accurate motion estimation, the hovering quality of the quadrotor was

deployed for the parameter tuning, instead of the motion measurements. Using the second

parameter set, the quadrotor was able to hover at the desired pose with fewer control

errors. This also indicates a better performance of the EKF motion estimation.

The hovering experiment was carried out many times, and the parameters were evalu-

ated and tuned as described above. Finally, the following values were set in the EKF:

R = diag
(
0.0004 m2, 0.0004 m2, 0.0002 m2, 0.5000 deg2

)
, (3.87)

and

Q = diag(0.0002 m2, 0.0002 m2, 0.1000 m2, 0.0010 (m/s)2, 0.0010 (m/s)2,

0.2000 (m/s)2, 0.3000 deg2, 0.3000 deg2, 0.6000 deg2). (3.88)

Performance Comparison with and without EKF

Now, the pose estimation and motion estimation results without using an EKF and the

results with an EKF are compared. The EKF and marker-based pose estimation run at

100Hz and 15Hz, respectively. To illustrate the smoothing effect more obviously, the pose

estimations using both methods are compared with each other for 1 s in Fig. 3.22. The

pose is more smoothly estimated by using the EKF due to the more frequently updated

estimation data.

As discussed, the motion estimation is improved by considering synchronization of the

multi-sensory data. In Fig. 3.23, motion estimation results with and without using the

EKF are illustrated. By using this recursive filter, the high-frequency noise was filtered

out in all 3 directions and the motions are sensibly represented.

RMS Error Analysis During Hovering

To evaluate quality of the EKF-aided pose estimation, hovering experiments with different

desired poses were carried out. The pose estimation errors are computed and compared

with each other. The desired pose varies only one term every time and for x, y, z, Ψ in
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Fig. 3.22: Pose estimation results without (marker-based) and with EKF.
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Fig. 3.23: Motion estimation results without (marker-based) and with EKF.

sequence. Detailed variations are listed in Tab. 3.2–3.5. The corresponding estimation

errors are illustrated in Fig. 3.24.

The RMS errors eRMS,x, eRMS,y, and eRMS,h become larger if xd and yd move away from

the zero point. There are two explanations of this phenomenon: 1) the descending of the

distance between two markers in the image plane, which results in increasing measurement

noise; 2) the distortion caused by the lens. Objects near to the edges of the CCD are more

distorted than those near to the center point.

The RMS errors eRMS,x and eRMS,y rise approximately linearly with the height hd. h is

also better estimated at lower height, due to the larger distance between markers in the

image plane. Rotation Ψd about the Zo-axis has negligible effect on the pose estimation,
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Nr. xd [m] yd [m] hd [m] Ψd [deg]
1 0.0 0.0 1.0 0
2 -0.1 0.0 1.0 0
3 -0.2 0.0 1.0 0
4 0.1 0.0 1.0 0
5 0.2 0.0 1.0 0

Tab. 3.2: Variation of xd.

Nr. xd [m] yd [m] hd [m] Ψd [deg]
1 0.0 0.0 1.0 0
2 0.0 -0.1 1.0 0
3 0.0 -0.2 1.0 0
4 0.0 0.1 1.0 0
5 0.0 0.2 1.0 0

Tab. 3.3: Variation of yd.

Nr. xd [m] yd [m] hd [m] Ψd [deg]
1 0.0 0.0 1.0 0
2 0.0 0.0 0.9 0
3 0.0 0.0 0.8 0
4 0.0 0.0 1.1 0
5 0.0 0.0 1.2 0

Tab. 3.4: Variation of hd.

Nr. xd [m] yd [m] hd [m] Ψd [deg]
1 0.0 0.0 1.0 0
2 0.0 0.0 1.0 -45
3 0.0 0.0 1.0 -90
4 0.0 0.0 1.0 45
5 0.0 0.0 1.0 90

Tab. 3.5: Variation of Ψd.

−0.2 0 0.2−0.1 0.1
0.005

0.01

0.015

0.02

xd [m]
−0.2 0 0.2−0.1 0.1

0.005

0.01

0.015

0.02

yd [m]

0.80 1 1.200.90 1.10
hd [m]

−45 0 45−90 90
Ψd [deg]

RMS, x
e

RMS, y
e

RMS, h
e

RMS, Ψ
e

0.005

0.01

0.015

0.02

0.005

0.01

0.015

0.02

R
M

S
e

   
   

   
[m

]

R
M

S
e

   
   

   
[m

]
R

M
S

e
   

   
   

[m
]

R
M

S
e

   
   

   
[m

]

Fig. 3.24: Pose estimation errors for varying xd, yd, hd, and Ψd.

as it results in only a rotation of the markers in the image plane.

Since the algorithm used for the marker-based pose estimation is optimized for solving

the angle Ψ, Ψ is accurately estimated for all poses.

EKF-Aided Pose Estimation During Tracking

The quadrotor is planned later to cooperate with the ground robot together. Therefore,

the pose estimation performance in a dynamic behavior such as tracking the movement of

the ground robot should be studied.

In Fig. 3.25, the ground robot ran along an arbitrary trajectory in 30 s. The displace-

ments in XI-/YI-directions were about 0.6m and 0.2m. The yaw rotation was about

160 deg. The trajectory of the ground robot was recorded by the tracking system and
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Fig. 3.25: EKF-aided pose estimation result in a quadrotor tracking experiment.
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Fig. 3.26: EKF-aided pose estimation error during tracking.

fused with the movement of the quadrotor off-line. The quadrotor successfully tracked the

markers on the ground robot. As shown in Fig. 3.26, the RMS errors of x, y, h, and Ψ

estimations are 0.020m, 0.027m, 0.009m, and 3 deg, respectively.

3.4.5 Optical-Flow-Based Pose/Motion Estimation

The motion estimation based on optical flow computation is also shown here. Fig. 3.27

shows the optical flow of 36 image points and that of 24 image points after outlier cancel-

lation. The inaccurate optical flow vectors are removed.

The pose estimation result using optical flow motion estimation is shown in Fig. 3.28 and
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Fig. 3.27: Optical flow before and after outlier cancellation.
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Fig. 3.28: Pose estimation result based on optical flow in a quadrotor take-off, hovering,
tracking, and landing experiment.

3.29 in an experiment consisting of quadrotor take-off, hovering, tracking, and landing. The

RMS errors in XI-/YI-directions are very small, namely 0.034m and 0.048m, respectively.

The yaw angle is also very accurately estimated with an RMS error of 3.4 deg. The RMS

error in altitude is about 0.048m, which is mainly due to the integration error of the motion

estimation without correction. As optical-flow-based motion estimation is only applied in

a short time interval in take-off and landing, the error in this order is acceptable.

3.5 Discussion

Markers, Features, and Image Points of Interest

For a vision-based tracking task, markers, features, and image points of interest can be

used to describe the target. Artificial markers have the advantage of robust detection and

the disadvantage of costly setup. A flexible and natural alternative is to use feature points,

which can be previously trained and then applied online. However, they are sensitive to

lighting conditions and require a higher computational cost. Compared to the former ones,
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Fig. 3.29: Pose estimation error based on optical flow in a quadrotor take-off, hovering, track-
ing, and landing experiment.

optical flow computed using image points of interest can be used for motion estimation in

a more flexible and efficient manner and is envisioned to totally replace artificial markers.

A challenging problem arising in this context is that a segmentation of the target from the

background should be conducted first. As optical-flow-based motion estimation is applied

when the quadrotor has a lower height and the input images only contain the points of the

ground robot, this problem does not need to be considered here.

Feedforward Information of the Ground Robot Motion

In this chapter, no accurate pose and motion information of the ground robot is fed forward

to the quadrotor in real time. The movement of the ground robot is assumed to be noise in

the system model. Since the system measurements are much more reliable than the IMU

data, the estimated pose is dominated by the marker-based pose estimation. At the same

time, sudden motion variations of the quadrotor come into the motion estimation through

the system model driven by IMU data. Thus, the estimation results are still applicable to

the tracking experiments.

If all the states of the ground robot are available, more accurate pose/motion estimation

and a better tracking performance are expected to be achieved, which will be discussed in

Chapter 4.

Improved Pose Estimation Performance

It is not easy to make a direct comparison with the other state-of-the-art works, since

the hardware platforms, sensor modalities, sensor numbers, fusion techniques in details,

or even marker designs in different works may vary. Therefore, the two most comparable

works are selected here to provide an idea of the accuracy of the results presented in this

thesis.
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A continuous-discrete EKF-aided data fusion of vision and inertial sensors for pose

estimation has been applied for a helicopter called GTmax in [129], in which the on-board

camera looked forwards and detected a dark square against a light background. Using

this large helicopter (11.9 ft long with a rotor diameter of 10.2 ft), a very large marker

(36 ft2), and much higher computational power (two embedded PCs), the maximum error

along the optical axis was about 8% of the distance between the helicopter and the dark

square, namely 9.2 ft of 110–120 ft, while the maximum error of the estimation here is only

approximately 2.5%, namely 0.03m of 1.2m.

In [19], a quadrotor is equipped with IMUs, a stereo camera looking forwards, and laser

range finders. The EKF-based fusion of IMU data and stereo vision or laser data ran

at 50Hz to estimate quadrotor position, velocity, acceleration, and the IMU biases. The

variance parameters were obtained using an external motion-capture system. The authors

did not mention the estimation errors explicitly. From their plots, an average displacement

of 0.3m in XI-/YI-directions between the ground truth and the visual odometry with

bundle adjustment can be derived.

Compared to the works mentioned above, the pose estimation presented in this the-

sis achieves higher accuracy and a higher frequency, which are both critical for control

performance.

3.6 Summary

The fundamental and challenging problem for a stable flight of UAVs is accurate pose/mo-

tion estimation. Due to sensor limitations, such as drifts of inertial sensors, limited field of

view, and low sampling rate of vision sensors, an elaborated fusion of multi-sensory data

becomes an indispensable means.

In this chapter, a quadrotor in an autonomous heterogeneous air-ground system is es-

tablished only using minimal on-board sensors: IMUs and a monocular camera. First,

efficient marker-based pose and motion estimation is proposed and optimized. Then, a

continuous-discrete EKF is applied, in which the high-frequency IMU data drive the pre-

diction, while the estimates are corrected by the accurate and steady vision data. A

high-frequency fusion at 100Hz is achieved. Moreover, time delay analysis and data syn-

chronizations are thoroughly conducted to further improve the pose/motion estimation. In

addition, optical-flow-based motion estimation is applied for the case if the markers can-

not be robustly detected, for example, during take-off or landing. The complete on-board

implementation of sensor data processing and fusion without using a ground station re-

duces the influence of data transfer time delay, enables autonomous task accomplishment,

and extends the work space. Compared to the state-of-the-art works, a higher frequency

and higher accuracy of the quadrotor pose/motion estimation is obtained, exhibited in

experimental evaluation of real-time hovering and tracking a moving ground robot.

Based on the accurate estimation of the quadrotor pose and motion, an effective control

design is required in order to complete this autonomous flying system, which is investigated

in the next chapter.
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Based on high-frequency and accurate pose estimation of the quadrotor, a stable and

effective control design is desired in order to realize autonomous flying. Although quadro-

tors have major advantages in holonomic motion and robust mechanical design without

swashplates, it is very demanding to elaborate a controller mainly due to the non-linear

and highly unstable dynamics, time delay, and the need for a simplified control struc-

ture caused by hardware limitations. Sophisticated control designs have normally been

evaluated in simulations or limitedly evaluated in a non-autonomous manner.

This chapter is aiming at designing, implementing, and discussing adequate control

structures for the quadrotor, to overcome the aforementioned challenges and to improve the

quadrotor flying behavior. Standard controllers such as Proportional-Integral-Derivative

(PID) controllers, optimal controllers such as Linear Quadratic (LQ) controllers, and non-

linear controllers such as backstepping-based controllers and sliding model controllers are

carefully adapted to this quadrotor system and discussed. Compared to most works which

have implemented controllers on a real quadrotor, the system model used here is more

complex, in order to preserve the original dependency of system states. Moreover, the

overall time delay is derived and compensated for, while feedforward information is taken

into account.

An elaborated, integrated control approach combining the advantages of these con-

trollers is proposed and evaluated in a complete flight experiment consisting of take-off,

hovering, tracking, and landing. The control performance is proved to be effective in terms

of small Root Mean Square (RMS) control errors of 0.06m in position control, 0.03m in al-

titude control, and 3 deg in yaw control, which are much smaller than those in comparable

works in the literature.

The remainder of this chapter is organized as follows: First, the problem addressed

in this chapter and the system modeling for control are described in Section 4.1. In

Section 4.2, various controllers are adapted to the system model used in this thesis. In

Section 4.3, simulations presenting the controlled flying behaviors are conducted. Based

on the simulation results, the integrated control design considering quadrotor behavior

from take-off to landing is proposed. After that, real-time pose control performance is

experimentally evaluated. The results are presented in Section 4.4. Finally, a discussion

and a summary are given in Sections 4.5 and 4.6.
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4.1 Problem Definition and System Modeling for Control

4.1.1 Problem Definition

Up to now, most existing works about controlling a quadrotor are limited in a compro-

mise between sophisticated control design and control simplicity restricted by hardware

limitation and real-time implementation:

- Since the control of a quadrotor is a challenging problem, various optimal or non-

linear control designs have been proposed but only evaluated in simulations [37,

53, 87, 93, 106]. Most real-time experiments only apply simple, standard PID or

Proportional-Derivative (PD) controllers on a much simplified system model [21, 60,

79, 106, 109, 123, 128].

- Most works which aim at the evaluation of control performance commonly use exter-

nal sensors such as Global Positioning System (GPS) or tracking systems as pose/-

motion feedback [42, 115], such that the error sources are restricted to control design.

Autonomous flight is barely considered.

- Moreover, in most air-ground multi-robot systems, flying systems serve as a central/-

global control unit and provides information for the ground robots [29, 117, 119, 120].

Motion feedforward of a ground robot to a flying system has not yet been imple-

mented and evaluated.

- Few works have considered a complete flight scenario consisting of take-off, hovering,

tracking, and landing on a moving ground robot, each of which requires a unique

control design.

To overcome the above limitations, this chapter aims at design, adaptation, implementa-

tion, and performance evaluation of controllers on a fully autonomous system in real-world

environments. PID controllers, LQ controllers, backstepping controllers, and sliding mode

controllers are all thoroughly adapted to the quadrotor dynamic system, evaluated not

only in simulations but also in real-time experiments, to achieve an entire flight behavior.

The on-board Inertial Measurement Unit (IMU) and camera data are exclusively used as

sensor feedback. Furthermore, feed-forward extension of the control structure improves

the control performance significantly.

4.1.2 System Modeling for Control

Ignoring the unstable and untouchable aerodynamic forces and moments, the flying motion

of a quadrotor is determined by the rotational speed of the four propellers and the gravity.

Fig. 4.1 illustrates the quadrotor’s propellers, producing the force ff , fb, fl, fr and the

torque τf , τb, τl, τr for the front, back, left, and right rotors. If the rotating velocities of

all the four motors are increased by the same amount, the quadrotor will fly upwards, and

vice versa. The total thrust F is the sum of the force provided by all the propellers:

F = ff + fr + fb + fl = b · (Ω2
f + Ω2

b + Ω2
l + Ω2

r), (4.1)
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Fig. 4.1: Quadrotor schema.

where b denotes the thrust factor and Ω denotes the rotor speed.

The roll and pitch angles are under-actuated control variables. The force difference

of a pair of propellers causes rolling around the Xb-axis or pitching around the Yb-axis.

The rolling torque τΦ and the pitching torque τΘ can be computed using the following

equations:

τΦ = l · (fl − fr) = lb · (Ω2
l − Ω2

r);

τΘ = l · (ff − fb) = lb · (Ω2
f − Ω2

b), (4.2)

where l denotes the quadrotor axis length. The yaw rotation is caused by the difference

between the angular momentum generated by these two pairs of rotors:

τΨ = (τf + τb)− (τl + τr). (4.3)

Moreover, based on experimental measurement, the thrust F generated by motors can

be approximately calculated by using

F ≈ U · Fcmd ·K, (4.4)

where U is the current battery voltage, Fcmd is the thrust command signal between 0 and

255, and K is a negative constant due to the Zb-direction of the quadrotor body frame. K

should be experimentally determined.

Similar to [28, 35], translational motion and rotational motion of the quadrotor are

derived below.

Translational Motion

Generally, according to Newton’s laws, the force bf is related to the linear velocity bv =

[u v w]T in the body frame and the angular velocity bω = [p q r]T in the body frame as

follows:

bf = m · (d(bv)

dt
+ bω × bv) (4.5)
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Moreover, the force bf comprises three components as follows:

bf =




0

0

F


 + m · bRI ·




0

0

g


 + funm, (4.6)

where F is the thrust, g is the gravitational constant, and funm denotes unmodeled force,

such as hub force and ground effect [35]. As funm is not controllable, it is regarded here as

noise first and is targetedly considered in the controller design, in which controllers robust

to unmodeled force are applied (see Section 4.2.4).

From Eq. 4.5, the following extended equation can be derived:

bf

m
=




u̇

v̇

ẇ


 +




p

q

r


×




u

v

w


 . (4.7)

Neglecting the Coriolis term in Eq. 4.7 and the unmodeled force in Eq. 4.6 and substituting

Eq. 3.18 into Eq. 4.5 and 4.6, the following relationship is derived:




ax

ay

az


 =




0

0
F
m


 , (4.8)

where ax, ay, and az denote the linear accelerations measured by the IMUs. Substituting

Eq. 4.8 into Eq. 3.22, the following equation is obtained:




ẍ

ÿ

z̈


 =




cΦsΘcΨ + sΦsΨ

cΦsΘsΨ− sΦcΨ

cΦcΘ


 · F

m
−




ar

0

0


 +




0

0

g


 +




ẍrot

ÿrot

0


 , (4.9)

where ẍrot and ÿrot are defined in Eq. 3.23.

Rotational Motion

Similar to Eq. 4.5, the equation of Coriolis is derived using the angular momentum bL and

the torque bτ as follows:

bτ =
d(bL)

dt
+ bω × bL. (4.10)

Moreover, the relationship between the angular momentum bL and the angular velocity

bω in the body frame is described using the inertial matrix J :

bL = J · bω (4.11)

Since the quadrotor is symmetric, the inertial matrix J is a diagonal matrix:

J = diag(Jx, Jy, Jz) with Jx = Jy. (4.12)
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Fig. 4.2: Control structure consisting of an inner-loop controller for roll, pitch angles and yaw
angle velocity stabilization and an outer-loop controller for position and yaw control.
The gray boxes represent the main focuses of this section.

Then,

bτ =
d(J bω)

dt
+ bω × J bω. (4.13)

Similar to [28], the following equation is obtained:




Φ̈

Θ̈

Ψ̈


 =




Θ̇Ψ̇(Jy−Jz

Jx
) + 1

Jx
τΦ

Φ̇Ψ̇(Jz−Jx

Jy
) + 1

Jy
τΘ

1
Jz

τΨ


 . (4.14)

As the quadrotor rotation is already controlled using the off-the-shelf controller (the inner-

loop controller mentioned in Section 3.1), the control of Φ, Θ, and Ψ is not described in

detail in the following sections. The problem remaining is how to calculate the command

signals Φcmd, Θcmd, and Ψ̇cmd as the inputs of the inner-loop controller, which is described

in the next section.

4.2 Individual Control Design and Adaptation

Based on the quadrotor dynamics derived above, an effective control design should be

developed, dealing with the non-linear, unstable, under-actuated quadrotor system. The

overall control structure is illustrated in Fig. 4.2, consisting of an inner-loop controller for

stabilization of the roll and pitch angles and an outer-loop controller for quadrotor position

and yaw angle control.

The quadrotor is a second-order non-linear system (the quadrotor dynamics block). It

performs the translational and rotational motion in the body frame, which is observed

and measured by the IMUs. The IMU data are processed and forwarded into an off-the-
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shelf inner-loop controller. As mentioned in Section 3.1, this controller is implemented on

the ARM-processor and contains three independent PD controllers. The roll angle, the

pitch angle, and the yaw angle velocity are controlled and stabilized by these controllers

at a frequency of 1 kHz, totally depending on the on-board IMU data. As control input

interface, four desired variables for this inner-loop controller are needed, namely the roll

angle command Φcmd, the pitch angle command Θcmd, the thrust command Fcmd, and the

yaw angle velocity command Ψ̇cmd, which are all between 0 and 255.

Moreover, the quadrotor pose measured by the camera is fused with the high-frequency

IMU data in the Extended Kalman Filter (EKF). The relevant system states x, y, z, ẋ,

ẏ, ż, and Ψ are estimated. These states are predicted to compensate for the time delay

in a prediction block (described in Section 4.4) and then fed into an outer-loop controller

for quadrotor position and yaw angle control. With respect to the desired pose xd, yd, zd,

and Ψd, the outer-loop controller produces corresponding command output Φcmd, Θcmd,

Ψ̇cmd, and the thrust Fcmd. In addition, the motion feedforward of the ground robot is

transmitted into the outer-loop controller as well (described in Section 4.3).

To find the desired pitch/roll angles, yaw angle velocity, and thrust for the inner-loop

controller, most state-of-the-art works studying VTOL have applied approximations and

simplifications using small angles [35]. However, this simplification is not valid here, since

the quadrotor in this work should also accomplish a tracking task with a large yaw-angle

variation. To deal with this problem, a system partitioning is conducted for the system

dynamics defined in Eq. 4.9. A substitution is made as follows:

ẍ = ux = (cΦsΘcΨ + sΦsΨ)
1

m
F + ẍrot − ar, (4.15)

ÿ = uy = (cΦsΘsΨ− sΦcΨ)
1

m
F + ÿrot, (4.16)

z̈ = uz = cΦcΘ
1

m
F + g, (4.17)

Ψ̇ = uΨ − Ω̇r. (4.18)

Controllers are designed to find ux, uy, uz, and uΨ in the following subsections. Then,

using the current pitch and roll angles estimated by the EKF described in Chapter 3, Ψd

and Fd can be calculated in Eq. 4.18 and Eq. 4.17, respectively. After that, Fd is deployed

in Eq. 4.15 and Eq. 4.16, resulting in

cΦsΘcΨ + sΦsΨ = (ux − ẍrot + ar) · m

Fd

(4.19)

cΦsΘsΨ− sΦcΨ = (uy − ÿrot) · m

Fd

. (4.20)

where the terms right to the equal marks are available either from EKF-aided system

state estimation or feedforward information of the ground robot. To determine the desired

values for Φ and Θ, namely Φd and Θd, a subtraction between Eq. 4.19 multiplying with

sΨ and Eq. 4.20 multiplying cΨ is conducted, resulting in

sΦ =
m

Fd

(ux · sΨ− uy · cΨ). (4.21)
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Fig. 4.3: x/y controller.

Using the yaw angle estimation from the EKF, the desired Φd is solved. Analogously, an

addition between Eq. 4.19 multiplying with cΨ and Eq. 4.20 multiplying sΨ is conducted,

resulting in

cΦsΘ =
m

Fd

(ux · cΨ + uy · sΨ). (4.22)

Using the known Ψ and Φd, the desired Θd is also solved. After that, the desired values

are converted into command signals Fcmd, Φcmd, Θcmd, and Ψ̇cmd, which are forwarded into

the inner-loop controller.

Now, various control strategies such as generic controllers, optimal controllers, and non-

linear controllers are applied and thoroughly adapted. In each subsection, the theoretical

principle of each control type is briefly introduced. Then, the adaptation of each controller

to the quadrotor system derived in this thesis is described in detail. The overall control

design considering a complete flying scenario consisting of quadrotor take-off, hovering,

tracking, and landing is explored in Section 4.3.

4.2.1 PID Controller

A PID controller is a generic controller widely used in the industry domain. In most

state-of-the-art, real-time experiments, PID and their modifications are applied for a com-

putationally efficient quadrotor control. In this thesis, couplings between the four channels

are ignored first, which is valid for slow motion. In x- and y-directions, a linear block for

small angle approximation of Φ and Θ is yielded.

Theory

The control law describing the relationship between the control error e(t) and the control

output u(t) has the following form:

u(t) = Kp · e(t) + Ki

∫ t

0

e(τ)dτ + Kd
d

dt
e(t) (4.23)
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where Kp, Ki, and Kd represent the proportional gain, the integral gain, and the derivative

gain [16].

Adaptation

Four outer-loop controllers are implemented independently: four PID controllers for posi-

tion x, y, altitude z, as well as the yaw angle velocity Ψ. The actual position, altitude,

and yaw angle are provided by the EKF-aided data fusion.

For the horizontal position x and y, two identical controllers are applied, which are

illustrated in Fig. 4.3. ex and ey are the respective control errors. The I- and D-terms

have bounded outputs. To avoid the wind-up effect, the integrator is disabled for extremely

large summed output. Another restriction is set to the integrator for a better performance:

The integrator is enabled when the absolute value of the control error is increasing, which

means ėx · ex > 0 and ėy · ey > 0. A conversion block and an offset convert the control

outputs into the command signals.

A variation of the on-board scale factor for the accelerometer along the Zb-axis can lead

to inaccurate ż estimation, and this does happen occasionally. Therefore, the z controller

does not take the motion estimation ż from the EKF. A differentiator and an averaging

filter, which are not included in the x and y controllers, are used to gain the motion

information from the control error (see Fig. 4.4). For Ψ control, the same structure as the

z controller is applied.

Due to computational efficiency and relatively simple parameter adjustment, PID con-

trollers are regarded as the reference for performance evaluation in this thesis.

4.2.2 LQ Controller

As one of the commonly used optimal controllers, LQ controllers have also been applied

for quadrotor inner-loop control to stabilize the pitch, roll, and yaw angles in [35, 72].

Moreover, in [115], an LQ controller is used on a reduced system deleting yaw angle to

follow a trajectory in simulations, such that the system is controllable and observable. In

addition, the Matlab Linear Quadratic Regulator (LQR) toolbox is used in [19] to compute
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the feedback controller gains, in which a stable hovering with an RMS error of 0.06 m is

achieved. Therefore, LQ controllers are also investigated in this thesis, although it is

assumed to be not appropriate for dynamic systems with coupled states.

Theory

An LQ controller is used in optimal control theory, if the dynamics of a controllable system

can be described by a set of linear differential equations as follows:

ẋ = A(t)x + B(t)u; x(0) = x0;

z = C(t)x, (4.24)

while the cost functional is represented by a quadratic functional for a time horizon [16]

J(u(t)) =

∫ ∞

0

[
‖x(t)‖2

Q(t) + ‖u(t)‖2
R(t)

]
dt → min

u(t)
, (4.25)

where x ∈ Rn denotes the system state of n dimension, u ∈ Rp denotes the control input

of p dimension, z ∈ Rq denotes the system measurement of q dimension, and q ≤ n. The

weighting matrix Q(t) ≥ 0 is a semi-positive definite matrix, while R(t) > 0 is positive

definite.

The feedback control law that minimizes the cost functional can be formulated as follows:

u = −Kx, (4.26)

where

K = R−1BT P (t) (4.27)

and P (t) is the positive definite solution of the algebraic Matrix-Riccati-Differential equa-

tion

Ṗ = −PA−AT P + PBR−1BT R−Q. (4.28)

Adaptation

To apply an LQ controller in the quadrotor position and yaw control, the following system

state is defined:

x = [x1 x2 x3 x4 x5 x6 x7]
T

= [x ẋ y ẏ z ż Ψ]T . (4.29)

Based on the system partitioning in Eq. 4.15-4.18, the system model is first given by

ẋ = Ax + Bu, (4.30)
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where

A =




0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, and B =




0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1




, (4.31)

with u = [ux uy uz uΨ]. The control laws for ux, uy, uz, and uΨ should be calculated.

Then, the actual control input for the inner-loop controller Φcmd, Θcmd, Fcmd, and Ψ̇cmd

are derived from the decoupling laws.

For a quadrotor tracking or landing behavior, the tracking error is to be minimized.

Therefore, a substitution of the system state is conducted as follows:

e = x− xd, (4.32)

so that the following cost functional can be formulated:

J =

∫ ∞

0

[
‖e(t)‖2

Q(t) + ‖u(t)‖2
R(t)

]
dt. (4.33)

with the system equation:

ė = Ae + Bu + Axd − ẋd. (4.34)

For hovering or tracking a moving ground robot at a constant altitude, the desired system

state is the relative position and velocity, namely

xd = [0 0 0 0 zd żd 0]T , (4.35)

with constant zd and żd and

ẋd = 0. (4.36)

Therefore,

Axd − ẋd = 0, (4.37)

and

ė = Ae + Bu. (4.38)

To test the system controllability, the function ctrb(·) from the MATLAB control system

toolbox is used. The controllability matrix has a full rank of 7 and the system is fully

controllable. For experiments, the control law Eq. 4.26 is first computed off-line using the

function lqr(·) from the MATLAB control system toolbox and applied online.

Note that for take-off or landing behavior, the desired quadrotor altitude zd and vertical

velocity żd vary all the time, so that Eq. 4.37 and 4.38 are not valid. Therefore, LQ

controllers can only be applied for hovering and tracking behavior.
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4.2.3 Backstepping-Based Controller

Since the quadrotor possesses non-linear dynamics, one of the non-linear controllers – the

backstepping technique – is considered [83] in order to ensure the Lyapunov stability.

Theory

Backstepping is a recursive control design technique for non-linear systems in a strictly

feedback form [17] given by

ẋ1 = f1(x1) + g1(x1)x2; (4.39)

ẋ2 = f2(x1, x2) + g2(x1, x2)x3; (4.40)
...

ẋi = fi(x1, · · · , xi) + gi(x1, · · · , xi)xi+1;
...

ẋn = fn(x1, · · · , xn) + gn(x1, · · · , xn)u (4.41)

with system state x ∈ Rn, f1(0) = · · · = fn(0) = 0, and gi(x1, · · · , xi) 6= 0 for 1 ≤ i ≤ n.

For the systems in this recursive structure, each sub-system with the system state

x̃i−1 = [x1, · · · , xi−1]
T can be represented as a system plant with a system input xi. For

instance, x2 = β1 can be regarded as a “pseudo control input” for the sub-system 4.39

and be so defined that this sub-system is stabilized at the idle state x∗1 = 0. Then, for

the sub-system 4.40, x3 = β2 is interpreted as the “pseudo input”, which stabilizes the

sub-system 4.40 at the idle state x∗2 = 0. Finally, the system input u is selected such

that the overall system is stabilized. The “pseudo control input” is defined by means of

Lyapunov function, which ensures the Lyapunov stability at each step.

The application of the backstepping technique on the quadrotor flight control is de-

scribed below in detail. Two different backstepping-based controllers, the integrator back-

stepping and the integral backstepping, are introduced.

System Dynamic Model

Similar to the previous section on LQ controllers, the system state is given by Eq. 4.29.

Using integrator backstepping and integral backstepping, the control laws for ux, uy, uz,

and uΨ are calculated.

Adaptation of Integrator Backstepping

Integrator Backstepping is the simplest form of a backstepping-based controller. As men-

tioned above, a stability of the subsystem at the idle state x∗i = 0 is desired. In this thesis,

the system state should be controlled to follow the desired trajectory and minimize the

tracking error. Therefore, a new system state ζ = xd − x is introduced such that each

sub-system is stabilized at ζ∗i = 0 using the “pseudo control input”.
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Step 1: Then,

ζ1 = x1d − x1, (4.42)

where x1d is the desired value of system state x1.

The backstepping-based controller uses Lyapunov theorem to ensure the stability at the

idle state, a positive definite Lyapunov function V should be defined for ζ1:

V (ζ1) =
1

2
ζ2
1 , (4.43)

and the time derivatives of ζ1 and V (ζ1) are given by

ζ̇1 = ẋ1d − ẋ1, (4.44)

V̇ (ζ1) = ζ1ζ̇1. (4.45)

From ẋ1 = x2 in Eq. 4.30 and 4.31, x2 is defined here as a pseudo control input β1. Then,

V̇ (ζ1) = ζ1(ẋ1d − β1). (4.46)

To let V̇ (ζ1) be negative definite and achieve the Lyapunov stability through that, V̇ (ζ1)

can be represented by

V̇ (ζ1) = −α1ζ
2
1 with α1 > 0. (4.47)

Then, the pseudo control input β1 should be chosen as follows:

β1 = ẋ1d + α1ζ1. (4.48)

α1 is a control parameter which will be experimentally determined.

Step 2: For the system state x2, ζ2 is introduced:

ζ2 = x2d − x2, (4.49)

where x2d = β1 is the desired value for x2. Therefore, based on Eq. 4.48

ζ2 = β1 − x2 = ẋ1d + α1ζ1 − x2. (4.50)

A control term for velocity control is considered here. From Eq. 4.44 and 4.50,

ζ̇1 = ẋ1d − ẋ1 = ẋ1d − x2 = ζ2 − α1ζ1. (4.51)

The Lyapunov function is now formulated as

V (ζ1, ζ2) =
1

2
ζ2
1 +

1

2
ζ2
2 , (4.52)

and its time derivative

V̇ (ζ1, ζ2) = ζ1ζ̇1 + ζ2ζ̇2. (4.53)
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The time derivative of ζ2 is given by Eq. 4.50:

ζ̇2 = −ẋ2 + ẍ1d + α1ζ̇1 (4.54)

Based on the system model Eq. 4.15 and Eq. 4.51, ζ̇2 is written in

ζ̇2 = −ux + ẍ1d + α1(ζ2 − α1ζ1) (4.55)

Based on Eq. 4.55 and 4.51, the time derivative of the Lyapunov function V (ζ1, ζ2) can be

formulated as follows:

V̇ (ζ1, ζ2) = ζ1(ζ2 − α1ζ1) + ζ2(ẍ1d − ux + α1(ζ2 − α1ζ1))

= −α1ζ
2
1 + ζ1ζ2 + ζ2(ẍ1d − ux + α1(ζ2 − α1ζ1))

= −α1ζ
2
1 + ζ2(ζ1 + ẍ1d − ux + α1(ζ2 − α1ζ1))

(4.56)

To let V̇ (ζ1, ζ2) be negative definite in the following representation,

V̇ (ζ1, ζ2) = −α1ζ
2
1 − α2ζ

2
2 , with α2 > 0, (4.57)

the real control input ux should be formulated as follows:

ux = (1− α2
1) · ζ1 + (α1 + α2) · ζ2 + ẍd, (4.58)

where ẍ1d = ẍd.

Step 3: Analogously, the other control input uy and uz can be calculated as follows:

uy = (1− α2
3)ζ3 + (α3 + α4)ζ4 + ÿd,

uz = (1− α2
5)ζ5 + (α5 + α6)ζ6 + z̈d,

(4.59)

where
α3, α4, α5, α6 > 0,

ζ3 = x3d − x3,

ζ4 = ẋ3d + α3ζ3 − x4,

ζ5 = x5d − x5,

ζ6 = ẋ5d + α5ζ5 − x6.

(4.60)

Step 4: For the yaw angle control, a new system state z7 is defined similar to step 1:

ζ7 = x7d − x7,

ζ̇7 = ẋ7d − ẋ7 = ẋ7d − uΨ.
(4.61)

Then,

uΨ = α7ζ7 + Ψ̇d. (4.62)
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Adaptation of Integral Backstepping

The Integral Backstepping Controller (IBC) is an improved version of the integrator back-

stepping. The difference is that in the former, an integral-term is comprised in the def-

inition of the Lyapunov functions. Its applications showed control improvement in the

quadrotor flight performance [36, 122]. Therefore, IBC is also investigated in this work

and considered for the control of the quadrotor position x, y, the altitude z, and the yaw

angle Ψ.

Step 1: Similar to the integrator backstepping, the new system state is defined as the

control error:
ζ1 = x1d − x1,

ζ̇1 = ẋ1d − ẋ1,
(4.63)

and the Lyapunov function V (ζ1) is defined as follows:

V (ζ1) = 1
2
ζ2
1 + 1

2
λ1χ

2
1,

V̇ (ζ1) = ζ1ζ̇1 + λ1χ1ζ1,
(4.64)

where

χ1 =

∫ t

0

ζ1(τ)dτ (4.65)

representing the integral term. A pseudo control input β1 = x2 is defined for ẋ1 = x2.

Then,

ζ̇1 = ẋ1d − β1, (4.66)

and therefore

V̇ (ζ1) = ζ1(ẋ1d − β1) + λ1χ1ζ1. (4.67)

To let V̇ (ζ1) be negative semi-definite and ensure the stability by applying the La Salle

theorem,

V̇ (ζ1) = −α1ζ
2
1 , with α1 > 0, (4.68)

the pseudo control input β1 should be formulated as follows:

β1 = ẋ1d + α1ζ1 + λ1χ1. (4.69)

Step 2: Similarly, another new state ζ2 is defined as follows:

ζ2 = x2d − x2 = β1 − x2. (4.70)

In contrast to [35], the new Lyapunov function is defined with a further integral term 1
2
λ2p

2
2

and the stability is analyzed:

V (ζ1, ζ2) =
1

2
ζ2
1 +

1

2
ζ2
2 +

1

2
λ1χ

2
1 +

1

2
λ2χ

2
2. (4.71)
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Its time derivative is written as follows:

V̇ (ζ1, ζ2) = ζ1ζ̇1 + ζ2ζ̇2 + λ1χ1ζ1 + λ2χ2ζ2, (4.72)

where

χ2 =
∫ t

0
ζ2(τ)dτ (4.73)

From Eq. 4.70 and 4.69, the following equation can be derived:

ζ2 = ẋ1d + α1ζ1 + λ1χ1 − x2. (4.74)

Since x2 = ẋ1 and ζ̇1 = ẋ1d − ẋ1,

ζ̇1 = ζ2 − α1ζ1 − λ1χ1, (4.75)

and then
ζ̇2 = ẍ1d + α1ζ̇1 + λ1ζ1 − ẋ2

= ẍ1d + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1 − ẋ2

= ẍ1d − ux + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1.

(4.76)

Substituting ζ̇1 and ζ̇2 in Eq. 4.72, the following equation is obtained:

V̇ (ζ1, ζ2) = ζ1ζ̇1 + ζ2ζ̇2 + λ1χ1ζ1 + λ2χ2ζ2

= ζ1(ζ2 − α1ζ1 − λ1χ1) + ζ2(ẍ1d − ux + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1)

+λ1χ1ζ1 + λ2χ2ζ2

= −α1ζ
2
1 + ζ1ζ2 + λ2χ2ζ2 + ζ2(ẍ1d − ux + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1)

= −α1ζ
2
1 + ζ2(ζ1 + ẍ1d − ux + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1 + λ2χ2). (4.77)

For the stability by applying the La Salle theorem,

V̇ (ζ1, ζ2) = −α1ζ
2
1 − α2ζ

2
2 , with α2 > 0. (4.78)

Then, the control input ux should be formulated as follows:

ux = α2ζ2 + ζ1 + α1(ζ2 − α1ζ1 − λ1χ1) + λ1ζ1 + λ2χ2 + ẍ1d

= ζ1(−α2
1 + 1 + λ1) + ζ2(α1 + α2)− α1λ1χ1 + λ2χ2 + ẍd, (4.79)

where ẍ1d = ẍd.

Step 3: Analogously, uy and uz are computed as follows:

uy = ζ3(−α2
3 + 1 + λ3) + ζ4(α3 + α4)− α3λ3χ3 + λ4χ4 + ÿd, (4.80)

uz = ζ5(−α2
5 + 1 + λ5) + ζ6(α5 + α6)− α5λ5χ5 + λ6χ6 + z̈d, (4.81)
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where

ζ3 = x3d − x3, ζ4 = ẋ3d + α3ζ3 + λ3χ3 − x4,

χ3 =

∫ t

0

ζ3(τ)dτ, χ4 =

∫ t

0

ζ4(τ)dτ,

ζ5 = x5d − x5, ζ6 = ẋ5d + α5ζ5 + λ5χ5 − x6,

χ5 =

∫ t

0

ζ5(τ)dτ, χ6 =

∫ t

0

ζ6(τ)dτ. (4.82)

Step 4: Analogously, the control input for the yaw angle control uΨ is computed as

follows:

uΨ = α7ζ7 + λ7χ7 + Ψ̇d (4.83)

where
ζ7 = x7d − x7

χ7 =
∫ t

0
ζ7(τ)dτ

(4.84)

Finally, the real control input for the inner-loop controller Φcmd, Θcmd, Fcmd, and Ψ̇cmd

are computed as described in Section 4.2.

4.2.4 Sliding Mode Control

Sliding Mode Control (SMC) is a nonlinear control method with the main advantage of

robustness to parameter variations as well as unmodeled dynamics and variational external

noise. During the quadrotor landing and take-off, especially when the quadrotor flies near

the surface of the mobile robot or the ground, unmodeled force in the system, such as

ground effect, drag, and inaccuracy of the thrust equation, is not negligible. Therefore,

sliding mode control is chosen to control the vertical motion of the quadrotor in the landing

and take-off processes, while the horizontal motion and orientation are controlled using

other controllers.

Before the control design based on sliding mode control is described, path planning dur-

ing the landing and take-off is presented, considering smooth motion and position/velocity

constraints at the start and end points. Here, the quadrotor altitude h = −z is assigned

a desired value hd(t). The quadrotor starts to take off from 0m, while desired altitude of

hovering and tracking is denoted by h0. The end altitude after landing is also 0m.

SMC in Landing

To achieve a safe landing, a suitable landing path planning should be considered. Both the

altitude h and the descending speed ḣ along the negative ZI/Zo-axis are to be controlled.

An exponential trajectory is chosen for the landing process and can be written as

hd(t) = h0 · e−σ·t, (4.85)

where h0 is the start altitude of landing, σ is the damping factor. Then the desired velocity

and acceleration are

ḣd(t) = −σ · h0 · e−σ·t (4.86)
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Fig. 4.5: Desired altitude, vertical velocity, and vertical acceleration in take-off (left) and land-
ing (right).

and

ḧd(t) = σ2 · h0 · e−σ·t. (4.87)

The right column in Fig. 4.5 illustrates the desired altitude, velocity, and acceleration

in the vertical direction during landing for a start altitude h0 = 1 m with σ = 0.3. This

path provides a maximum vertical velocity at the beginning and a zero vertical velocity at

the end point, which are very essential and practical for landing.

The thrust F projected along the ZI-/Zo-axis is denoted as Fz. Based on Eq. 4.4, the

vertical acceleration ḧ can be expressed by

ḧ = −Fz + m · g + Funm,z

m
= −Fz

m
− g − Funm,z

m
, (4.88)

where m is the mass of the quadrotor, Funm,z is unmodeled force and noise in the system

projected along the ZI-/Zo-axis, such as drag, inaccuracy of the thrust equation, or the

reflected air flow from the ground.

To ensure the quadrotor motion along the desired trajectory through compensating for

the unmodeled force, the control input Fcmd,z can be chosen as follows :

Fz = U · Fcmd,z ·K = −m · c · (ḣd − ḣ)−m · ḧd −m · g, (4.89)

where c is a proportional gain.
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By substituting Eq. 4.85, 4.86, and 4.87 into 4.89, the input Fcmd,z is expressed by

Fcmd,z =
Fz

U ·K =
m · c · (σ · h + ḣ)−m · σ2 · h−m · g

U ·K . (4.90)

Then Eq. 4.88 can be rewritten as

ḧ = (−c · σ + σ2) · h− c · ḣ− Funm,z

m
. (4.91)

Because of the unmodeled acceleration Funm,z

m
, no proof can be given that h and ḣ would

converge exponentially to zero. Therefore an extra term based on the sliding mode control

is added to Eq. 4.89 and 4.90 as follows:

Fz = −m · c · (ḣd − ḣ)−m · ḧd + M · sign(s)−m · g, (4.92)

Fcmd,z =
Fz

U ·K =
m · c · (σ · h + ḣ)−m · σ2 · h + M · sign(s)−m · g

U ·K , (4.93)

where M ′ is a positive constant and s is the switching line with

s = σ · h + ḣ. (4.94)

Then ḧ is modified to be

ḧ = (−c · σ + σ2) · h− c · ḣ− M

m
· sign(s) +

Funm,z

m
. (4.95)

The domain of a sliding mode can be determined by

s · ṡ < 0, for s 6= 0. (4.96)

Based on Eq. 4.94 and 4.95

ṡ = σ · ḣ + ḧ = −(c− σ) · (σ · h + ḣ)− M

m
· sign(s)− Funm,z

m
. (4.97)

By the examination of the sliding mode domain, Eq. 4.96 is rewritten as

s · ṡ = −(c− σ) · (σ · h + ḣ)2 − M

m
· s · sign(s)− s · Funm,z

m
< 0, for s 6= 0. (4.98)

which is held, if the conditions

c > σ (4.99)

and

M > |Funm,z

m
|max (4.100)

are held, where |Funm,z

m
|max is the maximal absolute value of Funm,z

m
, the trajectory in h-ḣ

space will reach the switching line s.

If the sling mode exists for the whole switching line, h and ḣ are governed only by s.
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They can be expressed by

h(t) = h(treach) · e−σ·(t−treach) (4.101)

and

ḣ(t) = −σ · h(treach) · e−σ·(t−treach), (4.102)

where treach is the time of reaching the switching line.

To prove the existence of the sliding model on the switching line s, the following condi-

tions have to be fulfilled:

lim
s→0+

ṡ < 0 and lim
s→0−

ṡ > 0. (4.103)

while for the switching line, there is

s = σ · h + ḣ = 0. (4.104)

By substituting Eq. 4.104 into 4.97, the following equation is obtained:

ṡ = −(c− σ) · s− M

m
· sign(s)− δ′z = −M

m
· sign(s)− Funm,z

m
. (4.105)

To fulfill Eq. 4.103, there must be

M > |Funm,z

m
|max.

Summarized, Eq. 4.99 and 4.100 should be held, so that the switching line can be reached

from an arbitrary start point and the states h, ḣ are only governed by s after reaching the

switching line. The exponential convergence is then achieved.

SMC in Take-Off

Less critical than landing is the quadrotor take-off phase. For take-off, a cubic spline

trajectory for the vertical direction is planned. A cubic spline brings the advantage that

both the start and end velocities are zero and is formulated as

hd(t) = 3 · h0

T 2
t

· t2 − 2 · h0

T 3
t

· t3, (4.107)

where h0 is the desired altitude after the take-off and Tt is the take-off time interval. Then

the desired velocity is

ḣd(t) = 6 · h0

T 2
t

· t− 6 · h0

T 3
t

· t2 (4.108)

with the start vertical velocity ḣd(t = 0) = 0 and the vertical velocity ḣd(t = Tt) = 0 after

the take-off phase. The desired acceleration is

ḧd(t) = 6 · h0

Tt

− 12 · h0

T 3
t

· t. (4.109)

Aiming at a desired altitude of 1m directly over the mobile ground robot, the evolution

of the height, the vertical velocity, and the vertical acceleration during the take-off time
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Tt = 10 s are shown in Fig. 4.5 (left).

The SMC design for take-off is described below, similarly to the one for landing. The

control error eh during the take-off phase can be defined as

eh = hd − h. (4.110)

Therefore, the Lyapunov function is written in

V (eh) =
1

2
e2

h, (4.111)

and its time derivative V̇ (eh) should be smaller than zero. Then, by defining

V̇ (eh) = eh · ėh = −α · e2
h < 0, with α > 0, (4.112)

the following equation is obtained:

ėh = −α · eh. (4.113)

Based on Eq. 4.110,

ėh = ḣd − ḣ, (4.114)

and then,

ḣ = ḣd − ėh = ḣd + α · eh (4.115)

Based on Eq. 4.115, the switching surface s is defined as follows:

s = ḣd + α · eh − ḣ

= ėh + α · eh (4.116)

and

ṡ = ëh + α · ėh (4.117)

The domain of a sliding mode can be determined by

s · ṡ < 0, for s 6= 0, (4.118)

where

s · ṡ = (ėh + α · eh) · (ëh + α · ėh)

= ėh · ëh + α · ė2
h + α · eh · ëh + α2 · eh · ėh

= ëh · (ėh + α · eh) + α · ė2
h + α2 · eh · ėh. (4.119)

To let s · ṡ < 0, ëh should be formulated as follows:

ëh = −α · ėh −M1 · sign(s)−M2 · s, (4.120)
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where M1 > 0 and M2 > 0. Then

ḧ = ḧd + α · ėh + M1 · sign(s) + M2 · s, (4.121)

where

ḧ = −(
Fz

m
+ g +

Funm,z

m
). (4.122)

To examine the existence of the sliding mode, Eq. 4.103 should be fulfilled. Thereby, based

on Eq. 4.117 and 4.120,

ṡ = −M1 · sign(s)−M2 · s < 0 for s → 0+, (4.123)

and

ṡ = −M1 · sign(s)−M2 · s > 0 for s → 0−. (4.124)

Therefore, the sliding mode exists for M1 > 0 and M2 > 0.

The individual control design and adaptation to the system model presented in this the-

sis serve as a basis for an integrated control design combining the advantages, which is

described in the next section.

4.3 Integrated Control Design Based on Simulation

Results

The objective of this chapter is to develop an integrated control design for a complete

flying of the quadrotor consisting of take-off from the top of a stationary mobile ground

robot, hovering over it, tracking the robot movement, and landing on the moving robot.

Each phase possesses its own distinct characteristics and requires a proper control design.

The properties of each flying phase are described below:

- In the take-off scenario, the quadrotor is supposed to take off from the upper surface

of the ground robot along a cubic spline trajectory in the vertical direction, such

that the quadrotor starts with a zero and ascending velocity and ends in hovering

at a desired altitude directly over the ground robot with a zero vertical velocity. In

the forepart of take-off, the markers cannot be robustly and completely detected.

Therefore, optical flow based motion estimation is needed for the quadrotor control.

- In the hovering scenario, the quadrotor is supposed to hover over the ground robot,

which has no motion on the ground plane. Since the robot is not moving, the desired

values for the quadrotor position, altitude, and orientation in the inertial world are

fixed.

- In the tracking scenario, the quadrotor is supposed to track the ground robot, which

has motion on the ground plane. The desired value for the quadrotor’s altitude is

fixed, while the desired values for the quadrotor position and yaw angle in the inertial
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frame vary with the position and the orientation of the ground robot. A stable

controller is desired here to enable the quadrotor to respond quickly and robustly to

robot motion, considering the quadrotor non-linear dynamics and disturbance, e.g.,

caused by wind.

- In the landing scenario, the quadrotor is supposed to track the moving ground robot

and land on its top. The desired quadrotor position and yaw angle vary with the

position and the orientation of the ground robot, while the desired altitude also

varies. Overall, the landing phase is more critical than the take-off phase. First, in

the landing phase, the quadrotor also has to track the ground robot movement, while

the ground robot is stationary in the take-off phase. Moreover, the requirement of

an accurate position estimation and control is higher in landing, as the quadrotor

has to safely and smoothly land on the moving robot. In addition, the unmodeled

force gets larger and larger in landing, while it gets smaller and smaller in take-off.

The performance of PID, LQ, IBC, and SMC using various desired trajectories of the

ground robot is simulated in Matlab and compared using a similar simulation model to that

in [28], which is modified here based on the system model derived in this thesis, to validate

the control strategies and the derivative model of the quadrotor. Some representative

results are shown in this section. Based on the simulation results, an integrated control

design is developed and applied to the real quadrotor system.

4.3.1 Comparison of Different Controllers

In the first simulation, PID, LQ, IBC, and SMC are applied to a quadrotor, which performs

take-off in the first 10 s along a cubic spline trajectory in the vertical direction, hovering

and tracking a mobile ground robot from 10 s to 50 s, and landing in the time interval

between 50 s and 60 s. The initial position of the quadrotor relative to the ground robot is

[0 0 0]T m. The desired height during the hovering and tracking is 1 m over the ground

robot and the quadrotor should have the same orientation as the ground robot. In the

landing part, unmodeled force is simulated and applied, in which the horizontal noise is a

zero-mean Gaussian noise with a variance of 0.01N2, while the vertical noise is a Gaussian

noise with a mean value of 0.2N and a variance of 0.01N2. The mobile robot is static

in the first 15 s and moves straight forward at a linear velocity of 0.1m/s. After moving

2.6m, the robot turns 90 deg to its left and moves straight forward. The rotational velocity

of the ground robot is 0.3 rad/s (≈17.19 deg/s).

The control performance is illustrated in Fig. 4.6. Controllers such as IBC (solid lines),

LQ (dotted lines), and PID (dot-dash lines) are applied in different phases, while the SMC

controller is only applied in the landing phase (dashed lines). The control errors ex and

ey, the quadrotor height h, the vertical velocity ḣ, and the control error of the yaw angle

eΨ are shown. In the take-off, PID and IBC perform very well and converge quickly to the

desired hovering height, while LQ, which is assumed to be inappropriate for the take-off

and landing processes, needs longer to stabilize at 1m. In the hovering and tracking, IBC

performs the best in terms of smaller control errors compared to PID and LQ, especially

after the robot rotation at approximately 33 s. The maximum control errors ex and ey

using IBC are approximately 0.06m and the maximum eΨ is 6 deg.
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Fig. 4.6: Results comparison using various control designs for take-off, tracking, and landing
with simulated horizontal and vertical drag during landing.

Fig. 4.7 illustrates the control results of the take-off phase for path planning using a

cubic spline (solid lines) and a linear interpolation (dashed lines). Here a PID controller

is applied. Using the cubic spline planning, the vertical velocity is zero after take-off,

resulting in a quick convergence of the quadrotor altitude to the desired altitude.

The landing phase is enlarged and shown in Fig. 4.8. In simulations, the landing phase

is conducted using marker-based pose estimation. The thrust of the quadrotor is set to be

zero, if the altitude of the quadrotor is lower than 0.1m. Using the exponential path with

σ = 0.3, it takes about 8 s to land from 1 m to 0.1m. The SMC succeeds in controlling

the quadrotor to land, shown in the dashed lines. Due to the unmodeled forces such as

drag or reflected air flow from the upper surface of the ground robot, the quadrotor fails

to land using IBC and PID. LQ can definitely not be applied in the landing phase.

4.3.2 Performance against Disturbance

Moreover, control performance against disturbance is also considered. The trajectory and

motion of the ground robot is the same as the previous one. In this simulation, a north

wind with an amplitude of 0.1 m/s, a zero bias, a frequency of 0.5 rad/s, and a zero phase,

as well as an east wind with an amplitude of 0.1m/s, a zero bias, a frequency of 0.6 rad/s,
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Fig. 4.9: Results comparison using various control designs for take-off, tracking, and landing
with simulated north and east winds after take-off.

and a phase of 1.4 rad are concurrently applied after take-off. Here no unmodeled force is

applied in the landing part.

Fig. 4.9 illustrates the control errors ex and ey in x-/y-directions, the quadrotor altitude

h and vertical velocity ḣ, as well as the control error eΨ of the yaw angle, using IBC (solid

lines), LQ (dotted lines), and PID with SMC for landing (dashed line). In spite of the

larger control errors due to the disturbances than those in Fig. 4.6, IBC exhibits a more

stable and robust control behavior than LQ and PID.

4.3.3 Influence of Feedforward Extension

Aiming at cooperation tasks with a stable and robust flying not using GPS, a cooperating

partner – the mobile ground robot – is supposed to facilitate the quadrotor flying and

tracking. The influence of the feedforward extension of the control structure is investigated

here.

Fig. 4.10 shows the quadrotor tracking errors ex, ey, and eΨ without motion feedforward

from the ground robot (solid lines) and with feedforward (dashed lines) using PID. As the

desired altitude does not change during tracking, ez is not shown here. The ground robot

moves along a polygon trajectory with three rotations. With the help of motion feedforward
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Fig. 4.10: Influence of feedforward (ff) extension using a PID controller. The mobile robot
moves along a polygon trajectory.

of the ground robot, the control errors are significantly reduced and a larger maximum

velocity of the mobile robot can be set. For example, along this polygon trajectory, the

velocity of the ground robot cannot exceed 0.11m/s without motion feedforward, while

the maximum velocity of the robot is 1.55m/s if motion feedforward is applied. Similar

results are also obtained using IBC and LQ.

4.3.4 Integrated Control Design

Based on the simulation results, an integrated control design for take-off, hovering, track-

ing, and landing phases is proposed, shown in Tab. 4.1, considering different focuses and

requirements in different flight phases.

At the beginning, the quadrotor is located on the top of the mobile ground robot.

The quadrotor increases its altitude using SMC to deal with the unmodeled forces while

keeping its x-/y-position using IBC. After the altitude reaches ht, optical-flow-based motion

estimation is replaced by marker-based pose estimation for better accuracy. Cubic spline

path planning is applied to achieve a zero start/end vertical velocity.

In the hovering and tracking phases, IBC is used for small tracking errors, better sta-

bility, and robustness against disturbance.

Similar to take-off, the landing phase also consists of a marker-based pose estimation and

an optical-flow-based motion estimation. The path is planned as an exponential trajectory

to maximize the start velocity and obtain a zero end velocity, such that the quadrotor

can smoothly land on the moving ground robot. A cooperation of IBC and SMC (vertical
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Flight Phase Height Vision Processing Path Planning Controller

Take-off < ht optical flow cubic spline IBC/SMC
Take-off > ht marker cubic spline IBC/SMC
Hovering ≈ h0 marker – IBC
Tracking ≈ h0 marker – IBC
Landing > hl marker exponential IBC/SMC
Landing < hl optical flow exponential IBC/SMC

Tab. 4.1: Integrated control design for the autonomous flight. ht: switching height in take-off;
h0: desired height during hovering and tracking; hl: switching height in landing.

direction) is applied.

The LQ controller is not used in the proposed scenario, since it only provides a subordi-

nate performance. Besides the negative influences of disturbances and unmodeled forces,

the main reason is that the LQ controller is set up without considering quadrotor dynamics.

Moreover, feedforward extension is realized through the communication between the

quadrotor and the ground robot, to improve the control performance.

4.4 Real-Time Experimental Evaluation

The integrated controller including PID, IBC, and SMC is implemented on the hardware

to demonstrate the control performance. First, the system time delay is compensated

for. Then, experiments comparing PID and IBC in hovering and tracking are conducted.

Finally, an autonomous flight consisting of take-off, hovering, tracking, and landing is

enabled in real-time experiments.

4.4.1 Compensation of System Time Delay

Time delay is considered an important issue in Chapter 3 for pose/motion estimation due to

the data synchronization problem. In the control loop, it can lead to unexpected oscillation,

especially for highly dynamic systems. To stabilize the flight of the quadrotor at the desired

position, the time delay of the control input – the actual value – should be determined first.

As mentioned in Section 3.3.5, the vision data is synchronized with the IMU data twice.

So the system time delay is the running time of the signal from IMUs to the actuators on

the quadrotor again. With well-designed experiments, the average transport time td1 of

the communication between the ARM-processor and the ATOM-board is measured (see

Appendix A). The running time td2 of the software on the ATOM-board is variable. This

is measured by using the timer integrated in the software. The total time delay td can

then be expressed as

td = td1 + td2. (4.125)

According to real-time experiments, the system time delay td is known as greater than

80ms and less than 110ms in most cases. A control output delayed by more than 80ms is

no more suitable for a stable flight while tracking a quickly moving target. To compensate

for the undesired time delay, a state predictor is deployed here. It is reasonable to assume

86



4.4 Real-Time Experimental Evaluation

10 20 30 40 50 60 70
−0.2

0

0.2

x 
[m

]

10 20 30 40 50 60 70
−0.2

0

0.2

y
 [

m
]

10 20 30 40 50 60 70
0.9

1

1.1

h
 [

m
]

10 20 30 40 50 60 70

−5
0
5

   
 Ψ

 [
d

e
g

]

t[s]

Prediction Actual Desired 

Fig. 4.11: Pose prediction result based on the last 40 estimations.

that the 3D position and the yaw angle of the quadrotor is a second-order function of the

time as follows:

ς = κ0 + κ1 · t + κ2 · t2, (4.126)

where ς is the Ix, Iy, Iz, and IΨ in the inertial frame. The last κ estimated states are used

to approximate the function of the time. Parameters κ0–κ2 are expected to be constant

in the current time window corresponding to the concerned κ estimations. The linear

equations are relatively well-conditioned and can be directly solved by using the pseudo-

inverse. This structure of the predictor also has another advantage – filtering of the high

frequency shaking of the estimation. By carefully selected κ, the states can be predicted

reliably. In the prediction block illustrated in Fig. 4.2, the predicted states are forwarded

into the outer-loop controller.

In Fig. 4.11, the pose is properly predicted concerning the last 40 estimations for solving

κ0–κ2. There are some slight oscillations observed in the z and Ψ predictions, which have

however only a negligible negative effect.

4.4.2 Tracking Performance Using PID and IBC

In this subsection, control performance is constrainedly studied by using the position mea-

surement provided by the tracking system (see Appendix C), while the on-board pose/mo-

tion estimation is not applied here. Temporarily ignoring the take-off and landing phases

as well as unmodeled forces in those two phases, PID and IBC are compared in hovering

and tracking scenarios.

IBC vs. PID in Hovering

The control performances using IBC and PID are compared for quadrotor hovering in

Fig. 4.12. The desired position of the quadrotor is [0 0 0.5]T m. Both PID and IBC provide
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Fig. 4.13: Control performance using PID and IBC in quadrotor tracking scenario.

control errors smaller than 0.05m in each direction. There is no significant difference

between them.

IBC vs. PID in Tracking

The control performances using IBC and PID are compared for quadrotor tracking in

Fig. 4.13. The desired position varies in XI-, YI-, and ZI-directions. Using IBC, the

quadrotor responds quickly to the control errors, while PID needs a longer transient time

but provides a small overshoot. Some other parameters for PID were also tested, which

provided a quick response like IBC. However, they led to instable control performance.

Considering the robustness to disturbance and overall evaluations, IBC is chosen to be
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Fig. 4.14: Control performance based on optical flow.
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Fig. 4.15: Control error based on optical flow.

the controller for the tracking behavior in which the desired position of the quadrotor in

the inertial frame consistently changes, in order to achieve a quick response.

4.4.3 Autonomous Flight Using Optical Flow Feedback

As an alternative to marker-based pose estimation, optical-flow-based motion estimation

can also be applied in the whole scenario. Fig. 4.14 and 4.15 show the quadrotor position,

altitude, and yaw angle evolution with the respective control errors of an experiment, in

which the quadrotor took off, tracked a moving robot, and landed on the moving robot

exclusively using optical-flow-based motion estimation information. The desired height
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Fig. 4.16: Trajectories of the ground robot (dashed line) and the quadrotor (solid line) in the
x-/y-plane of the inertial frame. Squares: start point (hollow) and end point (filled)
of the ground robot. Circles: start point (hollow) and end point (filled) of the
quadrotor.

during tracking is 0.5m.

The positions in XI-/YI-directions, the altitude, and the yaw angle were well controlled.

The RMS control errors are 0.045m, 0.06m, 0.035m, and 3.6 deg, respectively. An inte-

grated drift would be more obvious if the desired height during tracking is higher, as there

is no correction using the absolute pose during a relatively long time interval. Therefore,

optical-flow-based motion estimation is only applied briefly in the take-off and landing

phases, because the markers are not completely visible at this moment.

4.4.4 Autonomous Flight Using Integrated Control Design

Finally, an overall test of the autonomous flight using the proposed integrated control

design was conducted. Fig. 4.16 illustrates the trajectories of the ground robot (the dashed

line) and the quadrotor (the solid line). The start point and the end point of the quadrotor

are [0.835 0.72]T m and [−0.29 0.735]T m in the inertial frame, shown in the hollow and

filled circles. The hollow and filled squares denote the start and end point of the ground

robot, namely [0.835 0.62]T m and [−0.32 0.735]T m. A quadrotor or robot orientation of

0 deg points out the positive XI-direction.

The respective quadrotor position Ix, Iy, height h, and yaw angle IΨ in the inertial

frame are illustrated in Fig. 4.17. The representative time points are also shown along
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Fig. 4.17: Control performance consisting of take-off, hovering, tracking, and landing.

the time scale. Since the quadrotor’s behavior is not triggered by time but by the state

estimation, the time points are approximate. At the start point, the quadrotor was placed

on the top of the ground robot with a height of h = 0.16m due to the landing skids mounted

on the quadrotor with a height of 0.16m, and an absolute orientation of IΨ = −90 deg.

The ground robot had the same start orientation as the quadrotor. The height parameters

are h0 = 1m, ht = 0.66m, and hl = 0.56m. The flying process is described in detail below.

- From 0 s to approximately 10 s, the quadrotor was in the take-off phase. In the

first 6 s, optical-flow-based motion estimation was applied to provide the motion

information. After the quadrotor had reached a height of 0.66 m, marker-based pose

estimation was applied between 6 s and 10 s. At 10 s, the quadrotor reached its desired

height, namely 1 m over the ground robot. IBC was used to control the quadrotor

position and yaw angle, while SMC was used to control the altitude.

- From 10 s to 29 s, the quadrotor was hovering over the ground robot at the desired

altitude using IBC.

- From 29 s to 36 s, the ground robot was rotating. The orientation was changed from

-90 deg to -180 deg. The quadrotor continued hovering over the ground robot and

rotated with the ground robot. Here, a pure orientation was exhibited.

- From 36 s to 52 s, the ground robot was moving to the negative XI-direction with a

linear velocity of 0.109m/s. The quadrotor started to track the ground robot using

IBC. At 52 s, 69 s, 88 s, and 101 s, four rotations of 90 deg each were performed. At

109 s, the quadrotor yaw angle reached 180 deg.

- From 113 s to 119 s, the quadrotor performed landing behavior using IBC/SMC to

land on the ground robot, which was moving along the negative XI-direction.
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Fig. 4.18: Left: quadrotor height variation in the take-off phase. Right: quadrotor height
variation in the landing phase.

Item eRMS,x [m] eRMS,y [m] eRMS,h [m] eRMS,Ψ [deg]

Pose estimation 0.04 0.036 0.029 2.575
Control result 0.057 0.054 0.034 2.92

Tab. 4.2: RMS errors in x, y, h, and Ψ.

The quadrotor vertical trajectories in take-off and landing are shown in Fig. 4.18. The

switching altitude from optical-flow-based motion estimation to marker-based position es-

timation in take-off was at ht = 0.66m approximately, while the switching point in landing

was at hl = 0.56 m approximately. The reason for a larger ht is that the quadrotor was not

directly over the markers at the beginning of take-off. In the take-off phase, the quadrotor

had to reach a higher altitude to be able to detect the markers robustly. In contrast, in the

landing phase, the quadrotor had the markers in the field of view at the beginning of the

landing phase and could land using marker-based pose estimation for as long as possible.

The pose estimation results and the control errors are illustrated in Fig. 4.19 and 4.20.

The solid lines show the estimation errors and control errors in position, altitude, and yaw

angle, respectively, while the RMS errors are shown in dashed lines. The RMS errors are

also compared in Tab. 4.2. Both estimation and control performances are very successful.

The control RMS errors are approximately 0.05m in XI-/YI-directions, 0.034 m in altitude,

and 2.92 deg in yaw angle. The straight line segments of the control errors such as eΨ

between the 23 s and the 25 s are due to missing tracking data (the ground truth) from

the tracking system, since there were fewer than three markers detected by the tracking

system in those time intervals.
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Fig. 4.19: Estimation error in the complete flight scenario.
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Fig. 4.20: Control error in the complete flight scenario.

4.5 Discussion

Complex System Modeling

Compared to the most comparable work in [35], system simplifications such as small angle

approximations are not applied in this work. The complexity and non-linearity of the

quadrotor system are preserved. Therefore, the control design here is more advantageous

for dynamic scenarios.
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In addition, while the IMU measurements ax and ay are ignored in most existing works

[28, 35], they are considered through quadrotor pose estimation in this work. In the control

design, the unmodeled force is also targetedly considered, which is commonly neglected in

other works.

Improved Stability Analysis

Moreover, this work provides a more complete stability analysis for IBC considering the

integral term for the quadrotor velocity control, which has not yet been considered in the

literature.

Furthermore, the design, stability analysis, and implementation of SMC particularly

considering path planning using cubic spline interpolation for take-off and exponential

trajectory for landing are proposed for the first time in this work.

Integrated Flight Scenario

While the state-of-the-art works have only partially studied various aspects of quadrotor

behavior and most of them are only evaluated in simulations, the first integrated approach

for quadrotor flying from take-off, hovering, tracking, to landing using minimal on-board

sensors is proposed and evaluated in real-time experiments using elaborated control design.

In the whole process, switching mechanisms between marker-based pose estimation and

optical-flow-based motion estimation as well as between IBC and SMC are proposed and

accomplished. In addition, the whole data processing and control algorithms are conducted

totally on-board for the complete scenario.

Improved Control Performance

The control performance presented here is much better than those in the comparable works

in terms of smaller RMS errors, although the scenario considered in this work is more

dynamic, complex, and challenging. The results of two related works are shown below.

In [35], a VTOL flight consisting of take-off, hovering (altitude control), and landing was

conducted using an integral backstepping controller similar to the IBC used here, without

consideration of a second integral term for velocity control. The maximum altitude control

error during hovering was 0.03m at a height of 0.5 m, while the total RMS error of altitude

control during take-off, hovering, tracking, and landing in this work is only 0.03 cm at a

hovering height of 1m. Another work [62] considered visual servoing problems and applied

backstepping technique to control a Centre d’Energie Atomique (CEA) quadrotor observing

four markers on the ground. The desired position was [0 0 1.4]T cm. The authors stated

that the closed-loop performance of the system maintained an error of approximately 10 cm

around the desired position. Therefore, improved control performance is obtained through

the integrated and non-linear control design.
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4.6 Summary

Based on accurate pose estimation of the quadrotor, a stable and effective control design is

desired in order to realize autonomous flying. Mainly due to non-linear dynamics and time

delay, it is demanding to elaborate a controller for this under-actuated system. Sophisti-

cated control designs have normally been evaluated in simulations or limitedly evaluated

in a non-autonomous manner.

This chapter aims at designing, implementing, and discussing adequate control struc-

tures for the quadrotor to overcome the aforementioned challenges and to improve the

quadrotor flying behavior. Standard controllers such as PID controllers, optimal controllers

such as LQ controllers, and non-linear controllers such as backstepping-based controllers

and sliding model controllers are carefully adapted to this quadrotor system and discussed.

Compared to most works which have implemented controllers on a real quadrotor, the sys-

tem model used here is less simplified, in order to preserve the original dependency of

system states. Moreover, the overall time delay is derived and compensated for, while

feedforward information is also taken into account.

An elaborated, integrated control approach combining the advantages of these con-

trollers is proposed and evaluated in a complete flight experiment consisting of take-off,

hovering, tracking, and landing. The control performance is proved to be effective in

terms of small RMS control errors of 0.06 m in position control, 0.03m in altitude control,

and 3 deg in yaw control, which are much smaller than those in comparable works in the

literature.

The effective control performance completes the development of the vision-guided au-

tonomous quadrotor. However, a quadrotor with a limited payload and fast, dynamic

self-motion requires a simple, fast sensorimotor control, which can conduct motor activi-

ties using limited sensory perceptions. In contrast to the traditional manner of developing

a flying system, bio-inspired technology is considered in the next chapter for further im-

provement.
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Estimation for Flight Control

In recent years, the robotics community has shown a great interest in applying biologically

inspired technology to technical systems. One of the essential reasons is that biological

models such as humans and animals exhibit high efficiency in visuomotor control. The neu-

robiological findings show that a number of flying insects, e.g. Drosophila melanogaster

and Calliphora vicina, possess photoreceptors with high temporal resolution which they

use for dynamic visuomotor pose and gaze stabilization, and navigation in 6 Degrees Of

Freedom (DOFs). This could provide an alternative extended solution for the development

of Micro Air Vehicle (MAV) on-board vision, which requires simple and fast computation

due to limited payload, restricted computational capacity, and fast, dynamic self-motion.

While Chapters 3 and 4 propose traditional quadrotor control based on accurate pose/-

motion estimation and effective control design, Chapter 5 focuses on insect-inspired flight

control and implementation (see Fig. 5.1).

Fig. 5.1: From biological model to MAV development. Left: a fly with the most important
perceptive organs related to flight control: the compound eyes, the ocelli, and the hal-
teres, reprinted from [130]; right: illustration of an envisioned bio-inspired quadrotor
with flies’ vision.

Considering the aforementioned advantages of flying insects, an array of biologically

inspired Elementary Motion Detectors (EMDs) for local motion detection (resulting in

optical flow field) and the Receptive Field (RF) concept for global motion detection are

chosen as the starting point for the development of a bio-inspired quadrotor, as an alter-

native to traditional paradigms. The challenge lies in the extraction and analysis of the

flow field, for the ego-motion estimation of a system, for instance, the quadrotor. More-

over, technical realization and applications from the viewpoints of control engineering and

computer vision based on insect vision are envisaged.

In this chapter, in order to adapt to the typical dominant and preferred motion patterns

of the quadrotor, the novel vision and visuomotor behavior models inspired by biological

96



5.1 Theoretical Foundations and Problem Definition

paradigms are extended first. Two new RFs for rotation detection are proposed. High-

speed implementation using compatible hardware – a Field Programmable Gate Array

(FPGA) platform – is accomplished to obtain the effectiveness of the neurobiological al-

gorithms. The performance of the implementation is sufficient to deal with video frame

rates of 350 fps or above for a frame size of 256× 256 pixels.

As EMDs and RFs suggested in fundamental studies can only provide a solution to

qualitative motion detection [147], the respective motion estimation is established with

the help of Look-Up Tables (LUTs) and extensively explored considering the influences of

specific parameters such as perception differences between flies and cameras, lighting con-

ditions, as well as the spatial frequency and spectrum of input images. Closed-loop control

and obstacle avoidance are exploratively investigated and show a promising possibility of

fully controlling MAVs based on insect-like vision in future work.

The remainder of this chapter is organized as follows. First, in Section 5.1, the bio-

logical principles of flies’ vision systems and the problem addressed in this chapter are

briefly introduced. Qualitative motion detection consisting of the basic and elaborated

EMD models, the extended RFs, and the high-performance implementation on FPGAs is

described in Section 5.2. In Section 5.3, quantitative motion estimation and control are

proposed. In Section 5.4, obstacle detection and collision avoidance based on the qualita-

tive and quantitative motion information are investigated. A discussion and a summary

are given in Sections 5.5 and 5.6.

5.1 Theoretical Foundations and Problem Definition

5.1.1 Biological Principles of the Fly Vision

A fly’s panoramic vision system comprises at its front end several thousand photoreceptors

feeding into a 2D array of motion detecting neurons which the animal uses for dynamic

visuomotor pose and gaze stabilization and navigation in 6 DOFs.

As one of the most successful animals in the evolution, flies possess a very efficient flight

control system, such that they can respond very quickly based on low-resolution vision.

Therefore, innovative researchers in the robotics domain take flies as their biological models

for MAV control problems [45, 65, 76, 130]. Since the topic considered in this chapter is

an interdisciplinary one, the fly vision system is briefly introduced here.

In most cases, flies have two large compound eyes on the head with ocelli on the top and

halteres, illustrated in Fig. 5.1. The ocelli are simple photoreceptors without lenses and

used to measure the brightness. The halteres work as a gyroscope and provide information

for course stabilization. The ocelli, the halteres, and the compound eyes play an essential

role in the flight control of flies [130]. Since the flying behavior is mainly controlled by

vision, the flies vision system is the focus of this section.

Fig. 5.2 illustrates a fly’s visual and central nervous system. Each compound eye con-

tains 3000–4000 tiny optical units, called ommatidia [88], while each ommatidium possesses

its own lens and photoreceptor. The resolution of an ommatidium is approximately 1.5◦.
The spatial resolution of fly eyes is not very high, but their field of view is wide (nearly

360 deg). Moreover, ommatidia are highly temporally sensitive and respond to temporal
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Fig. 5.2: A fly’s visual and central nervous system, adapted from [33, 130].

frequencies up to 200–300Hz [51], which is much more sensitive than with humans (less

than 100 Hz).

The neurons in the brain responsible for image processing comprise three layers [33]:

lamina, medulla, and lobula complex consisting of the lobula and the lobula plate. The

neurons in the lamina receive the input from the photoreceptors and amplify temporal

changes. The medulla then detects the local motion and sends the information to the

lobula complex. The lobula complex receives input from medulla elements in parallel

[33] and converges the preprocessed photoreceptor information into the lobula plate. In

the lobula plate, large neurons are found which integrate these local motion signals and

additionally form extensive connections amongst themselves [33, 64]. These neurons have

large RFs and respond best to particular flow-fields which occur during certain maneuvers

of the fly in free flight [49, 84].

5.1.2 Motion Detector and Receptive Field

Based on the biological principle of flies vision, computational models for local motion and

global motion detection are developed. The state-of-the-art motion detector and RFs are

introduced here.

Motion Detector

Motion detection is one of the most basic tasks that a visual system has to perform. Motion

information is not explicitly represented at the output level of retinal photoreceptors.

Instead, it has to be computed from the changing retinal images by the nervous system

[34]. Using an elaborated motion detector model and some RFs, some properties of the

biological visual system have been converted into computational models to estimate ego-

motion for engineering applications.

– The Reichardt Model The earliest and probably the most famous model of motion

detection inspired by biological systems was developed by Reichardt and Hassenstein in

1956 [67] and called EMD. The Reichardt detector describes, at an algorithmic level, the

process of local motion detection in the fly, leading from non-directional input to a direction
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Fig. 5.3: Left: the simple Reichardt detector [33]; right: the elaborated EMD [58]. Two
extensions are made: logarithmic transformations and the temporal HP filters.

selective output [32, 54, 67, 71, 99, 108]. Fig. 5.3 (left) presents a simplified version of this

correlator model.

A1 and A2 are two photoreceptors. The input signals of A1 and A2 are temporally

delayed by Low-Pass (LP) filters, resulting in B1 and B2. With A1(t) and A2(t) repre-

senting the input signals at the left and right inputs, and B1(t) and B2(t) representing

the corresponding filtered signals, one obtains the output R(t) of a motion detector:

REMD(t) = A2(t) ·B1(t)− A1(t) ·B2(t). (5.1)

The detector generates a direction-sensitive response because of the subtraction between

the two symmetric detector halves. Some examples of signal inputs and their EMD re-

sponses are shown in Fig. 5.4. In a) a positive peak-like signal moves to the right. Its

respective output is shown in d), namely a positive response. If this peak-like signal moves

to the left side, as shown in b), its output is a negative response, as shown in e). The

response is zero when no motion exists. However, the response of the Reichardt detector

is not always as simple as a peak. For example, for a pulse-like input signal in c), the sign

of its response in f) does not directly indicate its motion direction.

– The Elaborated EMDs The simple Reichardt detector has two major drawbacks: 1)

The response is sensitive to edge contrast, reducing the robustness to lighting conditions;

2) The response to a step edge is complicated, making scene interpretation difficult. There-

fore, the simple detector has been improved and two preprocessors are added in [58]:

- Logarithmic transformation is applied in order to reduce the sensitivity to lighting

conditions directly after the receptors;

- A temporal High-Pass (HP) filter is added after the logarithmic transformation, in

order to obtain a simple response to the most common edge type as step edge in
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Fig. 5.5: Left: a moving peak signal transformed from a moving pulse signal illustrated in
Fig. 5.4 c) by the temporal HP filter added in the elaborated EMD model. Right:
the respective response of the elaborated motion detector to a pulse moving to the
right [58].

natural images.

The elaborated EMD is shown in Fig. 5.3 (right). The moving pulse signal shown in

Fig. 5.4 c) (or equivalently a moving step edge) is transformed by the temporal HP filters

into to a moving peak as shown in Fig. 5.5 (left), leading to a simple response as shown

in Fig. 5.5 (right). The positive or negative output indicates the motion direction.

– Two-Dimensional Motion Detection As an EMD can only detect one-dimensional

motion along the line connecting its receptors, one simple algorithm is implemented in [97]

to realize two-dimensional motion detection. A pair of EMDs are combined as shown in

Fig. 5.6. The vertical motion vector component is observed by receptors PV and PC , while
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the horizontal motion vector component is observed by receptors PH and PC . The outputs

of receptor PC are labeled as RV and RH in Fig. 5.6 (right). Following [98], this EMD

pair is a combination of two types of EMDs:

- H-type EMD responding to local horizontal motion.

- V-type EMD responding to local vertical motion.

Motion direction can be approximately estimated by computing the ratio of RV and RH

as illustrated in Fig. 5.7 and formulated as:

θ = arctan(
RV

RH

). (5.2)

Then, an optical flow vector on the receptor PC is obtained.

However, strictly speaking, the motion direction θ should be computed as

θ = arctan(
vV

vH

), (5.3)

where the horizontal velocity component vH and vertical velocity component vV are not

exactly proportional to the responses RV and RH . The quantitative relationship between

the velocity and EMD response will be further explored in Section 5.3.

Receptive Fields

In neurobiology, the cells in a fly’s visual system which have been found to be involved

in optical flow (obtained by the proposed EMDs) processing are called motion sensitive

wide-field neurons. These neurons can be classified by their sensitivities to different kinds

of motions. For example, some of them are more sensitive to horizontal motion, while some

others are more sensitive to vertical motion. Then, these neurons integrate the signals of

EMDs spatially in their RFs, where each single EMD only analyzes the local motion along

its sensitive direction. After the local motion of a photoreceptor is detected by a respective

EMD pair, the global motion or the ego-motion comes into consideration, which is solved
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5 Insect-Inspired Motion Detection and Estimation for Flight Control

a)                                 b)                                   c)

d)                                 e)                                   f)

Fig. 5.8: Six RFs. a) RF for horizontal component of left-right motion; b) RF for hori-
zontal component of forward-backward motion; c) RF for horizontal component of
clockwise-anticlockwise rotation; d) RF for vertical component of up-down motion; e)
RF for vertical component of forward-backward motion; f) RF for vertical component
of clockwise-anticlockwise rotation.

by the RFs. The RF response R is a sum of EMD responses REMD in each RF as follows:

R =
n∑

i=1

REMD,i, (5.4)

where n denotes the total number of EMDs in the respective RF.

In order to detect global motion, four RFs (a), b), d), and e) in Fig. 5.8) have been

proposed in [58], which are sensitive to certain motion types. The RF a) is used to detect

left-right motion based on vertical edges in the input images, while d) is used to detect

up-down motion based on horizontal edges. Forward and backward motion can be detected

using RFs b) and e), while b) is sensitive to vertical contrast and e) is sensitive to horizontal

contrast. A horizontal motion, for instance, cannot be detected if only horizontal edges

are obtained in the input image, which is called the aperture problem in the conventional

optical flow detection.

The RF c) and f) are extensions made in this thesis and will be introduced in the next

section.

5.1.3 Problem Definition

The RFs proposed in the literature only deal with translational motion. However, rotation

information plays a key role in the control of flying systems. Therefore, RFs dealing with

rotational motion should also be considered.

Moreover, the major advantage of a fly’s visuomotor system is that flies can respond to

environments robustly and quickly based on their low-resolution vision. One of the reasons

is that the visual information perceived by the compound eyes is processed in a parallel

structure. To ensure the high-speed characteristics of a fly-inspired approach, effective,
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5.2 Qualitative Motion Detection

parallel implementation on a suitable hardware is one of the prerequisites for controlling a

technical system. In the literature, hardware implementation of biological motion detection

models has been realized on Field Programmable Analog Array (FPAA) [111], Very-Large-

Scale-Integrated (VLSI) circuits [66, 71, 88], and FPGAs [26, 82, 97]. However, these

implementations perform motion detection with low frame rates for relatively small image

sizes.

Furthermore, EMDs and RFs suggested in fundamental studies can only provide a

solution to qualitative motion detection. The EMD response and the actual motion do

not have a unique relationship. However, the quadrotor control depends on accurate

quantitative motion estimation. Up to now, the related technical realizations have not yet

considered much at this point. Some works apply the insect-inspired motion detection on

blimp-type robotic platform [76], which has stable dynamics during flying and is simple to

be controlled during very slow movement. Others use panoramic cameras [45] or off-board

cameras in simulated environments [65]. The need for a quantitative motion representation

to control flying systems is not so critical as here in this thesis, as they mainly focus on

the relative motion. Therefore, how the qualitative characteristics of biological modeling

can be transferred into normally quantitatively controlled technical systems remains an

intriguing question.

In this chapter, qualitative motion detection with a high-performance hardware im-

plementation and quantitative motion estimation considering flight control in different

environments are two focuses, which are addressed in the next sections.

5.2 Qualitative Motion Detection

Most flying robots including quadrotors have 6 DOFs. However, only four RFs for trans-

lation in three directions are proposed [58]. As mentioned in the previous chapters, the

horizontal motion of a quadrotor is realized by roll and pitch angles, while the heading

direction is one of the most important quadrotor states determined by the yaw angle. In

order to achieve an insect-vision-based control of quadrotor flight, detection of rotational

motion is a very important aspect.

In this section, two new RFs for rotation detection are proposed first, in order to cover

all types of global motion based on the local motion detection. Then, the hardware im-

plementation of insect-inspired motion detection based on the elaborated EMDs and the

extended RFs, utilizing the parallel processing character of FPGA to achieve very high-

speed motion detection, is described in detail. Simulations and real-time experiments are

conducted for performance evaluation.

5.2.1 Extension of Receptive Fields

Based on [58], two additional RFs for rotation detection are proposed, illustrated in Fig. 5.8:

RF c) is sensitive to the rotation for vertical edges and RF f) for horizontal edges.

By adding these two RFs, the system is supposed to cover all types of movements. Each

RF demonstrates various sensitivities to a certain motion type. Now, the RFs can be used

to indicate camera ego-motion direction.
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5 Insect-Inspired Motion Detection and Estimation for Flight Control

Fig. 5.9: Optical flow of rotation. Left: the original image of the background pattern with
local optical flow field detected by the elaborated EMDs; right: optimized result
without background.

Rotation Detection in Simulations

To validate the designed RFs for rotation detection, simulations using Interactive Data

Language (IDL) from CREASO [4] were conducted. The inputs of this simulation are

image sequences captured by a camera which was fixed on the end effector of a 6-DOF

robot arm (Stäubli RX90B [13]) and moved in front of a static background composed

of black and white squares (see Fig. 5.9 left). Through the operation of the robot arm,

various movements of the camera can be executed, such as translation and rotation. Fig.

5.9 (right) shows all the local motion vectors detected by the elaborated EMD for a pure

anticlockwise rotation. As the rotation axis was not exactly identical with the camera

optical axis, the optical flow vectors in the image upper part in Fig. 5.9 (right) are not

exactly the same as those in the lower part.

Fig. 5.10 shows the outputs of the six RFs. At the very beginning, the robot arm

performed an acceleration process. Then, the rotation tended to be approximately con-

stant. The outputs of the RFs c) and f) for the clockwise-anticlockwise rotation are more

obvious than those from the other four RFs. The negative values indicate that the camera

was moving in an anticlockwise direction. Due to the symmetry of the background, the

responses of both RFs for the rotation detection are almost equal. But in the natural

world, they are sensitive to horizontal and vertical edges, respectively. This simulation

shows that the rotation can be successfully detected by the improved RFs.

5.2.2 Implementation on FPGA with High-Speed Performance

To preserve the advantage of insect-like vision such as high-speed motion detection, an

appropriate implementation can make a significant contribution. As a test platform, FP-

GAs are chosen as the hardware platform due to their parallel computation property. The

implementation of the aforementioned algorithm consisting of the elaborated EMDs and

the RFs on an FPGA platform is described in this section.
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Fig. 5.10: Responses of the six RFs to the anticlockwise rotation of a camera around the
optical axis. The indexes a)–f) are the RF indexes in Fig. 5.8.

Development Environment

The hardware components are shown in Fig. 5.11. Firstly, the image is continuously cap-

tured by a high-speed camera (MC1311, Microtron [9]). Then, the image is transmitted to

the Tsunami FPGA platform (SBS technologies) with Altera R© Stratix R© EP1S40 FPGA

processors [1] via the novel communication protocol camera link (CL) which is specially

designed for computer vision communication. The elaborated motion detector and the

algorithm of the RFs are implemented on the FPGA. After the processing of the image,

the results of the EMDs and related outputs of the RFs are sent to a host PC (AMD

Opteron242 with 2GB RAM).

Fig. 5.12 shows the overall physical system hierarchy illustrating the communication

between different modules. The main focus of this section, namely FPGA implementation

of the model and algorithms in Very High Speed Integrated Circuit Hardware Description

Language (VHDL), is highlighted by the dashed rectangle in Fig. 5.12.

Architecture of the VHDL Program

The VHDL program architecture is shown in Fig. 5.13. The image processing is performed

along with the data flow. First, the image data (8-bit iDATA) provided by the camera are

fed into the EMD module, which performs the optical flow calculation in both horizontal
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Fig. 5.11: Hardware platform consisting of a high-speed camera, an FPGA-board, and a host
PC.
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Fig. 5.12: Hardware system hierarchy [113].

and vertical directions. The other inputs of the EMD module are the previous outputs of

the filters that are saved in the on-board M-RAM. Then, the outputs of the EMDs are

connected to two modules: the data insert module and the RF module. Finally, all the

results are written back to the original data flow, which is transferred to the host PC.

Moreover, there are three signals relevant to images: the frame signal (iFVAL), the line

signal (iLVAL), and the data signal (iDVAL). These signals going with the image data flow

will also be sent to all control modules in order to synchronize the image processing.

The structures of these modules are briefly introduced below.

- EMD Module The elaborated motion detector introduced in Section 5.1 has five main

components that should be programmed in VHDL: logarithmic transformation, HP filter,

LP filter, multiplication, and subtractor. The designs of multiplication and subtractor are

relatively simple and neglected in this section.

The logarithmic transformation is realized through an LUT. The output of each pho-

toreceptor is an 8-bit value and has a range between 0 and 255. For more precision, the

values are extended to 16 bits in the following form: the highest bit indicates the value

being either positive or negative, bits 14 to 6 belong to the integer part, and the last 6
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Fig. 5.13: VHDL program architecture consisting of the EMD module, RF module, M-RAM
controller, and data insert module.
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Fig. 5.14: The architecture of the HP filter based on the LP filter function f .

bits are the fraction part. After logarithmic transformation (ln(1 + I)) of an image signal

I, the output value is between 0 and 5.45.

The HP filter selected in this thesis is a recursive single-pole temporal HP filter. The

design of the HP filter is based on a single-pole temporal LP filter, which is designed as

follows:

yi,LP = f(xi, τL, yi−1,LP ) = xi/τL + (1− 1/τL) · yi−1,LP , (5.5)

where xi denotes the input data, yi,LP denotes the output data of the LP filter, yi−1,LP

denotes the previous output data of the LP filter, and τL the time constant of the LP filter.

Respectively, the HP filter is designed as follows:

yi,HP = xi − zi, (5.6)

where yi,HP denotes the output data of the HP filter, and zi denotes the intermediate

output of a LP filter with a time constant τH . Fig. 5.14 shows the structure of the HP

filter. The intermediate output zi of the LP filter f with the time constant τH is saved in

the on-board memory M-RAM.
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5 Insect-Inspired Motion Detection and Estimation for Flight Control

- M-RAM Controller In Fig. 5.13, an on-board M-RAM is required to save the output

values of the filters. An M-RAM controller is designed to distribute the read and write

addresses as well as write enable signals.

Note that the input frame from the camera is set up to a resolution of 1280×256 pixels,

as the camera frame rate is only related to the number of pixel rows. However, only an

image region of 256×256 pixels is processed, as the other image regions in the data flow are

used to save the final and intermediate results. The write enable signal is used to perform

this selection and a pixel counter which calculates the pixel number in a line is needed.

When the pixel count is between 512 and 767, the output values of the filters are stored

with the M-RAM controller. More information can be found in the data insert module

section.

- RF Module As illustrated in Fig. 5.8, six RFs are applied for global motion detection.

The output of each RF for each image is designed to be a signed 40-bit value (5 bytes).

The highest bit indicates that the value is positive or negative. The total output values of

the six RFs have 30 bytes.

- Data Insert Module In order to analyze and display the results on the host PC, a data

insert module is designed to write the results of both H-type EMDs and V-type EMDs in

the selected 256×256 range back to the original data flow. The image data which are not

in the Region Of Interest (ROI) are replaced by the results of the EMDs as well as the

outputs of the six RFs. When the data flow is sent to the host PC, the results can be read

from it and thus the local motion vectors are drawn over the original frame. The results

of the RFs are also read out and plotted in real time.

The main frequency of the FPGA system is 160Mhz. For each image (1280×256 pixels), the

transmission from the camera to the FPGA platform takes approximately 2ms. Only 40

system clocks (about 0.25µs) are totally charged additionally for the whole implementation

on the FPGA platform. Thus, this system can work ideally at more than 450 fps.

5.2.3 Experimental Evaluation

The system was successfully tested in several experiments. Different motion manners were

detected under various backgrounds. In the experiments, the backgrounds were always

fixed in front of the camera while the camera was mounted on the end-effector of the

6-DOF Stäubli robot arm moving along some simple trajectories.

- Left-Right Motion

In the first experiment, the camera was performing a horizontally left-right motion. Fig.

5.15 (left) shows the optical flow on the background. The arrows represent the local

optical flow detected by the elaborated EMDs. Almost all of them are pointing right.

Since the outputs of the EMDs are influenced by several parameters, such as the velocity,

the luminance, and the contrast, the lengths of the arrows are not identical throughout
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Fig. 5.15: Local motion and global motion detection using FPGA implementation of EMDs and
RFs. A camera was performing a horizontally left-right motion in front of a pattern
with vertical stripes. Left: optical flow detected by the EMDs; right: the global
motion detected by the six RFs. a) horizontal component of left-right motion;
b) horizontal component of forward-backward motion; c) horizontal component
of clockwise-anticlockwise rotation; d) vertical component of up-down motion; e)
vertical component of forward-backward motion; f) vertical component of clockwise-
anticlockwise rotation.

the whole image. In addition, the spherical effect of the wide-angle camera also influences

the result to some extent.

Fig. 5.15 (right) shows the responses of the six RFs indicating the global motion.

They are normalized to the range between -150 and 150. Ideally, when the camera moves

horizontally, only RF a) for the horizontal component of a left-right motion will have

an output. And the outputs of the other five RFs should be zero. The result in this

experiment is almost as expected. The positive/negative value denotes that the camera

moves horizontally to the right/left. The RFs b) and c) for horizontal components have

very small outputs as well, which are probably caused by the asymmetry between the left

and right half-images as well as the top and bottom half-images. The outputs of the three

RFs for vertical motion components d)–f) are almost zero. Combining the results of these

six RFs, a conclusion can be drawn: The camera was moving horizontally right or left

during this experiment.

- Forward-Backward Motion

The elaborated motion detector can also be used to detect the optical flow field induced

by the camera moving backwards or forwards. A diffused or contracted optical flow field

can be observed. In this experiment, the background of some concentric rings was applied.

The circle center was set to be aligned with the optical axis of the camera.

By moving the camera backwards away from the background, a contracted optical flow

field can be observed, as shown in Fig. 5.16 (left). In Fig. 5.16 (right), the outputs of

RFs b) and e) for forward-backward motion are obvious. Moreover, the RFs a) and d)

for left-right/up-down motion have relatively small outputs. The main reason is that the
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Fig. 5.16: Local motion and global motion detection using FPGA implementation of EMDs
and RFs. A camera was performing a forward-backward motion in front of a pattern
with concentric rings. Left: optical flow detected by the EMDs; right: the global
motion detected by the six RFs.
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Fig. 5.17: Local motion and global motion detection using FPGA implementation of EMDs
and RFs. The camera was performing a clockwise-anticlockwise rotation in front
of a pattern with radial lines. Left: optical flow detected by the EMDs; right: the
global motion detected by the six RFs.

center of the RFs was not exactly coincident with the optical axis of the camera.

- Clockwise and Anticlockwise Rotation

Fig. 5.17 (left) shows the optical flow of clockwise camera rotation with a pattern of radial

lines and Fig. 5.17 (right) is the result of the RFs for rotation. In the experiment, the

camera rotated alternately clockwise (positive values) and anticlockwise (negative values).

Note that due to the symmetric pattern used here, the rotation responses to the horizontal

and vertical directions/edges are almost the same.
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According to the experimental results and discussion above, the system is demonstrated

to be efficient at detecting local optical flow induced by different motion manners of the

camera. The elaborated motion detectors and the RFs implemented on the FPGA platform

can detect and assort motion behaviors quickly and correctly. The system is successfully

tested at a frame rate of 350 fps with the resolution of 256×256 pixels. Apart from the

time delays due to image capturing and data transfer, the system delay purely charged for

the computation on the FPGA is approximately only 0.25 µs. In this respect, this system

is more efficient than some existing solutions, such as the VLSI sensor in [66] (132-pixel

image, 30 fps) and the FPGA implementation in [97] (88×88 pixels, 29 fps). This high-

performance system can be applied for motion detection for humanoids and ground and

aerial vehicles.

5.3 Quantitative Motion Estimation and Control

While the previous section focuses on qualitative motion detection based on fly’s vision,

this section deals with the quantitative motion estimation, aiming at closed-loop control

of flying systems using insect-like vision. As the visual responses of a fly’s compound eye

and a camera with a planar sensor surface to the same environment are different, in the

following part, motion estimation and control based on the fly’s vision and the camera’s

vision are investigated first. Then, motion estimation based on natural images is further

studied aiming at flight control. Finally, the estimation of complicated motion is discussed.

5.3.1 Fly-Vision-Based Motion Estimation and Control

First, motion estimation and control issues are investigated based on fly vision. The

quantitative relationship between ego-velocity and the respective RF response is explored

using mathematical solutions, simulations, and real-time experiments.

Mathematical Derivation

Theoretically, the response of an EMD REMD(t) of a sine-grating image with a single spatial

frequency fs can be formulated as follows [50]:

REMD(t) =
C2 · 2πτL · ft

1 + (2πτL · ft)2
sin(2πfs∆φ), (5.7)

where

ft = fs · v, (5.8)

with ft denoting the temporal frequency of the input signal, v the velocity, C the amplitude,

τL the time constant of the LP filters, and ∆φ the angular distance of two photoreceptors

in an EMD (see Fig. 5.3 and Eq. 5.1).

Considering images with a quasi full spectrum of spatial frequency such as natural
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images, the response changes into an integral of fs given by

REMD,LP(t) =

∫ ∞

0

P (fs)
2πτL · fs · v

1 + (2πτL · fs · v)2
sin(2πfs∆φ)dfs, (5.9)

where P (fs) indicates the power spectral density, which can be strongly influenced by

the image under consideration [50]. More information on this point can be found in

Section 5.3.3. Through spectrum analysis of natural images, it is reasonable to assume

P (fs) = 1
fs

. Fig. 5.18 (left) illustrates the EMD response REMD,LP to velocity at τL = 35ms.

Note that the subscript “LP” is used here only to distinguish Eq. 5.7 and 5.9. Both re-

sponse computation contains LP filters.

After inserting first-order HP filters into the EMD, the response of the elaborated EMD

is

REMD,HP(t) =

∫ ∞

0

P (fs)
2πτL · fs · v

1 + ( τL

τH
)2 + ( 1

2πfsvτH
)2 + (2πτLfsv)2

sin(2πfs∆φ)dfs, (5.10)

where τH is the time constant of the HP filter. Suppose that

τL

τH

= 2, (5.11)

different responses at different τL values are obtained, illustrated in Fig. 5.18 (right). Using

the HP filters, the EMD responses at low frequencies become smooth. Moreover, the

relationship between the EMD response and the velocity is nonlinear and non-monotonic.

To find a unique correspondence between the response and the velocity, a certain range

of the velocity is constrained, in which the correspondence is monotonic. As shown in

Fig. 5.18 (right), the lower the τL is, the larger the monotonic range is. Using the HP

filters, the monotonic range for the same τL is also larger than that without using the HP

filters (see Fig. 5.18 left). For example, the maximum response using τL = 65ms is at the

velocity of v = 22deg/s, while the maximum response using τL = 35 ms is at the velocity

of v = 45deg/s. Then, an extension of the monotonic range is obtained through applying

a small τL.

Simulational Determination of an LUT

After the relationship between the velocity and the EMD response is studied in theory, sim-

ulations are designed and conducted to determine an LUT, which represents a monotonic

relationship between the velocity and the RF responses of input images.

Fig. 5.19 illustrates the input image of a fly when it is facing a homogeneous vertical

stripe pattern. Since flies possess round complex eyes, the projected stripes are approxi-

mately homogeneously distributed.

A black-white stripe pattern with black stripes of 50 pixels wide and a distance of

50 pixels between two neighbored vertical stripes is chosen as the environment pattern

around a fly. The fly is rotating around its vertical axis, resulting in a changing yaw angle

and a horizontally moving stripe pattern in its field of view. The pattern could be filtered

by a horizontal Gaussian filter in order to simulate the low resolution of fly vision. An
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Fig. 5.18: Left: simulated normalized response of EMDs REMD,LP with respect to velocity
at τL = 35 ms; right: simulated normalized responses of the elaborated EMDs
REMD,HP with respect to velocity at τL = 65 ms, 55ms, 45ms, and 35 ms, where
τH = 2τL.

Fig. 5.19: A fly observing a stripe pattern (left) and its projection on fly vision (right).

example without Gaussian filtering is shown in Fig. 5.19 (right).

To simulate the rotation, the pattern is moved rightwards at a speed of 1 pixel/frame

in the first 100 frames, 2 pixels/frame in the second 100 frames, and 3 pixels/frame in the

third 100 frames and so on, through which a constant velocity in every 100 frames and an

overall ascending velocity along the time scale are achieved.

Fig. 5.20 (top-left) shows the RF response with respect to the frame number. Overall,

the response increases with the increasing velocity first, then decreases. For the constant

velocity in every 100 frames, a quasi constant response is achieved. An enlarged view of

the responses between the 600th and the 700th image frames is also shown, in which the

variation of of the responses for the same velocity is illustrated. The peaks which occur

at the moment when a new velocity is applied are due to the operations of LP filters and

HP filters. These kinds of responses can also be investigated in humans and animals when

their velocity abruptly increases [126]. Using an average value of the responses in every

100 frames, an approximation of the relationship between the response and the velocity in

pixels/frame is derived in Fig. 5.20 (top-right), which is very similar to the theoretically

simulated one in Fig. 5.18.
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Fig. 5.20: Simulated results of the RF responses with respect to motion. Left column: the
original RF responses; right column: the respective average responses. The negative
frame number indicates an image variation in the opposite direction.

A similar simulation using the same pattern is conducted, in which the velocity is in-

creased from 1 pixel/frame in the first 100 frames to 50 pixels/frame between the 4900th

and the 5000th frames and also in the negative direction indicated by the negative frame

number. The original RF responses are illustrated in Fig. 5.20 (bottom-left). An inter-

esting symmetric response pattern is obtained here: The response at 50 pixels/frame (at

the 5000th image frame) is the same at -50 pixels/frame (at the -5000th image frame).

The reason is that at a velocity of 50 pixels/frame, the input image is the same as the

one at a velocity of -50 pixels/frame. The image variation in the negative direction is the

exact opposite of the image variation in the positive direction. The RF response possesses

a periodic property. An RF response period of 100 pixels/frame is yielded here. There-

fore, the monotonic range is also extended in the negative direction, for example, from

-12 pixels/frame to 12 pixels/frame as shown in Fig. 5.20 (bottom-right).

Moreover, different responses can be obtained for the same velocities due to different

spatial frequencies of the input images. The spatial frequency can be regarded as an

indicator of the distance between the texture and the fly vision. The denser the stripes in

the images are, the farther the stripes are from the fly, and the smaller the averaged RF

responses are. This implication can be used to determine the distance between the vision

sensor and the object at a known ego-velocity, which is further considered for obstacle
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Fig. 5.21: Illustration of the experiment for determination of an LUT for the correspondence
between RF response and the velocity.

avoidance in the next section.

Based on the simulation results, it can be concluded that the RF response is non-

monotonic with respect to the motion. However, the monotony can be achieved in a con-

strained velocity interval. Based on the monotonic interval, a unique relationship between

the motion and the RF response can be achieved.

Experimental Determination

An LUT between the motion and the RF response is experimentally determined in this

section.

As mentioned, if a fly is rotating around its vertical axis facing a homogeneous stripe

pattern, its visual projection of the stripe pattern is homogeneously distributed. Then,

the varying of the yaw angle results in a translation in the horizontal axis in the projected

input image. Therefore, the input images of a camera with translational movement facing

a homogeneous stripe pattern can be used to imitate the yaw angle changing of a fly.

– Experimental Setup An extended setup of Fig. 5.11 is used, illustrated in Fig. 5.21

and 5.22. The camera is installed on a linear motor, facing a vertical stripe pattern. The

camera data is transferred through the CL and processed on the FPGA platform. The

results are transferred from a Windows PC to a Linux PC, which controls the linear motor

via a control box. Moreover, motor sensor feedback is also measured and processed in this

control box.

– LUT To obtain the relationship between the RF response and the camera motion,

a large number of tests using different camera velocities aided by the linear motor were

conducted. The linear motor was controlled by a Proportional-Integral (PI) controller with

the parameters Kp = 200 and Ki = 6 to produce velocities from 0m/s to 1m/s. A friction
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Fig. 5.23: Camera velocities with their corresponding RF responses.

compensator was also added to the control loop.

Fig. 5.23 shows three different camera velocities and their corresponding RF responses

exemplarily. For each velocity, the oscillation of RF responses similar to the simulation

results occurs. Using the averaged RF responses at various camera velocities, a diagram

showing the relationship between the RF response and the camera velocity is illustrated in

Fig. 5.24. At lower velocities, the RF response increases with an increasing velocity. After

reaching a maximum at 0.42m/s, the RF response decreases as expected.

Fig. 5.25 shows the RF responses to a continuously varying velocity between -1m/s

and 1m/s. In both tests, a correspondence is noticed that the RF response reaches its

maximum for the velocity of 0.42m/s. Then, for velocities from 0m/s to 0.42m/s, an LUT

representing the relationship between the RF response and the camera velocity is found,

shown in Fig. 5.26, which is however biased by the current lighting conditions, shown
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Fig. 5.25: The RF responses to the varying camera velocity.

below.

– Influence of Lighting Conditions The influence of different lighting conditions on the

LUT is illustrated in Fig. 5.26. The RF response is proportional to the camera aperture.

The brighter the current lighting is, the steeper the relationship curve is. Since the lighting

intensity has a great influence on the RF response, the LUT is not unique in different

lighting conditions.

As it is known, flies possess an organism called ocelli (see Fig. 5.1, left), which senses the

lighting conditions. In this thesis, the LUT used in the following experiments was manually

adjusted in advance according to the lighting conditions in the experimental environment.

An LUT capable of the adaptation to the lighting conditions is subject to future work.

Closed-Loop Control

To verify the quantitative motion estimation based on the LUT, closed-loop control of cam-

era ego-motion was conducted. The reference velocity along the linear axis increased from

0m/s to 0.42m/s and decreased to -0.42m/s, illustrated by the dashed line in Fig. 5.27.

The control performance and control errors using the visual feedback and motor feedback
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Fig. 5.27: Closed-loop control using motor encoder and visual feedback. Top: the camera
velocity controlled using camera feedback based on the LUT and motor encoder
feedback; bottom: the respective control errors.

are shown in solid lines and dot-dash lines. The controlled velocities using both feedbacks

almost overlap with each other. The maximum error of visual feedback with respect to the

reference velocity is approximately 0.025 m/s, lying in the same order of the control errors

using the motor feedback, which is assumed to be very accurate. It is concluded that an

LUT can solve the nonlinearity problem of the motion estimation based on the EMDs and

the RFs and provide suitable feedback for closed-loop control.

5.3.2 Camera-Vision-Based Motion Estimation and Control

Considering camera’s vision, a forward-looking camera on a quadrotor is simulated. In

contrast to fly’s vision, a camera has a planar sensor surface, resulting in an input image,

in which the pattern is expanded at the sensor edges (see Fig. 5.28). Considering the

planar sensor surface of the camera, a similar procedure to Section 5.3.1 is also conducted

for the determination of an LUT of the RF response caused by yaw angle variation.

118



5.3 Quantitative Motion Estimation and Control

Fig. 5.28: A camera mounted on a quadrotor observing a stripe pattern (left) and the optical
flow field detected by the elaborated EMD on a camera image (right).
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Fig. 5.29: LUT establishment for a forwards-looking camera with rotation around its vertical
axis (yaw angle). Top: the original (left) and averaged (right) simulated RF re-
sponses; bottom: LUTs based on stepwise averaging (left) and interpolation (right).

LUT Establishment

Fig. 5.28 (right) shows the EMD-based optical flow (the arrows) of a simulated input image

by rotating the yaw angle of the quadrotor. Note that the stripes in the input image of
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Fig. 5.30: Closed-loop control structure. ωd: desired angular velocity; ω: actual angular
velocity; ωe: estimated angular velocity.

a homogeneous stripe pattern are not homogeneous and have a wider spectrum of spatial

frequency than the one in Fig. 5.19 (right).

Fig. 5.29 shows the simulation results consisting of the original RF responses with

respect to image frames (top-left), the averaged responses (top-right), and LUTs between

camera velocity and the RF response using a stepwise averaging (abbr. LUTS, bottom-left)

and using linear interpolation (abbr. LUTI, bottom-right).

Based on the interpolation method, an angular velocity under 19 deg/s using

100 frames/s approximately for the simulation can be estimated uniquely using LUTI. The

LUTS based on a stepwise averaging of the original RF responses shows a similarity to

the fly, human, or the other animals’ vision, namely a small motion estimation resolution,

while at certain responses the velocity cannot be uniquely estimated [126].

Closed-Loop Control

Now, both LUTI and LUTS are applied in closed-loop control of quadrotor yaw angle.

Fig. 5.30 illustrates the control structure based on EMDs, RFs, and the LUT. Three

trajectories of different desired velocities are given, namely constant velocity, stepwise-

constant velocity, and constantly accelerated velocity.

The results are illustrated in Fig. 5.31. The left column shows the results using LUTI,

while the right column shows the results using LUTS. For a constant desired velocity of

10 deg/s, illustrated in the first row, LUTI shows a smoother control trajectory than the

LUTS, while the estimation of LUTI oscillates around the actual value. For a stepwise-

constant velocity, both LUTI and LUTS perform well at lower velocities. At a higher

desired velocity, the controlled actual velocities have very small oscillations around the

desired value, while both estimations have relatively large oscillations around the desired

value. For a constantly accelerated velocity, LUTI performs well in terms of small control

errors and small estimation errors. In contrast, LUTS does not perform so well in terms

of stepwise converging control errors and large oscillations of the estimation due to am-

biguous relationship in the LUT. Overall, both LUTI and LUTS exhibit a good control

performance. According to specified control conditions and requirements, LUTI or LUTS

can be respectively applied. For example, LUTS is more beneficial for limited hardware

requiring low computational cost or for the reduction of chattering in position control such

as quadrotor altitude control in hovering. Further exploration at this point is subject to

future work.
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Fig. 5.31: Closed-loop control of yaw angle of the forward-looking camera using different de-
sired velocities. Top: constant velocity; middle: stepwise-constant velocity; bottom:
constantly accelerated velocity. Left: control results using LUTI; right: control re-
sults using LUTS. Dashed lines: the desired velocity ωd; solid lines: the velocity
estimation ωe; dot-dash lines: the actual velocity after control ω.

5.3.3 Explorative Analysis Based on Natural Images

As mentioned previously, the spatial frequency of an input image has a major influence

on the relationship between the RF response and the ego-motion. The sine-gating image

for the mathematical derivation in Section 5.3.1 has a single spatial frequency fs, while
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Fig. 5.32: Input signals (top row) and their spectra of spatial frequency (bottom row). From
left to right: a sine-gating signal, a sine-gating image, and a black-white stripe
pattern.

the Gaussian filtered stripe patterns investigated for fly vision and cameras only possess

a narrow spatial frequency spectrum, as shown in Fig. 5.32. The applications of the LUT

based on those images are limited, such as visual servoing in artificial environments. In

contrast, natural images possess a wide spectrum of spatial frequency. In this section,

the relationship between RF response and motion based on natural images is explored for

further implications and inspirations.

The work in [40] proposed a robust neurobiological model for optical flow coding in

natural scenes, consisting of five processing stages: phototransduction, spatial-temporal

redundancy reduction, local motion estimation, local motion adaptation, and large-field

integration. The authors tested their model using a variety of natural images and proved

that the RF response computed using their model for the same angular velocity is almost

the same. Moreover, the accelerations are also well estimated. In order to cover a wide

spatial frequency spectrum, the prerequisite of high-resolution panoramic images is of

particular importance using their model. However, as stated in the paper, the complexity

of the model may be too much to realize in a real-time application.

Compared to [40], this work aims at closed-loop control using natural images with a low

computational cost. Therefore, an explorative attempt is made here. Fig. 5.33 shows three

of the natural images used in this thesis. Their spectra of spatial frequency are illustrated

in Fig. 5.34 (left). A much wider spectrum of each input image is obtained in contrast

to the artificial images shown in Fig. 5.32. Using these three images, the RF responses

with respect to various angular velocities are simulated and illustrated in Fig. 5.34 (right).

The RF responses and the relative errors are very similar among different images. The

form and the trend are also similar to those using artificial stripe patterns. Therefore, it

is concluded that it is possible to establish an LUT and closed-loop control using natural

images, as shown in Section 5.3.2.
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Fig. 5.33: Natural images 1, 2, and 3 (from left to right) used in the simulation.
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Fig. 5.34: Left: spatial frequency spectra of images 1, 2, and 3; right: the RF responses of
images 1, 2, and 3 with respect to velocity and the relative error erel.

5.3.4 Explorative Analysis of Complicated Motion

After motion in one direction is extensively studied in the previous sections, complicated

motion is considered here. An example is shown in Fig. 5.35. A camera has concurrent

rotational and translational motion. Then, its input image provides a complicated flow

field like c) in Fig. 5.35. The central problem is how to extract motion components from the

available complicated RF response – flow field c), which means the rotation and translation

responses a) and b) are searched for.

a) Rotation only            b) Translation only         c) Rotation+Translation

R R R  + Rr t r t

Fig. 5.35: Illustration of the composing of complicated motion – merging of concurrent camera
rotation and translation.

Taking the quadrotor motion estimation in Chapter 3 as an example, for a downward-
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Fig. 5.36: The downward-looking camera is facing a chessboard pattern. Left: the chessboard
pattern; middle: RF responses Rp,c and Rp,f of pure clockwise rotation on the RFs
c) and f); right: RF responses Rp,a and Rp,d of pure translation on the RFs a) and
d).
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Fig. 5.37: The downward-looking camera is facing a chessboard pattern. Left: RF responses
Rc,c and Rc,f of the complicated motion on RFs c) and f); middle: RF responses
Rc,a and Rc,d of the complicated motion on RFs a) and d); right: rotated RF
responses R∗

c,a and R∗
c,d of the complicated motion on RFs a) and d).

looking camera of a hovering quadrotor, assuming a constant altitude, the optical flow

in the field of view contains both translation in left-right/forward-backward directions

and yaw angle rotation. Therefore, simulations are conducted to investigate this motion

decomposing problem.

Two simulations are conducted to compare the RF responses of the pure rotation and

pure translation with the decomposed RF responses resulting from the overlapping com-

plicated camera motion. The clockwise rotation velocity is set to 1 degree/frame in the

camera frame, while the translation velocities in both directions are set to 1 pixel/frame in

the inertial frame. The translation is defined in the inertial frame, as it is the conventional

way for designing a desired quadrotor trajectory.

In the first simulation, an artificial chessboard pattern is used, as shown in Fig. 5.36

(left). The chessboard pattern possesses both horizontal edges and vertical edges. The RF

responses of a pure rotation Rp,c and Rp,f on RFs c) and f) are shown in Fig. 5.36 middle,

while the RF responses of a pure translation Rp,a and Rp,d on RFs a) and d) are shown in

Fig. 5.36 (right).

If the quadrotor performs a complicated motion consisting of yaw angle rotation and

translation in XI-/YI-directions, the RF responses Rc,c, Rc,f , Rc,a, and Rc,d of the result-

ing complicated motion based on RFs c), f), a), and d) are shown in Fig. 5.37 (left and

middle columns), which indicate the rotation and translation component of the overall

motion. Compared to the responses Rp,c and Rp,f for a pure clockwise rotation illustrated
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Fig. 5.38: The downward-looking camera is facing the irregular pattern used in Fig. 3.27 in
Chapter 3. Left: the irregular pattern; middle: RF responses Rp,c and Rp,f of pure
clockwise rotation on the RFs c) and f); right: RF responses Rp,a and Rp,d of pure
translation on the RFs a) and d).
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Fig. 5.39: The downward-looking camera is facing the irregular pattern used in Fig. 3.27 in
Chapter 3. Left: RF responses Rc,c and Rc,f of the complicated motion on RFs c)
and f); middle: RF responses Rc,a and Rc,d of the complicated motion on RFs a)
and d); right: rotated RF responses R∗

c,a and R∗
c,d of the complicated motion on

RFs a) and d).

in Fig. 5.36 (middle), it can be concluded that the rotation component is accurately de-

composed from the complicated motion.

Note that the camera translation in XI-/YI-directions is defined in the inertial frame

and the RF responses Rc,a and Rc,d are detected in the camera frame. There is a rotational

relationship IRc between them, which can be calculated using the decomposed rotation

components Rc,c and Rc,f . After the decomposed responses of translation motion Rc,a

and Rc,d using RFs a) and d) are multiplied with the instantaneous rotation matrix, the

following rotated responses R∗
c,a and R∗

c,d are obtained:




R∗
c,a

R∗
c,d

1


 = IRc ·




Rt,a

Rt,d

1


 , (5.12)

as illustrated in Fig. 5.37 (right), which indicate the camera translation component of

the overall motion in the inertial frame. Compared to the responses of a pure transla-

tion motion in the inertial frame as shown in Fig. 5.36 (right), it can be concluded that

the translation component is also successfully decomposed from the complicated motion,

facilitated by the rotation component decomposed from the complicated motion.

The same simulation is conducted using the same irregular texture as the one used in

Chapter 3 for optical flow computation, illustrated in Fig. 5.38 (left). The RF responses
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Rp,c and Rp,f of a pure rotation as well as Rp,a and Rp,d of a pure translation are shown

in Fig. 5.38 (middle and right, respectively). The RF responses Rc,c, Rc,f , Rc,a, Rc,d of the

complicated motion and the rotated RF responses R∗
c,a, R∗

c,d are shown in Fig. 5.39 (left,

middle, and right, respectively). Similar results to those using the chessboard pattern are

obtained.

Overall, the conclusion can be drawn that the RF response can be applied in complicated

motion estimation. Based on the decomposed global motion detection, a quantitative LUT

can be applied, to provide a complete feedback of quadrotor motion for control tasks.

5.4 Towards Insect-Inspired Collision Avoidance

As it is known, flies perform collision avoidance all the time when flying. Respectively, a

fast collision avoidance capability using the visual information is also a critical issue for

the safety of the flying system. In order to realize stable and safe flying of the quadrotor,

two basic flying behaviors are considered: a stable tracking behavior and a high-speed

obstacle avoidance behavior. Fig. 5.40 (left) illustrates the envisioned quadrotor flying

behavior in a finite state machine. In tracking behavior, the quadrotor tracks the moving

ground robot using the on-board downward-looking camera. Moreover, the insect-inspired

motion detection and motion estimation with high temporal sensitivity is envisioned to

alert the quadrotor and trigger the obstacle avoidance behavior using, for instance, an

additional forward-looking camera. Since this bio-inspired obstacle detection algorithm is

very computationally efficient and can be implemented on-board, the quadrotor deploys a

very fast response to obstacles and then enters into the obstacle avoidance behavior.

      Tracking 

(Pose Control)

  obstacle detected

  using insect vision

  obstacle avoided

Obstacle Avoidance

    (Flight Planning)

A

B

Obstacles

Fig. 5.40: Left: Finite state machine of envisioned quadrotor flying behavior. Right: example
scenario of pillar avoidance while flying from A to B.

Fig. 5.40 (right) illustrates a possible scenario: During the flight, it is essential to avoid

positive obstacles such as vertical pillars in a hall while flying from A to B, where estimation

of the obstacle position to the quadrotor is critical information.

As mentioned in the previous section, the RF response is also related to the spatial

frequency of the stripes which indicates the distance of the stripes to the vision sensor.

Therefore, assuming that the quadrotor flying velocity and the dimension of obstacles are

known, the relative distance between the quadrotor and the obstacle can be derived based

on the RF response.

Simulations are conducted to investigate the relationship between the RF response and

the relative distance at a constant quadrotor flying velocity. The results are shown in

Fig. 5.41. The quadrotor starts to fly in the direction of an obstacle with a distance of
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Fig. 5.41: Relationship between the RF response and the relative distance between the quadro-
tor and the obstacle at known velocities. Left column: the quadrotor flies from 0.5m
towards the obstacle; right column: the quadrotor flies from 1m towards the ob-
stacle. Top row: the original RF responses; Bottom row: the smoothed responses.

0.5m (Fig. 5.41 left) and 1m (Fig. 5.41 right) with various constant velocities. The top

figures are the original responses based on the input images during flight, while the bottom

figures are the respective smoothed responses.

Overall, the RF responses increase with a decreasing relative distance. At the same

distance, the RF responses increase with an increasing velocity. Those phenomena also

correspond to humans’ intuitive perception. Interestingly, it is shown that the RF responses

are not the same if the quadrotor flies from a different start point. But still the nearer

to the obstacle the quadrotor is, the more similar the RF responses are (note that the

significant difference between the two smoothed responses is mainly due to the smoothing

functions). Therefore, it is reasonable to set a threshold Rth for the response to trigger the

quadrotor to detect obstacles and re-plan its flight trajectory, in order to avoid obstacles.

A flight planning algorithm is shown in Algo. 1 as an example. A quadrotor flies straight

forward in a bounded space. If the quadrotor reaches the boundary, it turns 90 deg back

to the flying space. If optical flow pairs in columns computed by EMDs are detected in its

image ROI (see Fig. 5.42 right), an obstacle between the optical flow columns is detected

in its desired flight trajectory. Then, the RF response R are computed. If R > Rth, the

quadrotor turns 20 deg to avoid the obstacle. The simulation result is shown in Fig. 5.42
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5 Insect-Inspired Motion Detection and Estimation for Flight Control

Algorithm 1 Behavior: obstacle avoidance
set image ROI
while 1 do

capture an image
calculate EMD optical flow in ROI
if optical flow pairs in columns detected then

define obstacle
calculate RF response R
if R > Rth then

quadrotor turns 20 degree
set HP/LP to zero

end if
end if
if reached boundary then

quadrotor turns 90 degree
end if

end while
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Fig. 5.42: Left: simulated quadrotor flying trajectory in a space consisting of several obstacles;
right: an input image with an obstacle detected in the image ROI.

(left). The quadrotor succeeds in avoiding all the obstacles.

Another possible extension similar to the obstacle avoidance considered here is that

flying through an unblocked area, e.g. a door or a window, based on the visual responses.

These aspects open up a variety of research directions in flight planning and are subject

to future research.

128



5.5 Discussion

5.5 Discussion

Limited Inter-Frame Motion

Due to the requirement of a monotonic relationship between the RF response and camera

velocity, the inter-frame velocity is limited in a bounded extent. Therefore, in order to

detect and estimate motion with a higher velocity, a higher frame rate is desired. A high-

speed implementation such as FPGA-implementation described in the previous section

should also be equipped to fulfill the requirement. However, there is always a trade-off

between highly accurate algorithms and high-speed implementation.

Importance of Vision-Based Gyroscopes

The RFs for rotation detection and the rotation estimation proposed in this thesis are very

essential when considering quadrotor applications, as the horizontal motion of a quadrotor

is realized by roll and pitch angles, and the heading direction is one key system state

for quadrotor flight such as for tracking and landing. One of the possible extensions and

applications is to establish vision-based gyroscopes based on RF responses, which can be

an important complement to the standard gyroscopes in terms of improved accuracy and

robustness to noise.

Hardware Limitation

Due to the relatively large dimension of the FPGA-board used here, this implementation

was not able to be applied to the quadrotor. The algorithms and implementation are

applied to a smart camera SC-MVC01 from VIDEOR eneo [15] of a cooperating partner

[7]. This drawback can also be overcome by using a small FPGA module [82].

Multi-Sensory Motion Estimation

The insect-inspired motion estimation considered in this work has only covered vision-based

aspects. However, biological models commonly use multi-modal sensors to accomplish this

task. For instance, humans apply vision, inner ear, and even tactile perception to navigate.

As mentioned in Section 5.1, flies use compounded eyes to perceive visual flow, ocelli to

measure the brightness in the environment, halteres as a gyroscope to control flight, and

also the hair over the body wings to perceive wind or pressure.

For a more accurate and faster response, multi-modal sensor cooperation could be a

reasonable solution as stated in Chapter 3. The bio-inspired vision system, the on-board

IMUs, or even tactile sensor skin could be combined to realize a high-performance insect-

like flying robot, which is subject to future work due to currently limited hardware.

Computational Intelligence

Considering the disadvantageous characteristics of insect-like vision such as relatively low

resolution and low accuracy, controllers based on fuzzy logic or neural networks might be

compatible for insect-like flight control.
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5.6 Summary

As an alternative to traditional development of vision-guided flying systems, biologically

inspired techniques have the advantage in terms of efficiency. Transfer and implementation

of neurobiological results of vision-based motion estimation are of particular importance

and necessity for the current development of cognitive systems. Moreover, how the quali-

tative characteristics of biological modeling can be transferred into normally quantitatively

controlled technical systems is a very interesting and challenging question.

In this chapter, the novel vision and visuomotor behavior models inspired by biologi-

cal paradigms are extended first, in order to adapt to the typical dominant and preferred

motion behaviors of the quadrotor. Two new RFs for rotation detection are proposed.

High-speed implementation using compatible hardware – an FPGA platform – is accom-

plished to obtain the effectiveness of the neurobiological algorithms. The performance of

the implementation is sufficient to deal with video frame rates of 350 fps or above for a

frame size of 256× 256 pixels.

As EMDs and the RFs suggested in fundamental studies can only provide a solution

to qualitative motion detection, the respective motion estimation is established with the

help of LUTs and extensively explored considering the influences of specific parameters

such as the perception difference between flies and cameras, lighting conditions, the spa-

tial frequency and frequency spectrum of input images. Closed-loop control and obstacle

avoidance are exploratively investigated, which show a promising possibility of fully con-

trolling MAVs in future work.

Limitations of this bio-inspired model include the dependency on backgrounds with

contrast as a common problem in computer vision. Multi-rate sensor data fusion with,

for example, IMUs would be necessary for applications in the scenarios with irregular

backgrounds, which is subject to future work. Moreover, the online computation of scene

motion fields while the quadrotor is in motion is another challenge of dynamic vision in

dynamic environments. In addition, control issues based on insect-like vision should be

further studied, e.g. visual servo control [137] or applications of fuzzy logic controllers and

neural networks.
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6.1 Concluding Remarks

The development of Unmanned Aerial Vehicles (UAVs) has in recent years become one of

the focuses of active research, since they can extend the operating capability in a variety

of areas such as military, industrial, and civilian domains. Above all, Micro Air Vehicles

(MAVs) have gained a great interest in the robotics domain because of their small size and

possible applications in indoor, complex, everyday environments. To study various aspects

of a flying system, a quadrotor is chosen as the platform used in this thesis due to the

robust mechanism and holonomic dynamics, which exhibits challenging motion estimation

and control problems for autonomous flight.

Since vision is one of the most powerful tools for information acquisition and is widely

used in most biological organisms such as humans and animals for autonomous navigation,

vision-guided flight and navigation are considered able to overcome the aforementioned

challenges. Moreover, insect-vision-inspired neurobiological models in particular are ex-

pected for further development of MAVs.

In this thesis, a heterogeneous air-ground multi-robot system is developed as a test-bed,

containing a mini-quadrotor with complete on-board integration of sensor data processing

and control algorithms as well as a wheeled ground robot. This work aims to establish

a vision-guided flying system containing accurate pose/motion estimation as well as

stable and effective control, such that this vision-guided MAV can conduct a complete

performance including take-off, hovering, tracking, and landing stably and safely with the

help of the ground robot. Furthermore, bio-inspired vision strategies for flight control

are investigated as an attractive alternative to traditional paradigms. Applications and

examples are presented for demonstration and evaluation. The main approaches along

with the main contributions are highlighted below.

One of the fundamental but challenging problems of flight control is accurate pose and

motion estimation of the aerial vehicle. To deal with the drift problem of on-board In-

ertial Measurement Units (IMUs) and to be able to acquire more information about the

other agent – the mobile ground robot – in the environment, a monocular camera facing

downwards is equipped on the quadrotor. Vision sensors have, however, the disadvantages

of limited field of view, relatively low sampling rates, and complex image processing, all of

which are critical for pose and motion estimations of a highly dynamic system. In Chapter

3, aiming at obtaining accurate pose/motion estimation of a highly dynamic quadrotor

relying only on on-board sensors, a thoroughly designed high-frequency fusion of the iner-

tial data and the vision data is accomplished. Based on multi-modal sensor information, a

continuous-discrete Extended Kalman Filter (EKF) is applied for the multi-sensory multi-
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rate data fusion, where the high-frequency IMU data drive the process model and the

low-rate vision data correct the estimation. Data synchronization is completely conducted

based on the accurately measured time delay. Moreover, switching between marker-based

pose estimation and optical-flow-based motion estimation is conducted for different quadro-

tor positions. Various real-time experiments considering the quadrotor tracking the mobile

ground robot show that 1) high accuracy and high frequency of the pose/motion estima-

tion in dynamic behaviors are obtained through the multi-sensory multi-rate data fusion;

2) one of the first autonomous quadrotors based on minimal on-board sensors and the

complete integration of sensor data processing is achieved.

Based on the accurate and high-frequency pose and motion estimation in Chapter 3,

a stable and effective control design is investigated in Chapter 4. Quadrotors themselves

exhibit a challenging control problem due to non-linear, under-actuated, highly unstable

dynamics, time delay, as well as the limited payload and computational capacity requiring

a simple control structure. Up to now, most state-of-the art works have only considered

the control design in simulations, while the other standard works that consider real system

implementation use a much simplified system model in limited scenarios. Chapter 4 aims at

designing, implementing, and discussing adequate control structures for the quadrotor, to

overcome the aforementioned challenges and to improve the quadrotor flying behavior in an

integrated manner. The system model used here is not much simplified, in order to preserve

the original dependency of system states. A PID-controller, an optimal LQ controller, and

non-linear controllers such as backstepping-based controllers and sliding mode controllers

are carefully adapted to the quadrotor system and discussed. Based on simulation results,

an integrated control design is accomplished for quadrotor take-off, hovering, tracking,

and landing on the mobile ground robot and evaluated in real-time experiments. The

main contributions presented in Chapter 4 are: 1) the adaptation, implementation, and

real-time evaluation of various control strategies based on a relatively complex system

model; 2) an integrated control design considering controller combinations proposed and

evaluated in a complete flying scenario for the first time.

After Chapters 3 and 4 solve the flight control problems in a traditional manner, Chap-

ter 5 focuses on insect-inspired motion detection and estimation as an efficient alternative

extension. The fundamental findings in biology and neuroscience show that insects have a

small but efficient and sensitive visual system for real-time flight stabilization and control.

This would provide an excellent solution for MAVs on-board vision development, which

requires simple and fast computation due to limited payload, restricted computational

capacity, and fast, dynamic self-motion. In Chapter 5, the novel vision and visuomotor

behavior models inspired by biological paradigms are extended first, in order to adapt to

the typical dominant and preferred motion patterns of the quadrotor. Two new Receptive

Fields (RFs) for rotation detection are proposed. High-speed implementation using com-

patible hardware – a Field Programmable Gate Array (FPGA) platform – is accomplished

to obtain the effectiveness of the neurobiological algorithms. The performance of the

implementation is sufficient to deal with a video frame rate of 350 fps for a frame size

of 256 × 256 pixels. The respective motion estimation is established with the help of

Look-Up Tables (LUTs) and extensively explored considering the influences of specific

parameters such as perception difference between flies and cameras, lighting conditions,
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as well as the spatial frequency and spectrum of input images. Closed-loop control and

obstacle avoidance are exploratively studied and show a promising possibility of fully

controlling MAVs based on insect-like vision in future work. The twofold contributions in

Chapter 5 are: 1) extension of efficient qualitative motion detection and its high-speed

implementation on an FPGA platform; 2) explorative investigation of quantitative motion

estimation quadrotor flight control.

Summarizing, the overall contributions of quadrotor motion estimation and control pro-

posed in this thesis are the novel system configuration, significant improvements in quadro-

tor pose/motion estimation in terms of high accuracy and high frequency, enhanced control

performance in relation to effectiveness and integrity, as well as advanced exploration in

insect-inspired flight control. One of the first autonomous quadrotors only using on-board

sensors (a monocular camera and IMUs) is developed and its performance is extensively

evaluated in simulations and real-time experiments. The contributions significantly ad-

vance the state of the art in motion estimation and control of a vision-guided autonomous

flying system and serve as a signpost for future research.

6.2 Outlook

Quadrotors, as one of the most attractive MAV platforms, have been intensively studied

due to their wide application domain. Research on quadrotors provides the possibility of

enabling autonomous flight and intelligent deployment. However, the research up to now

mainly focuses on low-level hardware design and the development of control algorithms.

There is still a large number of open questions and interesting future directions remaining,

some of which are suggested below.

– Improved vision guidance of autonomous flight – The main advantage of vision guid-

ance of flying systems is that vision can provide a large amount of information and

direct measurement without integration, which is the most natural method used in

autonomous biological systems for localization, planning, and reaction to the envi-

ronment. Therefore, feature-based or scene-based visual processing without the use

of artificial markers can provide more flexibility for MAV applications in compli-

cated natural environments. However, due to the limited computational capacity,

the state-of-the-art works considering a complex vision guidance commonly use an

additional ground station for information processing, which brings problems of time

delay and also limits the exertion of autonomy and the work space. An improved

vision guidance which is not only simple and effective but also natural and flexible

is subject to future work.

– High-level coordination and cooperation of the air-ground multi-robot system – In

order to improve task performance and capability of flying systems, cooperation of

one or more MAVs and Unmanned Ground Vehicles (UGVs) in multi-robot systems

can be taken into consideration. In this work, the ground robot serves as a mobile

reference and provides motion information to facilitate quadrotor flying. Thereby,

high-level coordination and cooperation of the air-ground system are some of the
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most interesting and challenging problems, such as 3D simultaneous localization and

mapping as well as search-and-rescue.

– Insect-inspired quadrotor control in full Degrees Of Freedom (DOFs) – Due to the

small size, efficient low-resolution information processing, and their high-speed, par-

allel sensorimotor structure, insects are regarded as an intelligent biological model

for MAV flight control. In this thesis, a preliminary exploration of insect-inspired

yaw control for quadrotors is conducted and should be extended to full DOFs first.

Moreover, scenarios such as obstacle detection and collision avoidance are interesting

topics remaining in this area. Insect-like multi-sensory data fusion and combination

with probabilistic models such as the Kalman filter are also of particular interest. In

addition, controllers based on fuzzy logic or neural networks might be compatible for

insect-like flight control and should be considered.

Research on vision guidance, cooperation with ground agents, and bio-inspired strategies

will have a large impact on the development of vision-guided autonomous flying systems.

Applications of MAVs are expected to be an inevitable component of life in the future.
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A.1 Hardware Description

The quadrotor platform used in this thesis is a Hummingbird quadrotor from Ascending

Technologies GmbH [3]. It is a small and lightweight platform which is designed for lab

experiments. Based on the original setup of the quadrotor, a monocular camera and a small

board with an Atom CPU (referred to as “ATOM-board”) are installed in this thesis. A

top view of the platform is shown in Fig. A.1.

The ATOM-board

The camera
The forward

propeller

The support frame

Fig. A.1: Top view of the quadrotor platform.

The diameter of the quadrotor is 36.5 cm. It possesses four flexible, harmless propellers

of 19.8 cm each, which are driven by brushless DC motors. The weight without battery

and other additional hardware is 219 g. The maximum thrust of four motors is 1320 g. The

maximum payload is 350 g.

A control board on the platform called “X3d” contains an ARM processor which op-

erates an inner-loop controller to stabilize rotations around three axes (roll, pitch, and

yaw) (see Fig. A.2). Originally, three gyroscopes (Murata ENC-03R) and three axial ac-

celerometers are integrated on this control board, providing sensor data to the inner-loop

controller at 1 kHz. More information can be found in [3].

The on-board camera and an extra computation unit are installed in this thesis. The

on-board camera is a Firefly MV camera (FMVU-03MTM/C) from Point Grey Research

Inc. [12], shown in Fig. A.4. The key parameters of the camera are listed in Tab. A.1.

More information can be found at [103].
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Fig. A.2: The X3d board [102]. Fig. A.3: The flying netbook [3].

Fig. A.4: The Firefly MV camera [103].

Specification Description
Mass 37 gram (with microlens)
Dimensions 24.4 × 44 × 34mm
Image Color
Resolution 640× 480 pixels
Frame Rate 60 FPS
Focal distance 2.2mm
Field of view 96◦ × 68◦

Interfaces USB 2.0

Tab. A.1: Key parameters of the camera [103].

The ATOM-board with an Atom CPU of Intel Corp. (1.6 GHz Dual Core) called “Flying

Netbook” is developed by Ascending Technologies GmbH (see Fig. A.3). Its dimension is

100×60×25mm and its weight is 90 g. The maximum power consumption is 5 W. It is

capable of image data processing, sensor data fusion, and computation of the outer-loop

control law, which makes autonomous flight possible. The on-board camera is connected via

USB interface with the ATOM-board, while the data transfer between the ARM-Processor

and the ATOM-board is via Universal Asynchronous Receiver Transmitter (UART). More

information can be found in [3].

In addition, a support frame consisting of four legs are mounted to uphold the quadrotor.

Two of them are made of flexible copper and can damp the landing.

The total weight of the fully equipped quadrotor is approximately 700 g, which is beyond

the maximum payload plus the quadrotor self-weight. In spite of this, the quadrotor flied

stably and safely in the experiments which indicates that the control design in this work

is stable and effective.

A.2 Experimental Measurement of Time Delay

The procedure of the measurement of time delay for the IMU data and vision data is

presented here in detail.
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A.2.1 Time Delay of the IMU Data

The time delay of the IMU data consists of three parts: 1) IMU sampling time; 2)IMU

data transfer from IMUs to the ARM-processor (referred to as “arm” below); 3) IMU

data transfer from the ARM-processor to the ATOM-board, illustrated by Fig. A.5. The

linear accelerations ax, ay, az and rotation velocities p, q, r are measured by the IMUs at

1 kHz, which means a sampling time less than 1ms. Using the IMU measurements, the roll

angle Φimu and the pitch angle Θimu are estimated at the same rate on the ARM-processor.

Then, the IMU data and angle estimations are transmitted together to the ATOM-board

via UART. Varying of the total transfer time is mainly caused by this transmission.

Sample trigger

Data transfer

1 2 3

Fig. A.5: Time delay analysis of IMU data. 1) IMU sampling time of less than 1 ms; 2) IMU
data transfer time from IMUs to the ARM-processor on the quadrotor; 3) IMU data
transfer time from the ARM-processor to the ATOM-board.

IMUs and ATOM-Board Time Synchronization

There is a time stamp in each data package sent by the ARM-processor to the ATOM-

board. This time stamp indicates when the IMU data are sampled. It runs from 0 to

65535, which is generated by a 16-bit counter, and gives more advantage for the data

synchronization later. But note that the time unit used on the ARM-processor is not

identical as that on the ATOM-board. As shown in Fig. A.6, the time stamps are different

at the same measurement points. Therefore, the time on the ARM-processor and the time

on the ATOM-board should be firstly synchronized locally.

The ratio between ARM-processor time tarm and the ATOM-board time tatom is denoted

by Pt:

Pt =
tatom

tarm

. (A.1)

To obtain Pt accurately, the communication between the ARM-processor and the ATOM-

board runs a couple of minutes and repeats several times. The value of Pt is evaluated to

be 1.9841175. In Fig. A.7, the synchronized ARM-processor time tarm and ATOM-board

time tatom overlap each other.

IMU Transfer Time

The IMU data are transmitted to the ATOM-board for further processing via UART from

the ARM-processor. The data refreshing periods of the transmission on the ARM-processor

and on the ATOM-board are illustrated in Fig. A.8. The actual IMU data refreshing period
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Fig. A.6: Unsynchronized ARM-processor
time and the ATOM-board time.
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Fig. A.7: Synchronized ARM-processor time
and the ATOM-board time.
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Fig. A.8: IMU data refreshing period.

for this transmission on the ARM-processor side illustrated by the dashed line is about

9.96ms, while the period for the receiving on the ATOM-board illustrated by the solid line

is not constant.

The time label of the kth data package sent by the ARM-processor is denoted by Tarm,k,

while Tatom,k is the corresponding time label for receiving of this package on the ATOM-

board. A low-pass filter is used to determine the time base Tatom,0:

Tatom,0
k = Tatom,0

k−1 · Tlp − 1

Tlp

+ [Tatom,k − (Tarm,k − Tarm,0)] · 1

Tlp

, (A.2)

where Tlp is time constant for the low-pass filter and set to 500. The Tatom,0 will be calcu-

lated iteratively for every new data package and tends to be constant after several seconds.

This time base is used to measure the average transfer time of the data package from the

ARM-processor, since real-time measurement of the single transfer time is impossible.

The IMU data and the estimated Φimu, Θimu angles are almost synchronous. Therefore,

only the transfer time of the IMU data has to be determined. An experiment is designed

to measure this average value.

As shown in Fig. A.9, the quadrotor was fixed on a linear axis. The motor moves only

along the axis. The Xb-axis of the quadrotor was also set parallel to this track. A high-
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The Quadrotor

 ServoTube linear motor

Fig. A.9: Experiment for measuring the IMU data transfer time.
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Fig. A.10: Accelerations measured by IMUs on the quadrotor and by the motor encoder of the
linear axis.

speed data acquisition card was used for position measurement, in which the data transfer

time is less than 1ms and negligible. The acceleration of the quadrotor along the Xb-axis

can be obtained by considering the second derivative of the position. The accelerations

measured by the IMUs on the quadrotor and by the motor encoder of the linear axis are

saved to the hard disk and analyzed off-line.

In Fig. A.10, the IMUs and the motor encoder of the linear axis give almost the same

measurements. They are merely shifted differently on the time axis and the IMU mea-

surement bears some oscillations, which are caused by vibrations of the quadrotor with

respect to the stand bar. By zoomed in a time interval, the time difference between the
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two measurements can be read directly. The average value of the data transfer time from

IMUs to the ATOM-board is approximately 30ms.

A.2.2 Time Delay of the Vision Data

A time stamp, which indicates the arriving time of the current image, is available in the

data structure of the camera. For data synchronization, only the transfer time of the vision

data delivered to the ATOM-board should be determined.

Shutter trigger

Exposure

Data transfer

1

2

3 4

Fig. A.11: Transfer time analysis of vision data. 1) shutter open time of less than 10 µs; 2)
the exposure time of 2 ms; 3) a preparation time for vision data transfer of 1ms;
4) time for data transfer from the camera to the ATOM-board of 16.67ms.

Crucial information about the vision data transfer time is provided in [103]. In Fig. A.11

it is illustrated, how the time delay of the vision data can be calculated. The shutter open

time is determined by the hardware used in the camera and less than 10 µs. The physical

exposure time is between 0.06ms and 33.19ms. With the driver for USB cameras, it can

be set to an integer value on the interval [1, 621]. For a robust detection of the markers,

this value is set to 30 and means an exposure time of 2ms. A series of operations, e.g.

A/D conversion, pixel correction, white balancing, buffering, is carried out before data

transfer and takes about 1ms. Note that the time of image data transfer is influenced by

the frame rate of the camera. The 16.67 ms here refers to a frame rate at 60Hz. The total

time delay is approximately 20ms.

A.2.3 Total Time Delay

The program for communication takes 5ms to deliver IMU data and the estimated Φimu,

Θimu angles to other running processes. Then, data from the ARM-processor are available

for these processes after 30-35ms.

The image processing of marker detection takes about 60ms, and runs for every 60ms.

Although the frame rate of the camera is 60 Hz, the buffering time of the image on PC

varies. The average transfer time of the vision data from shutter opening to synchronization

with estimated Φimu, Θimu angles is approximately 80ms and given by repeated real-time

experiments. The synchronized data are all delayed by about 80 ms.
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A.2 Experimental Measurement of Time Delay

The process for the marker-based pose estimation takes less then 10ms. However,

because of the synchronization between multi-threads, the preliminarily estimated pose

data for data fusion have a time delay of 90 ms. The most recently received IMU data are

synchronized with this estimation and fed into the EKF. The input data for the EKF are

all delayed by about 40 ms due to the time delay of IMU data.
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B Pioneer P3-DX Robot

In this air-ground multi-robot system, a Pioneer P3-DX mobile robot from Mobile Robots

Inc. [10] is used to operate on the floor (see Fig. B.1). This robot platform is 44×38×22 cm

in dimensions with two drive wheels with a diameter of 16.5 cm each. The maximum speed

is 1.6 m/s. It is equipped with different sensors such as Laser, sonars, and a camera etc. The

control of the robot is achieved by programming an embedded computer using Player/Stage

developed by an international team of robotics researchers [14]. More information can be

found in [10].

Fig. B.1: The Pioneer P3-DX mobile robot with two active markers.

In order to realize a robust detection of the ground robot from the quadrotor’s perspec-

tive, two active markers are mounted on the robot. The center point of these markers is

referred as the reference position of the ground robot. Moreover, since the deck of the

pioneer robot is too small for the quadrotor to stand on it, a 80×80 cm planar board with

texture is mounted on the robot as the platform for take-off and landing.

The operating commands are transmitted to this mobile ground robot via wireless LAN

using the Transmission Control Protocol (TCP) and Internet Protocol (IP) to start/stop

the movement of the ground robot. To complete the data fusion and improve the control

performance of the flying robot, motion information of the ground robot is uninterruptedly

sent to the quadrotor employing the User Datagram Protocol (UDP) due to the real-time

character.
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C Tracking System

In this thesis, a tracking system VisualeyezTM II VZ4000 from Phoenix Technologies Incor-

porated [11] is used, providing the ground truth of the quadrotor position and orientation.

Tracking system

Flying quadrotor

Fig. C.1: Experimental environment.

C.1 System Overview

The experimental environment is shown in Fig. C.1: The quadrotor with is flying in the

field of view of the tracking system. Fig. C.2 shows the communication and data trans-

fer of the total setup, which consists of the VZ4000 tracker, four Light Emitting Diode

(LED) markers mounted on the quadrotor, a Windows PC with corresponding software

VZSoft 2.80, and a Linux PC optionally, if the quadrotor should be controlled based on

the position/orientation ground truth (see Section 4.4.2).

The VZ4000 tracker consists of three cameras with parallel optical axes and a baseline

of 0.5m between each two neighboring cameras. It can measure position of 1-24 markers in

the 3D workspace at a resolution of 0.015 mm from a distance of 1.2m with an accuracy of

0.5-0.7mm RMS. In this thesis, the VZ4000 is mounted on the ceiling of the laboratory as

shown in Fig. C.1 and illustrated in Fig. C.3. The cameras are directed facing downwards.

The distance between the cameras and the ground is approximately 2.3 m. Since the
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Fig. C.2: System overview.

cameras have a field of view of 90 deg each, the markers should not be higher than 1.8 m,

such that the markers can be observed by at least two cameras. Otherwise, the markers

can not be reliably tracked by the system.
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45°

Fig. C.3: The observable area of the VZ4000.

The markers are mounted on each axis of the quadrotor and placed as far from the

rotors as possible such that the markers cannot be totally covered by the rotating blades

(see Fig. A.1). The markers are numbered in a clockwise direction, while the first marker

is placed on the forward axis marked by a red label. Moreover, an additional circuit board

is installed on the quadrotor for power supply as well as data transmitting and receiving

with the tracking system. More information can be found at [11].

Since the software VZSoft 2.80 of the VZ4000 tracker is only compatible with Microsoft

Windows system, a Windows PC (AMD Athlon XP 3000+, 2.1GHz, 1GB RAM) is ap-

plied. During flight, the tracking system triggers the markers to lighten one after another

at a very high frequency. The current lightened marker is projected into the cameras of

the tracker. The marker positions are then transferred subsequently to the windows PC
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C.2 Data Analysis

via COM-interface. The windows PC records the marker positions for off-line analysis.

If the quadrotor should be controlled based on the position information provided by the

tracking system, a Linux PC (AMD Athlon 64×2 5200+, 2GB RAM) is also applied. It

sends request of marker positions to the window PC, which transmits the marker positions

via network to it. The linux PC also receives the quadrotor sensor data and computes

control command signals based on different control designs. The control commands are

transmitted from the linux PC to the quadrotor via XBee 802.15. The computation time of

control laws is under 1ms on the linux PC. The total time delay of the control commands

is approximately 70ms.

C.2 Data Analysis

In this section, the marker detection and sensor noise investigation using this tracking

system are briefly introduced.

C.2.1 Marker Detection

Since the markers are fixed on the quadrotor axes, one or more markers may be occluded by

the propeller blades during flight. An experiment was conducted to analyze the detection

rate of the markers, in which the quadrotor was fixed on the ground and the duration of

validity of each marker in 30 s was recorded in a file. Different thrust forces were applied.

The percentage detection rate of each marker and the percentage detection rate of dif-

ferent number of markers with respect to various thrust commands are shown in Tab. C.1.

Thrust command [0, 255] 100 120 160
Marker 1 observed (in %) 97.398543 97.810219 96.982310
Marker 2 observed (in %) 95.109261 95.307612 95.733611
Marker 3 observed (in %) 96.982310 95.828989 97,606660
Marker 4 observed (in %) 94.901145 94.056309 95.005203
4 markers detected (in %) 85.119667 83.941606 85.848075
3 markers detected (in %) 14.151925 15.119916 13.631634
2 markers detected (in %) 0.728408 0.938478 0.520291
1 marker detected (in %) 0.000000 0.000000 0.000000
0 marker detected (in %) 0.000000 0.000000 0.000000

Tab. C.1: Marker detection rate at different thrust forces.

The position of the quadrotor is calculated as the center of the four markers. If at least

three markers are detected by the VZ4000 tracker, the position of the other marker and

then the pose of the quadrotor can be computed from the positions of the three observed

markers. A detection rate of more than 99% for at least three markers is obtained. If fewer

than three markers are detected, the current quadrotor pose is assumed to be the same as

that at the last time point. More information about the position estimation of the center

of four markers can be found in [131].
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C Tracking System

C.2.2 Noise Analysis

The noise of marker position measurement is experimentally evaluated. A marker was

fixed on the ground with a ZI-coordinate of 0m. Its position was measured by the VZ4000

tracker at a frequency of 100Hz. Fig. C.4 illustrates the position measurements in the

ZI-direction and their mean value, namely 1.2 mm. This systematic error is corrected in

the system calibration procedure.
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Fig. C.4: Position measurement of a static marker using the VZ4000 tracker.

C.3 Graphical User Interface

A Graphical User Interface (GUI) is developed for controller evaluation as shown in

Fig. C.5, containing user inputs, a 3D display, a debug window, controller selection, and

some outputs such as quadrotor pose and battery voltage.

Fig. C.5: The graphical user interface.
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phanus. Naturforsch, 11b:513–524, 1956.

[68] R. He, A. Bachrach, and N. Roy. Efficient planning under uncertainty for a target-

tracking micro-aerial vehicle. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA 2010), Anchorage, Alaska, USA, 2010.

[69] R. He, S. Prentice, and N. Roy. Planning in information space for a quadrotor

helicopter in a gps-denied environment. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA 2008), pages 1814–1820, 2008.

[70] B. Herisse, T. Hamel, R. Mahony, and F. X. Russotto. A nonlinear terrain-following

controller for a vtol unmanned aerial vehicle using translational optical flow. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation (ICRA

2009), pages 3251–3257, 2009.

[71] C. M. Higgins and S. A. Shams. A biologically inspired modular vlsi system for

visual measurement of self-motion. IEEE Sensors Journal, 2:508–528, 2002.

151



Bibliography

[72] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J.

Tomlin. The stanford testbed of autonomous rotorcraft for multi agent control (star-

mac). In Proceedings of the 23rd Digital Avionics Systems Conference, volume 2,

pages 12.E.4–121–10, 2004.

[73] G. M. Hoffmann, H. Huang, S. L. Wasl, and E. C. J. Tomlin. Quadrotor helicopter

flight dynamics and control: Theory and experiment. In Proceedings of the AIAA

Guidance, Navigation, and Control Conference, 2007.

[74] M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz, B. Grocholsky, V. Kumar,

C. J. Taylor, Y. Endo, R. C. Arkin, B. Jung, D. F. Wolf, G. S. Sukhatme, and D. C.

MacKenzie. Adaptive teams of autonomous aerial and ground robots for situational

awareness. International Journal of Field Robotics, 24(11-12):991–1014, 2007.

[75] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE

Transactions on Robotics and Automation, 12(5):651–670, 1996.

[76] F. Iida. Biologically inspired visual odometer for navigation of a flying robot. Robotics

and Autonomous Systems, 44:201–208, 2003.

[77] M. T. Keennon and J. M. Grasmeyer. Development of the black widow and microbat

MAVs and a vision of the future of MAV design. In Proceedings of AIAA/ICAS

International Air and Space Symposium and Exposition: The Next 100 Years, 2003.

[78] J. Kelly, S. Saripalli, and G. S. Sukhatme. Field and Service Robotics, chapter

Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle, pages

255–264. Springer Berlin/Heidelberg, 2008.

[79] C. Kemp. Visual Control of a Miniature Quad-Rotor Helicopter. PhD thesis,

Churchill College, University of Cambridge, 2006.

[80] F. Kendoul, I. Fantoni, and K. Nonami. Optic flow-based vision system for au-

tonomous 3d localization and control of small aerial vehicles. Robotics and Au-

tonomous Systems, 57(6-7):591–602, 2009.

[81] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S. Teller.

Multiple relative pose graphs for robust cooperative mapping. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA 2010), Anchor-

age, Alaska, USA, pages 3185–3192, 2010.
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