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Abstract— This paper presents a system for human-machine
communication that is able to participate in a simple dialog.
Spoken language and head gestures are integrated to pass
information between the interacting partners. Head gestures are
extracted by image interpretation algorithms basing on machine
learning techniques. Our experimental evaluation proofs the
capability of the system to recognize head gestures from camera
images in a robust way. The system works in real-time and will
be presented publicly.

I. INTRODUCTION

Computers quickly solve mathematical problems and
memorize an enormous extent of information, but human-
computer interaction still lacks intuition. A large amount
of time is required for humans to adapt to operating a
specific machine. Instead, we aim at granting machines the
ability to adapt to typical human behavior. In real world
environments, technical systems have to act without manip-
ulation of specifically trained persons. In human-machine
communication, the different steps of interaction have to be
performed autonomously and robustly. Therefore, interfaces
need to infer information from gaze, facial expressions, head
gestures, speech and other human communication channels.
All processing steps need to be fully automated.

Our system relies on two communication channels to
establish natural, human-like communication. Speech recog-
nition and face tracking are utilized to collect information
about the human’s response to machine actions via head
gestures such as head shaking and nodding, see Figure 1. The
information gained on these channels is fused to infer high-
level information and generate appropriate robot reactions.

A. Related Work

Referring to the survey of Pantic et al. [1], the com-
putational task of facial expression recognition is usually
subdivided into three subordinate challenges: face detection,
feature extraction, and facial expression classification. After
the position and shape of the face in the image are detected in
the first step, descriptive features are extracted in the second
step. In the third step, high-level information from these
features is derived by a classifier. We apply this approach
to recognize head gestures.

Models rely on a priori knowledge to represent the image
content via a small number of model parameters. This

Fig. 1. The camera is mounted flexible in order to track the human’s face.
Head gestures are estimated from the acquired images.

representation of the image content facilitates and accelerates
the subsequent interpretation task. Cootes et al. [2] intro-
duce modeling shapes with Active Contours which use a
statistics-based approach to represent human faces. Further
enhancements extended the idea and provided shape models
with texture information [3]. Therefore, also skin color, eye
color, wrinkles etc. are considered. However, both models
rely on the structure of the face image rather than the
structure of the real-world face. Therefore, information such
as position or orientation in three-dimensional space is not
explicitly considered but has to be calculated from the model
parameters. Since this mapping is again not provided by
the model, it is error-prone and renders them difficult for
extracting such information.

Recent research considers modeling faces in 3D space [4],
[5]. In contrast to two-dimensional models these models
directly provide information about position and orientation
of the face. In addition, often texture or shape is also taken
into consideration. However, this renders the model fitting
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and tracking step slow and therefore we do not consider this
additional information in our system.

B. System Overview

Our system realizes a simple dialogue where information
is passed from the human to the machine via speech and head
gestures. A dialogue manager keeps track of the ongoing
communication to estimate when human user or machine
response is expected by the dialogue partners. Furthermore,
it determines when information is lost and keeps knowledge
about the human’s position in space via face tracking. The
system recognizes simple verbal commands such as ”go to
the fridge” and asks for confirmation of the given task by
short sentences such as ”should I go to fridge?”. Confirma-
tion is recognized via speech or head gestures, i.e. nodding
and head shaking. The inferred redundancy of this system
architecture is used to ensure higher robustness. Even in the
presence of noisy surroundings retrieving information from
head gestures provides accuracy. The other way around, in
crowded environments the user face is likely to be occluded
and therefore the information gained via speech is more
reliable. However, multimodel fusion is a highly complex
topic and therefore we refer to [6]

C. Organization of the Paper

The reminder of this paper is structured as follows:
Section II introduces our model fitting approach and the
extraction of features descriptive for head gesture estimation.
Section III provides an overview about Hidden Markov
Models and how we utilize them to classify head gestures.
Section IV evaluates our approach with respect to the model
fitting accuracy and the recognition rate of the Hidden
Markov Model. Section IV-B presents conclusions and future
work.

II. MODEL-BASED FEATURE EXTRACTION

This section details our model fitting approach and the
extraction of descriptive features. Robust model fitting forms
the basis of the extraction of accurate feature values amelio-
rating the classification results.

A. Model Fitting

This section introduces model-based analysis of face
images. Models impose knowledge about the object of
interest and reduce the large amount of image data to
a small number of expressive model parameters. Model
fitting is the computational challenge of finding the model
configuration describing the content of the image best [7].
In general, model fitting consists of two components: the
fitting algorithm and the objective function. The objective
function f (I, p) yields a comparable value that determines
how accurately a parameterized model p fits to an image I.
The fitting algorithm searches for the model parameters p
that optimize the objective function. Yet, this paper shall not
elaborate on them but we refer to [7] for a recent overview
and categorization.

The objective function, which we consider the core com-
ponent of the model fitting process, is often designed manu-
ally using the designer’s domain knowledge and intuition.
Afterwards, its appropriateness is subjectively determined
by inspecting its result on example images and example
model parameters. If the result is not satisfactory the func-
tion is tuned or redesigned from scratch [8], [9]. Since
the design-inspect loop is iteratively executed, manually
designing the objective function is highly time-consuming,
see Figure 2 left.

B. Learning Objective Functions for Face Model Fitting

In contrast, we utilize the approach of [10] to learn the
objective function rather than designing it manually, see Fig-
ure 2 right. This approach is based on general properties of
ideal objective functions. The key idea behind the approach
is that if the function used to generate training data is ideal,
the function learned from the data will also be approximately
ideal. Furthermore, we provide a large number of image
features. The learning algorithm is able to consider this vast
amount of features and the resulting objective function allows
model fitting with both good runtime performance and great
accuracy.

1) Ideal Objective Functions: Ideally, the objective func-
tion for fitting a model point has two properties. First,
its global minimum corresponds to the correct position of
the model point. Second, it has no further local minima.
Equation 1 depicts an ideal objective function f ?

n . It sim-
ply computes the Euclidean distance between the correct
location x̂?

n of the nth model point and a location u in the
image I. Note that the vector of correct model points x̂?

must be specified manually.
The function f ?

n already shows ideal characteristics. Un-
fortunately, this function is not able to be used for previously
unseen images, because it must know of the correct locations
of the model points x̂?, which have to be manually specified
beforehand. However, our approach uses f ?

n to generate
training data for learning an additional objective function f `

n
that does not require knowledge of x̂?.

f ?
n (I,u) = |u− x̂?

n| (1)

2) Applying Machine Learning: We annotate a set of
images with the correct model points x̂?. For each x̂?

n, the
ideal objective function returns the minimum f ?

n (I, x̂?
n) = 0 by

definition. Further coordinate-to-value correspondences are
automatically acquired by varying x̂?

n along the perpendicular
and recording the value returned by the ideal objective
function in the second step.

Finally, the calculation rules of the objective function are
learned with tree-based regression [11]. The advantage of
this machine learning approach is that it only selects relevant
features, and therefore, the values of far fewer image features
need to be computed during the process of fitting the model.

As demonstrated in [10], this approach is comparable to
state-of-the-art approaches. This approach does not require
expert knowledge and it is domain-independently applicable.



Fig. 2. left: the design approach. right: the learn approach.

As a result, this approach yields more robust and accurate
objective functions, which greatly facilitate the task of the
associated fitting algorithms. Accurately estimated model
parameters in turn are required to infer correct high-level
information, such as head gestures.

C. Feature Selection

We utilize a rigid, three-dimensional model of human faces
in our system because it inherently considers position and
orientation of the face in space. Our experimental evaluation
indicates that head gestures are robustly recognizable from
this information. The small amount of model parameters
guarantees a short calculation time which in term provides
real-time capability.

Five model parameters are considered to train a classifier
for the recognition of head gestures. The data vector di
extracted from a single image Ii is composed of the in-plane
transition of the face and the three rotation angles (pitch,
yaw and roll). However, we do not utilize the absolute values
of the five parameters but temporal parameter changes. Due
to several advantages we apply Hidden Markov Models -
presented in Section III-A - for classification.

III. HEAD GESTURE ESTIMATION

In section we present our approach for recognizing two
different head gestures (nodding, shaking). In addition a third
state models the absence of head movements. For simplicity
we will refer to all three observations as ”‘head gestures”’ in
the reminder of this paper. In the following we will present
a short introduction to Hidden Markov Models(HMMs). For
further information about HMMs we refer to [12].

A. Hidden Markov Models

We utilize Continuous Hidden Markov Models
(HMMs) [12], [13] to derive the head gesture from
the extracted feature values. A Hidden Markov Model λ

relies on J internal emitting states q j, a state transition
matrix A including the non emitting start and end state (q0
and q(J+1)) and the (continuous) production probability
vector ~b = [b1 . . .bJ ]T to calculate the probability that a
sequence of feature vectors is produced by a particular head
gesture.

The elements aq jq( j+1) of the matrix A represent the tran-
sition probabilities from state q j to state q( j+1) (1st order
Markov Model). The elements b j in a certain state j for
a D-dimensional observation ~x j are given by a multivariate

Gaussian distribution consisting of a mean value vector ~µ j
and a covariance matrix Σ j.

b j(~x j,~µ j,Σ j) =
1√

(2π)D|Σ j|
e−

1
2 (~x j−~µ j)T Σ

−1
j (~x j−~µ j) (2)

They describe the probability of a given observation ~x j in a
state q j.

During the training phase the unknown parameters in A
and~b are calculated. For this purpose the well-known Baum-
Welch-Estimation procedure [12] can is applied.

The Hidden Markov Model parameters are computed by
the following maximum-likelihood decision:

λ = argmax
λ

P(X |λ ) (3)

Where X represents a vector of observations and λ a
model parameterization.

B. Training HMMs for Head Gesture Estimation

In total, fourteen different persons constitute the model
for classifying head gestures. We record two sequences per
person and head gesture (nodding, shaking, neutral). The
model is tracked through these short image sequences con-
sisting of roughly n = 26 frames Ii, 1≤ i≤ n and the model
parameters are exploited to train a classifier. Per training
image sequence we create one set of data vectors (d1, ...,d20)
of fixed size. Each of these sets forms one observation to train
the HMM as described in section III-A. Note, that therefore
the HMM determines the head gesture for a sequence of
images rather than for a single image. In total we present
the HMM 14×3×2 = 74 observations. The only parameter
given manually is the number of states J. We train different
HMMs to correctly determine this parameter. Inspection
of the training errors shows that the best parameterization
is J = 5, see Section IV-B for further details.

C. Real-time Face Gesture Recognition

The dialogue manager estimates when human response
via head gestures is expected and focuses the camera on
the face under investigation. The model is fitted to the first
image I0 obtained from the human interaction partner and
tracked in the subsequent images. The HMM is presented
the extracted data vector di which is assembled as described
in Section II-C. Note, that the HMM relies not only on the
data vector currently presented but also on all precedent data
vectors. The result for Ii is created by the HMM regarding
the vectors d0 to di. Hence, we get a sequence of head
gesture estimations over time. When a particular head gesture



appears in the sequence with a predetermined frequency the
dialogue manager is notified.

IV. EXPERIMENTAL EVALUATION

This section inspects the accuracy of our model fitting
approach and the classification accuracy of the HMM. The
fitting accuracy is important because it has impact on the
tracking of the model which in turn influences the quality
of the extracted feature values. The recognition rate of the
HMM is important because it affects the machine reactions
and therefore the dialogue smoothness. To show the relia-
bility of the system, we apply 6 fold cross validation, see
Table I.

A. Model Fitting Accuracy

Our evaluation iteratively executes the process of model
fitting and investigates the fitting error, see also [14]. We
measure the cumulative error distribution of the fitted mod-
els with respect to manually specified model parameters.
Figure 3 illustrates that each execution of the fitting step
improves the model parameters. However, more than 12 it-
erations do not improve the model parameters significantly
any more.

Models with a high distance from the correct fit become
even more at every iteration. Since the training data did not
contain image annotations for these cases the objective func-
tion’s value is arbitrary. Therefore, the models are displaced
in a unpredictable way by the fitting algorithm.

B. Head Gestures

We evaluate the trained HMM with a 6-fold cross vali-
dation. We split the data recorded in Section III-B in six
non-overlapping parts. Five parts are taken for training and

Fig. 3. Iteratively executing the fitting process increases the fitting accuracy.

Sequence Label

Classified As Shaking Neutral Nodding

Shaking 100% 0% 0%

Neutral 6% 88% 6%

Nodding 6% 16% 78%

Mean error rate 11.33%

classification result with three states

Sequence Label

Classified As Shaking Neutral Nodding

Shaking 94% 5% 0%

Neutral 16% 77% 7%

Nodding 0% 22% 78%

Mean error rate 17.00%

classification result with four states

Sequence Label

Classified As Shaking Neutral Nodding

Shaking 100% 0% 0%

Neutral 11% 89% 0%

Nodding 0% 6% 94%

Mean error rate 5.67%

classification result with five states

Sequence Label

Classified As Shaking Neutral Nodding

Shaking 100% 0% 0%

Neutral 6% 88% 6%

Nodding 0% 6% 94%

Mean error rate 6.00%

classification result with six states

Sequence Label

Classified As Shaking Neutral Nodding

Shaking 100% 0% 0%

Neutral 6% 94% 0%

Nodding 6% 6% 88%

Mean error rate 6.00%

classification result with seven states

TABLE I
THIS TABLE PRESENTS RECOGNITION RATES OF OUR HMM TRAINED

WITH THREE TO SEVEN STATES. THE RESULTS ARE OBTAINED FROM A

6-FOLD CROSS VALIDATION.



the remaining sixth part is taken for testing. The process is
iterated six times and the average of the resulting accuracy
values is inspected. Note, that in contrast to the online
execution sequences of a fixed length are presented to the
classifier. In addition, we vary the number of states J (three
to seven) of the Hidden Markov Model, see Section III-
A. Again, 6-fold cross validation is utilized to inspect the
recognition accuracy. Table I shows that based on the mean
error rate the best results are achieved for J = 5. Table I
provides an overview of the accuracy values.

sectionConclusions In this paper we present a system that
realizes a simple dialogue between a human and a machine.
Two different communication channels are regarded: The
machine receives simple commands and asks for confirma-
tion via spoken language. Furthermore, head gestures are
recognized via model-based image understanding techniques
and classification with Hidden Markov Models. The system
operates without manual control and all important algorithms
base on objective machine learning techniques instead of
subjective manual design. Future work focuses on increasing
the robustness with respect to real-life scenarios (lighting
conditions, multiple points of view, etc.) and integrating
facial expressions into the classification process.
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