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ABSTRACT

Face Recognition in range images is a challenging task, espe-
cially if the pose of the shown face is unknown. To solve this,
an alignment procedure consisting of facial feature hypothe-
ses extraction by invariant curvature features, PCA-based
classification and Iterative Closest Point alignment will be
introduced to create aligned and normalized patches. These
patches will then be used in a recognition algorithm, a dis-
crete Pseudo 2- Dimensional Hidden Markov Model approach
based on vector quantized DCTmod?2 features. The results of
this processing chain are discussed and compared to previous
works.

Index Terms— Face Recognition, Statistic modeling

1. INTRODUCTION

Recently more and more recognition tasks shift from the use
of traditional 2D image data to the additional or exclusive
use of depth information. A big advantage of depth based
solutions is, that they are less sensitive to lighting and pose
variations. Many face recognition approaches on range im-
ages have been reported, a survey can be found in [1].

For all of these recognition algorithms the alignment of the
data is fundamental. It is essential to find the rigid transfor-
mation (rotation and translation), that transforms the given
face to a centered, frontal looking view, or to align it to a
model. A successful approach to solve this is the Iterative
Closest Point Algorithm (ICP) [2]. Another well known tech-
nique is to identify some facial features by curvature, and
compute the alignment based on them [3].

In this paper an efficient alignment scheme consisting of fa-
cial feature hypotheses detection by curvature, hypotheses
classification by PCA and Trimmed Iterative Closest Point
alignment is proposed. After the faces are aligned, a Pseudo-
2-Dimensional Hidden Markov model (P2D-HMM) using
vector quantized DCTmod?2 features, is tested on the range
images. This is an adaptation of the work of Eickeler in [4],
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who used DCT-Features of JPEG-compressed 2D-images.
For the following experiments data is taken from the 3D face
images database GavabDB [5]. It contains 3D surface meshes
from faces, offering different views as well as different facial
expressions per individual. The texture has been omitted, the
database contains only depth information. There are scans
from 61 different persons provided. An example showing one
person in the seven different datasets is shown in Fig. 1.

Fig. 1.
smoothed) in the seven different datasets, from upper left to lower
right: neutrall, neutral2, smile, laugh, random, look up, look down.

The same person as range image (interpolated and

2. PREPROCESSING AND ALIGNMENT

2.1. Facial Features

The finding of facial features is the first step of the preprocess-
ing. The input to this processing part is the data presented
as depth image. The spatial discrete data is interpolated bi-
linearly and low-passed filtered to get a closed and smoothed
surface. After that the mean curvature H and Gaussian curva-
ture K is computed on the range image I based on the partial
derivatives.

(1+ 121, — 2L 1,1, — (1 + Ig)]m

H= 1
2(1 + 12+ 12)% o

Loolyy — 1123/ 2)

K=t e
1+ 12+ 12)2

ICIP 2008



=13

~

<
.

N
e SRt A

Fig. 2. Low-pass filtered range image (left), mean curvature (sec-
ond) and Gaussian curvature (third), negative values are black, pos-
itives white. Combining mean and Gaussian curvature extracts con-
vex (white) and concave (black) regions (right)

The curvature maps are divided into three discrete values
(near zero, positive and negative curvature) for each mean
and Gaussian curvature. Since it is known that the nose tip
is an elliptic concave region and the inner eye corners are
elliptic convex regions, several hypotheses of eye corners
(concave regions, H < 0, K > 0) and nose tips (convex
regions, H > 0, K > 0) can be generated (see Fig. 2).

After the hypotheses have been found, every possible tu-
ple consisting of two eye corner hypotheses and one nose tip
hypothesis is built and will be called inner face hypothesis.
The number of tuples is reduced by applying a ruleset of a
priori knowledge about distances and positioning of these
facial features. The ruleset which is applied to the hypotheses
looks like this:

e 2Xx eye corners distance > eye corner to nosetip distance

e the nosetip is below each eye corner

each tuple should be unique (commutativity of eye corners)
e cach curvature region has a minimum size

This is a sparse ruleset to reduce the overall number of in-
ner face hypotheses which have to be classified. It can easily
be extended by common knowledge but is intentionally kept
small, to focus on the validation of the hypotheses. Patches of
the remaining hypotheses are cropped out of the range image,
based on the positions of the assumed eye corners and nose
tips, resized to 96 x 64 pixels and put into a classifier, to decide
if they are valid. Only the hypothesis with the best classifica-
tion score survives. The classifier is based on an eigenspace
computation and will be trained with 96 x 64 pixel sized ex-
ample patches of inner face regions (see Fig. 3), which are
selected from the training data. A PCA is made on the given
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Fig. 3. Example patches of inner face regions from the training
images. These images will be used to train the PCA-based classifier.

training set of inner face regions to find the main modes of
variation within this region. If there are N training images x;
with ¢ = 1..N, the first step is to compute the mean ., .
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Fig. 4. The mean patch (left) and the three main modes (eigenvec-
tors with largest eigenvalues) backprojected into the original space

Then the N x (nm) matrix A of zero-mean data is generated
by
A= (a[l] =x1 — x| Ja[N] =N — zm) 4)
The covariance matrix C'is calculated by
C = AAT (5)

The eigenvector matrix E = (ey]..|ex) of this covariance ma-
trix C is computed and sorted by their eigenvalues v; so that
vy is the largest. The [ eigenvectors with the [ largest eigen-
values are chosen, that the proportion to the total variation
achieves 98% (see Eq. 6).

Sy Vi
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> 0.98 (6)

During the experiments that lead to using [ = 50 eigenvectors.
They correspondend to the main modes of variation within the
data and span a linear subspace which will be used to describe
the original data. Each depthmap x can be projected into the
linear subspace by computing the weights w.

w=El(x —z,,) 7

The matrix £ now only holds the [ eigenvectors £ =
(e1]--ler) with the [ largest eigenvalues.

For each patch of inner face hypothesis xj a resynthesis
x, of it is generated by projecting it onto the [ eigenvectors to
compute weight vector w(see Eq. 7), and then backproject it
into the original range image space (see Eq. 8).

l
Ty = Ty + Z w;e; (®
1=1

If the cross correlation coefficient d.. of hypothesis z;, and
resynthesis z, is larger than a threshold, the hypothesis zy, is
considered as a valid inner face region. An empirical deter-
mined threshold value of 0.98 turned out to work well.
dcc = ﬂ (9)
|||z
If more than one hypothesis is considered to be true, the one
with the highest cross correlation coefficient d.. is chosen.
Remember that the inner face regions are defined by the eye
corners and the nose tip, so by using this scheme these facial
features are extracted (see Fig.5 ). The first coarse alignment
is then generated by rotating and scaling so, that the eye to
eye connection line is horizontal in the viewplane, the nose is
under the eyes and looks toward the viewpoint. Then a larger
patch, namely the face, is cropped out of the range image,
based on the extracted facial feature positions.



Fig. 5. Result of the feature detection, crosses denote eye corners
and nose tip, the region of the best hypothesis found by the PCA-
based classifier is boxed, from upper left to lower right: neutral2,
smile, laugh, random, look up, look down.

2.2. Fine Alignment and Normalization

The previous step aligned the data by using features based
on curvature regions and not on precise feature points, thus
the alignment is not very accurate. To resolve this, a fine
alignment using the Trimmed Iterative Closest Point Algo-
rithm (TrICP) [6] is applied. It uses a reference dataset B =
(b1,..,b N)T, b; is a vector containing point coordinates, and
tries to find the rigid transformation consisting of Rotation R
and Translation ¢, so that a dataset A = (a1, .., aps)” will be
aligned to B. Since the correspondence problem (which point
in dataset A belongs to which point in dataset B) is unsolved,
an iterative approach is taken. It approximates this correspon-
dence in every iteration simply by the square distance nearest
neighbor. Trimmed Iterative Closest Point Algorithm:

1. For each point b; in B compute the nearest neighbor a; in A.

2. Sort corresponding point pairs by distance, to derive the
sorted datasets As and Bs containing only the n pointpairs
As = (as,1,-.,as,n), Bs = (bs,1, .., bs,n) with the shortest
distances

3. Compute the Centers of Gravity C'a, Cp of As, Bs

CA — i=1 "5, CB — i=1 7S,?
n ’ n

(10)

4. Compute the MSE estimation of rotationmatrix R , so that
Bs — Cp ~ R(As — Ca) (1
5. Apply Transformation on complete dataset A so that
Apew = RA— RCa+Cp=RA+t (12)

6. Update A = Ancw, Repeat Steps 2.-3. until convergence is
declared

Convergence is declared if the MSE is not reduced anymore.
Since the data is already coarsely aligned, the number n of
point pairs, used to estimate the transformation can be a high
proportion of the overall number of points (e.g. 80%). To
find an approximation for the rotation R (see Eq. 11), typi-
cally the quaternion solution is used. An overview about this
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Fig. 6. Examples of aligned and normalized facial patches

and other techniques is found in [7]. TrICP converges to a
local minimum, but because of the initial alignment from the
previous step, good results are achieved in only very few iter-
ations. After all faces are aligned, a rectangular patch in the
(2, y)-plane including eyes and mouth is cropped (see Fig. 6),
resized to 128 x 128 pixels and will be used for recognition.

3. P2D-HMM ON DCTMOD2 FEATURES

Now that all data sets are aligned and normalized facial
patches are given, a classificator based on Pseudo 2 Dimen-
sional Hidden Markov Models (P2D-HMM) on DCTmod2
features extracted from the depth data is applied.

3.1. DCTmod2 features

The patches are divided into 8 x 8 pixel sized blocks, each
overlapping the neighboring block by 4 pixels. For each block
the DCTmod?2 features are written into a features sequence in
a column-wise order. These are 2d-DCT features where the
mean and the lowest horizontal and vertical frequency coeffi-
cients are replaced by the first order delta coefficients to their
horizontal and vertical neighbouring blocks. Here 18 coeffi-
cients (6 deltas + 12 DCT) per block were used. A detailed
description how to compute DCTmod?2 features can be found
in [8]. Additional markers are inserted to the feature sequence
at the beginning of every column, these are unique values that
can be distinguished from every possible coefficient value.

3.2. Pseudo 2 Dimensional Hidden Markov Models

The feature streams will be processed by P2D-HMMSs, which
are a well known approach for classification of 2D patterns.
They have been successfully used for face recognition based
on texture information and will now be tested on features
derived from range images. The purpose of a P2D-HMM
is to model the columns of a 2D field with one-dimensional
HMMs. At the beginning of each column-model a marker
state is inserted (see Fig. 7), which forces alignment to
markers in the feature sequence. A detailled description on
P2DHMM s for face recognition can be found in [4]. For each
individual in the trainset a P2D-HMM is trained, so that the
states model the probability distribution of the features. Since
as much training material as possible is needed, variations of
the training data are generated by translation and rotation. To
recognize, the probability that a pattern is produced by the
trained P2D-HMMs is computed for each model. It is then
classified to the model with the maximum probability.



Markerstates

transition to  columnwise
column—model next column selftransition

Fig. 7. A 3 x 3-state P2D-HMM
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Fig. 8. Correctly aligned (left) and misaligned patches (right)
4. RESULTS

Now the results of the proposed approach are given and com-
pared to previous works [9][10] (see Table 2). As trainset
the neutrall series is used. Testings are performed by iden-
tifying images from all remaining datasets (see Fig. 1). The
described alignment scheme automatically extracts the fa-
cial patches. The results after coarse alignment (curvature
features) and fine alignment (TrICP) are reviewed manually
(see Table 1). It is reviewed if the cropped patches contain
forehead, eyes, nose and mouth, is straight, and contains no
non-facial parts as the neck.

|| curvature features + PCA | TrICP

neutrall 1.6 0.0
neutral2 0.0 0.0
random 4.9 1.6
laugh 8.1 1.6
smile 6.5 0.0
look up 14.7 13.1
look down 4.9 0.0

Table 1. Proportion of misalignments in the different datasets in %
of total size of the dataset after the first and second alignment step.

All P2D-HMMs are trained using a 3 x 3-state structure.
The feature vectors are clustered to 1024 codewords using
k-means, leading to discrete probability distributions in the
P2D-HMMs states. The proposed approach has the best
recognition performance, if it is tested on neutral2. Since it
is trained on a frontal dataset with neutral expression, it is
obviously suited for this recognition task. The results show,
that the warping ability of the P2D-HMM leads to accept-
able recognition rates on the non-neutral facial expressions
and different poses, too, but degrades if strong variations
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P2D-HMM salient iso-geodesic

wrinkles [9] | stripes [10]
neutral 2 95.1 91 94.5
random 73.8 77 80.5
laugh 72.1 80 81.1
smile 90.2 83 84.4
look up 80.3 71 92.8
look down 88.5 80 93.3

Table 2. Recognition Rate in % on the different datasets

occur in the face. The suggested approach can compete with
other state of the art algorithms (see Table 2). Note that the
recognition results include misaligned datasets.

5. CONCLUSION

A fully automatic system able to detect and recognize faces
in range images has been introduced. Coarse alignment based
on curvature features and fine alignment applying TrICP leads
to normalized facial patches which are suited for classifica-
tion. It is shown, that recognition with the described P2D-
HMM-approach leads to outstanding results for neutral facial
expressions and to acceptable results over a wide range of dif-
ferent facial expressions and poses.
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