
Novel VQ Designs for Discrete HMM On-Line

Handwritten Whiteboard Note Recognition

Joachim Schenk, Stefan Schwärzler, Günther Ruske, and Gerhard Rigoll

Institute for Human-Machine Communication
Technische Universität München

80290 Munich, Germany
{schenk,schwaerzler,ruske,rigoll}@mmk.ei.tum.de

Abstract. In this work we propose two novel vector quantization (VQ)
designs for discrete HMM-based on-line handwriting recognition of white-
board notes. Both VQ designs represent the binary pressure information
without any loss. The new designs are necessary because standard k-
means VQ systems cannot quantize this binary feature adequately, as is
shown in this paper.

Our experiments show that the new systems provide a relative im-
provement of r = 1.8 % in recognition accuracy on a character- and
r = 3.3 % on a word-level benchmark compared to a standard k-means
VQ system. Additionally, our system is compared and proven to be com-
petitive to a state-of-the-art continuous HMM-based system yielding a
slight relative improvement of r = 0.6 %.

1 Introduction

Hidden-Markov-Models (HMMs, [1]) have proven their power for modeling time-
dynamic sequences of variable lengths. HMMs also compensate for statistical
variations in those sequences. Due to this property they have been adopted from
automatic speech recognition (ASR) to the problem of on-line (cursive) hand-
writing recognition [2], and have more recently be applied to for on-line hand-
written whiteboard note recognition [3]. One distinguishes between continuous
and discrete HMMs. In case of continuous HMMs, the observation probability is
modeled by mixtures of Gaussians [1], whereas for discrete HMMs the probabil-
ity computation is a simple table look-up. In the latter case vector quantization
(VQ) is performed to transform the continuous data to discrete symbols. While
in ASR continuous HMMs are increasingly accepted, it remains unclear whether
discrete or continuous HMMs should be used in on-line handwriting [4] and
whiteboard note recognition in particular.

In a common handwriting recognition system each symbol (i. e. letter) is rep-
resented by one single-stream HMM (either discrete or continuous). Words are
recognized by combining character-HMMs using a dictionary. While high recog-
nition rates are reported for isolated word recognition systems [5], performance
considerably drops when it comes to recognition of whole unconstrained hand-
written text lines [3]: the lack of previous word segmentation introduces new
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variability and therefore requires more sophisticated character recognizers. An
even more demanding task is the recognition of handwritten whiteboard notes
as introduced in [3]. The conditions described in [3] contributes to the charac-
terization of the problem of on-line whiteboard note recognition as “difficult”.

In this paper, we discuss the use of discrete single-stream HMMs for the
task of on-line whiteboard note recognition with respect to varying codebook
sizes. While in ASR features have a purely continuous nature in general, in
handwriting recognition continuous features are used as well as discrete or even
binary features [3]. As shown in [6] the binary feature “pressure” is one of the
most significant features for recognition. Our experiments indicate that state-of-
the-art vector quantizers are not capable of coding this binary feature properly
due to quantization error. In this paper, we therefore introduce two novel VQ
designs which are capable of adequately quantizing this feature.

To that end, the next section gives a brief overview of the recognition system
including the necessary preprocessing and feature extraction for whiteboard note
recognition. Section 3 reviews VQ as well as discrete HMMs. Two novel VQ sys-
tems are introduced in Sec. 4 in order to handle binary features. The impacts of
varying codebook sizes and the novel VQ designs are evaluated in the experimen-
tal section (Sec. 5), in which our discrete system is compared to a state-of-the-art
continuous system. Finally conclusions and discussion are presented in Sec. 6.

2 System Overview

For recording the handwritten whiteboard data the eBeam-System1 is used. A
special sleeve allows the use of a normal pen. This sleeve sends infrared signals
to a receiver mounted on any corner of the whiteboard. As a result the x- and y-
coordinates of the sleeve as well as the information whether or not the tip of the
pen hits the whiteboard, the binary “pressure”p, are recorded at a varying sam-
ple rate of Ts = 14 ms, . . . , 33 ms. Afterwards, the written data is heuristically
segmented into lines [3].

The sampled data is preprocessed and normalized as a first step. In the sub-
sequent feature extraction step, 24 features are extracted from the three dimen-
sional data vector (sample points) st = (x(t), y(t), p(t))T. Then, VQ with varying
codebooks and codebook sizes is performed. Finally the data is recognized by a
classifier based on discrete HMMs.

2.1 Preprocessing and Feature Extraction

As mentioned above, the data consists of individual text lines recorded at varying
sample rates. Therefore the data is sampled neither in time nor in space equidis-
tantly. As a result, two characters with the same size and style may result in
completely different temporal sequences even if written with the same speed.
To avoid this time varying effect, the data is resampled to achieve equidistant

1 http://www.e-beam.com
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sampling. Following this, a histogram based skew- and slant-correction is per-
formed as described in [7]. Finally all text lines are normalized such that there
is a distance of “one” between the upper and lower scriptlines.

Afterwards features are extracted from the three dimensional sample vec-
tor st = (x(t), y(t), p(t))T in order to derive a 24-dimensional feature vector
ft = (f1(t), . . . , f24(t)). The state-of-the-art features for handwriting recogni-
tion and recently published new features (altered slightly) for whiteboard note
recognition [3] used in this paper are briefly listed below and refer to the cur-
rent sample point st. They can be divided into two classes: on-line and off-line
features. As on-line features we extract

f1 : indicating the pen “pressure”, i. e.

f1 =

{
1 pen tip on whiteboard
0 otherwise

(1)

f2 : velocity equivalent computed before resampling and later interpolated
f3 : x-coordinate after resampling and subtraction of moving average
f4 : y-coordinate after resampling and normalization
f5,6 : angle α of spatially resampled and normalized strokes (coded as sin α and

cos α, the “writing direction”)
f7,8 : difference of consecutive angles Δα = αt − αt−1 (coded as sin Δα and

cos Δα, the “curvature”)

In addition, certain on-line features describing the relation of the sample point
st to its neighbors were adopted and altered from those described in [3]. These
are:

f9 : logarithmic transformation of the aspect of the trajectory between the points
st−τ and st (referred to as “vicinity aspect”),

f9 = sign(v) · log(1 + |v|).

f10,11 : angle ϕ between the line [st−τ , st] and the lower line (coded as sin ϕ and
cos ϕ, the “vicinity slope”)

f12 : length of trajectory normalized by max(|Δx|; |Δy|) (“vicinity curliness”)
f13 : average square distance to each point in the trajectory and the line [st−τ , st]

The second class of features, the so-called off-line features, are:

f14−22 : 3× 3 subsampled bitmap slid along pen’s trajectory (“context map”) to
incorporate a 30 × 30 fraction of the currently written letter’s actual image

f23−24 : number of pixels above, or respectively, beneath the current sample
point st (the “ascenders” and “descenders”)
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3 Vector Quantization and Discrete HMMs

In this section we briefly summarize vector quantization (VQ), review discrete
HMMs, and describe the notations.

3.1 Vector Quantization

Quantization is the mapping of a continuous, N -dimensional sequence O =
(f1, . . . , fT ), ft ∈ R

N to a discrete, one dimensional sequence of codebook in-
dices ô = (f̂1, . . . , f̂T ), f̂t ∈ N provided by a codebook C = (c1, . . . , cNcdb),
ck ∈ R

N containing |C| = Ncdb centroids ci [8]. For N = 1 this mapping is
called scalar, and in all other cases (N ≥ 2) vector quantization (VQ).

Once a codebook C is generated, the assignment of the continuous sequence
to the codebook entries is a minimum distance search

f̂t = argmin
1≤k≤NCdb

d(ft, ck), (2)

where d(ft, ck) is commonly the squared Euclidean distance. The codebook
C itself and its entries ci are derived from a training set Strain containing
|Strain| = Ntrain training samples Oi by partitioning the N -dimensional fea-
ture space defined by Strain into Ncdb cells. This is performed by the well known
k-means algorithm as described in e. g. [8; 9; 10]. As stated in [8], the centroids
of a well trained codebook capture the distribution of the underlying feature
vectors p(f) in the training data.

As the values of the features described in Sec. 2.1 are neither mean nor vari-
ance normalized, each feature fj is normalized to the mean μj = 0 and standard
derivation σj = 1, yielding the normalized feature f̃j. The statistical dependen-
cies of the features are thereby unchanged.

3.2 Discrete HMMs

For handwriting recognition with discrete HMMs each symbol (in case of this
paper each character) is modeled by one HMM. Each discrete HMM i is rep-
resented by a set of parameters λi = (A,B, π) where A denotes the transition
matrix, B the matrix of discrete output probabilities corresponding to each pos-
sible, discrete observation, and π the initial state distribution [1]. In order to use
discrete HMMs, the continuous observations O = (f1, . . . , fT ) are vector quan-
tized yielding discrete observation sequences oi = (f̂1, . . . , f̂T ) as explained in the
previous section. Given some discrete training data oi = (f̂1, . . . , f̂T ) the param-
eters λi can be trained with the well known EM-method, in the case of HMMs
known as Baum-Welch-algorithm [11]. Recognition is performed by presenting
the unknown pattern x to all HMMs λi and selecting the model

ki = argmax
i

p(x|λi) (3)

with the highest likelihood. In case of word or even sentence recognition this is
done by the Viterbi algorithm [12], which also performs a segmentation of the
input vector x.
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4 VQ Designs

As mentioned in the introduction, in contrast to ASR, both continuous and
discrete features are used in handwritten whiteboard note recognition. In case
of discrete HMMs, where all features are quantized jointly, the binary feature f1

as defined in Eq. 1 looses its significance, due to inadequate quantization and
quantization error. However, in [6] it is stated that in continuous HMM based
recognition systems the pen’s pressure is one of the four most significant features.
In the following, we therefore present two VQ design which explicitly model the
binary pressure feature f1 without loss.

4.1 Joint-Codebook VQ Design

For the first VQ design, f̃1 is treated to be statistically independent of f2−23
2,

i. e. p(f̃1|f̃2, . . . , f̃24) = p(f̃1). In this case

p(f̃ ) = p(f̃1, . . . , f̃24) = p(f̃1) · p(f̃2, . . . , f̃24). (4)

Hence, p(f̃ ) can be quantized by two independent codebooks. The first one is
directly formed by the normalized pressure value f̃1, and the remaining features
f2−23 are represented by M 23-dimensional centroids rk. N centroids ci repre-
senting the 24-dimensional data vectors f̃t = (f̃1, . . . , f̃24) can then be obtained
by augmenting the centroids rk as follows:

ci =

{
(f̃1|f1=0 , rj) 1 ≤ i ≤ M,

(f̃1|f1=1 , rj) M + 1 ≤ i ≤ 2 · M,

j = i
j = i − M,

(5)

where f̃1|f1=n is the normalized value of f̃1 corresponding to f1 = n, n = {0, 1}.
Hence, Eq. 5 describes the construction of a joint codebook. The total number
N of centroids ci calculates to N = 2 ·M . The modified VQ system is shown in
Fig. 1.

μ σ

μ σ

μ σ

Fig. 1. VQ system using a joint codebook for explicitly modeling f1 and assuming
statistical independence according to Eq. 4.

2 Note: the authors are aware that in this case also multiple-stream HMMs [4] can be
applied. However, these are out of this paper’s scope.



Novel VQ Designs 239

4.2 Codebook-Switching VQ Design

In the second VQ design the statistical dependency between f1 and the other
features is taken into account. Applying Bayes’ rule the joint probability p(f̃ ) in
this case yields

p(f̃) = p(f̃1, . . . , f̃24) = p(f̃2, . . . , f̃24|f̃1) · p(f̃1) =

=

{
p(f̃2, . . . , f̃24|f̃1 < 0) · p(f̃1 < 0) if f1 = 0
p(f̃2, . . . , f̃24|f̃1 > 0) · p(f̃1 > 0) if f1 = 1.

(6)

As pointed out in Sec. 2.1 the feature f1 is binary. Hence, as indicated in Eq. 6
p(f̃) can be represented by two arbitrary codebooks Cs and Cg depending on
the value of f1.

To adequately model p(f̃2, . . . , f̃24|f̃1), the normalized training set S̃train,
which consists of Ttrain feature vectors (f̃1, . . . , f̃Ttrain), is divided into two sets
Fs and Fg where

Fs = {f̃t|f1,t = 0}
Fg = {f̃t|f1,t = 1} , 1 ≤ t ≤ Ttrain. (7)

Afterwards, the assigned feature vectors are reduced to the features f2,...,24,
yet the pressure information can be inferred from the assignment of Eq. 7. Ns

centroids rs,i, i = 1, . . . , Ns are derived from the set Fs and Ng centroids rg,j ,
j = 1, . . . , Ng from set Fg forming two independent codebooks Rs and Rg holding
N = Ns + Ng centroids for the whole system. Given N and the ratio

R =
Ng

Ns
⇒ Ng =

⌊
N

1 + 1
R

+ 0.5
⌋

, Ns = N − Ng (8)

the number of Ns and Ng can be derived for any value of N . The optimal value
of both, N and R with respect to maximum recognition accuracy is derived by
experiment in Sec. 5.

In order to keep the exact pressure information after VQ for each normalized
feature vector f̃t of the data set, first two codebooks Cs and Cg (with centroids
cs,i, 1 ≤ i ≤ Ns and cg,j, 1 ≤ j ≤ Ng) are constructed similar to Eq. 5:

cs,i = (f̃1|f1=0 , rs,i) , 1 ≤ i ≤ Ns

cg,j = (f̃1|f1=0 , rg,j) , 1 ≤ j ≤ Ng.
(9)

The value of the feature f̃1,t is handed to the quantizer separately to decide
which codebook C should be used for quantization:

f̂t =

⎧⎪⎨
⎪⎩

argmin
1≤i≤Ns

d(f̃t, cs,i) if f1,t = 0[
argmin
1≤j≤Ng

d(f̃t, cg,j)
]

+ Ns if f1,t = 1.
(10)

The VQ system using two switching codebooks is illustrated in Fig. 2.
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μ σ

μ σ

μ σ

Fig. 2. Second VQ system to model the statistical dependency between f1 and f2,...,24

according to Eq. 6

5 Experimental Results

The experiments presented in this section are conducted on a database containing
handwritten heuristically line-segmented whiteboard notes (IAM-OnDB3). For
further information on the IAM-OnDB see [13]. Comparability of the results is
provided by using the settings of the writer-independent IAM-onDB-t1 bench-
mark, consisting of 56 different characters and an 11 k dictionary which also pro-
vides well-defined writer-disjunct sets (one for training, two for validation, and
one for test). For our experiments, the same HMM topology as in [3] is used.

The following four experiments are conducted on the combination of both
validation sets, each with seven different codebook sizes (N = 10, 100, 500, 1000,
2000, 5000, 7500). For training the vector quantizer as well as the parameters λi

of the discrete HMMs the IAM-onDB-t1 training set is used. The results with
respect to the actual codebook size N are depicted as character accuracy on the
left-hand side of Fig. 3.

Experiment 1. (Exp. 1 ): In the first experiment all components of the fea-
ture vectors (f1,...,24) are quantized jointly by one codebook. The results shown
in Fig. 3 (left) form the baseline for the following experiments. As one can see,
the maximum character accuracy abase = 62.6 % is achieved for a codebook size
of N = 5000. The drop in recognition performance when raising the codebook
size to N = 7500 is due to sparse data [1].

Experiment 2. (Exp. 2 ): To prove that the binary feature f1 is not ade-
quately quantized by standard VQ, independent of the number of centroids, all
features except the pressure information (f2,...,24) are quantized jointly for the
second experiment. As Fig. 3 (left) shows, only little degradation in recogni-
tion performance compared to the baseline can be observed. The peak rate of
ar = 62.5 % is once again reached at a codebook size of N = 5000, which equals
a relative change of r = −0.2 %. This is rather surprising as in [6] pressure is
assumed to be a relevant feature in on-line whiteboard note recognition.

Experiment 3. (Exp. 3 ): The fact the recognition accuracy decays only
moderately when omitting the pressure information shows that the binary infor-
mation is not quantized properly in the first experiment. Therefore f1 is directly

3 http://www.iam.unibe.ch/~ fki/iamnodb/
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Fig. 3. Evaluation of different systems’ character accuracy with respect to the codebook
size N (left), character accuracy for different codebook sizes and varying ratios R =

Ng
Ns

for the VQ design using codebook-switching (right)

modeled as explained in Sec. 4.1 and a joint codebook is used. This results in a
further drop in performance due to the independent modeling of f1 and f2−24

as displayed in Fig. 3 (left). Peak performance is found to be ajoint = 62.4 for a
codebook size of N = 7500 which is a relative change of r = −0.3 %.

Experiment 4. (Exp. 4 ): In the last experiment the performance of the sec-
ond VQ system, as introduced in Sec. 4.2, is evaluated. The optimal value of R =
Ng
Nk

is found by experimentation. Investigating the right-hand side of Fig. 3 reveals
the optimal values for R for arbitrary codebook sizes. Finally the results are shown
on the left-hand side of Fig. 3 with respect to the codebook size N for the formerly
found optimal values of R. The highest character accuracy of aswitch = 63.7 % is
found for N = 5000 and Ropt = 5, which yields (according to Eq. 8) Ns = 833
and Ng = 4167 for the codebooks Cs and Cg. Compared to the baseline system
this is a relative improvement of r = 1.8 % (ΔR = 1 % absolute).

In order to prove the competitiveness of our systems, the parameters and
models which delivered the best-performing systems in the previous experiments
are used to perform word-level recognition on the test set of the IAM-onDB-
t1 benchmark, and are compared to a state-of-the-art continuous recognition
system as presented in [14]. The baseline system, using a standard VQ and coding
all features jointly achieves, a word accuracy of Abase = 63.5 %. As expected
from the character accuracy of the previous experiments (Exp. 2 ), the omission
of the “pressure” information has little influence on the word-level accuracy:
Ar = 63.3 % can be reported in this case, indicating a drop of r = −0.3 % relative
to the baseline system. The word accuracy of the first VQ design using a joint
codebook is Ajoint = 63.2 %, a relative change of r = −0.5 % given the baseline.
Compared to the standard VQ system an absolute word accuracy of Aswitch =
65.6 % can be achieved by using the codebook-switching design (Exp. 4 ) which
is a relative improvement of r = 3.3 %. This system even slightly outperforms
the system presented in [14] by r = 0.6 % relative.
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Table 1. Final results for the experiments Exp1, . . ., Exp4 and one different system [14]
on the same word-level recognition task

system
Exp. 1
(Abase)

Exp. 2
(Ar)

Exp. 3
(Ajoint)

Exp. 4
(Aswitch)

[14]

word-level
accuracy

63.5 % 63.3 % 63.2 % 65.6 % 65.2 %

6 Conclusion and Discussion

In this paper, we successfully applied discrete HMMs in the field of handwritten
whiteboard note recognition. Our experiments with a common VQ system show
that the binary pressure information is not adequately quantized regardless of the
codebook size. To overcome this problem, two VQ designs are introduced which
model the presure information without loss. The first approach, based on the
assumption that the pressure feature is statistically independent of the remaining
features, showed improvement neither in character nor in word accuracy. The
second VQ design takes the statistical dependency between the pressure and the
remaining features into account by using two arbitrary codebooks. The main
parameters for this second system are the ratio R = Ng

Ns
of the two codebook sizes

as well as the total number N of codebooks used. Both parameters are optimized
on a validation set by means of maximal character accuracy. The best-performing
combination led to a relative improvement of r = 3.3 % in word-level accuracy
on an arbitrary test set, compared to a common VQ system. In comparison to a
recently published continuous system, a slight relative improvement of r = 0.6 %
can be reported, illustrating the competitiveness of our system.

In future work the role of the parameter R will be investigated more analyt-
ically. Additionally, in the future we plan to extend the approaches presented
in this paper to other binary and discrete features commonly used in on-line
whiteboard note recognition, as well as to investigate the use of multiple-stream
HMMs [4].
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