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Abstract. Performance of speech recognition systems strongly degrades
in the presence of background noise, like the driving noise in the interior
of a car. We compare two different Kalman filtering approaches which
attempt to improve noise robustness: Switching Linear Dynamic Models
(SLDM) and Autoregressive Switching Linear Dynamical Systems (AR-
SLDS). Unlike previous works which are restricted on considering white
noise, we evaluate the modeling concepts in a noisy speech recognition
task where also colored noise produced through different driving condi-
tions and car types is taken into account. Thereby we demonstrate that
speech enhancement based on Kalman filtering prevails over all stan-
dard de-noising techniques considered herein, such as Wiener filtering,
Histogram Equalization, and Unsupervised Spectral Subtraction.

1 Introduction

Aiming to counter the performance degradation of speech recognition systems
in noisy surroundings, as for example the interior of a car, a variety of differ-
ent concepts have been developed in recent years. The common goal of all noise
compensation strategies is to minimize the mismatch between training and recog-
nition conditions, which occurs whenever the speech signal is distorted by noise.
Consequently two main methods can be distinguished: one is to reduce the mis-
match by focusing on adapting the acoustic models to noisy conditions. This
can be achieved by either using noisy training data or by joint speech and noise
modeling. The other method is trying to determine the clean features from the
noisy speech sequence while using clean training data.

Preprocessing techniques for speech enhancement aim to compensate the ef-
fects of noise before the feature-based speech representation is classified by the
recognizer which has been trained on clean data. The state-of-the-art speech
signal preprocessing that is used as a baseline feature extraction algorithm for
noisy speech recognition problems is the Advanced Front End (AFE) two-step
Wiener filtering concept introduced in [1]. As shown in [2], methods based on
spectral subtraction like Cepstral Mean Subtraction (CMS) [3] or Unsupervised
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Spectral Subtraction (USS) [4] reach similar performance while requiring less
computational cost than Wiener filtering. Further attempts to reduce the mis-
match between test and training conditions are Mean and Variance Normaliza-
tion (MVN) [5] or Histogram Equalization (HEQ) [6], [7], a technique which is
often used in digital image processing to improve the contrast of pictures. In
speech processing HEQ is a powerful method to improve the temporal dynamics
of feature vector components distorted by noise.

This paper examines a model based preprocessing approach to enhance noisy
features as it is proposed in [8]. Here a Switching Linear Dynamic Model (SLDM),
which can be considered as Kalman filter, is used to describe the dynamics of
speech while another linear dynamic model captures the dynamics of additive
noise. Both models serve to derive an observation model describing how speech
and noise produce the noisy observations and to reconstruct the features of clean
speech.

A second technique for noise robust speech recognition using Kalman filtering
is outlined and applied in the noisy speech recognition task of this work. This
method was first introduced in [9] where a Switching Autoregressive Hidden
Markov Model (SAR-HMM) had been extended to an Autoregressive Switching
Linear Dynamical System (AR-SLDS) for improved noise robustness. Similar
to the SLDM, the AR-SLDS includes an explicit noise model by modeling the
dynamics of both the raw speech signal and the noise. However, the technique
does not model feature vectors like the SLDM, but the raw speech signal in the
time domain.

The paper is organized as follows: Section 2 outlines the SLDM used for feature
enhancement in this work, while Section 3 introduces the SAR-HMM which is
embedded into an AR-SLDS in Section 4. Both Kalman filtering approaches are
evaluated in a noisy isolated digit recognition task in Section 5.

2 Switching Linear Dynamic Models

Model based speech enhancement techniques are based on modeling speech and
noise. Together with a model of how speech and noise produce the noisy ob-
servations, these models are used to enhance the noisy speech features. In [8]
a Switching Linear Dynamic Model is used to capture the dynamics of clean
speech. Similar to Hidden Markov Model (HMM) based approaches to model
clean speech, the SLDM assumes that the signal passes through various states.
Conditioned on the state sequence the SLDM furthermore enforces a continuous
state transition in the feature space.

2.1 Modeling of Noise

Unlike speech, which is modeled applying an SLDM, the modeling of noise is
done by using a simple Linear Dynamic Model (LDM) obeying the following
system equation:

xt = Axt−1 + b + vt (1)
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Fig. 1. Linear Dynamic Model for noise

Thereby the matrix A and the vector b simulate how the noise process evolves
over time and vt represents a Gaussian noise source driving the system. A
graphical representation of this LDM can be seen in Figure 1. As LDM are
time-invariant, they are suited to model signals like colored stationary
Gaussian noise. Alternatively to the graphical model in Figure 1 the equations

p(xt|xt−1) = N (xt; Axt−1 + b, C) (2)

p(x1:T ) = p(x1)
∏T

t=2 p(xt|xt−1) (3)

can be used to express the LDM. Here, N (xt; Axt−1 + b, C) is a multivariate
Gaussian with mean vector Axt−1 + b and covariance matrix C, whereas T
denotes the length of the input sequence.

2.2 Modeling of Speech

The modeling of speech is realized by a more complex dynamic model which also
includes a hidden state variable st at each time t. Now A and b depend on the
state variable st:

xt = A(st)xt−1 + b(st) + vt (4)

Consequently every possible state sequence s1:T describes an LDM which is
non-stationary due to A and b changing over time. Time-varying systems like
the evolution of speech features over time can be described adequately by such
models. As can be seen in Figure 2, it is assumed that there are time depen-
dencies among the continuous variables xt, but not among the discrete state
variables st. This is the major difference between the SLDM used in [8] and the
models used in [10] where time dependencies among the hidden state variables
are included. A modification like this can be seen as analogous to extending
a Gaussian Mixture Model (GMM) to an HMM. The SLDM corresponding to
Figure 2 can be described as follows:

p(xt, st|xt−1) = N (xt; A(st)xt−1 + b(st), C(st)) · p(st) (5)

p(x1:T , s1:T ) = p(x1, s1)
∏T

t=2 p(xt, st|xt−1) (6)

Fig. 2. Switching Linear Dynamic Model for speech
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Fig. 3. Observation model for noisy speech yt

To train the parameters A(s), b(s) and C(s) of the SLDM, conventional EM
techniques are used [11]. Setting the number of states to one corresponds to
training a Linear Dynamic Model instead of an SLDM to obtain the parameters
A, b and C needed for the LDM which is used to model noise.

2.3 Observation Model

In order to obtain a relationship between the noisy observation and the hidden
speech and noise features, an observation model has to be defined. Figure 3
illustrates the graphical representation of the zero variance observation model
with SNR inference introduced in [12]. Thereby it is assumed that speech xt and
noise nt mix linearly in the time domain corresponding to a non-linear mixing
in the cepstral domain.

2.4 Posterior Estimation and Enhancement

A possible approximation to reduce the computational complexity of posterior
estimation is to restrict the size of the search space applying the generalized
pseudo-Bayesian (GPB) algorithm [13]. The GPB algorithm is based on the
assumption that the distinct state histories whose differences occur more than
r frames in the past can be neglected. Consequently, if T denotes the length
of the sequence, the inference complexity is reduced from ST to Sr whereas
r � T . Using the GPB algorithm, the three steps collapse, predict and observe
are conducted for each speech frame [8].

The Gaussian posterior obtained in the observation step of the GPB algorithm
is used to obtain estimates of the moments of xt. Those estimates represent
the de-noised speech features and can be used for speech recognition in noisy
environments. Thereby the clean features are assumed to be the Minimum Mean
Square Error (MMSE) estimate E[xt|y1:t].

3 Switching Autoregressive Hidden Markov Models

An alternative to conventional HMM modeling of speech is the modeling of the
raw signal directly in the time domain. As proven in [14] and [15], modeling
the raw signal can be a reasonable alternative to feature-based approaches. In
[9] a Switching Autoregressive HMM is applied for isolated digit recognition.
The SAR-HMM is based on modeling the speech signal as an autoregressive
(AR) process whereas the non-stationarity of human speech is captured by the
switching between a number of different AR parameter sets. This is done by
a discrete switch variable st that can be seen as analogon to the HMM states.



248 B. Schuller et al.

Fig. 4. Dynamic Bayesian Network structure of the SAR-HMM

One of S different states can be occupied at each time step t. Thereby the state
variable indicates which AR parameter set to use at the given time instant t.
Here, the time index t denotes the samples in the time domain and not the
feature vectors as in Section 2. The current state only depends on the preceding
state with transition probability p(st|st−1). Furthermore it is assumed that the
current sample vt is a linear combination of the R preceding samples superposed
by a Gaussian distributed innovation η(st). Both η(st) and the AR weights cr(st)
depend on the current state st:

vt = −
R∑

r=1

cr(st)vt−r + η(st) (7)

with
η ∼ N (η; 0, σ2(st))

The purpose of η(st) is not to model an independent additive noise process
but to model variations from pure autoregression. For the SAR-HMM the joint
probability of a sequence of length T is

p(s1:T , v1:T ) = p(v1|s1)p(s1)
T∏

t=2

p(vt|vt−R:t−1, st)p(st|st−1) (8)

corresponding to the Dynamic Bayesian Network (DBN) structure illustrated in
Figure 4.

As the number of samples in the time domain which are used as input for the
SAR-HMM is usually a lot higher than the number of feature vectors observed
by an HMM, it is necessary to ensure that the switching between the different
AR models is not too fast. This is granted by forcing the model to stay in the
same state for an integer multiple of K time steps.

The training of the AR parameters is realized applying the EM algorithm [11].
To infer the distributions p(st|v1:T ) a technique based on the forward-backward
algorithm [16] is used. Due to the fact that an observation vt depends on R
preceding observations (see Figure 4) the backward pass is more complicated
for the SAR-HMM than for a conventional HMM. To overcome this problem a
correction smoother as derived in [17] is applied which means that the backward
pass computes the posterior p(st|v1:T ) by correcting the output of the forward
pass.
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4 Autoregressive Switching Linear Dynamical Systems

To improve noise robustness, the SAR-HMM can be embedded into an AR-SLDS
to include an explicit noise process as shown in [9]. The AR-SLDS interprets the
observed speech sample vt as a noisy version of a hidden clean sample. Thereby
the clean signal can be obtained from the projection of a hidden vector ht which
has the dynamic properties of a Linear Dynamical System:

ht = A(st)ht−1 + ηH
t (9)

with
ηH

t ∼ N
(
ηH

t ; 0, ΣH(st)
)

The dynamics of the hidden variable are defined by the transition matrix A(st)
which depends on the current state st. Variations from pure linear state dy-
namics are modeled by the Gaussian distributed hidden “innovation” variable
ηH

t . Similar to the variable ηt used in Equation 7 for the SAR-HMM, ηH
t does

not model an independent additive noise source. To obtain the current observed
sample, the vector ht is projected onto a scalar vt as follows:

vt = Bht + ηV
t (10)

with
ηV

t ∼ N (ηV
t ; 0, σ2

V)

The variable ηV
t thereby models independent additive white Gaussian noise which

is supposed to corrupt the hidden clean sample Bht.
Figure 5 visualizes the structure of the SLDS modeling the dynamics of the

hidden clean signal, as well as independent additive noise.
The SLDS parameters A(st), B and ΣH(st) can be defined in a way that the

obtained SLDS mimics the SAR-HMM derived in Section 3 for the case σV = 0
(see [9]). This has the advantage that in case σV �= 0 a noise model is included
without having to train new models. Since inference calculation for the AR-SLDS
is computationally intractable, the Expectation Correction algorithm developed
in [18] is applied to reduce the complexity.

Fig. 5. Dynamic Bayesian Network structure of the AR-SLDS
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5 Experiments

For noisy speech recognition experiments we use the digits “zero” to “nine” from
the TI 46 Speaker Dependent Isolated Word Corpus [19]. The database contains
utterances from 16 different speakers - 8 female and 8 male speakers. For the
sake of better comparability with the results presented in [9], only the words
which are spoken by male speakers are used. For every speaker 26 utterances
were recorded per word class whereas 10 samples are used for training and 16
for testing. Consequently, the overall training corpus consists of 80 utterances
per class while the test set contains 128 samples per class. As in [9], all utterances
were downsampled to 8000 Hz.

The in-car noise database which was used as additive noise source in this work
is the same as in [20]. The noise recordings aim to simulate a wide range of dif-
ferent car types and driving conditions such as driving on big cobbles (“COB”)
at 30 km/h, over a smooth city road surface (“CTY”) at 50 km/h, and on a
highway (“HWY”) at 120 km/h. Thereby four different car types are consid-
ered: BMW 530i (Touring), BMW 645Ci (Convertible), BMW M5 (Sedan) and
Mini Cooper S (Convertible). Even though the soft top of both convertibles was
closed during recording, the worst case noise scenario is represented by the MINI
convertible driving over cobbles (see Figure 6).

In spite of SNR levels below 0 dB the noisy test sequences are still well audible
since the recorded noise samples are lowpass signals with most of their energy
in the frequency band from 0 to 500 Hz. Consequently, there is no full overlap
of the spectrum of speech and noise.

Two further noise types were used: first, a mixture of babble and street
noise (“BAB”) recorded in downtown Munich. This noise type is relevant for
in-car speech recognition performance when driving in an urban area with open
windows. The babble and street noise was superposed with the clean speech

Fig. 6. SNR distribution of TI 46 (digits) utterances superposed with car noise: fre-
quency of occurrence versus SNR level
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Table 1. Mean recognition rates for different speech enhancement and modeling meth-
ods; Mean recognition rate without speech enhancement: 76.69%

Method Recognition Rate Method Recognition Rate
SLDM 97.65% USS 87.25%
HEQ 94.77% AFE 85.53%
CMS 93.24% AR-SLDS 63.60%
MVN 92.39% SAR-HMM 59.18%

Fig. 7. Recognition rate in percent versus driving condition and SNR level respectively
using different speech enhancement and modeling techniques

utterances at SNR levels 12 dB, 6 dB and 0 dB. Furthermore, additive white
Gaussian noise (“AWGN”) has been used in the experiments. Thereby the SNR
levels 20 dB, 10 dB and 0 dB were taken into account.
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For every digit from “zero” to “nine” an HMM consisting of 8 states with
a mixture of 3 Gaussians per state was trained, except for the SAR-HMM and
AR-SLDS experiments where speech was modeled by a 10th order AR process
with 10 states. Feature vectors consisted of 13 MFCC as well as the first and
second order derivatives of the cepstral coefficients. A global speech SLDM of 32
hidden states was trained, whereas the enhancement algorithm was run with the
history parameter r = 1. The LDM modeling stationary noise was trained for
each noisy test sequence using the first and last 10 frames of the utterance. In
addition to the Kalman filter based speech modeling and enhancement concepts
explained in Section 2 and 4, a variety of different standard feature enhancement
techniques as named in Section 1 were evaluated. Figure 7 shows the performance
of the different speech enhancement strategies for different noise types. Thereby
training was carried out using clean data. With a recognition rate of 97.65%
averaged over all noise types (see Table 1), the SLDM outperformed all other
feature enhancement and modeling techniques for each of the car and babble
noise types, whereas for AWGN at low SNR levels the AR-SLDS performed best
(recognition rate of 88.52% for AWGN at 0 dB SNR). However, the AR-SLDS
was not suited to model colored noise such as noise occurring in the interior of
a car.

6 Conclusion

In this paper we compared two techniques for noise robust in-car speech recogni-
tion based on Kalman filtering and joint speech and noise modeling. The strategy
of describing the dynamics of speech with a Switching Linear Dynamic Model
while modeling noise as linear dynamic process is able to outperform other known
speech enhancement approaches like Wiener filtering or Histogram Equalization
whenever speech is corrupted by colored noise produced while driving a car.
Speech disturbed by white noise can best be modeled using an Autoregressive
Switching Linear Dynamical System which captures the speech and noise dy-
namics of the raw signal in the time domain.

Acknowledgement

We would like to thank Jasha Droppo and Bertrand Mesot for providing SLDM
and AR-SLDS binaries.

References

1. Speech processing, transmission and quality aspects (STQ); Distributed speech
recognition; Advanced front-end feature extraction algorithm; Compression algo-
rithms. ETSI standard doc. ES 202 050 V1.1.5 (2007)

2. Lathoud, G., Doss, M.M., Boulard, H.: Channel normalization for unsupervised
spectral subtraction. In: Proceedings of ASRU (2005)



Switching Linear Dynamic Models 253

3. Rahim, M.G., Juang, B.H., Chou, W., Buhrke, E.: Signal conditioning techniques
for robust speech recognition. IEEE Signal Processing Letters, 107–109 (1996)

4. Lathoud, G., Magimia-Doss, M., Mesot, B., Boulard, H.: Unsupervised spectral
subtraction for noise-robust ASR. In: Proceedings of ASRU, pp. 189–194 (2005)

5. Viikki, O., Laurila, K.: Cepstral domain segmental feature vector normalization
for noise robust speech recognition. Speech Communication, 133–147 (1998)

6. de la Torre, A., Peinado, A.M., Segura, J.C., Perez-Cordoba, J.L., Benitez, M.C.,
Rubio, A.J.: Histogram equalization of speech representation for robust speech
recognition. IEEE Transactions on Speech and Audio Processing, 355–366 (2005)

7. Hilger, F., Ney, H.: Quantile based histogram equalization for noise robust speech
recognition. In: Eurospeech, pp. 1135–1138 (2001)

8. Droppo, J., Acero, A.: Noise robust speech recognition with a switching linear dy-
namic model. In: Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (2004)

9. Mesot, B., Barber, D.: Switching linear dynamical systems for noise robust speech
recognition. IEEE Transactions on Audio, Speech and Language Processing (2007)

10. Deng, J., Bouchard, M., Yeap, T.H.: Noisy speech feature estimation on the Au-
rora2 database using a switching linear dynamic model. Journal of Multimedia,
47–52 (2007)

11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1–38
(1977)

12. Droppo, J., Deng, L., Acero, A.: A comparison of three non-linear observation
models for noisy speech features. In: Eurospeech, pp. 681–684 (2003)

13. Bar-Shalom, Y., Li, X.R.: Estimation and tracking: principles, techniques, and
software. Artech House, Norwood, MA (1993)

14. Ephraim, Y., Roberts, W.J.J.: Revisiting autoregressive hidden Markov modeling
of speech signals. IEEE Signal Processing Letters, 166–169 (2005)

15. Poritz, A.: Linear predictive hidden Markov models and the speech signal. In:
IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.
1291–1294 (1982)

16. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state Markov chains. The Annals of Mathematical Statistics, 1554–1563 (1966)

17. Rauch, H.E., Tung, G., Striebel, C.T.: Maximum likelihood estimates of linear
dynamic systems. Journal of American Institiute of Aeronautics and Astronautics,
1445–1450 (1965)

18. Barber, D.: Expectation correction for smoothed inference in switching linear dy-
namical systems. Journal of Machine Learning Reseach, 2515–2540 (2006)

19. Doddington, G.R., Schalk, T.B.: Speech recognition: turning theory to practice.
IEEE Spectrum, 26–32 (1981)

20. Grimm, M., Kroschel, K., Harris, H., Nass, C., Schuller, B., Rigoll, G., Moosmayr,
T.: On the necessity and feasibility of detecting a driver’s emotional state while
driving. In: Paiva, A., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738,
pp. 126–138. Springer, Heidelberg (2007)


	Switching Linear Dynamic Models for Noise Robust In-Car Speech Recognition
	Introduction
	Switching Linear Dynamic Models
	Modeling of Noise
	Modeling of Speech
	Observation Model
	Posterior Estimation and Enhancement

	Switching Autoregressive Hidden Markov Models
	Autoregressive Switching Linear Dynamical Systems
	Experiments
	Conclusion


