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1 Introduction

Laparoscopic surgery as opposed to open surgery offers distinct benefits as re-
duced pain, shorter hospitality, and quicker convalescence to the patients. Dur-
ing laparoscopic interventions, a camera assistant usually holds the laparoscope
for the surgeon and positions the scope according to the surgeon’s instructions.
The camera view may be suboptimal and unstable, because the telescope is
sometimes aimed incorrectly and vibrates due to the assistant’s hand trembling.
The introduction of a telemanipulator system for guiding the telescope, in aim
to replace the human assistant, is a significant step toward the solution of this
problem. Most laparoscope positioning systems proposed so far use input de-
vices such as joysticks, foot pedals, and similar human-robot interfaces. How-
ever, this type of interfaces poses additional burden on surgeons. Implemen-
tation of a voice control interface is an effective approach to overcome these
drawbacks since the verbal instructions are natural for a human, and the use of
neither hands nor feet is required in controlling the laparoscope. Voice con-
trol was introduced for several laparoscope positioning systems (c.f. e.g. [4]).
However, due to long reaction time, limited reliability, and a user dependent
interface these systems could not achieve the required acceptance. To improve
this fact we introduced integration of social competence by acoustic emotion
recognition in [1]. Although robustness could thereby be improved, appearing
background noises in the operation room environment still result in insufficient
reliability.
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Therefore a novel speech control interface providing improved noise ro-
bustness in medical room environments achieved by using a Switching Linear
Dynamic Model for the newly designed and produced laparoscope positioning
system SoloAssistTM (AktorMed, Barbing, Germany) was developed. This
paper emphasises on benefits obtained with model and feature enhancement to
overcome unwanted movements of the tele-manipulator.

2 Laparoscope Positioning System

The laparoscope positioning system SoloAssistTM is the first mechatronic de-
vice with a fluid actuation system allowing enhanced power transmission and
positioning compared to other technologies. Integrated pressure sensors for
each actuation permit pushing the system manually at any time out of the op-
erating field, which is a significant feature for patient safety. It resembles a
human arm with an extended working range of 360◦ radius in both directions
of movement, an inclination of up to 80◦ and penetration depth of maximal 250
mm depending on the current telescope length. Hereby the direction terms cor-
respond to the speech interface commands for controlling the tele-manipulator
by speech. A joystick integrated on a laparoscopic handhold with exchangeable
instruments, a small hand panel, and a foot pedal are used input devices so far.

3 Automatic Speech Recognition

First, the Speech In Minimal Invasive Surgery (SIMIS) database including back-
ground noises and often being very emotional within the real life situation was
recorded as introduced in detail in [1]. SIMIS covers 20 live surgeries with both
headset and room microphone, both active condenser, in an operation room of
the university hospital rechts der Isar with normally one main surgeon and 6 to
10 surgical assistants in 16 bit, 16 kHz of different minimal invasive surgeries as
stomach and gall operations. These were automatically segmented into speech
turns. Each surgery took 36-80 min; speech time from 5-17 min. The number
of segments reached from 159 to 523.

Additionally, the system controlling commands were recorded of 5 male
speakers saying each of 15 keywords 9 times resulting in 675 clean turns. These
were artificially one-to-one interfered with 5 types of noisy non-speech SIMIS



recordings from the same headset providing highly similar conditions. Thus,
3375 noisy turns are available for testing and training. As a result of the super-
position 21% of the noisy test utterances have an SNR below 10 dB, 12% are
between 10-35 dB and the rest is beyond 35 dB.

The tele-manipulator possesses two moving modes: a short precise, and
a long distance move. This fact leads to a highly limited vocabulary of 15
keywords, where the directions with a prepended move command represent
the long distance move: left, right, up, down, forward, backward, moveleft,
moveright, moveup, movedown, moveforward, movebackward, stop, quit. For
every keyword a Hidden Markov Model (HMM) consisting of 8 states and 3
mixtures per state was chosen or the prepended move - command was treated as
an extra model (see section 4) to reduce substitution errors, since, e.g. the com-
mands left and moveleft, are subject to confusion. Furthermore, a word-based
garbage model consisting of 10 states and 16 mixtures per state to exclude extra-
neous speech was trained on the SIMIS-recordings. Additionally the silence and
the short pause model which is operating as a tee-state model sharing the middle
state of the silence model, was trained on non-speech-recordings of minimal-
invasive operations. The grammar is chosen as context free word-loop solution.
MFCC 0-12 plus δ and δδ serve as features.

The model used in this work to improve robustness is based on modeling
speech and noise as applied in [2]. Together with a model of how speech
and noise produce the noisy observations, these models are intended to en-
hance the noisy speech features. In [3] a Switching Linear Dynamic Model
(SLDM) is used to capture the dynamics of clean speech. Similar to HMM
based approaches to model clean speech, the SLDM assumes that the signal
passes through various states. Conditioned on the state sequence the SLDM
furthermore enforces a continuous state transition in the feature space.

The modeling of noise is realised by using a simple Linear Dynamic Model
(LDM) obeying the following system equation:

xt = Axt−1 + b + vt (1)

This LDM can be seen as simple multivariate Gaussian and corresponds to ex-
clusively the lower line in Figure 1.

The modeling of speech is realised by a more complex dynamic model
which also includes a hidden state variable st at each time t. Now A and b



depend on the state variable st:

xt = A(st)xt−1 + b(st) + vt (2)

As can be seen in Figure 1, every possible state sequence describes an LDM
which is non-stationary due to A and b changing over time. Time-varying sys-
tems like the evolution of speech features over time can be described adequately
by such models. Hereby it is assumed that there are time dependencies among
the continuous variables xt, but not among the discrete state variables st.

Coventional EM techniques are used for training throughout.
A relationship of how speech and noise produce the noisy observations is

obtained by a zero observation model with SNR interference which assumes
that speech and noise mix linearly in the time domain corresponding to a non-
linear mixing in the cepstral domain [3].
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Figure 1: Switching Linear Dynamic Model for speech

4 Experiments and Discussion
To obtain performance on noisy speech we use the 15 keywords described in
section 3. The evaluation strategy chosen is a 70/30 - training/test split. Table
1 shows word accuracies for two different model topologies. These are repre-
sented by identical models for each keyword and an extra model for the word
move that can be prepended to each moving direction. For feature enhancement,
a global speech SLDM of 32 hidden states was trained whilst the LDM mod-
eling stationary noise was trained for each noisy test sequence using the first
and last 10 frames of the utterance. As can be seen in table 1, SLDM slightly
outperformed the best performance when using clean training with noisy test
utterances. Matched conditions have to be interpreted as upper bench-mark,
as they make use of full knowledge about the noise, which cannot easily be
provided in a real use-case.



Topology clean/clean noisy/noisy clean/noisy clean/noisy(SLDM)

constant 89.63% 83.83% 77.08% 78.51%
sep. move 94.89% 94.02% 90.62% 90.80%

Table 1: Accuracies for permutations train/test clean or noisy: constant model
parameters (upper row); separated model for the keyword move (lower row)

The presented results distinctively show that the use of SLDM increases
recognition performance, but has its limits, since in a real life operation room
one has to deal with non-stationary noise. Also, comparably lower overall SNR
levels lead to lower benefit as e.g. in car noise environment (c.f. [2]).

Future work will investigate the benefit of the working prototype in a long
term usability study in the operation room. Furthermore, the ASR shall be
augmented by further noise reduction methods and an improved garbage model
to reject extraneous speech shall be introduced.
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