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Abstract. Photonic mixer device (PMD) range cameras are becoming
popular as an alternative to algorithmic 3D reconstruction but their main
drawbacks are low-resolution (LR) and noise. Recently, some interest-
ing works have stressed on resolution enhancement of PMD range data.
These works use high-resolution (HR) CCD images or stereo pairs. But
such a system requires complex setup and camera calibration. In con-
trast, we propose a super-resolution method through induced camera
motion to create a HR range image from multiple LR range images. We
follow a Bayesian framework by modeling the original HR range as a
Markov random field (MRF). To handle discontinuities, we propose the
use of an edge-adaptive MRF prior. Since such a prior renders the energy
function non-convex, we minimize it by graduated non-convexity.

1 Introduction

In contemporary computer vision and multimedia, numerous applications har-
ness the information in the 3D shape of a scene. Apart from the conventional
shape from X techniques, in recent years, direct acquisition of 3D shape from
range sensors has gained importance. Laser range scanners produce high quality
range maps but their use is currently limited by high cost and long acquisition
times [1]. Photonic mixer device (PMD) scanners are less accurate and have a
depth resolution of approximately 6 mm. However, they are attractive due to
their cost, speed and simplicity. They are being used in many applications in
pattern recognition, computer vision and multimedia [2,3,4].

PMD range scanners work on the basis of time-of-flight principle. The com-
plete scene is illuminated using modulated infra-red waves and the reflected light
is received by the PMD sensor. The output signal of the sensor is related to the
phase delay between the reflected optical signal and the modulation signals. The
electro-optic mixing process occurs at every pixel and hence the phase delay
measurement is carried out at every pixel in the PMD pixel array [4,5,6]. Ap-
plications involving 3D visualization, image based rendering, augmented reality
etc. require an overall scene representation that differentiates major objects.
Similarly, an approximate range map is usually sufficient in applications related
to scene segmentation, object recognition, video matting, surveillance and robot
navigation [7].
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A major drawback of PMD scanners is their low spatial range resolution which
is 64 × 48 or at the most 160 × 120 [3,6] pixels. The resultant poor localization
in 3D space inherently restricts the eventual utility of the PMD scanner. Re-
cently, many interesting works have addressed the issue of enhancing the spatial
resolution of PMD range data so that its scope can be extended to a multitude
of applications. Prasad et al. [8] interpolate the range map and register it with
a HR CCD image. However, this smooths the range data and causes loss of
high frequencies especially at object discontinuities. An MRF-based energy min-
imization framework that uses a range map and a HR CCD image claims better
performance at discontinuities [9]. Based on the assumption that discontinuities
in range and image tend to coincide, this approach weights the smoothness terms
in the energy function by a gradient measure of the HR intensity image. A fusion
of LR PMD range images with a stereo algorithm to produce HR depth maps is
proposed in [3], where the data term of the energy function comes from the HR
stereo pairs as well as the LR range. The above mentioned works typically use a
registered CCD HR image or a CCD HR stereo pair. However, this necessitates
the requirement of an elaborate setup and an involved calibration procedure for
both the CCD and the PMD cameras.

In this work, we propose to principally exploit translational camera motion
(relative to the object) for super-resolution of PMD range data. Importantly, our
approach uses only the PMD scanner. Camera motion results in multiple LR im-
ages with relative sub-pixel shifts thus effectively yielding a higher sampling rate.
These LR range images can be modeled to have been formed by down-sampling
sub-pixel shifted versions of the HR range image that is to be estimated. The
use of multiple images also enhances the ability to reduce noise. Our technique
requires only image-to-image registration which is much simpler than the compli-
cated calibration involving CCD cameras followed in other works. Shifted range
images of a 3D scene will ideally tend to produce motion parallax. However,
since we capture videos by simple camera translation, the assumption of global
shifts is valid for consecutive or near consecutive LR frames. These global shifts
can be determined by any good sub-pixel registration technique [10].

The problem of estimating high-resolution range data from low-resolution
range observations is basically ill-posed and prior constraints must be imposed to
enforce regularization. We model the original HR range image by a discontinuity-
adaptive MRF (DAMRF) prior. This model not only regularizes the solution
but also enables depth discontinuities to be preserved effectively. The solu-
tion that we seek is the maximum a posteriori (MAP) estimate of the HR
range image given the LR range images. The DAMRF prior renders the re-
sultant cost function non-convex. To avoid local minima problems, we use grad-
uated non-convexity (GNC) to arrive at the MAP estimate of the super-resolved
range image.

Section 2 explains the relationship between HR and LR range data. In
section 3, we propose a MAP-MRF framework to solve for the HR range data.
Section 4 discusses optimization using the GNC algorithm tailored to our prob-
lem. This is followed by results and conclusions in sections 5 and 6, respectively.
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2 LR-HR Relationship of Range Data

We move the camera relative to the object and capture several frames of low-
resolution range data. Suppose we have N relatively shifted low-resolution data
[y1, y2, ..., yN ] of size N1 × N2 from the PMD range scanner. These LR obser-
vations can be modeled to have been generated from a high-resolution range
image x of size L1 × L2 by warping followed by down-sampling (by a factor of
L1
N1

× L2
N2

). Down-sampling is caused by averaging of L1
N1

× L2
N2

pixels. In Fig. 1,
we show an example of down-sampling by 2 along both the spatial dimensions.
Each pixel of LR1 (the first range image) is formed by averaging of four pixels

Fig. 1. The formation of LR observations from the HR range image

in the reference HR range image. Similarly, each pixel in LR2 to LR4 (second to
fourth range image) is formed by averaging four pixels in the HR image when
the reference HR image is shifted by one pixel in each direction. Thus, the pixels
in the LR images carry unique information about different regions in the HR
image effectively resulting in a higher sampling rate to enable super-resolution
[11]. The use of multiple range images also facilitates to average noise effects.

The above process can be expressed mathematically as

yi = DWix + ηi (1)

Here, yi is the lexicographically arranged ith LR observation and D and Wi are
down-sampling and warping matrices, respectively, that produce yi from the HR
range image x. The term ηi represents noise. Equation (1) can be expressed in
scalar form as

yi(n1, n2) =
L1,L2∑

l1,l2=1

d(n1, n2, l1, l2)·x(θ1i, θ2i) + ηi(n1, n2) (2)

where d(n1, n2, l1, l2) is the element of the D matrix that maps the (l1, l2)th

pixel in HR image x(θ1i, θ2i) to the (n1, n2)th pixel in the ith LR image. The
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transformations θ1i and θ2i are the warping transformations that are encoded in
the matrix Wi. For a translating camera, equation (2) simplifies to

yi(n1, n2) =
L1,L2∑

l1,l2=1

d(n1, n2, l1, l2)·x(l1− δ1i, l2− δ2i) + ηi(n1, n2) (3)

where δ1i and δ2i are the shifts in the x and y directions, respectively.
From the above model, we observe that we require the Wi matrices that de-

note warping at high resolution. Since we consider only translational motion, we
can compute the HR shifts by simply multiplying the LR shifts by the resolu-
tion factor. We compute the LR shifts using the well-known sub-pixel motion
estimation algorithm proposed in [10].

3 Regularization Using MRF

Having discussed the formation of shifted LR images and estimation of their
spatial shifts, we now address the problem of deriving the super-resolved (SR)
range data x given observations y1, y2, ... yN. We propose to solve for the
maximum a posteriori (MAP) estimate of x within a Bayesian framework. Let
Y1, Y2, ... Yn be the random fields associated with the observations y1, y2, ...
yn and let X be the random field associated with the SR range map. We wish
to estimate x̂ such that

x̂ = max
x

P (X = x|Y1 = y1...Yn = yn) (4)

Using Bayes rule, the above equation can be written as

x̂ = max
x

P (Y1 = y1...Yn = yn|X = x) · P (X = x) (5)

Solving for x is clearly an ill-posed problem due to the down-sampling and warp-
ing operators, and due to the presence of noise [12,13]. We need to incorporate
constraints on the solution through a suitably chosen prior.

The first term in the product on the right-hand side of the equation (5) is
the likelihood term that arises from the image formation model. From equation
(1), assuming a pin hole camera model and considering the noise to be additive
white Gaussian with variance σ2, we have

P (Y1 = y1...Yn = yn|X = x) =
1

(2πσ2)N1N2
exp

(
−

N∑

i=1

‖yi − DWix‖2

2σ2

)
(6)

We model the prior probability P (X = x) for the SR range image by a Markov
random field. MRF modeling provides a natural way to embed constraints on the
solution. The Markovianity property implies that the label at a pixel depends
only on its neighborhood i.e., only neighboring labels have interactions with one
another. This property is quite natural in the sense that the range value at a
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particular pixel does not depend on the range values of pixels that are located
far away from it. Due to the MRF - Gibbs equivalence [14], the prior probability
of X can be expressed in analytical form as

P (X = x) = K exp

(
−

∑

c∈Cx

V x
c (x)

)
(7)

Here, V x
c (x) is the potential function and c is called a clique which is a subset of

the MRF neighborhood. The potential function captures the manner in which
neighboring pixels interact. For details on MRF, refer to [15]. From equations
(6) and (7), we can rewrite equation (5) as

x̂ = min
x

(
n∑

i=1

‖yi − DWix‖2

2σ2
+

∑

c∈Cx

V x
c (x)

)
(8)

The MAP - MRF framework results in an energy minimization formulation to
estimate the SR range data x̂, where the cost function is the bracketed term in
equation (8). The first term in the cost is the data term. It measures how closely
the transformed (warped and down-sampled) x compares with the observations.
The form of the second term is crucial for a good solution. It is usually known as
the smoothness term in image super-resolution works [16]. This is because the
potential function usually has the form V x

c (x) = (x(i, j)−x(p, q))2 where pixels
(p, q) belong to the neighborhood of (i, j). But this form of the potential function
tends to select solutions that are smooth and results in loss of discontinuities and
high frequencies which one would typically wish to preserve in the HR image.

We propose to use a discontinuity adaptive MRF (DAMRF) prior model for
x in which the degree of interaction between pixels can be adjusted adaptively
in order to preserve discontinuities. Li [15] suggests some models for DAMRF
clique potentials. In this work, we use the potential function

V x
c (x) = γ − γe−(x(i,j)−x(p,q))2/γ (9)

which is shown in Fig. 2(a). It is convex in the band Bγ = (−√
γ/2,

√
γ/2)

and the value of γ controls the shape of the function. Thus, choosing a large
value of γ makes the function convex. Beyond Bγ , the cost of the prior tends to
saturate as the difference between the pixel values increases. Hence, unlike the
quadratic prior, the cost for a sudden change is not excessively high which allows
discontinuities to be preserved in the solution. For the first-order MRF that we
make use of in this work, the exact expression for the prior term in equation (7)
is given by

∑

c∈C
V x

c (x) =
L1∑

i=1

L2∑

j=1

4 ∗ γ − γ exp{−[x(i, j) − x(i, j − 1)]2/γ}

−γ exp{−[x(i, j) − x(i, j + 1)]2/γ} − γ exp{−[x(i, j) − x(i − 1, j)]2/γ}
−γ exp{−[x(i, j) − x(i + 1, j)]2/γ} (10)
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(a) (b)

Fig. 2. (a) DAMRF clique potential function. (b) Graphical representation of GNC.

4 Energy Minimization: Graduated Non-convexity

Due to the non-convex nature of the DAMRF prior, the overall energy function
in equation (8) becomes non-convex. Hence, minimization to obtain the MAP
estimate of x becomes non-trivial in the sense that traditional local gradient-
based techniques cannot be used as they can get trapped in local minima.

We minimize the energy using a deterministic annealing technique known as
graduated non-convexity (GNC) [15,17]. The idea behind GNC is graphically
illustrated in Fig. 2(b). It (initially) starts with a convex cost function by choos-
ing a large value of γ and finds the minimum using simple gradient-descent. This
value is then used as the initial estimate for the next iteration but now with a
smaller γ. This step is iterated, reducing γ in each iteration. As shown in the
figure, the lower curve symbolizes the energy function at an earlier iteration and
the successive upper curves denote the energy functions at successive iterations.
Note that the function non-convexity increases as the iterations progress. The
vertical arrows denote that the located minimum of the previous iteration is
considered as the initial state for the next iteration. The slant arrows depict
convergence to the nearest minimum in each iteration.

The proposed algorithm for range super-resolution is summarized on the next
page. We note that a basic requirement for GNC is computation of the gradient
of the cost. From equations (8) and (10), the gradient at the kth iteration is

grad(k) =
1
σ2

n∑

i=1

WT
i DT (DWix − yi) + λG(k) (11)

where λ is a smoothness parameter and the gradient G(n) at (p, q) is given by

G(k)(p, q) = 2[x(p, q) − x(p, q − 1)] exp{−[x(p, q) − x(p, q − 1)]2/γ} +
2[x(p, q) − x(p, q + 1)] exp{−[x(p, q) − x(p, q + 1)]2/γ} +
2[x(p, q) − x(p − 1, q)] exp{−[x(p, q) − x(p − 1, q)]2/γ} +

2[x(p, q) − x(p + 1, q)] exp{−[x(p, q) − x(p + 1, q)]2/γ} (12)
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We would like to mention that all matrix computations in equation (11) can
be incorporated easily through local image operations involving very few pix-
els. An important point in favor of the DAMRF prior from a computational
perspective is that it is a continuous and differentiable function unlike other
quasi-discontinuity handling priors such as line fields [14]. Hence, the compu-
tationally efficient GNC algorithm can be used as opposed to the much slower
simulated annealing.

Algorithm: Range super-resolution using GNC.

Require: : Observations {yi} and motion parameters.
Calculate x(0) as the average of the bi-linearly up-sampled and aligned images
yis
Choose a convex γ(0) = 2v where v is the maximum value of the gradient
along the x and y directions of the initial estimate x(0)

n = 0
Do a. Update x(n) as x(n+1) = x(n) − α grad(n)

b. Set n = n + 1
c. If (norm(x(n) − x(n−1)) < ε)

set γ(n)=max [γtarget, kγ(n−1)]
UNTIL (norm(x(n) − x(n−1)) < ε) and (γ(n) = γtarget)
Set x̂ = x(n)

Here, α is the step size, ε is a constant for testing convergence, and k is a
factor that takes γ(n) slowly towards γtarget.

5 Experimental Results

In this section, we present results obtained using the proposed algorithm. The
range data was captured with the PMD 3k-S range scanner from PMD Tech-
nologies. It operates at a wavelength of 870 nm with a modulating RF of 20
MHz. It captures range data at a frame-rate of 25 fps. The detector dimensions
are 6.4 mm × 4.8 mm while the resolution of the range image is 64× 48 pixels.

We captured range videos of objects by translating the object in front of the
PMD scanner (which was held static). We ensured that the motion of the object
deviated only negligibly from pure translation. We compute only frame-to-frame
registration thus precluding the need for any controlled motion or calibration
procedures. Also, we select successive or near-successive frames as observations
for super-resolution to avoid any parallax effects. The captured video was con-
verted into a readable ASCII format by the software CamVis Pro provided by
PMD Technologies [6]. We attempted to super-resolve the range image by a
factor of 4. Due to space constraints, we give only representative results here.

In the first experiment, we took range images of a wooden hand-model. It was
translated fronto-parallel to the camera to ensure that the motion was transla-
tional. In fact, we translated only along the horizontal direction. (In general, the
motion can be 2D. In fact, we require 2D motion for true 2D super-resolution).
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Several frames of range data were captured and one of the low resolution depth
maps is shown in Fig. 3(a). In order to perform super-resolution by a factor
of 4, we selected a total of 8 frames from the range data set which were near-
consecutive. Ideally, one would need 16 observations to upsample by a factor
of 4. But since the motion is 1D in our example, we considered only 8 frames.
These frames were then fed to the algorithm in [10] and the motion parameters
for each frame was estimated. (As expected, the motion module gave negligi-
ble displacement along the vertical direction for this data set). The estimated
motion parameters were then fed to the proposed GNC-based super-resolution
algorithm. The initial value of γ was chosen as 1000 while γtarget was taken as
1 with k = 0.9. The initial estimate of the super-resolved image was obtained
by averaging the bilinearly up-sampled and aligned low resolution observations.
The values of λ and α were chosen as 0.01 and 6, respectively.

The GNC algorithm was run with the above parameters and the correspond-
ing output (when super-resolved by a factor of 4) is given in Fig. 3(b). When
compared with Fig. 3(a) in which the spatial localization of the range map of
PMD is not good, we note that our output is significantly better. The contours
of the hand are clearly discernible after performing super-resolution. In particu-
lar, note how well the thumb has been reconstructed in Fig. 3(b). We also tried
bicubic interpolation of the low-resolution depth map but it suffers from the ef-
fect of range data bleeding into the background due to smoothing. This is to be
expected since the low-resolution range map of PMD itself is not well-localized
in space.
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Fig. 3. Wooden hand-model. (a) Low-resolution range data. (b) Super-resolved range
map using the proposed method.

In the next experiment, we took images of the Alpha Rex robot. The robot
was translated horizontally and the range data was recorded over many frames.
We again chose 8 frames from this data set and attempted super-resolution by a
factor of 4 using the proposed method. One of the low resolution frames is shown
in Fig. 4(a). Even though one can make out the shape of the robot, the spatial
extent of the robot is difficult to gauge due to poor spatial resolution of the range
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Fig. 4. Alpha Rex robot. (a) Low-resolution range map. (b) Super-resolved range out-
put of our method.

map from PMD. The bleeding effect is very much evident in the figure. (Please
see the pdf file which has a color-coded version of the plot). In the output of the
proposed method shown in Fig. 4(b) the edges of the robot are well-preserved
and the localization is also very good due to improved spatial resolution. The
noise level is comparatively much lower. The arms and elbow of the robot come
out clearly, especially the right palm region. Note the wedge-shaped thighs and
the holes in the legs which are difficult to infer from Fig. 4(a). The shape of the
head emerges in its true shape. Also, the proposed algorithm correctly brings
out the outline of the (slender) neck of the robot which appears smeared in
Fig. 4(a).

Our method takes a few minutes to run on a 1 GHz Athlon PC with 64 MB
RAM (for a non-optimized Matlab code). There is enough scope to increase the
speed multi-fold by resorting to an efficient implementation in C on a faster
machine.

6 Conclusions

In this paper, we proposed a new method for super-resolution of range data
captured from a low-resolution PMD camera that (unlike previous works) avoids
the need for cumbersome camera calibration. An edge-preserving MRF prior
was used to adaptively retain discontinuities. We used GNC for non-convex
optimization and showed results on real data to demonstrate the effectiveness of
our technique. We are currently investigating fusion of range and intensity data.
We are also working on extending our method to more general motion of the
range sensor.
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