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ABSTRACT
CCTV systems have been introduced in most public spaces in
order to increase security. Video outputs are observed by hu-
man operators if possible but mostly used as a forensic tool.
Therefore it seems desirable to automate video surveillance
systems, in order to be able to detect potentially dangerous sit-
uations as soon as possible. Multi camera systems have seem
to be the prerequisite for huge spaces where frequently occlu-
sions appear. In this paper we will present a system which
robustly detects and tracks objects in a multi camera environ-
ment and performs a subsequent behavioral analysis based on
luggage related events.

Index Terms— Multi camera tracking, Multi Layer Ho-
mography,

1. INTRODUCTION

Despite the legitimacy of a number of privacy issues, many
systems have been deployed for surveillance applications. They
generate large amounts of data that needs to be filtered out ei-
ther for online detection of dangerous situations, or for offline
information retrieval. Up to now these tasks are performed by
human operators, of which a huge number is required if on-
line analysis is required. Most of the data is stored in video
archives without even being analyzed and is currently only
used ’after the fact’ as forensic tool, losing its primary ben-
efit as an active real-time media. Therefore the demand for
automated surveillance systems, providing a decision support
interface to enhance the performance of a human operator,
seems reasonable. This way illegal acts could be detected in
time or even prevented. This is not an easy task, as the system
has to deal with large crowds resulting in severe occlusion,
difficult and fast changing lighting situations, and views that
are very narrow or too wide.
The observation of large spaces is mostly performed with a set
of multiple cameras in order to handle occlusions of persons
by other persons or objects. Besides technical issues such
as time synchronization it is inevitable to correlate all cam-
era views to analyze the scenery. Therefore a three staged
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approach has been implemented herein. First in all field of
views (FOV) relevant regions are extracted with a foreground
segmentation approach. The foreground is subsequently seg-
mented into blobs, where the boundaries are determined. Next
person tracking is performed by a homographic transforma-
tion [1] of the blob boundaries into the ground plane, where
intersecting regions indicate person positions. Applying the
transformation in multiple layers provides a more precise 3D
reconstruction of the scenery. Additionally incorrectly seg-
mented foreground regions will not lead to drastic errors, as
we perform a multi layer fusion. This method has a major
drawbacks in scenes with overcrowding. In the first place
false positives are frequently detected in scenes with multiple
occlusions. Up to now there is no effective method to avoid
these. Therefore we will will present an effective approach for
false positive handling by transforming the resulting 3D sur-
faces into the corresponding 2D images and a further analysis.
After the detection of so called object candidates a temporal
analysis has to be performed. Applying a simple predictive
Kalman filtering results in quite robust trajectories and con-
sistent labels. Still occurring ID switches are prevented by
additional tracking in the 2D data and the combination of the
results
This treatise is structured as follows: In sec 2 we will present
the databased acquired for the PETS2007 workshop [2] fol-
lowed by a description our foreground segmentation approach
in 3. The basics of the homographic transformation and the
extension to multiple layers will be discussed in sections 4
and 5 followed by a novel approach for false positive handling
in sec. 6. The now known objects can be used for tracking,
as described in sec. 7 in combination with 2D tracking 8. We
eill conclude this work with an evaluation in sec. 10 and a
short conclusion in 11.

2. THE PETS DATA

In order to test and evaluate our algorithms we used the data
presented in the 2007 workshop for Performance Evaluation
of Tracking and Surveillance PETS2007 [2]. The data has
been recorded near the check in area of an international air-
port from four different fields of view, which are illustrated in
fig. 3. During the recordings scenarios were played by actors
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while other passengers still could walk through the recording
area, which created a realistic tracking environment with al-
most empty scenes and overcrowding. Four different scenar-
ios, including loitering, leaving luggage, swapping luggage
and stealing luggage have been recorded twice. With an ad-
ditional scene with neutral behavior a total of 9 datasets is
available. In this work we concentrated on enhancing track-
ing performance, detecting left luggage and loitering people.
for all scenarios scripts have been written and activities have
been precisely defined: A person is loitering if she stays in
the field of view for at least 60. Luggage is considered as
unattended if the owner is located in a distance between 2 and
3 meters away from the luggage. If the luggage’s owner is
located more than 3m away for at least 30s an alarm has to
be set in order to remove the piece of left luggage. For all
sequences XML files containing ground truth for xy-position
of involved persons are provided in intervals of 25 frames.
Luggage pieces are left at position Zw = (0, 0, 0).

3. ADAPTIVE FOREGROUND SEGMENTATION

Fig. 1. False detections due to lighting changes

As a first step we need to determine relevant regions within
the 2D data acquired by the cameras. As the FOV can vary
be decided to apply a common adaptive foreground segmenta-
tion method, based on works presented by Stauffer and Grimson[3]
instead of object recognition techniques. Each RGB-pixel Xt

at time t of the image is modeled by K Gaussian mixtures,
where the probability of observing the current value is given
by

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xz, µi,tΣi,t)

where ωi,t is an estimate of the weight of the mixture at time
t, µi,t is the Gaussians mean and Σi,t is the covariance matrix
of the Gaussian at time t. The Gaussian probability density
function ν

ν(Xt, µ,Σ) =
1

(2π)
π
2 |Σ| 12

e−
1
2 (Xt−µt)TΣ−1(Xt−µt)

where σ denotes the covariance matrix. Thus, the distribution
of recently observed values of each pixel in the scene is char-
acterized by a mixture of Gaussians. In order to determine
whether a new pixel value Xt belongs foreground or back-
ground , it is checked against the existing K Gaussian distri-
butions. A match is defined as pixel value within 2.5 standard
deviation of a distribution. In case no match is found the least
probable distribution is replaced. The prior weights of the K
distributions are adjusted as follows

ωk,t = (1− α)ωk,t−1 + α(Mk,t)

where α is the update time and Mk,t is 1 for the matching
model, else 0.
Up to now each pixel has been modeled independently of its
neighborhood and some false positives have been produced
due to image noise. By applying morphologic operations such
as opening and closing, noise is eliminated and holes within
foreground areas are filled. After this step so called Blobs
are detected within the image by using connected component
analysis [4]. In order to reduce memory and computation ef-
fort only the object’s shape is stored and processed in future
steps.
The parameter α denotes the update time in frames and has
to be set carefully. A compromise has to be made, as a fast
update would model a stationary object as background after
a short while, whereas too slow updates result in difficulties
with changing lighting situations or if an object from the ini-
tial background is removed, the new visible area would be
modeled as new object. We chose fast updates in the begin-
ning, as the sequences are rarely empty, and to get slower after
a few initialization frames.

The standard implementation of the GMM only discrim-

Input Image Foreground                          Shadow detection

Fig. 2. Shadow detection in an image from PETS2007

inates between foreground and background. Shadows and
highlights are usually considered as foreground if update times
cannot cope with the speed of change. Several problems with
rapidly changing lighting situations and shadows have been
experienced in [5], which are illustrated in fig.1. These can
be recognized easily , as the Gaussian components for the
background model are known. Assuming that shadowed and
highlighted ares have the same color as before, which are just



a little darker or lighter respectively [6] [7]. Fig. 2 shows
results of the shadow detection task. The basic idea is to ana-
lyze the pixel values in RGB space. If a color’s vector has the
same direction with a slightly differing length.

4. OBJECT DETECTION

A major drawback in object detection with one single camera
is occlusion handling. Two objects, which are occluding each
other only partially will be recognized as one. Even meth-
ods such as KL Tracking [8] or color histogram based mean
shift tracking [7] cannot solve the occlusion problem. Apply-
ing multiple camera perspectives provides the opportunity to
solve the occlusion problem, as objects are probably not oc-
cluded from every perspective.
Therefore approaches using homographic transformation have
been presented in [1] [5], which performs a transformation
from one image plane into another one. A minimum of seven
corresponding points in image and world coordinates have to
be known to locate any blob position on the image plane,
assuming, that the blob’s lowest point is in contact with the
ground. Therefore the transformation matrix has to be com-
puted once for every single camera:x′1x′2

x′3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

 , with detH 6= 0.

Therefore the parameters hij are computed with the Tsai cam-
era calibration method [9], with 7 corresponding image points.
This way we are able to transform the detected object bound-
aries into the ground plane of our world coordinate system or
back into other fields of view. Fig. 3 illustrates the homogra-
phy for all four fields of view. The transform can be basically
interpreted as shadow on the ground plane created by a light
source located at the camera position. The area within the
outline of the polygon is considered as candidate for an ob-
ject. As we cannot see through any object and determine the
object’s depth, the area can be quite long, especially if the
camera position is as low as the one in perspective 3.
Obviously there are some additional regions due to errors in
the foreground segmentation task. These are not a major is-
sue, as these usually do not appear in all camera views at the
same time. Consequently these will be eliminated during the
following fusion process.
Depth information is subsequently gathered by the comput-

ing intersections of all polygons in the plane, as shown in fig.
4. In all areas with more than three intersecting polygons ob-
ject candidates can be assumed. Errors created by misclassifi-
cation during the segmentation process should be eliminated,
as it can be assumed, that segmentation is performed correctly
in at least one camera perspective. Another strength of the ho-
mographic transform and the subsequent fusion is the robust-
ness to occlusion. Each transformed blob denotes the region
an object could be located in, even if it is not visible from the

Fig. 3. Exemplary homographic transformation in layer Z=0
for all 4 camera views

Fig. 4. Fusion of all four camera views
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Fig. 5. Exemplary multi layer transform in 6 layers and pro-
jection into the ground plane

actual camera view. This way even objects not visible in any
camera perspective could be detected. Actually it just denotes
where a hidden object might be located. Therefore this areas
are considered as object candidates.

5. MULTI LAYER HOMOGRAPHY

Homography has been used just in the ground planein former
works, as all pedestrians are usually located on the floor. Un-
fortunately results are quite unsatisfying because the feet are
quite small objects and are frequently segmented incorrectly.
In a real world scenario it has to be additionally considered
that feet are not necessarily touching the ground while people
are walking. As a result there might be a lack in precision of
localization or some persons might not even be detected due
to missing intersections. Even if there are intersections they
would have to be grouped together as each foot would result
in one separate intersection. An approach to group these small
regions has been presented in [5] by assuming minimum sizes
for objects, which would dismiss or mistakenly group regions.
Therefore it seems reasonable to apply homography in addi-
tional layers. This way a pseudo 3D model of the object can
be created and additionally the object’s width and height can
be estimated. Fig. 5 illustrates the reconstruction of a scene
with an exemplary amount of 6 layers, where only intersec-
tions are shown. As it can be seen, both persons are perfectly
separated and the person in front is recognized being taller
than the person behind, which actually resembles the truth in
this sequence. The 3rd person in the back is considered as
background in this sequence as she is not moving for a while.
The additional layers result in various sizes, which approx-
imately resemble the sizes of the corresponding body parts.
Especially the hips and the upper body lead to a better local-
ization than just the feet. In a following step all layers are
combined to one in the ground plane, which would result in a
kind of a top view of the scene.
Computational effort can be kept at a minimum even for far
more layers, as homography is only computed for 2 layers
whereas all others can be computed by basic geometry, which

Z

Y

X

Camera: 
-X

Camera:
Y

Z

Y

X

Camera: 
-X

Camera:
Y

a) b)

Fig. 6. a) Fusion in the layer z=0 with false positive in blue.
b) Reconstructed objects with false positives in blue

can be computed simply by:

Xw(Zw) = (X1 −X0)Zw +X0

Yw(Zw) = (Y1 − Y0)Zw +X0

Where (X1/Y1) and (X0/Y0) are the corresponding trans-
formations in layers Zw = 1m and Zw = 0m. The amount
of layers highly depends on the difficulty of the scenario, but
mostly 10 layers inbetween Zw = 0m and Zw = 2m seem
sufficient, as most objects are shorter than two meters.
The multilayer approach produces very reliable results for
small groups. For large groups and crowds the feet and heads
areas usually do not show overlaps in the binary image, wheres
the body area often touches. This frequently results in one
large connected object in the multilayer view. Assuming that
there are mostly pedestrians in the scene, we can separate the
resulting structure by analyzing the form.

6. FALSE POSITIVE HANDLING

The major drawback of the homography approach is quite fre-
quent appearance of false positive candidate positions. Figure
6 illustrates a case with two objects and two cameras creating
a false positive. This happens if two or more objects occlude
similar background regions. The multilayer approach even
leads to another ’floating’ object. Unfortunately it is not pos-
sible to exactly determine whether there is an object hidden
behind the other ones or a false positive has been created.
Therefore we decided to detect and track so called false posi-
tive candidates.
These are detected by transforming the detected regions back

into the 2D images, as shown in figure 7. As the 3D infor-
mation is now available, we know which object candidate is
located occluded by another one and compare their sizes. In
a subsequent step a heuristic approach is applied: if an object
candidate is visible at least from one camera perspective, that



X

Y

X

Y

View from camera „-X“ View from camera „Y“

Fig. 7. All possible object positions are transformed back
into 2D. Blue areas are totally covered by the red ones and
therefore considered as false positive candidate
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Fig. 8. a) The reconstructed scene with false positives. b)
After false positive detection

means it is the first one in a row or larger than the objects oc-
cluding it, it is considered as a real one. Being totally covered
in all camera perspectives indicates a false positive candidate.
These are still used for object tracking, as it might also be a
hidden object. Therefore new appearing objects are associ-
ated with the false positive candidate if tracking criteria (see
sec. 7) match, or an object disappears and the false positive
candidate appears at more or less the same spot.
An exemplary result is shown in fig.8 where the projections
into the ground plane have been transformed back into 2D.
In fig. 8a) the pink regions represent all candidate positions
found in the image. Obviously there are more candidates than
persons in the image. Fig. 8b) illustrates the back projec-
tion of all areas where the white areas in the image are false
positives and the others represent detected objects. The false
positives can then be removed from the reconstructed image,
here in black.

7. OBJECT TRACKING

Up to now the system is only able to determine the xy-position
in world coordinates. Unfortunately there is no temporal in-

A: Top view over tracking area
with objects and their tracks
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Fig. 9. a) Exemplary trajectories in world coordinates. b)
Frame from sequence

formation about the detected regions. Therefore a system cre-
ating relationships in between regions in an image sequence
is required. This has been implemented applying a two staged
approach, where a Kalman Filter [10] is used as basis in order
to predict an object’s position xk in the next frame xk+1using
a motion model:

xk+1 = Fk+1,k ∗ xk + wk

In a subsequent step a measurement is performed to find the
object fitting best to the prediction:

yk = Hk + xk + vk

One of the main error sources are elements appearing or dis-
appearing just for a few frames. For instance a person could
disappear for a few frames and a new object is appearing in
the neighborhood. Or it may simply be dismissed and af-
ter reappearance be assigned a new ID. Although the pre-
dicted position and the measurement do not fit exactly, the
new object might get the ID of the vanished object, even if
it reappears after a few frames. It seems reasonable to take
the distance of the object positions into account and memo-
rize old object positions. Therefore a prediction-observation
likelihood

L = logP (yk|y1:k−1)

is computed evaluating a Gaussian density [5]. If a reappear-
ing object has a smaller distance, a higher probability and ad-
ditionally matches a prediction of the Kalman filter the the
older object ID gets the original ID reassigned and the new
object gets a newer one. The computed trajectories are illus-
trated in fig. 9

8. OBJECT RECOGNITION WITH SIFT FEATURES

While Multilayer Homography and Adaptive Foreground Seg-
mentation are efficient tools for tracking even in moderately



crowded areas, there are a number of situations (e.g. occlu-
sions) where we may inadvertently confuse two tracked per-
sons. A typical example would be two persons disappear-
ing behind the same obstacle. Once they emerge from the
said obstacle, we need a way to ascertain their identity be-
fore continuing the tracking process. Another scenario would
be one person entering the scene through a door as another
tracked person disappears from the scene through the same
door. Again we would need an indicator that the person enter-
ing the scene is not identical to the person leaving the scene,
even if they appeared in the same spot.
For our identification procedure we use features obtained by
scale invariant feature transform (SIFT). SIFT was introduced
in 1999 by Lowe and uses scale- and rotation-invariant de-
scriptors derived from gradient-histograms at scale-space ex-
trema to find unique features in a scene [11].
These features, especially when recorded over a sequence of
frames, can be used to resolve tracking ambiguities. The ap-
proach is similar to SIFT face-recognition as described in [12]
and [13]. However, instead of faces we look at the whole body
of the person to be tracked. We also have to consider swing-
ing motions of arms and legs, as well as partial occlusion by
obstacles or body movements from frame to frame.
To account for these difficulties, we record SIFT features and
their relative positions over several frames, effectively track-
ing the person by their SIFT features. The recorded data can
be thought of as a graph, where the nodes are specific SIFT
descriptors and the edges describe their relative spatial posi-
tion. When an ambiguity occurs, we check the SIFT features
of the possibly switched persons against the recorded SIFT
graphs by non-rigid matching. A person’s graph MPerson

can be described as follows:

MPerson = {DM , PM}

whereDM signifies the vertices, i.e. the 128-element descrip-
tor vector, and PM signifies the edges, i.e. spatial positions
of the feature.

To reliably build a SIFT model of a person, we track the
person’s SIFT features over as many frames as possible while
recording the found features and their positions in each frame.
The person’s temporary model consists of two groups of SIFT
features: those which were repeatedly detected over several
frames in similar locations (tracking group, ΩT ) and those
which where so far detected only once or twice (candidate
group, ΩC). Since we have to account for the changing ap-
pearance of the moving person, we use a scoring system for
updating both groups. Features which are not detected for
some time are gradually forgotten, while repeated detection
strengthens a feature. This is achieved by assigning numeri-
cal weights to each feature, which are adjusted in each frame.
Features in ΩC which are detected often enough are eventu-
ally promoted to ΩT . This approach is similar to [14], but
uses a simplified mechanism. This leads to

ΩI = {DΩI , PΩI ,WΩO}

with
DΩI descriptor vectors of features
PΩI spatial positions within reference frame
WΩI forgetting factors for descriptors

with I ∈ C, T
A candidate ΩC is added to the tracking group ΩT if WΩC

is larger than a predefined promotion threshold αC . The cor-
responding SIFT features DΩC

i are then added to ΩT and re-
moved from ΩC . Otherwise, if WΩT

j < αT , the SIFT feature
DΩT
j is added to ΩC and removed from ΩT .

In each frame, we search for features of the tracking group
around their expected positions. The set of found features is
refined by an iterative elimination of bad matches based on
relative distances (with compensation for a changing scale).
In a next step, known and new features of the candidate group
are found and strengthened. All found features of the track-
ing group are recorded continuously in a separate group for
the construction of the average SIFT model. Once the track-
ing on the person is lost, the recorded features are searched for
stable, reoccurring features: we group similar SIFT descrip-
tors (i.e. Euclidean distance smaller than defined threshold)
with small spatial distances and use their average position and
descriptors to create an individual graph MPerson (nodes are
SIFT descriptors, edges are spatial positions) modeling the
person tracked. Weak features, i.e. features which were de-
tected in a region only a few times, are discarded. This re-
duces unreliable fast-moving elements like arms and legs to a
considerable degree.

To solve ambiguities and avoid miss-identification, the
persons involved are matched against the respective SIFT mod-
els. The person is non-rigid, may have turned slightly and
features may be obscured or not visible at all, requiring a flex-
ible matching algorithm. Matching from MPerson(i) to ΩC)

is achieved by minimizing the energy function

E(x)ij = xTijHijxij + cTijxij

with
xij binary vector containing possible feature assignments
Hij matrix containing respective spatial distances
cij vector of Euclidean distances between descriptors

by means of quadratic binary programming (since it is a quadratic
assignment problem). To avoid calculating every possible
combination of features, we filter by the Euclidean distances
of the descriptors. As the problem is NP-hard, we use an ap-
proximation based on [15]. We select the assignment xij with
the lowest matching energy Eij and highest number of pos-
itive feature matches as the match for an individual person.
Therefore we can assign the track of model MP to the person
with ΩC and can thus resume the tracking. Since in a crowded
scene important SIFT features may be obscured and non-rigid
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Fig. 10. Tracking of one person from three camera views.
Left: Tracked person with bounding box; Right: PΩT with
detected features marked.

matching is also non-robust, we repeat this process in several
frames to achieve a reliable match. The tracking and identifi-
cation described above works well as long as the person does
not turn too fast. However, since several points of view are
available, we can observe the same person from different an-
gles. A person visible to four cameras is therefore described
by four SIFT graphs attributed to that person (see (10)). By
comparing the SIFT graphs from the different views, we can
detect turning motions by the occlusion and re-appearance of
features and re-identify the person by the known SIFT models
as outlined above.

9. EVENT DETECTION

Due to the lack of a complex database we decided to work
with an expert knowledge based approach. Instead of creat-

split

stationary

moving

t t+30

Fig. 11. Scheme of leaving a piece of luggage

ing a probabilistic model, a set of rules has been defined to
detect events. According to the definition provided for the
PETS 2007 challenge a person is loitering if he stays in the
field of view for at least 60s. This task can be solved rather
easily, by adding a time stamp LifeT ime to every tracked
object if it appears for the first time. If the difference is larger
than the required lifetime within the camera view, an alert can
be created.
Having a close look at the provided data sets, it becomes clear,
that leaving luggage is following a quite similar scheme. In
the first place an object will split into two. One of these parts
will remain stationary in the following frames. The other one
will be leaving the stationary one after a while. A warning
is displayed if the object distance is larger than 3m. If the
distance is larger than 3m for at least 30s an alert signal is
displayed. Figure 11 illustrates this process, which has been
implemented as a simple decision tree. A second case is that a
split is detected and after a short while the moving object van-
ishes within the 3m region. This commonly happens near the
borders of the field of view. Therefore the sudden vanishing
of the moving split object has to be also modeled.

10. EVALUATION

For each surveillance system it is crucial to provide some
measurements for evaluation. Yin et al [16] have proposed
a variety of measurements of tracking systems based on their
trajectories. For first evaluations we decided to determine the
Euclidean distance between the labeled position and the de-
tected one and count ID changes when only homography is
used. The evaluation will be explained exemplary for Scene
S03. Figure 12 shows exemplary the Euclidean distance for
both labeled persons in the sequence, based on the detected
IDs. In the first row results for ID1 are given. The differ-
ent colors of the graph indicate ID changes. Here at frame
550 with ID2 and at frame 1600 with ID3. Leaving swaps
aside a high precision of localization is achieved using only
homography. In contrast ID2 changes its ID only once dur-
ing tracking and shows also a high accuracy of about 12cm.
Compared with the results from [5] the error could be reduced
by 13cm
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Fig. 12. Euclidean distance for IDs 1 and 2 in S03 for homog-
raphy only. Color changes indicate ID swaps.
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Fig. 13. Corresponding bounding Boxes in the camera views

As labeling has been performed manually there is obviously
some discrepancy between ground truth and real position. Dur-
ing tracking the estimated center of the projection is used as
xy-position in world coordinates, whereas ground truth is of-
ten provided for outer boundaries of the persons. Addition-
ally, calibration errors have to be taken into account. There-
fore an average distance of 13cmwith a small variance should
be fully satisfying. Figure 13 shows an example for position-
ing of the bounding boxes in the corresponding image data.
Additional identification with SIFT Features lowers the num-

ber of ID changes from 15 to only 2 in the PETS2007 dataset
without affecting the accuracy of positioning.
Especially the false positive handling enhances the tracking
performance drastically as by far lower candidates are de-
tected. The number of false positives could be reduced by
72% to a value of 24 in ll 8 sequences of the PETS2007 data
set. These only occured for a short time period and did not
affect tracking.
The event detection task profits from the enhanced tracking
part as less false alerts are occurring. Compared to previous
results, detected timestamps and positions almost do not dif-
fer. Table 1 shows the frame number for detection of loitering

Fig. 14. A sample from S08. First the person leaves the 3m
radius. After 25s an alert will be set

td and a fairly small time difference δt ground truth measure.
There were no misses and only one insertion, as a bag was
stationary in the video for a longer time, which could be in-
terpreted as clue for an unruly event.
The recognition of luggage events is by far more complicated

Scene: td te δt x y

S01 1648 148 23 -0.730388 0.845811
S02 1718 218 89 -0.161693 -0.172595

Table 1. Timestamps and positions for loitering

than the detection of loitering people. Especially the split and
merge detection tends to be rather difficult. The maximum
distance between two objects has to be set carefully and be
fitted to each application scenario. Here the maximum dis-
tance for splits was set to 0.5r and resulted in no false positive
and no miss for left luggage detection. Figure 14 shows the
resulting warning and subsequent alert for the implemented
system. Table 2 shows both the time stamps for the detection
of unattended luggage and abandoned luggage. Additionally
the position of the original owner (xown, yown) is indicated, if
available. The presented system has been additionally tested

Scene: td x y xown yown

S07 unatt. 1491 -0.01 -0.20 NA NA
S08 unatt. 1147 -0.14 0.04 -2.38 -1.05
S08 left 1773 -0.12 0.04 NA NA

Table 2. Timestamps and positions for unattended and left
luggage in S07 and S08. The position of the owner is also
given, if available

on the PETS2006 set with similar results, although the camera
setup was quite different.



11. CONCLUSION AND FUTURE WORK

In this work we have shown extensions to the well known
tracking approach using homographic transformation. Track-
ing performance has been drastically increased by simple meth-
ods. In the first place additional precision has been added to
localization performance by adding detection steps in multi-
ple layers, which led to a almost 50% smaller error of 13cm.
This especially helped when feet were incorrectly segmented
or not touching the ground plane. Additionally the false pos-
itive rate has been drastically reduced by a further analysis
of the resulting regions. These are subsequently transformed
into the 2D images.
In future works there has to be a discrimination between ob-
jects and human beings to improve the event detection per-
formance. Pedestrian detection systems have already been
presented in [17]. Unfortunately these systems rely on train-
ing data, which is only available for frontal views, and even
function with some robustness against occlusion. An object’s
texture could be used to create a pseudo 3D model. This
might increase tracking performance drastically after splits
and merges of objects. In following works the popular Kalman
filter could be replaced by a predictor with a nonlinear motion
model such as the unscented Kalman filter [18], as human mo-
tions can change drastically.
For a more detailed behavior detection it would be reasonable
to further choose the best sight of the person and perform a
analysis based on motion features as suggested in [19].
For future work surveillance systems can be extended to a het-
erogeneous sensor network [20] applying different systems
such as thermal infrared, laser range scanners and photonic
mixture devices (PMD). This way even in difficult lighting
situations and narrow spaces visual features could be extracted.
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