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Abstract
In this paper, we present a novel approach for dialog modeling, which
extends the idea underlying the partially observable Markov Decision
Processes (POMDPs), i. e. it allows for calculating the dialog policy in
real-time and thereby increases the system flexibility. The use of statis-
tical dialog models is particularly advantageous to react adequately to
common errors of speech recognition systems. Comparing our results
to the reference system (POMDP), we achieve a relative reduction of
31.6% of the average dialog length. Furthermore, the proposed system
shows a relative enhancement of 64.4% of the sensitivity rate in the
error recognition capabilities using the same specifity rate in both sys-
tems. The achieved results are based on the Air Travelling Information
System with 21 650 user utterances in 1 585 natural spoken dialogs.
Index Terms: dialog modeling, dialog strategy, spoken language un-
derstanding

1. Introduction
In modern dialog management systems Markov Models, e. g. partially
observable Markov Decision Processes (POMDPs), have proven their
power for modeling sequences of naturally spoken dialogs [1, 2]. This
is, because speech recognition technology remains imperfect: recog-
nition errors are common and influence dialog management systems.
Motivated by the advantages of POMDPs in comparison to conventional
systems [3], we design a novel approach which is similar to the POMDP
model, and additionally, allows for calculating the dialog policy in real-
time. Thus, the flexibility of the system is increased: dialog strategies
can be adjusted during the runtime, e. g. to the user behavior. In the
proposed model, we use semantic slots, as introduced in [4]. These rep-
resent a cluster of sequences of words with a specific meaning, which
are determined during the runtime.

Several semantic slots at a time define a dialog state whose transi-
tions are called semantic pairs. Temporally consecutive semantic pairs
form the trellis through a dialog. The user is led to a defined (or learned)
user goal by well-directed questions asked by the system. The param-
eters of the dialog model are learned automatically from a annotated
training set, which is introduced in Sec. 2. In Sec. 3, we describe the
concept of semantic slots. In Sec. 4, the dialog model based on a trellis
is presented. In Sec. 5, we introduce the POMDP reference model. Fi-
nally in Sec. 7, we compare the performance of our model to the one of
the reference model, before we conclude in Sec. 8.

2. Corpus Description and Preprocessing
The data of this work are extracted from the air traveling information
system (ATIS) [5]. The information about the real user goal in each
dialog are encoded in the description of the scenarios of the ATIS log
files. For the experimental results in the dialog process, we extract all
21 650 natural spoken questions and answers with the aid of keyword
searching in ATIS log files. The transitions in the dialog model are
learned from 1 585 spoken dialogs in the training phase.

In order to use the ATIS corpus for evaluating a dialog system, pre-
processing as described in the following is needed. First, the system’s
answers are extracted with keyword spotting in the ATIS log files and
their SQL-queries. In sum, N(S) = 10 concepts are hereby iden-
tified. As our novel dialog system is based on a trellis, this yields
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N(T ) = 210 = 1024 possible transitions or states. This number
of states is computationally infeasible when POMPDs are used as a ref-
erence system. Hence, the system is reduced to eight semantic slots
represented in a trellis with Nr(T ) = 28 = 256 states.

In order to provide an adequate training (see Sec. 6), for all se-
mantic pairs si|si−1 a probability p(si|si−1) is estimated from the
corpus. Due to its sparseness, however, not all semantic pairs occur
in the corpus. Hence, we perform absolute discounting in conjunc-
tion with backing-off [6] in a second step. Therefore, the absolute
count N(si|si−1) of each semantic pair is reduced by a fixed value
β, if it is bigger than a threshold c, reducing the marginal probabil-
ity to

∑
si∈T p(si|si−1) < 1. The remaining probability “mass”

1−
∑
si∈T p(si|si−1) is distributed among the semantic pairs, which

are not found in the corpus. In addition, the backing-off factor c defines
the minimum number of countsN(si|si−i) for using the semantic pair
si|si−i in the probability calculation

p(si|si−1) =

{
N(si|si−1)−β/N(si−1) if N(si|si−1) > c

b(si, si−1) · p(si) otherwise,
(1)

with b(si, si−1) =
1−

∑
si∈B(si−1) p(si|si−1)

1−
∑

si∈B(si−1)
and

B(si−1) = {si|si, si−1 ∈ S ∧N(si|si−1) > c}.
In the rare case that no information on the state si is available (i. e.

the semantic knowledge represented by this state never occurs) in the
corpus, the probability p(si) is derived from a manually designed pri-
orization matrix. It shall be noted that during each transition exactly
one or no additional information slot is filled.

3. Semantic slots
User utterances are decoded as described in [4] and mapped to so-called
“semantic slots”. Each concept is represented by one semantic slot in
a binary manner, and the assignment Originating City 7→ slot 1,
Destination City 7→ slot 2, Price Information 7→ slot 3,
Date 7→ slot 4, Time 7→ slot 5, Class 7→ slot 6, Trip Type 7→
slot 7, and Stopover 7→ slot 8 between the concepts and the semantic
slots holds. Hence, each semantic slot denotes a binary digit.

3.1. Dialog states S
Each combination of semantic knowledge, represented by the settings of
the corresponding semantic slots, is denoted as dialog state si, where
i is the decimal value of the semantic slots an yields i = v(slot 1) ·
20 + v(slot 2) · 22 + · · · + v(slot 8) · 28, where v(slot j ∈ {0; 1} is
the binary value of the semantic slot j. Hence, with N semantic slots,
N(s) = 2N possible dialog states is the result.

3.2. OberservationsO
Given observations o from the user are encoded as semantic slots in the
same way as dialog states s. Observations ot are added cumulatively in
every time step t to a observation state oT =

∑T
t o(Slot x)∀x ∈ O.

3.3. User goals G
A user goal gt ∈ G ⊆ S is defined as a subset of a possible database
request, which is either learned from a training corpus or manually de-
signed, e. g.:

Origin ∧ Destination ∧ Price ∧ Round trip
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In our approach the user goals g were deduced manually from the cor-
pus (see Fig. 1).

User Goal 3:

1·20+1·21+1·22 

User Goal 7:

1·20+1·21  

System asks User: 

for “Slot 3”

Figure 1: User goal g and transitions deduced from the ATIS corpus:
encoded user goal 3 aims to reach user goal 7 by asking the user for
slot 3.

4. Dialog Control Modeling
Mixed-initiative dialogs allow the estimation and the achievement of the
user goals g to create a SQL statement. The dialog strategy is derived
from a Graphical Model (GM), which combines the theory of proba-
bilities and graphs. Edges model the statistical dependencies between
the variables (nodes). Fig. 2 shows the GM of a mixed-initiative dia-
log system with observable prolog state s0 and epilog state sT . The
hidden dialog states s1, . . . , sT−1 in between are parents of semantic
observations, like in an ordinary HMM. The future flag node determines
the kind of connection between the hidden states and the observations.
Therefore, the observations are split into a past o0:t−1, present ot and
future part ot+1:T . The past part grows with every answer given. The
present part is always of the size of one time step and the future part is
of the size of the slots missing when comparing the present state with
the user goal g. The basic idea is, that time steps in the future use a dif-
ferent observation matrix than past time steps. In this implementation,
future observations are virtually disconnected from their hidden states,
so the Viterbi search is based only on the transition matrix in the future
steps.
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Figure 2: GM of the mixed-initiative dialog control system.

4.1. User goal estimation
In Fig. 2, we divide the dialog into three parts: First, the past dialog
states s0, . . . , st with their observable semantic slots use a heuristic dis-
tribution (Gaussian) for the estimated user goals. Second, if the present
part of the dialog sate st is equal to an user goal g, the system returns
either the results of the database request to the user or continues the
dialog by filling additional semantic slots, i. e. the user’s answers give
more detailed information. Third, in the future part, we assume that g is
the user goal, which can be reached with the fewest additional semantic
slots being filled. By applying the Viterbi algorithm, we find the min-
imum number of future dialog states st+1, . . . , sT necessary to reach
the user goal g. If the current state st is identical to the user goal g
the system lists the result of the database request to the user. The dia-
log may be continued either user- or system-initiated with a further user
goal g∗.

4.2. Finding best dialog path
Beginning at the desired user goal, i. e. at the expected end of the dialog,
the best series of observations o1, . . . , oT is found by the well-known
Viterbi algorithm [7]. Because the user should be asked only for one
semantic slot at a time, the system is limited to transitions that add one

slot in each time step t. The Viterbi algorithm herein is realized as
follows:
Initialization:

δ1(i) = p(si|o1)
ψ1(i) = 0

, 1 ≤ i ≤ N. (2)

Recursion:

δt(j) = max
1≤i≤N

[δt−1(i) · tij ] · p(sj |ot) , 2 ≤ t ≤ T
1 ≤ j ≤ N (3)

Termination:
q̂T = argmax

1≤i≤N
δT (i) (4)

The best path, i. e. the sequence of observations that are mapped to the
semantic slots, is then found by backtracking:

q̂t = ψt+1(q̂t+1). (5)

Taking the best path into account, the transition st → st+1 can be
obtained, and the semantic slot that is to be filled in time step t + 1 is
known (see Fig. 3). Hence, the system selects the action at+1 ∈ A
(which can e. g. be a question) to gain the desired information from the
user.

Future
 Flag

O
bs

er
va

tio
n 

of
 s

em
an

tic
 s

lo
ts

Estimated 
User goal

000

001

010

011

100

101

110

111

0

1

Time t0 1 2 3

1

Figure 3: Trellis diagram of the modeled GM: The estimated user goal
g3 is 7 (all slots filled: (1 1 1)), the small lines are all possible paths
through the trellis, stressed is the line that is found by the Viterbi algo-
rithm. Therewith, the best path from the actual state s1 = (1 0 0) to
the most likely next state s2 = (1 1 0) is estimated. Assuming a larger
model with more slots, after reaching the first goal g1 = (1 1 1) the
system either requests a SQL statement or estimates the next user goal
g2 from the best path.

4.3. Semantic slot re-estimation
The Viterbi algorithm finds the best past path through all time steps.
Therewith, semantic information in past o1, . . . , ot−1 is re-considered
when the new information ot is observed, by applying the transition
rules Tp for past and Tf for future observations. While also self-
transitions are allowed for the past frames, the transitions in Tf are
restricted to deliver exactly one piece of semantic information per time
step. Furthermore, recurrences in the dialog can be added through in-
sertion of “ones” on the main diagonal of the matrix Tp.

4.4. Influence and recognition of errors
Applying the Viterbi algorithm, the model has the ability to detect and
correct erroneous inputs from a speech recognizer or a semantic inter-
pretation. With the semantic slot re-estimation the system will prob-
ably choose other semantic slots in past time t0:t−1 with Tp as rec-
ommended from the semantic interpretation unit, which is presented in
[4].

5. Reference Model
In [2], a model-based approach to dialog management is described. The
POMDP is a Markov Decision Process (MDP), which will be extended
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in such a way that the states are not observable. This is done in a similar
way as for the Hidden Markov Model (HMM), where the states of the
Markov chain are hidden and an observation is linked to the states with
certain probabilities. In contrast to the MDP, the POMDP does not know
the current state with certainty. Hence, for each state its probability is
inferred based on the current observation. In contrast to the HMM, these
are Markov decision-making processes, where actions can be executed
and change their environment accordingly. The problem of a dialog
management system means that the system itself can perform certain
actions, usually asking questions or producing results. POMDPs are
suitable to model this behavior. The POMDP consists of a set of States
S, a set of observations O, and a set of actions A (see graphical model
in Fig. 4).

During a training phase (see Sec. 6), these parameters are estimated
and form a transition matrix T = P (s′|a, s), which gives the probabil-
ity of the current state s′ subject to the condition of the previous state
s and the executed action a. During the training phase, one determines
the reward as a function of the state s and the executed action a in a
reward matrix R(s, a, s′). The observation matrix Z = P (o′|s′, am)
reflects the observation conditioned on the current state and the previ-
ous action. From all three matrices generated during the training phase,
T,R,Z, a policy is created. Later during operation, a suitable vector
b can be constructed from it. In addition to the policy, a geometric dis-
count factor λ is considered, which enhances the weight of the rewards
that are closer to future times. This factor is important in agent-based
systems, as a possible change of topic and corrections could lead to in-
finitely long dialogs. For initialization an additional belief state b0 is
defined (see Fig. 4, right).
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Figure 4: Left: BU: Belief update, π(b): Policy Right: Graphical model
of a POMDP, dashed lines: deterministic links, continuous lines: prob-
abilistic links.

5.1. Belief update
As shown in Fig. 4, during the operation phase the appropriate action
am is chosen according to the current state belief bt, and the state will
be changed to the next state s′. There, an observation of semantic slots
o takes place, and the belief state bt is updated following Eq. 6, where
k is a normalization factor.

b′(s′) = k P (o′|s′, am)
∑
s∈S

P (s′|am, s) b(s). (6)

6. Training
The parameters of the transition matrix T are derived from the de-
scribed ATIS corpus. To compare both approaches, we preferred a
(Gaussian) distribution of the observation ot. Hence, the probabili-
ties of the observation matrix O are learned from the ATIS corpus and
mixed with the described distribution. The parameters of matrix R
used in the POMDP model are manually designed. To avoid repeti-
tions sx → sx, we use a high penalty (p = 10) in R. The matrices are
online available 1.

1http://www.mmk.ei.tum.de/∼sts/corpus

7. Experiments and Results
Both, the GM- and the POMPD-based dialog system, use the same tran-
sition T and observation O matrices for the experiments. Furthermore,
a user model was set up with a user goal estimator and a user reac-
tion model. First, the user goal estimator determines which slots have
to be filled at the end of the dialog. Second, the user reaction model
describes with manually designed rules, how the user reacts to sys-
tem questions. The results of the experiments were achieved using the
POMDP toolkit [8]. The dialog policy π was calculated with the aid of
SARSOP [9] at the LRZ2 supercomputer.

7.1. Average dialog length
The evaluated 1 990 dialogs contain 8 717 user utterances (UA) which
means that the average dialog length is 4.35 UAs. The POMDP model
with 2 000 dialogs resulted in 12 901 UA, thereby the average dialog
length is 6.4 UAs. Compared to POMDP we require 31.6% less UAs
to reach the same number of semantic slots. Therefore, the user goal g
is achieved with significantly fewer questions and significantly faster.

7.2. Error recognition of GM-based vs. POMDP dialog control sys-
tems
In this paper, the error correctness based on the annotated user goals g
in the corpus is evaluated. For that end, 317 dialogs (=̂ 20%) in ATIS
are used for a statistical user model. The number of correctly decoded
dialogs increases, if every decoded dialog step d(sdec) is the same as
the input from the simulation d(sin) (see eq. 7).

d(sin, sdec) =

{
1 if sin == sdec,

0 otherwise
(7)

Our approach also corrects errors, e. g. from the speech recognizer, with
Viterbi decoding. The number of correct decoded dialogs increases,
if the input signal contains errors and the dialog management system
revises the semantic slots rightfully:

dcorr(snoisy, sdec) =

{
1 if snoisy == sdec,

0 otherwise.
(8)

330 of 8 717 UA were distorted by an error, which means the slot re-
ceived at the dialog manager was different than that sent out by the user.
This led to a total of 1 696 dialogs that were error-free and 294 dialogs
that contained at least one error. According to the definition of error
recognition d(corr) the system decided that the dialog has an error in
229 cases and that the dialog is error-free in d(corr) = 1 761 cases.
The error recognition capabilities are the input of the well-known F1
measurement method (see eq. 9) and facilitate a comparison with the
POMDP model in tab. 1: Out of the 229 cases detected as defective(P),
115 in fact contained an error (TP), the remaining 179 were classified
as negative (FN). This leads to a sensitivity of 0.39. The relevance, as
defined as the number of TP to number of all P is 0.5. Out of the 1 761
cases classified as negative (N), 179 were defective(FN) and 1 582 were
in fact error-free (TN). The corresponding specifity is 0.93. The seg-
regance, which expresses the probability that a negative test result is
correct, is at a level of 0.90. Altogether, this leads to a correct classifi-
cation rate of 0.85.

TP = {d(sin, sdec) == 0} ∧ {dcorr(snoisy, sdec) == 0}
FP = {d(sin, sdec) == 1} ∧ {dcorr(snoisy, sdec) == 0}
FN = {d(sin, sdec) == 0} ∧ {dcorr(snoisy, sdec) == 1}
TN = {d(sin, sdec) == 1} ∧ {dcorr(snoisy, sdec) == 1}

(9)

In the 2 000 tested dialogs from the POMDP model, 1 688 are error-
free and 312 have an error. For a comparison with the GM-based dialog
management, we calculate the average of the probabilistic belief states
b(s) in every time step t. Hence, we compute the receiver operation
characteristic (ROC) curve [10] by matching this value to a variable
threshold. The advantage is that a variable threshold can be used to
optimize the system (see fig. 5).

In order to compare it with the GM-based dialog management sys-
tem, the specifity is adjusted to the same value 0.93, which results into
a threshold of 0.64. Hence, in the 177 cases that were detected as de-
fective (P), 56 in fact contained an error (TP), the remaining 121 were

2Leibniz Supercomputing Centre of the Bavarian Academy of Sci-
ences and Humanities.
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GM POMDP

Number of dialogs N(d) 1 990 2 000
User utterances (UA) 8 717 12 901

Average dialog length ∅l(d) 4.38 6.45

Correctly classificated dialogs dcorr 1 761 1 688

F1
m

ea
su

re True Positive (TP) 115 56
False Positive (FP) 114 121
False Negative (FN) 179 256
True Negative (TN) 1 582 1 567

Sensitity(SES) 0.39 0.18
Specifity (SPC) 0.93 0.93

False positive rate (FPR) [%] 0.07 0.07
False negative rate (FNR) [%] 0.61 0.82
Relevance (PPV) [%] 0.50 0.32
Segregance (NPV) [%] 0.90 0.86

False discovery rate (FDR) [%] 0.15 0.19
True discovery rate (1− FDR) [%] 0.85 0.81

Table 1: GM-based vs. POMDP [2] dialog management system com-
pared on their error recognition capabilities.

classified as negative (FN). This leads to a sensitivity of 0.18 and a rel-
evance of 0.32. On the other side, we have 1 823 negatives (N), 1 567
were really error free(TN), 256 FN. This leads to the same specifity as
in GM-based dialog management systems (0.93). The segregance is at
a level of 0.86. Altogether, the correct classification rate is 0.81 (see
tab. 1).

We estimate our approach in comparison to the POMDP-model
by using the receiver operating characteristic (ROC) curve [10]. To
compute the specifity and sensitivity of the 2 000 tested dialogs in the
POMDP-based dialog model we increase the threshold by 0.1 from 0 to
1 stepwise. The POMDP-based dialog model is significant better than a
random guess of the semantic slots (straight line in fig. 5). Our system
(GM-based) outperforms the POMDP-based model by 64.4% relatively
in the sensitivity rate at the same SPC (0.93).

8. Conclusions and Outlook
In this paper, a novel GM-based dialog management system was pre-
sented and compared to the state-of-the-art system POMDP . In both
setups, the probabilities of the dialog model were estimated using natu-
rally spoken sentences in the ATIS corpus. The systems were compared
by their number of dialog steps taken on average and by semantic slot
error recognition capabilities. To this end, a user model, a user goal
estimator, and a user reaction model were set up for comparable and
objective system tests. The GM-based dialog system showed a signif-
icantly higher sensitivity rate in the error recognition capabilities, by
a relative enhancement of 64.4%, in comparison to the POMDP sys-
tem. In addition, the average dialog length (an estimation criterion for
short targeted dialogs) was reduced, i. e. the presented system requires
relatively 31.6% less dialog steps than the POMDP system. In the fu-
ture, we plan to correct speech recognition errors based on the proposed
recognition capabilities of the GM-based dialog approach, and thus we
will superiorly utilize the potential of graphical models. To this end,
we plan to integrate the proposed approach into a multi-agent frame-
work [11].
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