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Abstract
The reliable detection and tracking of objects, in particu-
lar humans, in video sequences is a requirement for video
surveillance systems. This step enables automated threat
detection systems to analyze trajectories and motion pat-
terns. Thereby systems based on multiple overlapping fields
of view have emerged in the last years. These are usually re-
lying on simple foreground masks and discard texture infor-
mation. In this work we propose to incorporate a 2D tracker
into a multiple camera tracking system to avoid ID confu-
sions during tracking. As both partial and total occlusions
occur, trackers based on holistic person models usually fail.
Therefore we propose to model object regions with an elas-
tic feature graph, where the nodes are represented by SIFT
features and are updated during the tracking process. This
representation will enhance tracking performance in the 2D
and can be applied in any view of a multi camera tracking
system.

1. Introduction
Large public spaces have always been crucial to any
society. It is in public spaces like town squares, airports,
train stations, government buildings and shopping centers
that we travel, meet, conduct our business and interact
as a society. However, these spaces are therefore also
vulnerable to abuse and attack. The safety concerns range
from minor nuisances like pick-pockets to graver threads
like terrorist attacks.
In order to reduce security risks, many of these places are
under surveillance by video cameras (CCTV). These are
typically monitored by police or private security personnel.
Unfortunately human ability to track many different scenes,
individuals, and interactions on multiple screen and in
various scenes is limited. A human operator can usually
observe only a fraction of a region covered by a sensor
network. This leads naturally to blind spots which can be
taken advantage of. By assuming a neutral appearance,
criminals and terrorists are able to blend in with crowds.
Drifting from one camera scene to another, they escape

notice by moving continuously from one screen to another.
All persons in the scene are thus able to travel freely
through the scenery. Only a very experienced operator
might notice them.
To overcome these limits and to support security in
complex buildings and settings, several tools to support
and automatize tracking and recognition of people in
multi-camera scenarios have been investigated. Multi-layer
homography, based on Khans homography constraint[1],
is usually applied in multi sensor networks, to reliably
track persons [2]. Current systems can automatically track
persons and detect a set of special events like abandoned
bags, theft and loitering based on simple heuristics [3, 4].
This multi camera approach allows for good individual
tracking under most circumstances. However, under
inconvenient conditions the system can lose track of an
individual or confuses two tracked persons, and conse-
quently confuses their assigned tracking ID. One of these
situations is shown in fig. 1, where two previously tracked
persons briefly obscure each other before parting again.
Due to their close proximity and optical obstruction, the 3D
tracking system registers the two individuals as one single
entity and discards the second tracking ID-number. When
they part, one person is assigned a new number while the
other keeps the original tracking ID-number. To remedy
this problem, we decided to introduce a second level of
tracking. In addition to the existing multi-camera tracking
system, we designed a secondary monocular tracking
mechanism in order to resolve ambiguous situations during
and after occlusions. In this first stage of development, we
focus on using robust graph representations to track and
identify individual persons. Such a graph consists of nodes,
here represented by SIFT features, and edges, which are
used to create geometrical relationships between the nodes.

1.1. Previous Work
After considering a number of options for the tracking
mechanism, we decided to use a feature based tracker. The
Scale Invariant Feature Transform (SIFT) was first de-
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Figure 1: Exemplary ambiguous situation in 3D tracking illustrated with the PETS2007 [5] dataset

scribed by Lowe ([6]). Since then, SIFT features have been
used extensively in image rectification and classification
tasks. Several groups have considered using these features
for tracking applications, notably Gomila [7] and Tang [8].
A central topic for most of the works utilizing SIFT based
image processing was the problem of matching an original
graph to the current observation. Kisku [9] and Luo
([10]) considered these problems in the context of face
recognition, while Berg [11] was using low distortion cor-
respondence methods to identify objects against a database
of labeled samples. Although typically computationally
very expensive, the basic methods explored in these works
can be adapted for use in tracking applications.

2. Tracking the Dynamic Feature-
Mesh

While the concept of tracking a relatively rigid object using
SIFT features has been repeatedly explored, for instance in
[8], tracking a number of persons in a crowded scene adds
a number of interesting and challenging problems. Move-
ment of the body, especially arms and legs with their wide,
swinging motions, continuously alters the appearance of
the tracked person. While there is an underlying geometry
defined by the skeleton, the extra layers of clothing and
accessories like purses, hats and backpacks have their own
and complex dynamics. Additionally we may observe
partial or even total occlusions by moving and stationary
objects, possibly even by other tracked persons.

2.1 Local Correspondence Search

As the tracked person undergoes continuous changes in ap-
pearance, we use an adapting mesh of SIFT features for

tracking. For each tracked person, we define an undirected
graph OTR = {PTR,1...N , DTR,1...N} as tracking reference,
where PTR,i describes the position of a specific SIFT fea-
ture DTR,i within the bounding box of the detected person.
By matching this graph to the graph of SIFT features vis-
ible in the current image OIM = {PIM,1...M , DIM,1...M} ,
we can find the most likely assignment in the current view.
To reduce computational overhead and avoid ambiguous
assignments from descriptors between the two graphs, we
first perform a correspondence search for similar feature
descriptors. While Lowe’s originally proposed correspon-
dence search used only the descriptor distances, we also
utilize the spatial information by computing the spatially
weighted feature distances

d(DTR,k, DIM,i) = (deucl(PTR,k, PIM,i) + 1)(DT
TR,kDIM,i)2

(1)
The Euclidean distance deucl(PTR,k, PIM,i) is computed

using the position and scale of the respective features,
thereby penalizing excessive movement and shifts in scale.
We then select only features satisfying

ωd(DTR,k, DIM,i) < d(DTR,k, DIM,j)→ {k, i}, (2)

where j is the next closest distance and ω a suitably
selected constant. In addition we limit the deviation of
scale sc and main orientation ψ of the descriptors:

scTR,k − scIM,i
!
< scmax and ](ψTR,k, ψIM,i, )

!
< θψ (3)

This significantly reduces ambiguous assignments by
favoring local candidate features. The graph of matched
features is now OIM∗ = {PIM*,1...M∗, DIM*,1...M∗}.
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2.2 Iterative Refinement of the Feature
Graph

After the initial correspondence search there still remain a
number of incorrect or ambiguous assignments. Especially
in occlusion scenarios or in sequences with fast motions, we
may see a number of bad assignments from OTR to OIM .
By taking advantage of graph matching techniques, we can
filter out most of these. Modifying a technique described
in [11], we treat the correspondence problem as a spatial
graph-matching problem. A matrix A of angles between
the vectors in OTR and OIM* is calculated:

xTR
ij =

(
xTR

ij

yTR
ij

)
= PTR

i − PTR
j (4)

xIM
ij =

(
xIM

ij

yIM
ij

)
= PIM

i − PIM
j (5)

Aij = (α
∣∣∣x̄ijTR

∣∣∣+ β)

∣∣∣∣∣acos
(

xTR
ijTxIM

ij

|xTR
ij | |xIM

ij |

)∣∣∣∣∣ (6)

The two factors α and β allow for flexible matching by
stronger penalizing angular deviations to distant points. For
this purpose, we also use a normalized x̄ijTR ∈ (0, 1).
These angles now represent the deviation between the
features in OTR and OIM . By taking the mean deviation
for each feature, we get a measure for the quality of the
correspondence. If there is any deviation above a preset
limit, the correspondence with the maximum deviation is
deleted and the filtering process repeated until a satisfying
result is obtained.

Qi =
1
N

N∑
j=1

Aij
!
< θQ (7)

The iterative approach is necessitated by the impact of
one bad feature on the quality metric for all other features.
As the angles do not change by removing an outlier, we
can instead just discard the filtered rows and columns in the
matrix A.

3. Updating the Dynamic Feature-
Mesh

To incorporate for the changing appearance of tracked
pedestrians into the tracking process, we need to update
the feature mesh at every frame. This includes removing
instable features, updating the positions based on previous
observations, adding new features, and deleting old ones.

3.1 Predicting Mesh Dynamics
Since our correspondence search is locally bound, we
need to predict the feature positions for the next frame
by considering previous observations of each feature in
the graph. While a global prediction based on the overall
movement of the tracked person is possible, experience has
shown that the swinging movement of limbs, clothes and
other accessories often greatly deviates. We therefore use
previous observations of each feature to predict its future
position.
As a feature changes its general path during the tracking,
we need to find a balance between filtering out disturbances
and allowing for changes in arbitrary directions. By
introducing a lifetime factor 0 < γ < 1, we are able to
weight previous observations in the calculation of the new
expected position x̂i:

γ =


γ

γ2

...
γn−1

 vi =


xTi,t − xTi,t−1

xTi,t−2 − xTi,t−3

...
xTi,t−n+1 − xTi,t−n

 (8)

and

x̂i = xi +
vTi γ∑k=n−1

k=1 γ(k)
, (9)

with vi resembling the first deviation of the previous posi-
tions. This acts as a weighted mean estimate of the future
feature position. While more sophisticated approaches (e.g.
Kalman Filter) might enhance the tracking performance,
this prediction performs reasonably well under most
circumstances.

3.2 Filtering Outliers
As we predict the future location for each feature indepen-
dently, there is still the possibility that a bad feature, which
does not belong to the tracked person, remains in the track-
ing graph undetected. Such features often enter the mesh
in occlusion situations and can destabilize the tracking for
the whole graph if these are not filtered out. Basically this
corresponds to a multivariate outlier search.
To identify outliers, we use two metrices: filtering by po-
sition and filtering by motion. While the idea of position
filtering is quite obvious, the motion filtering stems from
the need to clear up mismatched features after occlusions.
Since in most cases both graphs travel on in different direc-
tions, we can use motion vectors to identify outliers earlier
than with position filtering. The vector of motion is easily
obtained from the previous step of calculating x̂i.
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The tracking mesh has a roughly oval shape in the image.
Clusters of features are normally located around the head,
the shoulders and the torso with a few more unstable fea-
tures on arms and legs. For these features in the more stable
regions of the tracked person, the motion vectors usually
have the same direction. This presents us with two clus-
ters of 2-dimensional features. A multivariate analysis us-
ing Mahalanobis distances leads to a quick and reasonably
reliable search for outliers:

dMahalanobis(x, X) =
√

(xi − µX)S−1
X (xi − µX) (10)

outlier(i)x = δ(dMahalanobis(xi, P ) > theta) (11)

outlier(i)v = δ(dMahalanobis(vi, VP ) > θ) (12)

Another variant we tested included the generation
of feature clusters by k-mean clustering before calcu-
lating the Mahalanobis distance in order to improve
filtering during occlusions, where only some parts of the
tracked person might be visible. However this brought
no significant improvement and was therefore discontinued.

3.3 Updating the Tracking Mesh
As a person moves through the scene, the appearance and
accordingly the SIFT features constantly change. While
there is usually a number of relatively stable features, even
those might disappear when the person turns around or un-
dergoes other rapid changes. We therefore need a device
to update the mesh constantly. A similar situation has been
described in [8], where HMMs are used to judge the assign-
ment of a feature to a tracking graph. We used a modified
approach to our problem.
The tracked person is described by two separate graphs,
namely the tracking graph OTR and the candidate graph
OC . While OTR contains the features used to track the
person, OC holds candidate features which were found in
the vicinity of OTR in previous frames. All features both in
OTR andOC are assigned a score v which is updated as fol-
lows for each frame. Thereby current features are compared
to previously detected features.

• Features TR+ in OTR which were found in the current
frame: v(m+) = v(m+) + vTR, pos

• Features TR- in OTR which were not found in the cur-
rent frame: v(m−) = v(m−)− vTR, neg

• Features C+ in OTemp which were not found in the
current frame: v(n−) = v(n−) + vTemp, pos

• Features C- inOTemp which were not found in the cur-
rent frame: v(n−) = v(n−)− vTemp, neg

• Features Nup in OTemp where v(nup) > vstable are
moved to OTR

• Features Ndown in OTR where v(nup) > vunstable are
moved to OTemp

• Features Ndel in OTemp where v(ndel) < vdelete are
deleted entirely

• New features NNew are added to OTemp, v(nNew) =
vinit

By filtering for outliers we can now also modify the cur-
rent score, so that normally a feature is not deleted instantly
but instead is just weakened. A maximum score vmax = 15
avoids unrestricted strengthening of single features in order
to facilitate removal of old features. An example of a possi-
ble, simplified tracking sequence is given in table 1.

t v(1) v(2) v(3) v(4) v(5) Events
1 5 5 5 5 - -
2 6 6 6 4 - [4] not found
3 7 5 7 3 1 [2,4] not found

[5]→ OTemp
4 8 6 8 2 2 [4] not found

[4]→ OTemp
5 9 7 9 1 3 [4] not found

[5]→ OTR
6 10 8 10 - 4 [4] not found

[4] deleted

Table 1: Example of the updating mechanism with
vstable = 2 and updating by steps of 1

3.4 Finding New Features and New Persons
New features are usually detected by an exhaustive search
in foreground regions. These are obtained using a Gaussian
Mixture Model, although most other robust foreground ex-
traction methods can be used as well. The Gaussian Mixture
Model we use is based on an adaptive algorithm proposed
by Zivkovic in [12]. Deviating from the usual four Gaus-
sian components, this algorithm computes the number K of
components for each pixel individually. This yields local
background models p̂(x|X ,BG) estimated from the set of
previous observations X . Assuming p(FG) = p(BG) and
and a uniform distribution for the foreground appearance
x t = cFG, we can build a Bayes classifier to determine if a
pixel belongs to the background:

p(BG|x t)
p(FG|x t)

=
p(x t|BG)p(BG)
p(x t|FG)p(FG)

(13)

p(x t|BG) ≈ p̂(x t|X ,BG)
?
> θBG (14)
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Once we have extracted the foreground, we assign each
tracked mesh to its respective image region by consider-
ing the predicted feature positions. From the image region,
we then add all unassigned features to the temporary mesh
OC,i. The procedure can be summarized as follows:

• Find the foreground region which contains most de-
tected features for each tracking mesh and assign them
to each other

• Check for double-assignments, perform person seg-
mentation when necessary

• Initialize unassigned regions as new tracking meshes

Once each region is assigned to a tracking mesh, all new,
unmatched features in that region are added to the respec-
tive temporary meshes OC,i. It is important to note that the
algorithm has no way of separating two persons entering the
scene close to each other. If the two newly detected features
are extracted as a single region, they are also initialized
as a single person. Normally this problem resolves itself
once they part briefly so that independent tracking is started.

4. Person Segmentation and Occlusion
Handling

Most tracking algorithms suffer of handling either full
or partial occlusions robustly. The fundamental question
in these situations is the segmentation of the foreground.
There is normally no clear indicator which pixel belongs to
which person or whether a person is visible at all. Never-
theless we need a basic segmentation of the foreground to
update the tracking graph. One of the primary difficulties
is the lack of information on the nature of the occlusion.
For example, in case two tracked persons cross paths, we
do not necessarily know which one is standing in front of
the other. In order to find a satisfying segmentation, we will
therefore need to analyze the information contained in the
detected parts of the tracking meshes, OTRt. We evaluated
three different techniques:

• Naive Bayes Classifier without previous clustering

• Naive Bayes Classifier with k-means clustering

• Identification of overlapping regions + k-Nearest
Neighbor Classification

While other, even more sophisticated methods were also
considered, we found that due to the transient nature of the
moving tracking features simple methods typically worked
just as well: although frequent missclassifications are
made, these are usually quickly rectified by the shifting of
detected features in the next frame. OTR,i

t and OTR, i
t−1

often differ significantly during occlusion situations.
So although frequently smaller parts of the meshes get
mixed up, they usually separate cleanly at the end of the
occlusion. This is due to a stable core of features outside
of the occluded zone. Therefore, we prefer simple and fast
methods over more elaborate and costly procedures.

4.1 Naive Bayes Classifier
In an occlusion situation, there is always an increased
risk of misclassified feature correspondence. A feature
belonging to person ID1 can easily be mistaken for a
feature belonging to person ID2 when the two are standing
close to each other and share similar features. As we
want to use the detected features to classify regions, these
misclassifications are liable to destabilize the segmentation.
We applied simple stochastic classification techniques
hoping to reducing the effect of such outliers.
The positions of the detected features in the current frame
are used to estimate the parameters of a Gaussian probabil-
ity density function p(y|Ωi) = N(µi,Σi) for each mesh
OTR, i. We assume equal priors, so that we simply need to
find the assigned class Ωi = max

i
p(y|Ωi).

This approach proved to work only in situations with small
occlusions (like a handshake) and good feature detection.
In situations with more extensive occlusions, the clustering
of features around a few significant regions like head and
shoulders led to distorted estimates for N(µi,Σi). This
led to an increasing number of misclassifications, where
for example the leg regions of person A were classified as
belonging to person B. Eventually these misclassifications
would push the smaller, weaker tracking mesh out off the
foreground region.

4.2 Naive Bayes Classifier with k-means clus-
tering

In an attempt to encounter the distortion effects created by
the strong clusters around a few significant regions, an ad-
ditional step has been introduced: by using k-means clus-
tering we hope to find a number of smaller, local clusters
which would provide a more robust segmentation. The ki-
value was set to ki = d num(OT R, i)

20 e. As before, for each sub-
group p(y|Ωk) = N(µk,Σk) was estimated and eventually
Ωk = max

k
p(y|Ωk) determined. By remapping Ωk → Ωi

the original were classes retrieved.
Again this approach proved to be too reliant on strong lo-
cal clusters. While the problem of the distortion by a few
local features was relieved, it would often happen that the
mesh with more detected features would simply overwhelm
a smaller, more distributed cluster, effectively taking over
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Figure 2: Comparison of segmentation for Bayes classifier, k-mean clustered Bayes classifier and K-NN segmentation.

the region of the other tracked person. We conclude that
Bayes classifiers show only mediocre performance in cases
where |(OTR, i, matched)| � |(OTR, j, matched)|

4.3 Identification of overlapping regions
combined with K-Nearest Neighbor
Classification

To remedy these shortcomings, we decided not to classify
all points in the disputed foreground region, but instead to
identify those regions with the most significant occlusions.
We subsequently try to classify points by using a k-nearest
neighbor approach only in regions creating confusions.
To find the overlapping regions, we construct polygons Ri
over the mesh of found and safely identified features OTR, i
for each tracked mesh in the occluding situation. After
identifying the regions Roccl = Ri ∩ Sj ∩ . . ., we identify
the unmatched features {Poccl, Doccl} contained within
these regions. Next a 3-nearest neighbor classification is
performed, using the spatial information in OTR, i, OTR, j
and possible further meshes as reference points.
Using the 3-nearest neighbor classification avoids some of
the problems arising from the different clustering behaviors
of occluded and occluding meshes. When two persons
enter an occlusion, usually entire clusters of features
situated on the edge of the silhouette are instantly lost. This
consequently leads to a situation where the interior clusters
located inside the person’s silhouette are dominating the
segmentation process, which is therefore heavily influenced
by the distribution of those features. A Bayes classification
often suffers from the scattering or wider distribution of
some clusters. The k-Nearest Neighbor classification also
depends on the distribution, but is not as heavily influenced
by the scattering of a cluster. We therefore achieve a
better segmentation even with widely differing number of
matched features in OTR, i and OTR, j.

5. Evaluation

The presented approach has been tested on the close-
distance views of the PETS2009 benchmark data set S1.L1
walking. It showed promising performance in lightly and
moderately crowded situations. We used the close distance
camera views 5, 6, 7 and 8 for testing. Therefore the occur-
ring occlusions have been manually annotated to evaluate
the tracking performance, where especially ID maintenance
has been in our focus of attention. The tracker was able to
handle most long partial and brief full occlusions between
two and three persons, provided that all persons had been
tracked with at least stable 20 features for 5 frames pre-
viously. In several sequences, occlusions with significant
change in direction and appearance were resolved success-
fully.
The evaluation results are summarized in table 2. Two fac-
tors were measured independently: the resolution of occlu-
sions with regard to the number of people involved, here
two, three or more than three, and the overall tracking suc-
cess. An occlusion, i. e. two or more tracking meshes as-
signed to the same foreground region, was considered to
be resolved successfully if all tracked persons entering the
occlusion are assigned the same ID as before after the fore-
ground regions split again. Switching tracking assignments
between two persons has also been recorded. A tracking
was considered successful, in case a person was assigned
the same ID for the whole time spent in the view of the
camera. We did not consider situations arising while people
were entering the scene, since at that time no tracking of
that person took place yet.
The current, non-optimized implementation was tested un-

der Matlab 2007a on a MacBook (Intel Core2Duo 2 GHz,
2, GB RAM) with an average of 13 s/frame. As we expect a
C-implementation to run considerably faster, realtime track-
ing is considered feasible.
It is important to note that the system can only perform
adequately, if a sufficient amount of stable features is de-
tectable. Our experience has shown that 10 features are the
minimum number recquired. While tracking with fewer fea-
tures is possible, this greatly impairs person segmentation
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Figure 3: Example of resolved occlusion event with changing directions and rapid movement

Categories C5 C6 C7 C8 Accuracy
Occlusion Resolution

2 Persons
+ 10 12 8 14 44

72.1 %- 2 5 4 4 15
∼ 0 1 1 0 2

3 Persons
+ 6 6 5 9 26

78.8 %- 0 0 0 3 3
∼ 0 0 2 2 4

>3 Persons
+ 2 0 2 0 4

33.3 %- 1 3 1 1 6
∼ 0 0 1 1 2

Overall Tracking Performance

All Tracks + 18 15 13 16 62 68.9 %- 5 9 9 5 28

Table 2: Summary of tracking performance and occlusion
resolution. Overall success rate for categories given in per-
cent. (+) denotes success, (-) a failure and (∼) a switching
of ID assignments.

and therefore robustness in occlusion situations. Persons in
drab and dark clothing are especially challenging. In these
cases, nearly all features are located in the face or on the
unstable silhouette of the person. Furthermore, wide area
views suffered from too few discernible features for pro-
longed stable tracking and were therefore not used in the
evaluation.
Most observed tracking failures can be ascribed to badly
tracked or untracked persons. Especially persons enter-
ing the scene at a brisk speed are hard to track, since the
prediction of future feature position fails (all speeds are
initialized to zero). Untracked persons are not registered
in occlusion events and consequently no person segmen-
tation is performed in the occluded areas. Since now the
whole foreground region is assumed to belong to the same,
tracked person, foreign features are introduced into the ex-
isting mesh. On separation, the original graph may then be
dragged away by the previously untracked person, depend-

ing on occlusion time and feature clustering.
Another unresolved problem are longer occlusions between
two persons or a longer disappearance behind a stationary
object. Two things may happen here: the obscured per-
son changes pose and appearance, so the original mesh fits
no longer the observations after the person is visible again,
and the track is consequently lost. Alternatively the person
might be obscured for such a long time that all the features
in the tracking mesh are deleted due to missing observa-
tions. Both cases might lead to similar effects as an occlu-
sion with an untracked person.
It is important to note that the drawbacks described above
are not unsurmountable problems. The issue of too low ini-
tialization speeds for newly tracked persons might be solved
by considering SIFT-flow in the image region. The loss of
track after prolonged occlusion is basically a person recog-
nition problem. We are therefore confident that further de-
velopment of the SIFT tracking method described in this
paper will yield reliable and robust tracking.
In case multiple cameras are available and correspondences
of the bounding boxes can be determined via homography,
classical multi camera tracking techniques can be supported
by a simple majority voting. As it is rather unlikely that
tracking fails in all fields of view, some of the IDs should
be maintained in any case. As seen in the distribution of
the test material occlusions don not necessarily appear in
each view at the same time. This fact can be used to rise the
overall ID maintenance rate.

6. Conclusion and Outlook
As explained at the beginning of this work, the long term
goal of our research into SIFT tracking is to support
and extend the capabilities of the existing homographic
transform tracker. The integration into our 3-D tracking
system now requires the design and implementation of
a 3-D model for the tracked persons. Using the position
information from the 3-D tracking, one may observe and
update the SIFT model of a tracked person simultaneously
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from several different angles. A total integration into
the existing tracking mechanism with a unified tracking
model would then enable sharing of tracking information
between the two levels of tracking and the various cameras,
effectively allowing for uninterrupted tracking of the
person. First experiments with the PETS2007 dataset have
already shown a by far smaller amount of ID changes [13],
where homography tracking created 15 confusions, while
combined 2D-3D tracking created only two confusions.
The introduction of clustering techniques and the obviously
more elaborate updating technique outperform the former
approach by far.
We expect that further study of deformable graphs based
on SIFT features and faster, more robust non-rigid graph
matching techniques will enable systems which are based
entirely on SIFT-features, making the foreground extraction
by Gaussian Mixture Model obsolete. Especially consider-
ing the restraints arising from the hardware normally used
in surveillance settings (low resolution, grayscale images,
frequent occlusions), we expect SIFT-based tracking to
become an essential tool in surveillance and event-detection
systems.
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