
GRAPHICAL MODELS FOR MULTI-MODAL
AUTOMATIC VIDEO EDITING IN MEETINGS

Benedikt Hörnler and Dejan Arsić and Björn Schuller and Gerhard Rigoll

Technische Universität München
Institute for Human-Machine-Communication

80290 Munich, Germany
{hoernler,arsic,schuller,rigoll}@mmk.ei.tum.de

ABSTRACT

In this work we present a multi-modal video editing system
for meetings, which uses graphical models for the segmen-
tation and classification of the video modes. The task of
video editing is about selecting the camera, that represents
the meeting in the best way out of various available cam-
eras. Therefore a new training structure for graphical models
was developed. This is necessary for the learning of bound-
aries combined with the video mode itself. All developed
and known decoding structures can be easily connected for
an EM-training to our training structure. The achieved results
of the system are state of the art.

Index Terms— Machine Learning, Human-Machine In-
teraction, Multi cameras, Meeting Analysis, Multi-modal
Low Level Features

1. INTRODUCTION

In this paper, we address the multi-modal problem of select-
ing one camera view from various available cameras in a
meeting room. The problem derives from the fact that video
conferences are getting more popular at the same time as it
is getting more and more common that meeting rooms are
equipped with various recording devices. This points out
the two main usage scenarios of the system: On-line video
conferences [1] and browsing of past meetings [2].
Most of the current video conference systems transmit all
available camera streams to each participant and display
them all. The main difference between the systems is the way
they present the video data. Normally low-budget systems
show different small windows on a computer monitor, while
high end systems use multiple large screens for that purpose.
These approaches are limited to a few participants, because
the video of the individual participant is getting smaller if
more persons are connected. Few other systems are using the

This work was supported by the European IST Programme Project FP6-
033812 (Augmented Multi-party Interaction with Distant Access). This pa-
per only reflects the authors’ views and funding agencies are not liable for
any use that may be made of the information contained herein.

audio channel for selecting the stream and so they transmit
only one video to all participants, which saves bandwidth.
The main drawback of these approaches are, that interesting
non-verbal gestures are lost, because they cannot be detected
from the acoustic channel or cannot be recognized in small
videos. This shows the multi-modal nature of meetings, thus
it can be very important to show people who currently do not
speak. For example, in talk-shows professional editors follow
this rule and show facial reactions and gestures from other
participants [3].
The other scenario for automatic video editing is in the field
of meeting recordings [4]. The capturing of meetings is
very common, but an unsolved problem is, how to access
the recorded data in a useful way. For this purpose meeting
browsers [2, 5] have been developed. The browser displays
the content of the meeting, but it is still very hard to watch
several video streams at the same time. Normally one will
miss some important visual hints, which one will recognize
if one attends personally the meeting. Therefore, research in
multi-modal approaches to solve problems in meeting scenar-
ios is performed.
One of the emerging tools for pattern recognition in meetings
are graphical models [6]. They help to describe complex
problems, as for example video editing in meetings, in an
intuitive and visually appealing way. The possibility of inte-
grating context and semantic information on different levels
of these models make them interesting for the domain of
meeting analysis. A big advantage is the fact that the model
can be easily adopted to a new idea and the algorithms, which
are performing the calculations of the probabilities behind the
graphical representation are not influenced by these changes.
Therefore we applied graphical models to the pattern recog-
nition problem of video editing in meetings.
For both scenarios, the problem of selecting a video mode
is the same: for each time frame we need to choose a sin-
gle video mode which represents best what is happening in
the meeting. The video stream which represents the video
mode is transmitted to the other participants in the case of a
video conference or stored for later browsing. Video editing

978-1-4244-3298-1/09/$25.00 ©2009 IEEE � � � � � � � � � � � � DSP 2009

will help you to catch up quickly after a missed meeting,
will make it easier to attend the meeting by using small
screens, for example on a cell phone, will reduce the required
bandwidth for mobile communications and will save storage
capacities.
In [7] a rule based system was introduced for video editing in
lecture halls and meeting rooms. The system had two oper-
ation modes; one for a video conference and the second for
stored meetings which were performed in the past. The algo-
rithm of the system was taking into account some technical
aspects, as well as aesthetic ones. For example, the duration
of showing the same camera was the most important aesthetic
aspect. From the technical point of view, it was important:
Who was speaking? How long was someone speaking? Who
was moving the head or hands? All this information was
combined to a weight for each camera at each frame and the
camera with the highest weight was selected. The system is
also using virtual cameras for creating more camera changes,
if for a long time no change happens. The main drawback
of this system was that the selected camera was highly de-
pending on the current speaker and important non verbals, as
shaking the head or nodding, were not shown in the edited
video. In [8] we introduced an approach to video editing for
smart meeting rooms, which is based on some rules. There-
fore, we extracted different acoustic, visual, and semantic
features based on time frames from the meeting data. We in-
vestigated the influence of different feature types on the task
of the automatic video editing. The first tests showed that
frame based video editing by a rule based system can lead
to unintentional twitches. Therefore, we derived additional
features by windowing a range of subsequent frames for the
audio and visual features which leads to better results spe-
cially for acoustic features. A third evaluation was done by
performing late fusion of the different features. The outcome
was, that the combination of audio and video information
leads to better results then single modalities.
In [9] a video editing system based on Hidden Markov Mod-
els (HMM) [10] was introduced. For each video mode a
HHM is trained by EM algorithm [11] and the best sequence
of HHMs is derived by Viterbi decoding [12]. This system is
state of the art for the used AMI database and achieves frame
error rates of about 47.9%.
In this work we use a newly developed graphical model struc-
ture for the training and the decoding. By using the training
structure it is possible to learn shot boundaries. Moreover,
different combinations of features and settings for the models
have been evaluated.
The next section gives an overview of the data set and the
annotation, which are needed for the training of the models.
Section 3 describes the used acoustic, visual and semantic
features. The pattern recognition models used in this work
are presented in Section 4. In Section 5 the results from the
experiments are shown and finally the conclusion is drawn in
Section 6.

(a) Camera Left (b) Camera Cen-
ter

(c) Camera
Closeup

Fig. 1. Sample shots of three cameras from the IDIAP smart
meeting room: left camera (L), centre view (O) of the room
and a closeup (C1) of participant one.

2. DATA SET

The AMI corpus [13], which is publicly available, is used for
this work. A subset of 24 meetings with a duration of five
minutes each, was created and four participants are always lo-
cated somewhere in the IDIAP smart meeting room [14] dur-
ing these meetings. The meeting room is equipped with seven
cameras, 22 microphones, a projector screen and a white-
board. This work uses only four close talking microphones
and does not take into account the installed microphone ar-
rays for the far field recordings. For the video capturing,
seven cameras are installed: one closeup camera for each par-
ticipant (C1 − C4). An overview camera (O) that records the
table, the whiteboard and the projector screen. Two additional
cameras are located at the left (L) and right (R) wall and are
capturing two participants and the half table in front of them.
Three example shots of these cameras are shown in figure 1.

2.1. Annotation

Annotation of the whole data set is needed for two reasons:
First, it is necessary for the training of the graphical mod-
els and second the ground truth is used for the evaluation of
the results. Thus 24 five minutes meetings have been anno-
tated. The annotators have to decide which of the seven video
modes represents the meeting best. This leads to seven dif-
ferent video modes which contain four closeups views, one
for each participant, a left and a right view, which records
two people at one side of the table, and a centre view, which
covers the whole meeting room. In figure 2 three sketches are
shown of the available cameras. In the future additional infor-
mation, as the recorded slides from the projector, are planned
to be annotated and insert into the video.
The task of annotating video modes is very subjective as the
low average of inter-annotator agreement (κ = 0.3) shows.
It is highly depending on the taste of the different annota-
tors. Therefore, only one annotator labels the whole cor-
pus to achieve a consistent annotation. Moreover, the inter-
annotator agreement of a single annotator, doing the same
meeting twice, raises to κ = 0.6. Even though the shot

P1 P1 P3

Fig. 2. Sketches of three available video modes in the IDIAP
smart meeting room: closeup (C1) of participant one, left
camera (L) and centre view (O).

boundaries are on a frame base and no gray array is allowed
around the shot change.

3. FEATURES

In this work, three different modalities of features are used:
acoustic, visual and semantic. The first two modalities are
low level features and are derived directly from the audio-
and video streams. As the acoustic feature the well known
mel frequency cepstral coefficients (MFCC) [15] are used
and as visual feature we used global motions and skinblobs.
The global motions have been successfully applied to various
meeting tasks [16, 17] and can be calculated in real-time.
In [18] various approaches of face detection are deeply inves-
tigated and one of these is a skin color look-up-table. This
approach has been used in this work. The semantic features
contain more related information of the occurrences in the
ongoing meeting. In the following paragraphs the semantic
features are described.

3.1. Semantic Features

Not only acoustic and visual low level features are applied
to the detection task, but also features that contain more se-
mantic information are used. These features are interesting
because of the close relation between what a person or the
group is doing and which camera is important. The features,
which have been applied are group action, person action and
person speaking.
The group action has been deeply investigated in the research
community over the last couple of years [19, 20, 21]. The
systems are working directly on audio and video streams and
achieve reliable results, but they are currently not real time
capable. The meeting is segmented into a sequence of labels
like monologue participant one to four, discussion, presenta-
tion, whiteboard and note taking.
Moreover, a person action detection system has been devel-
oped [16, 17]. These systems create a sequence of actions
for each of the participants, thus four features for each time
frame are available. The labels used, are similar to the group
actions but contain some more classes: sitting down, stand-
ing up, nodding, shaking the head, writing, pointing, using a
computer, giving a presentation, writing on the white-board,
manipulation of an important item and idle. Idle for example

is used if the person is speaking or listening to the meeting.
The classes nodding or shaking should help to find points in
the meeting where a person should be shown even though he
is not speaking.
The last semantic feature which is currently used is the per-
son speaking. It is a four dimensional vector which contains
binary information for each participant and each time frame.
The bits are set to one if a person is speaking.

4. CAMERA SELECTION MODELS

For typical static pattern recognition problems, we are look-
ing for the class k with the parameter set λk which most likely
produce the observation ~o [10]:

k∗ = argmax
k∈K

p(~o1, . . . , ~oT |λk). (1)

In this section, we introduce different types of graphical mod-
els (GM) which perform an automatic segmentation and clas-
sification at the same time. For this, a sequence of video
modes k has to be aligned to an observation ~o, so that the most
likely class boundaries and classes can be detected. This can
be written as

{k∗1 , . . . , k∗T } = argmax
k1,...,kT

p(~o1, . . . , ~oT |λk1 , . . . , λkT
), (2)

which is adapted from (1).
The basics for the segmentation are described in [6], where
the models are applied to speech recognition and language
processing. The model is adopted from [22] and uses the
properties of it. The message passing [23] in the junction tree
is modified for the segmentation in a way, that all sums are
replaced by maximizations. This means that only the most
likely configuration for each vertex in the GM is passed on
and the approach is similar to Viterbi decoding [12].
In this work, a general structure for segmentation based on [6]
is described and used for multi-modal fusion of three different
feature domains. All the developed structures are GMs, there-
fore the models, as well as the combination with other GMs,
can be used for training and decoding without any modifica-
tion of known algorithms for GMs.

4.1. Linear Training Structure

The training of GMs can be split into two steps. The first
one, where the model structure is defined and the types of the
probability density functions of each vertex is defined, and
the second, where the parameters of the probability density
functions are learned. The first step is normally done by ex-
pert knowledge, but it is also possible to learn the structure
directly from the data [24]. These two approaches are pos-
sible for the second step as well, but in the field of pattern
recognition it is common that the parameters are learned from
training data. Mostly used is the maximum likelihood learn-
ing (ML) [25] and the expectation maximization algorithm

Frame counter

Class counter

Class

Class transition

State position

State transition

Whole state

Observation

T
ra

in
in

g
s

stru
ctu

re
T
ra

in
a
b
le

M
o
d
el

t t+ 1 T

κt κt+1 κT End

kt kt+1 kT

wt wt+1 wT

qk
t qk

t+1 qk
T

at at+1 aT

qt qt+1 qT

~ot ~ot+1 ~oT

Fig. 3. Training structure for the training of segment boundaries. The upper three layers can be connected with every GM. The
model, which should be trained, (for example we use the model from figure 4) does not need to be modified, because of the
same interface of the training structure and the decoding structure.

(EM) [11], because of the fact that not for all vertices in the
model training data is available. By combining these two
methods, it is possible to learn the parameters of the various
structures directly, which is an unsupervised learning. The
drawback is that a decomposition of the class vertex occurs
and the best relation between observation and class is not
learned.
Therefore, it is necessary to observe the class kt and to use
a supervised learning for the GMs. The consequence of this
change is, that the connection from class transition to class
is removed, because the class is a deterministic vertex in the
case of training the model. The vertices below can not detect
whether a class transition occurs after removing the connec-
tion, therefore we have to add a connection from the observed
class kt and the previous kt−1 to the vertex wt. This means
that the model has to be changed dramatically for the training.
These changes of the model structure can be avoided by using
a common training structure, which for example is shown in
figure 3. This structure can be used with a lot of structures
for integrated segmentation and classification and the decod-
ing structure has to be modified only slightly. Another class
oriented training structure is described in [22]. The drawback
of this structure compared to ours is, that the class boundaries
are not predefined, so the observation sequence ~o is unsuper-

vised aligned to class sequence. The training is in this case
partly supervised, which is common for automatic speech
recognition, because only the word alignment is known and
the phone boundaries are unknown. For many applications,
for example automatic video editing, it is necessary to learn
the correct class boundaries as well and not only the correct
sequence of classes, as common in speech recognition.
Figure 3 shows the training structure combined with a linear
decoding structure from section 4.2, which allows supervised
and unsupervised learning of the class boundaries. The up-
per three layers in the figure are the training structure, and
the layers underneath represent the decoding structure of the
linear model. The learning structure contains three observed
and deterministic vertices: a class kt, a class counter κt, and
the frame counter t. They are shortly described here:
Frame counter t is necessary for the supervised learning.
At the prologue, it is set to one and is incremented at each
time frame. The model knows implicitly through the frame
counter in which time frame it is located.
Class counter κt is directly depending on the frame counter
t and is also set to one in the first time frame f(κ1 =
1 | t = 1). For all other time frames the implementation
is f(κt |κt−1, t, wt), so it is depending on the training data.
The class counter is incremented if a class transition occurs

in the training data f(κt = i + 1 |κt−1 = i, t, wt), and for
the case no class change happens the class counter is left un-
changed f(κt = i |κt−1 = i, t, wt). The class counter counts
the class transitions and makes sure that the class boundaries
are at the right time frames. It has no knowledge about the
current class. The deterministic connection to the class tran-
sition vertex wt makes it possible that the class transition is
set to one, if the class counter is incremented. Thereby it is
assured that all vertices below know that a class transition
occurs and that no vertex below has to be changed. At the
epilogue an additional vertex “End” is inserted, so that all
class transitions have occurred and that the training sequence
ends in the final state of the last class.
Class kt is only depending on the class counter κt and is a
deterministic vertex with information of the class sequence
from the training data. There is no knowledge about the class
boundaries stored in the class kt. The class counter κt selects
the class in the class vertex kt. If a class transition occurs,
the class counter is incremented and selects the next class.
By this setting, the behavior of the connection from the class
kt to the whole state qt is similar to the decoding structure,
so it is not necessary to modify the model which should be
trained.
The training structure itself is again a GM, therefore it can be
connected to every other GM. The interface of the structure
is designed in a way, that few modifications are necessary in
the decoding model. The modifications are: the edge from
the class transition wt to the class kt is removed, and an
additional edge from class transition wt to class counter κt

is inserted, because of the additional edge no vertex in the
model has to be modified. During training all vertices with
probability functions are trained, and the deterministic ver-
tices are left unchanged.
If the frame counter t is removed the training structure does
not know when a class transition occurs, so the training only
has knowledge about the class sequence. The training of
the class boundaries would be unsupervised in the case. By
adding an additional probability vertex with a connection
from kt to it and a connection from it to kt+1 it is possible to
train class bigram probabilities.

4.2. Linear Decoding Structure

Figure 4 illustrates the simplest model for integrated segmen-
tation and classification which is taken from [6]. Each time
frame consists of six vertices which are described shortly as:
The observation vector ~ot models the probability of the
observation depending on the current state p(~ot | qt). In this
case the random variable has Gaussian distribution.
Whole state qt contains all possible states of the model and
is a deterministic function f(qt | qk

t , kt). The total number
of states in the vertex is depending on the number of states
per class N and the number of classes K, and has the size
N ×K. It is possible to share some states, which means that

at least two classes refer to the same entry in this vertex.
The state transition probability at models for each state
qt the transition probability p(at | qt). In the case of a linear
model it is only possible to stay in the current state or to move
to the next state.
The pointer to the current state qk

t always use the first
state, independent of the the class n the first frame t = 1.
For all other time frames the state pointer is a deterministic
function f(qk

t | at−1, q
k
t−1, wt−1). If a class transition occurs

(wt−1 = 1) always the first state applies. When no class
transition emerges, then the state transition is checked and if
at = 1 then the state pointer qk

t−1 is incremented. For the
case at = 0 the state position remains unchanged.
The class transition wt is again a deterministic function
f(wt | qk

t , at). Only if a state transition occurs and the state
pointer points to the last state, a class transition is possible.
The observed child of the class transition assures that in the
last chunk f(wt = 1 | qk

T , aT). Thus an observation sequence
always ends in the last state of a class.
The current class kt is depending on the class transition wt

and the previous class kt−1. This vertex has switching par-
ent functionalities and switches the conditional probability
function from a deterministic function to a bigram language
model probability. If there is no class transition, the previous
class is assumed. For the case a class transition occurs, the
next class is set by using a bigram class distribution. In the
first frame the class is assigned by using a unigram class
distribution.
The joint probability of the graph is

p(~o1, . . . , ~oT , q1, . . . , qT , a1, . . . aT , q
k
t , . . . , q

k
T ,

w1, . . . wT , k1, . . . , kT) =

p(~o1 | q1) f(w1 | qk
1 , a1) p(a1 | q1) f(q1 | qk

1 , k1) f(qk
1) p(k1)

T−1∏
t=2

p(~ot | qt) f(wt | qk
t , at) p(at | qt) f(qt | qk

t , kt)

f(qk
t | at−1, q

k
t−1, wt−1) p(kt | kt−1, wt−1)

p(~oT | qT) f(wT = 1 | qk
T , aT) p(aT | qT) f(qT | qk

T , kT)

f(qk
T | aT−1, q

k
T−1, wT−1) p(kT | kT−1, wT−1).

(3)

The third line describes the prologue, the fourth and fifth line
the chunk and the last two the epilogue. After some steps of

Class

Class transition

State position

State transition

Whole state

Observation

kt kt+1 kT = 1

wt wt+1 wT

qk
t qk

t+1 qk
T

at at+1 aT

qt qt+1 qT

~ot ~ot+1 ~oT

Fig. 4. Linear decoding structure for integrated segmentation and classification. Each time frame consists of six vertices: An
observation vector ~ot, all possible states qt, a state transition probability at, a pointer to the current state qk

t , a class transition
probability wt, and the current class kt. The model separates the states from the current observation and therefore the current
observation from the class. A common pool of states is used to model the observation. A state change is performed by using
the state transition probability. The state position vertex points to the current state and this finally models the class. Only in the
last state a class transition is possible and thus the segmentation is possible. A connection between the class and the current
states is only possible through the class transition vertex. The notation of all following GMs is based on [26] with the extension
of deterministic components from [6].

conversion, the joint probability is reduced to

p(~o1, . . . , ~oT , q1, . . . , qT , a1, . . . aT , q
k
1 , . . . , q

k
T ,

w1, . . . wT , k1, . . . , kT) =
T∏

t=1

p(~ot | qt) f(qt | qk
t , kt) p(at | qt)

f(qk
1) p(k1)

T∏
t=2

f(qk
t | at−1, q

k
t−1, wt−1) p(kt | kt−1, wt−1)

f(wT = 1 | qk
T , aT)

T−1∏
t=1

f(wt | qk
t , at)

but the prologue, the chunk, and the epilogue are not visible
in this form.
This model can be represented as a linear HMM with N ×K
states, if no states are shared and the emission is modeled
as a Gaussian distribution or a GMM. An additional edge be-
tween the class kt and the class transitionwt makes it possible
to have a different number of states Nk for each class. This
leads to a new number of states

∑K
k=1Nk for the model if no

states are shared. The benefit of this additional edge is that it
provides an easy option to model short pauses and moments
of silence for automatic speech recognition as well as video

editing.

5. EXPERIMENTS

Two experiments are performed to evaluate our proposed sys-
tem: For the first task we know the true boundaries of each
segment in the meeting, so the experiment is about assign-
ing the correct video mode for each segment. This could be
done, because we have annotated the full subset of the meet-
ing data.
The real experiment for the video editing system is the sec-
ond, because the boundaries are also unknown and so they
have to be found as well. Therefore, the second task con-
tains a segmentation and classification problem, which is the
real application of the system. The subset contains 24 five-
minute meetings with seven camera streams and four audio
channels. To four meetings the same subjects are participat-
ing, so we perform a six-fold cross-validation, which is per-
son disjoint. We did the experiments for the scenario, that
seven video modes (all four persons, left, right, and center
camera) were available.
Three different types of error measurement are used in this
worke. The first is the recognition rate (RR), which is used
for the classification task with known shot boundaries. As a

Table 1. Evaluation of different model configurations. For
the evaluation a combination of global motion and acoustic
features were used. In the table S describes the number of
states per class and M is for the number of Gaussian mixture.

Model config. RR (in %) FER (in %) AER (in %)

S=3, M=1 36.9 63.1 10.1
S=3, M=2 42.3 58.7 9.6
S=5, M=2 46.6 53.3 15.5
S=5, M=3 26.4 73.6 8.6
S=10, M=2 41.6 58.4 21.8

second measurement we use the frame error rate (FER) for the
joint segmentation and classification task. Each frame is com-
pared with the ground-truth and all wrong classified frames
are counted. This measurement is the most important for this
task, because it takes into account the length of the segments.
The last measurement is the action error rate (AER). For this
error measurement it is necessary to count the insertions (Ins),
the deletions (Del), and the substitutions (Sub).

AER =
Ins + Del + Sub

Annotated video modes
(4)

The results in table 1 are conducted from an evaluation where
different model parameters are tested. The first column in
the table shows the results which are achieved for the classi-
fication task only. The best model for it is the one with five
states and two Gaussian mixtures with a recognition rate of
46.6%. The more complex models do not achieve this results.
Therefore the recognition is highly depending on the number
of available training data.
The results for the combined task of segmentation and classi-
fication are shown in column two and three in table 1. All
models are trained and tested on the same combination of
global-motion and acoustic features. The results show that the
model with five states and two Gaussian mixtures achieves the
best frame error rate with 53.3%, therefore it is the best model
for video editing. The best action error rate of 8.6% achieves
a linear one with five states and three Gaussian mixtures. The
low action error rates of most of the models point out that the
hardest task is to find the correct boundaries of the segments.
In figure 5 a short output of the system is shown in a sym-
bolic way. Each picture represents the selected video mode
with various duration and for the whole meeting the number
of shot changes is much higher then in this short example out-
put.

6. CONCLUSION

In this work we showed how to extend graphical models for
the combined task of segmentation and classification. The
developed structure for the combined task can be universally
used for known graphical structures. This also applies for the

Zeit t

Fig. 5. An example for a video sequence, which is represented
by single frames of each selected video mode. In the video
each shot can have a different duration.

training structure which has been developed in this work. All
known structures have been developed for automatic speech
recognition, and so the class boundaries of phone are not
trained. This is no problem for speech recognition, where the
boundaries of phones are not known, but for the video editing
is is mandatory to train the boundaries of the video modes.
Therefore a new training structure was developed which can
be applied for both types of problems. The training struc-
ture and the decoding structures can also be applied for other
pattern recognition tasks, which require the combined seg-
mentation and classification. The best model, with five states
and two Gaussian mixtures, achieves a FER of 53.3% and an
AER15.5%. The major problem of all models is finding the
correct boundaries of the video modes.
For the future we plan to add more semantic information
about the participants, for example the level of activity or
dominance. The problem of the segmentation could be solved
by using additional features, such as topic changes, which
help to segment the meeting in a more accurate way. As
further improvement it is planned to integrate an additional
class which adds the slides. Finally more complex graphical
models, as left-right-, ergodic-, multi-stream-models, should
be evaluated because the most complex model used performs
best.

7. REFERENCES

[1] S. Sabri and B. Prasada, “Video conferencing systems,”
Proceedings of the IEEE, vol. 73, no. 4, pp. 671 – 688,
1985.

[2] P. Wellner, M. Flynn, and M. Guillemot, “Browsing
recorded meetings with ferret,” in Proceedings of the
1st Joint Workshop on MLMI, S. Renals and S. Bengio,
Eds. 2004, Springer Verlag.

[3] Beller Hans, Handbuch der Filmmontage - Praxis
und Prinzipien des Filmschnitts, TR-Verlagsunion,
München, 5. edition edition, 2005.

[4] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart,
N. Morgan, B. Peskin, T. Pfau, E. Shriberg, A. Stolcke,
and C. Wooters, “The icsi meeting corpus,” in Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2003.

[5] P. Wellner, M. Flynn, S. Tucker, and S. Whittaker, “A
meeting browser evaluation test,” in CHI ’05 extended
abstracts on Human factors in computing systems, New
York, NY, USA, 2005, pp. 2021–2024, ACM Press.

[6] J. Bilmes and C. Bartels, “Graphical model architec-
tures for speech recognition,” IEEE Signal Processing
Magazine, vol. 22, no. 5, pp. 89 – 100, 2005.

[7] S. Sumec, “Multi camera automatic video editing,” in
Proceedings of the ICCVG. 2004, pp. 935–945, Kluwer
Verlag.

[8] M. Al-Hames, B. Hörnler, C. Scheuermann, and
G. Rigoll, “Using audio, visual, and lexical features in a
multi-modal virtual meeting director,” in Proceedings of
the 3rd Joint Workshop on MLMI. 2006, Springer Ver-
lag.

[9] M. Al-Hames, B. Hörnler, R. Müller, J. Schenk, and
G. Rigoll, “Automatic multi-modal meeting camera se-
lection for video-conferences and meeting browsing,”
in Proceedings of the 8th International Conference on
Multimedia and Expo (ICME), 2007.

[10] L.R. Rabiner, “A tutorial on Hidden Markov Models
and selected applications in speech recognition,” Pro-
ceedings of the IEEE, vol. 77, no. 2, pp. 257–285, 1989.

[11] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maxi-
mum likelihood from incomplete data via the EM algo-
rithm,” Journal of the Royal Statistical Society B, vol.
39, no. 1, pp. 1–38, 1977.

[12] A. Viterbi, “Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm,” IEEE
Transactions on Information Theory, vol. 13, no. 2, pp.
260 – 269, 1977.

[13] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guille-
mot, T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij,
M. Kronenthal, G. Lathoud, M. Lincoln, A. Lisowska,
I. McCowan, W. Post, D. Reidsma, and P. Wellner, “The
AMI meeting corpus: A pre-announcement,” in Pro-
ceedings of the 2nd Joint Workshop on MLMI. 2006, pp.
28–39, Springer-Verlag.

[14] D. Moore, “The IDIAP smart meeting room,” Technical
Report 07, IDIAP, 2002.

[15] Z. Fang, Z. Guoliang, and S. Zhanjiang, “Comparison of
different implementations of MFCC,” Journal of Com-
puter Science and Technology, vol. 16, no. 6, pp. 582–
589, 2001.

[16] M. Zobl, F. Wallhoff, and G. Rigoll, “Action recognition
in meeting scenarios using global motion features,” in
Proceedings of the 4th IEEE International Workshop on
PETS-ICVS, J. Ferryman, Ed., 2003, pp. 32–36.

[17] F. Wallhoff, M. Zobl, and G. Rigoll, “Action segmen-
tation and recognition in meeting room scenarios,” in
Proceedings of the 11th ICIP, 2004.

[18] M.-H. Yang, D.J. Kriegman, and N. Ahuja, “Detecting
faces in images: A survey,” IEEE Transasctions on Pat-
tern Analysis and Machine Intelligence, vol. 24, no. 1,
pp. 34–58, 2002.

[19] M. Al-Hames, A. Dielmann, D. Gatica-Perez, S. Re-
iter, S. Renals, G. Rigoll, and D. Zhang, “Multimodal
integration for meeting group action segmentation and
recognition,” in Proceedings of the 2nd Joint Workshop
on MLMI, 2006.

[20] S. Reiter, B. Schuller, and G. Rigoll, “Hidden condi-
tional random fields for meeting segmentation,” in Pro-
ceedings of the 8th International Conference on Multi-
media and Expo (ICME), 2007.

[21] D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and
G. Lathoud, “Modeling individual and group actions in
meetings: a two-layer HMM framework,” in Proceed-
ings of the Second IEEE Workshop on Event Mining:
Detection and Recognition of Events in Video, in Asso-
ciation with CVPR, 2004.

[22] J. Bilmes and G. Zweig, “The graphical model toolkit:
An open source software system for speech and time-
series processing,” in Proceedings of the International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), 2002.

[23] F. Jensen, S. Lauritzen, and K. Olesen, “Bayesian up-
dating in causal probabilistic networks by local compu-
tations,” Computational Statistics Quaterly, vol. 4, pp.
269–282, 1990.

[24] D. Heckerman, “A tutorial on learning with bayesian
networks,” in Learning in Graphical Models, M.I. Jor-
dan, Ed. MIT Press, 2001.

[25] Z. Ghahramani, “Learning dynamic bayesian net-
works,” in Adaptive Processing of Sequences and Data
Structures, C.L. Giles and M. Gori, Eds., Lecture Notes
in Artificial Intelligence, pp. 168–197. Springer-Verlag,
1998.

[26] K. Murphy, Dynamic Bayesian Networks: Representa-
tion, Inference and Learning, Ph.D. thesis, University
of California, Berkeley, 2002.

