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ABSTRACT

In this work semantic features are used to improve the results

of the camera selection. These semantic features are group

action, person action and person speaking. For this purpose

low level acoustic and visual features are combined with high

level semantic ones. After the feature fusion, a segmentation

and classification are performed by Hidden Markov Models.

The evaluation shows that an absolute improvement of 6.5%

can be achieved. The frame error rate is reduced to 38.1%

by using acoustic and all semantic features. The best model

using only low level features achieves a frame error rate of

44.6%, which is the best one reported on this data set.

Index Terms— Machine Learning, Human-Machine In-

teraction, Multi cameras, Meeting Analysis, Multi-modal

Low Level Features

1. INTRODUCTION

Today’s business world is full of meetings and of travel to

meetings around the world. Video conferencing [1] is a

successful approach to reduce costs for companies. At the

beginning of online conferencing only one video stream was

exchanged between two locations. Nowadays different loca-

tions with multiple cameras are connected and a new problem

arises: Which camera should be shown? Which cameras

could be ignored?

Not only for online video conferences, but also for previously

recorded meetings, it is an interesting topic to show a selected

camera, which contains the most relevant informations from

the meeting. For the playback of past meetings, a meeting

browser [2] can be used. These are the main usage scenarios

of the system which is described in this work.

Previous work concentrates on two different approaches for

these usage scenarios. The first approach [3] uses high level

features, as speech transcripts and person movements, and the

camera selection process is based on rules. For the evaluation,
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Fig. 1. Sample shots of three cameras from the IDIAP smart

meeting room: left camera (L), centre view (O) of the room

and a closeup (C1) of participant one.

people have been watching the created video and judged the

quality. Therefore, it is impossible to compare it with others.

The second approach uses low level features and two differ-

ent models for the camera selection. The first one is based

on thresholds [4] and the second one uses Hidden Markov

Models [5].

In this work we combine the best of both approaches to

achieve better results. In the first step low level features are

extracted from the audio and video sources. Additionally to

these features, high level ones, such as group action, person

action and person speaking, are used for the camera selection

task. The second step is concatenating the features on feature

level. After that, a segmentation and classification is done by

Hidden Markov Models (HMM) [6]. Different combinations

of features and settings for the models have been evaluated.

The next section gives an overview of the data set and the

annotation, which are needed for the training of the models.

Section 3 describes the used acoustic, visual and semantic

features. The pattern recognition models used in this work

are presented in Section 4. In Section 5 the results from the

experiments are shown and finally the conclusion is drawn in

Section 6.

2. DATA SET

The AMI corpus [7], which is publicly available, is used for

this work. A subset of 24 meetings with a duration of five

minutes each, was created and four participants are always

located somewhere in the IDIAP smart meeting room [8] dur-
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Fig. 2. Sketches of three available video modes in the IDIAP

smart meeting room: closeup (C1) of participant one, left

camera (L) and centre view (O).

ing these meetings. The meeting room is equipped with seven

cameras, 22 microphones, a projector screen and a white-

board. This work uses only four close talking microphones

and does not take into account the installed microphone ar-

rays for the far field recordings. For the video capturing,

seven cameras are installed: one closeup camera for each par-

ticipant (C1 − C4). An overview camera (O) that records the

table, the whiteboard and the projector screen. Two additional

cameras are located at the left (L) and right (R) wall and are

capturing two participants and the half table in front of them.

Three example shots of these cameras are shown in figure 1.

2.1. Annotation

Annotation of the whole data set is needed for two reasons:

First, it is necessary for the training of the Hidden Markov

Models and second the ground truth is used for the evaluation

of the results. Thus 24 five minutes meetings have been anno-

tated. The annotators have to decide which of the seven video

modes represents the meeting best. In this work a video mode

is defined as one of the seven cameras. This leads to seven

different modes which contain four closeups views, one for

each participant, a left and a right view, which records two

people at one side of the table, and a centre view, which cov-

ers the whole meeting room. In figure 2 three sketches are

shown of the available video modes. In the future additional

video modes, as the recorded slides from the projector, are

planned to be annotated.

The task of annotating video modes is very subjective as the

low average of inter-annotator agreement (κ = 0.3) shows.

It is highly depending on the taste of the different annota-

tors. Therefore, only one annotator labels the whole cor-

pus to achieve a consistent annotation. Moreover, the inter-

annotator agreement of a single annotator, doing the same

meeting twice, raises to κ = 0.6. Even though the shot

boundaries are on a frame base and no gray array is allowed

around the shot change.

3. FEATURES

In this work, three different modalities of features are used:

acoustic, visual and semantic. The first two modalities are

low level features and are derived directly from the audio- and

video streams. The semantic features contain more related

information of the occurrences in the ongoing meeting. In the

following paragraphs the features are described.

3.1. Acoustic Features

Mel frequency cepstral coefficients (MFCC) [9] are widely

used in the automatic speech recognition domain. The fea-

ture can be calculated in real time with only a latency of one

window. Therefore, it seems to be a good idea to use MFCCs

as an acoustic feature in the activity detection. For each close

talking microphone, which a participant was carrying, the en-

ergy plus twelve cepstral coefficients and the first and second

derivations are extracted.

3.2. Visual Features

Global motions (GM) have been successfully applied to vari-

ous meeting tasks [10, 11] and can be calculated in real-time.

First the meeting room is split into six locations L. Each

of the four closeup cameras represents one location. From

the centre view camera, we extract the projection board and

the whiteboard location. Then, a difference image sequence

IL
d (x, y) of two subsequent frames is calculated for each lo-

cation. The seven global motion features are derived from

the image sequence, again for each location. The centre of

motion is calculated for the x- and y-direction according to:

mL
x (t) =

∑
(x,y) x · |IL

d (x, y, t)|
∑

(x,y) |IL
d (x, y, t)|

and

mL
y (t) =

∑
(x,y) y · |IL

d (x, y, t)|
∑

(x,y) |IL
d (x, y, t)| . (1)

The changes in motion are used to express the dynamics of

movements:

ΔmL
x (t) = mL

x (t) − mL
x (t − 1)

and

ΔmL
y (t) = mL

y (t) − mL
y (t − 1). (2)

Furthermore, the mean absolute deviation of the pixels rela-

tive to the centre of motion is computed:

σL
x (t) =

∑
(x,y) |IL

d (x, y, t)| · (x − mL
x (t)

)

∑
(x,y) |IL

d (x, y, t)|
and

σL
y (t) =

∑
(x,y) |IL

d (x, y, t)| · (y − mL
y (t)

)

∑
(x,y) |IL

d (x, y, t)| . (3)

Finally, the intensity of motion is calculated from the average

absolute value of the motion distribution:

iL(t) =

∑
(x,y) |IL

d (x, y, t)|
∑

x

∑
y 1

. (4)
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These seven features are concatenated for each time step in

the location dependent motion vector

�xL(t) = [mL
x , mL

y , ΔmL
x , ΔmL

y , σL
x , σL

y , iL]T . (5)

Concatenating the motion vectors from each of the six posi-

tions leads to the final motion vector.

The second visual features used are skinblobs, which are de-

rived from each of the cameras. In [12] various approaches

of face detection are deeply investigated and one of these is

a skin color look-up-table. To the regions extracted by the

approach, a dilation filter is applied and then by taking into

account the proportions, a bounding box for head and hand

blobs are found. The positions, the size and the movement

of these boxes from each camera are concatenated to the final

vector.

3.3. Semantic Features

Not only acoustic and visual low level features are applied

to the detection task, but also features that contain more se-

mantic information are used. These features are interesting

because of the close relation between what a person or the

group is doing and which camera is important. The features,

which have been applied are group action, person action and

person speaking.

The group action has been deeply investigated in the research

community over the last couple of years [13, 14]. The sys-

tems are working directly on audio and video streams and

achieve reliable results, but they are currently not real time

capable. The meeting is segmented into a sequence of labels

like monologue participant one to four, discussion, presenta-

tion, whiteboard and note taking.

Moreover, a person action detection system has been devel-

oped [10, 11]. These systems create a sequence of actions

for each of the participants, thus four features for each time

frame are available. The labels used, are similar to the group

actions but contain some more classes: sitting down, stand-

ing up, nodding, shaking the head, writing, pointing, using a

computer, giving a presentation, writing on the white-board,

manipulation of an important item and idle. Idle for example

is used if the person is speaking or listening to the meeting.

The classes nodding or shaking should help to find points in

the meeting where a person should be shown even though he

is not speaking.

The last semantic feature which is currently used is the per-

son speaking. It is a four dimensional vector which contains

binary information for each participant and each time frame.

The bits are set to one if a person is speaking.

4. CAMERA SELECTION MODELS

In this work, Hidden Markov Models (HMM) [6] are applied

to the previous described pattern recognition problem. It can

be used for classification and in combination with the Viterbi

Table 1. Evaluation of different modality combinations. The

number of states per model varies over the different combina-

tions of modalities. MS indicates that a multi-stream model

achieves this result. AER means action error rate, FER is the

frame error rate and RR stands for recognition rate.

Model AER FER RR

Audio (A) 158.7 50.1 47.6

Global Motion (GM) 177.5 64.3 34.8

Skinblob (SK) 600.3 78.6 16.8

Group Action (GA) 84.8 61.0 26.2

Person Action (PA) 72.2 62.8 28.2

Person Speaking (PS) 62.2 51.5 48.3

Audio & GA 63.1 49.2 48.3

Audio & PA 60.2 42.5 51.5

GA & PA & PS 58.3 39.6 54.8

A & GA & PA & PS (MS) 56.2 38.1 53.9

Audio & GM (MS) 60.8 44.6 52.9

algorithm [15] also for segmentation of feature streams. For

the training of the HMMs, the EM-algorithm [16] is used.

For each class k a model with the parameters λk = (A, B, �π)
is trained. The model parameter A is the transition matrix, B
models the output distribution using Gaussians mixtures and

�π denotes the initial state distribution.

Two different types of HMMs are used in the evaluation:

single- and multi-stream HMMs. The main difference be-

tween these two types is the possibility to group different

modalities of feature into several weighted streams D by

using mutli-stream HMMs. The transition matrix (A) and

the initial state distribution (�π) are unchanged but for each

stream a different output distribution (B = B1, . . . BD) is

defined. The observation of stream d is produced statistically

independent from all other streams. The joint probability of

the observation is similar to the single stream model.

5. EXPERIMENTS

For all the experiments, a six-fold cross validation with per-

son disjoint test and training sets were performed. Three dif-

ferent measurements are used for the evaluation: recognition

rate (RR), action error rate (AER) and frame error rate (FER).

High rates of RR are good and in the case of AER and FER

lower values are better.

The experiments consist of two different tasks: classification

and combined segmentation and classification. For the first

one, the class boundaries are given and only a classification of

these segments is performed. The results of this task are mea-

sured as RR and it is equal to the number of correct classified

segments divided by the total number of segments. The sec-

ond experiment is the combined process of finding the right

class boundaries and classify these segments correctly. This is
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the real task of the system and the measurements for that are

the FER and AER. The FER counts all the correct detected

frames and divides them by the total number. Thus, the FER

takes into account the correct position of the boundaries. The

AER consideres only the correct sequence of segments.

In table 1, first the results of all single modalities are pre-

sented. The low level audio features achieve a FER of 50.1%,

as the best single modality. Only the person speaking features

performs nearly comparable. The visual features alone are

not enough for the camera selection task, because most of the

time the person who is speaking is important. The high AER

of the low level features means that too many shot changes

have been added to the video.

The first idea was combining acoustic features, as audio or

person speaking, with visual hints, as global motion or person

actions. The fusion of audio and group actions improves the

results slightly. The use of person actions reduces the FER

about 7.6% to a rate of 42.5%. This is already better than

the best low level feature result of this work (44.6%) and all

evaluated fusions in [5] (47.9%). The FER can be further re-

duced by combining all semantic features to a rate of 39.6%.

The best results achieves a multi-stream HMM by using audio

features and all high level features with a FER of 38.1%. For

the RR and AER the picture is very similar, only for the RR

the best model uses all semantic features only.

6. CONCLUSION

In this work we presented the combination of low level and

semantic features for camera selection. The system performs

a feature fusion using single and multi-stream HHMs. There

is an reduction of 6.5% for the FER from the best low level

feature model to the best combination. The integration of se-

mantic features, as group action, person action and person

speaking, into the system is successful.

In the future we plan to detect the semantic features from low

level features and combine all the systems to one stand alone

camera selection system. Further work will be conducted in

the field of late fusion and more complex graphical models.
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