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ABSTRACT

Carrier-phase measurements on at least two frequencies
are required for precise and reliable positioning. Clearly,

the corresponding code- and carrier-phases must be mea-
sured with a high precision and reliability. Today’s GNSS
receivers use individual Phase- and Delay Locked Loops
(PLL/DLL) for each tracked satellite on each frequency to
measure the phases. Strong atmospheric effects (e.g. iono-
spheric scintillations), receiver movements (e.g. banking
of an aircraft) or RF-interference and jamming can lead
to a substantial reduction of the carrier-to-noise ratios of
some of the GNSS signals. Although the mentioned effects
are usually of limited duration, traditional tracking loops
likely loose lock of some of the signals (not all satellites
at the same time though). The following re-acquisition
is time-consuming and results in a changed carrier-phase
ambiguity.

Vector Delay Locked Loops have shown to improve
the performance of the code-phase tracking by using the
spatial correlation of the received signals. In this paper,
the concept is further extended to the more critical carrier-
phase tracking. The reliability of the tracking is further
enhanced by using the spectral correlation of all the
received signals from one satellite which is especially
useful for Galileo with three open frequencies.

We show that compared to traditional receivers, the
joint tracking receiver needs no re-acquisition and can
therefore demodulate a masked signal as soon as it
appears again. For short interruptions even cycle slips can
be avoided. The noise performance is also compared to
the individual tracking approach. We conclude therefore
that the Multifrequency Multisatllite Tracking Loop
makes carrier-phase tracking more robust in GNSS
receivers

1. INTRODUCTION

Every received signal is affected by the same receiver
movements, by the same receiver clock biases and so forth
(more precisely by the projection onto the line-of-sight).
Independent tracking loops employed for all signals, as
typically used in today’s GNSS receivers, neglect their
strong spatial and spectral correlation.

Sennott and Senffner were among the first to make
use of the spatial correlation of the signals in the phase
tracking, [1]. Spilker developed a similar idea for the code
tracking loop in the Vector DLL [2]. The idea of vector
tracking recently gained interest together with the first
Software defined GNSS receivers, e.g. [3]. Henkel et al.



proposed to further exploit the spectral signal correlations
[4].

In this paper the concept is further extended by using a
dedicated model for all components affecting the received
signal. It is shown how the carrier-phase and code-phase
tracking can be conducted jointly for all active signals,
i.e. for all satellites and all frequencies.

This paper is divided into five sections. After this
short introduction follows a detailed description of the
carrier-phase tracking problem. All processes affecting
the instantaneous carrier-phases of the received signals
are explained with their projection onto the signals.
The algorithm developed with this detailed model is
analyzed in the third section. The evaluation model is
first presented and later used to derive the algorithm’s
performance. The joint tracking is further extended to the
code tracking in the fourth section. In the last section,
this paper is finally concluded.

2. SYSTEM MODEL

Since the early times of implementing phase locked loops
digitally, they have been modeled in a state-space frame-
work to allow the usage of Kalman filters, e.g. [5]. The
same approach was also used by Hurd et al. to model the
phase tracking in GPS receivers [6]. With the advent of
software-defined GNSS receivers, this approach to phase
tracking has recently gained high attention, cf. [7].

If the phase locked loop is replaced by a Kalman
filter, there’s no direct hint on how to steer the local
oscillator–although this relationship could be derived by
using Patapoutian’s loop representation1 [8]. But to have
better control of the phase and frequency of the local
oscillator, the loop needs to be represented as a control
problem [9]. This procedure can be further extended to
include the signals from multiple satellites, received at
multiple frequencies.

In this section the model used to derive the Multisatel-
lite Multifrequency phase tracking task is detailed.

PHASE MODEL

The phase of the received signal is first broken down into
the parts originating from the receiver motion, the receiver
oscillator, the atmosphere and the satellite’s oscillator
[10]:
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1With x̂k denoting the estimated phase and its derivatives:
ωNCO,i+1 = 1

T
CA (x̂i+1 − x̂i) .

The following denotations are used:

m the carrier frequency (1 . . .M ),
k the satellite (1 . . .K),
ek unit vector pointing from thek-th satellite to the

receiver,
r, rk the locations of the receiver and satellitek in the

same Cartesian coordinate system (e.g. ECEF),
δ, δk the receiver and satellite clock bias (in seconds),
Ikm the ionospheric delay (in meters),
T k the tropospheric delay (in meters),
t′ the time when the signal (received at timet) was

emitted,
t′′ the time when the signal hit the ionosphere

(simplifying the ionosphere as a thin shell) and
t′′′ the time when the signal hit the ionosphere

(same simplification).

Each part is modeled as a random walk, driven by white
Gaussian noise [11]. Denoting bynx the order of the
derivative represented by the noise sequence, Taylor’s
theorem can be used to characterize the evolution over
time of the processx(t):2
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T l

l!
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(t+ T, t, nx), (1)

defining the general remainder term as
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(t2 − u)nx−l−1

(nx − l− 1)!
du.

The same expansion can clearly be carried out for higher
derivatives ofx(t). Using the above definition, the deriva-
tives of the random processes can be stacked into a vector,
resulting in
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with (Anx
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T j−h

(j−h)! , if j − h ≥ 0

0 otherwise

andT = ti+1 − ti

Plugging in the expansions for the above mentioned parts
influencing the signal phase, a state-space model for the

2Although the Taylor’s theorem assumes sufficiently smooth functions,
which is not true for a white noise sequence



received signal phase emerges
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havingn = max (nφ, nr, nrk , nδ, nδk , nI , nT ) .

Not all of the processes have the ordern. The state-vector
of those with reduced order are augmented by a sufficient
number of zero-valued entries.

NCO MODEL

In analogy to the beforehand derived model for the
received signal phase (and its derivatives), a model for
the Numerically Controlled Oscillator has to be found. In
contrast to the phase-model, the states of the NCO are
driven by a user-defined input signal rather than (process)
noise.

The unsteered NCO (zero input) just generates a sinu-
soidal signal at a certain frequency, having a continuous
phase:

ωNCO,i+1 = ωNCO,i

ϕNCO,i+1 = ϕNCO,i + TωNCO,i.

Allowing the frequency and the phase to be changed
between successive intervals, the following NCO model
arises3:
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PLANT MODEL

Having in mind the outcome of the correlation integral of
two sinusoidal signals, the difference of Equations 2 and
3 can be used, like described in [12], to finally describe
the plant of the phase control system (for one individual

3The state-vector could as well be augmented by higher order deriva-
tives of the NCO-phase, leading to a higher order NCO. However in this
text only second-order NCOs are considered.

signal):
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Taking a closer look at the noise terms (or remainder
terms of the Taylor expansion), the contributions from
several satellites/frequencies are correlated or simply
scaled.

Receiver movements Assuming uncorrelated movements
in the three spatial dimensions, their projection onto the
line-of-sight vector is observed in the phase-domain:

ϕk
rm

(t) =
2π

λm

((
ek

)T
r(t)

)

The Taylor expansion like performed in Equation 1
is in theory not valid, since the unit vectorek might
be changing during the inteval of consideration. The
expected rate of change is in the order of less than
10−3 per second and therefore neglected in this analysis.
Hence the noise terms are scaled by the unit vectors at
the beginning of the interval.

Satellite movements The movements of the satellites are
given with a high and sufficient precision (e.g. Broadcast
or IGS ephemerides). Due to their smooth dynamics the
satellites can be modeled as having a constant acceleration
over the interval of consideration. The remainder terms of
the Taylor series are then simplified as

wrk,i+1 =
[

Rrkx,2
(ti+1, ti, 2), Rrkx,2

(ti+1, ti, 1), 0,

. . . , Rrky ,2
(ti+1, ti, 2), . . .

]T

with

Rrkx,2
(ti+1, ti, l) =

∫ ti+1

ti

r̈kx(u)(ti+1 − u)l−1du

≈ r̈kx(ti)
T l

l
, l ∈ {1, 2}

The impact of the satellite movements is therefore deter-
ministic and can be seen as reference input to the phase-
system. As we want to follow the phase of the received
signal, the same input has to be used for the local system,
i.e. the NCO:

uk
ref.,m,i =

2π

λm

(
ek

)T
r̈ki

[
T 2/2
T

]

.

Ionospheric delay For any satellite, the ionospheric delay
is proportional with the carrier frequency4. Therefore

4Simplifying the ionospheric delays to their first order effect.
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the remainder terms in Equation 6 are scaled by their
frequency-factorq:

with Ikm(t) = q2mIk0 (t), andqm =
f0
fm

:

(
wIk
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)

l
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q2mRIk
0
,nI

(ti+1, ti, nI − l + 1),

for l = 1, . . . , nI

0 otherwise

Tropospheric delay The tropospheric delay encountered
by the signals received from a satellite can be separated
in their dry- and wet-component and their respective
mapping function5 [10]:

T k(t) = mk(t) (TZ,dry(t) + TZ,wet(t))
︸ ︷︷ ︸

TZ(t)

Like in the preceding paragraphs the Taylor expansion
is also performed for the tropospheric zenith delay,
assuming that the mapping function is constant during
the considered interval.

The plant model can now be summarized by

xϕ,i+1 = Axϕ,i +Buϕ,i +Gϕwi+1,

with

A = IK·M ⊗An,

B = IK·M ⊗B0,

wi+1 =
[
wT

r,i+1, wT
δ,i+1, wT

δ1,i+1, wT
δ2,i+1, . . . ,

wI1
0
, wI2

0
, . . . , wTZ

]T
,

µ =

[
1

λ1
, . . . ,

1

λM

]T

,

q = diag
[
q21 , . . . , q

2
M

]T
,

and the matrixGϕ as defined in Equation 4. Additionally
the covariance of the process noise vectorwi+1 has to be
defined. By following the approach described above, the
covariance matrix can be found in a way, similar to [13]:

E {wiwj} = δ(i − j) ·Q.

The states as defined above are clearly not directly observ-
able and need therefore be estimated by an observer (typ-
ically implemented as a Kalman filter). The outcome of
the phase-discriminator can be used as the measurements.

5Simplified here by a general mapping function.

Following [2], the Inphase- and Quadrature-components
are approximated by

Ii ≈ DiR(∆τi) · sinc

(
T

2
·∆ωi

)

· cos
(
∆ϕi

)
+ nI,i

Qi ≈ DiR(∆τi) · sinc

(
T

2
·∆ωi

)

· sin
(
∆ϕi

)
+ nQ,i,

where∆ϕi and ∆ωi denote the average phase and fre-
quency offset respectively (over the interval[ti−1, ti]),
R(.) the autocorrelation function of the spreading code,
∆τi its offset (w.r.t. the local copy),Di the navigation
bit andnI,i, nQ,i uncorrelated noise samples. Taking the
arctangent of the quotient, leaves just the average phase
offset:

Dϕ,i = atan

(
Qi

Ii

)

≈ ∆ϕi + nϕ,i.

This leads to the well-known observation matrixCn, with
(Cn)1,j = T j−1/j!, j = 1, . . . , n (e.g. [7]). In the
case of multisatellite and multifrequency tracking a set
of measurements is used to estimate the states:

[
Dk=1

ϕ,m=1,i, D1
ϕ,2,i, . . . , D2

ϕ,1,i, . . .
]T

= (IM·K ⊗Cn)
︸ ︷︷ ︸

C

xϕ,i + nϕ,i. (7)

The covariance matrix of the measurement noise terms
nϕ,i is chosen to be diagonal with the entries6

(

E {nϕ,inϕ,j}
)

l,l
= δ(i− j) ·

(

R
)

l,l
=

δ(i − j)

2Cl/N0T
,

whereCl/N0 is the carrier-to-noise density ratio of the
l-th channel.

OBSERVABILITY/CONTROLLABILITY

To successfully implement a controller for the plant de-
scribe in section , controllability and observability haveto
be fulfilled.

It can be shown that the observability matrixQo has
rank K · M · n. Therefore observability after Kalman is
fulfilled.

If n is larger than 2, the condition for controllability
after Kalman can not be met. This can be seen from
Equation 3, where matrixB0 shows empty rows. To solve
this problem, either a higher order NCO could be used
(not discussed here) or the higher order state-components

6In [9], [12] the entries of the covariance matrix are additionally mul-

tiplied by

(

1 +
1

2Cl/N0T

)

. In [14] it’s shown that with a nonlinear

interpretation of the measurement noise this additional factor can be
neglected.



are treated as a disturbance. In this case the disturbance
is estimated by the observer and fed forward on the
controller7.

CONTROLLER DESIGN

Finally the feedback law of the controller takes the usual
form of a linear controller:

uϕ,i = −Kx̂ϕ,i.

The poles of the controller can be chosen directly by
parametric state feedback design or by using results of
optimal control, where the intent is to find the inputu

that minimizes a quadratic cost functional, like described
in [9], [12].

MULTICONSTELLATION TRACKING

From Equation 6 it can be further seen that the
multisatellite tracking allows the joint use of different
GNSS systems in the tracking (e.g. Galileo and GPS).
Assuming that the offsets between the timescales of all
used systems are many times more stable than the clock
offset of the receiver, the change of it with respect to
the system times remains the same for all systems. And
after the initial acquisition only relative changes have an
influence. Optionally the intersystem clock bias could be
included as a further random process, but just having a
small variance.

3. PERFORMANCE EVALUATION

In this section the performance of the presented multi-
frequency and multisatellite is evaluated, first analytically
and later by simulation. A linearized and simplified base-
band model of the loop is shown in Figure 1. First the
transfer functions of the observer (including the feedback
path) and the actuator (NCO) are defined, leading then to
an overall transfer function.

Fig. 1. Simplified aseband model of the multifrequency multisatellite
tracking loop (the bold lines represent vector quantities and the bars
multi- and demultiplexing operations).

TRANSFER FUNCTION DERIVATION

7If the higher order terms are ignored but treated as disturbance, a
constant offset in the phase-discriminator results.

Denoting the Kalman gain byLi the estimated state relates
to the discriminator outputs (yi) by

X̂(z) = (zI−A+B+ LCA− LCBK)
−1

LY(z),

hence

U(z) = −KX̂(z) = Ho(z)Y(z) (8)

Ho(z) = −K (zI−A+BK+ LCA− LCBK)
−1

L.

The NCO outputΦ̂(z) contains the estimated phase and
frequency for each signal. Its relation to the control input
u can be summarized by the transfer function

HNCO(z) = (zI− IK·M ⊗A2)
−1 ,

Φ̂(z) = HNCO(z)U(z). (9)

The estimated phase is formed by multiplying the vector
Φ̂ with the above defined measurement matrixC:

ϕ̂(z) = (IK·M ⊗C2)
︸ ︷︷ ︸

Cp

Φ̂(z). (10)

And though finally the measurementsy can be related to
the input and the feedback path:

Y(z) = ϕ(z)−CpΦ̂(z) +N(z),

= (I+CpHNCO(z)Ho(z))
−1

(ϕ(z) +N(z)) .
(11)

Solving for the carrier-phase error∆ = ϕ − ϕ̂ by using
the Equations 8,9,10 and 11 the transfer function of the
tracking loop can be found:

∆(z) = (I+CpHNCO(z)Ho(z))
−1

︸ ︷︷ ︸

H(z)

ϕ(z)

+CpHNCO(z)Ho(z) (I+CpHNCO(z)Ho(z))
−1

︸ ︷︷ ︸

Hn(z)

N(z)

(12)

The (measurement) noise sequenceni is assumed to be
zero-mean, white and described by it’s autocovariance
function, definining also the spectral density8:

Rn(i, j) = δ(i− j) · E
{
nin

H
j

}
,

SN(z) = E
{
nin

H
i

}
= R̃,

where(.)H denotes the Hermitian transpose.
The covariance of the samples of a zero-mean discrete-

time random processν(i) can be computed by the integral
over one period of its spectral density [15]:

E
{
νiν

H
j

}
=

1

2π

∫ π

−π

Sν

(
ejω

)
dω.

Plugging in the beforehand derived noise response, results
in the carrier-phase error covariance matrix. Unlike in
textbooks the quantity derived here is a covariance matrix

8The measurement noise covariance matrix used in the Kalman filter
(denoted above byR) must not necessarily be equal to the actual
covariance of the incoming signal. To distinguish, a tilde is used for
the input signal’s covariance.



instead of being just a scalar variance value, since the
phases of several signals are tracked jointly:

Cov (∆n) =
1

2π

∫ π

−π

Hn(e
jω)E

{
nin

H
i

}
HH

n (ejω)dω

=
1

2π

∫ π

−π

Hn

(
ejω

)
R̃HH

n

(
ejω

)
dω (13)

In [16] it’s shown that the standard deviation of the carrier-
phase error marks a good measure for the mean time to
cycle slipping in a PLL. Meaning that the lower standard
deviation the higher the robustness of the loop.

NUMERICAL STUDIES

The above derivation can as well be used for the assess-
ment of the phase tracking performance of a one-signal
standalone Kalman filter based tracking algorithm. Two
examples are compared with IF-simulated (intermediate
frequency) signals (see Figure 2). The plots show a good
agreement between the analytically derived performance
and the simulated one.
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Integrated, T=1ms, σ2=10rad2/s4

Simulated, T=1ms, σ2=10rad2/s4

Integrated, T=5ms, σ2=50rad2/s4

Simulated, T=5ms, σ2=50rad2/s4

Fig. 2. Performance of IF-simulations compared to the evaluation of
the variance-integral.

For a static receiverwr,i = 0, ∀i and therefore
the covariance of the random walk describing the re-
ceiver movements is set to zero. For a situation where
the received measured carrier-phase is dominated by the
receiver’s oscillator, the performance of a multisatellite
tracking loop is compared to a receiver using individual
loops, see Fig. 3. In the high noise domain, the figure
shows small offsets between the IF-simulated curves and
the ones obtained by evaluating the integral of Equation
13. This is mainly due to the nonlinearity of the used
arctangent discriminator.

The gain achieved by jointly tracking signals from ten
satellites is found to range from 5dB for low C/N0 up
to > 8 dB for high C/N0, due to the spatial correlation
between the signals from all satellites. By just using two
satellites in the multisatellite loop, the gain achieved atlow
noise is approximately 3dB. This leads to the conclusion
that the gain observed for a multisatellite loop can be
upper bounded byGKSat. ≤ 10 log10(K), whereK is
the number of satellites. This is in agreement with the

Cramér-Rao lower bound for an estimator, with different
numbers of samples.
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Joint Tracking, IF−simulated (10 Sat.)
Joint Tracking, analytically (10 Sat.)
Independent Tracking, IF−simulated
Independent Tracking, analytically
Joint  Tracking, IF−simulated (2 Sat.)
Joint Tracking, analytically (2 Sat.)

Fig. 3. Comparison of the performance of a multisatellite tracking loop
(2 and 10 satellites) and traditional independent trackingloops.

Similarly the performance of a multifrequency loop can
be evaluated, see Fig. 4. The gain for using the three
Galileo frequencies jointly is in the order of 3dB, which
is in agreement with the rough upper bound found for the
gain.
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Independent Tracking, analytically
Independent Tracking, IF−simulated
Multifrequency Tracking (3 Freq.), analyt.
Multifrequency Tracking (3 Freq.), IF−sim.

Fig. 4. Comparison of the performance of a multifrequency tracking
loop (E1, E5a and E5b frequency) and traditional independent tracking
loops.

To test the robustness of the joint tracking loop, a
single-satellite attenuation scenario should be examined.
At the beginning all of the ten satellites have a good
signal strength (C/N0 = 45dB-Hz). Later one satellite is
heavily attenuated during an interval of four seconds (and
also its entry in the measurement noise covariance matrix
updated). The carrier-to-noise density ratio is shown in
Figure 5. In Figure 6 the estimated phase for the atten-
uated satellite is plotted. As expected, when the noise is
increased, the individual tracking loop starts to skip cycles
(shown in the small box of the uppermost plot). Due to
the perfect knowledge of the carrier-to-noise density ratio,
the bathendwidth of the loop is tightened and though the
loop’s carrier frequency doesn’t drift away too much, such
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Fig. 5. The simulated carrier-to-noise density ratios for the scenario
where one satellite is attenuated.

that after the recovery of the satellite a phase-lock can be
achieved again.

The other two plots show the same scenario for a mul-
tisatellite tracking loop. For the bottom plot, the receiver
was given full knowledge about the signal strengths on all
satellites. Although the signal of one satellite was heavily
attenuated phase lock could be maintained also during this
period. One could argue now that it’s unrealistic to have
perfectC/N0-knowledge. This case was simulated in the
plot in the middle where the filter always assumed 45dB-
Hz on all satellites.
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Fig. 6. Carrier-phase estimation (Integrated Doppler) forindependent
and multisatellite tracking.

The evaluation of the standard deviation of the carrier-
phase error for the scenario with one attenuated satellite
is evaluated in Figure 7. In the case of independent
tracking loops, the performance of the unaffected
satellites remains constant over allC/N0 values of the
attenuated one. Also as known, the standard deviation of
the affected satellite increases for a decreasingC/N0.
In the case of joint carrier-phase tracking, the weight of
the attenuated satellite is adapted to its noise strength.
Whenever the noise is very high, the satellite’s tracking
loop is dominated by measurements of the other satellites,
meaning that its performance is mainly depending on
the performance of the unaffected channels. In Figure
7 it can be seen that the carrier-phase error standard

deviation is always well below the often used margin of
15◦. Therefore Cycle Slips won’t occur even though the
noise is dramatically increased.
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Fig. 7. Phase error standard deviation for the unaffected and attenuated
satellites, compared for an independent and joint trackingreceiver.

4. PRN CODE TRACKING

So far the discussion was about carrier-phase tracking,
mainly because this part is more critical in a GNSS
receiver than the code-phase tracking. Nevertheless, in
a situation where one satellite is masked for a short
period, a receiver cannot benefit from joint tracking of
multiple satellites if the code-phase was not stabilized as
well during the outage. This motivates the extension of
the approach described above to code- and carrier-phase
tracking.

SYSTEM MODEL

The same derivations like presented for the carrier tracking
can be used to find a model for the code tracking loop:
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︸ ︷︷ ︸

xτ,i+1

= Anxτ,i +B0u
k
τ,m,i +wk

τ,m,i+1,

where∆τkm,i denotes the code-phase difference between
the received signal (satellitek, frequencym) and the
locally generated replica,∆τ̇km,i its time derivative. Here
it’s also assumed that a second-order NCO is used to
generate the spreading code, i.e. phase and frequency
can be steered. Therefore higher order derivatives of
the received phase show up as absolute values as their
corresponding component in the NCO is 0.

The basic model can be further split up into parts
originating from the receiver and satellite movements,
clocks and atmospheric effects. The basic difference to
Equation 6 is a different scaling and a reversed sign for



the ionospheric delay:

xk
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−wIk
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)

+B0u
k
τ,m,i. (14)

Stacking the two state vectors for the carrier- and the
code-phase on each other, the final state vectors for each
satellite and frequency can be found:
[

xk
ϕ,m,i+1

xk
τ,m,i+1

]

︸ ︷︷ ︸

xk
m,i+1

= (I2 ⊗An)x
k
m,i + (I2 ⊗B0)u

k
m,i

+Gk
mwi+1.

The measurement-equation (7) can easily be extended to
include the code-phase measurements, e.g. together with
the use of a normalized DLL discriminator [2].

5. CONCLUSION

In this paper a Multifrequency Multisatellite tracking loop
was derived. The performance in terms of tracking error
standard deviation was compared to the independent track-
ing. It was shown that the performance can substantially
increased by jointly tracking the signals from multiple
satellites and on multiple frequencies. As an example,
during an outage of four second on one satellite, phase
tracking was possible without leading to a Cycle Slip
or loss of lock. An explanation was given by looking
at the tracking error standard deviation for the system
suffering from the outage. We therefore conclude that
jointly tracking multiple signals significantly increasesthe
robustness of a GNSS receiver.

*
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