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Abstract

Magnetic nanoparticles on a surface form a pattern under the influence of an applied external

magnetic field. This thesis encompasses the derivation of a new mathematical model for this

pattern formation, its detailed analytical treatment and numerical simulation. The obtained

model combines the concepts of micromagnetism with a particle distribution function first

introduced by Cahn and Hilliard. The model takes into account the underlying physical forces

and energies. The existence of a minimum of the free energy is proved by means of the direct

method. For numerical simulation, the problem is considered as a constraint global minimization

problem. The simulation results are in good agreement with the experimental data and therefore

support the derived model.

Zusammenfassung

Unter dem Einfluss eines externen Magnetfeldes bilden magnetische Nanopartikel auf einer

Oberfläche ein Muster. Diese Arbeit umfasst die Herleitung eines neuen mathematischen

Modells, das diese Musterbildung beschreibt, dessen mathematische Analyse und numerische

Simulation. Das verwendete Modell kombiniert mikromagnetische Beiträge mit einer Par-

tikelverteilungsfunktion nach Cahn und Hilliard, wobei die relevanten physikalischen Effekte

berücksichtigt werden. Durch die direkte Methode wird die Existenz eines Minimums der freien

Energie gezeigt. Für die numerische Simulation wird das Problem als beschränktes globales

Optimierungsproblem aufgefasst. Die Simulationsergebnisse stimmen gut mit experimentellen

Ergebnissen überein und bestätigen somit das hergeleitete Modell.
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Table of symbols

This table of symbols cointains symbols that are not only used locally but throughout this

document.

Greek letters

symbol meaning

α multiplier for Helmholtz free energy

µ0 vacuum permeability, µ0 = 4π · 10−7 Vs/Am

χΩ characteristic function on Ω

Γ boundary of Ω

ΓV outer boundary of ΩV

Ω domain in R
2 containing ferrofluid

ΩV domain in R
2, necessary for calculation of potential V

Latin letters

symbol meaning

u particle distribution function

m scaled, oriented local magnetization vector

A exchange stiffness constant

ix



x Table of symbols

C(Ω) space of functions that are continuous on Ω

Hd Stray field

Hext applied external magnetic field; unit: Ampere / meter

Hz Hertz, unit of frequency; 1 Hz = 1 s−1

Hsat saturation magnetization

J magentic polarization vector J = µ0MSm

JS saturation polarization, JS = µ0MS

KS standard triangle, vertices (0,0), (1,0), (0,1)

MS saturation magnetization

T Tesla, unit of a magnetic field; 1 T = 1 kg / (A s2)

V scalar potential of the stray field Hd = −∇V

W k,p Sobolev space of functions v ∈ Lp(Ω) for which the partial derivatives ∂αv

are also in Lk(Ω) for all |α| ≤ k



Chapter 1

Introduction

The physicist and chemist Richard Feynman was the first to use the concepts of nanotechnology

in his 1959 talk "There’s plenty of room at the bottom" [1]. He imagined that one day the whole

Encyclopaedia Britannica could be written on the head of a pin. Yet the term ’nanotechnology’

was defined in 1974 by Tokyo Science University Professor Norio Taniguchi. It deals with the

control of matter on the atomic and molecular scale, which is about 1-100 nm. Conveniently, a

nanoparticle is defined as a particle with at least one dimension smaller than 100 nm.

Nanotechnology is a broad scientific topic that covers different sectors of science such as applied

physics, material science, interface and colloid science, device physics, supramolecular chemistry

and chemical, mechanical and electrical engineering. Last but not least, applied and numerical

mathematics are indispensable tools to describe correctly and evaluate these processes.

In recent years, nanotechnology has attracted intense research interest as it provides solutions

to many technological demands of the future. One prominent example is the need for high den-

sity data storage. This can be achieved by utilizing magnetic nanoparticles or nanostructured

materials, which are the object of many research projects. The employment of nanoparticles is

1



2 Chapter 1. Introduction

also promising in medical science. Medical devices and drugs based on nanoparticles can detect

and treat diseases more effectively and with fewer side-effects. In animal testing, it is already

possible to direct nanoparticle loaded stem cells into damaged areas of the body where, for

example, they enhance the repair of damaged tissue [2, 3].

Since only the size is restricted, nanoparticles are used in different areas and are made out of a

variety of materials. Therefore, particles with diverse properties are gained. For example, iron

(Fe), cobalt (Co) or compounds containing these are used for ferromagnetic nanoparticles. One

industrially important application is the use of arrays of self-assembled monodisperse ferromag-

netic nanoparticles for data storage, where each particle represents one bit of information. For

this purpose, large arrays of regularly ordered particles are needed. The production of such

an array is a very active field of research and was investigated by the nanoparticle technology

group at the Center of Advanced European Studies and Research (caesar) in Bonn. This thesis

is motivated by one of their experimental results. A drop of a ferrofluid, which is a liquid that

contains ferromagnetic nanoparticles, is placed on a surface. Then the liquid dries out slowly

while an external magnetic field is applied. The particles form a pattern that depends on the

direction and strength of the applied field.

The aim of this thesis is the derivation of a model that describes the underlying physical

process of this experiment, followed by its mathematical analysis and, finally, by its numerical

simulation. In Chapter 2, a new mathematical model for the considered problem is derived,

where the concepts of micromagnetism are combined with a particle distribution function first

introduced by Cahn and Hilliard [4, 5]. Up to now, discrete models on a microscopic scale are

used for the modeling of the considered problem. The discrete models are commonly solved

by stochastic methods, e.g. Monte Carlo Simulation. In this thesis, a continuum model on

a mesoscopic scale is developed, where the density of the particles is modeled instead of each



3

particle individually. For a better understanding, general information about the fabrication

and processing of nanoparticles is given in Section 2.1, where also experimental results of dif-

ferent groups are shown. A general theory of magnetism is given in Section 2.2. Within this

framework, a functional describing the free energy for the experiment considered is derived in

Section 2.3 where the energy contributions due to different magnetic effects and due to particle

interaction are explained separately.

This energy functional is discussed analytically in Chapter 3, where the existence of a minimum

in an appropriate space is shown by means of the direct method of the calculus of variation.

This method requires to prove the coercivity and the weak lower semicontinuity of the func-

tional.

For the numerical simulation in Chapter 4, the model is at first reformulated and discretized in

Sections 4.1 and 4.2. Since it is a constrained nonlinear global optimization problem, the terms

and definitions of constrained global optimization are introduced and applied to the problem in

Section 4.3, where adequate algorithms are also presented. Finally, the simulation results are

displayed and discussed in Section 4.4. In particular, the different modeling parameters and

their influence on the resulting particle distribution are studied. The good agreement between

experimental results and simulations supports the derived model.
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Chapter 2

Modeling

The aim of this chapter is the derivation of an equation that describes the free energy of fol-

lowing experiment: a drop of a fluid containing ferromagnetic nanoparticles is put to a surface.

Under the influence of a magnetic field, the particles are free to move and rotate within the fluid.

Taking a diluted suspension with a sufficiently low particle fraction, the particles assemble at

the surface and form a pattern, which depends on the direction and intensity of the magnetic

field.

First of all, nanoparticles are introduced, and production and handling of them are explained.

Then experimental results are shown in Section 2.1.2, afterwards the basic principles of mag-

netism are illustrated in Section 2.2 and in Section 2.3 the energy equation is derived. This

chapter concludes with stating the complete model.

5



6 Chapter 2. Modeling

2.1 Introduction to nanoparticle technology

A definition of nanoparticles is established first. Then synthesis, stabilization, application and

assembling are discussed. The motivation for this thesis is elucidated in Section 2.1.2, where

experimental results are shown. Nanoparticles are a complex topic thus in this thesis only a

short introduction is given. An excellent review is given by [6].

2.1.1 Nanoparticles

There is no standard agreement on what to call nanoparticle, but typically it is defined as

a particle with a diameter of 1-100 nm, consisting of a few up to some thousand atoms or

molecules. If the particle is singlecrystalline, it might be called nanocrystal. A broad variety of

substances and alloys is used to synthesize particles, for example cobalt (Co) and iron platinum

alloys (FePt) are popular to build magnetic particles.

A solution in which nanoparticles are suspended is called a colloidal solution. In this thesis,

dispersed ferromagnetic particles are considered, which are also called ferrofluids.

Synthesis

There are two general approaches to synthesize nanoparticles: either a big block of starting

material is pulverized, which is called top-down approach, or particles are grown starting with

precursors containing molecules and/or atoms. As the bottom-up approach provides suitable

particles for the experiments, it is described below. There exist many recipes on the bottom-up

synthesis of nanoparticles, but more or less particles are prepared according to following pro-

cedure:

Precursors are mixed with a solvent and with a stabilizer if required, then heated to reflux or

kept at room temperature for a certain time, which could be supported by bubbling with N2,
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Figure 2.1: Sketch of a magnetic stirrer with a heating facility. The magnetic stir bar inside

the vessel is moved by a rotating magnet under the hot-plate.

Ar or another substance. For stirring, a magnetic stirrer is used, which is shown in figure 2.1.

This device is often combined with a heating facility. A vessel containing the mixture and

a magnetic stir bar is put on a hot-plate, under which a magnet rotates and moves the bar

thereby. After the mixing and heating process, the particles have about the suitable size for

application. So they are transferred to another solvent in order to stop the growth process.

At that point, particles of different sizes coexist in the solution. For application, monodisperse

particles are necessary, as then also the sum of attractive and repulsive forces between colloidal

particles is narrowly distributed and therefore the ferrofluid is homogeneous. Depending on the

desired particle size, oversized and undersized ones have to be extracted, whereas advantage is

taken of different properties of different sized particles. Bigger magnetic particles and aggre-

gates, which may also appear, possess a stronger magnetic moment. They stick to the magnetic

stir bar and are therefore easily removed by removing the bar. Then the larger of the remaining

particles are extracted by using a magnet with different properties. They are transferred to
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a different solvent. Adding e.g. ethanol destabilizes the smaller particles, they aggregate and

precipitate. The size of the precipitating particles is controlled by the concentration of the

added substance. Finally particles of a narrow size distribution remain. If the size distribution

is 5 % or lower, the particles qualify as monodisperse.

The size selection process is labor-intensive, an unknown amount of particles is extracted and

therefore the particle concentration afterwards is unknown. Since the concentration is impor-

tant for application, it has to be determined in a labor-intensive process: Using a magnet, the

particles are extracted from the solution and washed repeatedly in order to remove excess sub-

stances from the production process. Then the particles are dried in an evaporator such that

their weight can be determined. After the determination of the weight, the concentration of the

main substance, e.g. Co, within a particle is still unknown. By assuming a certain thickness

of the oxide shell and of the surfactant, which have different chemical and physical properties,

this concentration is determined and therefore the particle properties are known.

Once a solution of monodisperse particles is obtained, and the concentration is determined, the

colloidal solution needs to be stabilized.

Stabilization

In order to prevent particle agglomeration, repulsive forces are needed to overcome the om-

nipresent attractive Van der Waals forces and - in the case of magnetic particles - the magnetic

dipole-dipole interactions. This is achieved either through electrostatic or through steric repul-

sion. Electrostatic repulsion requires charged particles in an aqueous media, where positively

charged particles occur in acidic solutions and negatively charged in alkaline media. To provide

for steric repulsion, the particles are coated with a stabilizing layer. The shell may also protect

the particles against oxidation and erosion through acids and bases.

The binding between particles and stabilizers occurs either through physisorption, where sta-
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bilizers can be exchanged and therefore the particles can be transferred from non-aqueous to

aqueous systems. Or the binding results from chemisorption, where no further ligand exchange

is possible, but which is required e.g. for non-noble particles of larger size.

Depending on particle composition and application, the appropriate stabilizing technique has to

be chosen. Especially for medical application, one has to pay attention to a biocompatible layer.

Commonly used is coating by tensides, polymers, noble metals, silicate and carbon. Through

controlled oxidation metallic particles are coated by a non reactive oxide surface, which leads

to stable particle solutions.

Application

In medicine, biocompatible nanoparticles promise for new therapies in cancer treatment and are

used as carrier for a precise drug delivery. Moreover, new materials, integrated cooling systems

for refrigerators and new inks for inkjet printers could be constructed by using nanoparticles.

Because of the small dimension, they have a higher surface to volume ratio and hence they are

highly reactive and efficient catalysts, and magnetic ones are easy to re-extract.

Highly symmetric monolayers (i.e. two dimensional systems) of ferrofluids are of much interest

scientifically and of great importance technologically, as they promise to be a building block for

a new generation of magnetic storage devices. For practical application, ordered structures of

several square millimeters are needed.

Different methods are used to create particle monolayers on a surface, the most important are

described in the following.

Assembling

Drying a drop of colloidal solution on a flat substrate is the commonly used method of assem-

bling nanoparticles. The size of sheets of symmetric ordered particles depends on the surface,
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the stabilizer and the particle matter. If no external field is applied, it is called self assem-

bling (SA). By adding an external field, the symmetry and the size of the sheets are enhanced.

An electric field acts on charged particles, while for ferromagnetic or superparamagnetic par-

ticles a magnetic field is required. This most promising method is called magnetophoretic

deposition method (MDT). The strength and the direction of the magnetic field influence

the size and the shape of the particle sheets significantly, as shown in Section 2.1.2, figure 2.2.

Compared to SA, the interparticles distance is decreased, while the distance between clusters

of ordered particles is increased, cf. [7].

The ordering process takes some time to be completed, during which the solvent is needed, as

it allows the particles to move and to align according to the laws of physics.

Throughout this thesis, it is assumed that the particle movement requires a significant smaller

time than the drying process. Hence the ordering is quasi stationary compared to the drying.

Due to this reason the ordering process is considered time independent and thus a stationary

model is established.

2.1.2 Experiments

An observation made by the Nanoparticle Technology group at caesar motivated this thesis: if

a drop of colloidal solution is applied on the surface of a substrate and dried under the influence

of an external magnetic field, the pattern formed by the particles is determined by the direction

and strength of the applied field, see figure 2.2, which is taken from [8]: in the lower part it

shows transmission electron microscopy (TEM) images of ordered domains of monodisperse Co

particles with a diameter of 12 nm, where the standard deviation is about 5 %. In the upper part

the respective experimental assemblies are displayed. The particles are stabilized with toluene

or o-xylene, which are aromatic hydrocarbons. They are deposited on carbon-coated copper

grids using MDT. The results on the left of figure 2.2 are gained by applying magetic fields of
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Figure 2.2: Transmission electron microscopy (TEM) image, taken from [8], of ordered domains

of 12 nm diameter Co particles.

0.1 to 1 T parallel to the substrate. The size of the particle domains obviously increases with

increasing applied magnetic field. The results for a magnetic field of 0.1 to 0.8 T perpendicular

to the substrates are displayed on the right side of figure 2.2. As here the substrate is also

perpendicular to the ground, the formation of chains might result from gravitational forces.

These pictures show that the width of the chains increases with an increased applied magnetic

field, regardless whether the field is parallel or perpendicular to the substrate. Since according

to [8] by MDT two-dimensional arrays of near perfect symmetry up to 1 µm2 in size are received

on various substrates, the influence of the substrate is not considered in the model.

Also Hayes [10] observes that ferrofluids form chains or needles under the influence of a

magnetic field. These needles are big enough to be detected by light scattering, which was used

to produce pictures. For figure 2.3 an altering magnetic field was used, but he states that a

static field would lead to the same structures. The influence of the magnetic field is evident:

(A) is received without an applied field, (B) with an applied oscillating magnetic field of 5 ·10−4
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Figure 2.3: Micrographs of a ferrofluid taken from [10]

T at 60 Hz, (C) with an applied field of 2.1 · 10−3 T at 60 Hz and (D) with a field suddenly

decreased to zero. The long axes of the needles are parallel to the applied magnetic field.

There exist various simulation studies about the chainlike clusters observed in [10]. The

commonly used method is Monte Carlo Simulation (MCS), where the energy of a starting

configuration is minimized by a stochastic process, in which one particle is identified by one bit

of information. For example, Satoh et al. [11] successfully simulates the chainlike structure,

where the results show dependence on the strength of the applied magnetic field Hext, compare

figure 2.4. Not only the structures align according to Hext, but also the magnetic moments of

the particles, which are marked by a dash.

In this thesis a continuum model on a mesoscopic scale is developed instead of the discrete,

stochastic model on a microscopic scale. As by MCS the optimal position is individually

calculated for every particle, this method is limited by computational power to the simulation of
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Figure 2.4: Chains by Monte Carlo simulation, taken from [11].

systems consisting of only several hundreds of particles. By introducing a distribution function

u(x) not each particle is individually modelled, but the density of particles. This enables

simulations of bigger systems.

2.1.3 Basic modeling assumption

As stated in Section 2.1, a stationary continuous model is considered. The stationarity leads

to the assumption of a constant temperature.

The free energy of a ferrofluid that is influenced by an external magnetic field is searched. This

energy is to be minimized due to the laws of physics. The contributions to the free energy are

here divided into two parts:

• energy contributions due to magnetic phenomena and

• energy contributions due to particle distribution and interaction,
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where the latter may also cover magnetic phenomena.

The particles are assumed to form a monolayer on a surface, which is equivalent to a thin film.

This suggests that the magnetic energy is described by the theory of thin magnetic films, which

is called micromagnetism. The physical background of micromagnetism is outlined in Section

2.2, afterwards the magnetic energy contributions are derived in Section 2.3.1.

In order to calculate the energy contributions due to particle distribution and interaction,

one should keep in mind that a ferrofluid is isotropic and incompressible. These properties

are prerequisites for the application of the Cahn-Hilliard model of free energy of the phase

distribution of a two component system. This contributions are elucidated in Section 2.3.2.

2.2 Concepts of micromagnetism

The previous section deals with nanoparticles in general. Obviously, the behavior of magnetic

particles in an applied magnetic field is influenced by their magnetic properties. To understand

these effects, this section studies magnetism. Basic notations of magnetism, ferromagnetism

and micromagnetism are introduced and some basic magnetic principles are illustrated. For

further details which are beyond the scope of this short introduction see [12, 13]. [14] provides

a deep insight into magnetic microstructure.

The magnetization of a device is defined as the magnetic moment per unit volume. In the

following, both terms will be used. The concept of micromagnetism, which is the continuum

theory of magnetic moments, was first formulated over 70 years ago by Landau and Lifshitz,

see [15].
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2.2.1 Magnetism

The magnitude and the direction of a magnetic system is measured by the magnetic moment.

A ferromagnet has a spontaneous magnetic moment, i.e. a magnetic moment even without

an applied magnetic field. The existence of a spontaneous moment suggests that magnetic

moments are arranged in a regular manner. In a ferromagnet they are essentially parallel on a

microscopic scale. This alignment is quantum-mechanically explained by exchange forces [13].

Thermal agitation, which is opposed to the spontaneous magnetization, tends to destroy the

spin order, such that the spontaneous magnetization decreases if the temperature increases.

It vanishes completely above the critical or Curie temperature (TC = 1041 K or 768◦ C

for iron), when ordering is only obtained by applying an external magnetic field Hext. So

above TC the ferromagnet acts like a paramagnet, which classifies a material, within which an

applied external field is fortified. Single domain nanoparticles (see Section 2.2.3 for a definition)

exhibit similar behavior even below TC and above a blocking temperature: the magnetic

moments within each particle are aligned to form one “super”-moment, but because of thermal

agitation the supermoments change direction and therefore the system acts paramagnetic. This

phenomenon is called superparamagnetism.

Saturation magnetization and polarization

The maximal induced magnetic moment that can be obtained in an applied external magnetic

field Hext is called saturation magnetization (MS). The minimal field that is needed to

generate MS is the saturation field Hsat . Increasing Hext even further beyond Hsat does

not change the magnetization. The saturation magnetization is an intrinsic material property,

which is temperature-dependent and can be measured experimentally. Instead of the satura-

tion magnetization sometimes the saturation polarization JS = µ0MS is specified, where
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µ0 = 4π · 10−7 Vs/Am is the vacuum permeability. In literature, these notations are used in-

consistently and sometimes synonymously but in this thesis the definition above holds.

Values of the saturation magnetization and polarization are well known for bulk material. For

example, [12] specifies values for ferromagnetic crystals, where the saturation polarization ranges

from 1 T to 3 T, depending on the temperature and the matter: JS increases with decreasing

temperature.

For the saturation magnetization of nanoparticles, the stabilizing layer has to be considered.

Be D the diameter of the particle and t the constant thickness of the layer, which is assumed

to be non-magnetic. Then the saturation magnetization MS(D) of the particle is derived from

the bulk saturation magnetization MS0, cf. [16]

MS(D)/MS0 = 1 − 6t/D .

Obviously, this relation also holds for the saturation polarization JS(D) of a particle and the

bulk saturation polarization JS0. However, the thickness t is not known but a fitting parameter

to experimental results. Depending on the bulk material, it is about 0.5 - 0.7, see [16].

Assuming a particle size of 12 nm and t = 0.5 leads to JS(D) = 0.75 · JS0, thus the saturation

polarization of ferromagnetic particles is about 0.75 to 2.25 T.

2.2.2 Magnetic domains

The spontaneous magnetic moment of a ferromagnetic specimen may be much smaller than

its saturation magnetization. This effect occurs because the specimen are composed of small

domains, the so-called Weiss domains. Weiss domains are small areas in the crystal structure

of a ferromagnetic material with parallel - according to the local structure of the material -

oriented magnetic momenta. Within each domain the magnetization is locally saturated, but

the magnetic moments among different domains may not be parallel. The different domains are
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separated by domain walls. The size of these oriented domains is in the range of 10−3 to 10−5

mm, including a volume of about 106 to 109 atoms. By applying a magnetic field, the volume

of the favorably oriented domains grows at the expense of the unfavorably oriented ones. Under

the influence of a strong applied field, the magnetic orientation of all domains rotates towards

the direction of the field.

2.2.3 Magnetic particles

As the size of a magnetic specimen or a magnetic particle decreases towards some critical

particle diameter, the formation of domain walls becomes energetically unfavorable and the

particles consist of only one Weiss domain. Therefore they are called single domain, compare

[17].

Since the dimension of nanoparticles is approximately 10−5 mm, which is roughly the size of

a domain, the assumption of single domain nanoparticles is justified. Throughout this thesis

|Hext| ≥ |Hsat| is assumed, such that the magnetization of the particles is saturated. Only a

finite external field, i.e. |Hext| < ∞, makes sense physically.

In a dynamic magnetic system, hysteresis has to be considered, but this thesis concentrates on

a stationary model. The stationarity is also the reason why the temperature is assumed to be

constant within the system, so the saturation magnetization is constant, too.

2.2.4 Magnetic field

When speaking of magnetic field one has to distinguish between the B-field and the H-field,

which is also called auxiliary magnetic field. While the magnetic flux density, magnetic field

or magnetic induction B is measured in Tesla (T), the unit of the magnetic field intensity,

magnetic field strength or magnetizing field H is Ampere per meter. In free space, they are
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connected by the vacuum permeability µ0:

B = µ0 · H (2.1)

Equation (2.1) holds for free space. If a magnetic body is located in the magnetic field, the

magnetic field is changed. Be Ω ⊂ R
2 the domain occupied by a magnetic body, whose magnetic

polarization is J. It generates a magnetic field itself, the so-called stray field, which influences

the general magnetic field. Let χΩ be the characteristic function on Ω, which means χΩ(x) = 1

for x ∈ Ω and χΩ(x) = 0 for x ∈ R
2 \ Ω, and be Hd the generated stray field, then

B = µ0Hd + χΩJ . (2.2)

Gauss’s law for magnetism, which is one of Maxwell’s equations, states that magnetic monopoles

do not exist. In other words, the magnetic field B is solenoidal, which is expressed by div B = 0.

Employing equation (2.2) yields

div (µ0Hd + χΩJ) = 0 . (2.3)

In the absence of electric current and field - as in the considered model - Ampère’s law states

∇× Hd = 0 . Thus in this case, the magnetic field is irrotational. As ∇× (∇V ) = 0 holds for

any scalar valued potential function V , Hd is substituted by −∇V . It is to be noted that V

is defined on the whole space R
2. Outside Ω in the absence of magnetic matter, where m = 0,

equation (2.3) yields ∆V = 0.

2.2.5 Recapitulation

After discussing the physical background of magnetism and micromagnetism, the mathematical

context of the variables is specified.

This thesis considers the pattern formed by monolayered particles on a surface, therefore the

model is restricted from the in reality three dimensions to two dimensions. Be Ω ⊂ R
2 the
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domain occupied by the particle solution and be J(x) the local magnetic polarization vector,

which indicates the direction and the intensity of the local magnetization at position x. Inside

Ω, it is the product of the scaled and oriented local magnetization m(x), where |m(x)| = 1,

and of the saturation polarization JS , so

J(x) = JS · m(x) = µ0MS · m(x) . (2.4)

Due to the absence of magnetic matter, J(x) vanishes outside of Ω:

J(x) ≡ 0 ∀ x ∈ R
2 \ Ω . (2.5)

In real world, the magnetic moment is free to rotate in three dimensions, but in the model it

is only considered in a two-dimensional domain. Taking the projection on the two-dimensional

domain into account, the restriction |m(x)| ≤ 1 is sufficient.

The local magnetization is considered as a function m : Ω → R
2. Whenever needed, this

function is expanded to m : R
2 → R

2, where m(x) ≡ 0 holds for all x ∈ R
2 \ Ω.

2.3 Energy equation

As stated in Section 2.1.3, the energy of the studied problem consists of the magnetic energy,

which is explained in Section 2.3.1, and the energy due to particle interaction, which is explained

in Section 2.3.2.

2.3.1 Magnetic energy

According to the classical model for stationary micromagnetics due to Weiss, Landau, and

Lifshitz [14, 15], four different energy contributions add up to the magnetic energy of thin

layers:
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• the anisotropy energy,

• the Zeeman energy,

• the exchange energy and

• the stray field energy.

The energy functional E is minimized over an admissible set of magnetizations m : Ω → R
2.

Anisotropy energy

In a ferromagnetic crystal, certain crystallographic axes exist, the so-called easy axes, along

which the spontaneous magnetization is preferably aligned. The easy axes are connected to the

structure of the crystal. The anisotropy energy measures the deviation of the magnetic moment

from the easy axes.

Ean(m) =

∫

Ω

εloc
an (m) dx ,

where the local anisotropy density εloc
an (m) for cubic crystals is given by

εloc
an (m) = K1(m

2
xm2

y + m2
xm2

z + m2
ym2

z) + K2(m
2
xm2

ym2
z) ,

where K1 and K2 are material constants and the three-dimensional magnetization vector is

given by m = (mx, my, mz)
T .

In the case of a uniaxial anisotropy, where the x-axis is energetically favored, this can be

simplified to

εloc
an (m) = Ku(1 − m2

x) (Ku > 0). (2.6)

Since in this thesis the nanoparticles are considered free to rotate, they will align such that

the easy axis points in direction of the magnetic field. Therefore the anisotropy energy will be

minimized to be equally zero and will not be considered in the calculation.
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Figure 2.5: The Zeeman energy is lower in the case on the left side, where the magnetic

moments are aligned according to the external field Hext.

Zeeman energy

The applied external field Hext provokes the Zeeman energy

EZ(m) = −JS

∫

Ω

Hext · m dx . (2.7)

For a uniform external field, this energy is determined only by the average magnetization

and it is independent of the sample shape and the particular domain structure, compare [14].

Figure 2.5 illustrates the Zeeman energy for two different magnetization directions: It is lower

in the case on the left, where the magnetic moments are aligned according to the external field.

On the right, the magnetic moments are perpendicular to the external field.

|Hext| ≥ |Hsat| is assumed, which effects saturation magnetization in the particles.

Exchange energy

In a ferromagnet, a homogeneous direction of magnetization is energetically favored. Deviations

thereof invoke an energy penalty, which can be described by

Ex(m) = A

∫

Ω

|∇m|2 dx , (2.8)

see [14]. The operator ∇ generates the gradient of a vector, e.g. applied to a = (a1, a2)
T we

get in detail |∇a|2 = |∇a1|2 + |∇a2|2 .
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The so-called exchange stiffness constant A (dimension J/m or erg/cm) is a weakly temperature

dependent material constant. At constant temperature a constant value of A is taken. For

ferromagnetica it is within the range of 10−12 − 2 · 10−11 J/m, cf. [14].

Equation (2.8) is derived by a Taylor expansion of the isotropic Heisenberg interaction between

neighboring spins, compare [14]. Since the energy is independent of the direction of the change

relative to the magnetization direction, it is called isotropic.

Stray field energy

As derived in Section 2.2.4, the stray field Hd is defined by equation (2.3), which equals

div Hd = −div (χΩJ/µ0) .

Taking the scalar potential V , where ∇V = −Hd, and recalling J = JS · m = µ0MS · m leads

to

∆V = MS div (χΩm) (2.9)

∆V = div

(

χΩ

J

µ0

)

⇒ µ0

JS

∆V = div (χΩm)

Hd = −∇V = −JS

µ0

∇
(
∆−1div (χΩm)

)
⇒ V =

JS

µ0

∆−1(div (χΩm)) ,

where this equation holds in a distributional sense.

Now equation (2.9) is tested by V and integrated over the whole space R
2. Since the magnetic

field intensity decreases with increasing distance to the magentic device, it approaches zero

at infinity. Thus V is constant at infinity and is w.l.o.g. assumed to be zero. Therefore the

boundary condition for x → ∞ is given by V (x) → 0. Integration by parts and obeying the
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factor χΩ yields:

∆V = div

(

χΩ

J

µ0

)

∫

R2

∆V · V dx =

∫

R2

div

(

χΩ

J

µ0

)

V dx

∫

R2

∇V ∇V dx =

∫

R2

χΩ

J

µ0

∇V dx =

∫

Ω

J

µ0

∇V dx

Therefore energy of a body in its own field is given by

Ed(m) =
µ0

2

∫

R2

Hd
2 dx =

µ0

2

∫

R2

|∇V |2 dx = −1

2

∫

Ω

Hd · J dx (2.10)

=
1

2

∫

Ω

∇V · m JS dx

=
J2

S

2µ0

∫

Ω

∇(∆−1divm) · m dx .

Compendium

Summing up the different magnetic energy contributions given by (2.6), (2.7), (2.8) and (2.10)

leads to the classical model for the energy Ec
mag of stationary micromagnetics

Ec
mag(m) = Ean(m) + EZ(m) + Ex(m) + Ed(m)

=

∫

Ω

εloc
an (m) dx − JS

∫

Ω

Hext · m dx

+A

∫

Ω

|∇m|2 dx +
J2

S

2µ0

∫

Ω

∇(∆−1div m) · m dx

=

∫

Ω

(

εloc
an (m) − JS Hext · m + A |∇m|2 − 1

2
JS Hd · m

)

dx .

Since in this thesis Ean(m) = 0 is assumed, the energy is given by

Ec
mag(m) =

∫

Ω

(

−JS Hext · m + A |∇m|2 − 1

2
JS Hd · m

)

dx

=

∫

Ω

εloc
mag(m) dx .
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The classical model holds for a continuous thin film of magnetic material but the nanoparticles

are irregularly distributed on the surface and thus there is no continuous film. There are even

particle-free spots, compare figure 2.2. Since the local magnetic energy contribution depends

certainly on the thickness of the magnetic material, this thesis uses a new approach, which

expands the classical model accordingly. Therefore the local magnetic energy density εloc
mag(m)

is combined with the particle density u such that the newly developed magnetic energy contri-

bution is

Emag(m, u) =

∫

Ω

εloc
mag(m) · u dx .

2.3.2 Energy due to particle interaction

For the total energy, besides the magnetic energy contribution also energy due to the particle

interaction and distribution has to be taken in account. This contribution is derived in the

following section.

Particle fraction

The fraction of particles in the domain Ω ⊂ R
2 will be denoted by the continuous distribution

function u : Ω → [0, 1]. The value of u is bounded by 1, which equals 100% particles. u(x) = 0

indicates a particle-free spot x. The distribution function might be expanded to a function

defined on the whole space such that u : R
2 → R, where for x ∈ R

2 \ Ω the equality u(x) ≡ 0

holds. Since the amount or mass of particles is conserved,

∫

Ω

u dx = CΩ = cΩ · |Ω|

holds. Here cΩ denotes the particle fraction in the domain Ω with surface area |Ω|.
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Cahn-Hilliard equation

This thesis considers a particle-liquid mixture. It is a two component system, which is assumed

to be isotropic and incompressible. A general approach to calculate the free energy of a two

component system at a fixed temperature is proposed by Cahn and Hilliard, cf. [4, 5].

The free energy equals the integral of the local free energy over the considered domain. The

local free energy f is a function of the particle distribution u and its derivatives, which are

considered as independent variables: f(u,∇u,∇2u,∇3u, ...).

The function f is expanded in a Taylor series about f0(u) = f(u, 0, 0, ..) up to second rank terms.

The subscript zero indicates that the value is considered in a solution of uniform composition,

so f0 is the free energy of a solution of uniform composition u. This implies particularly that

f0 is independent of x. As the system is isotropic, the equation has to be invariant under

the symmetry operations of reflection and rotation. Therefore only the even-ranked terms are

considered and the expansion is reduced to

f(u,∇u,∇2u, ...) ≈ f0(u) +

[
∂f

∂∇2u

]

0

∇2u +
1

2

[
∂2f

∂|∇u|2
]

0

|∇u|2 , (2.11)

where the subscript zero indicates that the terms in brackets are evaluated at (u, 0, 0, ...).

Cahn and Hilliard [4] introduce the notation

[
∂2f

∂|∇u|2
]

0

:=

[

∂2f

∂ (∂u / ∂xi)
2

]

0

.

As the energy has to be invariant under the above-mentioned symmetry operations, the term

is equal for all i.

Integrating by parts and setting

ε2

2
= −

[
d

du

∂f

∂∇2u

]

0

+
1

2

[
∂2f

∂|∇u|2
]

0

change (2.11) to

f(u,∇u,∇2u, ...) ≈ f0(u) +
ε2

2
|∇u|2 .
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For a more detailed derivation see [4].

The Helmholtz free energy W (u) = f0(u) is specified in the following paragraph.

Integration over these two terms leads to the free energy according to Cahn and Hilliard

Epart(u) =

∫

Ω

W (u) +
ε2

2
|∇u|2 dx . (2.12)

Since the ordering of particles in a a sheet is regular and highly symmetric, this thesis considers

the Taylor expansion up to fourth rank terms. The equation still has to be invariant under

the symmetry operations of reflection and rotation, therefore only the even-ranked terms are

additionally considered, which are following:

1

24

[
∂4f

∂|∇u|4
]

0

|∇u|4 +
1

6

[
∂3f

∂|∇u|2∂∇2u

]

0

|∇u|2∇2u

+
1

2

[
∂2f

∂∇2u∂∇2u

]

0

|∇2u|2 +
1

2

[
∂2f

∂∇3u∂∇u

]

0

∇3u∇u +

[
∂f

∂∇4u

]

0

∇4u

By partial integration, this sum of five terms is reduced to a sum of three terms. For calculation,

any or a sum of these terms might be used, compare [19]. For this thesis, only the first term

containing |∇u|4 is chosen, as it possesses good analytical properties. In order to differentiate

between the two coefficients ε, the assigned subscript corresponds to the exponent and (2.12)

is expanded to

Epart(u) =

∫

Ω

W (u) +
ε2
2

2
|∇u|2 +

ε2
4

4
|∇u|4 dx (2.13)

Generally spoken,
ε2
2

2
and

ε2
4

4
are ’interaction’ lengths, which are small compared to character-

istic dimensions on the laboratory scale. Different values for ε2 and ε4 are tested numerically

in Section 4.4.3.

Helmholtz free Energy W(u)

The free energy density W is a smooth double well potential such that (see figure 2.6)
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Figure 2.6: A symmetric double well potential W (s) that satisfies constraints (2.14)

W (s) ≥ 0 ∀s ∈ [0, 1] and (2.14)

W (s) = 0 ⇐⇒ s ∈ {0, 1} .

A general approach is

W (u) = a [(1 − u) ln(1 − u) + u lnu] + b(1 − u)u

with dependent constants a and b(a). Typically this is reduced to a polynomial term. A

common and here also considered approach is to employ

W (u) = αu2(1 − u)2 , (2.15)

where the multiplier α controls the influence of the distribution on the total energy. W (u) as

defined in (2.15) is plotted in figure 2.6. It is obvious that the double well potential W (u)

is minimized by u = 1 or u = 0, therefore the particles are forced to form clusters, which is

expected from the experimental data.

2.3.3 Total energy

So summing up the different energy contribution which are derived in Sections 2.3.1 and 2.3.2

results in the stationary energy of magnetic nanoparticles in a fluid in the presence of an applied
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external magnetic field:

E(u,m) =

∫

Ω

ε2
2

2
|∇u|2 +

ε2
4

4
|∇u|4 + W (u) (2.16)

+

(

A |∇m|2 − JSHext · m − 1

2
Hd · J

)

· u dx

=

∫

Ω

ε2
2

2
|∇u|2 +

ε2
4

4
|∇u|4 + W (u) + εloc

mag(m) · u dx

The constraints arising from the model are |m| ≤ 1, 0 ≤ u ≤ 1 and

∫

Ω

u dx = cΩ · |Ω| .

The energy functional (2.16) describes the total energy of a closed system at a constant tem-

perature. The second law of thermodynamics states that the energy of such a system will be

minimized and the minimum is reached at the state of equilibrium. In the following chapter,

the existence of a minimum to this energy functional is shown.
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Mathematical analysis

The energy functional for a ferrofluid under the influence of a magnetic field is derived in the

previous chapter. Now a stable state of this system is searched. This is equivalent to the global

minimum of the considered energy functional.

This chapter proves the existence of a minimum of the energy functional

E(u,m) =

∫

Ω

ε2

p
|∇u|p dx +

∫

Ω

ε2
2

2
|∇u|2 dx +

∫

Ω

W (u) dx (3.1)

+

∫

Ω

A |∇m|2 u dx +
µ0

2

∫

R2

|∇V (m)|2 u dx −
∫

Ω

JS mHext · u dx

where u denotes the distribution function of the particles, m the magnetic polarization vector

and Hext the applied external field, which is bounded by the material dependent saturation

magnetization Hsat. The argument m of the scalar stray field potential V (m) is omitted in

the following, and further Vk := V (mk) is defined. The free energy density W (u) is a nonnega-

tive smooth double well potential, compare equation (2.14). All constants A, ε, ε2, JS , µ0 are

positive, and the values are specified in the previous chapter. In the solution space the terms

in (3.1) have to be defined. This requirement is met by employing W 1,p(Ω) × W 1,2(Ω; R2). Ω

29
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is assumed to be an open domain with a Lipschitz-continuous boundary, and therefore it is a

bounded.

The term

∫

Ω

ε2
4

4
|∇u|4 dx, which is introduced in the previous chapter, is substituted by the

more general term

∫

Ω

ε2

p
|∇u|p dx. In this chapter, the existence of a minimum of the energy

functional is proved for all p > 2, which obviously includes the case p = 4.

The constraints of the distribution function, 0 ≤ u(x) ≤ 1, and of the magnetic polarization,

|m(x)| ≤ 1 ∀x ∈ Ω ⊂ R
2, define the constraint sets Nu and Nm:

Nu = {u : Ω → R, measurable,
∫

Ω

u dx = CΩ, 0 ≤ u ≤ 1 a.e.} ⇒ ‖u‖L∞ ≤ 1 (3.2)

Nm = {m : Ω → R
2, measurable, |m| ≤ 1 a.e.} ⇒ ‖m‖L∞ ≤ 1 (3.3)

Thus

Xa = Xu × Xm =
(
W 1,p(Ω) ∩ Nu

)
×
(
W 1,2(Ω; R2) ∩ Nm

)

is the set of admissible functions. It is obviously a reflexive Banach space for p > 1.

Since W (u) is a double well potential, uniqueness of the solution cannot be proved.

Throughout this chapter c is used as a generic constant, which may change from line to line.

3.1 Direct method

Finding the minimizing function to a given functional, where the function has to satisfy certain

boundary conditions, is a central issue in the calculus of variations. It arises from many scientific

applications. Let

min{I(w) : w ∈ X} ,

where the functional I(·) is defined as

I(w) =

∫

Ω

f(x, w(x),∇w(x))dx
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for x ∈ Ω ⊂ R
n, w ∈ X, where X is a reflexive Banach space over Ω, and for a continuous

function f : Ω × R
m × R

m×n.

The classical approach to this problem is searching for functions w that solve the first variation

δI(w) = 0. Then the second variation is analyzed for positivity in a neighborhood of these

solutions. Thereby many necessary and sufficient conditions have to be studied.

The direct method on the other hand deals with the functional I(·) directly. In the process

a minimizing sequence wk is considered. The convergence of the minimizing sequence and in

particular also the existence of a minimum in X has to be guaranteed. Therefore the functional

needs to be coercive, i.e. I(w) → ∞ for ‖w‖ → ∞. If the functional is also sequentially weakly

lower semicontinuous, that is

I(w0) ≤ lim inf
k→∞

I(wk),

whenever wk ⇀ w0 weakly in X, then the following theorem, compare e.g. [20], states the

existence of a minimum:

Theorem 3.1. Let X be a reflexive Banach space and M ⊂ X a sequentially weakly closed

subset, I : M → R∪{∞} be a coercive and sequentially weakly lower semicontinuous functional

on M . Then m(I) = inf
w∈M

I(w) is attained at w0 ∈ M , i.e. m(I) = I(w0).

In the following section, it is proved that the functional E(·, ·) as stated in (3.1) fulfills the

preconditions of this theorem, and therefore a converging minimizing (sub)sequence exists.

3.2 Coercivity of E(·, ·)

In this section the coercivity of the considered energy functional E(·, ·) is verified.
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Proposition 3.2. The functional E : Xa → R as defined in (3.1) is bounded from below and

coercive.

Proof. The functional is bounded from below by c = −|JS | · ‖Hext‖L1 > −∞, as ‖u‖L∞ and

‖m‖L∞ are bounded by 1, and each of the remaining integrals is nonnegative:

E(u,m) =

∫

Ω

ε2

p
|∇u|p dx +

∫

Ω

ε2
2

2
|∇u|2 dx +

∫

Ω

W (u) dx +

∫

Ω

A|∇m|2 u dx

+
µ0

2

∫

R2

|∇V |2 u dx −
∫

Ω

JS mHext · u dx

≥ −|JS | · ‖u‖L∞‖m‖L∞‖Hext‖L1

≥ −|JS | · ‖Hext‖L1 = c ,

where the constant JS and the applied external field ‖Hext‖L1 are bounded for physical reasons,

see chapter 2.

Let (uk)k and (mk)k be sequences in Xu respectively Xm, such that ‖uk‖W 1,p → ∞ and

‖mk‖W 1,2 → ∞. Since uk and mk are bounded in the considered spaces, it is sufficient to

consider ‖∇uk‖Lp → ∞, ‖∇mk‖L2 → ∞. Therefore

lim
‖∇uk‖→∞
‖∇mk‖→∞

E(uk,mk) = lim
‖∇uk‖→∞
‖∇mk‖→∞





∫

Ω

ε2

p
|∇uk|p dx +

∫

Ω

ε2
2

2
|∇uk|2 dx +

∫

Ω

W (uk) dx

+

∫

Ω

A|∇mk|2 uk dx +
µ0

2

∫

R2

|∇Vk|2 uk dx −
∫

Ω

JS mk Hext · uk dx





≥ lim
‖∇uk‖→∞
‖∇mk‖→∞





∫

Ω

ε2

p
|∇uk|p dx +

∫

Ω

ε2
2

2
|∇uk|2 dx

+

∫

Ω

A|∇mk|2 uk dx − |JS | · ‖Hext‖L1





−→ ∞

which proves coercivity.
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So E(·, ·) is bounded from below and coercive. The following proposition narrows down the

space that contains the minimum.

Proposition 3.3. The minimum of E is contained in a sequentially weakly closed subset

Br ⊂ Xa .

Proof. Since one is interested in the minimum of the functional, it is sufficient to consider the

minimizing sequence (uk,mk)k only within the subset Br = {(u,m) : E(u,m) ≤ r} ⊂ Xa,

where r = E(ũ, m̃) and (ũ, m̃) ∈ Xa is arbitrary, such that Br 6= ∅. Therefore

min
(u,m)∈Xa

E(u,m) = min
(u,m)∈Br

E(u,m) .

It is left to show that the subset Br is sequentially weakly closed.

The sequence φk = (uk,mk), where |mk| = 1, converges weakly in W 1,p(Ω) × W 1,2
(
Ω; R2

)
, so

it converges strongly in Lp(Ω)×L2
(
Ω; R2

)
, as W 1,p(Ω)×W 1,2

(
Ω; R2

)
is compactly embedded

in Lp(Ω) × L2
(
Ω; R2

)
. Because of the strong convergence in Lp(Ω) × L2

(
Ω; R2

)
, the sequence

converges in measure. This implies the existence of a subsequence (φkn
)kn

that converges almost

everywhere, cf. [22]:

φkn
⇀ φ0 = (u0,m0) a.e. in Br .

Thus the subset Br is sequentially weakly closed and

inf
(u,m)∈Br

E(u,m) = lim inf
kn→∞

E(ukn
,mkn

)

3.3 Weak sequential lower semicontinuity

In the previous section we proved that the minimum of the energy functional E(·, ·) is obtained

in a sequentially weakly closed subset, so it is sufficient to consider only a minimizing sequence
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(uk,mk)k ⊂ Br, such that E(uk,mk) is bounded by r. If the functional is also sequentially

weakly lower semicontinuous on Br, then theorem 3.1 states the existence of a minimum in Br.

Proposition 3.4. The functional E : Xa → R as defined in (3.1) is sequentially weakly lower

semicontinuous.

Proof. Since Hext, u and m are bounded, (3.1) becomes

E(u,m) ≥
∫

Ω

ε2

p
|∇u|p dx +

∫

Ω

ε2
2

2
|∇u|2 dx +

∫

Ω

W (u) dx (3.4)

+ A

∫

Ω

|∇m|2 u dx +
µ0

2

∫

R2

|∇V |2 u dx −
=c>0

︷ ︸︸ ︷

|JS | ‖m‖L∞ ‖u‖L∞ ‖Hext‖L1

r + c ≥
∫

Ω

ε2

p
|∇u|p dx +

∫

Ω

ε2
2

2
|∇u|2 dx +

∫

Ω

W (u) dx

+

∫

Ω

A|∇m|2 u dx +
µ0

2

∫

R2

|∇V |2 u dx .

Since every summand on the right hand side is nonnegative, each summand is also bounded.

As W (u) is a smooth function, it is sequentially lower semicontinuous. The norm is also weakly

sequentially lower semicontinuous, thus for the first three terms sequential lower semicontinuity

is proved:

lim inf
k→∞





∫

Ω

ε2

p
|∇uk|p dx +

∫

Ω

ε2
2

2
|∇uk|2 dx +

∫

Ω

W (uk) dx





≥
∫

Ω

ε2

p
|∇u0|p dx +

∫

Ω

ε2
2

2
|∇u0|2 dx +

∫

Ω

W (u0) dx

Following theorem and lemma are needed to verify lower semicontinuity of the two terms

∫

Ω

|∇mk|2 uk dx and
∫

R2

|∇Vk|2 uk dx. Compact embedding is denoted by →֒→֒.

Theorem 3.5. Let Ω ⊂ R
n be an open domain with a Lipschitz-continuous boundary, n ≥ 2,

p ∈ [1,∞[, k ∈ N, kp > n. Then

W k,p(Ω) →֒→֒ C(Ω).
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See e.g. reference [23].

As k = 1 and n = 2 are considered, the assumption p > 2 is sufficient for the application of the

theorem. Then

uk ⇀ u0 in W 1,p ⇒ uk → u0 in C(Ω)

sup
Ω

|uk − u0| → 0

Lemma 3.6. Let (uk)k in W 1,p(Ω), p > n, where Ω ⊂ R
n. Let (fk)k in L2(Ω; Rd) and fk ⇀ f0

weakly. Then

lim inf
k→∞

∫

Ω

|fk|2uk dx ≥
∫

Ω

|f0|2u0 dx (3.5)

Proof. As a beginning, the term u0 − u0 is added to uk and the integral is divided into two

parts

∫

Ω

|fk|2uk dx =

∫

Ω

|fk|2u0 dx +

∫

Ω

∈L1

︷︸︸︷

|fk|2
∈L∞

︷ ︸︸ ︷

(uk − u0) dx

︸ ︷︷ ︸

(∗)

Then only the second integral is considered

|(∗)| ≤ ‖fk‖2
L2 · ‖uk − u0‖L∞ ≤ c‖uk − u0‖L∞

As (uk)k in W 1,p(Ω), uk → u0 in C(Ω̄)

lim
k→∞

‖uk − u0‖L∞ → 0 in C(Ω̄) ⇒ lim
k→∞

(∗) = 0 (3.6)

So

lim
k→∞

∫

Ω

|fk|2uk dx = lim
k→∞

∫

Ω

|fk|2u0 dx = lim
k→∞

∫

Ω

|fk

√
u0|2 dx (3.7)

Since u0 ∈ L2(Ω) and continuous, also
√

u0 ∈ L2(Ω). Having fk ⇀ f0 weakly in L2(Ω; Rd)

results in the weak convergence fk
√

u0 ⇀ f0
√

u0 in L2(Ω; Rd).
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The norm is sequentially weakly lower semicontinuous, therefore

lim inf
k→∞

∫

Ω

|fk|2uk dx = lim inf
k→∞

∫

Ω

|fk|2u0 dx = lim inf
k→∞

‖fk

√
u0‖2

L2

≥ ‖f0
√

u0‖2
L2

It is left to show that (∇mk)k and (∇Vk)k satisfy the assumptions of lemma (3.6), which

implies sequential lower semicontinuity of the energy functional (3.1).

Proposition 3.7. (∇mk)k in L2(Ω; R4) and ∇mk ⇀ ∇m0 weakly in L2(Ω; R4).

Proof. Since (mk)k in W 1,2
(
Ω; R2

)
, obviously (∇mk)k in L2(Ω; R4), compare A.1.

The boundedness of (∇mk)k is necessary to prove the weak sequential convergence. Therefore

an arbitrary small, positive lower bound on uk is considered: 0 < δ ≤ uk ≤ 1. Then

∫

Ω

δ|∇mk|2 dx ≤
∫

Ω

uk|∇mk|2 dx ≤ c

⇒ ‖∇mk‖2
L2(Ω) ≤

c

δ
,

where the upper bound of
∫

Ω
|∇mk|2uk dx follows from the constraint (3.4).

Proposition 3.8. (∇Vk)k in L2(R2; R2) and ∇Vk ⇀ ∇V0 weakly in L2(R2; R2).

Proof. Vk depends on mk as

JS

µ0

div(χΩmk) = ∆Vk ⇒ Vk = ∆−1

(
JS

µ0

χΩdiv mk

)

.

Since mk ∈ W 1,2(Ω; R2), div mk ∈ L2(Ω), compare A.1, and expanded to the whole space

div (χΩmk) ∈ L2(R2), from which it follows (Vk)k in W 1,2(R2).

Therefore (Vk)k =

(

∆−1

(
JS

µ0

divχΩmk

))

k

converges weakly in W 1,2(R2) and (∇Vk)k con-
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verges weakly in L2(R2; R2). (∇V )k is bounded as

µ0

2

∫

R2

|∇Vk|2 dx =
µ0

2
‖∇Vk‖2

L2(R2) ≥
µ0

2
‖∇Vk‖2

L2(Ω) and

µ0

2

∫

R2

|∇Vk|2 dx =
JS

2

∫

Ω

mk|∇Vk| dx ≤ JS

2
‖mk‖L2(Ω)‖∇Vk‖L2(Ω)

⇒ ‖∇Vk‖L2(Ω) ≤
JS

µ0

‖mk‖L2(Ω) ≤ c

At last the sequential lower semicontinuity of f = −
∫

Ω

JS Hextm u dx is proved. Since the

convergence uk → u0 in Lp(Ω) ⊂ L2(Ω) and mk → m0 in L2(Ω; R2) are strong, the term is

continuous in u and m and therefore

lim inf
k→∞



−
∫

Ω

JS Hextmk uk dx



 = −
∫

Ω

JS Hextm0 u0 dx (3.8)

So each summand of the functional E(u,m) is lower semicontinuous and therefore the functional

overall.

3.4 Conclusion

In the two previous sections, it was proved that the considered energy functional as defined in

3.1 is coercive, lower semicontinuous and attains its minimum on a sequentially weakly closed

subset if the additional restrictions 0 < δ ≤ u and p > n are assumed. Then theorem 3.1 holds

and therefore we can indeed conclude that a minimum (u0,m0) of the functional E(·, ·) exists

in the considered reflexive Banach space Xa:

E(u0,m0) = inf
(u,m)∈Xa

E(u,m) = inf
(u,m)∈Br

E(u,m)

= lim inf
kn→∞

E(ukn
,mkn

) ≥ E(u0,m0)
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Chapter 4

Simulation

This chapter shows and discusses the simulation results of the pattern formed by magnetic

nanoparticles on a surface under the influence of an applied external magnetic field. The model

is derived in Chapter 2, the existence of a solution is proved in Chapter 3.

As a start, the considered problem is restated and additional boundary conditions, which are

necessary for the numerical simulation, are established in Section 4.1. Then the equation is

discretized and the generation of the mesh is approached in Section 4.2. The resulting problem

is solved by means of global optimization. The basics of this method are outlined in Section 4.3,

where also the most important algorithms for global nonlinear optimization are introduced.

Section 4.4 discusses the numerical results.

39
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4.1 Model

Consider the domain Ω ⊂ R
2 to be occupied by the ferrofluid. It is given the following problem

min
(u,m)∈Xa

E(u,m) = min
(u,m)∈Xa

∫

Ω

ε2
4

4
|∇u|4 +

ε2
2

2
|∇u|2 + αu2(1 − u)2 (4.1)

+

(

A |∇m|2 − JS Hext · m +
1

2
JS ∇V · m

)

· u dx

= min
(u,m)∈Xa

∫

Ω

ε2
4

4
|∇u|4 +

ε2
2

2
|∇u|2 + W (u) + εloc

mag(m) · u dx

where the minimum of the free energy functional E is searched over a particle distribution u

and a magnetic direction vector m. The constraints arising from the model are the following:

the magnetic direction vector has the maximal length one, i.e. |m| ≤ 1, the distribution u is

between 0 ≤ u ≤ 1, and the concentration of particles in Ω is fixed such that

∫

Ω

u dx = CΩ.

Therefore the feasible set Xa is given by

Nu = {u : Ω → R, measurable, 0 ≤ u ≤ 1 a.e., and

∫

Ω

u dx = CΩ} (4.2)

Nm = {m : Ω → R
2, measurable, |m| ≤ 1 a.e.}

Xa =
(
W 1,4(Ω) ∩ Nu

)
×
(
W 1,2(Ω; R2) ∩ Nm

)
.

J = JS · m denotes the local magnetic polarisation vector. The stray field energy is given by

Hd = −∇V , where the potential V is given by the equation

∆V = div (χΩm) on R
2 . (4.3)

The applied external field Hext is assumed to be homogeneous over the considered domain.

4.1.1 Boundary conditions

For simulation boundary conditions are necessary for the variables u, m and also for the po-

tential V . Dirichlet boundary conditions are considered for u. The boundary of Ω is denoted
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by Γ. Neumann boundary conditions are assumed for the magnetic field.

As stated above, the magnetic potential V is defined at the whole plane R
2. It approaches

zero at infinity. In micromagnetism, two methods exist for the evaluation of equation (4.3):

In this thesis, V is evaluated on a compact subset Ω̃, where Ω ⋐ Ω̃ ⊂ R
2. According to [25]

diam Ω̃ ≈ 10 · diam Ω suffices to capture relevant magnetostatic energy contribution. The

potential V is constant on the boundary of Ω̃, therefore V = 0 is considered without loss of

generality, compare [26].

The second approach, which is discussed e.g. in [27], defines a convolution operator L with a

Newtonian kernel G such that

V := Lm :=

d∑

j=1

∂G

∂xj

∗ mj .

This approach holds for any arbitrary smooth magnetization m = (m1, ...,md). This thesis

considers m ∈ W 1,2(Ω; R2), so smoothness of m is not guaranteed. Since the method of

truncating R
2 to Ω̃ shows good results, the convolution operator is not further studied.

The boundary of Ω̃ is denoted by ΓV , further Ω̃ is partitioned in the closed domains Ω and ΩV ,

which share the boundary Γ such that Γ = Ω ∩ ΩV and Ω̃ = Ω ∪ ΩV , see figure 4.1.

Summarizing the constraints

u ≤ 1 (4.4)

−u ≤ 0 (4.5)

‖m‖L2 ≤ 1 (4.6)

∫

u dx = CΩ (4.7)

u = 0 on Γ (4.8)

∂m

∂n
= 0 on Γ (4.9)

V = 0 on ΓV , (4.10)
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Figure 4.1: Sketch of the domains Ω and ΩV . The boundary Γ belongs to both domains:

Γ = Ω ∩ ΩV .

where all constraints are linear except constraint (4.6). Be X the set of all feasible points (u,m)

that satisfy these constraints.

X :=
{
(u,m) ∈

(
W 1,4(Ω) × W 1,2(Ω; R2)

)
: constraints (4.4) − (4.10) hold

}

The set X is obviously convex.

4.2 Discretization

Problem (4.1) is solved numerically, therefore it is discretized. Thus the solution is not obtained

in the infinite dimensional space X but it is approximated in a suitable finite dimensional

subspace Xh. In Section 4.2.1 the triangulation of domains Ω and ΩV is defined, and in Section

4.2.2 the equation is discretized over this mesh using finite element methods and Xh is specified.
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4.2.1 Triangulation

It is assumed that the domains Ω and ΩV are open polygonal plane domains with a Lipschitz-

boundary, compare Chapter 3. Below, the triangulation is defined for Ω but of course it holds

for ΩV analogously. The expression ’triangulation’ is commonly used for all kinds of mesh, not

only for triangles. Throughout this thesis, discretization by triangles is used.

Definition 4.1. Be Th a triangulation of Ω such that Ω is divided into subsets or elements K.

These elements K of a feasible triangulation satisfy following three conditions:

1. Ω̄ =
⋃

K∈Th

K

2. int K1 ∩ int K2 = ∅ holds for each distinct K1, K2 ∈ Th

3. Every face of any element K1 ∈ Th is either a face of another element K2 ∈ Th or part of

the boundary ∂Ω = Γ. The boundary is covered by the boundaries of the elements.

The discretization or triangulation parameter h > 0 quantifies the maximal diameter of all

elements K ∈ Th. It characterizes the maximal length of an edge in the case of triangles. For

a given sufficient small parameter h there exist several different triangulations Th of Ω.

Definition 4.2. The triangulation Th is regular if one of the following conditions is met:

1. ∃ c > 0 such that the area of each triangle K is bounded from below by ch2,

2. ∃ m > 0 such that every triangle K is contained in a ball of radius h and contains a ball

of radius mh,

3. the minimum angle of each triangle is bounded from below by some constant > 0,

and all constants are independent of h.



44 Chapter 4. Simulation

The vertices of the triangles are called nodes.

When speaking of triangulation, this thesis always refers to a triangulation that satisfies both

definitions 4.1 and 4.2. Therefore also the triangular mesh used for calculation satisfies both

definitions. It is generated by the freeware finite element mesh generator gmsh [28].

4.2.2 Finite element discretization

The task of finding a solution of problem (4.1) in the infinite dimensional space X over the

domain Ω is now replaced by finding an approximate solution of the problem in a finite dimen-

sional subspace Xh. Be xj , j = 1...N, the nodes of the triangulation, where N denotes the

total number of nodes. Then in this thesis Xh is an approximate N -dimensional subspace that

is spanned on behalf of piecewise linear basis function ηj which have a compact support and

ηi(xj) = δij for i, j = 1...N .

The distribution function u and the magnetization vector m are approximated in Xh by a linear

combination of the global basis functions such that

uh(x) =

N∑

j=1

uj · ηj(x) and mh(x) =

N∑

j=1

mj · ηj(x) . (4.11)

Now let (x1, y1), (x2, y2) and (x3, y3) be the vertices of a triangular element K. Then locally

the linear basis functions are given by

ηj(x, y) =
1

Tz

det











1 x y

1 xj+1 yj+1

1 xj+2 yj+2











, where

Tz = det











1 xj yj

1 xj+1 yj+1

1 xj+2 yj+2











= 2 ·
∫

K

1 dx
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and the indices are modulo 3.

Using this basis functions, u and m are replaced in problem (4.1) by their piecewise linear

approximations (4.11). This replacement allows for elementwise integration, which is calculated

in appendix B.

The result is a nonlinear equation system in the 3 · N unknowns ui, m1i and m2i, where

i = 1...N and mi = (m1i, m2i)
T . This system is denoted by f(y), where y = (U ,M1,M2)

T

and U = (u1, ..., uN ), M1 = (m1,1, ...,m1,N ) and M2 = (m2,1, ...,m2,N ). Also the constraints

(4.4)-(4.10) are discretized. The resulting t equality constraints hi(y) are combined in one

t-dimensional vector such that h(y) = 0 and the m inequality constraints gi(y) are combined

such that g(y) ≤ 0.

Therefore the discrete form of problem (4.1) is given by

min
y

f(y) (4.12)

subject to h(y) = 0

g(y) ≤ 0

4.3 Global Optimization

Problem (4.1) is clearly nonlinear therefore also the discretized problem (4.12). The task is to

find the global minimum of a nonlinear optimization problem where the constraints are convex.

There exists no general algorithm to find definitely the global optimum of a given problem. If

a suitable starting vector, that is close enough to the expected global solution, is used, local

optimization methods provide for global optimal points.

This section starts by explaining the basic concepts of nonlinear constrained optimization in

Section 4.3.1 and continues by outlining the used algorithms in Section 4.3.2.
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4.3.1 Basics: nonlinear constrained optimization problem

The standard format of a nonlinear constrained optimization problem with a merit, objective or

target function f : R
n → R, inequality constraint g : R

n → R
m, where g(y) = (g1(y), ..., gm(y))

T
,

and equality constraint h : R
n → R

t, where h(y) = (h1(y), ..., ht(y))
T
, is given by

min
y

f(y) (4.13)

subject to g(y) ≤ 0,

h(y) = 0.

The dimension of the zero vector 0 is chosen according to the dimension of the (in)equality.

The problem treated in this thesis, problem (4.12), is obviously contained in this formulation

when y = (u,m). The here considered functions are also all clearly continuously differentiable

at all y ∈ X. The Fréchet derivative of the objective function f at y, Df(y) in short, is given

by

Df(y)v =

∫

Ω







−ε2
4∇
(
|∇u|2∇u

)
− ε2

2∆u + 2α
(
u − 3u2 + 2u3

)
+ εloc

mag(m)

−2A∇(u∇m) −
(
Hext JS + 1

2JS ∇V
)
· u







· v dx (4.14)

The equality constraint in equation (4.13) could be transformed to two inequality constraints:

h(y) ≤ 0 (4.15)

−h(y) ≤ 0.

Therefore, theoretical considerations are restricted to inequality constraints without loss of

generality. For computation, it is recommended to deal with problem (4.13) as the number of

constraints and the condition of the problem is increased by using (4.15) instead of h(y) = 0.
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Karush-Kuhn-Tucker equation, Lagrange Multipliers

The constrained optimization problem (4.13) is reformulated by means of Lagrange multipliers

µ = (µ1, ..., µm) and λ = (λ1, ..., λt) as an unconstrained optimization problem L(y,µ,λ),

which can be easily solved, e.g. by a gradient method.

L(y,µ,λ) = f(y) +

m∑

i=1

µigi(y) +

t∑

j=1

λjhj(y) (4.16)

Be f , g and h continuously differentiable at the feasible point ȳ. This condition is fulfilled by

the here considered function, see (4.14). Define the set of active inequality constraints

I(y) := {i ∈ {1...m} : gi(y) = 0} .

Problem (4.13) satisfies the linear independence constraint qualification (LICQ) condition at

a point y, if the gradients of the equality constraints ∇hj(y), j = 1...t, and of the active in-

equality constraints ∇gi(y), i ∈ I(y), are linearly independent. There exist different constraint

qualifications that follow from the LICQ condition. One of them might replace the LICQ con-

dition in the following statement, but some constraint qualifications hold only for special cases

of problem (4.13).

If ȳ is a minimal point where the LICQ condition is satisfied, there exist constants µ and λ such

that the Karush-Kuhn-Tucker (KKT) conditions (4.17)-(4.18) are satisfied. First, the point is

stationary

∇yL(ȳ,µ,λ) = ∇f(ȳ) +

m∑

i=1

µi∇gi(ȳ) +

t∑

j=1

λj∇hj(ȳ) = 0 (4.17)

then the primal feasibility

g(ȳ) ≤ 0

h(ȳ) = 0

and the dual feasibility

µ ≥ 0
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are satisfied. Finally the complementary slackness condition

µT g(ȳ) = 0 (4.18)

holds.

Barrier function

In order to assure that the constraints are satisfied in computation, a barrier or a penalty

function is added to the objective function. It is described in terms of inequality-constrained

optimization problems. Equality constraints are according to equation (4.15) transformable to

inequality constraints. Therefore without loss of generality the barrier function is defined only

for inequality constrained problems.

Be c(x) = (c1(x), ..cm(x))T . Given the problem

min
x

f(x) (4.19)

subject to c(x) ≤ 0 .

Be X the feasible set of (4.19)

X := {x ∈ R
n | c(x) ≤ 0 } . (4.20)

The inequality constraints c(x) ≤ 0 are transformed by means of positive slack variables

s = (s1, ...sm)T to equality constraints

min
x

f(x) (4.21)

subject to c(x) + s = 0,

s ≥ 0 ,

since equality constrained problems are easier to solve.

The feasible set S of problem (4.21) has the form

S :=
{
(x, s) ∈ X × R

m
+ | c(x) = −s, s ≥ 0

}
,
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and the strictly feasible set S0 of problem (4.21) is defined as

S0 :=
{
(x, s) ∈ X × R

m
+ | c(x) = −s, s > 0

}
.

It is assumed that S0 is nonempty.

Definition 4.3. A barrier function for problem (4.21) satisfies following properties

• It is smooth inside S0 ,

• it is infinitely everywhere except in S0 and

• its value approaches ∞ as s approaches the boundary of S0.

A barrier function φ(ξ) is said to be of the order λ if φ′ has a pole of order λ at ξ = 0.

The logarithm is a common choice as a barrier function. It satisfies all three properties

above. It is of order 1. For the given constraint set si ≥ 0, i = 1...m, the logarithmic barrier

function is given by

−
m∑

i=1

ln(si) .

Using this barrier function, an approximate problem to problem (4.21) is formulated

min
(x,s)

fσ(x, s) = min
(x,s)

(

f(x) − σ

m∑

i=1

ln(si)

)

subject to c(x) + s = 0,

s ≥ 0 ,

where σ > 0 is the barrier parameter. The functions −σ ln(si) create a barrier close to the

boundary of S0 where they increase to ∞. Therefore the values of the functions si are prevented

from getting too close to this boundary.

The barrier parameter σ is gradually decreased to 0, and then the solution converges to a
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solution of the original problem - if certain conditions are satisfied. These conditions are given

by lemma 4.4 and theorem 4.5, compare [30].

The corresponding Lagrangian is

L(x, s,µ,λ) = f(x) − σ

m∑

i=1

µi ln(si) +

m∑

i=1

µi (ci(x) + si)

The existence of a feasible starting point xs that satisfies g(xs) < 0 is necessary for the existence

of a feasible solution for all σ > 0. Following lemma, compare [30], states this condition:

Lemma 4.4. Assume that the feasible set of problem (4.13) is bounded. Then for every σ > 0

problem (4.22) has a solution (x(σ), s(σ)).

Note that the feasible set S0 is nonempty since (xs,−c(xs)) belongs to S0.

Observe that S is the closure of S0 and the entire feasible set of problem (4.21).

Then following theorem holds:

Theorem 4.5. Assume that the feasible set of problem (4.13) is bounded and S is satisfied. If

σk → 0 as k → ∞, then every accumulation point of the sequence (x(σk), s(σk)) is a solution

of problem (4.21).

Merit function

Adding one penalty term for each constraint to the objective function is another method to

eliminate the constraints. The penalty term is positive, if the constraint is violated, and zero

otherwise. The resulting new objective function is called penalty or merit function. Often, a

sequence of merit functions is considered, where the penalty coefficients grow at each iteration

an therefore constraint violations are penalized more severely.

If the interior point algorithm takes a conjugate gradient step, the step size and direction are

chosen such that a merit function is minimized, see section below.
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4.3.2 Algorithms

Matlab provides three algorithms for calculation, which are the most important optimization

algorithms: trust-region-reflective, interior-point and active-set. Since the consid-

ered problem is a large-scale problem and the trust-region-reflective is only suitable for

small-scale problems, only the latter two algorithms are appropriate for the considered prob-

lem. In the following they are introduced, whereas the in Matlab implemented models are

emphasized, which are outlined in [31].

Interior-point algorithm

The interior-point algorithm solves constrained minimization problems by using a sequence of

approximate minimization problems. These approximate problems are generated by applying

a barrier function. They are solved either by taking a direct - also called Newton - step or by

taking a conjugate gradient step.

Barrier function Adding slack variables and the logarithmic barrier function to problem

(4.13), the approximate equality constrained problem is obtained

min
(y,s)

fσ(y, s) = min
(y,s)

(

f(y) − σ
∑

i

ln(si)

)

(4.22)

subject to g(y) + s = 0

h(y) = 0

s ≥ 0 ,

where σ > 0 is the barrier parameter.

The corresponding Lagrangian is

L(y, s,µ,λ) = f(y) − σ

m∑

i=1

µi ln(si) +

m∑

i=1

µi (gi(y) + si) +

t∑

j=1

λjhj(y)
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If possible, the approximate problem (4.22) is solved at each iteration by a direct step, which

is explained below.

Direct step During a direct step, the corresponding KKT-equations

∇yL(y, s,µ,λ) = ∇f(y) +
m∑

i=1

µi∇gi(y) +
t∑

j=1

λj∇hj(y) = 0 (4.23)

∇sL(y, s,µ,λ) = −σ

m∑

i=1

1

si

+

m∑

i=1

µi = 0

h(y) = 0

g(y) + s = 0

are solved through linear approximation by Newton’s method. The resulting linear equation is

solved by an LDL factorization. This factorization is the most computationally expensive step.

During this step is determined whether the projected Hessian is positive definite and therefore

the approximate problem is locally convex near the current iterate. If this does not apply, the

algorithm takes a conjugate gradient step instead of this direct step.

Conjugate gradient step The conjugate gradient approach minimizes a quadratic approx-

imation to the approximate problem within a trust region.

Generally, for a trust region method an approximate function is minimized. This function has

to be close to the objective function for all points within a certain radius R around the current

point xk. The search of a minimum xk + ∆xk is restricted to points within this region, so

∆xk ≤ R is postulated.

Fist the Lagrange multipliers are calculated by approximately solving the KKT equations (4.23)

in the sense of least-squares, whereas µ is kept positive. Following notations are used

• Jg denotes the Jacobian of the inequality constraint function g

• Jh denotes the Jacobian of the equality constraint function h
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• S = diag(s)

• µ denotes the Lagrange multiplier vector associated with constraints g

• M = diag(µ)

• e denotes the vector of ones the same size as g

In order to obtain new solution (y + ∆y, s + ∆s)

min
∆y,∆s

∇fT ∆y +
1

2
∆yT∇2

yyL∆y + µeT S−1∆s +
1

2
∆sT S−1M∆s

is approximately solved. Following linearized constraints hold

g(y) + Jg∆y + ∆s = 0 , h(y) + Jh∆y = 0

and a norm of this constraints is minimized inside a trust region (radius R). Then the previous

equation is solved, again the solution is to stay within the trust region and s is kept strictly

positive.

The step size and direction are determined such that a merit function like

fµ(y, s) + ν‖(h(y),g(y) + s)‖

is decreased, where the parameter ν might be increased at each iteration.

Note For calculations in matlab, it is optional, whether bound constraints have to be satisfied

during every step or whether they may be violated during intermediate iterations. In this work,

the second option is chosen.
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active-set algorithm

Many methods for solving for constrained minimization problems are based on solving the

Karush-Kuhn-Tucker (KKT) equations

∇xL(x,µ,λ) = ∇f(x) +

m∑

i=1

µi∇gi(x) +

t∑

j=1

λj∇hj(x) = 0

g(x) ≤ 0

h(x) = 0

µ ≥ 0

µT g(x) = 0 .

The last two conditions imply that only Lagrange multipliers of active constraints have to be

determined, for inactive ones the Lagrange multipliers are zero.

Solving the KKT equations is basis of many nonlinear programming algorithms where Lagrange

multipliers are directly computed. Here a constrained quasi-Newton method is applied, which

provides for superlinear convergence. It is also known as Sequential Quadratic Programming

(SQP) method since a Quadratic Programming (QP) subproblem is solved at each major iter-

ation. QP is also called iterative Quadratic Programming, Recursive Quadratic Programming

or Constrained variable metric method.

Sequential Quadratic Programming (SQP) This method approximates the Lagrangian

function (4.16) of problem (4.13) at each iteration by a quadratic subproblem. The Hessian of

the Lagrangian is denoted by H,

H(x,µ,λ) = ∇xxL(x,µ,λ) = ∇xxf(x) +

m∑

i=1

µi∇xxgi(x) +

t∑

j=1

λj∇xxhj(x) .

For calculations in Matlab, at each step the Hessian is approximated numerically by using

quasi-Newton updating method. It is kept positive definite at each step.
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The nonlinear constraints are linearized, and then the quadratic programming subproblem is

given by

min
d

1

2
dT H(xk,µ,λ)d + ∇f(xk)T d

subject to ∇gi(xk)T d + gi(xk) ≤ 0, i = 1...m

∇hi(xk)T d + hi(xk) = 0, i = 1...t .

This problem is solved by using an active set strategy, which is also known as projection method.

The new iterate is

xk+1 = xk + αkdk ,

where the step length α is obtained by doing a line search such that a merit function is decreased

sufficiently. The used merit function is given as

Ψ(x) = f(x) +

t∑

j=1

rh
j hj(x) +

m∑

i=1

rg
i max[0, gi(x)] ,

and the penalty parameters are

rg
i = (rg

k+1)i = max
i

{

µi,
(rg

k
)i+µi

2

}

, i = 1...m

rh
i = (rh

k+1)i = max
j

{

λi,
(rh

k )i+λi

2

}

, i = 1...t .

The initial values for rg
i and rh

i are set to

rg
i = ‖∇f(x)‖

‖∇gi(x)‖ , i = 1...m

rh
i = ‖∇f(x)‖

‖∇hi(x)‖ , i = 1...t .

SQP methods are state of the art in nonlinear programming. They solve some nonlinear con-

strained problems faster than unconstrained problems as e.g. the feasible area is limited and

therefore there exists more information regarding the search direction and step length.
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Figure 4.2: Example of simulation results

4.3.3 Software

All calculations are done with Matlab version 7.8.0 (R2009a). For optimization the Matlab

solver fmincon is used, which is included in the optimization toolbox. This solver provides

for the use of interior point algorithm as well as active-set algorithm. In practice the interior

point algorithm is significant faster. Some calculations were done by both algorithms and no

difference in the resulting u and m were evident.

The mesh is generated by the freeware generator gmsh [28]. The finite element discretization

is based on the Matlab FEM program 50 lines of Matlab by C. Carstensen, which is explained

in [32]. The elementwise matrices are justified by calculations with Maple version 10.06 .

4.4 Results of simulation

In this section the results of the simulation are shown. Especially the influence of the different

parameters is illustrated. Figure 4.2 shows typical results. It displays the distribution function

u over the domain Ω = [−1, 1] × [−1, 1], where the unit is mm. The colorbar on the right

hand side of a figure assigns colors to the different values of u. It is interpolated between the
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maximal and the minimal value that occur in one figure. Thus the colorbar ranges from 0 to 1

on the figure to the left and from 0 to 0.3 on the figure to the right. The blue arrows illustrate

the direction and the effective strength of the magnetization m, which is obtained from the

simulation result multiplied by u.

The mesh consists of 190 triangular elements over Ω for simulation of u and m and of 2114

additional over ΩV for simulation of the potential V . The number of nodes is 114 respectively

1069.

Following table gives an overview over the investigated range of parameter values as well as the

optimal set of parameters:

name
ε2
2

2

ε2
4

4
α A MS Hext

range 10−12 − 108 10−12 − 108 10−15 − 1015 10−1 − 1010 100 − 107 10−1 − 1010

optimal 0.1 0.01 105 10−8 107 104

The left picture of figure 4.2 results if these parameters are used and the external field is applied

in x direction. If not otherwise specified, these values, an external field in x direction, and a

particle concentration of 8 % are used for simulation.

4.4.1 Convergence

Minimizing the functional (4.1) according to u and m successively instead of simultaneously

leads definitely to faster convergence as then the number of minimizing variables in one run

is significant lower. The results are similar, therefore the simulation is done by a successive

process over which is iterated. For most parameter sets the results of 3 and 5 iterations do not

differ, particularly not for the optimal parameter set.

A minimizing process should stop at a feasible local minimum. Because of computational in-

accuracy the numerical algorithm stops if one of the following criteria that indicate a local
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minimum is met: The change in the variable is less than tolerance T1. For constrained op-

timization the constraint violation has to be less than tolerance T2. For equality constraints

h(y) = 0 that means that ỹ is optimal if |h(ỹ)| < T2. The first-order optimality measure has

to be less than tolerance T3. This criterion is consistent with f ′(x) = 0 in the unconstrained

one-dimensional case. These criteria are met for most parameter sets.

In order to prevent infinite loops, the algorithm stops also if more than T4 function evaluations

are done. This happens sometimes during the first iteration, seldom also during the second or

later. An increase of T4 does not provide significant better results. The algorithm stops also if

T1 is met but not T2 as then no adjacent feasible point is found.

Thus not for every parameter set an optimal point where all convergence criteria are met is

found. A further investigation of the convergence criteria remains for future work.

A reduction of the functional value seems also to be a suitable indicator of minimization. But

the algorithm allows for provisional results that are not feasible. The algorithm does not stop

at such a point as then tolerance T2 is hurt but the function value might be lower at such a

point.

The simulation accomplished with the optimal parameter set converges by means of this criteria

on the standard mesh. If the optimal parameter set is used for simulation on a refined mesh,

convergence is not achieved, even though the tolerance criteria are modified slightly. This is

subject to further research.

4.4.2 Initial values

Even though a stationary model is considered, appropriate initial values are essential. Since

the experiments are started by dropping some ferrofluid on a surface, it is assumed that the

particles are gathered in the middle of the domain Ω. The magnetic moments are expected to

align according to the external field. Therefore, this direction is chosen at the beginning. The
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Figure 4.3: Influence of the interaction lengths ε4 and ε2.

simulation results support these initial values. A variation thereof remains for future work.

4.4.3 Parameters and their influence on the simulation

In order to examine the influence of the different parameters on the total energy (4.1) and to

obtain the best result, different values for these parameters are tested. The domain is measured

in mm, therefore the parameters are given in SI units and in units of mm.
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Interaction lengths ε4 and ε2

According to Cahn and Hilliard, cf. [4, 5], the interaction lengths ε4 and ε2 are small compared

to characteristic dimensions on the laboratory scale. They are multipliers to the gradients and

appear in the energy functional (4.1) in the terms
ε2
4

4
|∇u|4 and

ε2
2

2
|∇u|2. Thus they control

the influence of the gradient on the energy. Larger values of ε4 and ε2 provide for a smoother

distribution u since then any change in u is penalized which leads to a larger overall energy.

It is investigated

• change of ε2

• change of ε4

• simultaneous change of both parameters.

By employing values between 10−12 and 102 for
ε2
2

2
,

ε2
4

4
or both of them, no influence on the

distribution function is detected, see top left in figure 4.3. If the value is increased further,

the distribution function flattens as expected, compare figure 4.3, where the result is shown

for the values 103 (top right), 105 and 107. A value of 107 leads to a smooth distribution u

with a maximal value of 0.3. The figures show the results for a simultaneous change of both

parameters, the change of just one parameter leads to similar results.

The values assigned for further simulation are
ε2
4

4
= 0.01 and

ε2
2

2
= 0.1. These values are smaller

than the diameter of Ω, which is a characteristic dimension in this problem. It is given by 2.

The size of a particle, which is assumed to be 1.2·10−5 mm, is another characteristic length of

this problem. As stated above, a choice of the interaction lengths in this dimension would lead

to the same simulation results.
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Figure 4.4: Influence of multiplier α if the remaining parameters are equal one.
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Figure 4.5: Influence of multiplier α if standard values are assigned to the remaining parameters.
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Multiplier α

The multiplier α controls the influence of the considered free energy density W (u) = αu2(1−u)2

on the total energy. Because of this definition of W (u), it is expected that a large value provides

for u to be likely 0 or 1 and a low value leads to an even distribution. This influence is in evidence

if the remaining parameters are set equal one and only the particle concentration is 8%, see

figure 4.4. The values of α are increased by a factor of ten from 10 at top left to 106 bottom

right. A further increase of α up to 1012 does not change the result.

If optimal values are assigned to the remaining parameters, a variation of α from 10−15 to 106

does not influence the resulting u and m. Raising α above 106 changes the pattern of u: the

sides arch upwards and the distribution is flattened, compare figure 4.5. The values of α used

for this figures are from top left 105, 1010, 1012 and 1013. This result is in contrast to the

expected effect, which is received by setting the remaining parameters equal one, cf. figure 4.4.

A sign flaw, which would be a reasonable explanation, is excluded but the cause of this result

is not identified yet.

For simulation the value α = 105 is assigned.

Exchange stiffness constant A

The exchange stiffness constant A is a weakly temperature dependent material constant. As this

thesis considers a constant temperature, also a constant value of A is used. For ferromagnetica

it is within the range of 10−12 − 2 · 10−11 J/m, cf. [14], which equals 10−9 − 2 · 10−8 kg mm/s2.

The stiffness constant is necessary to calculate the exchange energy density A |∇m|2 u which

penalizes deviations from a homogeneous magnetization. Since the magnetization is already

nearly homogeneous and thus the gradient is everywhere on Ω close to zero, the influence of

a change in A on the result is estimated to be very small. Indeed, for 10−15 ≤ A ≤ 10−1 no
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change in the result was detected.

For simulation A = 10−8 is assigned which is within the admissible range.

Saturation magnetization MS

The saturation magnetization MS is the maximal magnetic moment that can be obtained in

an applied external magnetic field. It depends on the material, the size of the particle and the

size of the particle shell. A ferromagnetic particle with a diameter of 12 nm has a saturation

magnetization of approximately 600 to 1800 A/mm, cf. Section 2.2.1.

MS is needed for the calculation of two terms of the energy functional (4.1): for the Zeeman

energy density −µ0MSHext · m · u and for the stray field energy density 0.5µ0MS ∇V · m · u.

Further it is used to define the scalar potential V , which belongs to the stray field Hd, as V

is calculated by means of ∆V = MSdiv (χΩm). Thus its influence on the stray field energy

density is indeed quadratic. Therefore a strong influence on the particle distribution u and the

magnetization m is expected if MS is changed.

This influence is displayed in figures 4.6 and 4.7, where the value of MS is increased from 10−1

top left to 104 bottom right and from 105 top left to 1010 bottom right. The result for an

applied external field in y direction confirms that the optimal value is 107, which is larger than

expected. As MS should even decrease with decreasing particle diameter, this effect is not

explained yet.

External field Hext

The experimental results suggest that the direction the strength of the external field has a

strong influence on the particle distribution. Fields of 0.1 to 1 T were used for the exper-

iments. The strength of the external field determines the influence of the Zeeman energy

density −µ0MSHext · m · u.



4.4. Results of simulation 65

Figure 4.6: Influence of the saturation magnetization MS on the particle distribution.
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Figure 4.7: Influence of the saturation magnetization MS on the particle distribution.
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Figure 4.8: Influence of an external field Hext in x direction on the particle distribution.
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Figure 4.9: Influence of an external field Hext in x direction on the particle distribution.
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Figure 4.10: Influence of an external field Hext in y direction on the particle distribution.

An influence of the external field on the particle distribution is evident, compare figures 4.8 and

4.9, where the external field in x direction is increased by a factor of ten from 10−1 to 1010 T.

As expected, the particles form broader clusters under an enhanced field, which is clearly visible

for a field in x direction if e.g. the picture bottom right of figure 4.8 is compared to the picture

bottom left of figure 4.9. The alignment of the particle clusters according to the external field

starts at a strength of 104, which is higher than expected. A lower field does not suffice to

align the magnetic moments, either. The last picture of figure 4.9 shows a flat and smooth

distribution: the particles form one cluster under the influence of a very strong field.

Also for a field in y direction the formation of clusters according to the field direction and

strength is evident, compare figure 4.10 for Hext = 104 and Hext = 105.

The same good result as for Hext = 104 and MS = 107 is also achieved for Hext = 105 and

MS = 108 or Hext = 106 and MS = 109 but not for lower values of these two parameters.

This indicates a strong influence of the Zeeman energy as both parameters are needed for the

calculation thereof.
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Vacuum permeability µ0

The vacuum permeability is a physical constant that is defined as

µ0 = 4 · π · 10−7 Vs

Am
= 4 · π · 10−4 kg mm

A2s2
.

It influences the Zeeman energy density and the stray field energy density.

Since µ0 is a physical constant, a variation thereof is not investigated.

Particle concentration

Since the amount of particles is conserved during one simulation, the equality constraint
∫

Ω

u dx = c · |Ω| holds, where |Ω| denotes the area of Ω. So the particle concentration c

defines the percentage of the domain Ω that is covered by particles. It is changed in order to

confirm the optimal parameter set. The cluster size should be increased by a higher particle

concentration but the clusters should always be aligned according to the external field.

The simulation results for different particle concentrations are displayed in figure 4.11 for 4 %,

6 %, 8 %, 13 %, 19 % and 24 %. There is no alignment observable for a particle concentration

under 3 %, but for a higher concentration the alignment is always evident as expected.

4.4.4 Results

This chapter ends with the display of the optimal results for a field in x direction on the left

and a field in y direction on the right of figure 4.12. The particles form clusters that are aligned

to the applied external field.

One notices that the particle distribution is asymmetrically, e.g. for a field in positive x direction

the particles tend to cluster closer to the border y = 1 than to y = −1. But this asymmetric

effect does not go back to the influence of the external field as a field in negative x direction

produces nearly the same distribution. Particularly, the particles are also then clustered closer
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Figure 4.11: Different particle concentrations
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Figure 4.12: optimal results

to the border y = 1. Therefore, this asymmetric effect is rather up to numerical reasons.

Moreover, the particles are gathered symmetrically in the middle of the domain Ω initially.

Thus it is assumed that either the irregular mesh evokes this effect or that the algorithm

prefers one search direction for minimization. This effect is under current investigation.
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Summary and perspective

In this thesis, a new two-dimensional model is derived that describes the pattern formed by a

ferrofluid under the influence of an applied external magnetic field. The novelty of this model is

the combination of the concept of micromagnetism with a particle distribution function. This

function is controlled by the free energy model that Cahn and Hilliard [4, 5] proposed for a two

component system. In this work, the two components are the particles and the fluid containing

them. Moreover, the distribution function determines locally the intensity of the micromagnetic

energy contribution. The micromagnetic energy depends also on the local magnetization. Since

all particles are assumed to be magnetized to saturation, only a change in the direction of the

local magnetization is studied. Thus the minimum of an energy model that depends on the

distribution and the magnetization is determined. Mathematical analysis proves the existence

of a solution to the model by the direct method. The simulation results reinforce the validity

of the model as they are consistent with the theoretical predictions: they show a significant

influence of the strength and direction of the external field on the particle distribution and the

magnetic moment.

73
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However, the parameter set for optimal results consists of values for the external field and the

saturation magnetization that are significantly higher than physically reasonable. Thus the

aim of future research is to achieve comparably good results using parameter values that are

also experimentally observed. Since the mathematical model is a simplification of the distinct

physical forces, a modification of the model should be taken into consideration. Moreover,

changing the simulation process, the convergence criteria, or the initial values does not promise

to solve this problem. Neglected forces that include a coupling of the saturation magnetiza-

tion and the particle distribution may have the intended impact. Such a term might describe

strong particle-particle interaction because of magnetic effects which are not covered by the

Cahn-Hilliard model. Therefore such an additional term also makes sense physically. For the

numerical part, this thesis concentrates on programming an appropriate algorithm and adapting

the modeling parameters. Thus a modification of the energy functional has not been studied

and is left for future work.

The parameters were not varied on a finer mesh because this would lead to substantially in-

creasing computing time. First simulations on a finer mesh do not yet provide satisfying results.

Another focal point for future research is the achievement of results on a finer mesh that are

better than the results obtained in this thesis. Future work will also reconnect the simulation

results with the application. Then the considered model could be adapted to similar experi-

mental settings that meet practical or even industrial requirements and thus this work might

be carried from fundamental research to real life application.



Appendix A

Analytical help

A.1 Boundedness of divergence of m

Be m ∈ W 1,2(Ω, R2), where Ω ⊂ R
2, then ∇m : R

2 → R
2,2 and ∇m ∈ L2(Ω) and thus

‖∇m‖2
L2(Ω) =

∫

Ω

(
|∇m1|2 + |∇m2|2

)
dx (A.1)

=

∫

Ω

(
m2

1,x + m2
2,x + m2

1,y + m2
2,y

)
dx < ∞ (A.2)

Since the gradient ∇m is isomorphic to a function R
2 → R

4, it is w.l.o.g. considered as such

in the following.

Proposition A.1. If m ∈ W 1,2(Ω, R2), then divm ∈ L2(Ω).

75
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Proof.

‖divm‖2
L2(Ω) =

∫

Ω

(
|m1,x + m2,y|2

)
dx (A.3)

=

∫

Ω

(
m2

1,x + 2|m1,x| |m2,y| + m2
2,y

)
dx (A.4)

≤
∫

Ω

2
(
m2

1,x + m2
2,y

)
dx (A.5)

≤ 2

∫

Ω

(
m2

1,x + m2
2,x + m2

1,y + m2
2,y

)
dx (A.6)

= 2‖∇m‖2
L2(Ω) < ∞ (A.7)

Furthermore, if m is expanded to the whole space R
2, where m ≡ 0 on R

2 \ Ω, then obviously

the above holds also on R
2.
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Discretization

This appendix chapter refers to Section 4.2.2. Here the discretization of the considered energy

functional

E(u,m) =

∫

Ω

ε2
4

4
|∇u|4 +

ε2
2

2
|∇u|2 + W (u) (B.1)

+

(

A |∇m|2 − JSHext · m +
1

2
JS∇V · m

)

· u dx

=

∫

Ω

ε2
4

4
|∇u|4 +

ε2
2

2
|∇u|2 + W (u) + εloc

mag(m) · u dx

=

∫

Ω

εloc(u,m) dx

is derived, where Ω ⊂ R
2.

B.1 Basis functions

The equation is discretized in the N -dimensional approximation space Xh, which is spanned

on behalf of piecewise linear basis function ηj , j = 1...N , which have a compact support and

ηi(xj) = δij for i, j = 1...N . The distribution function u and the magnetization vector m are

77
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approximated in Xh by a linear combination of the basis functions such that

uh(x) =

N∑

j=1

uj · ηj(x) and mh(x) =

N∑

j=1

mj · ηj(x) =

N∑

j=1







mj,1

mj,2







· ηj(x) . (B.2)

Thus the coefficient vectors are defined as U := (u1, ..., uN )T , M1 := (m1,1, ...,m1,N )T and

M2 := (m2,1, ...,m2,N )T .

The scalar potential V is discretized analogously. It is calculated at each iteration step sepa-

rately by means of the relation ∆V = MSdiv (χΩm), see section ref. Since it is defined on the

domain Ω ∪ ΩV , additional basis functions ηj , j = N + 1..NV are necessary such that

Vh(x) =

NV∑

j=1

vj · ηj(x)

and V := (v1, ..vNV
) is the respective coefficient vector.

B.2 Elementwise calculation

Be Th a feasible triangulation over Ω under the terms of definitions 4.1 and 4.2 and be xj ,

j = 1...N , the nodes of Th, where N denotes the total number of nodes. Since Ω is a closed

polygonal domain Ω =
M⋃

k=1

Kk holds, where Kk, k = 1...M , are the triangular elements of Th.

Then

∫

Ω

εloc(u,m) dx =

M∑

k=1

∫

Kk

εloc(u,m) dx

holds. Thus in this appendix the integration is only shown for one triangle K, where the nodes

are w.l.o.g. (x1, y1), (x2, y2) and (x3, y3), and where the nonzero basis functions are η1, η2 and
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η3. These basis functions are locally given by

ηj(x, y) =
1

Tz

det











1 x y

1 xj+1 yj+1

1 xj+2 yj+2











, where

Tz = det











1 xj yj

1 xj+1 yj+1

1 xj+2 yj+2











= 2 ·
∫

K

1 dx

and the indices are modulo 3.

The functions u, m and V are replaced in (B.1) by their piecewise linear approximations

uh(x) =
3∑

j=1

uj · ηj(x), mh(x) =
3∑

j=1

mj · ηj(x) and Vh(x) =
3∑

j=1

vj · ηj(x) and thus the integral

over triangle K is given by

∫

K

εloc(uh,mh) dx =

∫

K

ε2
4

4

∣
∣
∣
∣
∣
∣

3∑

j=1

uj · ∇ηj(x)

∣
∣
∣
∣
∣
∣

4

+
ε2
2

2

∣
∣
∣
∣
∣
∣

3∑

j=1

uj · ∇ηj(x)

∣
∣
∣
∣
∣
∣

2

+ W





3∑

j=1

uj · ηj(x)





+




A

∣
∣
∣
∣
∣
∣





3∑

j=1

mj · ∇ηj(x)





∣
∣
∣
∣
∣
∣

2

− JSHext ·





3∑

j=1

mj · ηj(x)





+
1

2
JS





3∑

j=1

vj · ∇ηj(x)



 ·





3∑

j=1

mj · ηj(x)







 ·





3∑

j=1

uj · ηj(x)



 dx

B.3 Transformation

To conduct the integration, the triangle K is mapped to the standard triangle KS with vertices

(0, 0), (1, 0), (0, 1). The change of variables formula is stated in the following theorem:

Theorem B.1. Let U , V be open sets in Rn and Φ: U → V an injective differentiable function

with continuous partial derivatives, the Jacobian of which is nonzero for every x in U . Then for
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any real-valued, compactly supported, continuous function f , with support connected in Φ(U),

∫

Φ(U)

f(v) dv =

∫

U

f(Φ(u)) |det(D Φ)(u)| du. (B.3)

This theorem is applied on triangle K with vertices (x1, y1), (x2, y2), (x3, y3) and on the

corresponding basis functions. The transformation function is defined as

Φ(s, t) =







x1

y1







+







x2 − x1

y2 − y1







s +







x3 − x1

y3 − y1







t

Let (s, t) be the new coordinate in KS , where s+t ≤ 1 holds and x = (x, y) be the corresponding

coordinate in K. Then

Φ : KS → K ,

Φ(s, t) = x ,

|det(D Φ)| =

∣
∣
∣
∣
∣
∣
∣
∣

det







x2 − x1 x3 − x1

y2 − y1 y3 − y1







∣
∣
∣
∣
∣
∣
∣
∣

= Tz ,

and equation (B.3) is here

∫

K

f(x) dx = Tz

1∫

0

1−t∫

0

f(Φ(s, t)) ds dt
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