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Abstract

An increasing number of cardio-vascular procedures combined with the trend
toward less invasiveness of these interventions demand intra-interventional
imaging using flexible C-arm systems. Although high speed, dual source, 4D
CT angiography recently emerged as a diagnostic imaging modality with a
high negative predictive value, the ultimate goal for cardio-vascular imaging
is a 3D visualization of the intra-operative situation, combining diagnosis,
navigation, and quantitative evaluation.
The reconstruction of the coronary vasculature from angiographic C-arm

sequences, however, is an order of magnitude more complex than that of other
anatomy due to the inevitable motion blur associated with these acquisitions
and the small size of the structures of interest. A successful and dose-efficient
reconstruction algorithm therefore has to compute the cardiac motion in
addition to the structural information.
Based on that application, this thesis presents a novel method for purely

image-based 4D shape reconstruction without prior data. Adapting and
extending mathematical models that originated from other disciplines, new
methods for the reconstruction of dynamic shapes from arbitrary projections
are developed. The main contributions are the introduction of dynamic level
sets, combining implicit shapes with explicit motion information, and the
probabilistic derivation of a new kind of energy functional for symbolic shape
reconstruction. Experiments ranging from synthetic to phantom to real data
sets prove the feasibility and versatility of the approach.

Keywords
Cardiac cone beam CT, Dynamic shape reconstruction, Level set methods,
Active contours
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Zusammenfassung

Die zunehmende Zahl von kardiovaskulären Eingriffen sowie der Trend
zu minimalinvasiven Prozeduren verlangen nach intra-interventionellen
bildgebenden Verfahren unter Verwendungen von C-Bögen. Obwohl mitt-
lerweile schnelle, 4D-CT-Angiographie-Systeme mit zwei Röntgenquellen zur
diagnostischen Bildgebung verfügbar sind und dieses Verfahren einen hohen
negativen Vorhersagewert aufweist, bleibt eine 3D-Visualisierung der intra-
operativen Situation, die zugleich Diagnose, Navigation und quantitative
Evaluierung erlaubt, das Ziel.
Die Rekonstuktion der Herzgefäße aus angiographischen C-Bogen-Sequenzen

ist jedoch durch die unvermeidbare Bewegungsunschärfe dieser Aufnahmen
sowie die Größe der relevanten Strukturen eine ganze Größenordnung
schwieriger als die anderer Anatomien. Ein erfolgreicher und dosiseffizienter
Rekonstruktionsalgorithmus muss daher zusätzlich zur strukturellen Infor-
mation auch die Herzbewegung berechnen.
Von dieser Anwendung ausgehend, präsentiert diese Arbeit eine neue

Methode zur rein bild-basierten 4D-Formrekonstruktion ohne Vorwissen.
Durch Anpassung und Erweiterung mathematischer Methoden, die anderen
Disziplinen entstammen, werden neue Methoden zur Rekonstruktionen
von dynamischen Strukturen aus beliebigen Projektionen entwickelt. Die
Hauptbeiträge dieser Arbeit sind die Einführung von dynamischen Ni-
veaumengen, zusammengesetzt aus impliziten Oberflächen und expliziten
Bewegungsfunktionen, sowie die probabilistische Herleitung einer neuen Art
von Energiefunktional zur symbolischen Formrekonstruktion. Versuche mit
synthetischen, Phantom- und klinischen Datensätzen weisen die Machbarkeit
diese Ansatzes nach und zeigen seine Flexibilität.

Stichwörter
Kardiale Computertomographie mit C-Bögen, Dynamische Formrekonstruk-
tion, Level-Set-Methoden, Aktive Konturen
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Chapter 1

Introduction

This thesis strives to present novel methods for the reconstruction of dynamic
shapes from a series of projection images acquired by a single moving camera.
The methods that are developed for this setting are applicable in a very general
setting and are based on work in the image segmentation and the computer
vision domain. The original motivation for this problem, however, was the
3D reconstruction of the coronary arteries from angiographic X-ray sequences
as they are routinely acquired in catheter laboratories (informally called cath
labs). These interventions would benefit tremendously from the incorporation
of 3D information compared to the state-of-the-art 2D images.
A straightforward reconstruction from C-arm data, however, is hampered by

the “motion blur” resulting from the relatively long acquisition time of several
seconds. But this amount of time is required for taking enough images for a
3D reconstruction using a C-arm – the standard imaging device for cardiac
interventions. Considering that a normal human heart beats at least once per
second, one must not ignore the cardiac motion but is instead forced to estimate
and compensate for it during the reconstruction.
But before going into details of the methods developed throughout this thesis,

we will first focus on this specific application’s domain and review the medical
background as well as the image reconstruction approaches generally employed
there. After developing a new framework for 4D shape reconstruction in the
central part of this thesis, we will return to the initial application for testing
and evaluation purposes in Part III.

1.1 Medical Background

This section should give a very limited but focused overview of the cardiac
anatomy and its relevant physiology, the diseases associated with its blood
supply, and the minimally invasive procedures used to cure them.

1.1.1 Cardiac1 Anatomy and Physiology

The heart is essentially a combination of two pumps, each consisting of two
chambers (atrium and ventricle) that are compressed by the contraction of the
surrounding muscles in the myocardium. See Figure 1.1 for an illustration of
the heart chambers and their internal blood flow. The pressure differences
created by the heart keep the blood circulating through the body (where it is

1The term cardiac originated from the Greek kardi� for heart and has the meaning heart-
related.
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Figure 1.1: Heart chambers and blood flow (frontal view). (Image source:

http://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg. Origi-

nal author: Eric Pierce. License: http://creativecommons.org/licenses/by-sa/3.0/.)

deoxygenated) and through the lungs (for oxygenation). This overall cycle is
illustrated in Figure 1.2. The contractions are initiated by electrical signals
first triggering atrial and then ventricular contraction. This, in combination
with the four cardiac valves, results in the required pressure gradients (see
Figure 1.3). The electric signals can be recorded on an electrocardiogram
(ECG) which is not only used for diagnosis itself but can also give valuable
information about the current cardiac phase during image acquisition. In the
latter case, the standard approach is to use the R peaks only (see Figure 1.4),
normalizing each cardiac cycle and mapping every point in time to a periodic
RR-interval with percentage values. Such information about the cardiac phase
is of crucial importance during 3D reconstruction from data with a low temporal
resolution. It represents prior knowledge that can be used for coping with the
component of the cardiac motion that results from the contractions. Assuming
a totally periodic cardiac motion, however, is not possible. Even in the absence
of breathing motion, the coronary arteries do not reposition exactly between
adjacent heart beats according to Achenbach [1] (see also Figure 1.5). The
additional breathing and patient motion are usually minimized by asking the
patient to hold breath and keep still.

1.1.2 Coronary Heart Disease

Among the cardiovascular diseases (CVD), the coronary heart disease (CHD)
is the primary cause of death killing 7 million people per year worldwide,
closely followed by stroke, see the WHO’s heart and stroke atlas [169]. CHD
is actually the primary cause of death since the early 1990’s and now accounts
for approximately one third of all deaths in the U.S. (see the AHA statistics
[103]). It is generally more prominent in countries with a high life expectancy
but most severely affects developing countries in terms of healthy years of life
lost (see also [169]).
CHD is often caused by atherosclerosis leading to coronary stenosis which

describes obstructive lesions narrowing the lumen of the coronary arteries. In
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Figure 1.2: Schematic illustration of the circulatory system

Figure 1.3: Various signals of the left ventricle during a cardiac cycle.
(Image source: http://commons.wikimedia.org/wiki/File:Cardiac_Cycle_Left_Ventricle.PNG.

Author: User DestinyQx. License: http://creativecommons.org/licenses/by-sa/2.5/)
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Figure 1.4: ECG signal. (Image source: http://commons.wikimedia.org/wiki/File:

SinusRhythmLabels.svg. License: Unrestricted.)

Figure 1.5: Imperfect periodicity of cardiac motion, visualized by overlaying
angiograms from several heart beats. (Image derived from original work used by

courtesy of Achenbach [1].)
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Figure 1.6: Pathways for accessing the coronary arteries. (Image source: http:

//commons.wikimedia.org/wiki/File:Gray506.svg. Author: User Rhcastilhos. License: Public

domain.)

their acute form, such stenosis cause the acute coronary syndrome (ACS)
manifesting in chest pain and other symptoms. The narrowing (or even
total occlusion) of coronary arteries leads to a decreased blood supply of the
myocardium (the cardiac muscles), impeding the regular function of the heart.

1.1.3 Coronary Interventions

In contrast to open cardiac surgical procedures (like bypass surgery), this
thesis focuses on catheterized interventions performed in cath labs. These
interventions are mainly performed to widen narrowed coronaries using an
inflatable balloon (angioplasty) and to place stents. In order to perform such
percutaneous coronary interventions (PCI), a tube (called catheter) is inserted
through the femoral artery (in the groin) or the radial artery (in the wrist)
and navigated to the point in the ascending aorta where the coronary arteries
branch off (see Figure 1.6). Other catheterization procedures include ablations
and the widening or replacement of valves. In some of these cases, the catheter
is inserted through the venous system.
A prerequisite for PCI is the availability of real-time imaging for navigating

through the vascular system to the heart and within the heart’s own vascu-
lature. Some of the cardiac imaging modalities will be discussed in the next
section, esp. with respect to their applicability in a cath lab setting.

1.2 Current Cardiac Imaging Technologies

Depending on the medical history of a patient, different imaging modalities are
used for diagnosing cardiac problems. All of the following methods have their
pros and cons and all-purpose device does not exist.
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(a) CT scanner (b) Volume rendering of CTA
data

Figure 1.7: CT imaging. (Image (a) courtesy of Siemens AG. Image (b) reproduced by

courtesy of Antoine Rosset, M.D., LaTour Hospital, Geneva, Switzerland)

1.2.1 Cardiac CTA
Computed tomography (CT, from the Greek tìmoc meaning slice), when
employed for imaging vessels, is denoted by the acronym CTA which stands for
CT angiography (from the Greek angeion for vessel). Since the radio density of
blood is similar to that of surrounding tissue, contrast dye (usually containing
iodine atoms for X-ray angiography) has to be injected into the vessels of
interest. In the case of CTA, this is usually done via a small peripheral vein
that is easily accessible. This method of contrasting vasculature is therefore less
invasive compared to the catheter-based injection in angiography. The raw data
acquired along a helical source trajectory (see Figure 1.7(a) for a CT scanner) is
then reconstructed to obtain a 3D volume of radio density distributions. These
attenuation coefficients are given on the Hounsfield unit (HU) scale which is
defined by

HU(air) = −1000

HU(water) = 0 .

The 3D volumes have to be somehow projected to 2D for visualizing them on
a screen. The usual ways to achieve this dimensionality reduction are

• visualization of transversal slices (corresponding to the orientation used
in the reconstruction algorithm),

• visualization of other slices (sagittal, coronal, or oblique), called multi-
planar reformatting (MPR),

• volume rendering (see Figure 1.7(b)), and

• maximum intensity projection (MIP).

For cardiovascular diagnosis, CTA is primarily used for ruling out intravas-
cular lesions when a patient’s medical history does not indicate such diseases.
(Otherwise, the probable subsequent intravascular intervention also enables an
integrated diagnosis and treatment, making a prior CT superfluous.) Due to
the improvements of current CT systems in terms of speed and X-ray dose,



1.2 Current Cardiac Imaging Technologies 9

(a) C-arm (b) Contrasted coronaries in
angiogram

Figure 1.8: Angiographic X-ray imaging. (Image (a): Courtesy of Siemens AG. Image

(b): Source: http://commons.wikimedia.org/wiki/File:Hk_coronary_bionerd.jpg. Author:

Cath lab at Charité Mitte, Berlin, Germany. License: http://creativecommons.org/licenses/

by/3.0/)

there is a trend to routinely perform CTA, esp. in the United States. The main
advantages of CTA are the accuracy, acquisition speed, low level of invasiveness
(compared to catheter-based methods), and data richness. The disadvantages
are the comparably high dose of ionizing radiation and the additional time and
work flow steps needed for this purely diagnostic tool. The intra-interventional
use is tempered by the size of the apparatus (making it an exclusive imaging
device) as well as the unacceptable high dose if it were to be used for navigation.

1.2.2 Angiography / Fluoroscopy
For obtaining contrasted X-ray projections of the coronary vasculature, one
has to access these vessels through the body’s arterial or venous system with
a catheter in the same way as for an intervention. Injecting contrast material
into the vasculature of interest during a fluoroscopic (movie-like) acquisition of
X-ray projections (see Figure 1.8(b) for one frame) allows the cardiologist to
visualize the vessel lumen and also qualitatively estimate the blood flow. Due
to its real-time nature, this modality can be used for navigation but also for
diagnosis. The latter, however, is hampered by the projective nature of the
image data making it difficult to estimate lengths, diameters, and angles from
the images. The X-ray devices used for such acquisitions are usually mounted
on a steerable, C-shaped frame called C-arm (see Figure 1.8(a)). This enables
the cardiologist to easily acquire projections from several directions in order to
better cope with the foreshortening and overlapping of vessels.

1.2.3 Other Modalities

MRI
Magnetic resonance imaging (MRI) or nuclear magnetic resonance (NMR)
imaging is a non-invasive technique using the electromagnetic properties of
atomic nuclei. Although having a very low temporal resolution, the modality’s
non-invasiveness enables to acquire a lot of data without harming the patient.
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Figure 1.9: PET slice. (Image reproduced by courtesy of Antoine Rosset, M.D., LaTour

Hospital, Geneva, Switzerland)

In cardiology, cine-MR sequences created this way provide a dynamic display
and evaluation of the cardiac motion and perfusion. The complicated setup and
high costs, however, make it a specialized modality with limited applications.

Emission tomography (PET/SPECT)
The nuclear medicine imaging techniques positron emission tomography (PET)
and single photon emission computed tomography (SPECT) are both using
radiation emitted from radioactive tracer injected into the patient’s body. The
anatomy or physiology imaged can be influenced by the type of tracer that
is injected. The distinguishing properties of PET and SPECT are mainly
the type of radiation emitted and the acquisition geometry. PET uses fixed
rings detecting the gamma photons emitted in opposite directions from the
annihilation location of positrons originally emitted by the tracer. SPECT is
based on rotating cameras measuring the directly emitted gamma radiation in
a projective manner.
In cardiology, SPECT is used for myocardial imaging, e. g., for testing for

an ischemic heart disease. But the coronary vasculature cannot be analyzed
directly with PET or SPECT due to both modalities’ relatively low resolution
(see Figure 1.9). The myocardial imaging only provides indirect evidence for
reduced blood supply.

Ultrasound
Transthoracic echocardiography (TTE) and transesophageal echocardiography
(TEE) are both imaging modalities using ultrasound reflections (echos). The
former method is non-invasive since the probe is placed on the patient’s chest
while the latter is considered invasive because it requires to enter the ultrasound
probe through the patient’s esophagus. TTE and TEE enable a faster and
less invasive diagnosis of the heart’s condition but cannot be used for an
intervention inside the coronaries. See Figure 1.10 for some examples of cardiac
ultrasound images. There are also transducer arrays available that enable a 3D
image acquisition, particularly useful for understanding valvular and congenital
malformations. Doppler echocardiography is performed for assessing valve
function, cardiac output, and ventricular filling ratios. Note that the associated
velocity measurements are usually based on the phase shift, not on the Doppler
effect (which is synonymous for the frequency shift).
Intravascular ultrasound (IVUS) is different in that the ultrasound probe

is inserted via a catheter inside the vasculature, e. g., the coronary arteries,
making it as invasive and time-consuming as other catheterized procedures. It
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Figure 1.10: Transthoracic echocardiography views of a normal heart. (De-

rived work. Image source: http://commons.wikimedia.org/wiki/File:Heart_normal_tte_

views.jpg. Authors: Patrick J. Lynch, medical illustrator and C. Carl Jaffe, MD, cardiologist.

License: http://creativecommons.org/licenses/by/2.5/.)

Figure 1.11: IVUS image of a coronary artery, with color coding on the right
(atherosclerotic plaque burden shaded in green). (Image source: http:

//commons.wikimedia.org/wiki/File:IVUS_of_CAD_(1).png. Author: User Ksheka. License:

http://creativecommons.org/licenses/by-sa/2.5/.)

can be used to accurately assess plaque volume in the vessel wall as well as the
degree of stenosis (see Figure 1.11).

1.3 Rotational Angiography

Rotational angiography (RA) is a more recent imaging technique based on a
mounted and motorized C-arm acquiring a series of X-ray projections while
rotating around the patient. A prior calibration of the acquisition geometry
(see, e. g., Fahrig et al. [43], Fahrig and Holdsworth [42] for image-based
calibration methods and accuracy and Navab et al. [118] for the calibration and
reconstruction using projection matrices) then enables the 3D reconstruction
of the imaged anatomy. The quality that can be achieved with C-arms
is now similar to that of conventional CT scanners – mainly thanks to
the development of high-resolution flat panel detectors. The big advantage
compared to conventional systems is the open shape of the device which allows
to use it intra-operatively. However, due to the relatively slow motion of
the C-arm, only static objects can be reconstructed without motion blur.
This currently limits RA reconstructions to still anatomy like the brain, the
abdomen, or the extremities. Even for those applications, the patient has to
remain still (and hold her breath in case of abdominal imaging) during the
acquisition which typically takes 5 s to 10 s.
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1.4 Coronary C-Arm Reconstruction

Benefits
As mentioned before, C-arms are already the modality of choice for coronary
interventions. They are used in a fluoroscopic mode in cath labs for diagnosis
and treatment. In this setting, a near-time 3D reconstruction would provide
valuable information to the cardiologist in addition to the real-time 2D nav-
igation data. Such volumetric information would allow an exact assessment
and measurement of narrowings without the limitations of projective imaging
such as foreshortening and overlap. Even the real-time 2D imaging would
benefit from an intra-interventional volumetric reconstruction which helps to
find an optimal viewing direction (Green et al. [59]). This would not only
improve diagnosis but also treatment (e. g. in terms of stent choice). Moreover,
post-treatment evaluation and quantitative coronary angiography would also
benefit from more exact measurements. In addition to improving the accuracy
and making coronary interventions less operator-dependent, RA was shown to
decrease the amount of contrast agent needed, the radiation exposure, and the
acquisition time. See Maddux et al. [106, 107] and Garcia et al. [51] for such
considerations.

Problems
But compared to other reconstruction methods, a coronary reconstruction
algorithm has to address some additional issues, making it a particularly
difficult problem:
The breathing motion is usually minimized by asking the patient to hold

breath for several seconds. This, however, introduces a new problem in the
case of coronary reconstruction: Very often, the heart rate first slows down
and then accelerates during a continued breath hold. This is problematic
since an instable heart rate further complicates a reconstruction by decreasing
the temporal resolution of gating-based algorithms (Lauritsch et al. [99]).
The expiration state was found to be better suited than deep inspiration for
minimizing this effect in most cases (see, e. g., Lauritsch et al. [98], Movassaghi
et al. [113]).
The cardiac motion, on the other hand, cannot be avoided at all. It also

cannot be ignored since it takes place on a much faster time scale than the
acquisition. Instead, various strategies (based on ECG data and/or image
matching) exist for estimating the motion state of the heart and incorporating
this knowledge into the reconstruction. See Figure 1.12 for an illustration of
the acquisition setting.
Such motion modeling has to take into account another issue that arises out

of the irregularity of the cardiac motion in combination with the reconstruction
detail required to assess the coronary vasculature: The re-positioning “error” is
on the order of the diameters of the coronaries (see Table 1.1). This implies
that the cardiac motion cannot be assumed to be perfectly periodic.

Existing approaches and new approach
Traditional tomographic reconstruction methods like filtered backprojection or
algebraic reconstruction (see Chapter 2) have to be modified to be applicable for
cardiac cone beam CT. Other attempts for the reconstruction of the coronaries
are based on the assumption that the shape information is easier to obtain
than a fully tomographic reconstruction of the attenuation information. This
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t5

Figure 1.12: Acquisition setting for cardiac rotational angiography (Image

based on original drawing available at http://commons.wikimedia.org/wiki/Image:Heart_left_

lateral_coronaries_diagram.svg. Original authors: Patrick J. Lynch, medical illustrator; C.

Carl Jaffe, MD, cardiologist. License: http://creativecommons.org/licenses/by/2.5/)

Table 1.1: Average coronary artery lumen diameters of the normal population.
Generally (including men with left ventricular hypertophy and men with
dilated cardiomyopathy, all right-dominant) one can expect a range of
diameters from (0.7± 0.2) mm to (4.9± 0.7) mm. (All data extracted from
Dodge et al. [38]. Standard deviations range from 0.4mm to 0.6mm for
all data given below.)

Arterial brancha Coronary dominanceb
right/balanced left

RCA proximal
distal

3.9 mm 2.8 mm
3.1 mm 1.1 mm

LM 4.5 mm

LAD proximal
distal

3.7 mm
1.9 mm

LCx proximal
distal

3.4 mm 4.2 mm
1.6 mm 3.2 mm

aSee Table A.4 for abbreviations of the branch names.
bCoronary dominance is defined by the artery supplying the posterior interventricular artery
(PIV), a.k.a. the posterior descending artery (PDA). Approximately 80% to 90% of the
population have a right or balanced dominance.



14 Chapter 1. Introduction

lead to the development of dynamic triangulation methods using preprocessed
(vessel-enhanced) images. All these approaches are summarized in more detail
in Section 2.5. None of them is in clinical use routinely, probably because this
tough reconstruction problem still is not solved robustly enough.
This is why we developed some novel ideas on how to model the problem.

The methods to be presented in Part II share many of the ideas of other existing
approaches but have been designed with some central objectives in mind:

• The resulting algorithm should be as flexible as possible enabling the
incorporation of as much information and prior knowledge as is necessary
for obtaining a well-posed reconstruction problem.

• The robustness of a volumetric reconstruction should be combined with
the dimensionality reduction2 achieved by reconstructing symbolic or
shape information only.

• The reconstruction of shape and motion is not separable. Neither of the
two can be correctly estimated without knowing the other. Such coupled
problems can usually be solved better if treated simultaneously instead
of consecutively.

• Assumptions and prior knowledge should be included as soft constraints,
using as much additional input as possible without over-restricting the
solution to ideal cases.

We have chosen to use level sets as a shape model for representing the
coronary arteries. Although it is challenging to develop suitable reconstruction
energies, there are various reasons for favoring them over explicit shape models
like point sets or snakes. The other modeling problem addressed in this thesis
is the “dynamization” of these level sets – traditionally only used to represent
static objects. In this case, we opted for an explicit representation of the motion
which greatly simplifies the incorporation of prior knowledge.
The various arguments, that lead to the choices summarized briefly before,

are all discussed in detail in Chapter 3, after a review of the existing approaches
for cardiac cone beam reconstruction in Chapter 2.

1.5 Contributions of this Work

The main contributions of this thesis are the novel methods developed for
dynamic shape reconstruction from probabilistic projections of arbitrary shape,
motion, and projection geometry. This includes two novel mathematical
formulations, one for obtaining dynamic shape models and the other for
reconstructing such shapes from a series of probabilistic projection images.
The new formulation for dynamic shape combines a static, implicit level

set shape model with an explicit motion model. The implicit shape definition
ensures the flexibility of the model – a feature which is of great value given
the unknown and highly varying configuration of coronary vasculature. The
explicit motion modeling, on the other hand, allows the incorporation of some
prior knowledge, esp. about the time-continuity of the reconstruction.

2The amount of input data required increases exponentially as the physical dimension of
the reconstruction problem increases (“curse of dimensionality”, see e. g., Bishop [9]).
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The other crucial part is the definition of an appropriate energy functional,
chosen so that its minimization yields the desired reconstruction. Contrary to
existing, volume-based formulations, we developed a new, ray-based similarity
measure. Although the resulting functional is mathematically and algorithmi-
cally challenging to optimize, it allows a more robust reconstruction of dynamic
scenes by not assuming any level of consistency in the input data.3
These methods – that are related to prior work in computer vision –

have been developed with a medical application in mind. Although the
results for the dynamic reconstruction of coronary artery trees from rotational
angiographic data are quite promising, the intention and value of this work
is the introduction of new methods for dynamic shape reconstruction. The
advantageous properties of the new formulations, namely the versatility in
shape and motion modeling as well as the robustness, make them a promising
ingredient for a variety of reconstruction problems.

1.6 Outline
• Part I provides the context for this thesis. After the introduction in this
chapter, the related work in tomographic reconstruction is reviewed in
Chapter 2.

• Part II mostly contains the original work of this thesis. After formalizing
the setting and describing the ideas in Chapter 3, we give a short
introduction to the theory of active contours in Chapter 4. Based
on active contours, we present novel shape reconstruction functionals as
well as dynamic shape models in Chapters 5 and 6, resp. These new
models are then combined to obtain formulations for a dynamic shape
reconstruction in Chapter 7.

• Part III shows the results obtained in the experiments (in Chapter 8)
and draws conclusions on the methods developed in this work as well
as in a broader sense on expected developments in medical image recon-
struction in general (in Chapter 9).

• Part IV is the appendix. Apart from the notation and nomenclature
in Appendix A it also contains all the mathematical definitions and
theorems used in this thesis in the remaining Appendices B to E.

3Compare this to volumetric-driven reconstruction functionals which have to have some
threshold for the number of projections that have to agree on seeing an object. This
threshold would become higher with the higher consistency achieved by the simultaneous
motion optimization.
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Chapter 2

Tomographic Reconstruction

This chapter summarizes the methods that are “traditionally” employed for
tomographic reconstruction as well as those that have been developed for the
specific application of cardiac cone beam CT. The formulations and models
developed during this thesis, however, are mostly based on methods not
commonly used in medical image reconstruction.

Remark. A further area of related work is the enhancement of vessels in angiographic
images (needed as a preprocessing step in shape reconstruction approaches). The
discussion of this well-established area of research is out of the scope of this thesis and
the reader is referred to the literature (e. g. see [89]). Furthermore, an introduction
to the theory of active contours is out of the scope of the collection of methods in
this chapter and postponed to Chapter 4, right before the related methods are used
in subsequent chapters.

2.1 Computed X-Ray Tomography

Most of the methods discussed in the following sections are used for tomo-
graphic reconstruction where one seeks to recover the attenuation field µ
(measured in units of inverse length like cm-1) from the radiation intensities

I(L) = I0 · exp

−∫
L

µ(X) dX

 (2.1)

measured on the X-ray detector for projection lines L. Equation (2.1) expresses
that the radiation I is subject to an exponential decay with the attenuation
µ(X) as variable decay constant. Note that this is only a model of the real
process of X-ray attenuation. Even major effects like beam hardening (see e. g.
Stonestrom et al. [160] for an attenuation equation modeling multi-spectral
beams) and scattering (esp. prominent in cone beam CT) are not included in
this approximation. The transmission value – the ratio of detector intensity I
to the (also known) source intensity I0 – is then

I(L)

I0
= exp

−∫
L

µ(X) dX

 ,



18 Chapter 2. Tomographic Reconstruction

a

Q

L(a,Q)

Figure 2.1: Illustration of the ray transform (Definition 2.1)

and applying a negative logarithm, one finally obtains

− ln
I(L)

I0
=

∫
L

µ(X) dX (2.2)

for the dimensionless attenuation integral over the line L. This attenuation
integral can also be expressed using the ray transform:

Definition 2.1 (Ray transform)
Let µ : Rn → R be a function with suitable smoothness properties and let

L(a,Q) = {X ∈ Rn : X = Q+ sa, s ∈ R}

be a line in Rn, parametrized by a point Q on the line and the normalized line
direction a (see Figure 2.1). The ray transform (also called X-ray transform)
P of µ along the line L is then given by

(Pµ)(L) =

∫
L

µ(X) dX

= (Pµ)(a,Q) =

∞∫
−∞

µ(Q+ sa) ds .

This operator is closely related to the Radon transform which will be introduced
later. In 2D they are identical.

Remark. Note that in our application (cone beam reconstruction) the projection
geometry is modeled by a series of projection operators P (·, tl) : R3 → R2 so that
the lines of integration are given by L(x, tl) = P−1(x, tl) (for the line corresponding
to pixel x in projection no. l).

Using Definition 2.1 and the shorthand notation

g(L) := − ln
I(L)

I0

for the normalized measurements we are now able to rewrite (2.2) using the
ray transform defined above to obtain

(Pµ)(L) = g(L) ∀L . (2.4)
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Assuming (2.2) perfectly models the physical process of X-ray attenuation
and intensity measurement1, this defines a relation between the unknown
attenuation µ and the measurements g. The methods traditionally employed
for the tomographic reconstruction problem of finding µ from (2.4) can be
grouped into

• analytic (filtered back projection and Fourier reconstruction),

• iterative (ART, SART, . . . ), and

• probabilistic (expectation maximization)

methods, where the latter two share the same order of precedent discretization
and subsequent inversion. Analytic methods, in contrast, are based on an
analytic inversion of the operator P in (2.4) and discretization is performed in
the very last step.
As mentioned before, this chapter can only give a brief introduction to

reconstructions methods known from the literature. The interested reader is
pointed to textbooks like Natterer [115], Natterer andWübbeling [116], Herman
[65], Kak and Slaney [83] and Buzug [19]. For a historical perspective, one
might also look at the original paper by Hounsfield [69] on the first system
assembled by Sir Godfrey Newbold Hounsfield2 or the independent work
on analytic reconstruction by Cormack [29, 30]. These two pioneers were
jointly awarded the Nobel Prize for Physiology or Medicine in 1979 for their
independent work and achievements in computed tomography. Apart from
them many others have independently and with different applications in mind
worked on tomographic reconstruction. Most notably, Radon laid a theoretical
foundation for analytic reconstruction in [132] which was, like other prior work
in analytic reconstruction, unknown to Cormack until years after he published
his work. Also Alessandro Vallebona should be mentioned for inventing the
first mechanical tomographic system already in 1930. By moving X-ray source
and film in opposite directions, projections were superimposed with only a
single plane (through the center of rotation) accumulating on the film. More
historical remarks can be found in Natterer and Wübbeling [116, sec. 3.9].

Remark. As an anecdotal note, it should be mentioned that the breakthrough
of CT was probably accelerated by The Beatles, who, through their unanticipated
success, flushed their record label EMI (Electric & Musical Industries Ltd.) with
funds. This enabled EMI’s Central Research Laboratories to fund Sir Hounsfield’s
initial prototype. With additional support from Britain’s Department of Health and
Social Security (DHSS) after the decline of the music industry, Hounsfield was then
able to bring the first so-called EMI scanner to market by 1972, only five years after
he started the project.

2.2 Analytic Methods

We will introduce the so-called analytic methods beginning with Johann Radon’s
2D-formulation and inversion formula deduced in 1917. Other methods like
filtered back projection (FBP), its generalization to cone-beam tomography

1Note that we neglected many effects like scattering, beam hardening, and noisy intensity
measurements here.

2Hounsfield actually employed an iterative reconstruction although the analytic methods
picked up quite soon afterwards and become an industry standard due to their lower
computational cost (only to be challanged by itearive methods nowadays again).
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n(α) = ( cosαsinα )

n⊥(α) =
( − sinα
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)
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L(α, q)

Figure 2.2: Illustration of the Radon transform (Definition 2.2)

by Feldkamp, Davis, and Kress, and Fourier reconstruction all share the idea
of first analytically inverting the forward problem before using the discretely
measured data. Discussing them in detail, however, is out of the scope of
this thesis and the interested reader is referred to Natterer [115, Sec. V.1] or
Herman [65] for details on the the methods presented in this and the following
sections. Natterer and Wübbeling [116] contains hints on how to implement
reconstruction algorithms numerically.

2.2.1 Radon’s inversion
For the purpose of summarizing analytic reconstruction methods, we will
restrict ourselves to 2D reconstruction. The projections involved can then be
formalized using

Definition 2.2 (Radon Transform in 2D)
Let µ : R2 → R be a function (a planar image) with suitable smoothness
properties and let

L(α, q) =
{
X ∈ R2 :

〈
X,n(α)

〉
= q
}

=
{
X ∈ R2 : X = q · n(α) + s · n⊥(α), s ∈ R

}
be a line in the plane, parametrized by the angle α its normal n(α) = ( cosα

sinα )
forms with the x axis and its distance q to the origin (see Figure 2.2). The
Radon transform R of µ along the line L(α, q) is then defined as

(Rµ)(L) =

∫
L

µ(X) dX (2.5a)

= (Rµ)(α, q) =

∞∫
−∞

µ
(
q · n(α) + s · n⊥(α)

)
ds . (2.5b)

Since L(α, q) = L(π + α,−q), the Radon transform has the symmetry
property

(Rµ)(α, q) = (Rµ)(π + α,−q) .
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(a) Original image (b) Sinogram data

Figure 2.3: Radon transform of a synthetic image.

Remark. The data emanating from multiple such transformations (x, y) 7→ (α, q)
is often called sinogram because single points get mapped to sine waves in (α, d)
space. Superimposition of several objects in the original space therefore appear
as blurred sinusoidal structures in Radon space (see Figure 2.3). The Radon
transform is equivalent to the classical Hough transform (invented for the analysis
of bubble chamber photographs by Hough [68] in 1959) in its modified form using the
angle/offset parametrization and given by Duda and Hart [39].

Note that the Radon transform is an integration over hyperplanes (i. e. over
lines in 2D and over planes in 3D). Therefore it can only be used for modeling
X-ray projections along lines in a plane. In the case of 3D reconstruction, the
data has to be re-sorted to reduce the problem to a series of 2D reconstructions
if possible (e. g. in spiral/helical CT). Another possibility is to use the ray
transform of Definition 2.1. This transform always describes projections along
lines (no matter what the image dimension is). It is especially needed in the
case of cone beam reconstruction as the data cannot be re-ordered into slices
anymore.
The inverse problem of computing the image function µ at a locationX from

its Radon transform Rµ can be solved using the definition of the mean value

FX(r) :=
1

2π

2π∫
0

(Rµ)
(
β,
〈
X,n(β)

〉
+ r
)

dβ (2.6)

of the line integrals of all tangents to the circle with radius r centered at the
fixed location X.

Theorem 2.3 (Inversion of the Radon transform)
An inversion of the Radon transform (2.5b) can be achieved by

µ(X) = − 1

π
p. v.

∞∫
0

1

r
dFX(r) = − 1

π
p. v.

∞∫
0

1

r
F ′X(r) dr ,

where FX(r) is the mean tangent integral as defined in (2.6). The first inversion
formula is given using a Riemann-Stieltjes integral. This can be expressed in
the second formula given enough differentiability of FX(r).

Proof. See Radon [132] or the error-corrected English translation Radon
[133].
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(a) Unfiltered backprojection (b) Ramp-filtered backprojection

Figure 2.4: Effect of filtering before backprojection. See Figure 2.3 for the
corresponding original and sinogram data.

Using Theorem 2.3 and equation (2.6) with Rµ = g yields the explicit and
analytically exact inversion formula

µ(X) = − 1

2π2
p. v.

∞∫
0

1

r

2π∫
0

dg

dr

(
β,
〈
X,n(β)

〉
+ r
)

dβ dr (2.7)

for µ(X) using all the line integrals g in the plane. Due to the complexity
of the inversion formula and the sparsity of the measured line integrals g, this
formula is not of direct practical use to CT reconstruction. But it can be used
as a starting point for deriving filtered back projection formulas.

2.2.2 Filtered back projection

The filtered back projection (FBP) gets its name through the insight gained
into Radon’s inversion formula when derived in another way (see Herman [65,
secs. 6.2 and 15.3]). This derivation is based on the identity

µ =
1

4π
R∗ Hq d

dq
(Rµ) , (2.8)

where R∗ is the adjoint operator of the Radon transform3 as defined in
Definition B.1 (a simple back projection) and Hq is the Hilbert transform
(see Definition B.2) w. r. t. the offset parameter q. Hq d

dq is known as ramp
filter and emphasizes higher frequencies of the projection data before the
back projection. This mathematically founded high-pass filter also practically
improves the reconstruction result compared to a simple, unfiltered back
projection (see Figure 2.4). Substituting Rµ = g on the right side of (2.8)
and using the Definition B.2 of the Hilbert transform turns the identity into
the reconstruction formula

µ = − 1

4π2
p. v.

∫
R

1

q

2π∫
0

d

dq
g
(
α,
〈
X,n(α)

〉
+ q
)

dα dq .

3Note that the multiplicative constant in (2.8) depends on how the back projection is exactly
defined.



2.2 Analytic Methods 23

This is identical to Radon’s inversion when adjusting integration boundaries
(cf. (2.7)).
Another example is based on the identity

(R∗wb) ∗ µ = R∗
(
wb ∗ (Rµ)

)
.

Inserting the measured line integrals g for Rµ on the equation’s right side and
choosing wb so that R∗wb approximates the Dirac distribution, one obtains

µ ≈ R∗(wb ∗ g) .

(R∗wb) ≈ δ is usually achieved using the frequency domain and Fourier trans-
form to find a well-suited function wb – depending on the desired visualization
result.
For a good overview of filtered back projection approaches, see Turbell [165].

Practical considerations when implementing FBP are found in Natterer and
Wübbeling [116]. FBP for cone beam geometry was tackled by Feldkamp,
Davis, and Kress [46] and modified by Wiesent et al. [170] to enable the use of
arbitrary projection matrices defining the acquisition geometry.

2.2.3 Fourier reconstruction

A third way of deriving an analytic inversion that should be mentioned is
the Fourier reconstruction. This approach starts by using the projection slice
theorem:

Theorem 2.4 (Projection slice theorem in 2D)
The projection slice theorem (a.k.a. Fourier slice theorem or central slice
theorem) states that the 1-dimensional Fourier transform of projection data
(transforming the offset parameter) is equal to a slice through the 2D-Fourier-
transformed original data, located at the origin and orthogonal to the projection
direction. This is expressed by the identity

(FqRµ)(α, ρ) = FXµ
(
ρ · n(α)

)
. (2.9)

On the right side of this equation, FX denotes the 2-dimensional Fourier
transform w. r. t. the Cartesian coordinates X whereas the Fourier transform
on the left side is applied in the offset parameter q only (yielding the frequency
coordinate ρ).

Remark. Since there are several possible definitions for the Fourier transform, we
fix the one given in Definition B.3.

Applying the inverse 2D Fourier transform to (2.9) and inserting the mea-
surements yields the explicit reconstruction

µ
(
ρ · n(α)

)
= F−1

X

(
(Fqg)(α, ρ)

)
. (2.10)

Fourier reconstruction is very efficient due to the availability of the Fast Fourier
Transform (FFT) but using (2.10) without further modifications results in
severe artifacts. With such modifications, Fourier reconstruction is comparable
in speed and quality to filtered back projection.
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Shepp and Logan [154] perform some comparisons between analytic (in
this case the Fourier reconstruction) and iterative reconstruction methods (in
addition to introducing the widely adopted Shepp-Logan phantom).
The governing thought for all the reconstruction algorithms presented so far

is that it is possible to find analytical and explicit inversion formulas that are
then discretized in the last step before applying them in a real setting. This
results in explicit computations that reconstruct the unknown image µ in a
single iteration. The drawback is that the rather strict assumptions are usually
not met by the data measurements, necessitating all kinds of corrections for
the data “defects” and preventing a straightforward application to irregularly
sampled or incomplete data.

2.3 Iterative Methods
In contrast to the analytic methods described in the preceding section, iterative
methods are based on a prior discretization and subsequent inversion of (2.4).
With the availability of relatively low-cost computational power, it seemed
practical to solve reconstruction problems numerically. With this focus on
numerical computation, it makes sense to first model the unknowns and data
measurements as they are represented in a computer on a discrete grid:
Let

gi := g(Li) , 1 ≤ i ≤ m
be the measurements and

µj = µ(Xj) , 1 ≤ j ≤ m

the unknown attenuation coefficients. The vector µ of all coefficients is the
linearized voxel volume (or pixel plane if working in 2D) that originates from
the discretization of the reconstruction domain on a rectangular grid with n
voxels with coordinates Xj , 1 ≤ j ≤ n.

Remark. Note that we have used the same symbols for the discretized variables as
for the continuous ones before. This duplicate usage is not confusing if the reader
considers that everything is discrete for the remainder of this section.

With these definitions, (2.4) translates to

n∑
j=1

aijµj = gi ∀ 1 ≤ i ≤ m ,

where aij is the contribution of voxel µj to the ith line integral. Stacking all
equations and collecting the weights in a matrixA ∈ Rm×n results in the linear
system of equations

Aµ = g . (2.11)

In order to have an (over-)determined system of equations, m >= n and rkA =
n are required. This is achieved by choosing the resolution of the discretization
so that there are less unknowns than measurements.
The values of the weights in the system matrix A depend not only on the pro-

jection geometry but also on the way the image domain is discretized and how
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the line integrals are approximated by summation. Advanced discretizations
(e. g. using Kaiser-Bessel basis functions, a.k.a. blobs) will not be discussed
here and we will assume constant values on each rectangular image element.
See Turbell [165, ch. 5] for an overview of ways to discretize line integrals.
The translation of integration to discrete summation will be subject of further
discussions in the following sections. Note, however, that the system matrix A
can be used to model all kinds of effects, not just a simple integration.
There is a wide variety of methods available for the solution of systems of

over-determined linear equations like (2.11). The goal, in fact, is to compute
the optimal solution in a least squares sense, i. e.

µ = arg min
µ
‖Aµ− g‖ . (2.12)

One approach is trying to solve the normal equation ATAµ = ATg. But it
is generally a bad idea to square A’s condition number that way. Another
solution would be to factorize A using a QR decomposition and obtain µ =
R−1

1 QT
1g. However, most of these methods are not applicable to our setting,

regarding the size of the problem: As of 2010, newer C-arm systems typically
produce about 200 projection images with 1000 px× 1000 px each, resulting in
approximately m = 2tighttimes108 measurements. The number of unknowns
in the attenuation volume then is in a similar range, e. g. n ≈ 1.3tighttimes108

for a reconstruction volume of (500 vx)3. Thus, the matrix A is of the size
“hundreds of millions, squared” and requires a fast, iterative solver.

Remark. See e. g. Herman [65, ch. 11] for details on the the methods presented in
this and the following sections and Mueller [114] for comments and the application
of iterative methods to cone beam CT.

2.3.1 Kaczmarz’ Method for Solving Systems of Linear
Equations

A suitable method to solve (2.11) was designed by Kaczmarz long before
medical image reconstruction was an application. In fact, his iterative method
is well-suited and more than just competitive (at least in its newer variations)
for solving large unstructured systems of linear equations or non-linear least
squares problems.
Kaczmarz’ original method [82] cycles through the lines of (2.11), increment-

ing the line number with the iteration index k and starting over with the first
line after m iterations. For each line r, the vector µ gets projected onto the
hyperplane 〈ar,µ(k)〉 = gr with aT

r being the rth row of A (see Figure 2.5).
This can also be interpreted as a gradient descent for (2.12) if only single lines
of A are taken into account at a time. Introducing a relaxation parameter
λ(k), the algorithm can formally be written as

µ(k + 1) = µ(k) + λ(k)
gr(k) − 〈ar(k),µ(k)〉

‖ar(k)‖2
ar(k) (2.13)

with r(k) = (k mod m) + 1. µ(0) is usually initialized with zeros, guaranteeing
convergence if the relaxation parameter is chosen so that 0 < λ(k) < 2. For
overdetermined systems of equations (as is usually the case in CT), Kaczmarz’

method converges to the minimizer of
∑n
r=1

(
gr−〈ar,µ〉
‖ar‖

)2

if λ(k)
k→∞−−−−→ 0.
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aT
1µ = g1

aT
2µ = g2aT

4µ = g4

aT
3µ = g3

Figure 2.5: Illustration of Kaczmarz’ method in 2D with λ(k) = 1

2.3.2 Algebraic Reconstruction Techique (ART)
Gordon et al. [57] introduced Kaczmarz’ algorithm for image reconstruction
and coined the name algebraic reconstruction technique (ART), apparently
being unaware of the relation of their work to Kaczmarz’ at that time and
independently developing an additive as well as a multiplicative version. Their
former, additive approach for an iterative solution of (2.11) is very similar to
Kaczmarz’ update equation (2.13) with λ(k) = 1. The main drawback of ART
as proposed in Gordon et al. [57] is the binary assignment of weights to the
system matrix A in the hit-or-miss fashion

aij =

{
1 : Li intersects voxel j
0 : Li does not intersect voxel j .

ART exhibits a quite fast convergence but also strong salt’n’pepper artifacts
in the reconstruction. This is due to the clod hopping construction of A and
can be easily overcome by simple interpolation in the reconstruction volume.

2.3.3 Simultaneous ART (SART)
Simultaneous ART was designed with the goal to reduce artifacts that result
when applying the ART as defined by Gordon et al. [57]. Published by Andersen
and Kak [5], SART mainly differs from ART in three aspects:

• In SART, the forward projection 〈ar(k),µ(k)〉 is no longer performed
using binary weights in A but by raycasting with linear interpolation.

• The system matrix’ weights computed during the forward projection by
linear interpolation are also used for weighting the updates.

• The updates are first computed for all pixels of a common projection
direction and then applied at once.
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The last change does not seem as important for reducing noise in the reconstruc-
tion and newer research actually suggests that random ordering of the updates
can be even more effective. The modified calculation of the system matrix A
is the crucial improvement that resulted in better algebraic reconstructions.
Comparing SART and the more commonly used filtered back projection

algorithms, Chlewicki et al. [28] conclude that SART has more potential in
the long run, esp. regarding limited data and the desire for dose reduction with
constantly increasing computational power.

2.3.4 Randomized ART

Observing that an ART-type algorithm will converge faster the more orthog-
onal the hyperplanes of successive iterations, randomized versions have been
proposed and successfully tested repeatedly in the literature. But only recently
has the convergence rate of such algorithms been quantified in some respect.
Strohmer and Vershynin [161] propose performing the Kaczmarz algorithm as
given in (2.13) but with a modified selection of the projection lines according
to the following random process:4

In each iteration, an equation r is chosen with a probability proportional
to ‖ar‖2. This can be formalized using the random variable R with the
distribution

P (R = r) =
‖ar‖2∑m
i=1 ‖ai‖2

.

Choosing r(k) in (2.13) as a realization of the random variable R yields an
expected exponential convergence according to Strohmer and Vershynin [161].

2.4 Other Tomographic Reconstruction Methods

In addition to the most widespread reconstruction algorithms for X-ray tomog-
raphy presented in the preceding sections, there are some other reconstruction
methods: In PET and SPECT, a probabilistic approach modeling the Poisson-
like distribution of annihilation events leads to the Maximum Likelihood Ex-
pectation Maximization (EM) reconstruction. This method was proposed in
its general form by Dempster et al. [37] and subsequently applied by Shepp
and Vardi [155] for emission tomography. Discrete tomography is a special
case of tomography where only projections along the lattice directions of a
rectangular grid with integral or binary attenuation coefficients (as opposed to
density functions) are considered. See e. g. Herman and Kuba [66], Natterer
and Wübbeling [116, sec. 6.3], and Gardner [52]. The latter reference is a
textbook for geometric tomography which is concerned with the reconstruction
of geometric objects from projections.

4In spite of the controversy (that can be followed up in vol. 15, pp. 431–440 of the Journal of
Fourier Analysis and Applications) between the group of the “ART co-inventor” Gordon
and the authors of the presented randomized version, the latter work deserves to be
mentioned as it establishes results on expected convergence rates.
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2.5 Existing Approaches in Cardiac Cone Beam
CT

In this section, we will review approaches developed for the reconstruction of
coronary artery trees. The vast literature on motion-compensated reconstruc-
tion for other anatomy (like the abdomen) as well as on helical CT5 or biplane
reconstruction will not be evaluated due to the inherent simplifications resulting
from the limited motion and/or increased temporal resolution. The same goes
for ventricular reconstruction due to its simpler shape and reduced topological
complexity as well as for triangulation from a limited number of projections
based on manual interaction (e. g., the selection of corresponding feature points
in two or more views).

ECG gating and standard reconstruction from complete data
Lauritsch et al. [98] introduce a multi sweep protocol of 3–6 forward and
backward runs of RA. This enables an ECG-gated reconstruction from enough
data without motion compensation. The temporal resolution depends on the
number of sweeps which equals the number of gates that can be chosen without
reducing the amount of data per gate. Heart rate variations decrease this
temporal resolution since larger gating windows have to be chosen in order to
obtain complete sets of projection images.

ECG-gated reconstruction from limited data
Movassaghi et al. [113] optimize (i. e., prolongate) the acquisition protocol
in order to improve retrospectively gated FDK reconstructions from at least
10–12 heart cycles during a single RA. Hansis et al. [60, 61] propose to
perform ECG-gated, iterative reconstructions specialized to cardiac C-arm CT
by incorporating prior knowledge like the sparseness and “tubeness” of the
coronary artery tree.

ECG gating and triangulation of coronary model
Movassaghi et al. [111] perform a semi-automatic centerline extraction in
projections of a reference phase in combination with epipolar constraints to
triangulate a centerline 3D model. This model is then also shaped using
automatic vessel extraction and measurements in the additional views. Jandt
et al. [76, 77] perform region growing and fast marching, resp., in 3D based
on the vesselness measures of all projections of a volumetric point in the same
cardiac phase. In [75] such 3D centerline reconstructions are then combined
by the authors to obtain a 4D motion vector field using projections from all
phases.

4D reconstruction with known motion
An a priori known motion vector field (MVF) greatly simplifies the 4D
reconstruction problem. Although not feasible as a stand-alone solution,
motion-compensating reconstruction algorithms can be part of other solutions
to the full problem, assuming that the heart motion is perfectly periodic and
estimated in a prior step. To this end, Schäfer et al. [141, 142] and Prümmer
et al. [129] developed motion-compensated FDK-like reconstruction algorithms
and Isola et al. [73] an iterative one using a known motion vector field. Blondel
et al. [11, 12] also present an ART-type, motion-compensated reconstruction

5Kachelriess and Kalender [80], Kachelriess et al. [81], and Grass et al. [58] are just a few
examples for early work on helical CT of cardiac anatomy using retrospective ECG gating.
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(using simulated DSA projections by creating masks from extracted vessels).

Retrospective ECG gating, triangulation, and 2D motion
compensation
Movassaghi et al. [112] rely on ECG gating, manual feature point selection, and
epipolar geometry to triangulate a 3D vessel model, then perform a motion-
compensation in 2D projection space, and finally compute a 3D reconstruction
from the deformed projection images. Hansis et al. [62] also apply the motion
correction in the projection space but compute the 2D warping functions
from a 2D-alignment of the vessel-enhanced input projections and the forward
projected coronary tree extracted from a gated reference reconstruction. Both
approaches have the drawback that a motion compensation in projection space
has no equivalence in reality. X-ray intensities do not have a physical meaning
anymore after a 2D warping.

Retrospective ECG gating, triangulation, and 3D motion
compensation
Blondel et al. [10] perform an automatic extraction of the coronaries’ center-
lines in several key frames and then reconstruct a 3D centerline model in a
reference phase while optimizing the extrinsic camera parameters in order to
compensate for the breathing motion (assuming it occurs along the body’s
main axis). Finally, a deformable motion is estimated by fitting the reference
reconstruction to the remaining projections and this motion field is then used
to compute a motion-compensated, ART-like tomographic reconstruction. In
their advanced work, Blondel et al. [13] extract the cardiac phase from the
high frequency part of the vertical motion detectable in the projection images.
After vessel extraction, a multi-ocular matching for a reference phase yields a
3D reconstruction which is subsequently again fitted to the projection data of
the remaining cardiac phases via motion optimization. The obtained motion is
again used for a motion-compensated tomographic reconstruction.

Subsequent reconstruction and motion estimation
Prümmer et al. [129, 130, 131] and Rohkohl et al. [134] compute a series of
retrospectively gated FDK reconstructions and then estimate a 4D motion by
non-rigid 3D-3D registration to be able to finally obtain a motion-compensated
FDK reconstruction. Using multiple sweeps for obtaining enough data for
several gated FDK reconstructions entails loosing some of the contrast agent,
dose, and time benefits of the rotational angiographic acquisition protocol.

Interleaved reconstruction and motion estimation
Assuming that the motion-compensated FDK reconstruction is a direct and
unique solution and can therefore be interpreted as a function of the motion
parameters, Rohkohl et al. [136, 137] optimize these parameters w. r. t. an
objective function measuring the dissimilarity in 3D and 2D, resp.

Simultaneous reconstruction and motion estimation
Schomberg [144] and Hansis et al. [63] perform a simultaneous reconstruction of
the attenuation volume and the motion using a Kaczmarz/ART-type algorithm.
This simultaneous approach better models the physical process of imaging a
beating heart but may lack enough cues for motion estimation, esp. from the
thin distal parts of the coronaries.





31

Part II

Methods
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Chapter 3

General Idea

The following few chapters present a novel approach to dynamic shape recon-
struction from non-synchronized, probabilistic projections. Before developing
the necessary mathematical formulations, we will first describe the problem of
cardiac cone beam reconstruction in computer vision terms and lay out the
reasoning behind our choices of methods.

3.1 Symbolic Reconstruction
A central assumption underlying this work is that a direct tomographic
reconstruction from cardiac cone beam data is not feasible due to the large
number of degrees of freedom that are sought. It is also evident from the
prior work in this area (see Section 2.5) that there is no consensus on the
most promising approach toward cardiac cone beam reconstruction yet. Both,
symbolic1 as well as tomographic approaches have been developed with neither
of them being fully convincing.
Given this situation, we opted to develop a symbolic reconstruction that is

robust and versatile, enabling a later integration with a tomographic recon-
struction (see Section 9.2). Such a symbolic reconstruction problem can be
classified using various terminology from the field of computer vision. It can
be described as

• the recovery of data from indirect measurements, i. e., and inverse prob-
lem,

• shape from probabilistic silhouette,

• single view reconstruction from a moving (calibrated) camera or multi-
view reconstruction from non-synchronous views (both with dynamic and
therefore inconsistent scenery),

• dynamic, deformable, indirect segmentation from projections, and

• scene-flow estimation from non-photometric projections.

Negatively expressed, what makes this setting particularly difficult is that

− there is no photometric information available (as in most stereo-vision
approaches),

1Symbolic reconstruction in this case denotes the reconstruction of structural (shape)
information from vessel-enhanced images as opposed to attenuation reconstruction from
the original X-ray images.
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(a) Projection #14

4°←→
67 ms

(b) Projection #15

84°←→
1403 ms

(c) Projection #36

Figure 3.1: Schematic illustration of the inconsistency vs. baseline trade-off
by showing epipolar lines of the same bifurcation point from temporally
and angularly adjacent (cf. (a) and (b)) and distant (cf. (c) and (b))
projections, resp.

− there is only a single, moving camera, and

− the scene is dynamic and its motion is non-rigid.

It is clear from the latter two points that the input projections are inconsistent
if the motion is not known. This results in a trade-off when estimating the 3D
position from two projections: If projections that are acquired within a short
time are chosen for reconstruction, the scene may be assumed to be static
and the projections consistent. This facilitates the matching of corresponding
points in the images but the short baseline results in a badly conditioned depth
estimation problem. This is illustrated by showing Figures 3.1(a)’s epipolar
line (in red) in Figure 3.1(b): The line – constrained to meaningful depth
values – perfectly hits the corresponding bifurcation point but with a high
depth sensitivity of 22 mm

px . Avoiding this problem by choosing a wider baseline
implies a greater temporal distance and therefore greater inconsistency which
also makes the matching difficult: Figures 3.1(c)’s epipolar line shown in blue
in Figure 3.1(b) allows a better depth estimation but the inconsistent scene
makes matching ambiguous.

3.2 Motivation for Using Level Sets

Deriving a new symbolic reconstruction method first requires improved shape
models. Based on the arguments given in the preceding section, a set of
requirements was deduced:

a) The shape model should be flexible enough to cover any configuration
of coronary vasculature despite the anatomical variations among the
population.

b) There has to be some kind of soft matching in the spatial domain (as
opposed to a hard triangulation).

c) The temporal smoothness should also be enforced by using appropriate
models.
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d) The reconstruction of the shape and motion shall be performed simul-
taneously because a separation of shape and motion estimation is not
feasible (“chicken and egg problem”).

Requirements a) and b) let us choose level sets for modeling the shape of the
vasculature. Level sets have the two nice properties that they don’t require
any explicit handling of the topology (as would be needed if the centerlines
were modeled using splines, e. g.) and that their values define a kind of smooth
transition from inside to outside by encoding the distance to the interface
between the two. The other two points (d and c) support dynamic shape
models that are to be optimized to match the given projections. Since level
sets are an Eulerian2 shape model, a temporally and spatially smooth motion
is also easier to achieve (by regularizing the densely defined motion) than if
using Lagrangian2 models.
Our approach of reconstructing a dynamic level set can be seen as an

intermediary between coronary modeling and tomographic reconstruction (see
Maddux et al. [106, Table 2]). Although working on shapes instead of
attenuation fields, the optimization variables are still defined on the whole
volume of interest, yielding the desired properties mentioned before as well as
some additional benefits:

• The volumetric modeling more closely resembles reality because the
coronary vasculature is attached to the heart and does not consist of
separate vessels.

• The implicitly represented lumen shapes contain more information than
centerlines and the distance values simplify measurements (e. g., of the
diameter). In addition, this kind of segmentation could be tightly
integrated with tomographic methods (see Section 9.2).

3.3 Related Ideas and Methods
Having chosen level sets for modeling the coronary vasculature, we briefly
review other work that is related from a modeling point of view.

Joint segmentation and registration
The idea of an integrated approach for jointly estimating more than one
unknown variable was also followed in other settings. The most prominent
example is the joint segmentation and registration of two images. This is to
say, not an atlas-based segmentation by registering a ground truth image with
attached segmentation to a new image, but rather registering two images and
jointly segmenting structures of a priori unknown shape. Yezzi, Zöllei, and
Kapur [176, 177] emphasize the advantages of combining segmentation and
registration into a single energy formulation. However, their work is not related
to stereo vision or reconstruction and they focus on rigid and affine motions
with only a mention of free form deformations.

Joint segmentation and motion estimation
Other joint approaches include the motion segmentation methods developed
by Cremers and Schnörr [34], Cremers and Soatto [35], Brox et al. [17], and
Schoenemann and Cremers [143] for single-view optical images. In this case,
2See Chapter 4 for the meaning of Eulerian and Lagrangian.
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an unknown optical flow or scene flow is estimated jointly with a partition of
the scene into regions of conforming motion. Cremers [31] uses both, explicit
(snakes) as well as implicit (level sets) shape models for realizing this motion
segmentation.

Level set reconstruction
In the reconstruction domain, level sets have further been directly used by
Yoon et al. [178] for the CT reconstruction of cross sections with a limited
number of intensities using multiphase level sets and by Whitaker [168] for the
reconstruction of surfaces from range data. Yu and Fessler [179] use level sets
to model the boundaries between various anatomical structures in emission
tomography and then apply an image gradient penalty that is mostly in effect
at the “inner parts” of these structures.

Curves in 3D
Before introducing our shape model of choice, it should be noted that there
exist various other ways to represent curved structures like vascular trees in 3D
(in addition to splines that are usually employed for centerline modeling): In
the level set domain, Ambrosio and Soner [4] and Lorigo et al. [105] represent
co-dimension 2 shapes with one level set function (only having non-negative
values then) whereas Buchard et al. [18] use two level set functions. Avidan
and Shashua [7] and Kaminski et al. [85, 84] give analytic methods for the
reconstruction of algebraically representable curves (e. g. motion paths of single
points) from projections, incorporating prior knowledge about the topology.
Such analytic methods, however, are very sensitive to noise and to deviations
from the simplifying path assumptions.

3.4 Components of a Dynamic Level Set
Reconstruction

The considerations of the previous sections lead to the development of a
new framework for 4D shape reconstruction based on three components (see
Figure 3.2), namely

• vessel enhancement in the angiographic projections,

• energy functionals for the level set reconstruction from probabilistic
silhouette images (see Chapter 5), and

• dynamic level sets (see Chapter 6).

The methods employed for vessel enhancement are well-known and have been
established for many years in the medical image processing domain. This is
why they are not covered in this thesis. The other two parts are the core
of the presented work and are solved using novel mathematical formulations.
These models were developed with the given cardiac reconstruction problem
in mind. At the same time, they are derived using very general formulations
before assembling the combined framework for our experiments. This ensures
a concise description as well as a potential applicability to other reconstruction
problems.
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Reconstruction Functionals

2D Vessel Enhancement

Dynamic Shape Models

Figure 3.2: Components of a dynamic symbolic level set reconstruction from
angiographic projections
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Chapter 4

Active Contours

Before going into the details of our dynamic shape reconstruction components,
readers not familiar with contour evolution methods (esp. level sets) might find
a useful introduction to this topic in this chapter.
Separating structures of interest from the background (as usually sought in

segmentation but also in shape reconstruction) can be achieved by modeling the
interface between them. If this separation is yet to be found according to some
given criteria, one has to start with an initial guess for the interface and then
evolve it so that the given criteria are better met. Other terms used for those
moving interfaces are active contours or evolving fronts. Since active contour
methods are not a “natural tool” for reconstruction, they are introduced in this
chapter.

Remark. See also Li et al. [101] and Chan and Vese [23] for a good classification of
level set methods.

4.1 Lagrangian Modeling
Snakes were first introduced by the seminal work of Kass, Witkin, and
Terzopoulos [86]. They define energies that, when minimized, drive a contour
according to internal (regularizing the shape of the contour) and external (e. g.,
image-based) forces. Since the solution of the derived Euler-Lagrange equations
yields an iterative process moving the contour, the authors coined the term
snake (due to the similarity of a moving contour in 2D with a moving snake
on the ground) for active contours.
More generally, let H be a hypersurface that is explicitly defined by

h :

{
S ⊂ Rn−1 → Rn

s 7→ h(s)
,

where n is the dimension of the domain we are working in (usually 2D or
3D) and s is a parameter (which is one-dimensional for curves in 2D and two-
dimensional for surfaces in 3D, see Figure 4.1). The set of all points on the
curve is then

H = h(S) .

In order to achieve a goal like segmenting an image, one now defines an
energy

E(H) = E(h) =

∫
S

fint

(
∇h(s),∇2h(s)

)
+ fext

(
I
(
h(s)

))
ds
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h(s)

s = 0s = 1

s = 0.5

Figure 4.1: Explicitly modeled contour

that depends on an internal term fint as well as an external term fext. The
internal energy component regularizes the hypersurface so that the result is
smooth. It usually contains some combination of first and second derivatives
of h and very often includes a measure of the hypersurface’s length or area,
resp. The other energy component covers influences from external data I, such
as images. Before explaining the further steps, we will introduce an example
problem and revisit it throughout the rest of this chapter:

Example 4.1
Assuming that one wants to segment a structure located at large gradients
of the 2D image I, an appropriate energy term would be

E(h) =

∫
S

[
1 + g

(
h(s)

)]
· ‖h′(s)‖ ds (4.1)

with S ⊂ R and g : R2 → R being a decreasing function of ‖∇I‖, e. g.

g(x) = e−‖∇I(x)‖ .

The first addend in functional (4.1) measures the overall length and is
therefore a regularizer preventing too much curvature. The second addend
is the external energy, trapping the curve on large image gradients.

Remark. Note that the energy (4.1) was defined for an arbitrary parametrization
s. Using the arc length l, the same energy can be expressed as

E(h) =

L∫
0

1 + g
(
h(l)

)
dl .

But this representation can not be derived directly, since non-trivial length-
preserving variations do not exist. This is why a parameter transformation from l
to s was performed using the relationship dl = ‖h′(s)‖ ds (derived from the length
formula l(s) =

∫ s
s0
‖h′(ζ)‖ dζ).

For minimizing the energy E w. r. t. the curve h, we compute the variational
derivative of E w. r. t. h and use the result as update

dh

dτ
(s, τ) = −δhE (h; δs) (4.2)
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for h (see Appendix D.3 for details) over the artificial iteration time τ .

Remark (Notation for Gâteaux Differentials). Note that a common notation
is to write δE

δh
for the integrand I(h) of the Gâteaux differential∫

S

〈I(h), δh〉 ds .

This integrand could then directly be used as gradient and update for the curve h. In
this work, however, some directional derivatives will not be linear w. r. t. the direction
δh, preventing this notation. This is why we will mostly use the complete integral
denoted by δhE (h; δh) instead. Calculating the integrand at the point s is then
achieved by probing this differential with the Dirac distribution δs:

δE

δh
(s) = δhE (h; δs)

Remark. Although there are various optimization algorithms that are in many
situations much more efficient than a gradient descent, we will not elaborate on
these. The main reason is that we will have a hard time even finding something like a
gradient for the functionals developed in this thesis, precluding higher order methods.
On the other hand, investigating gradients helps in validating an algorithm’s effects,
analytically as well as numerically. For these reasons we will give the gradients of all
functionals.

Example 4.1 (continued)
The derivative of this energy functional w. r. t. the curve can be computed
using Corollary D.3 and then Proposition C.3 (for getting rid of the δh′1 and
δh′2 terms), yielding

δhE (h; δh) =

∫
S

([
1 + g(h)

]
· κ+ 〈∇xg(h),n〉

)
· ‖h′‖︸ ︷︷ ︸

=:F (h)

·〈n, δh〉 ds (4.3)

with

κ(s) :=
h′1(s)h′′2(s)− h′2(s)h′′1(s)

‖h′(s)‖3 and n(s) :=

(
h′2(s)
−h′1(s)

)
‖h′(s)‖

being the curvature (defined so that it is positive for counter-clockwise motion
in 2D) and the unit normal to the curve (defined so that it is pointing outward
for counter-clockwise curves), resp.

Remark. The differential of the chosen image gradient term g = e−‖∇I‖ can be
calculated as ∇g = −g · HI ·∇I (where HI is the Hessian of the image data), but
we will still keep the notation ∇g for brevity and generality.

Putting the energy derivative (4.3) into to steepest descent equation (4.2)
yields the update

dh

dτ
= −

([
1 + g(h)

]
· κ+ 〈∇g(h),n〉

)
· ‖h′‖ · n = −F (h) · n . (4.4)
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This only moves the curve normal to itself (which makes sense because
tangential movements would not change the curve’s shape and therefore also
not change the energy’s value). Furthermore, the part −

[
1 + g(h)

]
·κ moves

the curve inward (outward) for positive (negative) curvatures κ, smoothing
the curve. The speed of this curvature-decreasing motion is higher for smaller
image gradients under the curve. The part −〈∇g(h),n〉 attracts the curve
to higher gradients by projecting the appropriate update direction onto the
curve’s normal. In future references to this example, we will use the shortcut
F (h), see (4.3). The greater the magnitude of F , the faster will the curve
move at the corresponding point.

The abstract update equation (4.2) is not really useful if we do not have any
mathematical representation of h. In the next step, one has to parametrize
the curve in some way in order to be able to algorithmically update its shape.
This parametrization can either be done explicitly or implicitly and active
contours branch out into snakes (Section 4.2) and traditional level set methods
(Section 4.3) at this point.

4.2 Snakes
In order to drive the hypersurface H so that the energy E is minimized, one
needs to parameterize the curve h. One way to achieve that is to use an explicit
representation (like B-splines) with model parameters α so that

h :

{
S ×Rk → Rn

(s;α) 7→ h(s;α)

also depends on the parameter vector α, in addition to s. Since the final goal
is to minimize the energy E w. r. t. the parameters α, one is interested in the
derivatives

∂E

∂αi
= δhE

(
h;

∂h

∂αi

)
for applying updates

dαi
dτ

= − ∂E
∂αi

= −δhE
(
h;

∂h

∂αi

)
(4.5)

and therefore evolving h(s,α) w. r. t. the artificial time τ . Describing and
computing the evolution of such an explicitly modeled hypersurface is called
Lagrangian approach. It has the advantage that there is an explicit way to
compute the motion of points on the curve. For evaluating (4.5) one has to
sample the integral term along the current hypersurface at a number of points
and sum up their contribution to the parameters update.

Example 4.1 (continued)
Assuming that the structure we want to segment is circular, we model the
curve as a circle with radius r centered at

( cx
cy

)
h :

 [0, 2π)×R2 ×R+
0 → R2(

s,

(
cx
cy

)
, r

)
7→

(
cx
cy

)
+ r ·

(
cos(s)
sin(s)

)
.
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In this case, cx, cy, and r are the only model parameters to be optimized.
The respective derivatives are

∂h

∂cx
=

(
1
0

)
,

∂h

∂cy
=

(
0
1

)
,

∂h

∂r
=

(
cos(s)
sin(s)

)
.

Using the previous result (4.3) as well as ‖h′(s)‖ = r, n(s) =

(
cos(s)
sin(s)

)
, and

κ = 1
r , one obtains the gradient descent

dcx
dτ

= −δhE
(
h;

∂h

∂cx

)
= −

∫
S

F (h) · cos(s) ds

dcy
dτ

= −δhE
(
h;

∂h

∂cy

)
= −

∫
S

F (h) · sin(s) ds

dr

dτ
= −δhE

(
h;

∂h

∂r

)
= −

∫
S

F (h) ds

with F (h) =
[
1 + g(h)

]
+ r ·

〈
∇g(h),

(
cos(s)
sin(s)

)〉
.

Example 4.1 (continued)
Building a more general model can be achieved using B-splines to obtain

h :

{
[s0, s1]×Rk×2 → R2

(s,α) 7→ ∑k
i=1αiNi(s)

.

Now the B-spline coefficients α are the parameters to be optimized. The
respective derivatives are

∂h

∂αi,1
=

(
Ni(s)

0

)
and

∂h

∂αi,2
=

(
0

Ni(s)

)
.

The gradient descent is now

dαi,1
dτ

= −δhE
(
h;

∂h

∂αi,1

)
= −

∫
S

F (h) ·
〈
n,

(
Ni(s)

0

)〉
ds

dαi,2
dτ

= −δhE
(
h;

∂h

∂αi,2

)
= −

∫
S

F (h) ·
〈
n,

(
0

Ni(s)

)〉
ds ,

or, by assembling both derivatives in one equation (and assuming a
component-wise integration symbol)

dαi
dτ

= −δhE
(
h;

∂h

∂αi

)
= −

∫
S

F (h) ·Ni(s) · n ds .
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Snakes can be powerful in cases where strong geometric prior knowledge
can directly be incorporated into the model. However, a snake’s topology
is fixed and the explicit parametrization requires some extra work during
implementation. These two drawbacks can be overcome by translating the
results from the Lagrangian modeling into an Eulerian framework as explained
in the next section.

4.3 Lagrangian to Eulerian – Classical Level Set
Methods

Osher and Sethian [124] re-introduced another way of modeling active contours.
They describe evolving fronts as the isolevel contour of an embedding function:

Definition 4.2 (Level set function)
Let H ⊂ Ω be a closed hypersurface or submanifold of Ω ⊂ Rn with codimension
1 (e. g., a curve in 2D or a surface in 3D). A function

Φ :

{
Ω ⊂ Rn → R

x 7→ Φ(x)

with the property

Φ(x)


< 0 : x is inside H
= 0 : x ∈ H
> 0 : x is outside H

(4.6)

is called level set function for the hypersurface H. Possible notations for this
implicit definition of the hypersurface are then

H = {Φ = 0} := {x ∈ Ω : Φ(x) = 0} = Φ−1(0) . (4.7)

Remark. The choice of the signs in (4.6) as well as the value 0 in Equations (4.6) and
(4.7) are arbitrary. However, the zero level set is commonly used since it simplifies the
calculus a bit. Our choice of signs for inside and outside result in an outward-pointing
gradient of Φ.

A simple example for such a level set function is the signed distance from a
given contour. E. g., the zero level set of the function Φ(x)) = ‖x‖−r would be
the circle with radius r centered at the origin. In practice, Φ is not calculated
analytically but discretized on a rectangular grid (see Figure 4.2). The front is
then the isosurface of the data set storing Φ. It can be extracted, e. g., using
the marching cubes algorithm by Lorensen and Cline [104] or using the more
recent method by Kobbelt et al. [91].
The evolution of a front that is modeled this way is now indirectly achieved

by modifying the level set function. This also changes its zero level set and
therefore the modeled shape (see Figure 4.3). This implicit modeling of an
evolving contour by a function defined on the full space is called the Eulerian
approach. It has the advantage of handling topological changes intrinsically
since the front is never really modeled explicitly. Furthermore, the numerical
computations can be performed on a fixed rectangular grid. And although this
implicit representation seems to be less intuitive, all geometric quantities like
the normal

n =
∇Φ
‖∇Φ‖
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Figure 4.2: Representation of a curve by a discretized level set function
(visualized using level set function values, colors, signs, and Heaviside
values, resp.).

Figure 4.3: An implicitly evolved contour in 2D. (Image source (modified for

this work): http://commons.wikimedia.org/wiki/File:Level_set_method.jpg. Original author:

Oleg Alexandrov. License: Public domain.)
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and the curvature
κ

2H

}
= div

( ∇Φ
‖∇Φ‖

)
(where κ is the curvature of a curve in 2D and H is the mean curvature of a
surface in 3D, resp.) can be expressed quite easily (see also Appendix E).
Two different ways for finding the evolution equation for the level set function

can be distinguished. One simply translates movements of the front computed
using the Lagrangian approach from Section 4.2 into the level set formulation
while the other never uses an explicit model of the front and directly starts with
an energy functional depending on Φ. Both approaches lead to an Eulerian
formulation and are described in this and the following section, resp.

Remark. See also Xu et al. [172, 173] on the relationship between explicitly and
implicitly modeled active contours.

The more traditional and at first glance less challenging way to construct an
update equation for the level set function is to translate a previously computed
motion of a front into the level set formalism: Let h(s, τ) be an explicitly
modeled curve following an energy-minimizing motion as computed in (4.2).
This Lagrangian motion can now be translated into an Eulerian description
(see also Sethian [150]). Introducing an artificial iteration time τ in (4.6) yields

Φ
(
h(s, τ), τ

)
= 0 ∀ s ∈ S, ∀ τ ≥ 0

which is equivalent to the two equations

Φ
(
h(s, 0), 0

)
= 0 ∀ s ∈ S (4.8a)

and
dΦ

dτ

(
h(s, τ), τ

)
= 0 ∀ s ∈ S, ∀ τ > 0 . (4.8b)

Expanding the total differential in (4.8b) yields

∂Φ

∂τ
+

〈
∇xΦ,

dh

dτ

〉
= 0 ∀ τ > 0 , (4.9)

so that the combination of (4.8a) and (4.9) finally yields

Φ(x, 0) = 0 ∀x ∈ h(S, 0) (4.10a)

and
∂Φ

∂τ
(x, τ) = −

〈
∇Φ, dh

dτ

〉∣∣∣∣∣
(x,τ)

∀x ∈ h(S), ∀ τ > 0 . (4.10b)

Since the hypersurface’s motion dh
dτ = −δE

δh usually has the form

dh

dτ
= −F (h) · n with n =

∇Φ
‖∇Φ‖ (see Appendix E.1),

the evolution equation (4.10b) simplifies to

∂Φ

∂τ
= −

〈
∇Φ,−F · ∇Φ‖∇Φ‖

〉
= F (h) · ‖∇Φ‖ . (4.11)
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Remark. Even if a precomputed motion would not be normal to the hypersurface
at each point, its normal component would still be the only one affecting the energy
functional. This is why it is usually suggested that any motion to be translated into
the level set formalism should be projected onto the normal first.

The Hamilton-Jacobi equation (4.11) implicitly moves the zero level set in
the same way as the contourH. But it was derived for curve points in h(s) only.
The remaining question is how to compute updates for the full domain Ω of the
level set function Φ. The usual solution is to directly use (4.11) on the whole
domain of Φ and implement steps to keep the level set function “well-behaved”.
Another approach is to construct extension forces keeping the signed distance
property intact during evolution (see Sethian [150, ch. 11] and Adalsteinsson
and Sethian [3]).

Example 4.1 (continued)
Assuming that the curve h was parametrized by arc length, ‖h′‖ = 1 holds
true for all curve points so that precomputed motion (4.4) can be rewritten
using our level set expressions to

dh

dτ
= −

(
[1 + g] · div

( ∇Φ
‖∇Φ‖

)
+

〈
∇g, ∇Φ‖∇Φ‖

〉)
· ∇Φ‖∇Φ‖ = −F · ∇Φ‖∇Φ‖

so that the update equation for Φ (4.11) becomes

∂Φ

∂τ
=

(
[1 + g] · div

( ∇Φ
‖∇Φ‖

)
+

〈
∇g, ∇Φ‖∇Φ‖

〉)
·‖∇Φ‖ = F ·‖∇Φ‖ . (4.12)

Compared to snakes, the translation into the traditional level set formalism
has the following advantages:

• The data I is sampled on its grid positions (if the level set grid is
chosen accordingly) and there is no interpolation or “unnatural” sampling
involved.

• The hypersurface H may change its topology during evolution without
the need for special algorithmic treatment.

• Reparametrizations are unnecessary. This is a huge advantage because
developing a reparametrization algorithm can be laborious.

It therefore very often makes sense to translate the computed curve motions
(4.2) into the level set formalism. An exception to this rule is the presence
of some strong geometric prior knowledge (such as that the final shape is
a geometric primitive like a circle). In this case, an explicit modeling may
be advantageous compared to additional regularization terms for a level set
method.
To summarize, the process of deriving a level set evolution from a Lagrangian

formulation consisted of the following steps:

1. Derive the equations of motion for H (e. g., by deriving an energy
functional E(h) w. r. t. the explicitly modeled front h).
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2. (Optionally) project the resulting front velocity onto the normal of the
curve (since the tangential velocity only affects the parametrization, not
the real movement).

3. Insert the normal velocity (usually denoted by F in textbooks, although
it is more a velocity than a force) into the level set equation ∂Φ

∂τ = F‖∇Φ‖.

4.4 Variational Level Set Methods
Instead of deriving equations of motion for an explicitly modeled front and
then translating them into the level set formulation, one may also start right
away with an energy functional depending on the level set function (modeling
the front) instead of the explicit front:

1. Set up an energy functional E(Φ), depending on the level set function Φ
(implicitly modeling the contour h = {x : Φ(x) = 0}).

2. Construct the update equation for the level set function by deriving the
energy functional: δE

δΦ

This approach is not only more straightforward due to making a translation
step unnecessary. It also introduces additional freedom when modeling the
energy functional because one is now able to define energy components for
points not lying on the front.
Assume that the energy terms are defined as integrals over some function

f :

{
Rn ×R×Rn → R

(x, Φ,∇Φ) 7→ f(x, Φ,∇Φ)
.

Remark. Note that the symbols Φ and ∇Φ are simply names for the arguments of
f . They are not directly related to functions with the same name. Therefore, this
definition implies that f only depends on the values of Φ(x) and ∇Φ(x), not on the
whole functions. Therefore, f is a function, not a functional.

f :

{
Rn ×R×Rn → R

(x, y, z) 7→ f(x, y, z)
.

would have been an equivalent definition. However, the calculus in the remainder of
this chapter will be clearer when using the more expressive argument names Φ and
∇Φ.

Now, let

E(Φ) =

∫
Ω

f
(
x, Φ(x),∇Φ(x)

)
dx (4.13)

be an energy functional depending on the function Φ as well as its gradient
(which is not mentioned as separate argument on the left-hand side since it
results from deriving Φ). The arguments of f with the names Φ and ∇Φ are
filled with the function values Φ(x) and ∇Φ(x), resp., at the point x.

Remark. Note that the variational level set approach provides even more flexibility
in modeling an energy functional. In almost all cases, these functionals have the form
(4.13). However, we will also encounter other types of functionals (like the minimum
functional) requiring special calculus for computing derivatives in this work.
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Integrals over the contour H can then be expressed using the Dirac distribu-
tion (see Theorem E.2) to obtain∫

H

f dS(ξ) =

∫
{Φ=0}

f dS(ξ) =

∫
Ω

δ(Φ) · ‖∇Φ‖ · f dx

whereas integrals over the region inside or outside the contour may be modeled
using the Heaviside function as characteristic function to get∫

inside H

f dx =

∫
{Φ<0}

f dx =

∫
Ω

[1−H(Φ)] · f dx

∫
outside H

f dx =

∫
{Φ>0}

f dx =

∫
Ω

H(Φ) · f dx .

(using the notation {Φ ≶ 0} := {x ∈ Ω : Φ(x) ≶ 0}).
Calculating an update equation (step number 2 above) now involves deriving

a functional (E) w. r. t. a function (Φ) which requires the calculus of variations.
When looking for an extremum of the functional E(Φ), we need to compute
its functional derivative. This functional derivative (called Gâteaux or Fréchet
derivative, depending on the properties of the derivative) has to be calculated
w. r. t. a direction, where this direction is a function, an element of an infinite-
dimensional space. Using Appendix D.1 yields

δΦE (Φ; δΦ) =

∫
Ω

fΦ
(
x, Φ(x),∇Φ(x)

)
· δΦ(x) dx+

+

∫
Ω

〈
f∇Φ

(
x, Φ(x),∇Φ(x)

)
,∇δΦ(x)

〉
dx

for functionals of the form given above. Using integration by parts (see
Proposition C.4), the second term can be simplified so that we have δΦ as
a common factor:

δΦE (Φ; δΦ) =

∫
Ω

[
fΦ(Φ,∇Φ)− div f∇Φ(Φ,∇Φ)

]︸ ︷︷ ︸
=:g(x)

δΦ dx+

+

∫
∂Ω

〈
f∇Φ(Φ,∇Φ)︸ ︷︷ ︸

=:h(x)

,ν
〉
δΦ dS(ξ) (4.14)

Remark. Terms with derivatives of the level set function are usually introduced
when adding regularizers. If f depends on Φ only, then f∇Φ = 0, we do not need to
integrate by parts, and the calculus of variations becomes a lot easier. However, this
is usually not the case since regularization is needed.

Finally, Appendix D.3 justifies the selection of −g as update for the level set
function when iteratively looking for a minimum of E and

∂Φ

∂τ
(x) = −g

(
x, Φ(x),∇Φ(x),HΦ(x)

)
∀x ∈ Ω

is a gradient descent method (assuming that the border integral in (4.14)
vanishes).
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Remark. The function g usually contains δ(Φ) as a multiplicative factor. This is
sometimes replaced by ‖∇Φ‖ in order to obtain a morphological flow, i. e. a flow
which is independent of the scaling of Φ. However, this also increases the speed of
level sets evolving far away from the zero level set which may or may not be desired.

Example 4.1 (continued)
Directly modeling the same energy as defined in (4.1) in the Eulerian domain
can be done using Theorem E.2. The integration over the curve {Φ = 0} is
now expressed as

E(Φ) =

∫
Ω

[1 + g(x)] · δ
(
Φ(x)

)
· ‖∇Φ(x)‖ dx .

Computing the variational derivative w. r. t. Φ (using Corollary D.3, Propo-
sition C.1, Corollary C.5, and Proposition C.2) yields

δΦE (Φ; δΦ) =

∫
Ω

(
−[1 + g] · div

( ∇Φ
‖∇Φ‖

)
−
〈
∇g, ∇Φ‖∇Φ‖

〉)
· δ(Φ) · δΦ dx

(under the standard assumption of vanishing boundary integrals) so that
the gradient descent update for the level set function (according to Ap-
pendix D.3.2) is

∂Φ

∂τ
=

(
[1 + g] · div

( ∇Φ
‖∇Φ‖

)
+

〈
∇g, ∇Φ‖∇Φ‖

〉)
· δ(Φ) .

Optionally replacing the factor δ(Φ) with ‖∇Φ‖ (in order to extend the curve
motion to adjacent levels) yields the same update equation as in (4.12).
However, another common approach is to use a smooth approximation of
the Heaviside function and Dirac functional instead (see E.6).

With the right formulas at hand, a direct modeling is much easier and also
more flexible than deducing Lagrangian motions and translating them into the
level set framework. Using variational level sets and lifting the restrictions of
Lagrangian formulations also broadens the class of energy functions and has
some additional advantages:

• The extension of the evolution onto non-hypersurface level sets enables
a faster convergence by the creation of new structures not connected to
existing ones.

• Integration over the whole domain enables the modeling of region-
dependent criteria (like image intensity) instead of just edge-dependent
ones (like intensity gradients).

The latter advantage will be demonstrated in a further example:
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Example 4.3 (Chan-Vese segmentation [22, 23])
Instead of locating strong gradients in an image (resulting from intensity
changes between two different types of tissue), one could directly use the
prior information about these tissues’ intensities. Given two prior intensity
distributions

pin(I) = Nµin,σ (I) and pout(I) = Nµout,σ (I) ,

with different means but the same variance (to keep the example simple),
one can associate this information with the conditional probabilities

P
(
I(x) = i | Φ(x) < 0

)
= pin(i) and P

(
I(x) = i | Φ(x) > 0

)
= pout(i)

for the “inside” (Φ < 0) and “outside” (Φ > 0) regions of a given level set
segmentation. The likelihood of the data I(x) given the segmentation Φ is
then

P (I | Φ) =
∏
Ω

P
(
I(x) | Φ(x)

)
dx =

∏
{Φ<0}

pin

(
I(x)

)
dx+

∏
{Φ>0}

pout

(
I(x)

)
dx .

Using a log-likelihood argument and neglecting constant factors, this leads
to the penalizing energy functional

E(Φ) =

∫
{Φ<0}

(
I(x)− µin

)2
dx+

∫
{Φ>0}

(
I(x)− µout

)2
dx

=

∫
Ω

[
1−H(Φ)

]
·
(
I(x)− µin

)2
+H(Φ) ·

(
I(x)− µout

)2
dx

to be minimized w. r. t. the unknown segmentation Φ. The variational
derivative and the gradient descent are then

δΦE (Φ; δΦ) =

∫
Ω

δ
(
Φ(x)

)
·
[
−
(
I(x)− µin

)2
+
(
I(x)− µout

)2] · δΦ(x) dx

and

∂Φ

∂τ
=
[(
I(x)− µin

)2 − (I(x)− µout

)2] · δ(Φ(x)
)

resp. So whenever I(x) is closer to µin than µout, the latter addend will
be dominating and driving the level set function Φ(x) towards lower values,
i. e. to the inside. The analogous argument applies to “outside intensities”
(driving the segmentation to the outside).

4.5 Further Reading

An overview of level set methods is best obtained by looking at textbooks
like Osher and Paragios [123], Osher and Fedkiw [121], or Sethian [150]. The
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two websites of Sethian [146] and Fedkiw [45] contain lots of introductory
information and visual results, resp., and the two author’s joint paper [122]
also gives an overview on level set methods, esp. for use in physical simulations.
Cremers et al. [36] give a nice review on level set methods using statistical
approaches and different segmentation cues.
Early developments in level set evolution techniques for modeling physical

problems can be found in Osher and Sethian [124], Sethian [147], and Sethian
and Straint [152].
Other highly referenced work in the field is (in chronological order) Caselles

et al. [20], Malladi et al. [108], Adalsteinsson and Sethian [2], Sethian [148],
Malladi et al. [109], Zhao et al. [180], Caselles et al. [21], Xu and Prince [171],
Adalsteinsson and Sethian [3], Peng et al. [126], Sethian [151], and Vese and
Chan [166].
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Chapter 5

Shape Reconstruction Using Level Sets

This chapter focuses on the presentation of the new functionals that have
been developed for reconstructing an implicitly represented shape from given
probabilistic projection images. In order to simplify the presentation, to follow
the chain of developments, and to give first examples, we will assume a static
setting throughout this chapter so that the problem effectively reduces to
a multi-view reconstruction with consistent/synchronized projections (a.k.a.
shape-from-(probabilistic)-silhouette or shape-from-X ). Of course this problem
is well-known and has been treated thoroughly in the context of level set
reconstruction (as will be reviewed in Section 5.1). But keeping in mind
the final application with its dynamic and non-consistent projections, the
derivation of new reconstruction functionals still makes sense. Before going
into details, the setting for this chapter is defined in

Problem 5.1 (Static shape reconstruction)
Let

• V ⊂ R3 be a bounded volume,

• A ⊂ R2 be a bounded projection area, and

• T ⊂ R be a time interval.

Given

• images Ĩ : A× T → [0, 1] and

• projection operators P : V × T → A,

reconstruct the implicit level set representation

Φ : V → R

of a static shape assuming that for all pixels x ∈ A and for
all t ∈ T the image value Ĩ(x, t) is related to the probability
that the corresponding ray P−1(x, t) intersects the shape
represented by {Φ < 0}. (See Figure 5.1 for an illustration.)
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Φ > 0

Ĩ(x, t)

P−1(x, t)

{Φ < 0}

Figure 5.1: Illustration of Problem 5.1

Remark. Note that the projection operators P and images Ĩ depend on a time
variable t but the object {Φ < 0} to be reconstructed is static in Problem 5.1. (Φ
does not depend on the time t.) But we prefer to use the time-dependent notation
for different camera views instead of an index notation so as to stay consistent with
the other parts of this work.

The values or intensities of Ĩ could be drawn from almost any probability
distribution, including the binary distribution {0, 1}. The heuristic derivation
in Section 5.2 assumes two more or less symmetric probability distributions
for “hitting” and “non-hitting” rays whereas the probabilistic derivation in
Section 5.3 works with any given intensity distributions.

5.1 Related Work

Assuming that the shape Φ is static (which it will not be in our final models
and application), Problem 5.1 is of the type shape-from-silhouette and has been
treated (also using level set methods) before. The simplest forms of recon-
struction from projections employ triangulation using point correspondences
or epipolar geometry (see, e. g., Hartley and Zisserman [64]) which results in a
reconstructed point cloud. The remainder of this section presents an overview
of several other methods for shape reconstruction.

Shape from silhouette
Shape from silhouette works on projections of the full scene instead of single
points only. It can be interpreted either as a hard carving of inconsistent
voxels or a thresholded unfiltered backprojection of object pixels. Baumgart’s
polyhedral shape models [8] and Szeliski’s octree approach [164] are often cited
as a historical first shape-from-silhouette algorithms. Franco and Boyer [47]
present one of the latest examples on shape reconstruction. In this case, the
multi-camera setting and the optical input images enable a 4D reconstruction
using space occupancy grids. Cheung et al. [26, 27] are also concerned with 4D
reconstruction from multiple views but restricted to articulated motions. They
also use photoconsistency as an additional criterion.
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Kolev et al.

Kolev et al. recently presented various ways to formulate static shape re-
construction problems from projection data which are either of probabilis-
tic silhouette type or consist of optical images (enabling the inclusion of
photoconsistency as an optimization criterion). In the first paper in this
series of works, Kolev et al. [93] use probabilistic views and a voxel-wise
formulation. This is, as we will see later, not very well suited in a dynamic
setting where the (initially) inconsistent images would very likely yield the
trivial solution of an empty reconstruction. Kolev et al. [94] then add
photoconsistency as an optimization criterion and restrict the space of level
set functions to binary values using constraints. The constrained problem is
then translated back to an unconstrained one using a penalizer suggested by
Chan et al. [24]. Kolev and Cremers [92] only retain photoconsistency as a
target functional, formulating silhouette consistency as well as the restriction to
binary functions as constraints. These are enforced by intermittent projections
of the optimization variables onto the set of admissible functions. Having
the photoconsistency assumption as target functional allows the silhouette
consistency to be moved to the constraints. Finally, Kolev et al. [95] summarize
the previously mentioned work and give detailed evaluations of different energy
functionals as well as a comparison with discrete optimization techniques
(graph cuts). The authors give a number of arguments in favor of continuous
shape models (see also Klodt et al. [90]).

Photometric shape reconstruction

The photoconsistency assumption mentioned before is also used in various other
multi-view shape reconstruction approaches. Of these, we only refer the reader
to the work of two groups which also base their stereoscopic reconstructions
on level set methods. Yezzi and Soatto [174, 175] and Jin et al. [78, 79] model
the radiance functions for the object to be reconstructed as well as for the
background. The group of Pons, Keriven, and Faugeras [44, 127, 128] base
their multi-view scene reconstruction on image matching, where the last work
even performs a scene flow (3D motion vector field) estimation.

Summary

Many of the methods discussed above have proven to work well in the static set-
ting described in Problem 5.1, esp. when photometric consistency is available.
Our final goal, however, is to reconstruct a dynamic scene with inconsistent
projections, impeding the use of voting schemes based on the visibility of
objects to rays. Trying to find a good threshold for the minimum number
of votes characterizing an object or foreground point seems quite hard if the
projection data is initially inconsistent (due to the unknown motion). Only
later during a dynamic reconstruction would the obtained motion information
bring the input projections into a consistent state. Therefore, any voting-based
approach would have to take this gradual change in camera agreement into
account and include some kind of heuristic for adapting the voting threshold.

Another approach is to work ray-based instead of volume-based and penalize
false (positive or negative) reconstructions depending on the dissimilarity
between input pixels and forward projections along the corresponding rays.
We will first give a heuristic derivation of such penalty terms before presenting
the more rigorous probabilistic derivation in Section 5.3.
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Φ

FP

FN

? ?

Ĩ

Figure 5.2: False positive and false negative reconstructions. Note that the
image Ĩ is assumed to contain high intensity or probability values for
projections of vessels. Therefore a black pixel (representing low values)
is a mismatch with the reconstructed (false positive) vasculature {Φ < 0}
(represented by black voxels). Analogously, high image values and rays
with positive Φ values characterize false negatives.

5.2 Heuristic Derivation
The goal of this derivation is to develop Chan-Vese-like energy functionals for
the reconstruction of shapes from probabilistic silhouette data. Employing
two antagonists in the energy functional just like in the intensity-based image
segmentations of Chan and Vese [22, 23] yields more robust reconstructions in
an initially inconsistent setting such as the dynamic scene to be treated later.
The intention of including the more heuristic derivations here is to build a
bridge from the Chan-Vese segmentation, which is well-known in the level set
domain, to the probabilistic reconstruction functionals used in the final cardiac
4D reconstruction algorithm. The formulations given here are modeled in a
more direct way and are easier to interpret than, but are also related to, the
probabilistic functionals.
Assume we want to penalize false positive reconstructions. False positive in

this case means that a lumen has been reconstructed (Φ < 0) but a projection
image’s low intensity Ĩ suggests that there should not be any lumen along the
projection ray. The functional∫
T

∫
V

[
1−H

(
Φ(X)

)]
·H
(

1

2
− Ĩ
(
P (X, t), t

))
·
[
1− Ĩ

(
P (X, t), t

)]
dX dt

(5.1)
achieves the desired penalization and its minimization should suppress flase
positives. The first factor selects only points in the reconstruction that are
located inside the shape of the reconstructed lumen, the second factor ensures
that the whole term is only activated for points that project onto a low intensity
in a projection Ĩ

(
P (·, t), t

)
, and the last factor applies a linear penalty (see

Figure 5.2 for an illustration). This false positive term is a valid candidate for
a reconstruction energy but trying to construct a false negative penalty in the
same way does not correctly model the problem. The functional∫

T

∫
V

H
(
Φ(X)

)
·H
(
Ĩ
(
P (X, t), t

)
− 1

2

)
· Ĩ
(
P (X, t), t

)
dX dt (5.2)
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seems to be analogous to (5.1), adding a penalty for outside points with a high
projected intensity. However, the penalties in (5.2) are activated for all outside
points X as soon as one of their projected values has a high intensity. This
would drive all points along a “high intensity ray” toward the inside of the
reconstruction, although a single reconstructed lumen location along the ray
would be sufficient (see also the lower ray Figure 5.2).
Therefore, instead of focusing on single volumetric points as in (5.2), one

has to take all points along a ray into account for selecting false negative
reconstructions. Observing that the minimum of multiple values is only
negative if at least one of these values is negative, false negatives can be
penalized by∫

T

∫
A

H

(
min

X∈P−1(x,t)
Φ(X)

)
·H
(
Ĩ(x, t)− 1

2

)
· Ĩ(x, t) dx dt . (5.3)

This term now works pixel-based instead of voxel-based, enabling the assess-
ment of whole rays corresponding to a pixel location x. It is only activated
(by the first factor) for a ray defined by x and t if this ray P−1(x, t) does not
contain any reconstructed point X with Φ(X) < 0.
Putting together (5.1) and (5.3) yields the mixed reconstruction functional

∫
T

∫
V

[
1−H

(
Φ(X)

)]
·H
(

1

2
− Ĩ
(
P (X, t), t

))
·
[
1− Ĩ

(
P (X, t), t

)]
dX dt

+ λ ·
∫
T

∫
A

H

(
min

X∈P−1(x,t)
Φ(X)

)
·H
(
Ĩ(x, t)− 1

2

)
· Ĩ(x, t) dx dt (5.4)

with a scalar weighting λ used to balance the two competing antagonists.
It seems rather anomalous to have such a mixed integration (once over the
volume and once over the image plane) and one might be inclined to use the
ray-based treatment for both penalty components, i. e., to also integrate over
the plane and use the ray P−1(x, t) in the very first term in (5.4). Both
options are valid with the latter one being mathematically more pleasing.
The derivation and implementation of the resulting reconstruction updates,
however, depend on some weighting factors (adjusting the false positive to false
negative penalty as well as during the implementation of updates occurring
from the minimum functional). These parameters can and should be chosen so
that both approaches result in the same numeric updates.

5.3 Probabilistic Derivation

Rather than selecting and penalizing false reconstructions, one can also “think
positive” and reward matching reconstructions instead. This can be achieved
by maximizing the probability that the measured data and the estimated recon-
struction occur together. The maximum likelihood and maximum a posteriori
probabilities are two such measures and only differ in the inclusion/exclusion
of prior knowledge about the probability of specific realizations of the target
variables. Since we will also introduce shape priors in Chapter 7, we will follow
the latter approach:
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Given measurements (images) Ĩ and a reconstruction Φ, we seek to obtain

arg max
Φ

p(Φ | Ĩ) = arg max
Φ

p(Ĩ | Φ) · p(Φ)

p(Ĩ)
(5.5)

= arg max
Φ

{
p(Ĩ | Φ) · p(Φ)

}
(5.6)

= arg max
Φ

{
p(Φ) ·

∏
T

∏
A
p
(
Ĩ(x, t) | Φ

)
dx dt

}
(5.7)

= arg min
Φ

− ln p(Φ)−
∫
T

∫
A

ln p
(
Ĩ(x, t) | Φ

)
dx dt

 (5.8)

which can be written as

arg min
Φ

{
Eprior(Φ) + Edata(Φ, Ĩ)

}
using the shorthand notations

Eprior(Φ) := − ln p(Φ) (5.9)

Edata(Φ, Ĩ) :=

∫
T

∫
A

− ln p
(
Ĩ(x, t) | Φ

)
dx dt (5.10)

for the prior and maximum likelihood probabilities. In (5.5) we used Bayes’
Theorem to interchange the random variables Φ and Ĩ, then, noting that the
denominator does not depend on the target variable Φ leads to (5.6), and as-
suming i. i. d. (independence and identical distribution) leads to (5.7). Finally,
the application of minus ln converts the maximization to a minimization and
the continuous products (see Definition B.4) become integrals in (5.8).

Remark. Note that the i. i. d. assumption is generally not met. Though the
intensities might be identically distributed, they are not independent. Neighboring
image pixels are correlated since they originate from intersecting largely common
anatomy. The same correlation can be present between coinciding pixels across
projections. However, it is still common practice to assume independence during
problem formulation.

The continuous products and integrals in (5.7) and (5.8) are evaluated over
area elements or pixels (and not over volume elements as it is common practice
in computer vision algorithms for multi-view reconstruction problems). Instead
of counting the number of images that classify a point as object, we work
projection-based and consider the ray voxels corresponding to a specific pixel.
This approach avoids setting a voting threshold which would be extremely
difficult for a dynamic single view setting with initially inconsistent projections.
The prior energy term Eprior is application-specific and will not be investi-

gated further at this point. Thus the remaining step is to find a formulation for
the conditional probabilities in the data term (5.10). Since we seek to model
probability density functions (PDFs) for pixel intensities Ĩ(x, t), we have to
investigate the corresponding ray in the reconstruction Φ and distinguish those
rays hitting the reconstructed shape from those that only traverse empty space.
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Determining whether or not such a ray is hitting the reconstructed shape can
be formulated using the minimum functional: The switching term

S(x, t, Φ) := H

(
min

X∈P−1(x,t)
Φ(X)

)
(5.11)

evaluates to 1 if all level set values along the ray P−1(x, t) are positive (and
thus the shape was not hit) and to 0 if any point along the ray has a negative
level set value (i. e. the shape is intersected). Defining the two sets

Shit(Φ) := {(x, t) ∈ A× T : S(x, t, Φ) = 0} and
Snohit(Φ) := {(x, t) ∈ A× T : S(x, t, Φ) = 1}

induces a partition of the image data defined on A × T and a conditional
integration in (5.10) so that

Edata(Φ, Ĩ) =

∫∫
Shit(Φ)

− ln phit

(
Ĩ(x, t)

)
dx dt +

+

∫∫
Snohit(Φ)

− ln pnohit

(
Ĩ(x, t)

)
dx dt

= −
∫
T

∫
A

[1− S(x, t, Φ)] · ln phit

(
Ĩ(x, t)

)
+

+ S(x, t, Φ) · ln pnohit

(
Ĩ(x, t)

)
dx dt

(5.12)

This is the final data term to be minimized, assuming there are given probability
distributions phit and pnohit for the image intensities of rays hitting and not
hitting a lumen point, resp. Such distributions can be obtained by computing
image intensity statistics for the two classes of pixels from the preprocessed
angiographic projections. For the experiments performed in Chapter 8, it was
sufficient to assume two half-Gaussian intensity distributions like

phit = 2 · N1,σhit
and

pnohit = 2 · N0,σnohit
,

with the factor 2 normalizing the two distributions to
∫ 1

0
p(no)hit = 1.

Remark. The first and second term on the right hand sides of (5.12) can be
interpreted as false positive and false negative penalties, resp. If phit and pnohit are
chosen appropriately, the implementation of the probabilistic data term is actually
equivalent to the heuristic one presented in the preceding section. However, the
probabilistic derivation enables a better modeling of image intensities and also does
not require a weighting of two competing terms. It is parameter-free, assuming phit
and pnohit are given.

Derivatives and updates
When calculating the variational derivative of Edata w. r. t. the unknown Φ, one
observes that the switching term S is the only part of (5.12) depending on Φ.
Using the chain rule and Corollary D.5, we first obtain

δΦS (x, t, Φ; δΦ) = δ

(
min

X∈P−1(x,t)
Φ(X)

)
· min
X∈M(x,t,Φ)

δΦ(X)
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with
M(x, t, Φ) = arg min

X∈P−1(x,t)
Φ(X)

being the set of locations where the level set function attains its minimum along
the ray P−1(x, t). This enables us to finally compute

δΦEdata

(
Φ, Ĩ; δΦ

)
=

∫
T

∫
A

[
ln phit

(
Ĩ(x, t)

)
− ln pnohit

(
Ĩ(x, t)

)]
·

· δ
(

min
X∈P−1(x,t)

Φ(X)

)
·

· min
X∈M(x,t,Φ)

δΦ(X) dx dt .

(5.13)

Remark. A word about the notation used for variational derivatives throughout
this thesis from now on: The full notation δΦE (Φ; δΦ) for a variation including the
test function or direction (usually denoted by δΦ) is used. Although it would be very
practical to use the short notation δE

δΦ
, this would not allow the specification of chains

of derivatives if the outer derivative cannot be expressed in L2 form, i. e., the outer
function has Gâteaux derivatives but is not differentiable (like the data term Edata

above). In this case, the variational derivative of the outer function can be obtained
by substituting the derivative of the inner function for δΦ.

Since the derivative (5.13) is not an inner product with δΦ, there is no
“gradient direction” and choosing a meaningful update function is not straight-
forward. It is clear from (5.13) that variations of δΦ at any location X /∈
M(x, t, Φ) have no impact at all on the energy value Edata. Therefore, it
makes sense to choose

∂Φ

∂τ
(X) = −

∫
T

∫
A

[
ln phit

(
Ĩ(x, t)

)
− ln pnohit

(
Ĩ(x, t)

)]
·

· δ
(

min
Y ∈P−1(x,t)

Φ(Y )

)
· 1M(x,t,Φ)(X) dx dt

(5.14)

for the update direction ∂Φ
∂τ . Equation (5.14) effectively only accumulates

updates on the set of minimum points X ∈ M(x, t, Φ), leaving other points
unaffected.1

5.4 An Example: Shape from Noisy Silhouette
Figure 5.3 shows the results of our first experiments on the reconstruction
of synthetic 2D shapes from noisy 1D projections. One disc (D1) and three
discs (D3), resp., were reconstructed using the proposed level set reconstruction
(LSR) and a standard shape-from-silhouette (SFS) algorithm. Figures 5.3(a)
and (b) show that the boundary of the level set reconstruction (LSR) is not
as smooth as the shape-from-silhouette (SFS) boundary but the shape fits the
original object better (16% vs. 30% false negatives). Figures 5.3(c) and (d)
demonstrate that LSR better recovers the concavities.
The quantitative errors are given in Table 5.1, where

1However, using regularization terms as well as a smooth approximation of the characteristic
function 1M ensures that the whole level set gets updated.
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(a) LSR of shape D1 (b) SFS of shape D1 (c) LSR of shape D3 (d) SFS of shape D3

Figure 5.3: Two-dimensional shape reconstructions. Ground truth (blue) and
reconstructed shape (black). (a) and (b) show the reconstructions when
run on blurred and noisy data obtained from 51 projections of D1. (c) and
(d) show the results obtained when run on 6 noise-free projections of D3.

• FP is the relative number of false positives,

• FN the relative number of false negatives, and

• d̄ the average minimum shape distance, computed using all boundary
points.

Compared to a simple shape-from-silhouette method, our level set reconstruc-
tion is more robust w. r. t. noise and limited data. It is also able to reconstruct
concavities to some extent (by incorporating prior knowledge about the noise
and the shape smoothness, resp.).
Figure 5.4 shows some results for 3D shape reconstruction from 2D projec-

tions.
Although our novel shape reconstruction functional is compared to a stan-

dard approach in Figure 5.3 and Table 5.1, it was not developed as a competitor
to existing shape-from-silhouette methods. Depending on the application,
there are certainly better ways to obtain such reconstructions. However, the
given examples already show some of the versatility gained by using level sets,
enabling the incorporation of all kinds of prior knowledge. But the true benefits
of using implicit shape models will only surface in combination with their
dynamization shown in the next chapter.
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Table 5.1: Quantitative evaluation of the 2D reconstruction experiments
visualized in Figure 5.3 using the proposed level set reconstruction (LSR)
and standard shape-from-silhouette (SFS). False negatives (FN), false
positives (FP), and average shape distance d̄ for various combinations of
ground truth shapes, number of projections, and noise levels.

Shape Projections Noise Method FP (%) FN (%) d̄ (vx)

D1

6
no LSR 10.6 0.0 0.63

SFS 6.3 0.0 0.40

yes LSR 5.5 10.9 0.68
SFS 7.4 14.5 0.70

51
no LSR 0.8 2.7 0.17

SFS 0.8 0.0 0.15

yes LSR 2.3 16.0 0.57
SFS 0.0 30.1 1.41

D3

6
no LSR 32.3 0.3 1.60

SFS 51.1 0.0 2.41

yes LSR 25.1 10.6 1.33
SFS 43.6 5.8 2.23

51
no LSR 7.3 1.8 0.45

SFS 5.4 0.0 0.38

yes LSR 3.7 14.7 0.59
SFS 0.1 23.4 1.03

(a) Cross (b) Donut

Figure 5.4: Three-dimensional reconstructions. The blue dots mark the
ground truth 3D shape, the gray surface the reconstructed zero level
set. The projections were acquired along a circular trajectory around the
objects.
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Chapter 6

Dynamic Level Sets

For our final application, we need a really dynamic1, volumetric level set
function

Φ :

{
R3 × T → R

(X, t) 7→ Φ (X, t)
(6.1)

that represents dynamic shapes by its sign as

Φ (X, t)


< 0 : X is inside the shape at time t
= 0 : X is at the shape’s boundary at time t
> 0 : X is outside the shape at time t .

We investigated two ways of modeling such dynamic level set functions by
either using separate level set functions over time or by warping a reference
level set function using a motion model. Both approaches have pros and cons
but the latter one was chosen due to its closer resemblance to reality and
ability to incorporate motion constraints. But before going into details of these
approaches, we will shortly review other ways to represent dynamic shapes that
are known from the literature.

6.1 Related Work
Apart from the work on motion segmentation cited in the previous chapter, the
“dynamical shape priors” presented by Cremers [32, 33] should be mentioned
here. In contrast to motion segmentation, this work instead builds autore-
gressive shape models that could be used in any tracking application where
training data is available. Such data, unfortunately, is very difficult to obtain
for coronary trees (see, e. g., Frangi et al. [49] for a review of techniques for the
three-dimensional modeling of cardiac anatomy). Significant shape variations
are quite normal as is the desire to not introduce misleading prior knowledge.
This is why we will only introduce low level knowledge on the dynamic models
presented in this chapter.

6.2 Fully Implicit 4D Level Set Function
The most straightforward way to obtain a dynamic level set function as in
(6.1) is to assume that all level set values are independent (in space and time)
and discretize or parametrize Φ (X, t) in all four dimensions to obtain a set of
level set volumes over time (see Figure 6.1). This requires a lot of memory:
1in addition to the artificial dynamics introduced by iterative methods
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Φ(·, tl)Φ(·, t1) Φ(·, tL)

Figure 6.1: Dynamic level set as series of volumes

Assuming 2003 voxels in space and 200 time steps this discretization requires
approx. 6GiB for each copy when stored as 4-byte floats.
Furthermore, a regularization of the shape’s motion over time cannot be

modeled explicitly: Any two level set values Φ(Xa, ta) and Φ(Xb, tb) are
correspond to the same pointX∗ on or next to the shape ifXa = ϕ(X∗, ta) and
Xb = ϕ(X∗, tb) for some motion function ϕ. Identifying such correspondences
among independent level set volumes, however, is generally impossible. Only
the sets of surface points {Φ(·, ta) = 0} and {Φ(·, tb) = 0} can be identified for
arbitrary times ta and tb (still without having a point-to-point correspondence).
This would yield bulky and imperfect motion regularization terms such as∫
T

∫
T

∫
V

1

2

[
δ
(
Φ(X, ta)

)
+ δ
(
Φ(X, tb)

)]
· [Φ(X, ta)− Φ(X, tb)]

2
dX dta dtb

(which, in this case, only penalizes motions of the zero level set). Other terms
for favoring periodic movements are even more complex. Also note that each
of the independent shapes has to be regularized separately (so as to obtain a
smooth surface etc.).
Therefore, even if a setup of independent level set volumes seems to be

straightforward, simple, and versatile, an explicit model of the shape motion
would be beneficial if temporal coherence is to be taken into account.

6.3 Implicit Shape and Explicit Motion
Introducing an explicit motion function enables separating shape and motion,
thereby simplifying the incorporation of prior knowledge for both unknowns
and possibly reducing memory requirements (if a parametrized motion model
is used). Furthermore, a separate motion function enables the incorporation of
a second volumetric reconstruction, e. g., a tomographic one. Such a subsequent
or simultaneous reconstruction would then be coupled and consistent with the
shape reconstruction (see Section 9.2).
A dynamic shape Φ is thus obtained by warping a single 3D reference level set

volume Φ0 (not necessarily linked to any instant in time) with a time-dependent
motion ϕ by either postulating

Φ(X, t) = Φ0

(
ϕ(X, t)

)
(6.2)

or
Φ
(
ϕ(X0, t), t

)
= Φ0(X0, t) . (6.3)
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Φ0( · )

Φ( · , tl)Φ( · , t1) Φ( · , tL)

ϕ(X, t1)

ϕ(X, tl)
ϕ(X, tL)

Figure 6.2: Dynamic level set as warped reference volume

The former equation (see also Figure 6.2) is directly useful for interpolating the
level set function Φ at time t from the reference volume Φ0 at the computed
reference pointX0 = ϕ (X, t). Equation (6.3) is better-suited for interpolating
in the other direction (starting from points in the reference frame and then
computing the corresponding point at time t).
In our case, we need to work on rays through the reconstruction volume at

time t. Transforming such rays into the reference frame yields a deformed line –
a curve. We would therefore only be able to compute the minimum along a ray
by either using (6.2) or by inverting the motion in (6.3). Since it is in general
not possible to analytically invert a deformable transformation, an inversion
of ϕ would have to be computed iteratively for all warped volumes. Choosing
(6.2) avoids this obstacle. Therefore, we define the motion function

ϕ :

{
R3 × T → R3

(X, t) 7→ ϕ(X, t)

to obtain the dynamic level set function

Φ :

{
R3 × T → R

(X, t) 7→ Φ(X, t) = Φ0

(
ϕ(X, t)

) . (6.4)

Remark. The level set function Φ is actually only defined on the volumes

V(t) = ϕ−1(V0, t) ∀ t ∈ T

due to its construction using the reference level set volume Φ0 : V0 → R.

A last (but maybe most convincing) argument for the combination of an
explicit motion with a reference volume is that a dynamic, contiguous real world
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DOFs, storage, additional regularization

prior knowledge / implicit regularization, computational cost

parametric interpolation of coarse MVF motion vector field· · · · · ·

Figure 6.3: Motion parametrization/discretization

object is usually much better represented by a single shape deforming over time
than a set of independent objects. The “dynamization” using a warping function
more closely resembles reality. This also holds true in the case of arterial tree
reconstruction: Although the shape to be reconstructed seems to be sparse,
one should observe that the coronaries are attached to the heart which is a
contiguous structure.
The remaining question is how to model the motion ϕ. The most obvious

choice is a dense motion vector field (stored in a discrete grid). But one could
also use a parametric motion with basis functions and a low number of degrees
of freedom (DOFs). Various other motion models are possible in between these
two extremes (see Figure 6.3).

6.3.1 Motion Vector Field
Storing the motion ϕ in a discrete grid of displacement vectors ϕi,j,k,l is
very easy to implement since no basis functions have to be evaluated and
combined for computing a voxel’s displacement. And even if displacements
have to be evaluated at non-grid positions, a simple linear interpolation is
usually sufficient. This computationally fast implementation, however, has two
significant disadvantages: The storage requirements are potentially enormous
(e. g. about 18GiB for a MVF of a 200 × 200 × 200 cube at 200 instants in
time with a three-dimensional displacement vector stored in 4B floating point
numbers). Moreover, prior knowledge (about smoothness or special motion
characteristics) has to be enforced using an explicit regularization which can’t
always be expressed by simple smoothness energy terms such as∫

T

∫
V

‖∇Xϕ‖2 + (∂tϕ)2 dX dt .

See also [16, 14] for joint work with Blume et al. on 4D reconstruction in PET
using motion vector fields.

6.3.2 Parametrized Motion
Since we have the freedom to explicitly model a motion function ϕ, we can
directly integrate prior knowledge for obtaining meaningful motion estimates
from the optimization (thereby avoiding additional regularization terms). Sim-
ilar approaches have been presented jointly with Blume et al. [15].
If the structure to be modeled is a solid object that only deforms due to

external forces, for example, it makes sense to assume that rigid (or incom-
pressible) motion components are more likely to be present than deformable
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ones and split the motion

ϕ(X, t) = R(t) ·X + T (t) + u(X, t)

into a rigid (with rotation R and translation T ) and a deformable component
u with few parameters for the latter. Since a motion is usually assumed to be
smooth w. r. t. time, it also makes sense to model the temporal parameters of
R, T , and u using spline functions. Splines allow the user to intuitively select
the number of knots (using his prior knowledge) thereby reducing the “effective
degrees of freedom” for the unknown variables.
As another example, one might consider special types of motions such as

periodic ones. Such knowledge can also be directly integrated into an explicit
motion using the appropriate basis functions.

Derivatives and updates
Given a functional E(Φ) depending on a dynamic level set function Φ = Φ0 ◦ϕ,
the final optimizations variables are Φ0 and ϕ. The derivatives of E(Φ0,ϕ)
w. r. t. these variables are obtained by using the chain rule

δΦ0
E (Φ0 ◦ϕ; δΦ0) = δΦE (Φ0 ◦ϕ; δΦ0

Φ (Φ0,ϕ; δΦ0)) . (6.5)

Remark. If δE
δΦ

would be a L2 product in δΦ, then the short notations for variational

derivatives could be used and, e. g., (6.5) reduced to δE
δΦ0

=
〈

δE
δΦ
, δΦ
δΦ0

〉
with 〈·, ·〉 being

the inner product in L2.

Noting that
δΦ0

Φ (Φ0,ϕ; δΦ0) = δΦ0 ◦ϕ ,

we obtain

δΦ0
E (Φ0 ◦ϕ; δΦ0) = δΦE (Φ0 ◦ϕ; δΦ0 ◦ϕ) . (6.6)

The other variation of interest (w. r. t. the motion ϕ) can be calculated in a
similar way as

δϕE (Φ0 ◦ϕ; δϕ) = δΦE (Φ0 ◦ϕ; 〈∇Φ0 ◦ϕ, δϕ〉) . (6.7)

Note that warping a level set function using B-splines has been suggested
before by Huang et al. [71] and Huang and Metaxas [70]. That work, however,
uses the space warping induced by the splines for evolving the contour modeled
by the otherwise constant level set function (used as a shape prior). Here, we
modify both, the level set function as well as the warping function, for evolving
the shape and the motion over artificial time.

6.4 An Application: Dynamic Segmentation
The simultaneous, intensity-based segmentation and registration of a temporal
sequence of CTA volumes shown in Figure 6.4 is an example demonstrating the
use of dynamic level sets in a simple application. The contrast-filled ventricles
are segmented using a Chan-Vese approach [22, 23]. The only modification to
this intensity-based segmentation is the dynamization of the level set function
using a deformable motion in the form of a tensor product spline. So, instead
of segmenting all volumes separately and trying to align them subsequently,
the temporal level set enabled an integrated solution.
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(a) Slice from the original CTA
data

−→

(b) Dynamic ventricle segmen-
tation, overlay of two car-
diac phases

Figure 6.4: Dynamic segmentation of a 4D CTA data set
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Chapter 7

Application to Cardiac Cone Beam
Reconstruction

Using the dynamic level set model of the previous chapter, we are now able to
reformulate Problem 5.1, seeking to reconstruct a dynamic shape instead of a
static one:

Problem 7.1 (Dynamic shape reconstruction)
Let

• V0 ⊂ R3 be a bounded volume,

• A ⊂ R2 a bounded projection area, and

• T ⊂ R be a time interval.

Given

• images Ĩ : A× T → [0, 1] and

• projection operators P : V × T → A,
reconstruct the reference level set

Φ0 : V0 → R

as well as the motion warping function

ϕ : R3 × T → R ,

assuming that for all x ∈ A and for all t ∈ T the image value
Ĩ(x, t) is related to the probability that the corresponding
ray P−1(x, t) intersects the dynamic shape implicitly defined
by

Φ = Φ0 ◦ϕ .

Note that the assumptions on the input images Ĩ require a preprocessing of
the original angiographic projections I. Feature enhancement filters like those
described in Frangi et al. [48], Koller et al. [96], or Krissian et al. [97] discrim-
inate vessel and background pixels, yielding the desired relationship between
Ĩ and the “vesselness” probabilities. This dependency on a preprocessing step
is an inherent limitation for any feature-based reconstruction method. The
models presented in this work, however, are designed to be robust to noise
or errors in preprocessed images by using continuous level set functions for
matching features in space instead of a threshold-based voting algorithm.
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Problem 7.1 can be characterized as follows:

• The input images are captured by a single, moving, calibrated camera
imaging a dynamic scene (no multi-view setting).

• There is no photoconsistency and no optical flow since the “translucent”
probability images exhibit concurrent co-located displacements.

• The object to be reconstructed undergoes non-rigid, semi-periodic1 mo-
tions and has an unknown topology.

7.1 Combining Dynamic Models and
Reconstruction Energies

Combining the shape reconstruction functional (5.12) with the dynamic level
set (6.4) yields the final data term

Edata(Φ0 ◦ϕ, Ĩ) = −
∫
T

∫
A

[1− S(x, t, Φ0 ◦ϕ)] · ln phit

(
Ĩ(x, t)

)
+

+ S(x, t, Φ0 ◦ϕ) · ln pnohit

(
Ĩ(x, t)

)
dx dt

(7.1)

with
S(x, t, Φ) := H

(
min

X∈P−1(x,t)
Φ(X, t)

)
.

The variations of this dynamic shape reconstruction functional can be calcu-
lated by combining the variations derived in the previous chapters to obtain

δΦ0
Edata

(
Φ0 ◦ϕ, Ĩ; δΦ0

)
(6.6)
= δΦEdata

(
Φ0 ◦ϕ, Ĩ; δΦ0 ◦ϕ

)
(5.13)

=

∫
T

∫
A

[
ln phit

(
Ĩ(x, t)

)
− ln pnohit

(
Ĩ(x, t)

)]
·

· δ
(

min
X∈P−1(x,t)

(Φ0 ◦ϕ)(X)

)
·

· min
X∈M(x,t,Φ0◦ϕ)

(δΦ0 ◦ϕ)(X) dx dt

(7.2)

and

δϕEdata

(
Φ0 ◦ϕ, Ĩ; δϕ

)
(6.7)
= δΦEdata

(
Φ0 ◦ϕ, Ĩ; 〈∇Φ0 ◦ϕ, δϕ〉

)
(5.13)

=

∫
T

∫
A

[
ln phit

(
Ĩ(x, t)

)
− ln pnohit

(
Ĩ(x, t)

)]
·

· δ
(

min
X∈P−1(x,t)

(Φ0 ◦ϕ)(X)

)
·

· min
X∈M(x,t,Φ0◦ϕ)

(〈∇Φ0 ◦ϕ, δϕ〉)(X) dx dt ,

(7.3)

1We will use the expression semi-periodic to express the fact that the cardiac motion is
only approximately periodic (see Achenbach [1]) and also superimposed by a residual
breathing motion (that is usually of lower wavelength than the acquisition time and
therefore assumed to be non-periodic.)
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with
M(x, t, Φ ◦ϕ) = arg min

X∈P−1(x,t)
(Φ ◦ϕ)(X, t)

being the set of minimum points along the ray P−1(x, t) in the warped level
set volume Φ0 ◦ϕ.
These variations are independent of the parametrization or discretization

chosen in the following sections. However, it is usually not possible to apply
updates at the exact set of minimum points M(x, t, Φ) as suggested in (5.14)
due to the discretization. This is why we have chosen to gradually weight
the updates for a point X with its distance to M : Assuming that Φ0 closely
approximates a distance function, the term

dM(x,t,Φ0◦ϕ)(X) :=
∣∣(Φ0 ◦ϕ)(X)− (Φ0 ◦ϕ)(M)

∣∣
measures the distance of the point X to the set M . Acknowledging that
discretization effects prevent the application of updates at the points in the
analytic setM , it is a reasonable choice to weight updates for any pointX with
its distance to this set. Any inverse function on the distance d could be used.
Here, we opted to “recycle” the mollified2 Dirac functions so that the update
equations have the characteristic function 1M(x,t,Φ0◦ϕ)(X) (resulting from the
last factors in (7.2) and (7.3), resp.) replaced by the factor δ

(
dM(x,t,Φ0◦ϕ)(X)

)
.

7.2 Parametrization, Discretization, and
Regularization

The very last step in feeding the reconstruction problem into a computer
requires a discretization of the associated variables. There are several ways
to do this and the choice directly affects the degrees of freedom (DOF) for
these variables. We therefore integrate the discussion on discretization with
parametrization and regularization questions.
From a practical point of view, a regularization or low-DOF parametrization

smooths the results by introducing neighborhood relations. From a mathe-
matical point of view, ill-posed problems can be turned into well-posed ones.
However, regularization or restrictive modeling always entails a compromise
between noise suppression and bias toward the priors and therefore has to be
chosen carefully, esp. in medical applications.

7.2.1 Input Data

The input data consists of the preprocessed (i. e., vessel-enhanced) image data
Ĩ, the corresponding projection operators P , and the relative cardiac phase c
(if an ECG signal is available), all given for a discrete set of acquisition time
points tl. Each of the projection images Ĩ(·, tl) is also defined on a spatial grid
xr,s with integer pixel indexes r and s so that the input images are naturally
discretized as

Ĩ(xr,s, tl) , r, s, l ∈ N0 .

Any values of Ĩ at non-grid positions will be interpolated.

2Yes, this word is indeed spelled “mollified” and refers to the tamed characteristics compared
to the Dirac functional.
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Figure 7.1: Level set resolution. Oblique tubes with diameters of 0.5mm,
0.75mm, and 1mm represented using a level set grid with 0.5mm spacing.

7.2.2 Reference Level Set – Shape

The dynamic level set Φ does not have to be fully kept in the memory. Its values
are rather computed on-the-fly by mapping a requested location X at time t
to X0 = ϕ(X, t) and interpolating the appropriate value from the reference
level set Φ0 instead.3

The reference level set Φ0, in turn, can be parametrized and stored in many
different ways (also depending on the amount and type of prior knowledge
available). Although there are other approaches, (e. g., using radial basis
functions as Morse et al. [110], Slabaugh et al. [159] or unstructured sampling
points as Ho et al. [67]), the most obvious, simple, and widespread choice we
also made is to discretize the level set on a rectangular grid.
The voxel size or element spacing has to be selected with the application

in mind. In our case, the coronary vasculature can have diameters as small
as 1mm (see Table 1.1) and we set Φ0’s spacing to 0.5mm. This allows to
represent tubular structures with diameters in the desired range. See Figure 7.1
for an illustration of the resolution limit when implicitly representing tubular
structures in 3D.
When iterating over volumetric coordinates, we will use the notation Xi,j,k

and X0,i,j,k, resp., to address the point corresponding to index i, j, k.

Shape smoothness
We will not discuss detailed shape priors as there is no such prior knowledge
available. The coarse notion of requesting a smooth shape, however, can be
used to regularize the densely stored level set. A shape prior commonly chosen
so as to obtain such a smooth surface results from the prior

pshape(Φ0) = λshape · e−λshapeS(Φ0) (7.4)

where 0 ≤ S(Φ0) <∞ is the shape area that can be expressed as

S(Φ0) =
∣∣{Φ0 = 0}

∣∣ =

∫
{Φ0=0}

1 dξ
Theorem E.2

=

∫
V0

δ(Φ0)‖∇Φ0‖ dV0 .

3Note that an algorithm may store precomputed warped level sets Φ(·,X) in order to speed
up the computations internally.
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The exponential in (7.4) was used as an inverting function for modeling
smaller shape areas (and therefore smoother shapes) as more likely. The
factor λshape > 0 as introduced here does not alter pshape’s classification as
a probability function (with pshape ≥ 0 and

∫∞
0
pshape(S) dS = 1) but acts as

a weighting factor in the final energy term

Eshape(Φ0) = − ln pshape(Φ0) = − lnλshape︸ ︷︷ ︸
const.

+λshape

∫
V0

δ(Φ0)‖∇Φ0‖ dV0 .

From Appendix E.4, we get

δΦ0Eshape (Φ0; δΦ0) = −λshape

∫
V0

δ(Φ0) div

( ∇Φ0

‖∇Φ0‖

)
δΦ0 dX0

for the variation (see Appendix E.2 for a full equation for div
(
∇Φ0

‖∇Φ0‖

)
) and

∂Φ0

∂τ
= λshape · δ(Φ0) div

( ∇Φ0

‖∇Φ0‖

)

for the update.

Signed distance
Even though we were not assuming that Φ0 is a signed distance function at
any point during the derivations so far,4 it still makes sense to keep the level
set function at least close to such a signed distance function. The reason is
that Φ0 develops very steep gradients (esp. when using a region-based data
term that translates into a δ factor in the update equations). This introduces
noisy features affecting the finite differences used when approximating spatial
derivatives.
Instead of just smoothing the level set function (thereby inadvertently

modifying the zero contour), one seeks to preserve the signed distance property
with the zero contour remaining intact and therefore leaving the implicitly
modeled shape unaffected.
There are various ways to enforce the signed distance property. The most

obvious one is to extract the zero contour after every iteration (e. g., using the
marching cubes of Lorensen and Cline [104] or the newer method of Kobbelt
et al. [91]) and then recompute the distance values to this boundary (which
can be done quite fast with the fast marching method by Sethian [149]).
Since it is usually not necessary to have the distance values exactly restored,

the more common method is to iteratively reinitialize the level set function
once in a while using Sussman et al.’s method [163, 162]. Solving the PDE

∂Φ0

∂τ
= S

(
Φ0(·, 0)

)
· (1− ‖∇Φ0‖) (7.5)

4In fact, we will even initialize Φ0 = 0 which is quite “far” from a distance function.
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to steady state would exactly recover the signed distance function. The term

S
(
Φ0(·, 0)

)
=

Φ0(·, 0)√
Φ0(·, 0)2 + C

is, for numerical reasons, an approximation to the sign function, with C being
on the order of the spatial resolution. This sign function is computed only
once from the initial level set Φ0(·, 0) in order to preserve the initial boundary.
The PDE then drives the level set function towards a signed distance function,
leaving the zero level set unaltered. Note that it is usually not necessary to
compute (7.5) to steady state. Very few iterations of the reinitialization PDE
are usually enough to obtain the desired regularization. This reinitialization
method is also explained in detail by Zhao et al. [180] and used in a modified
version by Peng et al. [126]. Both methods described so far are also covered in
more detail by Osher and Fedkiw [121, Ch. 7].
A third possibility is to penalize deviations of the level set function from a

signed distance function. Li et al. [101, 102] add

Edist(Φ0) = λdist

∫
V0

1

2
(‖∇Φ0‖ − 1)2 dX0 (7.6)

to the energy functional for penalizing deviations of ‖∇Φ0‖ from 1. The
unit gradient magnitude is a necessary property of signed distance functions
(though not sufficient as often suggested). This method, however, entails
other numerical difficulties as it tends to make the evolution unstable. See
Appendix E.5 for the calculation of the variation of (7.6) that can be used as
additional update component in a gradient descent.
Other approaches for keeping the level set function a signed distance function

have been presented by Gomes and Faugeras [54, 55] and Adalsteinsson and
Sethian [3]. In both cases, the authors propose to directly modify the evolution
equation so that the signed distance property is preserved by the updates.

7.2.3 Warping Function – Motion
If the structure to be modeled is a continuous object that deforms due to forces
(e. g., originating from breathing and heart beat), it makes sense to assume that
rigid (or incompressible) motion components are more likely to be present than
deformable ones. This can be favored by composing the motion by a rotation
R, a translation T , and a deformation u to obtain

R(t) ·X + T (t) + u(X, t) .

Enforcing a smooth motion over time can be achieved by using B-splines for
all the time-dependent components R, T , and u. The rotation

R(t,α) = R1

(
θ1(t)

)
·R2

(
θ2(t)

)
·R3

(
θ3(t)

)
is parametrized by Euler angle matrices R1 to R3 whose angular parameters

θi(t) =
∑
bt

αRi,bt ·N t
bt(t) , 1 ≤ i ≤ 3

are temporal B-splines with coefficient vectors αR1 to αR3 . The translation

T (t,α) =
∑
bt

αT ,bt ·N t
bt(t)
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Algorithm 7.1 Efficient evaluation of motion splines
1 evaluate NX

bX
(Xi), NY

bY
(Yj), NZ

bZ
(Zk), N t

bt(tl) at all grid points
2 for l do // projection images / time
3 ubX ,bY ,bZ ←

∑
bt
αu,bX ,bY ,bZ ,bt ·N

t
bt(tl)

4 R← . . .
5 T ← . . .
6 for k do
7 ubX ,bY ←

∑
bZ
ubX ,bY ,bZ ·N

Z
bZ

(Zk)
8 for j do
9 ubX ←

∑
bY
ubX ,bY ·N

Y
bY

(Yj)
10 for i do
11 u←

∑
bX
ubX ·N

X
bX

(Xi)
12 // compute warped level set and updates to Φ0 using
13 X0 ← R ·Xi,j,k + T + u
14 end for
15 end for
16 end for
17 end for

is simply a three-dimensional B-spline function with a coefficient matrix αT .
The deformable motion u should additionally be smooth with respect to the
spatial coordinates. This is achieved by not only using B-splines in the temporal
dimension of u(X, t) but also in the three spatial ones, resulting in the tensor
product spline

u(X, t) =
∑
bX

∑
bY

∑
bZ

∑
bt

αu,bX ,bY ,bZ ,l ·NX
bX (X) ·NY

bY (Y ) ·NZ
bZ (Z) ·N t

bt(t) .

Note that all the B-spline basis functions can be pre-computed once in an
algorithm if the evaluation points are always the same grid points Xi, Yj , Zk,
and tl resp.(see line 1 in Algorithm 7.1). Furthermore, if the summation order
corresponds well with the nested loops in an algorithm, many intermediate
products can be efficiently evaluated as soon as another space or time variable
is known, e. g. in lines 3, 7, 9, and 11 in Algorithm 7.1. In this case an efficient
order of operations would be

u(Xi,j,k, tl) =∑
bX

(∑
bY

(∑
bZ

(∑
bt

αu,bX ,bY ,bZ ,bt ·N t
bt(tl)

)
·NZ

bZ (Zk)

)
·NY

bY (Yj)

)
·NX

bX (Xi)

where, e. g., the term in the innermost parentheses does not depend on X, Y ,
or Z and can therefore be precomputed right after the outermost loop (line 2
of Algorithm 7.1) in line 3.
Now that the detailed model is specified, we will gather all motion parameters

αRi,l, αT ,l, and αu,i,j,k,l and denote their aggregate vector by αglo to obtain

ϕglo

(
X, t,αglo

)
= R

(
t,αglo

)
·X + T

(
t,αglo

)
+ u

(
X, t,αglo

)
. (7.7)

In addition to this time-dependent global motion, we also define a periodic
motion depending on the (ECG-determined) cardiac phase c(t) ∈ [0 %, 100 %)
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as

ϕper

(
X, c(t),αper

)
= R

(
c(t),αper

)
·X + T

(
c(t),αper

)
+ u

(
X, c(t),αper

)
.

(7.8)
The cardiac motion model’s periodicity is enforced by appropriately designing
the temporal B-spline basis. Note that although ϕper is thus exactly periodic,
the combination with the global motion ϕglo enables the representation of a
non-ideally periodic heart beat (in addition to allowing breathing motion also
captured by ϕglo).
There are various ways to combine the two motion models (7.7) and (7.8),

namely by concatenation (ϕglo ◦ ϕper or ϕper ◦ ϕglo) or by addition. We have
chosen the latter approach due to its symmetry and easier implementation,
arriving at

ϕ
(
X, t,αglo,αper

)
=

= X +
(
R(t,αglo)− I3

)
·X + T (t,αglo) + u(X, t,αglo) +

+
(
R
(
c(t),αper

)
− I3

)
·X + T

(
c(t),αper

)
+ u

(
X, c(t),αper

)
.

Thus, αglo and αper are multidimensional variables to be optimized and are
grouped in α. Since they are motion parameters, we can calculate gradients
for them setting δϕ = ∂ϕ

∂αi
in the motion variation (7.3) to obtain

∂Edata

∂αi
= δϕEdata

(
Φ0 ◦ϕ, Ĩ;

∂ϕ

∂αi

)
= δΦEdata

(
Φ0 ◦ϕ, Ĩ;

〈
∇Φ0 ◦ϕ,

∂ϕ

∂αi

〉)
.

7.3 Algorithm
Having defined discrete representations of all the input and output variables
of the continuous problem formulation we will now outline the core algorithm
for computing a dynamic reconstruction using the iterative method developed
in the previous chapters (see Algorithm 7.2). An implementation of the full
algorithm requires additional subroutines, e. g. for computing warped volumes,
casting rays, etc., which will not be discussed in detail here.

Initialization
The reference level set volume is initialized to zero everywhere (see line 1 in
Algorithm 7.2). This means that no prior shape is assumed and that the
reconstruction is “undecided” at every point in space. Other publications
suggest initializing the level set function so that it describes some meaningful
shapes (such as a number of balls covering the entire volume) in order to
start with a signed distance function. Starting with a constant zero function,
however, enables a fast initial convergence since all points are considered to
be on the boundary between “inside” and “outside” and updates depending
on δ(Φ) will be effective throughout the volume. Similarly, the motion is
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Algorithm 7.2 Dynamic cardiac reconstruction
1 initialize Φ0 ← 0
2 initialize α← 0
3 repeat // iterations
4 reset updates ∆Φ0 ← 0, ∆α← 0

5 accumulate update ∆Φ0 ← ∆Φ0 −
δEshape

δΦ0
from shape prior

6 for l do // projection images
7 compute warped volume Φ(·, tl)← Φ0

(
ϕ(·, tl)

)
8 compute mIPs Φmin(xr,s, tl)← min

X∈P−1(xr,s,tl)

(
Φ(·, tl)

)
∀ r, s

by casting rays P−1(xr,s, tl) through Φ(·, tl)
9 for k do // Z index of warped volume
10 for j do // Y index of warped volume
11 for i do // X index of warped volume
12 compute projection location x = P (Xi,j,k, tl)
13 interpolate vesselness value Ĩ∗ ← Ĩ(x, tl)
14 interpolate minimum value of Φ∗min ← Φmin(x, tl)

15 use Ĩ∗ and Φ∗min to compute variations δEdata
δΦ0

and δEshape

δϕ

16 compute X0 = ϕi,j,k,l(Xi,j,k, tl) (see Algorithm 7.1)
17 backward interpolate and accumulate update

∆Φ0(X0)← ∆Φ0(X0)−∇Φ0Edata

18 accumulate update ∆α← ∆α−∇αEdata

19 end for // i
20 end for // j
21 end for // k
22 end for // l
23 compute the variation δEdata

δΦ0

24 accumulate shape update ∆Φ0(X0)← ∆Φ0(X0)−∇Φ0Eshape

25 apply updates Φ0 ← Φ0 + ∆Φ0, α← α+ ∆α
26 reinitialize Φ0 using (7.5)
27 until convergence

initialized to the identity transform by setting all parameters to zero (line 2 in
Algorithm 7.2).

Shape regularization
The shape prior (smoothness of the surface) only has to be applied to the
reference level set Φ0 since all other level sets are just warped volumes of the
reference reconstruction. This can already be done before iterating over the
transformed volumes’ voxels. Note, that line 5 requires a subroutine iterating
over all reference voxels, though in negligible time.

Warping and ray casting
Lines 7 and 8 are necessary for computing the minimum intensity projections
(mIPs) of Φ. Note that instead of first warping the volume and then doing
a standard raycasting along straight projection lines, one could also merge
the two steps by warping single coordinates / sampling points along the ray.
The latter approach has the advantage that only one interpolation takes place.
The former approach (as listed in Algorithm 7.2) was favored here since the
warped level set volumes Φ are anyways needed for visualization and evaluation
purposes of the intermediate reconstruction results.
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(a) Forward interpolation, computing
a value at a non-grid location
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(b) Backward interpolation, distribut-
ing an update from a non-grid lo-
cation

Figure 7.2: Interpolation of level set updates. (Images reproduced by courtesy of

Jakob Vogel [167].)

Updates from data term
The backward interpolation in line 17 is illustrated in Figure 7.2(b). It
avoids an inversion of ϕ by applying updates to Φ0 at non-grid locations
X0 = ϕ(Xi,j,k, tl). This is achieved by distributing ∆Φ0(X0) to the nearest
grid neighbors of X0 using the same weights as for a forward interpolation
at X0 (see Figure 7.2(a)). Note that Chen et al. [25] propose an efficient
inversion formula for displacement fields that could be used after computing a
dense displacement field. Both updates in lines 17 and 18 are performed using
the minimum weighting function δ

(
dM(x,t,Φ0◦ϕ)(X)

)
discussed in Section 7.1.

This differs from the updates resulting from the modeling of Kolev and Cremers
[92] which uniformly alters all voxels along a ray.

Reinitialization
The reinitialization in line 26 could be done using any of the methods described
in Section 7.2.2. We decided to follow the standard approach and apply the
iterative reinitialization PDE given in (7.5) every few iterations. Although
a separate reinitialization has some drawbacks that will be discussed in the
next paragraph, it is far more robust than the method given by Li et al.
[101, 102] which is numerically unstable for larger step sizes. We generally
start with one reinitialization iteration every few iterations of the reconstruction
and then gradually switch to one reinitialization per reconstruction iteration
when approaching convergence. Thorough reinitializations right from the
first iterations would not make any sense and increasing the reinitialization
frequency at a later stage still ensures numerical well-behavedness.

Convergence
Comparing the energy values between subsequent iterations is quite dangerous
when sparsely reinitializing the level set function Φ0 for driving it toward a
signed distance function. The reinitialization step does not originate from the
energy functional and generally worsens its value (by decreasing the level set
function’s slope esp. around the interface Φ0 = 0). Therefore, one has to
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reinitialize after every iteration in order to keep its effect consistent and to be
able to do energy comparisons.

Bottlenecks
The computationally most expensive parts of Algorithm 7.2 are lines 7 and
8 taking about 52% and lines 17 and 18 accounting for about 44% of the
overall computation time, resp. The computation of the mIPs of the warped
level set volume would greatly benefit from a more massive parallelization
(as on GPUs) enabling a parallel casting of an order of magnitude more rays
than on CPUs. The most demanding part of the update accumulations is the
distribution of updates to the B-spline coefficients α. Line 18 actually contains
four nested loops for distributing a voxel’s contribution originating from point
(Xi,j,k, tl) to all associated spline coefficients. Trading memory for speed, this
could be dramatically accelerated using motion vector fields for the deformable
components.

7.4 Hardware Selection and Runtime
Considerations

The development of the novel reconstruction functionals like those presented in
Chapter 5 involves a number of iterations between modeling and testing. A lot
of prototyping and debugging was necessary while experimenting with various
types of functionals. Porting the whole algorithm to the GPU would have
accelerated the reconstruction speed by a significant factor. However, sticking
with multi-core CPUs and OpenMP [119, 120] provided much better debugging
capabilities with acceptable wait times for most of the experiments during
development. Only the last step in the series of experiments (to be presented
in the next chapter) with full resolution data was challenging considering
reconstruction times of a few hours. However, the author could not agree
more with Herman [65, p. 122] who states that

“[. . . ] electronic hardware used for calculations is getting cheaper
and cheaper at an amazing rate. It is unlikely that an efficacious re-
construction algorithm would for long remain unused solely because
of computational considerations.”
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Part III

Evaluation and Discussion
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Chapter 8

Experiments

Apart from the experiments we performed for evaluating the two components
of our approach (see Chapters 5 and 6), we also tested the combined framework
for the reconstruction of dynamic level sets. Increasing the complexity of the
problem step by step, we were finally able to obtain promising results from real
data.1
Before showing the results of these experiments, we will first define some

terms that will be used throughout this chapter:

Synthetic data is generated from binary volumetric shapes which are either
“painted” into a volume (T) or obtained by segmenting a highly con-
trasted tomographic volume (S). This volumetric data is then animated
using a motion warping function and projected using maximum intensity
projections. After adding noise to these MIPs, their pixel values are an
approximation to vessel-enhanced angiographic data.

Phantom data is generated using detailed and realistic models for the atten-
uation and motion of human anatomy – in this case using the XCAT
phantom by Segars et al. [145]. Digitally reconstructed radiographs
(DRRs) mimicking real X-ray projections are generated by forward
projections and are then preprocessed with standard vessel-enhancing
filters like Frangi et al. [48], Koller et al. [96], or Krissian et al. [97].

Real data consists of X-ray projections of a living human subject acquired
during a rotational angiographic protocol. These projections are also
preprocessed using vesselness filters.

Global motion is assumed or modeled non-periodic, i. e., its parameter is the
time t ∈ T .

Periodic motion is assumed or modeled periodic, i. e., its parameter is the
heart phase c ∈ [0, 1). Since 1 is identified with 0, the periodicity
condition ϕ(k)(·, 1) = ϕ(k)(·, 0) is required for certain differentiability
orders k ∈ 0, . . . ,K.

Rigid motion denotes a dynamic rigid transformation with 6 DOFs for every
point in time, modeled with 3 temporally varying Euler angles and 3
temporally varying translation components.

1Thanks to the support of Tobias Klug and the LRR group at TUM who gave us access to
their multi-core system all experiments were performed in reasonable time.
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Deformable motion denotes a dynamic deformable transformation with many
(theoretically infinite) DOFs for every point in time, modeled with
parametrized, varying displacement fields.

This terminology enables us to summarize our experiments as follows: We
performed

• n×1D→ 2D reconstruction from (orthographic) projections of synthetic
objects (see Chapter 5).

• n×2D→ 3D reconstruction from (orthographic) projections of synthetic
objects (see Chapter 5),

• n×3D→ 3D+ t segmentation of dynamic CTA data (see Chapter 6), and

• n×2D→ 3D + t reconstruction from perspective projections of

– static synthetic shapes (not discussed here),

– synthetic shapes with rigid, global motion (presented in Keil et al.
[88] and in Section 8.1.1),

– synthetic shapes with rigid and deformable, periodic motion (pre-
sented in Keil et al. [87] and in Section 8.1.2),

– phantom data with rigid and deformable, periodic motion (XCAT)
(see Section 8.2), and

– real data with rigid and deformable, periodic and global motion (see
Section 8.3).

8.1 Synthetic Experiments
Two different synthetic shapes have been created. One was constructed
algorithmically by assembling several tubes of varying width in a volume. It
is visualized in the top-left image of Figure 8.1 and will be denoted with the
letter (T). The other synthetic shape (S) was obtained by segmenting the CT
scan of a physical phantom (see lower-left image in Figure 8.1).
These synthetic shapes were warped according to the specific experiment’s

ground truth motion and then projected with a maximum intensity projection
using the calibration matrices of a real C-arm. Gaussian noise (with zero
mean and a percentage of the full intensity range) was added in some of
the experiments to evaluate the robustness of the reconstruction. Note that
there was no preprocessing necessary due to the generation of the input data.
The binary projections with the added noise are a simplistic approximation to
vessel-enhanced angiographic data.

8.1.1 Rigid, Global Motion
The first set of tests on motion-contaminated data (see also Keil et al. [88])
employed a rigid, non-periodic motion

ϕglo

(
X, t,αglo

)
= R

(
t,αglo

)
·X + T

(
t,αglo

)
for warping the ground truth volume during MIP generation and for the motion
model during reconstruction. The parameters of this setting are summarized in
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Table 8.1: Problem dimensions for the synthetic experiment with rigid, non-
periodic motions

Projection images: 892 800 pixelsa
Number of projections 48
Size 155 px× 120 px
Pixel spacing on detector (2.464 mm

px )2

Time per frame 66.8ms (equals 15 fps)
Total time 3.2 s
Angular increment 4° per image, 188° in total

Reconstruction volume: 125 000 voxels
Size (50 vx)3

Spacing / resolution (3 mm
vx )3

Motion parametrizationb:
Global motion (t):

Rigid component 12× 6 72 DOFs

72 DOFs

aNote that the phantom is projected onto a subrectangle covering only approximately 70%
of the projection images, so that the effective number of pixels reduces to approximately
600 000 pixels.

bWe used quadratic splines for all motions. The first factor gives the DOFs in the temporal
dimension, the next three factors – if present – the spatial DOFs, and the final factor
equals the number of components to be modeled (6 for rigid motion parameters and 3 for
displacements).

Table 8.1. Note that the reconstruction volume’s resolution was actually two
to four times coarser than that of the ground truth shapes (T) and (S), resp.
This resulted in omissions of the fine structures in the reconstructions of (S)
(see bottom row in Figure 8.1). Therefore, this was not a reconstruction error
but inherent to the discretization. But since the goal of this first experiment
was the evaluation of motion reconstruction errors, it did not influence the
results given in Table 8.2. These positional error measurements were obtained
by computing the error between the reconstructed motion ϕ and the known
ground truth motion ϕ̂. This is done for every point X in the ground truth’s
vasculature by warping it to the first frame (t = 0) with ϕ and ϕ̂ and measuring
the distance

ε(X, t) =
∥∥ϕ−1

(
ϕ(X, t), 0

)
− ϕ̂−1

(
ϕ̂(X, t), 0

)∥∥
resulting in this frame. This was easily possible due to the rigid motion offering
an explicit inversion for every point in time. The errors ε(X, t) were then
averaged over all points X inside the ground truth vasculature and all times t
to obtain the values in Table 8.2. Due to the confined motion model, the motion
estimation is sub-voxel accurate for moderate noise and still at the same scale
as the reconstruction volume’s resolution of 3mm for 50% noise (µ = 0 and
σ = 0.5 for intensities in [0, 1]).
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Figure 8.1: Imaging and reconstruction process for synthetic data with global,
rigid motion. Top row: Tubular shape (T) without noise. Bottom row:
Segmented phantom data (S) with 50% noise, i. e., µ = 0 and σ = 0.5
for intensities in [0, 1]. From left to right: Ground truth models, example
projection, and the final reconstruction. Note that the projections do not
show a static setting, but a snapshot of a moving artery model.

Table 8.2: Comparison of motion reconstruction errors. The two data sets
shown in Figure 8.1 were reconstructed at three different noise levels. All
errors have been evaluated for a series of 10 to 20 experiments.

Noise (%) Mean (mm) St.D. (mm) Max. (mm) Med. (mm)

0 0.81 0.47 4.41 0.72
25 0.83 0.45 4.37 0.75
50 3.68 2.77 11.73 3.07
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Table 8.3: Problem dimensions for the synthetic experiment with deformable,
periodic motions

Projection images: 892 800 pixelsa
Number of projections 48
Size 155 px× 120 px
Pixel spacing on detector (2.464 mm

px )2

Time per frame 66.8ms (equals 15 fps)
Total time 3.2 s
Angular increment 4° per image, 188° in total

Heart rate: ∅ 96 bpm

Reconstruction volume: 125 000 voxels
Size (50 vx)3

Spacing / resolution (3 mm
vx )3

Motion parametrizationb:
Periodic motion (c):

Rigid component 12× 6 72 DOFs
Deformable comp. 12× 5× 5× 5× 3 4500 DOFs

4572 DOFs

aNote that the phantom is projected onto a subrectangle covering only approximately 70%
of the projection images, so that the effective number of pixels reduces to approximately
600 000 pixels.

bWe used quadratic splines for all motions. The first factor gives the DOFs in the temporal
dimension, the next three factors – if present – the spatial DOFs, and the final factor
equals the number of components to be modeled (6 for rigid motion parameters and 3 for
displacements).

8.1.2 Deformable, Periodic Motion
The next level in terms of difficulty was the inclusion of deformable motions in
addition to the rigid one (see Keil et al. [87]). But this time, the motion

ϕper

(
X, c(t),αper

)
= R

(
c(t),αper

)
·X + T

(
c(t),αper

)
+ u

(
X, c(t),αper

)
was assumed to be periodic (with the simulated heart phase c). The ground
truth volume was warped with translations of up to 10mm, rotations of up
to 10°, and deformations of up to 30mm. The reconstruction parameters are
summarized in Table 8.3.
The main focus of this experiment was an evaluation of the accuracy of the

shape reconstruction. A visual comparison (see Figure 8.2) already shows a
good alignment of ground truth and reconstruction. A quantitative comparison
was obtained using three shape error measures. Using the definitions of the sets
illustrated in Figure 8.3, Dice’s coefficient or the overlap ratio is defined as

D(R,G) =
|G ∩ R|

1
2

(
|G|+ |R|

) =
2|G ∩ R|
|G|+ |R|

or, alternatively, as

D(R,G) =
|TP|

1
2 (|TP|+ |FP|+ |TP|+ |FN|) =

2|TP|
2|TP|+ |FP|+ |FN| .
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Figure 8.2: Example overlays for evaluation of shape errors for the synthetic
data sets with deformable, periodic motion. The noise level for the
projections and reconstructions shown is 50%. Top row: Overlay of
reconstructed shape borders (red) on input projection data. Bottom row:
3D overlay of ground truth data (green) and reconstructed shapes (red).
Left: Tubular shape (T). Right: Segmented phantom data (S). Note
that the whole setup is dynamic and the printed images can only show
a snapshot of the non-rigidly moving artery trees.
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G R

TN

FPFN TP

Figure 8.3: Illustration of Dice’s similarity coefficient / overlap ratio.
G = ground truth, R = reconstruction, TP = true positives, TN = true
negatives, FP = false positives, FN = false negatives.

Table 8.4: Comparison of reconstruction errors for two types of synthetic data
sets at six different noise levels.

Data set Noise level (%) D (%) Se (%) Sp (%)

(T) 0 85.1 86.1 99.9
(T) 10 84.9 84.4 99.9
(T) 20 84.6 83.5 99.9
(T) 30 83.8 80.1 99.9
(T) 40 83.2 80.1 99.9
(T) 50 81.3 75.9 99.9

(S) 0 66.7 75.2 99.6
(S) 10 66.6 78.0 99.6
(S) 20 65.0 73.8 99.6
(S) 30 67.0 74.2 99.6
(S) 40 66.3 72.8 99.6
(S) 50 64.7 71.7 99.6

Therefore, D is the ratio of the overlap of two shapes to their average size. In
addition to Dice’s coefficient, we used the

sensitivity Se =
TP

TP + FN
(8.1)

and the specificity Sp =
TN

TN + FP
. (8.2)

Table 8.4 shows that the shape reconstruction is extremely robust with respect
to noise. The lower accuracy of the reconstruction of shape (S) is again
explained by the coarse resolution of the reference reconstruction’s volume.
The specificity is of limited interest because it can be pushed arbitrarily close
to 100% by enlarging the reconstruction volume (thereby enlarging TN but
usually not FP).
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Table 8.5: Problem dimensions for the phantom experiment

Projection images: 123 mil. pixelsa
Number of projections 133
Size (960 px)2

Pixel spacing on detector (0.32 mm
px )2

Time per frame 40ms (equals 25 fps)
Total time 5.32 s
Angular increment 1.5° per image, 198° in total

Heart rate: 80 bpm

Reconstruction volume: 7 mil. voxels
Size (190 vx)3

Spacing / resolution (0.5 mm
vx )3

Motion parametrizationb:
Periodic motion (c):

Rigid component 11× 6 66 DOFs
Deformable comp. 11× 7× 7× 7× 3 11 319 DOFs

11 385 DOFs

aNote that the heart is projected onto a subrectangle covering only approximately 10% of
the projection images, so that the effective number of pixels reduces to approximately 12
million pixels.

bWe used quadratic splines for all motions. The first factor gives the DOFs in the temporal
dimension, the next three factors – if present – the spatial DOFs, and the final factor
equals the number of components to be modeled (6 for rigid motion parameters and 3 for
displacements).

8.2 Phantom Experiments
The most realistic quantitative evaluations were performed on phantom data
derived from the XCAT phantom by Segars et al. [145]. This phantom
was built using CT and MR scans of humans and generating spline-based
anatomical models from it. Motion models were also derived from real data.
The reconstruction parameters are summarized in Table 8.5. This time, the
resolution and parameters were all at realistic scales (e. g., (0.5 mm

vx )3 for the
reconstruction volume).
The whole evaluation was performed using the CAVAREV platform by

Rohkohl et al. [138]. It should be noted that although the author of this thesis
is also a co-author of the CAVAREV publication, the evaluation reported here
was performed completely blind, i. e., without any knowledge of the ground
truth data (neither shape nor motion) generated by Rohkohl. In this realistic
setting, a prior vessel enhancement was performed for extracting the vascular
features from the DRRs.
The reader is referred to the right margin of this thesis for a visualization

of this data. The images there are intended to be a flip book2 with the
following movies (from top to bottom): Input DRRs, preprocessed projections
with overlaid projected reconstruction outline (in red), 4D reconstruction, and
2Flip through the pages from front to back. Use the electronic version of this document in
an appropriate viewing mode for the best movie experience.
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Figure 8.4: Error evaluation of a reconstructed volume for the phantom data
set. Comparison with all ground truth volumes. The best overlap score is
69.2% and peaks occur at frames of similar cardiac phase.

evolution from initialization to final reference shape Φ0. The two projection
sequences have been cropped so that only the relevant, central portions of the
images are shown. The reconstructed motion can be best seen by focusing on
a specific point (e. g., a bifurcation) in the third movie.
Visual inspection shows that the proximal parts of the LCA are difficult to

reconstruct because they are coplanar to the plane of the rotational acquisition.
This results in a slow convergence in this region (see bottom movie on the right)
and even a small gap in the vasculature.
The two error measures used on the CAVAREV platform are again based

on Dice’s similarity coefficient. The first measure is a 3D similarity for a
reconstructed volume R, obtained by comparing it to all available ground truth
volumes Gi (of several motion states) and retaining the maximum overlap ratio

Q(R) = max
i
D(R,Gi) .

The best overlap achieved across all submitted reconstruction volumes was
69.2% (see Figure 8.4). A second measure is the 4D overlap

Q(R1, . . . ,R133) =
1

133

133∑
i=1

Q(Ri) ,

computed as the average of the 3D errors of all submitted reconstruction frames.
Here we achieved 60.5% (see Figure 8.5). Both errors are within the range of
the latest tomographic approaches for cardiac cone beam CT and approx. 10%
better than simple ECG-gated FDK reconstructions according to evaluations
with the CAVAREV platform.

8.3 Real Data
Some preliminary experiments with real RA data (courtesy of Prof. Dr.
Bachmann and Dr. Rittger, Klinikum Coburg, Germany) were performed
without essential modifications compared to the phantom experiments in the
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Figure 8.5: 4D error measure for the phantom data set, computed as the
average of all best 3D match errors. Average overlap ratio is 60.5%.

last section. The reconstruction parameters are summarized in Table 8.6 and
the results are visualized in Figure 8.6.
The obtained reconstructions were obtained very robustly and the algorithm

never diverged. A visual assessment of the accuracy shows that the motion
models probably have to be better adapted to realistic heart motions, so that
the algorithm is capable of recovering the vasculature from all projections.
Furthermore, the contrast injection is not constant over the acquisition time,
making some projections misleading due to lacking vessel features. But the
integrated solution makes it possible to cope with some level of missing contrast
as can be seen from the center-right image of Figure 8.6.
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Table 8.6: Problem dimensions for the real experiment

Projection images: 123 mil. pixelsa
Number of projections 133b

Size (960 px)2

Pixel spacing on detector (0.32 mm
px )2

Time per frame ∅ 40ms (equals 25 fps)c
Total time 5.32 s
Angular increment 1.5° per image, 198° in total

Heart rate: ∅ 103 bpm

Reconstruction volume: 8 mil. voxels
Size (200 vx)3

Spacing / resolution (0.5 mm
vx )3

Motion parametrizationd:

Global motion (t):
Rigid component 12× 6 72 DOFs
Deformable comp. 12× 3× 3× 3× 3 972 DOFs

1044 DOFs
Periodic motion (c):

Rigid component 11× 6 66 DOFs
Deformable comp. 11× 7× 7× 7× 3 11 319 DOFs

11 385 DOFs

12 429 DOFs

aNote that the heart is projected onto a subrectangle covering only approximately 10% of
the projection images, so that the effective number of pixels reduces to approximately 12
million pixels (further reduced by badly contrasted images, see footnote b).

bOnly 103 projections were used for reconstruction due to insufficient contrast dye in the
first 30 frames.

cIn this case these are average times / frame rates. This specific acquisition protocal
triggers the X-ray shots equiangular requiring slower frame rates during acceleration and
deceleration.

dWe used quadratic splines for all motions. The first factor gives the DOFs in the temporal
dimension, the next three factors – if present – the spatial DOFs, and the final factor
equals the number of components to be modeled (6 for rigid motion parameters and 3 for
displacements).
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(a)

Figure 8.6: Results for first tests on real angiographic RA data for two
acquisition frames (left and right). From top to bottom: Angiograms,
vessel-enhanced images with overlaid outline of the reconstruction, 3D
rendering of the reconstruction.
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Chapter 9

Conclusion

This final chapter wraps up the developments of this thesis and the lessons
learned about cardiac C-arm reconstruction as well as dynamic shape models.
Based on these experiences, an outlook on potential future developments – for
this work and for medical image reconstruction in general – is given.

9.1 Discussion of this Work
The prior work in the field of cardiac C-arm reconstruction shows that there
is currently no consensus on whether successful algorithms should be based
on tomographic or symbolic methods. There are basically two streams of
work: One seeks to compensate for motion in traditional tomographic methods
while the other relies on enhanced motion cues from image features enabling a
subsequent motion compensation of tomographic reconstructions.
The models and methods developed in this thesis provide an intermediary

between those two worlds by robustly reconstructing shape models defined on
dense grids. This required the development of two novel components, namely

• dynamic level sets that can be optimized for shape and motion and

• ray-based silhouette reconstruction functionals tolerating inconsistent
projections.

The level set reconstruction proved to yield comparable and in some settings
even better results than standard silhouette reconstructions in the experiments
performed for testing this component. But their real potential lies in the
reconstruction of dynamic shapes from inconsistent projections and thus in
combination with the other component – dynamic level sets. In this setting,
the projection-based energy functional has the advantage of being more robust
to motion than volume-based approaches since they do not depend on the
severeness of the motion and thus do not need a dynamic adaptation of
parameters like voting thresholds. The dynamic level sets even have potential
applications as a stand-alone solution in the dynamic segmentation of 4D
data as shown in example experiments. Although not elaborated in this
thesis, simultaneous motion extraction and segmentation, e. g., in 4D CT or
ultrasound, could benefit from such an integrated shape and motion model
enabling the simultaneous usage of all input data and the simple integration of
prior knowledge in the form of soft constraints.
Returning to the initial motivation of seeking reconstructions from cardiac

C-arm data, these developments were also successfully applied in various
experiments, including synthetic, phantom, and real data. Evaluations of the
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motion and shape reconstruction accuracy using ground truth data (where
available) demonstrate the practicability in this advanced setting, even though
the versatility of the provided models has not been fully exploited. The
discussion on further ideas (see Section 9.2) gives some hints on such potential
improvements.
After elaborating on these potential extensions of this work, we will make

some reflections on the lessons learned and give an outlook on the future of
medical image reconstruction in general.

9.2 Future Work
The models and methods presented in this work have proven to work as
intended without further extensions. But depending on the final application
and implementation, it makes sense to make further efforts in specific directions.

9.2.1 Algorithm Speed-Up
Leaving the development stage, debugging capabilities are no longer needed
and reconstruction speed becomes the main concern. Given this setting, the
reconstructions can be accelerated in several ways:
Instead of computing full gradients in every iteration, an SART or ran-

domized ART scheme (see Chapter 2) would likely accelerate convergence the
same way these methods accelerate tomographic reconstruction. Instead of
processing the input projections sequentially or randomly, one could derive a
heuristic method taking not only acquisition angles but also cardiac phase into
account for projection selection.
The current algorithm’s greatest bottleneck is the usage and esp. the update

of the deformable components of the motion models. Instead of using intuitive
but computationally expensive tensor product splines one could try out very
coarse motion vector fields and interpolate them. This way, some modeling
power would be lost, gaining evaluation and update performance (16 relevant
spline coefficients instead of 256).
And last but not least, porting the code to GPUs (graphics processing

units) is an option. But although widely used in medical imaging research,
the graphics card architecture still imposes some limits that might not make
them a perfect match for reconstruction (limited memory, reduced speed for
arbitrary writes, . . . ).
The last two proposals are (as of 2010) mutually exclusive since a full

deformation field requires memory in the order of 12GiB. This is far beyond
current graphics cards’ memory sizes. So one would either have to wait
until such memory sizes become available or use a coarser resolution and
interpolation. E. g., a linear interpolation of a displacement field with 1mm
resolution stored for every other image frame would only require about 0.75GiB
of memory.

9.2.2 Modeling Improvements
The models presented so far are still quite general and could be further adopted
to the reconstruction of coronary vasculature. This requires some extra work
in terms of collecting and evaluating enough data for building statistical priors
but could potentially improve the reconstruction results.
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Statistical Shape Priors – Tubular Shape Regularization

Statistical shape priors can be smoothly integrated in level set methods (see,
e. g., Leventon et al. [100] for early work on this topic and Cremers et al. [36,
sec. 8] for a more recent review). Building detailed shape priors, however, is
quite difficult and dangerous in medical applications. This is certainly true
for coronary trees where variations are significant among the population and
ground truth data is hard to obtain.
But since the level set model so far does not include any prior specifically

designed for modeling vasculature, the results could even profit from the
incorporation of shape priors favoring elongated structures. Gooya et al.
[56] propose the use of local correlation matrices of level set normals for this
purpose: Assuming that the level set function is a signed distance function with
∇Φ
‖∇Φ‖ = 1, the authors define the local correlation matrix

M(x) =

∫
Br(X0)

H
(
−Φ(X̃0)

)
∇Φ(X̃0)∇TΦ(X̃0) dX̃0

with Br (x) being a local neighborhood operator for X0. Tubular structures
then yield eigenvalues λ1,2,3 ofM with 0 ≈ λ1 < λ2 ≤ λ3. This can be favored
by adding the shape functional

Etub(Φ0) =

∫
V0

δ(Φ0)g(trM−1)‖∇Φ0‖ dX0

with g being a non-negative decreasing function.

Better Motion Models

Although it is probably not feasible to derive more detailed motion models (re-
garding arrhythmias etc.), one could still try to optimize the knot distribution
of the temporal B-splines. Adjusting the knot density over the cardiac phase
c to better match the coronaries’ velocities (see Husmann et al. [72]) could
improve the motion reconstruction.

Simultaneous Estimation of Cardiac Phase with ECG Signal as a
Soft Constraint

Instead of strictly relying on the ECG signal, a simultaneous optimization
of c(t) ∈ [0, 1) (using the measured ECG signal as a weak constraint only)
would yield an image-based heart phase estimation. This could be beneficial
for arrhythmic patients where the ECG signal may be a flawed indicator (see
also Blondel et al. [13] and Rohkohl et al. [135] for image-based detection of
cardiac phases).

Adaptive Intensity PDFs

Instead of fixing the intensity distributions phit and pnohit once during initializa-
tion, one could try to adaptively adjust these PDFs by making their parameters
(e. g., the mean and variance for Gaussians) part of the optimization. See Chan
and Vese [22, 23] for a similar approach in intensity-based segmentation.
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9.2.3 Simultaneous Symbolic and Tomographic
Reconstruction

The final goal of cardiac C-arm reconstruction may be a tomographic or a
symbolic reconstruction. This choice probably mostly depends on the accuracy
that can be achieved with symbolic reconstruction. In any case, the two types
of reconstruction could benefit from each other if integrated into a common
optimization. The chosen Eulerian approach for shape modeling proves to be
quite advantageous for such an integration since it allows to easily couple the
two (tomographic and symbolic) reconstruction volumes:
Using the notation
Φ0 for the level set volume (symbolic representation) in the reference

frame,
µ0 for the tomographic volume (of attenuation values) in the reference

frame, and
ϕ for the motion,

one may define a composite energy functional

E(Φ0, µ0,ϕ) = EdataS
(Φ0,ϕ)︸ ︷︷ ︸

4D LS reconstr.

+ EdataT
(µ0,ϕ)︸ ︷︷ ︸

4D tomogr. reconstr.

+ Eseg(Φ0, µ0)︸ ︷︷ ︸
3D CV LS segmentation

+ EpriorΦ0
(Φ0) + Epriorµ0

(µ0) +Epriorϕ(ϕ) .
(9.1)

This functional has three new components (compared to a pure symbolic
reconstruction as presented in this thesis): EdataT

(µ0,ϕ) is the tomographic
data term, computing the difference between DRRs and measured line integrals.
Eseg(Φ0, µ0) is a standard segmentation functional (like the intensity-based
method by Chan and Vese [22, 23]) relating the symbolic and tomographic
volumes. And Epriorµ0

(µ0) is an appropriate regularizer for the tomographic
volume, e. g., using the total variation regularization (see, e. g., Rudin et al.
[139] and Sidky et al. [157, 158, 156]). (Note that Epriorϕ(ϕ) was just added
for completeness in the composite functional (9.1) but the motion’s regularity
can be obtained by using appropriate explicit models again.)
Optimizing (9.1) using the derivatives δE

δΦ0
, δE

δµ0
, and δE

δϕ integrates all
unknowns and all available information as closely as possible and should give
better results compared to sequential approaches.

9.2.4 Reconstruction from Arbitrary Fluoro Sequences

A final improvement, this time in terms of an outlook, would be the re-
construction from fluoroscopic sequences instead of rotational acquisitions.
The obvious benefit would be that shots made for navigational purposes
could be used for locally improving the reconstruction, too. This, however,
would require the robust detection of the contrasted area in order to be
able to properly relate the projections obtained at several points during the
intervention. In addition, the relative pose between the fluoro runs has to be
known (including patient and bed movement) and the calibration has to be
valid for any combination of RAO/LAO and cranial/caudal angles. This could
be achieved by improved procedures for prior calibration or by the usage of
intra-interventional calibration markers (see, e. g., Jain et al. [74] and Navab
et al. [117]).
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9.3 Conclusions for Cardiac C-Arm
Reconstruction

Apart from the arguments given before, there is another, more intuitive one,
supporting the incorporation of feature-based methods into cardiac reconstruc-
tion: The human mind is capable of gaining a 3D impression of the coronary
tree by looking at RA sequences. This is obviously achieved by extracting
and tracking vessel features over the image frames. If nature is able to
obtain symbolic reconstructions without numerically evaluating line integrals,
so should computers. This is not to say that the processing power of computers
should not be employed for tomographic reconstruction. But it would certainly
help to feed additional shape and motion information into such an algorithm.
Regarding the models investigated and developed during this work, there

were some choices to be made: The “contest” of explicit vs. implicit models
resulted in a draw. The former enabled a better incorporation of prior
knowledge in the case of motion modeling while the latter turned out to be
particularly well-suited for the reconstruction of coronary arteries due to the
lack of detailed geometric priors. Level sets also provide the desired soft
spatial coupling corresponding quite well to the reality of connected tissue.
One could generally argue for explicit models in the case of strong geometric
prior knowledge and for implicit models if more flexibility is desired instead.
Finally, it should be noted that although it seems risky to employ new meth-

ods in a domain with such well-established solutions as in image reconstruction,
the results show that good mathematical modeling should be trusted to yield
good algorithms.

9.4 Outlook for Medical Image Reconstruction
in General

It does not require visionary skills to predict that medical imaging and surgical
procedures or interventions will be further integrated in the future. But a true
integration of image reconstruction into existing work flows is naturally the
last step when the technology is really mature enough and imaging is merely
a tool instead of a process. Forty years after the invention of CT and after a
decade of C-arm CT and cardiac CTA, there are some more developments to be
made for seeing cardiac C-arm CT in clinical routine. This specific application
as well as other reconstruction problems will be based on the incorporation
of more prior knowledge as this allows improvements in several directions:
Prior knowledge always reduces the amount of input needed for solving inverse
problems. Therefore, it not only allows the solution of problems like cardiac C-
arm CT but it also helps to improve existing reconstruction algorithms, e. g.,
by reducing acquisition time or radiation dose. The usage of total variation
regularization (see Rudin et al. [139] and Sidky et al. [157, 158, 156]) is probably
only a first step in this direction.
This prompts the conclusion that the age of analytic reconstruction is likely

to fade and iterative methods will soon take over. Analytic reconstruction is
based on very stringent models and huge efforts have to be made when trying to
adapt it to less regularly sampled or otherwise sparse data. Iterative methods,
by contrast, are very flexible with respect to the input and allow a much better
adaptation to various complex settings.
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There are many answers to the question of why analytic methods have
been the industry standard for such a long time. (See also Pan et al.
[125] for an investigation of this.) The main argument for methods like
filtered backprojection are the reduced computational requirements. The
early available analytic inversion formulas provided a one-step reconstruction
whereas iterative methods required an unacceptably long time in the early
days of CT. This head start was further preserved by the availability of
efficient numerical schemes like the fast Fourier transform. And the geometric
restrictions imposed by analytic formulas were not really a problem.
But current developments in medical imaging will probably yield a shift

toward iterative methods. Since the obstacle of computational limits will
fade with the advances in computing infrastructure, the algorithms will soon
take advantage of the additional flexibility in data requirements and modeling
that comes with iterative methods: Acquisition geometries are no longer fixed
and irregular paths (e. g., of robotic C-arms) are handled naturally without
additional analytic efforts or tweaks. Prior knowledge can be incorporated
wherever available, enabling the development of new methods as well as the
improvement of existing ones. This is probably the most distinctive feature of
iterative methods, that “[...] it is easier to incorporate prior knowledge into
the series expansion techniques than into a transform method1 [...]” (Herman
[65, p. 157]). Artifacts may still occur, but not as a direct result of the method
employed (as is the case for streak artifacts). Furthermore, they can be handled
more effectively in iterative approaches as long as the model (e. g., for beam
hardening) is good enough.

1Herman categorizes iterative methods as series expansion techniques and analytic recon-
struction as transform method.
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Appendix A

Notation and Nomenclature

Table A.1: Typefaces and Notation

Notation Explanation

i, t, E scalar variables, functions, or functionals
x,X,ϕ,P multidimensional variables or functions (usually x ∈ R2 and

X ∈ R3)
V, A, T sets
s, mm units like second or millimeter

xT transpose of x
x⊥ vector perpendicular to x (rotated by 90° in math. positive

direction, i. e., counter-clockwise)
〈u,v〉 scalar product of two vectors u and v
〈f, g〉 inner product of two scalar functions f and g, 〈f, g〉 =

∫
f ·

ḡ dΩ
‖ · ‖ 2-norm for vectors, other norms would be denoted by ‖ · ‖p
f(Ω) image of the set Ω under the function f , f(Ω) =

⋃
x∈Ω f(x)

f−1(y) inverse image of y under the function f , f−1(y) =
{x : f(x) = y}; note that f does not need to be invertible

p(A) probability of A
p(A | B) probability of A, given B

δ Dirac distribution with 〈δ, f〉 = f(0) 1

1Ω characteristic function of the set Ω with the property

1Ω(x) =

{
1 : x ∈ Ω
0 : x /∈ Ω

∂f
∂x , ∂xf partial derivative of f w. r. t. x

∇f gradient2 of f , ∇f = ∇xf = fx =
(
∂f
∂x1

, . . . , ∂f∂xn

)T
div f divergence2 of f , div f = ∂f1

∂x1
+ . . .+ ∂fn

∂xn

∆ f Laplacian2 of f , ∆ f = div∇f = ∂2f
∂x2

1
+ . . .+ ∂2f

∂x2
n

continued on next page. . .

1Compare the italic δ used for the Dirac distribution with the upright δ used for variations.
2In the context of this work, multidimensional derivative operators are defined w. r. t. the
spatial arguments of a function (even if the function also depends on time or artificial
time).
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Table A.1: Typefaces and Notation (continued)

Notation Explanation
. . . continued from previous page

Hf Hessian2,3, Hf = ∇2f =
(

∂2f
∂xi∂xj

)
1≤i,j≤n

δΦE (Φ∗; δΦ) variation of E w. r. t. Φ at Φ∗ in the direction δΦ 1

δE
δΦ (Φ∗) variational derivative of E w. r. t. Φ at Φ∗ (if the variational

derivative exists); the variation in a specific direction δΦ can
be calculated as δΦE (Φ∗; δΦ) =

〈
δE
δΦ (Φ∗), δΦ

〉
∏b
a f(x) dx continuous product (see Definition B.4)∫
f(ξ) dS(ξ) surface integral of f

ν unit outward normal vector field

Ck(Ω) set of k times continuously differentiable functions (k ∈ N0∪
∞) defined on the set Ω, where C := C0

Ck0 (Ω) set of k times continuously differentiable functions defined
on the set Ω which have a compact support in Ω

Lp set of functions whose absolute value, raised to the pth power
(1 ≤ p <∞), is Lebesgue-integrable

Lp Banach space of functions from Lp with the equivalence
relation of functions which are equal almost everywhere4

Br (x) open ball centered at x with radius r (Br (x) := {y ∈
Ω : ‖y − x‖ < r})

∂Ω boundary of the set Ω
℘ (V) power set of V, ℘ (V) := {U : U ⊂ V}

Table A.2: Variables, Sets, and Functions

Variable Explanation

T ⊂ R+
0 acquisition time interval

t ∈ T continuous time variable
l ∈ N0 time index or projection number
tl ∈ T continuous time corresponding to index l

V,V0 ⊂ R3 reconstruction volumes
X,X0 ∈ R3 continuous voxel coordinates in V and V0

i, j, k ∈ N0 voxel indexes of the reconstruction grid
Xi,j,k,l ∈ R3 continuous coordinates corresponding to indexes

i, j, k
Φ : V × T → R dynamic/warped level set function
Φ0 : V0 → R reference level set function
δΦ : V × T → R test function / direction used for expressing

variations w. r. t. Φ
δΦ0 : V0 → R test function / direction used for expressing

variations w. r. t. Φ0

continued on next page. . .

3Compare the upright notation of the Hessian H with the italicH for the Heaviside function.
4Yes, “almost everywhere” is a precisely defined mathematical term.
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Table A.2: Variables, Sets, and Functions (continued)

Variable Explanation
. . . continued from previous page

ϕ : V × T → V0 motion function
µ : V0 → R X-ray attenuation volume

A ⊂ R2 projection plane
x ∈ A continuous pixel coordinate
r, s ∈ N0 pixel indexes in discrete projection space
xr,s ∈ A continuous coordinate corresponding to indexes

r, s
I : A× T → R continuous representation (obtained, e. g., by

linear interpolation) of the original X-ray image
series

Ĩ : A× T → R continuous representation of the preprocessed /
vesselness images

E : F → R energy function to be minimized (F is a place-
holder for any function space)

P : V × T → A projection operator
P−1 : A× T → ℘ (V) back-projection operator, yielding a set of points

in V
τ ∈ R+

0 artificial time variable when formulating a con-
tinuous gradient descent (initial values at τ = 0)

Table A.3: Acronyms

Acronym Explanation

ACS acute coronary syndrome
ART algebraic reconstruction technique
CAD coronary artery disease
CBCT cone beam CT
CHD coronary heart disease
CVD cardiovascular disease
CPU central processing unit
CT computed tomography (or computerized tomography)
CTA CT angiography
CVD cardiovascular disease
DOF degree of freedom
DICOM Digital Imaging and Communications in Medicine, a format

standard for medical imaging data
DRR digitally reconstructed radiograph
ECG electrocardiogram
EM expectation maximization
FBP f iltered back projection

continued on next page. . .
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Table A.3: Acronyms (continued)

Acronym Explanation
. . . continued from previous page

FDK initials of Feldkamp, Davis, and Kress, the triplet of authors
that developed a “practical cone-beam algorithm” using filtered
back projection in their homonymous paper [46]; FDK is used
for reference thereto

GPU graphics processing unit
HU Hounsfield units
IVUS intravascular ultrasound
LAO left anterior oblique, patient’s left shoulder faces the detector5
LV left ventricle (pumping oxygenated blood into the aorta)
MIP maximum intensity projection
mIP minimum intensity projection
ML maximum likelihood
MPR multi-planar reformatting or multiplanar reconstruction
MRI magnetic resonance imaging, see NMR
MVF motion vector f ield
NMR nuclear magnetic resonance, see MRI
OR operating room
PCI percutaneous coronary intervention
PDF probability density function
PET positron emission tomography
QCA quantitative coronary angiography
RA rotational angiography
RAO right anterior oblique, patient’s right shoulder faces the detec-

tor5
RV right ventricle (pumping deoxygenated blood into the pul-

monary artery)
SART simultaneous algebraic reconstruction technique
SPECT single photon emission computed tomography
TEE transesophageal echocardiography
TTE transthoracic echocardiography
XA X-ray angiography

5C-arms are usually positioned with the source under the patient and the detector above the
patient for fluoroscopic imaging. Although not relevant in terms of measured intensity
and line integrals, this helps shielding the patient’s more critical organs from the higher
radiation that is present close to the X-ray source. In such a setup, LAO/RAO can be
translated to “C-arm detector is to the left/right (above) the patient.”
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Table A.4: Names and Abbreviations of the Coronary Arteries’ Branches

Abbreviation Explanation

LCA left coronary artery, called left main artery up to its first
bifurcation

LM left main artery (LCA up to bifurcation into LAD and LCx)
LAD left anterior descending artery / anterior interventricular

branch of the left coronary artery
LCx left circumflex artery
OM left marginal arteries / obtuse marginal branches

RCA right coronary artery

PIV posterior interventricular artery, a.k.a. posterior descending
artery (PDA); either supplied by the RCA (majority of the
population), the LCx, or both

Table A.5: Terminology

Term Explanation

sagittal planes dividing the body into a left and a right part
coronal planes dividing the body into a front and a back part
transverse/axial planes dividing the body into an upper and a lower part

cranial/superior closer to the head/top
caudal/inferior closer to the feet/bottom

proximal closer to some center or root (usually the body center or
another point of interest like the supplying vessel)

distal more distant from . . .

systole contraction of the ventricular myocardium
diastole relaxation of the ventricular myocardium

Figure A.1: Planes in human anatomy. (Image source: http://commons.wikimedia.

org/wiki/File:Human_anatomy_planes.svg. Author: Yassine Mrabet. License: http://

creativecommons.org/licenses/by-sa/3.0/.)
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Appendix B

Additional Operators

Definition B.1 (Adjoint operator to the Radon transform in 2D)
The adjoint operator to the Radon transform for functions g : R2 → R, (α, q) 7→
g(α, q) is defined by

(R∗g)(x) =

2π∫
0

g
(
α,
〈
x,n(α)

〉)
dα .

The integral in Definition B.1 accumulates all (line integral) values of g for
lines L(α, q) that include x by computing the distance q of such lines to the
point x as q =

〈
x,n(α)

〉
.

Definition B.2 (Hilbert transform)
The Hilbert transform of a function f ∈ L2(R) is defined as

(Hf)(x) =
1

π
p. v.

∫
R

f(y)

x− y dy (B.1a)

= − 1

π
p. v.

∫
R

f(x+ τ)

τ
dτ (B.1b)

= − 1

π
lim
ε→0+

∞∫
ε

f(x+ τ)− f(x− τ)

τ
dτ , (B.1c)

where “p. v.” is the Cauchy principal value of the improper integral (note the
singularity in the denominator). (B.1b) is obtained using the substitution τ =
y−x and (B.1c) by using the definition of the Cauchy principal value (splitting
the integral and building the limit).

Definition B.3 (Fourier transform)
The Fourier transform of an integrable function f ∈ L1(Rn) is defined as

(Ff)(ξ) =

∫
Rn

f(x)e−2πi〈x,ξ〉 dx .

The inverse Fourier transform for F ∈ L1(Rn) is then given by

(F−1F )(x) =

∫
Rn

F (ξ)e2πi〈x,ξ〉 dξ .
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The Fourier transform is defined in the frequency form in Definition B.3
where ξ is expressed in Hz = s−1. Other definitions based on the angular
frequency ω = 2πξ in rad s-1 are mostly used in the physics domain and only
differ by a multiplicative factor resulting from the parameter transformation.

Definition B.4 (Continuous Product)
Let f : R → R fulfill certain boundedness and positivity conditions on an
interval [a, b]. The continuous product (a.k.a. mulitplical or product integral)
can then be defined in a Riemannian sense as

b∏
a

f(x) dx = lim
n→∞

n∏
i=1

[
f
(
a+ i ·∆x(n)

)]∆x(n)

with ∆x(n) := b−a
n (if the limit) exists. An alternative definition is derived

from the discrete equivalence
∏
i fi = exp(

∑
i ln fi) and is given by

b∏
a

f(x) dx = exp

 b∫
a

ln f(x) dx

 .

See Frolov [50] for details.

This definition of the continuous product is the continuous equivalent of the
indexed product operator and the “product-wise” equivalent to the integration:

additive multiplicative

discrete
b∑
i=a

f(i)
b∏
i=a

f(i)

continuous
b∫
a

f(x) dx
b∏
a
f(x) dx

Remark. Note that we have used the same symbol for the continuous as for the
discrete product. Other symbols have been suggested and it would be desirable
if a distinct symbol emerged in the literature. Until then,

∏
should be the most

comprehensible symbol.

Remark. Volterra’s original definition for a continuous product is not used here.
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Appendix C

Differentiation and Integration Formulas

This appendix summarizes the differentiation and integration formulas needed
in the subsequent appendices as well as in the main part of this document.
Proofs are omitted if they are either trivial or if they would go beyond the
scope of this document. The reader is pointed to [6, Sec. 2.5.2] and other
textbooks for more details.

Proposition C.1 (Derivative of the Norm)
Let x ∈ Rn and

f :

{
Rn → R
x 7→ ‖x‖

be the “norm function”, then

∇f(x) =
x

‖x‖ ∀x 6= 0 .

Proof.

∂f

∂xi
=

∂

∂xi

(
n∑
i=1

x2
i

) 1
2

=
1

2

(
n∑
i=1

x2
i

)− 1
2

· 2xi =
xi
‖x‖

Proposition C.2 (Product Rule)
Let u : Rn → R be a scalar field and v : Rn → Rn a vector field. Then

div(u · v) = 〈∇u,v〉+ u · div v .

Proof.

div(u · v) =

n∑
i=1

∂(u · v)i
∂xi

=

n∑
i=1

∂(u · vi)
∂xi

=

n∑
i=1

(
∂u

∂xi
· vi + u · ∂vi

∂xi

)

=

n∑
i=1

∂u

∂xi
· vi +

n∑
i=1

u · ∂vi
∂xi

= 〈∇u,v〉+ u · div v

For the sake of completeness and for showing the similarity of the different
integration by parts formulas, we will briefly revisit the integration by parts
for functions of a scalar argument.
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Proposition C.3 (Integration by parts for functions of scalar arguments)
Let f, g : [a, b] ⊂ R→ R, then

b∫
a

f(x) · g′(x) dx = −
b∫
a

f ′(x) · g(x) dx+
[
f(x) · g(x)

]b
x=a

.

Proof. Integrating the product rule

[f(x) · g(x)]′ = f ′(x) · g(x) + f(x) · g′(x)

yields the proposition.

The equivalent formula in multiple dimensions is

Proposition C.4 (Integration by parts for scalar fields)
Let f, g : Ω ⊂ Rn → R. Then∫

Ω

f(x) · ∂xig(x) dx = −
∫
Ω

∂xif(x) · g(x) dx+

∫
∂Ω

f(ξ)g(ξ)νi(ξ) dS(ξ)

∀ i ∈ {1, . . . , n} ,

where ν is the unit outward normal vector at a point ξ on ∂Ω.

Proof. Use the Gauss-Green theorem
∫
Ω
∂xiu(x) dx =

∫
∂Ω

u(ξ) · νi(ξ) dSξ
(see [40, App. C.2]) with u = g · f .

Remark. The similarity of Proposition C.3 and Proposition C.4 becomes apparent
when rewriting the former as∫

[a,b]

f(x)g′(x) dx = −
∫

[a,b]

f ′(x)g(x) dx+
[
f(x)g(x)ν(x)

]
x=∂[a,b]

,

where ν is the unit outward normal of the boundary points of the interval [a, b]. In
this case, the boundary consists of the two points a and b which have the unit outward
normals ν(a) = −1 and ν(b) = 1, resp.

Corollary C.5
Let u : Ω ⊂ Rn → Rn be a vector field and let v : Ω ⊂ Rn → R be a scalar
field. Then∫
Ω

〈u(x),∇v(x)〉 dx = −
∫
Ω

divu(x) · v(x) dx+

∫
∂Ω

〈u(ξ),ν(ξ)〉 · v(ξ) dS(ξ) .

Proof. Using Proposition C.4 multiple times (with f = ui, g = v, i = 1, . . . , n)
and summing up all equations yields
n∑
i=1

∫
Ω

ui(x)·∂xiv(x) dx = −
n∑
i=1

∫
Ω

∂xiui(x)·v(x) dx+

n∑
i=1

∫
∂Ω

ui(ξ)v(ξ)νi(ξ) dS(ξ) .

This can be rewritten using inner products and the divergence operator to
obtain Corollary C.5.
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Remark. Setting u = ∇w, with w : Ω ⊂ Rn → R being a scalar field, yields Green’s
first identity∫
Ω

∇w(x) · ∇v(x) dx = −
∫
Ω

div∇w(x) · v(x) dx+

∫
∂Ω

〈∇w(ξ),ν(ξ)〉 · v(ξ) dS(ξ) .

Green’s other identities can also be derived from Corollary C.5.

Theorem C.6 (Divergence theorem)
Let Ω ⊂ Rn be compact with a piecewise smooth boundary. If f is a
continuously differentiable vector field defined on a neighborhood of Ω, then∫

Ω

div f(x) dx =

∫
∂Ω

〈f(ξ),ν(ξ)〉 dS(ξ) . (C.1)

Remark. This theorem is also called Ostrogradsky-Gauss theorem, Gaussian integral
theorem, or simply Gauss’ theorem.

Proof. Set u = f and v = 1 in Corollary C.5
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Appendix D

Calculus of Variations

This appendix summarizes the general tools used for calculating update equa-
tions by deriving energy terms. The formulas related to level sets are covered
in Appendix E.

D.1 Functional Derivative
Definition D.1 (Gâteaux derivative)
Let X and Y be locally convex topological vector spaces, U ⊂ X open, and
F : X → Y. The Gâteaux differential of F w. r. t. x at x∗ ∈ U in the direction
v ∈ X is defined by

δxF (x∗; v) = lim
ε→0

F (x∗ + εv)− F (x∗)
ε

=
dF

dε
(x∗ + εv)

∣∣∣∣
ε=0

if the limit exists.

Definition D.2 (Functional derivative)
Let X be a Banach space of functions defined on Ω (e. g., L2(Ω)) and let

E :

{
X → R
y 7→ E(y)

be a functional. For fixed y∗, δy ∈ X

δyE (y∗; δy) = lim
ε→0+

E(y∗ + ε δy)− E(y∗)
ε

=
d

dε
E(y∗ + ε δy)

∣∣∣∣
ε=0+

is the functional derivative or Gâteaux derivative of E at y∗ in direction δy (if
the limit exists). If the Gâteaux derivative exists for all variations δy ∈ X , then
E is said to be Gâteaux-differentiable. And if there exists a function w ∈ X
such that

δyE (y∗; δy) = 〈w, δy〉L2 =

∫
Ω

w δy dΩ ∀ δy ∈ X

then E is said to have the Gâteaux derivative δE
δy (y∗) = w at y∗. If this

derivative is bounded (in addition to being linear), then it fulfills the even
stronger requirements of a Fréchet derivative.
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Corollary D.3 (Derivative of integral functionals)
Now assume that the functional E(y) is an integral of some function f : Rn ×
R×Rn → R (taking values of y and ∇y as arguments), i. e.

E(y) =

∫
Ω

f
(
x, y(x),∇y(x)

)
dx . (D.1)

Applying Definition D.2 yields its functional derivative

δyE (y∗; δy) =

∫
Ω

∂yf · δy + 〈∂∇yf,∇δy〉 dx . (D.2)

Remark. Note that ∂yf and ∂∇yf in (D.2) are the usual partial derivatives of the
function f w. r. t. the arguments y and ∇y, resp. In this case, y and ∇y are just names
for the arguments of f even though they suggest that they represent functions. f then
takes the values of the functions y and ∇y as actual parameters in (D.1). The double
usage of y and ∇y as names of arguments and of functions is tolerated here in order
to avoid introducing too many symbols.

We will now turn our attention to calculating the derivative of the minimum
functional, a formula that is very likely much less widely known than any other
formula used in this work.

Theorem D.4 (Derivative of the minimum functional I)
Let f ∈ C1(D,R), D ⊂ R be a continuously differentiable scalar function. Let
X ⊂ Rn be bounded and closed and let

E(y) = min
x∈X

f
(
y(x)

)
be a functional containing the minimum over X . The functional derivative of
E is then

δyE (y∗; δy) = min
x∈M

(
f ′
(
y∗(x)

)
· δy(x)

)
,

with
M = arg min

x∈X
f
(
y∗(x)

)
being the set of points where the minimum is attained.

Proof. See Girsanov [53, p. 52].

Corollary D.5 (Derivative of the minimum functional II)
Let

E(y) = min
x∈X

y(x).

be the minimum functional. The functional derivative of E is then

δyE (y∗; δy) = min
x∈M

δy(x)

with
M = arg min

x∈X
y∗(x).

See Figure D.1 for an illustration of Corollary D.5.

Proof. Specializing Theorem D.4 with f = id.
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y(x)

(y + δy)(x)

δy(x)

x

M = {x1, x2}

δyE (y∗; δy)

x2x1

Figure D.1: Illustration of Corollary D.5

D.2 The Fundamental Lemma in the Calculus of
Variations

Theorem D.6 (Fundamental lemma in the calculus of variations)
Let f ∈ C(Ω), Ω ⊂ Rn, and k ∈ N0 ∪∞. Then∫

Ω

f(x) · δy(x) dx = 0 ∀ δy ∈ Ck0 (Ω) (D.3)

is equivalent to
f = 0. (D.4)

Proof. The implication (D.4)⇒ (D.3) is obvious. (D.3)⇒ (D.4) will be proved
by contradiction: Let ζ ∈ Ω be a point with f(ζ) 6= 0, without loss of generality
f(ζ) > 0. Since f ∈ C(Ω) there exists an r > 0 with f(x) > 0 ∀x ∈ B(ζ, r).
Constructing a function δy ∈ C∞0 (Ω) ⊂ Ck0 (Ω) with δy(x) > 0 ∀x ∈ B(ζ, r)
and δy(x) = 0 ∀x ∈ Ω \ B(ζ, r) yields

∫
Ω
f(x) · δy(x) dx > 0. This is a

contradiction to the prerequisite and therefore f(ζ) = 0 ∀x ∈ Ω.

Since the interesting direction of equivalence in Theorem D.6 is the implica-
tion (D.3) ⇒ (D.4) and since C∞0 ⊂ . . . ⊂ C1

0 ⊂ C0, we now choose the weakest
requirement and set k =∞, thereby reducing the set of test functions to C∞0 (Ω)
to obtain

Corollary D.7
Let f ∈ C(Ω), Ω ⊂ Rn and∫

Ω

f(x) · δy(x) dx = 0 ∀ δy ∈ C∞0 (Ω) , (D.5)
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then
f = 0 .

Proof. (D.5) implies (D.3) with k = ∞ and therefore Theorem D.6 yields
f = 0.

Note that Corollary D.7 only requires test functions from C∞0 which makes
it also valid for other sets of test functions, as long as they include C∞0 , e. g.
test functions from C∞.

Remark. The assumptions of Theorem D.6 and Corollary D.7 require f to be
continuous. This is only satisfied for continuous energy terms (that implies that the
Heaviside function and the Dirac distribution have to be replaced by their mollified
approximations, see Appendix E.6). Moreover, the integration by parts performed
on the Gâteaux derivative (in order to obtain equation (D.6) in the next section)
requires a higher differentiability of the original energy terms.

D.3 Deriving Update Directions Using the
Calculus of Variations

Having collected the necessary calculus, we will now derive formulas for
reasonable updates to variational optimization problems in the form of

Problem D.8 (Energy minimization)
Let Ω ∈ Rn and let

E(y) =

∫
Ω

f
(
x, y(x),∇y(x)

)
dx

be a functional with

f :

{
Rn ×R×Rn → R

(x, y,∇y) 7→ f(x, y,∇y)

with enough differentiability (f continuous w. r. t. x, fy
continuous w. r. t. x, and f∇y continuously differentiable
w. r. t. x). We seek to find

inf
y∈C(Ω)

E(y) .

D.3.1 Necessary Conditions for a Stationary Solution

Deriving a necessary condition for a solution to Problem D.8 involves the
following steps: After calculating the functional derivative of E w. r. t. y (see
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Corollary D.3) and performing an integration by parts in order to replace the
factor ∇δy by δy, one obtains a derivative in the form

δyE (y∗; δy) =

∫
Ω

g
(
x, y∗(x),∇y∗(x),Hy∗(x)

)
· δy(x) dx

+

∫
∂Ω

〈
h
(
ξ, y∗(ξ),∇y∗(ξ)

)
,ν(ξ)

〉
· δy(ξ) dS(ξ) .

(D.6)

Assuming that y∗ is a (local) minimizer of E, the condition

δyE (y∗; δy) =

∫
Ω

g · δy dx+

∫
∂Ω

〈h,ν〉 · δy dS(ξ) = 0 ∀ δy (D.7)

must hold true. Functions δy vanishing on ∂Ω (e. g. from Ck0 (Ω), k ∈ N ∪∞)
are also allowed in (D.7). The second addend in (D.7) vanishes completely for
this type of test functions and therefore∫

Ω

g · δy dx = 0

must hold true independently for an optimal y∗. By applying Corollary D.7
(assuming a continuous g), this implies that y∗ fulfills

g
(
x, y∗(x),∇y∗(x),Hy∗(x)

)
= 0 ∀x ∈ Ω . (D.8)

Allowing arbitrary test functions from Ck(Ω) again and inserting the condition
(D.8) for an optimal y∗ into (D.7) yields∫

∂Ω

〈h,ν〉 · δy dS(ξ) = 0 ∀ δy

which must also be fulfilled by an extremal y∗. Assuming continuity of h, this
implies that for every boundary point on ∂Ω either δy or 〈h,ν〉 must vanish1
for an optimal y∗. This is equivalent to

〈h,ν〉 = 0 ∀ ξ ∈ {ξ ∈ ∂Ω : δy(ξ) 6= 0} .

If some boundary parts are fixed, then the test functions δy have to vanish on
these parts. This yields no variation. Let Q ⊂ ∂Ω be the set of fixed boundary
points. Then

δy(ξ) = 0 ∀ ξ ∈ Q〈
h
(
ξ, y∗(ξ),∇y∗(ξ)

)
,ν(ξ)

〉
= 0 ∀ ξ ∈ ∂Ω \Q .

Together,

g
(
x, y∗(x),∇y∗(x),Hy∗(x)

)
= 0 ∀x ∈ Ω

y∗(ξ) fixed/given ∀ ξ ∈ Q〈
h
(
ξ, y∗(ξ),∇y∗(ξ)

)
,ν(ξ)

〉
= 0 ∀ ξ ∈ ∂Ω \Q

are the necessary conditions for an extremal y∗.
1The argument used here is similar to the proof of Theorem D.6. It is also based on the
continuity assumptions for the two factors in the integrand as well as a construction of a
suitable test function δy for free boundary points.
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Remark. Note that the transformation of necessary conditions above is only valid
for functionals considered in Problem D.8. Other functionals (e. g., those including a
minimum functional) have to be treated differently.

However, computing the stationary solution using the necessary condition
for an extremal function y∗ is usually not the way to numerically compute
a minimizer of Problem D.8. Many authors just state that they perform a
gradient descent after computing the functional derivative but this is not at all
related to the fundamental lemma or the well-known Euler-Lagrange equation.
In fact, it requires to find a descent direction from the directional derivative.
One of the few publications correctly stating this fact is Zhao et al. [180, Lemma
2.1]. This will be explained in the following section.

D.3.2 Finding an Update Equation by Steepest Descent
Starting with the functional derivative (D.6), this section justifies the selection
of ∂y

∂τ = −g as update direction when the stationary point is not reached
yet, i. e. g

(
x, y(x),∇y(x),Hy(x)

)
6= 0. In a first step, we show that −g is a

descent direction (neglecting the boundary integral over h since it’s usually
automatically fulfilled):

∂E
(
y(. . . , τ)

)
∂τ

= δyE

(
y;

∂y

∂τ

)
= δyE (y; −g(y))

=

∫
Ω

g(x, . . .) · [−g(x, . . .)] dx = −
∫
Ω

[
g
(
x, y(x),∇y(x),Hy(x)

)]2
dx ≤ 0

In a second step, we will now show that this selection is optimal since it
yields the steepest descent: When trying to find a steeper descent direction
than −g, let ψ be a function which is orthogonal2 to −g, i. e.∫

Ω

−g · ψ dx = 0 . (D.9)

Setting ∂y
∂τ = −g + ψ as new update direction yields

∂E
(
y(. . . , τ)

)
∂τ

= δyE

(
y;

∂y

∂τ

)
=
∂E

∂y

(
y;−g + ψ

)
=

∫
Ω

g · [−g + ψ] dx

= −
∫
Ω

g2 dx+

∫
Ω

g · ψ dx
(D.9)
= −

∫
Ω

g2 dx

which is no improvement over the choice of

∂y

∂τ
= −g .

Therefore, −g is the direction of steepest descent.

2Orthogonality is defined through the inner product which is 〈u, v〉 :=
∫
Ω u(x) · v(x) dx in

L2(Rn).
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Appendix E

Calculus for Level Sets

Some calculus that is specific to level sets will be presented in the following
sections. For more details, the reader is pointed to Aubert and Kornprobst [6,
Sec. 2.4 and 2.5] and Sapiro [140].

E.1 Normal to a Level Set Front
Theorem E.1 (Normal to a level set front)
Let Φ be a level set function defining a front by

Φ(x)


< c : x is inside the front
= c : x is on the front
> c : x is outside the front

and with c ∈ R. The unit outward normal to the front at a point x∗ on the
front equals the normed gradient ∇Φ

‖∇Φ‖ (x
∗) of the embedding level set function.

Proof. Let S ⊂ Rn−1 be open and

h :

{
S → Rn

s 7→ h(s)

be a parametric representation of the implicitly defined front with h(s∗) = x∗

for some s∗ ∈ S. Since the implicit definition represents the same front as the
explicit one,

Φ
(
h(s)

)
= c ∀ s ∈ S

holds true and therefore (by differentiation w. r. t. si)

∂Φ
(
h(s)

)
∂si

= 0 ∀ s ∈ S, ∀ i ∈ {1, . . . , n− 1} .

Evaluating the previous equation at the point s∗ yields

0 =
∂Φ
(
h(s∗)

)
∂si

=

〈
∇Φ
(
h(s∗)

)
,
∂h

∂si
(s∗)

〉
=

〈
∇Φ(x∗),

∂h

∂si
(s∗)

〉
∀ i ∈ {1, . . . , n− 1} ,

which means that ∇Φ(x∗) is perpendicular to all tangents of h in s∗ so that
∇Φ
‖∇Φ‖ (x

∗) is the unit normal to h in s∗. Since Φ was defined so that it increases
in outward direction, ∇Φ

‖∇Φ‖ (x
∗) is the unit outward normal.
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h(s)

P

r

Figure E.1: Osculating circle

Figure E.2: Planes and curves of principal curvature of a surface point. (Image

source: http://commons.wikimedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg.

Author: Eric Gaba. License: http://creativecommons.org/licenses/by-sa/3.0/.)

E.2 Curvature

A curve in 2D has just one unambiguously defined curvature, usually denoted
κ. It is the inverse of the radius of the osculating circle at a given point (see
Figure E.1) and can be computed as κ = div

(
∇Φ
‖∇Φ‖

)
for curves implicitly

defined by a level set function Φ.

A surface in 3D has an infinite number of curvatures, defined by the
curvatures of all possible plane curves running through a specific point on the
surface. The two extrema of these curvatures are called principal curvatures of a
surface in 3D and are usually denoted by κ1 and κ2 (see Figure E.2). From these
two principal curvatures, two scalar curvatures are commonly computed, the
Gaussian curvature K = κ1κ2 and the mean curvature H = 1

2 (κ1 + κ2). Only

the latter one is of interest in this work. It is computed as H = 1
2 div

(
∇Φ
‖∇Φ‖

)
for implicitly defined surfaces in 3D.

Regularizing the surface area of an evolving surface in 3D results in a level
set update equation including the expression div

(
∇Φ
‖∇Φ‖

)
(see Appendix E.4).
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The explicit evaluation of this term yields

div

( ∇Φ
‖∇Φ‖

)
=

3∑
i=1

∂

∂xi

(
Φxi
‖∇Φ‖

)
=

3∑
i=1

‖∇Φ‖Φxixi − Φxi
∑3
j=1

Φxj
‖∇Φ‖Φxjxi

‖∇Φ‖2

=

3∑
i=1

Φxixi
‖∇Φ‖ −

3∑
i=1

3∑
j=1

ΦxiΦxjΦxixj
‖∇Φ‖3

=
1

‖∇Φ‖

 3∑
i=1

Φxixi −
3∑
i=1

3∑
j=1

Φxi
‖∇Φ‖Φxixj

Φxj
‖∇Φ‖


=

1

‖∇Φ‖

[
∆Φ−

( ∇Φ
‖∇Φ‖

)T

·HΦ ·
( ∇Φ
‖∇Φ‖

)]
.

Remark. After expanding the divergence operator in div
(
∇Φ
‖∇Φ‖

)
and simplifying

terms, one obtains

div

(
∇Φ
‖∇Φ‖

)
=
Φ2
x2Φx1x1 + Φ2

x3Φx1x1 + Φ2
x1Φx2x2 + Φ2

x3Φx2x2 + Φ2
x1Φx3x3 + Φ2

x2Φx3x3
‖∇Φ‖3

− 2
Φx1Φx2Φx1x2 + Φx1Φx3Φx1x3 + Φx2Φx3Φx2x3

‖∇Φ‖3 .

This expression, however, has no significant computational advantage.

Remark. The equivalent term in 2D would be

div

(
∇Φ
‖∇Φ‖

)
=
Φ2
x2Φx1x1 + Φ2

x1Φx2x2 − 2Φx1Φx2Φx1x2
‖∇Φ‖3 .

In 2D, this expression equals the curvature κ. (Unlike the infinite number of
curvatures of surfaces in 3D, there is only one curvature of 1D curves in 2D, denoted
by κ.)

E.3 Integrating a Function Along a Level Set
Theorem E.2 (Integration along a level set)
Let Φ : Ω ⊂ Rn → R be a continuously differentiable scalar field. Then

{Φ = c} := {x ∈ Ω : Φ(x) = c} = Φ−1(c)

is the piecewise smooth, (n − 1)-dimensional hypersurface of the c level set of
Φ. Let f : R→ R be continuously differentiable. Then∫

{Φ=c}

f(ξ) dS(ξ) =

∫
Ω

δ
(
Φ(x)− c

)
· ‖∇Φ(x)‖ · f(x) dx .
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Proof. Let n := ∇Φ
‖∇Φ‖ be the unit outward1 normal of the oriented level set

hypersurface {Φ = c} enclosing the interior {Φ < c} := {x ∈ Ω : Φ(x) < 0}
(see Theorem E.1). Then

∫
{Φ=c}

f dS =

∫
{Φ=c}

〈f · n,n〉 dS
(C.1)
=

∫
{Φ<c}

div
(
f · n

)
dΩ

=

∫
Ω

(
1−H(Φ− c)

)
· div

(
f(Φ) · n

)
dΩ

Corollary C.5
= −

∫
Ω

〈
∇
(
1−H(Φ− c)

)
, f · n

〉
dΩ+

∫
∂Ω

(
1−H(Φ−c)

)
·〈f ·n,ν〉 dS

(∗)
=

∫
Ω

〈
δ(Φ− c) · ∇Φ, f ∇Φ‖∇Φ‖

〉
dΩ =

∫
Ω

δ(Φ− c) · ‖∇Φ‖ · f dΩ .

Here, we assumed that either Φ(x) > c or 〈n,ν〉 = 0 on ∂Ω in (∗). The former
condition is fulfilled for all closed hypersurfaces {Φ = c} ⊂ Ω \ ∂Ω.
Alternatively, one could use the second part of Proposition 3 in Evans and

Gariepy [41, Sec. 3.4.4] with f := Φ, g := f · ‖∇Φ‖, t = c, and the property
{f > t} = {H(f − t) = 1}

∫
{ f > t} · dx =

∫
Ω
H(f − t) · dx to prove the

theorem.

By integrating over c, Theorem E.2 can be converted to

Corollary E.3 (Coarea formula)
Let Φ : Ω ⊂ Rn → R be Lipschitz continuous and assume that for a.e. c ∈ R
the level set

{Φ = c} := {x ∈ Ω : Φ(x) = c} = Φ−1(c)

is a smooth, (n− 1)-dimensional hypersurface in Ω. Suppose also that f : Ω →
R is Ln-integrable. Then

∞∫
−∞

∫
{Φ=c}

f(ξ) dS(ξ) dc =

∫
Ω

f(x)‖∇Φ(x)‖ dx ,

with s being the arc length parametrization. This formula is called coarea
formula and is pronounced “co-area” (see, e. g., Evans [40, App. C.3] or Aubert
and Kornprobst [6, Sec. 2.5.2]).

Proof. Either integrate Theorem E.2 over c or see Theorem 2 in Evans and
Gariepy [41, Sec. 3.4.3] with f := Φ, g := f , and y := c.

1Here, we are assuming that the level set function decreases towards the interior and
increases towards the exterior of the contour {Φ = c}. But the results are the same
for an antipodal definition.
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E.4 Derivative of the Area-minimizing Shape
Regularizer

Regularizing a hypersurface is commonly implemented by minimizing its mea-
sure (i. e., its curve length or surface area, resp.). The functional

Eshape(Φ) =

∫
{Φ=0}

1 dS
Theorem E.2

=

∫
Ω

δ(Φ)‖∇Φ‖ dx

measures this quantity and its derivative

δΦEshape (Φ; δΦ)
Corollary D.3

=
Proposition C.1

∫
Ω

δ′(Φ)·‖∇Φ‖·δΦ+

〈
δ(Φ) · ∇Φ‖∇Φ‖ ,∇δΦ

〉
dx

Corollary C.5
=

∫
Ω

δ′(Φ) · ‖∇Φ‖ · δΦ dx−
∫
Ω

div

(
δ(Φ) · ∇Φ‖∇Φ‖

)
· δΦ dx+

+

∫
∂Ω

〈
δ(Φ)

∇Φ
‖∇Φ‖ ,ν

〉
· δΦ dS(ξ)

︸ ︷︷ ︸
=0

Proposition C.2
= −

∫
Ω

δ(Φ) · div

( ∇Φ
‖∇Φ‖

)
· δΦ dx

yields the so-called mean curvature motion. The boundary term
∫
∂Ω
· · · dS(ξ)

was neglected based on the argument that there is either no variation δΦ, no
zero level set on ∂Ω, or a vanishing directional derivative of Φ on ∂Ω. In the
above form, only the hypersurface at level zero follows this motion because of
the factor δ(Φ). The usage of a smoothed version of the Dirac distribution
(see Appendix E.6) in numerical implementations spreads out the motion to
adjacent isolevels of Φ. Furthermore, one may opt for replacing δ(Φ) with ‖∇Φ‖
in order to obtain a geometric motion that is independent of Φ’s scaling.

E.5 Derivative of the Signed Distance
Regularizer

One possibility to keep the level set function close to a signed distance function
according to Li et al. [101, 102] is the penalization of deviations from the
property ‖∇Φ‖ = 1 by adding

Edist(Φ) =

∫
Ω

1

2
· (‖∇Φ‖ − 1)

2
dx

to the energy terms.
Using basically the same theorems and assumptions as in Appendix E.4, we
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obtain

δΦEdist (Φ; δΦ)
Corollary D.3

=
Proposition C.1

∫
Ω

〈
(‖∇Φ‖ − 1) · ∇Φ‖∇Φ‖ ,∇δΦ

〉
dx

=

∫
Ω

〈
∇Φ− ∇Φ

‖∇Φ‖ ,∇δΦ
〉

dx

Corollary C.5
= −

∫
Ω

div

(
∇Φ− ∇Φ

‖∇Φ‖

)
· δΦ dx+

∫
∂Ω

〈
∇Φ− ∇Φ

‖∇Φ‖ ,ν
〉
· δΦ dSξ

︸ ︷︷ ︸
=0

=

∫
Ω

[
−∆Φ+ div

( ∇Φ
‖∇Φ‖

)]
· δΦ dx .

E.6 Mollified Versions of Heaviside Function and
Dirac Distribution

Remark. See Zhao et al. [180], Chan and Vese [22, 23] for the contents of this section.

Using mollified2 versions δε and Hε of the Heaviside function H and the Dirac
distribution δ (which is the derivative of the Heaviside function) preserves the
global character of the update equation (influencing the level set function not
only on the front itself) and at the same time also enables a focus on the evolving
front by decreasing the smoothness parameter ε during later iteration cycles.
This choice also determines how far forces are extended to the neighborhood
of the evolving front.
Choosing smaller values for ε yields sharper approximations and therefore

closer resembles the original formulation. However, many terms in the update
equations have the form

∂Φ

∂τ
= δ(Φ) · . . .

Therefore, choosing larger values for ε lets the level set evolution act more
globally, even for discontinuously defined energy functionals. This has the
advantage that the evolution approaches the global optimum faster since the
shape may not only evolve at its current borders but also at distant locations.
In the case of disconnected parts, a mollified Heaviside function may even be
needed for reaching the global optimum. We will now present two common
approximations to the Heaviside function and the Dirac distribution, both
sharing the properties

lim
ε→0

Hε = H (E.1)

lim
ε→0

δε = δ (E.2)

H loc
ε (−x) = 1−H loc

ε (x) ⇒ H loc
ε (0) =

1

2
, (E.3)

where (E.2) is to be understood in a distributional sense. The symmetry
property (E.3) enables to either use 1−H(Φ) or H(−Φ) when defining energies
for the “inside part” of the shape defined by the level set Φ.
2Yes, this word is indeed spelled “mollified” and refers to the tamed characteristics compared
to the Dirac functional.
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E.6.1 Global Support by the arctan Approximation
Choosing an approximation for the Heaviside function which is smeared out
over the whole domain R results in a Dirac distribution with global a support
and therefore ensures the influence of the energy terms on all level sets. One
such approximation is

Hglo
ε (x) =

1

2
+

1

π
· arctan

xπ

ε

⇒ δgloε (x) =
ε

ε2 + x2π2
.

In addition to (E.1)–(E.3) it has the properties

Hglo
ε ∈ C∞(R)

supp δgloε = R

δgloε (0) =
1

ε
.

However, since the level set function in this work is initialized with zero and
since only one connected component is to be reconstructed, the influence on all
level sets is not as advantageous as in other applications but merely increases
computational cost.

Remark. We slightly modified the version of the global approximation compared to
other sources such as Chan and Vese [22, 23]. Doing so yields the same peak value
for the both (the global and the local) Dirac approximation for the same parameter
ε.

E.6.2 Local Support by Piecewise Approximation
Choosing an approximation with a local support enables to reduce the influence
to a local neighborhood of the zero level set. This is advantageous when using
narrow band methods (see Adalsteinsson and Sethian [2]) or if the restriction
to a band is otherwise desirable (e. g., for speeding up the level set updates).
Such an approximation is

H loc
ε (x) =


0 : x ≤ −ε
1
2

(
1 + x

ε + 1
π
· sin πx

ε

)
: |x| < ε

1 : x ≥ ε

⇒ δlocε (x) =

{
1
2ε

(
1 + cos πx

ε

)
: |x| < ε

0 : |x| ≥ ε

with the properties

H loc
ε ∈ C2(R)

supp δlocε = (−ε, ε)

δlocε (0) =
1

ε

in addition to (E.1)–(E.3).
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Figure E.3: Mollified versions of the Heaviside step function and the Dirac
distribution

Remark. Using the rather complicated definition of H loc
ε (instead of a plain shifted

and scaled sin) ensures C2-smoothness at the definition interfaces.
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