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Abstract—We regard a MIMO network with two transmitters
and two receivers, in which each transmitter sends information
to both of the receivers, a scenario known as the MIMO X
channel. For such a system, the recently proposed interference
alignment technique is proven to achieve the maximum degrees of
freedom, which cannot be reached by conventional zero-forcing.
In contrast to other scenarios, for the MIMO X channel algebraic
expressions to obtain interference alignment can be easily found.
Additionally, the set of parameters for possible alignments is
a continuous manifold rather than a discrete set, which directly
raises the question of how to find the best alignment when aiming
at maximizing a utility of the transmission rates. Due to the non-
convexity of the problem, finding the global optimally solution is
numerically exhaustive and we are willing to accept a locally opti-
mal solution. In this work we show an efficient parametrization of
the problem which allows to apply a projected gradient approach
that guarantees an aligned solution. In numerical simulations
we show the superiority of our method compared to existing
algorithms.

I. INTRODUCTION

Interference management is a major challenge for the devel-

opment of future wireless communication systems. Multiple

antennas at the transmitter and receiver allow to utilize the

additional spatial dimension to reduce or completely nullify

the interference caused by transmission to other users. How-

ever, completely avoiding interference comes at the price of

serving fewer users, as the degrees of freedom (DoF) in a

wireless network are limited. The achievable DoF are given

by the multiplicative increase of the sum-rate R, in the high

power regime:

D = lim
Ptx→∞

R

log(Ptx)
.

The concept of interference alignment (IA) is the main tool

for achieving DoF higher than previously assumed [1], [2].

The two user MIMO X channel, is the smallest network for

which IA can be applied and it has been shown that by time

or frequency extensions of the channel IA achieves the highest

number of DoF [2]. The upper bound for the symmetric

MIMO X channel, where each receiver and each transmitter

is equipped with N antennas, is 4N
3 , which can be achieved

whenever N is a multiple of three, or the channel is extended

to a multiple of three. Therefore, in this paper we focus on

the case where N = 3, which directly extends to the case
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Fig. 1. The Three Antenna MIMO X Channel

where N is a multiple of three. Despite other setups where

alignments can only be found by iterative algorithms, as for

example [3], for the MIMO X channel there are algebraic

expressions how to construct transmit and receive filters to

align interference. However, the solution to the alignment

problem is neither unique nor discrete, instead the set of

alignments is a continuous manifold.

A scenario where the set of aligned solutions is a dis-

crete set is the three user interference channel where each

receiver and transmitter has two antennas and one data stream

per transmitter receiver pair can be conveyed orthogonally.

Starting from the conditions for interference free communi-

cation some simple calculus reveals that there are exactly

two configurations where interference is aligned. Having fixed

receive and transmit filters to one of the configurations it is

clear that all transmitters use their complete power budget,

so for infinite transmit power there exist exactly two relevant

transmission strategies. Taking into account that for moderate

transmit power one might refrain from strict alignment in order

to improve the individual rates, the solution space becomes

continuous and optimizing the transmission strategies is re-

garded in [4]. In the scenario regarded here, each transmitter

sends information to both of the receivers and both streams

share a power budget which can be freely allocated between

them and for fixed directions of the filters rates can be

continuously assigned by power allocation. Surprisingly there

are infinitely many spatial configurations of the transmit and

receive filters that align interference. In our work we optimize



linear transmit and receive filters in order to maximize sum-

rate. Finding good alignments was also considered for example

in [1], [4], and [3], which apply alternating optimization, by

either switching between the transmitters, or the original and

reciprocal network.

After introducing the system model, we state a rule on how

to select transmit and receive filters in order to obtain an

aligned solution. We then formulate the sum-rate optimization

problem where the constraints are chosen such that an aligned

solution is guaranteed. We are able to eliminate the receive

filters and two of the transmit filters and show how a projected

gradient method can be used to compute a locally optimal

solution. Further we introduce an alternative parametrization

of the problem that greatly simplifies the projection step. The

derivation of the gradient is given in detail and we present

simulation results to illustrate the performance of our method.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Notation

Throughout this paper, we use boldface upper and boldface

lower case letters for matrices and vectors, respectively. 0 is a

matrix where all elements are zero and I is and identity matrix

where the size follows from the context. Operators (·)T, (·)∗,
and (·)H denote the matrix transpose, conjugate, and conjugate

transpose, respectively. We use [M ][k,:] to select the k-th row,

[M ][:,l] to select the l-th column, and [M ][k,l] to select the

element in the k-th row and l-th column of a matrix. We use

∂M/∂ξ as an abbreviation for elementwise derivation of the

matrix elements with respect to ξ.

B. The MIMO X Channel

The MIMO X channel, illustrated in Figure 1, has two

transmitters t ∈ T and two receivers r ∈ R, where each

transmitter is allowed to send information to both of the

receivers. We denote the set of transmitter-receiver pairs as

K = {(rt) ∈ R× T }.

The DoF under conventional zero-forcing for the symmetric

MIMO X channel with N = 3 are three, which can easily

be achieved by activating only one point-to-point link in

the system. In order to achieve DoF of four by interference

alignment each transmitter sends one data stream to each

receiver. The four scalar data symbols s11, s12, s21, s22 are

filtered with the linear transmit filters v11, v12, v21, v22 ∈ C3

and sent over the channels H11, H12, H21, H22 ∈ C3×3,

which we assume to have full rank. The received signals at

the two users are

y1 = H11v11s11
︸ ︷︷ ︸

intended signal

+ H11v21s21
︸ ︷︷ ︸

interference

+

+ H12v12s12
︸ ︷︷ ︸

intended signal

+ H12v22s22
︸ ︷︷ ︸

interference

+ n1,

y2 = H21v11s11
︸ ︷︷ ︸

interference

+ H21v21s21
︸ ︷︷ ︸

intended signal

+

+ H22v12s12
︸ ︷︷ ︸

interference

+ H22v22s22
︸ ︷︷ ︸

intended signal

+ n2,

where n1, n2 ∼ CN (0, σ2I) represent additive white Gaus-

sian noise. Assuming Gaussian signalling and treating inter-

ference as additional noise, the rates of each stream are given

by

Rrt = log








1 +

∣
∣gH

rtHrtvrt

∣
∣
2

∑

(ij)∈K\(rt)

∣
∣gH

rtHrjvij

∣
∣
2

+ gH
rtgrtσ

2








,

where grt are the linear receive filters. The noise plus inter-

ference matrix for each stream is given by

Xrt =
∑

(ij)∈K\(rt)

Hrjvijv
H
ijH

H
rj + σ2I

Assuming the transmit filters are fixed, the optimal receive

filters are given by

gH
rt = vH

rtH
H
rtX

−1
rt

and the rates can be expressed as

Rrt = log
(
1 + vH

rtH
H
rtX

−1
rt Hrtvrt

)
.

The sum-rate optimization problem, w.l.o.g. chosen as utility

function, under transmit power constraints Ptx,1, Ptx,2, can then

be stated as

maximize
vrt,(rt)∈K

∑

(rt)∈K

Rrt

subject to ||v1t||
2
2 + ||v2t||

2
2 ≤ Ptx,t, ∀ t ∈ T

It is clear that for sufficiently high transmit power, the optimal

solution to the optimization problem are transmit filters such

that interference is aligned and the receive filters become

the zero-forcing filters. However, due to the non-convexity of

the problem, computing the optimal solution is numerically

almost intractable and attempts to find a good solution by local

methods, as for example the pricing methods used in [5], fail

to find an aligned solution and one of the streams is shut off. In

the following we present a reformulation of the problem, that

allows for optimization while maintaining an aligned solution.

III. GRADIENT PROJECTION BASED INTERFERENCE

ALIGNMENT

A. Problem Statement

The condition for interference free transmission of four

streams in the system is that the two interfering signals at

each receiver are aligned in a one-dimensional space, which

can be algebraically expressed as

H11v21 = λ1H12v22, H22v12 = λ2H21v11,

which directly allows us to eliminate two of the transmit filters,

v21 = λ1H
−1
11 H12v22, v12 = λ2H

−1
22 H21v11. (1)



The zero-forcing conditions for the receive filters are

gH
11H12H

−1
22 H21v11 = 0, gH

11H12v22 = 0,

gH
12H11v11 = 0, gH

12H12v22 = 0,

gH
21H22v22 = 0, gH

21H21v11 = 0,

gH
22H21v11 = 0, gH

22H21H
−1
11 H12v22 = 0,

which we generalize as

gH
rtArtv11 = 0, gH

rtBrtv22 = 0 ∀ (rt) ∈ K,

and notice that for given transmit filters the receive filters

are constrained to a one-dimensional subspace. For fixed

transmit filters we search for the normalized receive filter that

maximizes the rate of the datastream under the constraint to

nullify all interference, which is the solution of the following

optimization problem:

maximize
grt

gH
rtHrtvrt

subject to gH
rtArtv11 = 0,

gH
rtBrtv22 = 0,

||grt||2 = 1.

(2)

By introducing a projection matrix

P rt = I − Crt

(
CH

rtCrt

)−1
CH

rt, (3)

where

Crt = [Artv11Brtv22] , (4)

it is easy to see that

gH
rt =

vH
rtH

H
rtP rt

∥
∥vH

rtH
H
rtP rt

∥
∥

2

is a maximizer of the optimization problem. This way we

eliminate the receive filters and the rates can be expressed

as

R11 =log
(
1 + 1

σ2 vH
11H

H
11P 11H11v11

)

R12 =log
(

1 +
λ2
2

σ2 vH
11H

H
21H

−H
22 HH

12P 12H12H
−1
22 H21v11

)

R21 =log
(

1 +
λ2
1

σ2 vH
22H

H
12H

−H
11 HH

21P 21H21H
−1
11 H12v22

)

R22 =log
(
1 + 1

σ2 vH
22H

H
22P 22H22v22

)

where we substituted v12 and v21 according to (1). The sum-

rate optimization problem becomes

maximize
v11, v22,

λ1, λ2

∑

(rt)∈K

Rrt

subject to ‖v11‖
2
2 +

∥
∥λ1H

−1
11 H12v22

∥
∥

2

2
≤ Ptx,1,

‖v22‖
2
2 +

∥
∥λ2H

−1
22 H21v11

∥
∥

2

2
≤ Ptx,2.

We would like to remark that we did not impose the necessary

constraint that v11 and v21 as well as v12 and v22 must not

be collinear. For channel coefficients drawn from a continuous

distribution and random choices of v11 and v22, this constraint

is fulfilled with probability one. This argument is, however, too

weak for the algorithm we suggest in the following, where v11

and v22 are chosen by sequential projected gradient updates.

However, in numerical simulations we did not encounter any

cases where the two transmit filters at one transmitter are

collinear and therefore it seams legitimate not to explicitly

enforce this constraint.

B. Projected Gradient

Despite having a nice formulation of the problem, which

guarantees to have an aligned solution for any choice of the

parameters

d =
[
vT

11, v
T
22, λ1, λ2

]T
,

the problem is still non-convex and therefore computing the

global optimizers is out of reach. We use a projected gradient

method, which uses an arbitrary feasible d(i) and iteratively

calculates a complex gradient of the real valued sum-rate

function

∇d(i) = 2 ·
∑

(rt)∈K
















∂R
(i)
rt

∂v∗
11

∂R
(i)
rt

∂v∗
22

∂R
(i)
rt

∂λ∗
1

∂R
(i)
rt

∂λ∗
2
















,

and makes a step α(i)∇d(i) into the direction of the gradient,

where α(i) is used to control the step size. However, the newly

obtained parameters might be infeasible and therefore they are

projected onto the feasible set

d(i+1) = P
(

d(i) + α(i)∇d(i)
)

.

The projected values are chosen from the feasible set such

that the Euclidean norm of the distance to the newly obtained

variables

∥
∥
∥d

(i+1) −
(

d(i) + α(i)∇d(i)
)∥
∥
∥

2
=

=






∥
∥
∥
∥
∥
∥

v
(i+1)
11 −



v
(i)
11 + 2α(i)

∑

(rt)∈K

∂R
(i)
rt

∂v∗
11





∥
∥
∥
∥
∥
∥

2

2

+

+

∥
∥
∥
∥
∥
∥

v
(i+1)
22 −



v
(i)
22 + 2α(i)

∑

(rt)∈K

∂R
(i)
rt

∂v∗
22





∥
∥
∥
∥
∥
∥

2

2

+ (5)

+

∥
∥
∥
∥
∥
∥

λ
(i+1)
1 −



λ
(i)
1 + 2α(i)

∑

(rt)∈K

∂R
(i)
rt

∂λ∗
1





∥
∥
∥
∥
∥
∥

2

2

+

+

∥
∥
∥
∥
∥
∥

λ
(i+1)
2 −



λ
(i)
2 + 2α(i)

∑

(rt)∈K

∂R
(i)
rt

∂λ∗
2





∥
∥
∥
∥
∥
∥

2

2






1
2



is minimized and can be computed as the solution of the

following optimization problem:

maximize
v

(i)
11 , v

(i)
22 ,

λ
(i)
1 , λ

(i)
2

∥
∥
∥d

(i+1) −
(

d(i) + α(i)∇d(i)
)∥
∥
∥

2

2

subject to

∥
∥
∥v

(i+1)
11

∥
∥
∥

2

2
+
∥
∥
∥λ

(i+1)
1 H−1

11 H12v
(i+1)
22

∥
∥
∥

2

2
≤ Ptx,1

∥
∥
∥v

(i+1)
22

∥
∥
∥

2

2
+
∥
∥
∥λ

(i+1)
2 H−1

22 H21v
(i+1)
11

∥
∥
∥

2

2
≤ Ptx,2

which is convex and allows for efficient solution methods.

In case α(i) is selected such that α(i)∇d(i) is an increasing

direction and the norm of the projected gradient, given in (5),

is zero, the points v
(i+1)
11 , v

(i+1)
22 , λ

(i+1)
1 , λ

(i+1)
2 fulfill the first-

order optimality conditions of the global maximizers and we

accept them as locally optimal solution. Simulations show that

the algorithm usually converges within very few iterations.

C. Reformulation of the Problem

To reduce complexity we derive a reformulation of the

problem, so that the projection step is drastically simplified,

but this comes at the price of a more complicated gradient.

As a first step we decouple the power and spatial allocation

by introducing variables Prt corresponding to the power

allocation per datastream:

v11 =
u11

‖u11‖2

√

P11

v12 =
λ2H

−1
22 H21u11

∥
∥λ2H

−1
22 H21u11

∥
∥

2

√

P12 =
H−1

22 H21u11
∥
∥H−1

22 H21u11

∥
∥

2

√

P12

v21 =
λ1H

−1
11 H12u22

∥
∥λ1H

−1
11 H12u22

∥
∥

2

√

P21 =
H−1

11 H12u22
∥
∥H−1

11 H12u22

∥
∥

2

√

P21

v22 =
u22

‖u22‖2

√

P22.

The expressions for the rates are now

R11 =log

(

1+
P11

σ2

uH
11H

H
11P 11H11u11

‖u11‖
2
2

)

R12 =log

(

1+
P12

σ2

uH
11H

H
21H

−H
22 HH

12P 12H12H
−1
22 H21u11

∥
∥H−1

22 H21u11

∥
∥

2

2

)

R21 =log

(

1+
P21

σ2

uH
22H

H
12H

−H
11 HH

21P 21H21H
−1
11 H12u22

∥
∥H−1

11 H12u22

∥
∥

2

2

)

R22 =log

(

1+
P22

σ2

uH
22H

H
22P 22H22u22

‖u22‖
2
2

)

. (6)

The rate expressions do not depend on the norm of u11 and

u22 but only on their direction, therefore they can be arbitrarily

scaled and the sum-rate optimization problem is

maximize
u11, u22,

Prt,(rt)∈K

∑

(rt)∈K

Rrt

subject to P1t + P2t ≤ Ptx,t, ∀ t ∈ T .

The gradient is now given by

∇d(i) =
∑

(rt)∈K




















2
∂R

(i)
rt

∂u∗
11

2
∂R

(i)
rt

∂u∗
22

∂R
(i)
rt

∂P11

...

∂R
(i)
rt

∂P22




















,

Clearly, it is possible to eliminate two of the power allocation

parameters by adjusting the relative power allocation between

the two streams per transmitter directly. This however does

not decrease complexity and in order to allow for future

extensions, see Section III-E, we prefer to have one parameter

per stream.

As we will see later the gradient with respect to the power

allocation (11) is always non-negative, which matches the

intuition that increasing the power for an orthogonal stream is

always beneficial, and the projection onto the feasible set is

P (P ′
rt) = Ptx,t

(

max{Ptx,t,
∑

r∈R

P ′
1t}

)−1

P ′
rt,

where

P ′
rt = P

(i)
rt + α(i)

∑

(yz)∈K

∂R
(i)
rt

∂Pyz

.

For an implementation, it is convenient to rescale u11 and u22

to have norm one after every step, in order to avoid numerical

problems.

D. Derivation of the Gradient

The prototype for the rate expressions in (6) is

Rrt = log

(

1 +
Prt

σ2

uH
iiD

H
rtH

H
rtP rtHrtDrtuii

‖Drtuii‖
2
2

)

,

for which we now derive ∂Rrt/u∗
ii, ∂Rrt/∂u∗

jj , and

∂Rrt/∂Pyz , where we treat uii and ujj as fixed variables.

For the sake of simpler notation we drop the index rt and

start with

∂Rrt

∂u∗
ii

=
1

1 + P
σ2 γ

P

σ2

∂γ

∂u∗
ii

,

where

γ =
µ

ν
=

uH
iiD

HHHP HDuii

‖Duii‖
2
2

. (7)



By applying the product rule we compute

∂γ

∂u∗
ii

=

ν
∂µ

∂u∗
ii

−
∂ν

∂u∗
ii

µ

ν2

=

‖Drtuii‖
2
2

∂µ

∂u∗
ii

−
∂ν

∂u∗
ii

uH
iiD

HHHP HDuii

‖Drtuii‖
4
2

=
‖Drtuii‖

2
2

∂µ
∂u∗

ii
− DHDuiiu

H
iiD

HHHPHDuii

‖Drtuii‖
4
2

.

As the projector P , defined in (3), itself depends on u∗
ii, we

compute ∂µ/∂u∗
ii elementwise for all entries x = 1, 2, 3:

∂µ

∂ [u∗
ii][x,:]

=
∂uH

iiD
HHHPHDuii

∂ [u∗
ii][x,:]

=

∂

3∑

k=1

3∑

l=1

[
uH

iiD
HHH

]

[:,k]
[P ][k,l] [HDuii][l,:]

∂ [u∗
ii][x,:]

(8)

=

3∑

k=1

3∑

l=1

∂
[
uH

iiD
HHH

]

[:,k]
[P ][k,l] [HDuii][l,:]

∂ [u∗
ii][x,:]

.

We notice that [P ][k,l] always depends on [u∗
ii][x,:], however[

uH
iiH

H
]

[:,k]
only when k = x, and therefore

∂
[
uH

iiD
HHH

]

[:,k]
[P ][k,l] [HDuii][l,:]

∂[u∗

ii][x,:]

=







[
uH

iiD
HHH

]

[:,k]

[

∂P
∂ [u∗

ii][x,:]

]

[k,l]

[HDuii][l,:] if k 6= x

∂
[
uH

iiD
HHH

]

[:,k]

∂ [u∗
ii][x,:]

[P ][k,l] [HDuii][l,:] +

+
[
uH

iiD
HHH

]

[:,k]

[

∂P
∂ [u∗

ii][x,:]

]

[k,l]

[HDuii][l,:]

if k = x

(9)

Plugging this result into (8), we obtain

∂uH
iiD

HHHP HDuii

∂ [u∗
ii][x,:]

=

= uH
iiD

HHH ∂P
∂ [u∗

ii][x,:]
HDuii+

+
∂
[
uH

iiD
HHH

]

[:,x]

∂ [u∗
ii][x,:]

[P ][x,:] HDuii

= uH
iiD

HHH ∂P
∂ [u∗

ii][x,:]
HDuii+

+
[
DHHH

]

[x,x]
[P ][x,:] HDuii

It remains to compute ∂P /∂ [u∗
ii][x,:] and in a first step we

state

∂P

∂ [u∗
ii][x,:]

=
∂I − C

(
CHC

)−1
CH

∂ [u∗
ii][x,:]

= −
∂C

(
CHC

)−1
CH

∂ [u∗
ii][x,:]

(10)

= −C
(
CHC

)−1 ∂CH

∂ [u∗
ii][x,:]

−
∂C

(
CHC

)−1

∂ [u∗
ii][x,:]

CH

where we used the definition of C given in (3). Knowing that

∂M−1

∂ξ
= −M−1 ∂M−1

∂ξ
M−1,

we continue by stating

∂P

∂ [u∗
ii][x,:]

= −C
(
CHC

)−1 ∂CH

∂ [u∗
ii][x,:]

+

+ C
(
CHC

)−1 ∂CH

∂ [u∗
ii][x,:]

C
(
CHC

)−1
CH

= −C
(
CHC

)−1 ∂CH

∂ [u∗
ii][x,:]

(

I − C
(
CHC

)−1
CH
)

= −C
(
CHC

)−1 ∂CH

∂ [u∗
ii][x,:]

P .

The derivative of CH, defined in (4), with respect to [u∗
ii][x,:]

depends on whether i is 1 or 2 and is given by

∂CH

∂ [u∗
ii][x,:]

=

∂

[
uH

11A
H

uH
22B

H

]

∂ [u∗
ii][x,:]







[

[A][x,:]

0

]

if i = 1,

[

0

[B][x,:]

]

if i = 2.

In contrast to the rather long derivation of ∂Rrt/∂u∗
ii, calcu-

lating ∂Rrt/∂u∗
jj and ∂Rrt/∂Pyz is straightforward:

∂Rrt

∂u∗
jj

=
1

1 + P
σ2 γ

P

σ2

∂γ

∂u∗
jj

,

where γ is defined in (7). In a next step we can see that

∂γ

∂
[
u∗

jj

]

[x,:]

=
1

‖Drtuii‖
2
2

∂uH
iiD

HHHPHDuii

∂
[
u∗

jj

]

[x,:]

= uH
iiD

HHH ∂P

∂
[
u∗

jj

]

[x,:]

HDuii,

and ∂P /∂
[
u∗

jj

]

[x,:]
is given in (10). As all streams are

completely orthogonal, the rates only depend on their own

power allocation and therefore:

∂Rrt

∂Pyz

=







γ

σ2

1 +
P

σ2
γ

if y = r and z = t,

0 otherwise.

(11)
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Fig. 2. Sum-Rate vs. SNR

E. Extensions

The suggested projected gradient approach for interference

alignment can be easily extended to other differentiable utili-

ties that are functions of the transmission rates. This allows for

example to approximate an achievable rate region by using the

weighted sum-rate as utility and varying the weights. Another

example is to optimize for proportional fairness among the

two users, where the utility is given by

log (R11 + R12) + log (R21 + R22) .

Additionally the algorithm can be extended to the case where

the number of antennas N at each transmitter and receiver is

a multiple of three, by adjusting the dimensions accordingly.

IV. SIMULATION RESULTS

We use 1000 realizations of complex Gaussian i.i.d channels

and regard the average achieved sum-rates to evaluate the

performance of the optimized interference alignment method,

see Figure 2. The power budget of the two transmitters is the

same Ptx,1 = Ptx,2 = Ptx. As comparison we include the max-

SINR scheme presented in [3], which was actually developed

for the interference channel where communication is pairwise.

However, for the X channel it fails to find an aligned solution,

as for multiple streams per transmitter the algorithm does not

ensure that the filters at each transmitter are non-collinear. The

work of [1] needs non-linear operations (dirty paper coding)

at the transmitter and can therefore not be compared with

solutions that build on linear filters. Finally we include the

results for a random choice of u11 and u22, and for sampling

u11 and u22 by using the best of 10000 random choices,

which should be very close to the global optimum. In both

cases the power allocation is done by the waterfilling rule.

We can see that our approach has a significant gain compared

to randomly choosing the aligned configuration. Finding the

globally optimal solution is numerically to exhaustive, so our

method that leading to local optimal solution is an attractive

approach.

V. CONCLUSIONS

We were able to show a novel formulation for the sum-

rate optimization in the MIMO X channel that guarantees an

aligned solution, which is not found by algorithms building

on alternating optimization. Applying a local optimization

method, which converges within a few steps, results in signif-

icant gains compared to choosing a random alignment, while

the global optimum can only be found by exhaustive search.

For future research it would be interesting to see if similar

parametrizations exist for other scenarios and if the projected

gradient approach can be applied.
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