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ABSTRACT

We investigate the geometry of the feasible Quality of Service (QoS)
region in the vector broadcast channel when the available transmit
power is unbounded. It turns out that a complete description of the
feasible QoS region attains its simplest form in the minimum mean
square error (MMSE) domain although most of the literature han-
dles feasibility in the SINR domain. As our main contribution, we
show that the closure of the feasible MMSE region is a polytope cor-
responding to a hyper-cube that maybe is cropped by an additional
half-space constraint. Interestingly, this half-space constraint is the
only relevant one which separates feasibility from infeasibility and it
reflects a lower bound on the sum MMSE. Under the assumption of
regular channels, this lower bound does not depend on the channel
realization but solely depends on the number of users and anten-
nas deployed at the base station. Testing feasibility of given QoS
targets is easily performed by first converting the QoS targets into
upper bounds on the MMSEs and afterwards verifying that the sum
of target MMSEs is larger than the difference between antennas at
the base station and the number of users. The derived results can be
used to decide whether a new user with given QoS requirements can
be admitted to the system, and if not, how the requirements have to
be adapted such that they become feasible.

Index Terms— QoS region, feasibility check

1. INTRODUCTION

Minimizing the transmit power that is needed to satisfy given QoS
requirements is a frequently arising optimization problem, see for
example [1–5]. While such QoS constraints are usually given as
lower bounds on the signal-to-interference-and-noise ratio (SINR),
any other metric like MMSE and data rate under Gaussian signaling
which follows from a one-to-one mapping of the SINR may be cho-
sen. If at most as many single-antenna users are served as the base
station has antennas and if the channel matrix is regular, arbitrary
QoS requirements can be satisfied due to the existence of the zero-
forcing solution, see [4]. However, when more users shall be served
than degrees of freedom are available, feasibility cannot be guaran-
teed for any set of QoS requirements. In order to detect feasibility
which is a prerequisite for the power minimization algorithm, an ad-
ditional balancing algorithm has so far been used where the ratios
of any two SINR targets are fixed and the individual absolute SINRs
are afterwards maximized. In contrast to the power minimization
problem, balancing is always feasible and can be used to determine
whether a given set of target SINRs is feasible or not, see [6–11] for
the more general SIR balancing without power limitation.

The disadvantage of this kind of detecting feasibility is that the
balancing algorithm has to be executed once per set of SINR con-
straints. A modification of the QoS targets leads to the necessity

of running the feasibility check again, which is computationally de-
manding. Moreover, the SIR balancing algorithm depends on the
channel matrix, whereas we show that the feasibility region is inde-
pendent of the specific channel realization as long as it satisfies the
regular channel constraint. Finally, only little knowledge about the
underlying geometric structure of the feasible QoS region is obtained
by means of the balancing algorithm. For example, in [11, 12], the
feasibility region is defined as the set of SI(N)R tuples for which the
spectral radius of a scaled interference coupling matrix is not larger
than one, from which almost no structural properties can be deduced.
In [13], feasibility of given QoS requirements is investigated for a
single-antenna CDMA system. Therein, the existence of codes sat-
isfying the sum MSE inequality is derived. We generalize this and
show that for arbitrary full rank codes, the inequality is sufficient.

2. SYSTEM AND CHANNELMODEL

Given perfect channel state information, the vector broadcast chan-
nel (BC) and the dual vector multiple access channel (MAC) share
the same MSE region under a sum power constraint, e.g. [14, 15].
Thus, we may describe the maximum feasible MMSE region of the
BC in its dual MAC and feasibility can be detected there as well.
The main advantage of the dual MAC is its simple description by the
powers of the transmitting users, since the optimum receive beam-
formers can be computed independently and are known to maxi-
mize the receive SINR and can be chosen to minimize the MSE.
In the dual MAC, the K user system is described by only K non-
negative real-valued scalars representing the virtual uplink powers,
whereas K complex-valued N -dimensional vectors are needed in
the BC for the transmit beamformers. Here, N denotes the num-
ber of antennas at the base station, and we define the set of user
indices K := {1, . . . , K}. The transmit powers of the K users
in the dual MAC are denoted by p1, . . . , pK and all data symbols
are assumed to have unit variance. A frequency flat channel is as-
sumed for the transmission from the users to the base station and the
matrix H = [h1, . . . , hK ] ∈ C

N×K contains the channel vectors
of all K users as its columns. At the base station (receiver in the
MAC), zero-mean Gaussian noise η ∈ C

N with covariance matrix
E[ηηH] = σ2

IN is added.

3. GEOMETRY OF THE FEASIBLEMSE REGION

Consider a two user scenario where the two channel vectors h1 and
h2 are colinear (e.g., if the base station has only N =1 antenna). It
can easily be shown that the upper boundary of the maximum feasi-
ble SINR region is given by [9]

γ1γ2 = 1, (1)

where γk denotes the SINR of user k. This boundary is only asymp-
totically achieved when p1/σ2 → ∞ and p2/σ2 → ∞. A gener-
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alization to more than two users is not straightforward in the SINR
domain and does not feature such a simple relation as in (1). For ex-
ample, when a third user is added to the single-antenna system, the
feasible SINR region reads as

2γ1γ2γ3 + γ1γ2 + γ1γ3 + γ2γ3 < 1, (2)

see (21) at the end of this section. In the following, we will derive
the exact description of the feasible region in the MSE domain for
an arbitrary number of users. Throughout this paper, we assume
that the channel vectors of any user subset I ⊆ K with cardinality
1 ≤ |I| ≤ K satisfy the rank relation

rank(HI) = min{|I|, N} ∀I ⊆ K. (3)

The case of singular channels not fulfilling (3) is discussed in [16].
In (3), the matrix HI consists of the channel vectors of all users
belonging to I. Given these channel properties, we can prove the
following theorem:

Theorem 3.1: The closure of the feasible MMSE region in the
vector broadcast channel with regular channels satisfying (3) is
a polytope P whose bounding half-spaces are the individual box
constraints 0 ≤ εk ≤ 1 ∀k ∈ K and the sum MMSE constraintP

k∈K εk ≥ K − N . By means of a positive power allocation with
finite sum power, any point belonging to the interior of the polytope
can be achieved. For MMSEs equal to one no power is allocated to
the respective user.

From above theorem, we directly conclude the next corollary, which
has already been proven in [4].

Corollary 3.2. In the K-user vector broadcast channel obeying (3)
with an N ≥ K antenna base station, arbitrary QoS requirements
satisfying 0 < εk ≤ 1 ∀k are feasible with finite sum power.

For the proof of Theorem 3.1, we define P = diag{pk}K
k=1 as the

diagonal matrix containing the powers of all users in the setK. Then,
the MMSE receive filter for user k reads as

g
T
k =

√
p

k
h

H
k

`
HP H

H + σ2
IN

´−1
(4)

and achieves the minimum mean square error

εk = 1 − pkh
H
k

`
HP H

H + σ2
IN

´−1
hk

=
ˆ`

IK + σ−2
P

1
2 H

H
HP

1
2

´−1˜
k,k

.
(5)

From the first line of (5), we can observe that applying MMSE re-
ceive filters according to (4) leads to the box constraints

0 ≤ εk ≤ 1 ∀k ∈ K (6)

which contribute to the polytope. A necessary condition for a par-
ticular user i to achieve the lower bound εi = 0 asymptotically with
equivalence is that his power goes to infinity, i.e., pi → ∞. Given
an antenna configuration with N < K, not all MMSEs can be cho-
sen arbitrarily small simultaneously. With the individual MMSEs
from (5), we can express the sum MMSE for arbitrary N via

X
k∈K

εk = K − N + tr
h`

IN + σ−2
HP H

H
´−1

i
(7)

resulting from the first line of (5). As the inverse matrix in (7) is
positive definite, N − rank(H) is a lower bound on its trace. Thus,
any nonnegative power allocation satisfiesX

k∈K

εk ≥ K − rank(H) (8)

with strict inequality for finite sum power, and with equality if
all1 powers p1, . . . , pK raise to infinity. Under the regular chan-
nels assumption (3), the rank of the channel matrix is given by
rank(H) = min{N, K}, and the antenna configuration N ≥ K
does not entail any limitations on the sum MSE since the resulting
lower bound

P
k∈K εk ≥ 0 from (8) is already included in the

box constraints (6). The feasible MMSE region is then completely
described by (6). Therefore, the case N ≥ K with regular chan-
nels allows for arbitrary QoS requirements, which nevertheless have
to meet (6). In particular, any nonnegative SINR tuple is feasible
since the maximum SINR γk and the minimum MSE εk are related
via γk = 1

εk
− 1 and εk can be made arbitrarily close to zero.

However, when K > N , the polytope in (6) is cropped by the
lower bound on the sum MSE in (8), which in conjunction with
rank(H) = min{N, K} = N simplifies to

X
k∈K

εk > K − N for ‖p‖1 < ∞. (9)

This obviously limits the set of feasible QoS requirements. Note that
the lower bound K − N in (9) can be achieved with equality when
pk → ∞ ∀k ∈ K.

So far, we have proven that any positive power allocation with fi-
nite sum power achieves an MMSE tuple inside the polytope, see (9)
and (6) with strict inequality for finite sum power. To complete the
proof for Theorem 3.1, we also have to show the converse, namely
that there exists a power allocation p for any desired MMSE tuple
belonging to int(P). Because only then, the mapping from the pow-
ers to the MMSEs in (5) is surjective in the interior of the polytope P
defined in Theorem 3.1. The proof goes as follows: First, we rewrite
the mapping from the powers p to the MMSE tuple ε1, . . . , εK as
a fixed point equation at the optimum power allocation. Since the
arising function in the fixed point equation is increasing and con-
cave, there is at most one fixed point according to [17, 18]. If the
fixed point does exist, the mapping from powers to MMSEs is then
not only surjective, but also injective and thus bijective. For any
target MMSE tuple for which a fixed point exists, there is a power
allocation p obtaining it. Fortunately, Kennan also defines some suf-
ficient conditions for the existence of a fixed point in [17]. We show
that these conditions are met only if the target MMSE tuple is taken
from the interior of the polytope P , which will then complete the
proof of Theorem 3.1.

Given MMSE targets εtarget

k with k ∈ K, we assume that the
power allocation p̌ achieves these targets. Rewriting the first line of
(5) with the help of the matrix inversion lemma leads to the well-
known result

εk =
1

1 + pkhH
k

`
σ2I+

P
� �=k

h�h
H
� p�

´−1
hk

.

Equating εk = εtarget

k at the hypothetical fixed point p̌, we obtain

p̌k =fk(p̌; εtarget) :=

1

ε
target

k

− 1

hH
k

`
σ2I+

P
� �=k

h�hH
� p̌�

´−1
hk

, (10)

where fk(p; εtarget) is well known from SINR balancing and satis-
fies the interference function properties defined in [9]. In particular,
fk(p; ·) is positive, (quasi-)increasing, and the function fk(p; ·)−pk

is strictly radially quasiconcave for all k (see [17] for the definition).
Hence, there is at most one fixed point according to [17, Corollary

1For K > N , it suffices that at least N powers go to infinity
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1]. For the existence of a unique fixed point, Theorem 3 in [17]
requires

f (0; εtarget) ≥ 0, (11)

∃a > 0 with f (a; εtarget) > a, (12)

∃b > a with f (b; εtarget) < b. (13)

The first requirement (11) immediately follows from (10):

fk(0; εtarget) = σ2

1

ε
target

k

− 1

‖hk‖2
2

≥ 0 for 0 ≤ εtarget

k ≤ 1.

If there is a user whose target MMSE is equal to one, simply no
power has to be allocated to that user and he can be discarded for
the power computation of the remaining users. Hence, we assume
εtarget

k < 1 ∀k ∈ K in the following. For the second requirement
(12), we choose a = a1 as the scaled all-ones vector. Using (10),
we find

fk(p; εtarget) ≥ σ2

1

ε
target

k

− 1

‖hk‖2
2

for p ≥ 0,

from which we find the upper bound ā for a.

ā = σ2 min
k∈K

1

ε
target

k

− 1

‖hk‖2
2

(14)

Note that ā > 0 for εtarget

k < 1. Thus, choosing a < ā and setting
a = a1 satisfies f (a; εtarget) > a. For the third requirement (13),
we need to find a power vector b for which f (b; εtarget) < b. The
casesK ≤ N andK > N will be treated separately. WhenK ≤ N ,
the function fk(b; εtarget) can be upper bounded by lower bounding
its denominator. Defining the set Ik := K \ {k}, we introduce

Πk = IN − HIk

`
H

H
Ik

HIk

´−1
H

H
Ik

as the projector into the null-space of all channel vectors except the
k-th one that features rank(Πk) = N −K +1 ≥ 1 due to K ≤ N .
Herewith, we lower bound the denominator of fk(b; εtarget) via

h
H
k

`
σ2

I +
X
� �=k

h�h
H
� b�

´−1
hk ≥ σ−2

h
H
k Πkhk, (15)

which is valid for all b ≥ 0. Equality in (15) only holds for bk →
∞ ∀k ∈ Ik. Note that hH

k Πkhk = 1/[(HHH)−1]k,k is larger
than zero due to (3). Hence, an upper bound for fk(b; εtarget) is
given by

fk(b; εtarget) ≤ σ2
“ 1

εtarget

k

− 1
”ˆ

(HH
H)−1

˜
k,k

, (16)

and when K ≤ N and if b is chosen such that

bk > σ2
“ 1

εtarget

k

− 1
”ˆ

(HH
H)−1

˜
k,k

∀k ∈ K, (17)

the third requirement (13) is satisfied. Since a = a1with 0 < a < ā
and ā defined in (14), choosing b according to (17) satisfies b > a,
which is also required in (13). Since the three conditions (11)–(13)
are fulfilled, Theorem 3.1 is proven for N ≥ K.

To show the existence of a power vector b in (13) when K > N
is slightly more complicated. First, we set the power allocation to
b = αb0, where b0 is taken from the interior of the unit simplex

S :=
˘
x

˛̨ X
k∈K

xk = 1 ∧ xk ≥ 0 ∀k
¯

of dimension K−1 andαwill later go to infinity. Since b0 ∈ int(S),
the strict inequality b0 > 0 holds. For α → ∞, we may omit the
scaled identity σ2

I in the denominator of fk(b; εtarget) in (10), as
the matrix

P
� �=k

hkhH
k b0,�α has rank N for K > N and all its

eigenvalues grow beyond all limits when α → ∞ and b0 > 0.
Then, the fixed point equation (10) can be rewritten as

b0,k =f∞
k (b0; ε

target) :=

1

ε
target

k

− 1

hH
k

` P
� �=k

h�h
H
� b0,�

´−1
hk

, (18)

which means that b0−f∞(b0; ε
target) = 0. Obviously, the MMSE

tuple obtained with the power allocation b = αb0 and α → ∞
satisfies

P
k∈K εk = K−N , see (8). Since (18) and (8) evolve from

(5), the target MMSE tuple εtarget also has to satisfy ‖εtarget‖1 =
K −N for f∞(b0; ε

target) = b0. So far we have shown that a
power allocation b = αb0 with b0 ∈ int(S) and α → ∞ achieves
an MMSE tuple which satisfies ε ∈ int(B), where

B :=
n

ε

˛̨̨ X
k∈K

εk = K − N ∧ 0 ≤ εk ≤ 1 ∀k ∈ K
o

denotes the plane that separates feasibility from infeasibility. Now,
we show the converse, i.e., that there always exists a unique b0 ∈
int(S) in the power allocation b = αb0 with α → ∞ for any
MMSE tuple taken from ε ∈ int(B). When α → ∞, the SINR
metric reduces to the SIR without noise component. From the vari-
ous SIR-balancing papers, see for example [7, 9, 11], we know that
any ratio between individual SIRs can be balanced since balancing
is always feasible. The main objective of the SIR balancing is to find
the maximum common scalar r of all SIRs:

maximize
r,b0

r s.t.: SIRk = r · SIR0,k ∀k ∈ K (19)

with the SIR definition

SIRk := b0,kh
H
k

“ X
� �=k

h�h
H
� b0,�

”−1

hk.

Assuming SIR0,k > 0 ∀k and using γk = 1

εk
− 1, the SIR ratio

constraints can be converted into MMSE constraints:

SIRk = r · SIR0,k ⇔ εk =
1

r( 1

ε0,k
− 1) + 1

, (20)

where ε0,k = 1/(1 + SIR0,k). Exploiting the fact that in case of
infinite power allocation for every user, the sum MMSE is given by
K −N [see (8)], we find the radius r in the SIR domain. According
to (20), it is easy to see that

P
k∈K εk is decreasing in r and there-

fore,
P

k∈K εk = K − N has a unique solution for r. In particular,
r = 1 if all SIR0,· are chosen such that

P
k∈K 1/(1 + SIR0,k) =

K − N . This proves that for any target MMSE tuple εtarget taken
from int(B) and thus satisfying ‖εtarget‖1 = K − N , there ex-
ists an asymptotic power allocation b = αb0 with α → ∞ and
b0 ∈ int(S) for which f (b; εtarget) = b. A slight relaxation of the
target MMSE tuple εtarget with ‖εtarget‖1 = K −N to ε′,target =
βεtarget > εtarget with β > 1 yields ‖ε′,target‖1 > K − N .
Clearly, the scaling β must be small enough such that ε′,target ful-
fills (6). Since f (b; ε) in (10) is strictly decreasing in ε, we have
f (b; εtarget) > f (b; ε′,target) and therefore,

b = f (b; εtarget) if ‖εtarget‖1 = K − N,

b > f (b; εtarget) if ‖εtarget‖1 > K − N.
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Hence, the third requirement (13) for the existence of a unique fixed
point is satisfied for any εtarget whose sum MMSE is larger than
K − N . Since α → ∞ and b0 > 0, we have b = αb0 > a. This
completes the proof for Theorem 3.1.
Based on these observations, we can infer that the smallest common
MMSE ε̄ := ε1 = . . . = εK reads as

ε̄ =

j
K−N

K
= 1 − N

K
for K ≥ N

0 for K ≤ N

and leads via γk = 1

εk
− 1 to the largest common SIR

γ̄ =
1

ε̄
− 1 =

j
N

K−N
for K ≥ N

∞ for K ≤ N

which has already been observed in [4].
Examples: In the single antenna case, the SINRs γ1 and γ2 of

the two users have to satisfy γ1γ2 < 1 in case of finite sum power
as shown in [9]. Using Theorem 3.1, we are now able to extend the
feasible SINR region to the case of K = 3 users and N = 1 antenna
at the base station. The bijective mapping γk = 1

εk
− 1 converts the

condition ε1+ε2+ε3 >K−N =2 to

2γ1γ2γ3 + γ1γ2 + γ1γ3 + γ2γ3 < 1. (21)

Adding a second antenna to the base station, the MMSEs have to
satisfy ε1+ε2+ε3 >K−N =1. In the SINR domain, this requires

γ1γ2γ3 − (γ1 + γ2 + γ3) < 2

to hold for finite sum power.

4. CONCLUSION

The geometry of the feasible QoS region in the vector broadcast
channel has been derived when the available transmit power is not
limited. We have shown that the maximum feasible MMSE region
is a hyper-cube that is cropped when more users shall be served than
antennas are available at the base station. This geometric structure is
independent of the channel realization as long as all column subsets
of the channel matrix define a nonsingular matrix. Based on this new
observation, feasibility of given QoS requirements can be detected
with practically no computational complexity. Instead of complex
balancing algorithms, only the sum of the target MMSEs has to be
compared to the difference between the number of antennas at the
base station and the number of served users to find out, whether the
QoS constraints are feasible or not.

5. REFERENCES

[1] C. Farsakh and J. A. Nossek, “Spatial Covariance Based
Downlink Beamforming in an SDMA Mobile Radio System,”
IEEE Transactions on Communications, vol. 46, pp. 1497–
1506, November 1998.

[2] M. Bengtsson and B. Ottersten, “Optimal Downlink Beam-
forming Using Semidefinite Optimization,” in 37th Annual
Allerton Conference on Communication, Control, and Com-
puting, September 1999, pp. 987–996.

[3] M. Schubert and H. Boche, “Solution of the Multi-User Down-
link Beamforming Problem with Individual SINRConstraints,”
IEEE Trans. on Vehicular Techn., vol. 53, no. 1, pp. 18–28, Jan.
2004.

[4] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear Precoding via
Conic Optimization for Fixed MIMO Receivers,” IEEE Trans-
actions on Signal Processing, vol. 54, pp. 161–176, January
2006.

[5] A. M. Khachan, A. J. Tenenbaum, and R. S. Adve, “Linear
Processing for the Downlink in Multiuser MIMO Systems with
Multiple Data Streams,” in International Conference On Com-
munications (ICC), June 2006, pp. 4113–4118.

[6] G.Montalbano and D. T. M. Slock, “Matched Filter Bound Op-
timization for Multiuser Downlink Transmit Beamforming,” in
IEEE International Conference on Communications, October
1998, vol. 1, pp. 677–681.

[7] H. Boche and M. Schubert, “SIR Balancing for Multiuser
Downlink Beamforming – A Convergence Analysis,” in In-
ternational Conference On Communications (ICC), New York,
USA, April 2002, vol. 2, pp. 841–845.

[8] I. Koutsopoulos, T. Ren, and L. Tassiulas, “The Impact of
Space Division Multiplexing on Resource Allocation: A Uni-
fied Approach,” in INFOCOM 2003, March 2003, vol. 1, pp.
533–543.

[9] H. Boche and M. Schubert, “A General Theory for SIR Bal-
ancing,” EURASIP J. Wirel. Commun. Netw., vol. 2006, no. 2,
April 2006.

[10] H. Boche and M. Schubert, “Multiuser Interference Balancing
for General Interference Functions – A Convergence Analy-
sis,” in International Conference on Communications (ICC),
Glasgow, Scotland, June 2007, pp. 4664–4669.

[11] H. Boche and M. Schubert, “On the Structure of the Multiuser
QoS Region,” IEEE Transactions on Signal Processing, vol.
55, no. 7-1, pp. 3484–3495, July 2007.

[12] M. Schubert and H. Boche, “A Generic Approach to QoS-
Based Transceiver Optimization,” IEEE Transactions on Com-
munications, vol. 55, no. 8, pp. 1557–1566, August 2007.

[13] P. Viswanath, V. Anantharam, and D. N. C. Tse, “Optimal Se-
quences, Power Control, and User Capacity of Synchronous
CDMA Systems with Linear MMSE Multiuser Receivers,”
IEEE Transactions on Information Theory, vol. 45, no. 6, pp.
1968–1983, September 1999.

[14] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE
Transceiver Optimization for Multiuser MIMO Systems: Du-
ality and Sum-MSE Minimization,” IEEE Transactions on
Signal Processing, vol. 55, no. 11, pp. 5436–5446, November
2007.

[15] R. Hunger, M. Joham, and W. Utschick, “On the MSE-Duality
of the Broadcast Channel and the Multiple Access Channel,”
IEEE Transactions on Signal Processing, vol. 57, no. 2, pp.
698–713, February 2009.

[16] R. Hunger and M. Joham, “A Complete Description of the QoS
Feasibility Region in the Vector Broadcast Channel,” Submit-
ted to Transactions on Signal Processing.

[17] J. Kennan, “Uniqueness of Positive Fixed Points for Increasing
Concave Functions on R

n: An Elementary Result,” Review of
Economic Dynamics, vol. 4, no. 4, pp. 893–899, October 2001.

[18] R. D. Yates, “A Framework for Uplink Power Control in Cel-
lular Radio Systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 13, no. 7, pp. 1341–1347, September 1995.

3481


