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This article presents an attempt to explain in a simple way, understandable to a broad spectrum of
readers, the unusual combination of the mechanical properties of the recently developed new class
of superhard nanocomposites, such as high hardness which significantly exceeds that of the rule of
mixtures, enhancement of the elastic modulus as measured by the indentation technique, very high
elastic recovery which is observed upon the indentation and the absence of crack formation even
under elastic deformation corresponding to a strain of more than 10%. Future experimental work is
suggested which should bring further progress towards the understanding of these materials.
© 2002 American Vacuum Society.@DOI: 10.1116/1.1459722#
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I. INTRODUCTION

Super- and ultrahard materials are defined as those
Vickers hardnessHV of 40–60 and>70 GPa, respectively.1

The only super- and ultrahard materials which are availa
as single crystals are cubic boron nitride~c-BN, HV

'48 GPa! and diamond (HV'70– 90 GPa) due to the hig
strength of their covalent interatomic bond, small bond d
tance, and high coordination number.2 Because the presenc
of inherent flaws, such as dislocations with some mobi
and microcracks, limits the practically achievable stren
and hardness of materials by orders of magnitude as c
pared to the ideal behavior,3–5 it is possible to achieve supe
hardness in a variety of synthetic made materials by an
propriate design of their nanostructure which will hinder t
movement and multiplication of dislocations and cra
growth and in such a way enhance the practically achieva
strength of that material by a factor of 3–4, still far belo
the ideal one. There are two classes of nanostructured su
hard materials:6

~1! epitaxial and polycrystalline heterostructures and
~2! nanocomposites.

The strengthening of materials in heterostructures o
few nanometer thickness, consisting of multilayers made
alternating materials with different elastic moduli, was su
gested by Koehler7 and, later on, experimentally confirme
by a number of workers~for recent reviews see Refs. 6,
and 9!. If such heterostructures are made of hard transit
metal nitrides, their hardness can exceed 40 GPa. The o
nally suggested7 mechanism of strengthening in the heter
structures was confirmed8,9 and extended10,11 by several re-
searchers.

a!Electronic mail: veprek@ch.tum.de
650 J. Vac. Sci. Technol. B 20 „2…, MarÕApr 2002 1071-1023 Õ200
ith

le

-

y
h

-

p-

le

er-

a
f

-

n
gi-
-

A variety of superhard nanocomposites made of nitrid
borides, and carbides was prepared by plasma induced t
niques, such as plasma chemical vapor deposition~CVD!
vacuum arc evaporation and reactive sputtering~physical va-
por deposition, PVD!.6 In the appropriately synthesized b
nary systems the hardness of the nanocomposite exceed
nificantly that given by the rule of mixtures in bulk. Fo
example, the hardness of nc-MnN/a-Si3N4

(M5Ti,W,V,...) nanocomposites with the optimum conte
of Si3N4 close to the percolation threshold reaches
GPa,12–16 although that of the individual nitrides does n
exceed 21 GPa in bulk.17–20Another example of such supe
hard nanocomposites is the Ti–B–N system~for the original
articles see Ref. 6!. In contrast, a binary solid solution, suc
as TiN12xCx , shows a monotonous increase of the hardn
with x increasing from 0~HV'22 GPa for TiN! to 1 ~HV

'40 GPa for TiC!,16 thus following the rule of mixtures.
More recently, Musilet al. have demonstrated that supe

hardness can be achieved also in coatings consisting
hard transition metal nitride with a few at. % of soft met
which does not form thermodynamically stable nitrides, su
asnc-MnN/M8 ~M5Ti, Cr, Zr, M85Cu, Ni!.21–25However,
coatings, such as ZrN/Ni and CrN/Ni, prepared by these
searchers have shown a low thermal stability because
superhardness results from the high compressive st
which decreases upon annealing at temperatures of>450 °C
and the hardness decreases to that of the bulk materials.26 No
contribution to the enhanced hardness of the as depos
films due to the nanostructure could be found in t
nc-MnN/M8 coatings so far.

The enhancement of the apparent hardness and el
modulus in thin films due to a high biaxial compressi
stress is commonly observed in PVD films deposited at a
pressure where the compressive stress can achieve valu
6–8 GPa or more~see, e.g., Refs. 6, 27, and 28 and ref
ences therein!. For example, Herr and Broszeit29 reported a
6502Õ20„2…Õ650Õ15Õ$19.00 ©2002 American Vacuum Society
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hardness of 72 GPa for HfB2 coatings sputter deposited at
low pressure of 531023 mbar which introduced a high com
pressive biaxial residual stress of about 7 GPa. Upon ann
ing at 650 °C the stress and the hardness decreased to
17 GPa, respectively. Musilet al.30 reported hardness of 10
GPa for~TiAlV !N films deposited by sputtering at low pre
sure and having also a high biaxial compressive stress.
fortunately, the authors did not do any annealing experime
in order to verify what the real, ‘‘intrinsic’’ hardness of the
films was. Nevertheless, the hardness of TiN coatings
about 80 GPa reported in the same article and of 70 G
reported by the same author in a later publication31 clearly
shows that these measured values were falsified by the
compressive stress32 which, in the plasma PVD films, is in
duced by energetic ion bombardment as already shown m
years ago by Hoffman and Gaertner.33 More recently, it has
been shown that the apparent enhancement of the hardne
an aluminum alloy measured by the load-depth sensing
dentation technique is an artifact since no change of Vick
hardness and elastic modulus was found when the size o
projected area of the remaining plastic deformation was m
sured optically.27 This effect was explained in terms o
pileup.28 Because of such possibilities of incorrect hardn
measurement and the low thermal stability of t
nc-MnN/M8 coatings we shall concentrate in this article
those systems, where such enhancement of the app
hardness due to compressive stress can be excluded an
superhardness is unambiguously related to the nanostruc

The abovementioned plasma CVD deposited superh
nanocomposite films have a small compressive stres
<1 GPa.34 A high compressive stress of 3–5 GPa can a
be induced in plasma CVD films if the substrate bias dur
the deposition amounts to2300 to2500 V.35,36 Moreover,
these nanocomposites possess a high thermal stability
cause the hardness did not change after annealing up t
recrystallization temperature of the nanocomposites
900– 1100 °C.34,37,38

The generic concept for the design of novel, superh
nanocomposites that are stable up to high temperature
1000 °C, which is very important for their industrial app
cations, is based on thermodynamically driven segregatio
binary~and ternary! systems which display immiscibility an
undergo spinodal decomposition even at su
temperatures.6,13–16,37–39 The condition for spinoda
decomposition40,41 in a binary systemA12xBx to occur is a
negative second derivative of the free energy of formation
the mixed phaseA12xBx with an infinitesimal change of the
compositionA12x6dBx6d , Eq. ~1!:

]2DG0~A12xBx!

]x2 ,0. ~1!

This means that any small, local fluctuation of the compo
tion of the mixed phase decreases the free energy of
system thus leading to a spontaneous segregation wit
any need for nucleation of either phase. The secondary p
forms a continuous network with a characteristic spa
separation~‘‘crystallite size’’! of which the dimension is
JVST B - Microelectronics and Nanometer Structures
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given by the balance between the decrease of the free en
of the mixture upon the phase separation and the strain
ergy of the interface.40,41As a result, a stable nanocomposi
forms.

Such a nanostructure remains stable against coarse
~Ostwald ripening! as long as condition~1! holds because
any local fluctuation of the composition towards mixing i
creases the free energy of the system. Therefore, any sy
which meets this condition at high temperatures will not u
dergo Ostwald ripening~coarsening! thus retaining its nano-
structure as well as the mechanical properties which are
rived from that nanostructure.

II. MECHANICAL PROPERTIES OF SUPERHARD
NANOCOMPOSITES

The most important and to some extent surprising prop
ties of these materials are the strong enhancement of
elastic modulus up to the values of diamond, high hardn
and elastic recovery combined with a high resistance aga
crack formation. Because these materials were so far
pared as thin coatings by gas phase deposition processe
mechanical properties were measured by indentation te
niques. In the majority of published articles the load-dep
sensing technique using modern automated instruments
used. Besides the abovementioned apparent enhanceme
the hardness due to compressive stress, this technique
be subject to a number of errors unless the necessary ca
taken to prevent them~see Refs. 6, 27, 28, 42–46 and refe
ences therein!. In the case of the superhard nanocompos
coatings to be discussed here the reported values of the h
ness measured by means of the indentation technique
confirmed by comparison with Vickers hardness obtain
from the evaluation of the size of the remaining plastic d
formation by means of scanning electron microsco
~SEM!.6,38,47–49Because the compressive stress in these c
ings is also low and the applied load used for the meas
ments sufficiently high, the values of the plastic hardn
reported in these articles are correct.

As the next step we shall check if the very high elas
recovery of the coatings measured upon the indenta
meets the criteria of the Hertzian analysis of a reversi
elastic deformation of an ideally elastic sphere in cont
with a flat semi-infinitive elastic body.50 Figure 1 shows as
example typical indentation curves for a single phase na
crystalline diamond51 and ultrahardnc-TiN/a-Si3N4 /a- and
nc-TiSi2 nanocomposite coatings.47–49 The loading curve
~lower curve! starts at zero and with increasing load the
dentation depth increases up to the maximum, followed
the unloading curve~upper curve! which for L→0 ap-
proaches a finite value of the remaining indentation dep
The plastic hardness is calculated from the so-called ‘‘c
rected indentation depth,’’hcorr, which is obtained by the
extrapolation of the linear part of the unloading curve toL
50. This is justified only in the case if, during the linear pa
of the unloading curve, the contact area between the inde
and the material under study remains constant~see Refs. 6,
42–45 and references therein!. The ‘‘effective’’ elastic
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652 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 652
modulus is calculated from the slope of this part of the u
loading curvedL/dh and corrected for the elastic deform
tion of the indenter to obtain the elastic modulus of t
material.42–45

For the purpose of further discussion it is important
note that the elastic modulus is evaluated from the ela
response of the indented material under a high load clos
Lmax. The area between the loading curve and the axis of
indentation depth~here the vertical one! is the total energy of
the deformation, the area between the unloading curve
that axis is the energy of the elastic deformation and the a
between the loading and unloading curve is the dissipa
energy of the plastic deformation which is a measure of
hardness. The smaller the ratio of the dissipated energ
plastic deformation to that of the total energy of deformatio
the higher the plastic hardness.52–54 The higher the ratio of
the energy of elastic to plastic deformation, the higher is
elastic recovery.

Although the shape of the loading and unloading cur
in Fig. 1 clearly supports the view of predominantly elas
nature of the deformation, and also the high value of

FIG. 1. Examples of indentation curves for single phase nanocrysta
diamond ~see Ref. 51! and 3.5 mm thin ultrahard nanocomposite
nc-TiN/a-Si3N4 /a- andnc-TiSi2 ~see Ref. 38!. The insets means the Vick
ers hardnessHV , elastic~‘‘indentation’’! modulusE, universal hardness HU
~‘‘hardness under load’’!, and elastic recoveryr e .
J. Vac. Sci. Technol. B, Vol. 20, No. 2, Mar ÕApr 2002
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‘‘universal hardness’’ HU~the hardness under load, see i
serts in Figs. 1~a! and 1~b! underlines the high strength of th
material, it is important to check if the nature of the inde
tation meets the criterion of elastic indentation response
cording to classical Hertzian indentation solution. In first a
proximation this can be assessed by means of the Hert
elastic response under spherical indenter of radiusR and
contact circle radiusa ~for details see Ref. 50!. For simplic-
ity we assume the same elastic moduli of the indenter and
coating because of the close agreement of these value
found in Fig. 1 and many other measurements on such c
ings. The analysis of the Hertzian indentation of elas
spherical indenter of radiusR into an elastic, semi-infinitive
material gives a dependence of the indentation depthh(L)
on the applied loadL :

ln h~L !5
1

3 F2 lnS E2
•R

1.861D G1
2

3
ln L. ~2!

Digitizing theh(L) vs L behavior in the nanostructured dia
mond (E5454 GPa) and the nanostructured TiN/Si3N4 /
TiSi2 (E5607 GPa) coatings~Fig. 1! gives the dependenc
shown in Fig. 2. It shows a very good log–log straight li
behavior with slopes 0.585 and 0.6 for the nanostructu
diamond and TiN/Si3N4 /TiSi2 , respectively. The relatively
small difference from the true Hertzian slope for ideally ela
tic materials of 2/350.667 can be attributed to the fact th
the indentations are not purely elastic and that the inde
geometry of the Vickers diamond is not exactly spherical
well as the significant distortion of the indenter.

Moreover, taking the plot of Fig. 2 and the elastic mod
of the materials of the coatings, the radius of the tip of t
indentor can be calculated from Eq.~3!:50

h51.23S L2

E2
•RD 1/3

. ~3!

The resultant values ofR50.448 and 0.385mm for
nc-diamond and TiN/Si3N4 /TiSi2 coatings are in a reason

e

FIG. 2. ‘‘Hertzian’’ plot of the indentation depthh(L) vs applied loadL.
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FIG. 3. Examples of the appearance of the remaining indentation into:~a! 6.1-mm-thick ultrahard coating (H0.005'100 GPa) after applied load of 1000 mN
~b! 10.7-mm-thick superhard coating (H0.01'40 GPa) with a load of 1000 mN;~c! 3.5-mm-thick ultrahard coating from Fig. 1~b! after applied load of 100 mN
~from Refs. 6 and 47!.
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ably good agreement with each other and with the radiu
the Vickers diamond indenter of<0.5mm.44

This analysis shows clearly that the major portion of theh
vs L response as measured by the indentation into the su
and ultrahard nanocomposite coatings is a simple Hert
elastic indentation. This conclusion is also supported by F
3 which shows typical examples of the SEM micrographs
the remaining plastic deformation. The absence of cra
even after the indentation into the 6.1mm thin coatings with
1 N load@Fig. 3~a!#, where the soft steel substrate is sever
plastically deformed~depth of the plastic indentation in th
steel of about 2mm!, lends an additional, strong support
this conclusion. Furthermore, the high values of the ela
moduli and of the universal hardness~hardness under th
maximum applied load! underline the fact that these mate
JVST B - Microelectronics and Nanometer Structures
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als are indeed very strong, and that the observed extrao
nary high ‘‘plastic hardness’’ is not due to any ‘‘rubber-like
elastic response.~SeeNote Added in Proofand Refs. 134 and
135.!

A. Origin of apparent enhancement of elastic
modulus

The well known, approximate linear dependence of
hardness of crystals on the value of shear modulusG is
explained by crystal plasticity~multiplication and movemen
of dislocations!55,56because the dislocation energy is propo
tional to G.2–5 In the original publications, Vepreket al. re-
ported a proportionality between the values of plastic ha
ness and elastic modulus measured by the indenta
technique for several superhard nanocomposite systems13–16
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654 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 654
and similar proportionality was found also for other syste
by other workers. The proportionality between the measu
values of Young’s modulus and the hardness was repo
also for a number of metallic glasses,57–59amorphous hydro-
genated carbon (a-C:H), and silicon (a-Si:H)60 with the
proportionality factor varying between about 15 and 17
the metallic glasses and 9 and 11 fora-C:H and a-Si:H,
respectively. For the values of hardness extrapolated to
the values of Young’s modulus approached zero as well.
explanation of this relationship was based on the rela
between yield stress and Vickers hardness

sYield'HV/3 ~4!

which was found by Tabor for metals54 with little strain hard-
ening and theoretically justified by Hill in terms of slip lin
field analysis.61 Substituting the Hooke’s law into that rela
tionship, one obtains for the critical yield straineYield :

eYield'
HV

3•EY
. ~5!

Therefore it has been suggested that the proportionality
tween the measured Young’s modulus and hardness me
for a given type of material, a constant yield strain within t
whole range of measured values and that the different va
of the proportionality factor for different classes of materia
reflect the differences in the values of the critical yield str
eYield .59,60

However, the correlationsYield'HV/3 is not universally
valid for all materials, such as brittle ceramics, glasses,
others which display a high ratio of the yield stress
Young’s modulussYield /EY . The original derivation of rela-
tion ~4! by Tabor was based on the assumption of the ind
tation of a hard, undeformable flat punch into an ideally pl
tic metal under a negligible friction~see Ref. 54 p. 34 ff.!.
This assumption is also included in the theoretical devel
ment of Hill.61 The experimental verification was done o
highly worked~in order to avoid any further work hardenin
upon the indentation experiment! metals, such as tellurium–
lead alloy, aluminum, copper, and mild steel.

Later on Marsh has, however, shown that the Tabor’s
proximation ~4! applies only for materials with a relativel
low value of the ratiosYield /EY , whereas for those with a
high one the ratioHV /sYield is lower and shows a comple
dependence onsYield /EY and Poisson’s ratio. This analys
was supported by experimental data for a variety of differ
materials, such as hard carbon and chromium steels, cop
beryllium, poly~methylmethacrylate!, polystyrene, epoxy-
and polyacetal resin and variety of glasses.62,63 Based on
these results it is obvious that the explanation of the corr
tion between the elastic modulus and hardness based on
~4! and ~5! cannot be considered as a universal one and
alternative possibility should be considered, especially
the superhard nanocomposites.

In this section we shall show that the apparent, very h
values of the elastic modulus~or more exactly the stiffness!
as measured by the indentation technique on the super-
ultrahard nanocomposite coatings are due most probably
J. Vac. Sci. Technol. B, Vol. 20, No. 2, Mar ÕApr 2002
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high pressure under the indenter. Let us first briefly summ
rize which properties of the material determine the elas
moduli. The Young’s elastic modulusEY is given by the
second derivative of the bond energyEb with interatomic
distancex, i.e., to the curvature of the interatomic potent
curve at the equilibrium interatomic distancex0 , Eq. ~6! and
Fig. 4~a! :2–4

EY5S d2Eb

dx2 D
x0

•x0
2. ~6!

The larger the binding energyEb and shorter the bond dis
tancex0 , the larger the Young’s modulus@Fig. 4~a!#. If a
solid is subjected to compression, the bond distance
creases and the curvature of the potential curve, i.e., the e
tic modulus, increases.

The bulk modulusB is equal to the reciprocal of the com
pressibility. It is given by the second derivative of the crys
energyUC with dilatation, Eq~7! :64,65

B52S d~V/V0!

dP D 21

5Vmole
2 d2UC

dV2 . ~7!

In other terms, the bulk modulus is a measure of the incre
of the crystal energy with a change of the volume impos
by an external hydrostatic pressure, Eq.~8!:

UC~V!5UC~V0!1S dUC

dV D
V0

•dV1
1

2 S d2UC

dV2 D
V0

•dV21¯ .

~8!

FIG. 4. Young’s modulus corresponds to the curvature of the interato
potential curve at the equilibrium positionx0 ~upper curve!. Upon compres-
sion, this ‘‘equilibrium’’ position decreases and the curvature~i.e., Young’s
modulus! increases. The first derivative of binding energy with bond d
tance is the restoring force when the interatomic bond length is changed
to applied stress.
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655 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 655
HereV0 is the molar volume at zero pressure andUC(V0) is
the crystal energy at equilibrium, i.e., (dUC /dV)V0

50.
Thus, the increase of the crystal energy upon hydrost
pressure is given by the increase of the curvature of the
tential surface in three dimensions in a way similar as in
simple, illustrative case of Young’s modulus.66–68Therefore,
elastic moduli are inherently associated with the crys
structure and nature of the chemical bonds of a given m
rial.

The fairly linear increase of bulk modulus with pressure69

dB/dP, is due to the increase of the crystal energy w
decreasing distances between the atoms, i.e., due to th
creasing curvature of the interatomic potential surface70 in a
similar way as for the Young’s modulus. That increase
pends on the nature of chemical bonds and on the cry
lattice, but the values of the first derivative ofB with P,
dB/dP, are within a relatively small range of about 3–8 f
the majority of materials, as summarized below.

Grover, Getting, and Kennedy71 have shown that unde
compression, the logarithm of the isothermal bulk modu
of many metals increases almost linearly with the decreas
the specific volume2DV/V0 up to volume changes of 40%
The slope of these dependencies varied for different me
within the range of about 3 and 8. Rose calculated the hig
order elastic constants for fcc metals, such as Cu, Ag, Al,
Ni and their pressure dependence]ci j /]P5A12C•P.72,73

The values of the constantsA andC were between 5.00 an
5.45 and 0.005 and 0.11 (GPa21), respectively, forc11 and
between 4.27 and 4.6 and 0.004 and 0.009 (GPa21), respec-
tively for c12. The corresponding constantsA andC of bulk
modulusB5(c1112c12)/3 varied from 4.53 to 4.9 and 0.00
to 0.010 (GPa21), respectively. This is in agreement with th
experimental values within the accuracy of measurement
well as with the data for other materials~see Table I74–79!
and recent theoretical work.79–81

Roseet al.80 derived a universal zero-temperature equ
tion of state which allowed them to calculate the first deriv
tive of bulk modulus as a universal function of the ratio
the Wigner–Seitz atomic radius at equilibrium,r WSE, to the
width of the interatomic binding energy curvel , which cor-

TABLE I. Examples of experimental values of the first derivative of bu
modulus with pressure.

Material dB/dP Reference

B4C 4.26 74
SrSi2 4.8 75
EuSi2 4.3 75
CaSi2 4.2 75
BaSi2 3.9 75

Si 4.20–4.25 76, 77
Ge 4.81 77
Au 5.94 77
Ta 6.86 78
Fe 5.85 78

NaCl 5.88 77
KCl 4.67 77
MgO 4.8 79
JVST B - Microelectronics and Nanometer Structures
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responds to the anharmonicity of the crystal@Eq. ~9!#. This
expression yields theoretical values in a fairly good agr
ment with the experimental ones for a large number of so
~see Table III in Ref. 80!. In a more recent article thes
authors extended their consideration also to interfaces81

S ]B

]PD
T

511
2.3

3

r WSE

l
. ~9!

Thus, the pressure dependence of elastic moduli can be f
well approximated by a proportionality~10! with A being
between about 3 and 8:

B~P!>B~0!1A•P. ~10!

The Young’s moduli and shear moduli also show an
crease with pressure. Manghnani, Wang, and Zinin74 reported
the values of the first derivative of 3.85 and 1.1 for Young
modulus and shear modulus of B4C, respectively. The ap
proximate dependence of the elastic shear modulusG on
pressure in ionic solids,G(P)>G(0)10.5P, was elaborated
by Kelly, Thyson, and Cottrell82 and discussed in some deta
by Argon.83

The effective modulus measured by the load-depth se
ing indentation technique is calculated from the linear par
the unloading curve and corrected for the possible ela
deformation of the diamond indenter according to the ori
nal Sneddon analysis.84 More recent work has, howeve
shown that the original formula used for the evaluation of
elastic modulus is too simplified in real indentatio
measurements.85,86 Moreover, the assumption of a ‘‘rigid
punch’’ used in Sneddon’s calculation~see third line in Ref.
84! is violated for super- and ultrahard nanocomposit
Thus, the effective elastic modulus measured by the inde
tion is a complex function of the compression, shear, a
tensile components of the elastic tensor and the corresp
ing moduli.

Let us consider the possible effect of the pressure indu
by the indenter during the measurement on superhard c
ings. As already pointed out by Tabor,54 indentation Vickers
hardnessHV is a direct measure of the average pressureP
under the indenter

HV~GPa!'0.927P~GPa!, ~11!

where the constant 0.927 accounts for the difference betw
the projected area of the indentation and the exact area o
contact between the indenter and the material.87 Under con-
ditions of yielding~plastic deformation! of the material being
measured88 when the yield pressure is essentially const
and independent of the applied loadL, the pressure under th
indenter

P'
HV

0.927
5

L

A
, ~12!

whereA is the projected area of the remaining indentation54

The higher the hardness the smaller the areaA and the higher
the average pressure under the indenter. Of course, the
tribution of the pressure under the indenter is complex a
was calculated only for several simple cases.54,61,89 Never-
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656 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 656
theless, it is clear that the higher the hardness the highe
pressure under the indenter under the maximum applied
where the elastic modulus is evaluated from the unload
curve.

A direct experimental evidence of high pressure under
indenter is the presence of structural phase transitions
duced by the high hydrostatic pressure during the inde
tion. An examplepar excellenceis the semiconductor-to
metal transition in silicon which commences at about 1
and is completed at 12.5 GPa.76 This transition is observed
upon indentation with a Vickers indenter at an applied lo
of about 30–40 mN and it is best seen on the unload
curve.90 It is accompanied by a strong decrease of elec
resistivity of silicon within the indentation area~see Ref. 91
and references therein!. Gridneva, Milan, and Trefilov re-
ported the semiconductor-to-metal transition upon inden
tion in Si, Ge, InSb, and GaAs and have shown that
pressure under the indenter at which this transition occ
determines the measured hardness of the given materia92

Considering two materials of a similar chemical comp
sition but different hardnessH1,H2 which, upon the same
load show indentation areasA1.A2 , the corresponding
pressures under the indenter within the linear part of
unloading curve will be

P1~}L/A1}H1!,P2~}L/A2}H2!. ~13!

which yields the proportionalityP}H. Therefore the ‘‘elas-
tic moduli’’ measured for these materials by the indentat
at the same load will correspond to a larger pressure in
compressed zone under the indenter for the harder mat
than for the softer one. Considering the pressure depend
of elastic moduli mentioned above the measured comp
indentation elastic modulusBind will increase with the hard-
ness of the material

Bind'B~0!1Cind•Hplastic, ~14!

whereB(0) is the extrapolated elastic modulus at zero pr
sure andCind is close to the value of the first derivative of th
elastic modulus with pressure. The exact value of the c
stantCind depends on the exact mode of the plastic deform
tion which determines the relevant elastic moduli. Materi
which deform plastically by multiplication and movement
dislocations are expected to show a dependence of the
sured Bind on Hplastic corresponding to that of the she
modulus on pressure,55,56 whereas ceramics and superha
nanocomposites are likely to show a dependence more
sembling that of the bulk modulus. This has visual confirm
tion in the former by the plowed-up material around the
dentation and an absence of it in the latter.

Figure 5 shows experimental data obtained for a rang
materials including various diamond coatings and super-
ultrahard nanocomposites.48 The relatively large scatter o
the data is due probably to different modes of the pla
deformation and different pressure dependence of the el
moduli.

In order to obtain the dependence of the ‘‘indentati
elastic modulus’’ for similar ceramics-like materials, w
compare in Fig. 6nc-TiN/a-Si3N4 /a- and nc-TiSix nano-
J. Vac. Sci. Technol. B, Vol. 20, No. 2, Mar ÕApr 2002
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composites which were prepared under similar conditio
and which differ only by the fraction of the Si3N4 and TiSix ,
the main phase being TiN.47–49,93,94Let us emphasize that th
total silicon content in these super- and ultrahard nanoc
posites varied only between 0 and about 20 at. %. The m
influence on the hardness is due to the coverage of
nanocrystals with Si3N4 .39,47,49As is apparent, the measure
values of the elastic moduli of these coatings vary fai
proportionally with the hardness, the proportionality fact
being approximately 3.8, i.e., within the range of the valu
of first derivative of bulk modulus with pressure for a majo

FIG. 5. Correlation between the elastic modulus measured by the load-d
sensing technique and the corresponding plastic hardness for various
rials and coatings~adapted from Ref. 48!. Notice the good agreement of th
data for sapphire (a-Al2O3) with those reported by Oliver and Pharr~see
Ref. 95!.

FIG. 6. Dependence of the elastic modulusEY /(1-n2) measured by the
load-depth indentation technique for a series ofnc-TiN/a-Si3N4 /a- and
nc-TiSix films containing a variable fraction of the phases with total
content< 20 at. %.
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657 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 657
ity of solids. A similar relationship was reported for oth
superhard nanocomposite coatings.13–16 This lends a strong
support to the suggested enhancement of the indenta
elastic moduli of the super- and ultrahard nanocomposite
the high pressure induced under the indenter during the m
surement.

In their original work Doerner and Nix45 and Oliver and
Pharr95 compared the values of elastic moduli measured
the indentation method with those reported in the literat
~data obtained from the isostatic compressibility and/or ul
sonic wave propagation measurements! for Al, quartz, soda-
lime glass, sapphire, fused silica, and tungsten and conclu
that there is a good agreement. However, for the har
material, sapphire, measured by these authors the valu
the indentation elastic modulus is about 10% larger than
from the literature. Indeed, for relatively soft material wi
hardness below about 10 GPa and elastic modulus of 2
400 GPa one would expect the enhancement of the inde
tion elastic modulus due to the pressure under the indent
be within the scatter of the literature data because, as alre
mentioned, the first derivative of the bulk modulus with pre
sure is typically between 3 and 7. The pressure enhan
elevation of elastic constants becomes significant only w
hardness increasing significantly above 20 GPa as in the
of the superhard nanocomposites. Therefore, values of ap
ent indentation elastic moduli in the range of diamond
even higher for materials which, based on the fundame
considerations stated above must have much lower val
are artifactially elevated due to the high pressure. It is
necessary as well as improper to evoke other possible ex
nations, such as the increase of the modulus due to the i
face incoherence strain hardening.96–99

In order to obtain exact values of the elastic moduli, a
propriate techniques should be used, such as isostatic c
pression combined within situ x-ray diffraction ~XRD! for
bulk modulus, cantilever technique for the tensile measu
ments, and surface acoustic waves on specially prep
specimens for Young’s modulus. It would also be interest
to determine, by means of an appropriate specimen prep
tion and measurements, the shear modulus because it sh
show the best correlation with the plastic hardness provi
there is a similarity in the mechanism of plastic d
formation in these nanocomposites and in the ordin
materials.55,56,100,101Such a measurement is ideally done
means of a torque-twist experiment on coated isotropic
cular filament such as fused silica.

B. Hardness, elastic recovery and possible
mechanism of plastic deformation

1. Nanostructure, stress concentration factor,
and hardness

The smaller the dissipated energy of the plastic deform
tion ~area between the loading and unloading curve in Fig!
and larger that of the elastic one~area between the unloadin
curve and axisy! the larger the hardness and elastic recov
of the material. Conventional hard materials withHV

'20– 30 GPa sustain a relatively small strain of,0.1%
JVST B - Microelectronics and Nanometer Structures
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within the region of elastic deformation and undergo brit
fracture when this limit is exceeded.2–5 Only specially tough-
ened modern ceramics show a somewhat higher ela
recovery.102,103

In contrast, the superhard nanocompositesnc-MnN/a-
Si3N4 ~M5Ti, W, V! with hardness of about 50 GPa hav
elastic recovery in the range of 80%15 which increases to
more than 90% for the ultrahard nanocomposites
nc-TiN/a-Si3N4 /a- and nc-TiSi2 @see Fig. 1~b! and Refs.
47–49#. In the case of the sample shown in Fig. 3~a! the 6.1
mm coating was, at the highest applied load, pressed abo
mm into the soft steel substrate without showing any cra
ing or delamination observable on the surface by SEM~cer-
tainly causing a broader level of plastic deformation in t
steel substrate but also a tensile strain in the coating at
interface probably exceeding 25%, depending on the leve
dispersal of the plastic flow in the substrate!. The under-
standing of this unusual behavior is an important challen
to be discussed in this section. The second, related que
of more fundamental importance concerns the nature of
plastic deformation in the nanocomposites with crystal
size of 3–6 nm in which crystal plasticity~due to disloca-
tions! cannot develop. The third question to be discusse
the origin of the high hardness. All these questions are in
grally related to the scale of the nanocomposites and t
thermal stability.

Because the most complete information regarding
composition and nanostructure is available for t
nc-TiN/a-Si3N4 and nc-TiN/a-Si3N4 /a- and nc-TiSi2
nanocomposites we shall now concentrate on these syst
Similar conclusions will also apply for other superhard nan
composites which display a well developed, strong segre
tion and spinodal decomposition, such asnc-W2N/a-Si3N4 ,
nc-VN/a-Si3N4 ,15,16 nc-TiN/BN,104 nc-TiN/AlN @or
(Ti12xAl x)N/Al12dTid)N#, (Ti12xAl x)N/a-Si3N4 ,105 nc-
MnN/a-C:N ~M5Ti, Zr,...!106–110and others.

In our earlier publications it has been shown that t
maximum hardness is achieved when the crystallite s
reaches 3–4 nm and the concentration of Si3N4 of about
16–20 vol. % which corresponds to the percolation thresh
in a three-dimensional network.6,14–16As an explanation of
this behavior it was suggested that the nonpolar Si3N4 is
wetting the polar~high energy! surfaces of the transition
metal nitride nanocrystals thus decreasing the energy of
interface, which of course always represents a positive,
destabilizing contribution to the total free energy of the s
tem. The same was also found for the ternary and qua
nary ultrahard nanocompositesnc-TiN/a-Si3N4 /a- and
nc-TiSi2

47,49 and evidence is growing which shows that th
is generally valid for other superhard nanocompsites wh
show a high thermal stability.6,39,132 ~See Note Added in
Proof.!

The XRD and high resolution transmission microsco
~HRTEM! studies have shown that in the nanocompos
with the highest hardness, the TiN nanocrystals are rando
oriented and have fairly regular equiaxed shapes.111 Similar
results were recently found also for thenc-(Ti12xAl x)N/
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FIG. 7. ~a! Nanostructure of the ultrahardnc-TiN/a-Si3N4 nanocomposites,~b! nanostructure of ultrahardnc-TiN/a-Si3N4 /a- andnc-TiSi2 .
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a-Si3N4 and nc-TiN/a-Si3N4 /a-TiSi2 nanocomposites.39

Summarizing all these data, the nanostructure of the su
hard nc-TiN/a-Si3N4 nanocomposites is schematical
shown in Fig. 7~a! with a nanocrack in the process of form
ing under an applied tensile stress~and possibly also in re
sponse to internal misfit stresses, see also Refs. 15, 16
49!. The ultrahard nanocompositesnc-TiN/a-Si3N4 /a-TiSi2
(HV>80 GPa) have a similar nanostructure with the th
phasea-TiSi2 in the a-Si3N4 interfacial layers of the nano
crystals and also filling the remaining space in the interfa
multijunction points.112 Notice, that the maximum hardnes
in these nanocomposites is obtained when the conten
a-TiSi2 amounts to about 4–5 mol %.39,47–49When the total
silicon content exceeds about 10 mol %, nanocrystal
TiSi2 phase precipitates with a crystallite size of about 3 n
i.e., smaller than that of thenc-TiN which, in this case, have
sizes of about 7–10 nm for nanocomposites reaching h
ness of>80 GPa. The ultrahardnc-TiN/a-Si3N4 /a- and
nc-TiSi2 nanocomposites whose hardness exceeds 100
have a total silicon content of about 15–20 at. %.47–49Their
nanosctructure is schematically shown in Fig. 7~b!.

As already mentioned, the 3–10 nm size nanocrys
cannot accommodate any crystal plasticity for obvious r
sons nor any other form of flaw. Therefore, their strength w
approach the ideal one which is of the order of about 10%
the shear modulus.2–5 This means that the existence of tran
granular cracks is not likely. Consequently, initiation a
growth of intergranular cracks propagating within the int
facial component, i.e., the grain boundaries of the nanoc
tals, ‘‘glued’’ together by a layer of atomic dimensions
Si3N4 ,15,16,39 should be the most probable fracture mech
J. Vac. Sci. Technol. B, Vol. 20, No. 2, Mar ÕApr 2002
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nism of these materials. The actual behavior is likely to
more complex as we describe below.

In the first approximation the stability of a materi
against catastrophic crack growth is described by the Grif
thermodynamic criterion

sc5k•Ag•EY

a
, ~15!

wheresc is the critical applied stress which causes the ca
strophic crack growth,EY is the Young’s modulus,g is the
surface free energy of the material, 2a is the size of the
crack2–5 and k is a constant which depends on the cra
shape. Because in the randomly oriented nanocomposite
size of such cracks can only be a fraction of the crystal
size, i.e., of 1–2 nm, the stress concentration factor of
atomically sharp crack is very low and the critical stress
the crack growth approaches extremely high values.49 This
can be more illustratively seen by considering a simple f
mula for the stress concentration factor of a penny sha
nanocrack

s tip

sapplied
5112Aa

r
~16!

which is the ratio of the stress acting at the tip of the cra
~of radiusr and a size of 2a! to the applied stress.3,5 The
larger the crack and smaller the tip radius the larger the st
concentration factor. The smallest possible tip radius co
sponds to the interatomic distance, i.e., 0.2–0.3 nm. For
crocracks of the size of 100–1000 nm in a conventional
ramic the stress concentration factor is about 37–140. T
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659 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 659
means that the applied stress which is about 37–140 ti
smaller than the theoretical one is sufficient to cause c
strophic crack growth. On the other hand, for a nanocrac
the size of 1–2 nm the stress concentration factor decre
to about 2–4, i.e., the stress needed to propagate the c
approaches a significant fraction of the ideal strength.
though these considerations are quite simplified, they cle
show that the initiation~‘‘opening’’ ! of cracks in nanocom-
posites with crystallite size of 3–8 nm and having very th
strongly bonded interfaces requires very high applied str
Much of computer simulations with large computers us
appropriate interaction laws have shown that the Griffith
lation should be accurate in this nanoscale range.101

Because only the stress component perpendicular to
crack plane causes the crack growth, the first nanos
cracks to be considered as operating under an applied
are those within the interfaces perpendicular to the direc
of the applied tensile stress. For simplicity we consider h
only uniaxial stress with components pointing up and do
in Fig. 7. After the opening, the nanocrack can grow with
that plane only up to the nearest obstacle, such as the ne
bor nanocrystal, where it has to undergo deflection a
branching. Upon the deflection the component of appl
stress which is perpendicular to the crack plane decrease
cosa where a is the angle between the applied uniax
stress and the normal to the plane of the deflected crac
just the angle of the crack deflection. Furthermore, the cr
deflection occurs within a three-dimensional network, le
ing to corresponding branching which further increases
total length of the crack and corresponding decrease of
stress concentration factor. Last but not least, planar in
faces such as shown in the schematic structure of Fig. 7
unlikely in the real materials where faceting of the surfac
of the neighbor crystallites are common. Thus, one can ea
see that for a nanocomposite with grain size of a few na
meters and the thickness of the interface phase~e.g., Si3N4!
of about 1 ML the deflected and branched crack will st
within a small distance of the order of 1 nm unless the
plied stress will be significantly increased which, howev
would lead to catastrophic fracture. For these reasons,
tained fracture of the nanocomposites due to a formation
stable growth~percolation! of nanocracks is unlikely113 and
other mechanisms of inelastic114 deformation should be re
sponsible for the high hardness and elastic recovery foun
these materials as discussed in the following sections.

2. Elastic recovery and reversible stored elastic
energy

It is interesting to estimate the energy of elastic deform
tion actually measured in the indentation experiments. Fig
1~b! shows a typical example of an indentation into 3.5mm
thin ultrahard coating with elastic recovery of about 94
which shows energy of elastic deformation of about
31028 J.115 Similar values can be also estimated from
number of indentations performed in other superhard na
composite coatings~see, e.g., Fig. 1 in Ref. 49!. Assuming
the total area of the deformation under the maximum app
JVST B - Microelectronics and Nanometer Structures
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load of 0.07 N@Fig. 1~b!# to be about four times the area o
the permanent, plastic deformation as obtained from
load-depth sensing indentation measurements and SEM
crographs@see Fig. 3~c! and Ref. 47# yields the elastic energy
density of about 33108 J m23,116 and finally the specific
elastic energy of about 3 kJ mole21.117

The elastic energyUel of a solid is given by Eq.~17!
where B is the bulk modulus~of about <500 GPa! and
(DV/V)el is the true elastic dilatation

Uel5Vmole•
B

2
•S DV

V D
el

2

. ~17!

Assuming as an upper limit for the elastic dilatation of abo
1% ~i.e., much higher than what is typically found for con
ventional hard materials! andVmole'10 cm3 (1025 m3) the
elastic energy density of the order of 0.5 kJ/mole resu
This value is much smaller than the above estimated ene
density as measured by the indentation. In the following
discuss the possible explanations and suggest further m
detailed future studies which should be done in order
verify them and decide which is the dominant one.

The first possibility may be that the elastic deformati
extends over a much larger volume than what was assu
above. This would require that the lateral area of elastic
formation should be more than 20 times larger than the m
sured area of the remaining plastic deformation and that
elastic strain density does not decrease very rapidly with
creasing distance from the point of indentation, which is j
the opposite as generally found. Consequently, the ela
and plastic deformation of the steel substrate has to be
volved and considered in the analysis. This may be done
means of a sophisticated finite element analysis which
beyond the scope of this article.133

The other possibility is that the nanostructured superh
coatings being discussed here may indeed sustain a
strain approaching 10% without undergoing plastic deform
tion. This is beyond the well known behavior of convention
hard materials, but it cannot be completely ruled out for
superhard nanocomposites for the following reasons: In
nanostructured materials with 3–5 nm small, equiax
nanocrystals the dimensions of the initial flaws induced
the high applied stress are at the scale of<1 nm~see above!.
This means that the tips of cracks or any other small vo
formed, e.g., during the visco-elastic flow under the ve
high applied stress, remains at the scale comparable with
interatomic bond length. It is well known that the ruptu
strain of interatomic bond can reach up to 20%. In order
clarify this question, advanced first principles compu
modeling of the elastic behavior of such complex nanostr
ture are needed.

A third, closely related possibility is a reversible nonline
flexing ~a ‘‘partial opening and closure’’ of interplanar spa
ing! between nanocrystallites. Consider the dependenc
the interatomic binding energy on interatomic distance
shown in Fig. 4~b! for x>x0 . The dependence of the firs
derivative of Ebinding with x is shown in Fig. 4~b! and the
flexing is schematically illustrated in Fig. 8. The relationsh
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660 S. Veprek and A. S. Argon: Understanding of mechanical properties of nanocomposites 660
in Fig. 4~b! for x.x0 is called ‘‘fundamental decohesio
curve.’’ The first derivative of the binding energy with dis
tance,dEb /dx is the ‘‘restoring’’ force acting against th
applied tensile stress. The elastic energy due to the rever
flexing of the bonds across the interface byDx is given by
the area under the curvedEb /dx betweenx0 andDx in Fig.
4~b!. Whenever the elastic strain energy associated with
elastic deformation of the attached nanocrystals is less
the above energy of the flexing of the bonds across the
terface, the system will be reversible.118 Therefore the energy
of flexing will be fully recovered upon unloading. In such
way the flexing will show as a reversible plasticity, such
that associated with martensitic transformations a
twinning.3,4,119 Considering the fundamental decohesi
curve, a simple estimate shows that the energy which is
versibly stored in the nonlinear flexing can exceed that
elastic deformation by a large factor, but experimental w
~HRTEM! and finite element modeling which can accou
for the nonlinearity of the flexing is required for more exa
calculations.

3. Plastic deformation

Experimental evidence shows clearly that there is also
irreversible plastic deformation associated with the inden
tion which must come from localized shear events m
probably within the intercrystalline ‘‘amorphous’’ compo
nent, akin to the local shear transformations in amorph
materials discussed by a number of workers~e.g., Refs. 120–
122! which, if spatially isolated will result in a ‘‘homoge
neous’’ deformation. If of a percolative nature, such def
mation will produce localization in the form of shear ban
as observed in the work of Bull, Page, and Yoffe123 and
others.124 Because no such ‘‘deformation bands’’ were o
served in a large number of SEM micrographs from o
nanocomposites~e.g., Fig. 3! we conclude that the individua
shear events have remained spatially isolated for reasons
cussed by Bulatov and Argon in Ref. 125. It will be ve
difficult to prove this experimentally by means of high res
lution TEM or other techniques in view of the nanostructur

FIG. 8. Schematics of reversible flexing where the bond length dilatation
exceed 10%–20% of the equilibrium bond length.
J. Vac. Sci. Technol. B, Vol. 20, No. 2, Mar ÕApr 2002
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nature of the films, their high strength, and relatively sm
thickness, not to mention the possible reversible feature
the response.

Another possibility worth considering to explain the pla
tic response could be densification transformations due to
high pressure under the indenter such as that observe
silicon and other materials mentioned above, in the h
pressure modifications of silica and others. This might
observable in high resolution transmission electron micr
copy if the density increase will be similar to that found f
the high pressure phases~e.g., 4.4 g/cm3 for Stishovith as
compared to 2.6 g/cm3 for a-quartz!.

C. Issue of apparent high fracture toughness

Fracture toughness is the ability of a material to res
fracture due to catastrophic crack growth. The presence
critical crack@see Eq.~15!# is a statistical possibility which
depends, among other factors, on the material prepara
The fracture toughness is conventionally measured by a c
cal stress intensity factorK IC defined as

K IC5s•~p•a!1/2. ~18!

This critical value is governed by material specific para
eters, such as surface free energyg, Young’s modulusEY ,
and Poissons ration, K IC5A2EY•g/(12n2) for brittle frac-
ture. It describes the stresss needed to propagate a crack
the size 2a. The largerK IC , the larger the fracture tough
ness. The most convenient way of measuring the crit
stress intensity factor in ceramics102 and thin films126,127is by
indentation which, when performed in bulk material at suf
ciently high load, results in the formation of radial crac
emanating from the indentation site. Pharr42 has shown that
Vickers indenter may need a high threshold for the cra
initiation because of its geometry which results in a re
tively small stress at the edges of the pyramid. From
dependence of the crack length on the applied load, the c
cal stress intensity factorK IC is evaluated. However, in orde
to exclude the effect of the substrate in the case of coat
which may falsify the results~e.g., singularities on the sub
strate surface may initiate a ‘‘subcritical’’ crack to grow! the
length of the cracks should be much less than the thickn
of the film.127 This condition is difficult to meet even fo
10–20-mm-thick coatings.

Our attempt to measure the critical stress intensity fac
on the superhardnc-TiN/a-Si4N4 and ultrahardnc-TiN/
a-Si3N4 /a- andnc-TiSi2 coatings was so far not successf
because radial cracks were not found even at very high lo
of 1000 mN applied to 3.5mm thin films, where the coatings
were pressed 5mm into the soft steel substrate~see Fig. 3
and Refs. 6 and 47!. Since the compressive stress in the
coatings of<1 GPa is fairly low, the possibility of falsifica-
tion of the measurements due to a high compressive resi
stress can be ruled out.

On the basis of available data the absence of radial cra
after the indentation is due most probably to a high str
threshold for crack initiation because of the extremely sm
size and low concentration of possible flaws in the nanoco

n
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posites which is the result of the ‘‘self-organization’’ of the
nanostructure during the deposition, phase segregation
spinodal decomposition39 as outlined in the Introduction
Considering Eq.~18! for a micro- ~crystallite sized>1000
nm! and nanocrystalline (d,10 nm) materials of the sam
composition it is obvious that a more than ten-times lar
applied stress will be needed to propagate cracks in the n
composite than in the microcrystalline material even if bo
would have the same stress intensity factor. The very h
resistance of the superhard nanocomposites against c
formation can be understood in a simple and natural w
From the practical point of view, the absence of the crack
encouraging property of the super- and ultrahard nanoc
posites applied to ductile substrates.

III. FURTHER CONSIDERATIONS AND OUTLOOK

The ideas outlined in this article provide a simple ba
for the overall understanding of the unusual combination
the mechanical properties of the nanocomposites wh
should be elaborated in more quantitative models accoun
also for further effects which we have neglected so
Among these, random strain which arises due to mismatc
thermal expansion of the different phases as well as to t
lattice mismatch and random orientation of the nanocry
should be considered. Such effects are believed to play
important role in toughening of cemented carbide128 as well
as in modern ceramics, such as SiC reinforced Al2O3 matrix
composites where few vol.% of nanocrystalline SiC sign
cantly increase the strength and, possibly, a
toughness.102,129,130However, in spite of more than ten yea
research, the mechanism of strengthening in the SiC r
forced Al2O3 ceramics is still under debate and by far n
fully understood. Recently, Derby suggested, that the
served improvement of the mechanical properties of this
terial may be a simple consequence of a lower density
flaws present in that material after its processing.103

The latter suggestion is worth considering as a poss
explanation of the high hardness and apparent toughnes
our superhard nanocomposites. The experimentally do
mented finding that thenc-TiN/a-Si3N4 nanocomposites do
not show any recrystallization or other kind of structural
laxation upon annealing to a temperature exceeding ha
the decomposition point of Si3N4 and TiN, i.e., much higher
than the deposition temperature of 550 °C13–16,38,47,49sug-
gests that these nanocomposites may be fairly free of fla
Furthermore, the development of the morphology from
columnar for pure transition metal nitrides~TiN, W2N! to-
wards a dense, isotropic one of the self-organiz
nc-MnN/a-Si3N4 nanocomposites with the optimum
composition15 also indicates, that there is some chemis
operating in these systems which stabilizes their nanost
ture and makes it fairly free of flaws. A similar sel
organization was also observed for some other super
nanocomposites~see Ref. 6 and references therein!. This is
further supported by the recent results which show that s
coatings prepared by combined reactive sputtering
plasma CVD as well as thenc-(Ti12xAl x)N/a-Si3N4 nano-
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composites deposited by means of vacuum
evaporation37,38,105under conditions which do not allow to
achieve the development of the optimum nanostructure s
an increase of the hardness upon annealing due to struc
relaxation which is observable by XRD.131

So far, we have discussed binary systems, such
nc-TiN/a-Si3N4 . Obviously, the presence of a third~e.g.,
a-TiSi2! and fourth (nc-TiSi2) phase which introduce ran
dom microstrain due to thermal dilatation and incoheren
lattice mismatch may further increase the strength, hardn
and possibly toughess of such ternary and quaternary n
composites. The ultrahardness ofHV>80 GPa innc-TiN/
a-Si3N4 /a-TiSi2 andHV>100 GPa innc-TiN/a-Si3N4 /a-
andnc-TiSi2 is probably associated with these effects. Ho
ever, in view of the complexity of these systems and
associated problems regarding the possible contribution
the different potentially ‘‘hardening’’ and ‘‘toughening’
mechanisms~see, e.g., Refs. 102, 103, 129, and 130! any
attempt to elaborate these ideas in more detail would be
this stage, too speculative. Most probably, various mec
nisms of strengthening and possibly also toughening are
tive simultaneously which results in a multiplication o
strengthening and toughening effects.102 All these observa-
tions represent a challenge for first principle theoretical st
ies.

IV. CONCLUSIONS

It was shown that the unusual combination of the m
chanical properties of the superhard and thermally surp
ingly stable nanocomposites can be understood in term
conventional fracture physics and mechanics scaled dow
the size of the crystallites of a few nanometers which
glued together by a few tenths of nanometer thin amorph
layer with a high adherence to the surface of the crystalli
In such a nanostructure the dislocation activity is absent
the stress concentration factor on the tip of a 1–2 nm sm
nanocrack is very small. Consequently, the superhardnes
>40 GPa which exceeds that of the rule of mixtures resu
The high resistance of the nanocomposites against crack
mation upon a very high indentation load and strain exce
ing 10% is a simple consequence of the small stress con
tration factor and a low concentration of flaws in these se
organized nanocomposites which are formed due to spin
decomposition. The very high values of elastic modu
measured by the indentation on such films with hardn
exceeding 50 GPa is most probably due to a very high p
sure within the region under the indenter. Several open pr
lems are addressed and the way towards their solution br
discussed.

Note Added in Proof: Recently we have shown that als
for the systemnc-TiN/a-BN the maximum hardness is ob
tained at the percolation threshold when the surface of
TiN nanocrystals is covered by about one monolayer
amorphous boron nitride.132 We could also show that the
super- and ultrahard nanocomposite can sustain a large
sile stress of 10 to 40 GPa, i.e., their tensile strength reac
a significant fraction of the ideal decohesion strength.134,135
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Such a high tensile strength was reported only for thin wh
kers and freshly drawn silica fibers2 but our nanocomposite
display a much larger reversible~elastic! strain.135
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