TECHNISCHE UNIVERSITAT MUNCHEN
Lehrstuhl fiir Entwurfsautomatisierung

Hierarchical Statistical Static Timing Analysis
Considering Process Variations

Bing Li

Vollstandiger Abdruck der von der Fakultdt fiir Elektrotechnik und Informations-
technik der Technischen Universitdt Miinchen zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Jorg Eberspéacher
Priifer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Ulf Schlichtmann
2. Univ.-Prof. Dr. sc. Samarjit Chakraborty

Die Dissertation wurde am 27.01.2010 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultdt fiir Elektrotechnik und Informationstechnik
am 15.07.2010 angenommen.

Acknowledgments

This thesis is the result of my working at the Institute for Electronic Design Automa-
tion, Technische Universitdt Miinchen as a research and teaching assistant.

First of all, I thank Professor Ulf Schlichtmann for admitting me to his research
group. He has patiently guided me to enter the research field of statistical timing
analysis and given me constructive advices on my specific topics since the begin-
ning. He carefully reviewed all my papers and his insightful suggestions helped
me not only improve my academic writing but also form a professional research
style. Additionally, he also spent much time to help me overcome all other prob-
lems during my PhD studying. Moreover, I thank him for giving me the chance to
establish the VLSI design lab. For me this is a precious experience in teaching and
communication with students.

Many thanks are due to the committee members Professor Samarjit Chakraborty
and Professor Jorg Eberspécher for their interest in my thesis.

From PD Dr. Helmut Grdb I gained much after each of our talks. I thank him for
his generous help and advices. I thank Walter Schneider and Dr. Manuel Schmidt
for our fruitful discussions. I give my thanks to Ning Chen for the numerous talks
and the collaboration in writing papers. Christoph Knoth gave me lots of help in
writing; Xin Pan gave me invaluable suggestions as I prepared my presentations;
Qingqing Chen worked with me in teaching the VLSI design lab and took over it
finally. I am grateful to all of them. I thank all the other PhD students in the institute
for maintaining such a creative atmosphere, which is important for me to finish my
thesis.

Since I joined the institute, Dr. Bernd Finkbein, Hans Ranke, Werner Tolle, Jiirgen
Zenz, Susanne Werner and Gertraude Kallweit have given me all sorts of support
and I thank them gratefully.

Last but not the least, I give my deepest gratitude to my wife Xue Zhao. Without
her patient support and encouragement I could not finish this thesis.

Munich, January 2010

Bing Li

Contents

1 Introduction
1.1 Challengesin SoC Design
1.2 Contributions of ThisWork
1.3 Organization of This Dissertation
14 Summary

2 Static Timing Analysis
2.1 Sequential Circuits and Timing Graphs
2.2 Timing of Flip-flop Based Circuits
2.3 Timing of Latch Based Circuits
2.4 Static Timing Analysis of Combinational Circuits
2.5 Static Timing Analysis of Flip-flop Based Circuits
2.6 Static Timing Analysis of Latch Based Circuits
27 Summary

3 Problem Description
3.1 Variations
3.1.1 Sourcesof Variations o L.
3.1.2 Decomposition of Process Variations
3.1.3 Correlation Modeling
3.14 Process Variation Handling
3.2 Statistical Timing Analysis,
3.2.1 Process Parameter Modeling
3.2.2 Gate Delay Representation
3.2.3 Statistical Timing Analysis of Combinational Circuits
3.24 Statistical Timing Analysis of Sequential Circuits
3.3 Timing Model Extraction for Static Timing Analysis
3.3.1 Static Timing Model for Combinational Circuits
3.3.2 Static Timing Model for Sequential Circuits
3.3.3 Timing Verification with Static Timing Models
3.4 Hierarchical Statistical Timing Analysis
3.4.1 State of the Art in Statistical Timing Model Extraction
3.4.2 State of the Art in Hierarchical Statistical Timing Analysis . . .
35 Summary

g O W -

©

4 Statistical Timing Model Extraction 57

4.1 Timing Model Extraction for Combinational Circuits 57
41.1 Concept of Noncritical Edge Removal for Static Timing Analysis 58

4.1.2 Noncritical Edge Removal in Statistical Timing Analysis 60

41.3 Timing Model Extraction with Noncritical Edge Removal ... 63

4.2 Timing Model Extraction for Flip-flop Based Circuits 65
4.3 Timing Model Extraction for Latch Based Circuits 68
43.1 Timing Specification with Inputs for Latch Based Circuits . . . 69

4.3.2 Timing Constraint Restructuring for Latch Based Circuits . . . 70

43.3 Path Traversal and Clock Scheme 73

43.4 Timing Constraint Extraction from Enabling Clock Edges . .. 75

4.3.5 Timing Constraint Extraction from Inputs 78

43.6 Nonpositive Loop Constraint Extraction 79

4.3.7 Summary of Timing Model Extraction for Latch Based Circuits 80

44 Summary 81

5 Correlation Handling in Hierarchical Statistical Timing Analysis 83
5.1 Correlation Handling with Variable Substitution 84
52 DiscusSion e 86
53 Summary 88

6 Experimental Results 89
6.1 ExperimentSetup 89
6.2 Results of Timing Models for Combinational Circuits 92
6.3 Results of Timing Models for Sequential Circuits 97
6.4 Results of Hierarchical Statistical Timing Analysis 100
6.5 Summary 102

7 Conclusion 103
Bibliography 107

Abstract in German 115

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

51

6.1
6.2

System on Chip Example [KCJT00]o 4
Sequential Circuit Structure 10
Example of Reduced Timing Graph 11
c17 Benchmark and Timing Graph 11
Local Time Zone and Clock Phase Shift 14
Relative Variation Increase, data from [NasO1] 24
Variation Classification [BCSS08] 26
Quadtree Correlation Model [ABZ1T03b,ABZ03a] 28
Uniform Grid Correlation Model [CS03] 29
Graphic Representation of Yield Computation 30
Correlation Example in Statistical Arrival Time Propagation 36
Basic Merge Operations [KM97, MKBO2] 44
Example of Basic Merge Operations 45
Butterfly-a Transformation [KM97] 45
Correlation BetweenModules 54
Example of Noncritical Edge Removal 59
Path Partition according toan Edge 62
Loop Example in Reduced Timing Graph 71
Reduced Timing Graph Example with Feedback Edge Removal 74
Heterogeneous Grid 84
Criticality Distributions of ISCAS85 Benchmarks 94
Layout of the Hierarchical Circuit 100

I

List of Tables

2.1
2.2
2.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Notation Definition for Timing Analysis
Arrival Time Propagationof c17
Arrival Time Propagation from 73 in ¢17 Timing Graph

ISCAS85 Benchmarks
ISCAS89 Benchmarks
Results of Black-Box Timing Models for Combinational Circuits
Accuracy of Statistical Criticality Computation, . =005
Results of Gray-Box Timing Models for Combinational Circuits
Results of Timing Model Extraction for Flip-flop Based Circuits
Results of Timing Model Extraction for Latch Based Circuits
Results of Hierarchical Statistical Timing Analysis

List of Algorithms

NN O U W N -

Maximum Delay Computation from All Inputs 16
Maximum Delay Computation from Primary Inputn, 18
Timing Analysis of Flip-flop Based Circuits 20
Minimum Clock Period of Latch Based Circuits 20
Minimum Clock Period with Constraint Relaxation 21
Critical Edge Identification in Static Timing Analysis 60
Statistical Model Extraction for Combinational Circuits 64

VII

Chapter 1

Introduction

With ubiquitous presence, Integrated Circuits (IC) have become an essential part
of life and economy. As a fundamental implementation method, IC design as well
as manufacturing has affected most industry branches and has been involved in
nearly every innovation of the present era. Meanwhile, IC design methodology
and manufacturing technology are compelled to innovate themselves to meet the
increasing technical and economic requirements of the rapidly advancing industry.

In the past 40 years, the IC industry has met the requirements from different appli-
cation areas by keeping the pace of device scaling of Moore’s law [Moo65, Moo03].
With smaller devices, more functions are integrated into a chip without increasing
the die size. This integration enables the trend of System-on-Chip (SoC) design,
where a chip provides the functionality of a complete system. For example, such in-
tegration happens continuously in the field of consumer electronics [Lee05], where
more and more functions are integrated in each new product generation. With more
devices in a chip, design complexity of an SoC chip increases drastically. Facing
the pressure of more Non-Recurring Engineering (NRE) expenses and shorter time
to market, new design methodologies, such as Electronic System Level (ESL) de-
sign and Intellectual Property (IP) integration, are considered as the keys to solve
design issues in managing the exploding number of transistors and functions in a
design [CK08, MP03, Hen03].

The Electronic Design Automation (EDA) companies assume the role to provide
methodologies and tools for IC design and verification. With these commercial tools,
different design flows for digital circuits are constructed. These design flows share
some common steps: circuit descriptions in Hardware Design Language (HDL) are
translated into netlists at synthesis step; logic gates included in the netlists are dis-
tributed on the die at layout step and interconnects between them are routed there-
after; before sign-off, designs are verified against functionality, timing and power
specifications.

1 Introduction

Standing at the center of these design flows, a widely used development model is
data abstraction. From high level abstraction, e.g., ESL, to low level parasitic extrac-
tion, details are considered gradually in the design flow. In this way, tasks of design
and verification become manageable at each step. Consequently, this abstraction re-
duces the complexity not only for designers but also for design flow engineers. As
examples of such abstraction, preverified modules are considered as black boxes in
the SoC design flow; geometries instead of internal transistor structures of digital
gates are used during the layout step.

At the boundary between design and manufacturing, similar data abstraction hap-
pens to hide manufacturing details from designers. These manufacturing details are
abstracted into design rules, which should be abided by designers and checked by
EDA tools before sign-off. For example, at the manufacturing side process variations
exist since the beginning IC industry because of the inaccuracy of process control
in foundries. Consequently, parameters of transistors on a chip after manufacturing
deviate from design values or nominal values. To isolate such variations from de-
sign engineers, worst-case values of transistor parameters are used to create delay
models of gates. By evaluating the performance of a circuit using worst-case delay
models, IC chips after manufacturing are guaranteed to work properly.

As the transistor feature size enters the deep submicron realm, process variations
become more significant [Nas01]. The reason of such aggravation is that the scal-
ing of accuracy control of manufacturing dose not match the scaling of transistors
during the evolution of technology generations. Therefore, the relative variation,
e.g., the ratio of standard deviation to the nominal value of a parameter, becomes
much larger than before [Nas01]. With this variation increase, traditional worst-case
analysis methodology faces new challenges.

Although it successfully served the IC industry for many years, the worst-case analy-
sis flow is too pessimistic when process variations become large. In this design flow,
gate delays are calibrated by setting all process parameters to worst-case values.
Circuit performance is evaluated using these worst-case gate delays, and therefore
may be overly underestimated. This pessimism drives engineers to further optimize
designs which may have met timing specifications but are incorrectly reported as
violating timing constraints by the worst-case analysis method. This type of overde-
sign increases design cost drastically because it consumes much more resources to
boost circuit performance in further design iterations. Additionally, the time-to-
market window of the product may be missed because of such pessimistic design
evaluation.

As a promising new methodology, statistical static timing analysis (SSTA, or statis-
tical timing analysis for simplicity) emerges. In this method, process variations are
modeled as random variables directly. Consequently, the performance of a circuit
becomes a distribution, from which timing and yield information can be evaluated

1.1 Challenges in SoC Design

by engineers. By avoiding modeling gate delays to worst case, the pessimism in
traditional timing analysis is reduced. Because many steps in digital IC design flow
depend on the results of timing analysis, the new analysis methodology demands a
thorough renovation both during design and during manufacturing.

1.1 Challenges in SoC Design

The rapidly evolving semiconductor industry enables integration of more functions
onto one die after each advance of its technology node. With all processing and in-
terfacing units integrated, functions which were traditionally fulfilled by a complete
system can now be achieved by only one chip.

The emergence and prevalence of SoC designs are driven by the customer market.
Drastic competition requires the integration of more functions into one chip in each
new product generation. From the side of system integration companies the size of
the printed circuit board and further the complete bill of materials can be reduced
with SoC chips. From technology side, system performance, e.g., clock frequency,
can be improved because off-chip interconnects between functional modules are
moved into one die. Additionally, overall power consumption can also be reduced
by this integration because the components inside an SoC chip consume less power
than their discrete counterparts.

An example of SoC design [KCJ"00] is illustrated in Figure 1.1. This chip integrates
typical functions for customer market. The programmable processor fulfills general
control functions. To accelerate processing of specific data, e.g., audio and video,
corresponding hardware cores are integrated. These processing units are connected
through peripheral buses and interfacing logic to the outside environment. With
such bus structure, more functions can be easily added into an existing design.

As shown in Figure 1.1, SoC designs exhibit differences from traditional IC designs.
With more functions integrated into one chip, the number of components in an SoC
chip increases fast. In order to add a new function, both the processing unit and the
interfacing logic should be integrated. Furthermore, the new components need to
exchange data with other components inside the chip. While keeping the efficiency
and performance, the increase of components makes the design and implementation
of the communication logic, e.g., crossbar, more complex and resource-consuming.
Another difference between SoC and traditional IC designs is heterogeneity. Unlike
traditional IC designs, whose modules are nearly all implemented in-house, the
design of an SoC chip is far beyond the boundary of traditionally defined design
groups because of system complexity.

With higher integration, challenges arise for SoC designs [BS99]. The first challenge
is the pressure of time to market. In these days, commercial electronics market

1 Introduction

ROM || video I/F
- [RAM Audio

Flash | [[| CODEC

System Bus -
|Appl Logic| | [BusI/F| | | MPEG

Decode
Mem Ctrl }— PLL
Glue Logic pcr | W DsP

Test | |EIDE USB

10 base-T

Peripheral Bus

Figure 1.1: System on Chip Example [KCJ00]

evolves much faster than before. Each product springs into the market in a hurry
and fades away with the flood of the next generation of successors quickly. In each
product generation, new functions integrated into the SoC chip increase the design
complexity. Consequently, designers face the challenge to finish a more complex
design in shorter time.

The second challenge is from the system heterogeneity. In order to gain competi-
tive advantages, designers must try hard to integrate more functions in every new
product. This integration reforms the definition of traditional end products for con-
sumers so that new market demands are stimulated to keep continuous interest.
An example of such integration is the cell phone market. Compared to 1990s, cam-
era, audio and video processing units have already become necessary parts of a
mobile phone. Instead of being completely designed by a company, new function
components are normally obtained from different sources. Because they lack the
knowledge of specific applications, designers face the new challenge of integrating
these heterogeneous components and verifying the interactions between them.

The third challenge is the design flow innovation. The traditional digital design
flow is successful for in-house designs. Each module is designed using a high level
description language and synthesized into netlist. The layout and routing of the
complete design are run using a flat netlist. So is the verification of performances,
e.g., timing and power. With the evolution of SoC designs, the number of transistors
increases drastically [Cla06]. In this case, the capacity of existing EDA tools faces
strong challenges if the traditional flat design flow is still maintained.

With time-to-market pressure and more complex SoC designs, it is not feasible any
more to design and implement each SoC chip completely from scratch. According
to the customer market, the demand of a complete new SoC chip is rare, i.e., SoC
designs are normally incremental in the timeline. For example, when camera, audio

1.1 Challenges in SoC Design

and video processing units are added to an SoC for a cell phone, the basic func-
tion blocks for communication need not to be redesigned completely. This indicates
that the solution for the dilemma between time-to-market pressure and design com-
plexity of SoC chips is design reuse. In the traditional flow, the complete design is
partitioned into small blocks and implemented separately. In the SoC scenario, once
a subfunction module is implemented, it is used in future designs without or with
incremental revision. This design reuse can be in the scope of design teams and IC
companies, where the reused components are called macros or cores.

A more general ecosystem of SoC design is in the scope of the complete IC indus-
try, where preverified components are sold for revenue. Moreover, some companies
take the role of supplying SoC design components exclusively as their main busi-
ness. These reusable components are called Intellectual Property (IP). Examples of
IP companies are ARM, MIPS etc., from which general purpose processor cores are
supplied for integration. Compared to the evolution of design methodology from
full custom design to standard cell design, the design flow with preverified compo-
nents continues the upward shift of abstraction [Cla06]. As the size of SoC designs
continues to increase, higher level abstraction becomes the only way to divide and
conquer the exploding design complexity.

Typical IP components are available in three types: hard, soft, and firm [BS99]. In
hard cores, the layout and routing of the IP cores are all defined. By this way, the
problem of nonoptimal layout and routing can be avoided to guarantee predictable
performance. Examples of hard cores are memory blocks for their regularity, ADC
and DAC for predictable performance such as bandwidth and signal integrity. With
layout and routing defined, hard cores impose restrictions on application context,
e.g., the number of meta layers. Because of such constraints, hard cores lose flexi-
bility in application partially. In order to overcome the limitation of hard cores, soft
cores are provided with synthesizable netlists. They can be integrated seamlessly
into the standard IC design flow as a normal module and adapted to different design
context easily. Compared to hard cores, the performance of the soft cores heavily
depends on SoC designers, who perform the flow from logic to physical synthe-
sis to translate the provided netlists to real circuits. Between hard and soft cores,
firm cores are available with floorplanning or placement but routing information, as
trade-off between predictable performance and flexibility.

Facing the challenge to integrate heterogeneous IP cores into SoC designs, tradi-
tional design flows should become IP-aware. At first, the design flow should allow
the use of system-level functional models for hard cores. These models provide the
same behaviors of hard cores with high level description languages, e.g., SystemVer-
ilog [IEE07] and SystemC [IEE05]. With these models, interactions between IP cores
and in-house designed blocks can be verified during an early design stage.

In addition to functional verification, the performance of a SoC design should also be

1 Introduction

verified in module based style, or hierarchically. As an example, timing of the SoC
design determines if the chip can work properly at a given clock period. If the timing
constraints of a block are violated, the function of this block becomes unpredictable.
At standard cell level, timing constraints include setup and hold time of flip-flop
and latches. At module level, the constraints of flip-flops and latches inside hard
cores are abstracted. For most of such flip-flops and latches, their timing constraints
are guaranteed by the layout and routing of the hard cores themselves. Therefore,
only the timing constraints at their interfaces should be verified. These constraints
together form the timing models of the modules or IP blocks, and are commonly
provided accompanying with functional models by IP vendors.

At system level, the design flow should have the ability to use the provided timing
models to verify the performance of the complete system instead of using the hard
cores directly. Using the latter for timing verification may be impossible because IP
vendors may be reluctant to provide the details of the hard cores for the reason of
IP protection. Even if the design details of IP cores are provided, directly verifying
the complete system is infeasible, or at least not economic, because of runtime.

Another characteristic the SoC design flow should have is the ability of incremental
design and verification. During design iterations, small revisions should be verified
locally instead of invoking the verification of the complete design, for the sake of
design time reduction and IP evaluation. With functional and timing information
contained in abstracted models, a module based SoC design flow, or hierarchical
SoC flow, can effectively reduce the time of design iterations, therefore accelerate
the complete system development.

1.2 Contributions of This Work

Facing increasing process variations, statistical timing analysis is introduced into
the EDA industry to remove innate pessimism in traditional worst-case analysis.
Because the results of timing analysis are used by many steps in a digital design
tlow, the adoption of this new emerging and fast evolving methodology demands a
thorough investigation of individual methodology steps.

In this thesis, statistical timing analysis methodology is investigated in the context
of hierarchical verification, i.e., hierarchical statistical timing analysis. In the first
step of such a flow, timing models for submodules are extracted by IP vendors or
design teams. When variations are considered, the statistical representation of gate
delays makes timing model extraction methods for static timing analysis infeasible.
As a solution, this thesis proposes a criticality based method to remove noncritical
edges from combinational circuits. This removal not only reduces the size of the

1.3 Organization of This Dissertation

timing model directly, but also increases the chance to apply the basic merge oper-
ations inherited from static timing model extraction. For flip-flop based circuits, the
classical extracted timing model [ALS'02] is extended to incorporate variations into
a standard flow of statistical timing analysis. For latch based circuits, the limita-
tion of transparency assumption in static timing models is overcome in the compact
timing models proposed in this thesis. With such new statistical timing models,
timing verification of a hierarchical design can be accelerated by several orders of
magnitude.

After modules are integrated into a hierarchical design, correlation between these
modules becomes a new problem in hierarchical statistical timing analysis. In con-
trast to the assumption of full correlation between delays in static timing analysis,
delays from modules have correlation determined by relative layout of gates. Only
knowing the layout of gates inside a module, a timing model can only contain cor-
relation information inside the module. For timing analysis of the complete design,
this thesis proposes a method to substitute independent variables in modules by the
ones for the complete hierarchical design. The correlation between modules after
instantiation is represented by sharing the same set of random variables, therefore
the accuracy of timing analysis is maintained.

From the work of this thesis, preliminary results are published in [LKS™08,LCS"(09b,
LCS09a]. In [LKST08] the basic idea of noncritical delay edge removal is investigated
in the context of static timing analysis. This idea is extended in [LCST09b] to identify
noncritical gate delays by computing criticalities of them. The challenge to apply
the proposed timing models is also investigated in [LCST09b], where the variable
substitution method for the timing analysis of the complete design is proposed.
For flip-flop and latch based circuits, the method in [LCS09a] extracts the statistical
interfacing constraints of a module. The minimum clock period of such a module is
compressed into one random variable in the timing model. Therefore the runtime
of hierarchical analysis can be remarkably reduced. The methods described above
together form a complete solution for hierarchical statistical timing analysis.

1.3 Organization of This Dissertation

The structure of this thesis is as follows. The fundamentals of static timing analysis
are introduced in Section 2. Process variations, existing statistical timing analysis
methods, timing model extraction methods for static timing analysis, and state of
the art in hierarchical statistical timing analysis are described in Section 3. With
standard statistical timing methods as engine, timing model extraction for combi-
national, flip-flop based and latch based circuits are explained in Section 4. The
variable substitution method handling correlation between modules is described in

1 Introduction

Section 5. Thereafter, experimental results are shown in Section 6. In the end, this
thesis is concluded in Section 7.

1.4 Summary

The complexity of integrated circuits increases drastically as more functions are
merged into one chip. In order to handle such design complexity, hierarchical design
flows are adopted. Modules are implemented and verified separately; SoC designs
are created from modules with abstract models to reduce the runtime of verification.
As the IC manufacturing technology scales further, process variations become rela-
tively large and therefore cause the traditional worst-case design methodology to be
too pessimistic. As a solution, statistical timing analysis is introduced to evaluate the
timing performance of a circuit more accurately. The problems of applying such a
statistical analysis method in hierarchical design flows are investigated in this thesis.
Fast and accurate methods are proposed to extract statistical timing models for dif-
ferent types of circuits and to apply these timing models in a statistical hierarchical
design framework.

Chapter 2

Static Timing Analysis

In the previous section, an SoC design is described as a combination of subsystems
and submodules. Viewing from the aspect of circuit structure, sequential circuit
assumes overwhelming dominance in implementing submodules. In this section,
the basics of sequential circuits, with focus on timing characteristics, are reviewed.

2.1 Sequential Circuits and Timing Graphs

The typical structure of a digital circuit is shown in Figure 2.1. The input combina-
tional logic generates the data for the registers and the output logic for the primary
outputs. The outputs of registers are connected back to the input logic, forming
combinational paths between registers. The registers store the data at their inputs
when the triggering signal, called clock, is valid.

Based on when the data are stored, registers can be classified into two types: flip-
flops and latches. A flip-flop transfers the data at its input to its output only when
the predefined clock edge appears. On the contrary, a latch transfers the data when
the clock is active, high or low according to the type of the latch. Therefore, a flip-
flop is normally called edge-triggered and a latch level-triggered. Without losing
generality, all flip-flops are assumed to be triggered at the rising clock edge, and all
latches when the clock signal is high, in the rest of this thesis. After the clock signal
of a latch switches to inactive, the data at its input does not affect the output value.
That is, the data is locked into the latch at the falling clock edge, called latching edge.
After the clock signal of a latch switches to active, the data at its input can start to
propagate instantly. This edge is therefore named as enabling edge. Similarly, the
latching edge of a flip-flop is defined as the rising edge of the clock signal. The
enabling edge of a flip-flop is the same as its latching edge, because its input data
can be transferred to its output only at the active clock edge.

2 Static Timing Analysis

—/ Output
— Registers Logic

Inputs — Input

Logic

Outputs

Tclock

Figure 2.1: Sequential Circuit Structure

In order to lock the data correctly, a register has special requirements to the data at
its input. Assuming the latching clock edge is at time t,, the data at the input of the
register should be stable between (¢, — s;) and (t, + h;), where s; is called setup time
and h; hold time, for register i. During this time range, any data change at the input
of the register may cause it to enter metastability state with a certain probability
[Cad04]. In this state the output of the register stays between 0 and 1. This is
considered to be a circuit failure. A hold time constraint violation happens when
the signal from a register propagates to the next stage too fast. It can be corrected
easily, e.g., by delay insertion and padding [SBSV93]. On the contrary, setup time
constraints determine the maximum clock frequency and should be checked when
verifying a circuit against different clock frequencies. In the following, only setup
time constraints will be discussed for simplicity.

The setup time constraints are for individual registers. Additionally, multi-cycle
paths [ADM92, YC06] are also specified as timing constraints. Such a path allows a
signal from the output of a register to reach the input of the next register in more
than one clock cycle without affecting the correct function of the circuit. When
designing digital circuits, multi-cycle paths are normally not specified by design
engineers in hardware programming language, but by system engineers when ver-
ifying the timing of the circuit [Syn09]. This makes multi-cycle path information
hard to be integrated into the design flow. Therefore they are often ignored in prac-
tice. Without specifying multi-cycle paths, timing tools normally consider all paths
between registers as one clock cycle path [Syn09]. This assumption is very conser-
vative but guarantees that the final chip can function properly. In the rest of this
thesis, multi-cycle paths will not be discussed. The proposed methods, however,
can be easily extended to include such information.

For convenience to explain timing specifications of sequential circuits, a reduced tim-
ing graph [ZTCT06] is used, with an example illustrated in Figure 2.2. In a reduced
timing graph, a node represents a register, a primary input of the circuit, or a pri-
mary output. An edge represents the maximum delay between a pair of nodes,
while only setup time constraints are considered. A reduced timing graph simplifies
the corresponding sequential circuit by representing the combinational components

10

2.1 Sequential Circuits and Timing Graphs

o N

Figure 2.2: Example of Reduced Timing Graph

between nodes directly with delay edges. To compute these delays, combinational
circuits between registers should be traversed. For such type of circuits, a timing
graph is used to represent its structural timing properties. Figure 2.3 shows an ex-
ample of the timing graph of the circuit ¢17 from ISCAS85 benchmarks. A node in
a timing graph corresponds to a pin of a gate if interconnects are considered. Oth-
erwise, a node corresponds to a net in the circuit, e.g., in Figure 2.3. Additionally,
primary inputs and outputs are also represented by nodes. An edge represents the
delay Wi; between two nodes in the timing graph. In the following, primary inputs
and outputs of a circuit will be called only inputs and outputs if no ambiguity is
caused.

Notations concerning timing characteristics of circuit components, timing graph,
and reduced timing graph are listed in Table 2.1. A;; and Wj; both represent delays.
The difference is that A;; is the maximum delay of combinational paths between two
nodes; Wij, however, is the delay of a combinational component, e.g., the pin-to-pin
delay of a gate or the delay of an interconnect; additionally, W;; represents the delay
of a single combinational path. These notations will be used in the rest of this thesis
to explain timing analysis of flip-flop based and latch based circuits as well as timing
model extraction.

— 1 7 10
6
Dﬂ@fg
13
|4 11
(a) (b)

Figure 2.3: c17 Benchmark and Timing Graph

11

2 Static Timing Analysis

;i setup time of register i
gi: propagation delay of register i
Wij: delay between nodes i and j in timing graph
Ajj: maximum delay of combinational paths between i and j
Ajj: latest arrival time from node i to node j
Aj: latest arrival time to j from all its fanin nodes
D;: latest departure time at latch i
P;: set of all fanin registers of i in timing graph or reduced timing graph
@: set of all registers in timing graph or reduced timing graph
¢: set of register pairs with combinational paths in the reduced timing graph
T: clock period
ten: time of the nth latching clock edge
riv time of the enabling clock edge of latch 7 in local time zone
gij: clock phase shift of latch i and j
mjj: delay shift

Table 2.1: Notation Definition for Timing Analysis
2.2 Timing of Flip-flop Based Circuits

Because of the simplicity of their design and verification, flip-flop based circuits are
the most popular circuit type used in industry. The simplicity comes from the fact
that a large circuit is split into small units by flip-flops. The output of each unit is
used only at the latching clock edge.

Right after the nth active clock edge, a signal starts to propagate to the output of a
flip-flop i and further to the input of flip-flop j at the next stage. The latest time that
this signal reaches j is ., + q; + A;j. The data change at the input of j must meet its
setup time constraint, so that

Ajj =ten + i + Dij < tepr1 — S (2.1)

For flip-flop j, there is normally more than one fanin node in the reduced timing
graph. After a latching clock edge, data signals propagate from all these fanin nodes
to j. Each arrival time must meet the setup constraint described in (2.1). Conse-
quently, the maximum of these arrival times should meet the setup time constraint
of j, ie.,

r_nax{Aij} = r_nax{tc,n +q; + Ai]'} <tent1— §j (2.2)
1€y; 1€y;
ten + IZ%?PX{% +Ajj} + 8 S teny1 = (2.3)
j
%%X{qi + Ai]'} +) <tens1—ten=T (2.4)
j

12

2.3 Timing of Latch Based Circuits

where ¢; is the set of all fanin nodes of j in the reduced timing graph. Clock skew
is not considered in (2.4) for simplicity. The constraint (2.4) should be met at all
flip-flops in the circuit. With ¢ defined as the set of all flip-flops, the setup time
constraint for the circuit is

max{max{q; + Aj} +s;} <T (2.5)
j€g i€y

The constraint (2.5) defines that the arrival time from any flip-flop node in the re-
duced timing graph to each of its sink nodes should meet the setup time constraint.
With ¢ defined as the set of flip-flop pairs between each of which there is at least a
combinational path, the constraint (2.5) is written as

max {ql + Ai]' + S]} <T (2.6)
(ij)ed

where (i, j) denotes the flip-flop pair between node i and j.

2.3 Timing of Latch Based Circuits

Because arrival times can propagate through latches, timing analysis of latch based
circuits is more complex than that of flip-flop based circuits. When a data signal
reaches the input of a latch during the active period of its clock, this signal can
propagate through the latch instantly. This property is called latch transparency.
With such property, the delay of a combinational path in a latch based circuit can be
larger than the clock period [MS99]. This is different from the property of flip-flop
based circuits, where any path delay between flip-flop pairs must be smaller than
the clock period.

As for flip-flop based circuits, similar notations defined in Table 2.1 are used for latch
based circuits. At each latch, the arrival time must meet the setup time constraint.
The arrival time from a latch can start to propagate at any time when the clock signal
is active, therefore, causes dependency between arrival times of latch stages. This is
the source of the complexity of timing analysis for latch based circuits, and will be
formulated in following.

To evaluate the timing performance of a latch based circuit, the complete timing
constraints allowing multiphase clocks are specified in [SMO90b]. In this section,
a short review of these timing constraints will be given. These constraints will be
restructured to deduce the constraint set used for timing model extraction.

In timing analysis for latch based circuits, all arrival times are represented in the
local time zone [MS99], i.e., relative to the starting time of the local time zone. In this

13

2 Static Timing Analysis

enabling edge latching edge

N /

<— passive —»=— active —»

0 £} T

it e

j

0 T T

Figure 2.4: Local Time Zone and Clock Phase Shift

thesis, the active clock level of latches is 1, and the starting time of each local time
zone is the time when the clock signal switches from 1 to 0. For two latches i and
j, where i is a fanin of j, their clock phases are illustrated in Figure 2.4, where ¢;; is
the phase shift of the two clock phases, and will be used to transform an arrival time
from the local time zone of i to the local time zone of j.

Unlike at a flip-flop, where a data signal starts to propagate right after the latching
clock edge, the time that a data signal at a latch starts to propagate to the next stage
can be at any time when the clock is active. This time is called departure time and
denoted as D;. Similar to arrival time, D; is also defined in the local time zone of
latch i, i.e., it uses the origin of the local time zone as reference time 0. If only the
signal propagation from i to j is considered, the latest arrival time A;; is computed
as

Aij =D;+ q; + Al']' —&jj = D; + mij (2.7)

where —¢;; transforms A;; to the local time zone of j. m;; is the delay shift from i to j.
Considering all fanin latches i of j, the arrival time A; can be computed as

A]' = max{D; + WZZ]} (2.8)
icp:

The enabling clock edge of latch i is denoted as r;, also in the local time zone, as
shown in Figure 2.4. Because a data signal can start to propagate to the next latch
stage only after the enabling clock edge, the latest departure time of i can be written
as

Di = max{Ai, 7’1'} (29)

By substituting D; in (2.8) with max{A;,r;}, the departure time can be eliminated
from (2.8),

A; = max{max{A;,r;} +m;} (2.10)
iEl/J]'

14

2.4 Static Timing Analysis of Combinational Circuits

The setup timing constraint for a latch j is that the data signal at its input must be
stable at least s; time before the latching clock edge. Therefore, the timing constraint
for latch j becomes

A]'ST—S]'<:>A]'+S]'§T (2.11)

Because A; depends on the arrival times of previous stages recursively, the constraint
(2.11) for all latches can not be merged further like (2.6) for flip-flop based circuits.

2.4 Static Timing Analysis of Combinational Circuits

The performance of a sequential circuit is normally represented by the maximum
clock frequency. This clock frequency is determined by the minimum clock period
which can meet the timing constraint described in (2.6) for flip-flop based circuits,
or the constraint (2.11) for latch based circuits. To verify these constraints, the max-
imum delays A;; used in (2.6) and (2.11) should be computed first.

In contrast to sequential circuits, a combinational circuit consists of no storage com-
ponents but only combinational gates. If a signal reaches an input of such a gate, it
continues to propagate instantly and reaches the output of this gate after the time
equal to the delay from the corresponding input to the output. Therefore, A;j in a
reduced timing graph is the maximum path delay from an input to an output of the
combinational circuit.

To compute A;; for register i and j in the reduced timing graph, the timing graph of
the combinational circuit between the two latches should be traversed. Two types of
traversal methods exist to compute the maximum delay of a combinational circuit:
path-based and block-based. In a path-based method, the paths from inputs to
outputs of the timing graph are enumerated [PS73, KYC'81,SYA"81]. The delay
of a path is computed by summing the edge delays on the path together. Although
this path enumeration method is feasible to evaluate small designs, it can not handle
all paths in large designs, where the number of paths increases exponentially with
circuit size.

The second method is the block-based method, or block-oriented method [Hit82,
HSC82,MS99]. Regardless of computing the delay from one or more than one input
of the circuit, a block-based method visits each node in the timing graph no more
than once, so that the runtime is much shorter than that of the path-based method.

In Algorithm 1, the computation of maximum delays from all inputs are listed. As
initialization (lines 4-12), the arrival times at inputs are set to given values deter-
mined by the application context. Thereafter, all nodes whose fanins are only inputs
of the circuit are added to a node queue Q. These nodes are candidates to be pro-
cessed in the main loop, in the same order as they are appended.

15

2 Static Timing Analysis

Algorithm 1: Maximum Delay Computation from All Inputs

// variables

Q: FIFO-like queue of nodes to be visited;
ny: nodes;

A,: arrival times;

WON =

// algorithm initialization

4 foreach primary input n; do

5 set arrival time of n;;

6 mark n; as visited;

7 | foreach fanout node n; of n; do

8 if all fanin nodes of n; are primary inputs then
9 ‘ append 7; to Q;

10 end

11 end

12 end

// main loop
13 while Q is not empty do

14 n; < head node of Q;

15 A; +0;

16 foreach fanin node n; of n; do
17 Afé—/%-%VWﬁ

18 Aj < max{A;, A;};

19 end

20 mark #n; as visited;

21 foreach fanout node n; of n; do
22 if all fanin nodes of n; are visited then
23 ‘ append n; to Q;

24 end

25 end

26 end

In the main loop (lines 13-26) in Algorithm 1, the timing analysis is performed in an
iterative way. In each iteration, a node is taken from the queue as the current node.
The arrival time from each fanin node is summed with the edge delay between the
fanin node and the current node. The arrival time of the current node is then calcu-
lated by the maximum of all the newly computed arrival times (lines 16-19). After
the arrival time of a node is computed, its fanout nodes are checked. If a fanout
node has no unvisited fanin node, this fanout node becomes a new candidate to be
processed, and therefore is appended to the node queue. The main algorithm termi-

16

2.4 Static Timing Analysis of Combinational Circuits

Table 2.2: Arrival Time Propagation of c17

Tteration Number Current Node Q
initialization ng, N9

1 1g ng, Ny, ng
2 ng ny, ng
3 ny ns
4 ng 110, N11
5 119 111
6 nn

nates when the node queue is empty, which means all nodes are already visited and
all the arrival times at outputs of the circuit are already computed. The maximum
delay of the circuit is the maximum arrival times at all these outputs.

To illustrate Algorithm 1, the timing graph in Figure 2.3 is used as an example. The
content of the node queue and the current node are shown in Table 2.2, where the
last column shows the nodes in Q after processing the current node.

From this example, it can be observed that the nodes are processed in the order of
topological level. The topological level of a node is defined as the maximum of all
the levels of its fanin nodes plus 1. From this sense, the algorithm shown in Algo-
rithm 1 is a breadth-first traversal [Knu98]. A variant of this algorithm is explained
in [SYA ™81, Hit82] to traverse the nodes in depth-first order. In this algorithm, the
fanout node is checked if all its fanin nodes are visited. If this is true, this fanout
node is directly processed, in contrast to appending it to the node queue for later
processing in Algorithm 1.

The algorithm described till now can handle timing analysis from all inputs of the
circuit efficiently. After the algorithm terminates, the arrival times at an output is the
maximum delay from all inputs to it. This information is enough for timing analysis
of flip-flop based circuits, described in Section 2.5 later. However, the maximum
delay between each register pair is required to analyze the timing of latch-based
circuits in Section 2.6. For a combinational block between latches, this requires
arrival time propagation from each input separately.

In the main loop of Algorithm 1, a fanout node is appended to the queue only when
all its fanin nodes are already visited. If the arrival time is propagated from only
one input, some nodes with fanin node driven only by other inputs can never be
processed. As an example the circuit in Figure 2.3 is used to explain such problem.
If the delay from node 1 to node 10 is needed, node 7 should be processed directly
after node 1. But node 7 has unvisited fanin node 6, so that the propagation can
not be performed further. A bypass of this problem is to set the arrival times of
unrelated inputs of the circuit to —oco [Fis90]. But this method is slow because the

17

2 Static Timing Analysis

Algorithm 2: Maximum Delay Computation from Primary Input 1,

// variables

Qy: FIFO-like node queue for level k;
L;;: maximum level number;

ny: nodes;

A,: arrival times;

B W N -

// algorithm initialization
fork+ 1toL,, do
\ empty Oy,
end
append 71, to Qy;
set A, to predefined value;

© 0 N o W

// main loop
10 fork < 1to L,, do

1 while Oy is not empty do

12 n; < head node of 9y;

13 if n; is not a primary input then
14 ‘ A; 0

15 end

16 foreach fanin node n; of n; do
17 if n;j is visited then

18 Ar < Aj+ Wj;;

19 A; + max{A;, A;};

20 end

21 end

22 mark n; as visited;

23 foreach fanout node n; of n; do
24 [< level of nj;

25 if n; is not in Q; then

26 ‘ append n; to Qy;

27 end

28 end

29 end

30 end

complete timing graph is traversed although only the nodes in the fanout cone of
the input of interest affect the delay. These nodes are normally only a small part of
the complete circuit [CSH95]. The method proposed in [Sap96] uses this observation
to propagate arrival times only through nodes in the timing graph when necessary.

18

2.5 Static Timing Analysis of Flip-flop Based Circuits

Table 2.3: Arrival Time Propagation from 73 in ¢17 Timing Graph

Iteration number | Current level | Currentnode | ©; O, O3 Q4
initialization ns
1 1 ns ng
2 3 ng n10, M11
3 4 110 n1
4 4 ni1

The complete arrival time propagation from a specified input in [Sap96] is shown in
Algorithm 2. Compared to Algorithm 1, only the nodes driven by the input 7, in
the timing graph is traversed. These nodes are appended to their level queues when
one of their fanin nodes is visited. The arrival time of a node is computed directly by
maximizing the arrival times of its fanin nodes which are already visited. Because
the queues are visited in level order (line 10), a fanin node is not in the fanout cone
of the input if it is not visited. Therefore it does not affect the arrival time of the
current node (line 17). Similar to Table 2.2, an example of applying Algorithm 2 to
compute delays from node 3 in Figure 2.3 is shown in Table 2.3.

By initializing more than one input in Algorithm 2, this algorithm can be extended
to compute maximum delays from these inputs at once. If all inputs are initialized,
Algorithm 2 becomes a variant of the static timing algorithm shown in Algorithm 1.

The arrival time traversal in Algorithm 1 and 2 both can run in the reverse direction,
from outputs to inputs of the circuit. The results are maximum delays from outputs
to all internal nodes in the timing graph. These delays can be used to compute the
slacks at internal nodes for circuit optimization.

2.5 Static Timing Analysis of Flip-flop Based Circuits

For flip-flop based circuits, the clock frequency is determined by the maximum delay
between all flip-flops as specified in (2.5), where the inner maximum is performed
with all fanin nodes in the reduced timing graph. Instead of computing the max-
imum delay A;; between flip-flop i and j individually, the inner maximum in (2.5)
is computed by one arrival traversal using Algorithm 1. For this purpose, a virtual
combinational circuit is formed. All outputs of flip-flops are considered as primary
inputs of the virtual circuit, and all inputs of flip-flops as primary outputs. All the
combinational components between flip-flops together form the combinational logic
in between.

During the initialization of Algorithm 1, the arrival times at primary inputs of the
virtual combinational circuit are set to the propagation delays of the corresponding

19

2 Static Timing Analysis

registers. The resulting arrival times at the primary outputs of the virtual circuit are
maximum arrival times from all primary inputs. In other words, the arrival time
at a primary output is the maximum delay from all fanin flip-flops to the input of
a flip-flop, i.e., the result of the inner maximum in (2.5). Therefore, the left side
of (2.5) can be computed by the maximum of the sums of the arrival time and the
setup time at all flip-flops. This maximum specifies the minimum clock period for
the flip-flop based circuit without timing violation. The complete computation of
the minimum clock period is shown in Algorithm 3, where Algorithm 1 in line 3
can be replaced by other propagation algorithms, e.g., Algorithm 2 with all primary
inputs initialized.

Algorithm 3: Timing Analysis of Flip-flop Based Circuits

// variables
1 Aj: arrival times at the input of flip-flop j;
2 Thpin: minimum clock period;

// arrival time propagation
3 Run Algorithm 1 on the virtual circuit, with g; as initial arrival times;

// minimum clock period computation
4 Tyin < 0;
5 foreach flip-flop n; in the reduced timing graph do
6 Ap A] + 5j;
7| Tmin = max{Twin, At};
s end

2.6 Static Timing Analysis of Latch Based Circuits

Unlike flip-flop based circuits, the minimum clock period can not simply be iden-
tified for latch based circuits. This is because there is latch transparency, which
makes the arrival times depend on each other, as described with (2.10). Instead of
computing the minimum clock period directly, the method proposed in [SMO90b]
describes this as an optimization problem, as shown in Algorithm 4. The variables
in this optimization problem are the arrival times for all latches. The constraints are
from the relation between these arrival times specified by (2.10) and (2.11).

Algorithm 4: Minimum Clock Period of Latch Based Circuits
Minimize T;
Subject to (2.10) and (2.11) for all arrival times;

20

2.7 Summary

The optimization problem in Algorithm 4 is nonlinear because of the maximum
computation in (2.10). In order to reduce the optimization complexity, the con-
straints (2.10) and (2.11) are relaxed to (2.12)-(2.14) in [SMO90b].

foriep;:

Aj > Aj+my (2.12)
Aj > 1+ my (2.13)
mij = q; + Djj — €; (2.14)

Consequently, the optimization problem of Algorithm 4 can be rewritten as Algo-
rithm 5.

Algorithm 5: Minimum Clock Period with Constraint Relaxation
Minimize T;
Subject to (2.11)-(2.14) for all arrival times;

It is proved in [SMO90b] that the solution of the relaxed problem is equal to the
one from Algorithm 4. With this constraint relaxation, the optimization problem
becomes linear. Therefore it can be solved with standard linear programming meth-
ods, e.g. simplex method [Dar91]. The optimal result is the minimum clock period
for the latch based circuit without violating the setup time constraints. In the relaxed
optimal problem, the constraints from hold time are not considered. This problem
is addressed by the method proposed in [SMO90a] based on sensitivity analysis of
linear programming.

The constraints (2.12)-(2.14) contain edge delays A;; between latches. Similar to the
method in Section 2.5, a virtual combinational circuits is created. Because the max-
imum delay of each latch pair is needed, Algorithm 2 instead of Algorithm 1 is
used to propagate arrival times from each primary input of the virtual circuit. After
each timing traversal, the arrival times at all primary outputs which are visited are
the maximum delays from the corresponding latch to all its fanout latches respec-
tively. All edge delays in the reduced timing graph are computed after repeating
the computation from all latches. Thereafter the linear programming method can be
performed to determine the minimum clock period of the latch based circuit. The
step to empty all queues in lines 5-7 of Algorithm 2 guarantees the correct results
after applying this algorithm to all inputs successively.

2.7 Summary

Timing performance determines the proper behavior of a digital circuit. In order to
reduce the runtime of the timing evaluation of such a circuit, static timing analysis is

21

2 Static Timing Analysis

used. For flip-flop based circuits the delays between flip-flops can be computed by
applying block-based or path-based timing analysis methods to the combinational
circuits between all the flip-flops. The clock period of the circuit is determined by
the resulting delays and the corresponding setup time and hold time constraints.
Because of the interdependency between arrival times at successive latches, timing
analysis of latch based circuits relies on more complex methods, e.g., linear pro-
gramming, to determine the constraint for the clock period. These static timing
analysis methods form the background of the timing analysis considering process
variations in the following chapters.

22

Chapter 3

Problem Description

Traditional static timing analysis evaluates timing of a circuit by setting process
parameters to their extreme (e.g., 3¢) values, called corners. For example, the worst-
case corner for checking the setup time constraint is the corner that all the pro-
cess parameters are set so that gate delays and interconnect delays are the largest
in all corners. With increasing process variations, this corner-based method faces
new challenges, not only because the problem in selecting proper corners from the
large parameter space, but also because it is over conservative in evaluating circuit
performance [Sch02]. In this chapter variations are discussed at first. Thereafter
an introduction to statistical timing analysis is given, where process variations are
directly modeled to produce the yield and performance curve. Timing model ex-
traction methods for static timing analysis without considering process variations
are discussed later. As an overview, this discussion explains the steps in hierarchical
timing analysis flow. These steps are the same as in the proposed methods in this
thesis, where process variations and their correlation are handled. In the last part of
this chapter, the state of the art of hierarchical statistical timing analysis is reviewed.

3.1 Variations

Process variations exist since the beginning of semiconductor industry. These varia-
tions are defined as the deviations of process parameters after manufacturing from
design values. The source of variations lies in the limitation of process control.
Examples of such variations are the inaccuracy in creating device shapes at pho-
tolithography step because of diffusion effect, the doping density fluctuation be-
cause of time control, and the interconnect thickness variation because of intercon-
nect and device patterns during chemical-mechanical planarization (CMP) process.
As the feature size scales into deep submicron realm, the relative process variations

23

3 Problem Description

50]
40 Ly
2]
B |
2 20
Vin |
0F /—s——a—"
1 TOZE 1 1 1 1
97 99 02 05 06

Year

Figure 3.1: Relative Variation Increase, data from [Nas01]

become worse than at the earlier technology nodes. This relative variation can be
defined as the ratio of three times the standard deviation of a process parameter to
its mean value, i.e., 3c/pu. According to [NasO1], the trends of increasing relative
variations of effective gate length (L,sr), oxide thickness (T,x) and threshold voltage
(Vi) are shown in Figure 3.1.

Facing the increasing process variations, the traditional worst-case design method
becomes too conservative. In this method, all parameters are set so that the delays
of circuit components, e.g., gates and interconnects, are the worst in all corners. Cir-
cuits are designed according to the results of this worst-case performance evaluation.
If the worst-case performance of a circuit can meet corresponding specification, the
correct timing of chips after manufacturing can be guaranteed. In practice, however,
process parameters of different gates and interconnects after manufacturing are not
at the worst-case corner at the same time. For example, process parameters are not
fully correlated according to the measurements in [CCBC06]. Therefore the circuit
performance is underestimated by the worst-case design method. This underesti-
mation becomes larger at newer technology nodes because the worst-case corner
deviates further from the nominal one.

As the relative process variations increase, the worst-case design becomes too ex-
pensive because the underestimation of the performance causes unnecessary further
optimization of circuits which may have met timing constraints after manufacturing.
Such unnecessary further optimization is also called overdesign. To reduce the con-
servatism in the worst-case design and analysis, the first step is to investigate and
model process variations more accurately than simply using worst-case or bounding
methods. With the results of the variation analysis, both design and manufacturing
steps can be optimized to improve yield.

24

3.1 Variations

3.1.1 Sources of Variations

In general process variations come from the limitation of process control. At each
step of the manufacturing process, different factors affect peculiar characteristics of
wafers as well as dies on them. According to manufacturing steps of integrated
circuits, variation sources can be analyzed from device and interconnect sides. In
this section, some sources which cause variations are explained.

The geometries of devices are determined during the photolithography step, where
the gate length dimension affects delay dominantly, so that is called critical dimen-
sion (CD). The accuracy of the mask is the first source affecting the dimensions of
transistors, because any inaccuracy and fluctuation during mask creation keeps its
effects to final device dimensions; additionally, uncertainty is introduced when op-
tical proximity correction (OPC) is applied to correct the dimensions of devices; the
nonuniformity of lens used in photolithography also imposes some variations on the
shape of devices. Another factor affecting devices is the variation of film thickness,
which is caused by the variations in oxide film coating. Because of the fluctuation
of implant dose, energy or angle of doping, the depth of dopant profiles can also be
a distribution. This may have impact on effective gate length and threshold voltage
as well [BN99]. Because electrical parameters depend on physical ones of transis-
tors, the variations discussed above cause electrical parameters to deviate from their
nominal values [BCSS08]. For example, threshold voltage (V};) exhibits variations
because it depends on film thickness, doping density and device geometries.

Like devices, the geometries of interconnect exhibit variations resulting from pho-
tolithography process. The accuracy of mask affects the line width and line space.
The ensuing variations make electrical characteristics of interconnects, such as ca-
pacitance and cross talk, deviate from design specifications. The thickness of metal
lines are affected by the fluctuations during CMP process. Additionally, the final
thickness of interconnects as well as inter layer dielectrics differs in relation to the
patterns of interconnects in different areas on the die. For example, less line dishing
happens in the area with small pitch size than in the area with larger one [PTBT99].

3.1.2 Decomposition of Process Variations

Process variations are grouped into different categories, as shown in Figure 3.2.
Systematic variations can be determined before manufacturing. Once physical syn-
thesis is finished, the source of these variations can be determined. With accurate
measurement, they can be modeled with fixed values and included into perfor-
mance analysis. A typical example of systematic variations is the randomness of
interconnect metal thickness. After layout and routing are finished, the patterns of

25

3 Problem Description

[Process Variation]

e T~

. Systematic :\ [Non-Systematic]

[Correlated j [Independentj

Figure 3.2: Variation Classification [BCSS08]

interconnects can be accurately analyzed. Therefore, the layout-related metal thick-
ness dishing in different areas can be predicted. With this information, the resistance
and capacitance of interconnects can be modeled more accurately in sign-off anal-
ysis. From device side, gate length is affected by variations in the step of optical
proximity correction for mask optimization. These variations can be determined by
computing the post-OPC gate lengths on the critical path thus more accurate timing
analysis results can be achieved [YCS05]. In both cases, systematic variations are
represented using fixed values instead of statistical variables. This is more accurate
than simply analyzing circuit performance with variation assumption. Both mea-
surements, however, can be fulfilled only after physical synthesis. During the first
iteration of logic synthesis, the circuit can only be optimized corresponding to the
performance from modeling systematic variations as random variables. Thereafter,
the accuracy improvement by determining systematic variations can only happen in
further design iterations

Unlike systematic variations, non-systematic variations can not be determined be-
fore manufacturing. These variations come from the inaccuracy of process control
and are independent to circuit design. Therefore, they can only be modeled with
random variables in the complete design flow. Examples are variations in doping
density and in layout independent metal thickness of interconnects.

According to their spatial characteristics, non-systematic variations can be further
partitioned into die-to-die variations (interdie variations) and within-die variations
(intradie variations). Die-to-die variations affect all devices and interconnects on a
die equally, i.e., all devices and interconnects have fully correlated random compo-
nents. At wafer level, die-to-die variations come from the nonuniformity of process
control across wafer surface. Therefore, chips on different positions of a die have
different performances. For example, the chips in the center of a wafer are normally
faster than the chips near the boundary of the wafer, because of better process con-
trol when the chips in the center are processed. Within-die variations affect devices
or interconnects inside a die differently. For two devices their physical parameters
can shift in different directions, i.e, they are not fully correlated. Within-die varia-

26

3.1 Variations

tions come from the inaccuracy of process control at die level. For example, there
is still a variation residue after modeling the systematic and die-to-die variations of
CD on a chip.

Furthermore, within-die variations can be partitioned into a correlated part and an
independent part. Although within-die variations on devices or interconnects are
not fully correlated, they still show a similar trend in some degree. This trend can
be modeled by sharing the same variables as a part of within-die variations, or
by establishing correlation between these variations directly. Besides the correlated
variation component, within-die variations still exhibit purely random effect. The
purely random variations come from the random fluctuation during manufacturing
processes, which thus imposes its effect on each device without correlation. Because
of the inaccuracy of manufacturing equipments and process control, purely random
variations exist nearly in every processing step. Examples are the random distortion
of the lens used during the photolithography step and the purely random variation
of the doping speed.

3.1.3 Correlation Modeling

Process variations can normally be measured as a lumped distribution. Thereafter,
the measured data are decomposed into different components [SBC97]. The over-
all variations are then modeled as sums of these decomposed variables. Die-to-die
variations are shared by all devices or interconnects on the chip. These variations
make parameters of the devices and interconnects exhibit some correlation, called
global correlation or die-to-die correlation. Because of the uncertainties during
manufacturing process vary continuously, within-die variations exhibit proximity
correlation. This correlation depends on the distance between two devices on the
die [CCBCO06]. The larger the distance is, the smaller the correlation becomes. For
convenience, the correlation from within-die variation is called local correlation.

Different methods are proposed to model correlation between process parameters.
Modeling die-to-die correlation accurately, the quadtree model is proposed in [ABZ03a,
ABZ703b], illustrated in Figure 3.3. In this model, different grid layers are used to
model correlation between process parameters. For a process parameter, e.g., gate
length, a variable is assigned to each grid cell at each level. The process parameter
of a device is modeled as the sum of all the variables of the grid cells directly above
this device. The correlation between process parameters is therefore established by
sharing the same variables of the corresponding levels. Because the variable at level
0 is shared by all devices, it models the correlation from die-to-die variation. The lo-
cal correlation is modeled by sharing the variables at lower levels. If two devices are
nearby on the die, they share more variables so that have more correlation. If two
devices are near enough to be located in the same grid cell at level 2, they become

27

3 Problem Description

die-to-die variation
|
01 /
|

variation with

I |
| |
, / proximity effect

T- =~ 2 |

| |

|

|

|

random variation

Figure 3.3: Quadtree Correlation Model [ABZ"03b, ABZ03a]

fully correlated. By increasing the number of grid layers, the accuracy of correlation
modeling can be increased. This model, however, has an apparent limitation. By
partitioning each layer into different grid cells, the local correlation can not be mod-
eled uniformly. For example, the distances from (2,4) to (2,1) and from (2,4) to (2,13)
are equal. From this model, a parameter in (2,4) and (2,1) share the same variable at
layer 1, but the same parameter in (2,4) and (2,13) do not share such variable. Con-
sequently, correlations between parameters with the same distance are unequal in
this model. This contradicts the fact that within-die correlation depends on distance
between devices because of the proximity effect during manufacturing process.

The second correlation model is proposed in [CS03]. In this model, the die area
is partitioned into a uniform grid, as shown in Figure 3.4. For each grid cell, a
random variable is assigned. The correlations between these random variables are
computed or identified from the characterization of manufacturing technology, for
example with the method in [XZHO07]. For n grid cells on the die, in total n variables
are assigned. For the convenience of statistical timing analysis algorithms, the 7 cor-
related variables are decomposed into linear combinations of independent random
variables, using an algorithm such as principal component analysis (PCA) [Jol02].
After this decomposition, only the independent variables with large coefficients are
kept in the linear combinations, so that the number of variables modeling correla-
tion can be drastically reduced. This correlation model is very flexible because it can
handle any correlation between process parameters. The only reason to partition the
die area to grid is to reduce the number of initial variables. For better modeling ac-
curacy smaller cell size can be used, at the expense of larger number of variables
and larger correlation matrix. A similar correlation model is proposed in [CZV108],
where hexagonal grid cells are used to partition the die area. The advantage of such
a model is that a grid cell in the partition has only one type of neighboring cell.
Additionally, the distances from the neighbors of a cell to it are equal. This makes
the hexagonal partition a better approximation in modeling proximity related cor-

28

3.1 Variations

| |
3,1 132 133

Figure 3.4: Uniform Grid Correlation Model [CS03]

relations.

Another correlation model is proposed in [KS05]. In this model, the die area is par-
titioned into grid with square cells. A process parameter in a grid cell is modeled
as the sum of independent variables assigned to the corners of the grid cell. That is,
each process parameter is decomposed into a linear combination of four indepen-
dent random variables. This method can generate simple parameter decomposition,
but no theoretical proof is provided for accuracy. Additionally, the method to map
correlation data to the proposed model is not explained.

The correlation in the discussed models are all first-order. This is only enough to
model the dependency between Gaussian random variables. To incorporate higher
order dependency, methods like independent component analysis [HKOO01] should
be used, e.g., in [SS06,SS08].

3.1.4 Process Variation Handling

As pointed out in [BBC08], methods should be deployed to handle increasing pro-
cess variations. At the center of these methods, statistical metrology measures and
analyzes process variations to generate corresponding models. With this informa-
tion, methods can be applied during manufacturing to reduce deviations. For exam-
ple, the results of fab-to-fab and lot-to-lot variation analysis expose the deviations
of process control. Therefore they can provide indications for adjusting operation
parameters of equipments. At design stage, variations should be modeled directly,
in contrast to the traditional worst-case analysis. With the statistical analysis results,
circuit components which are statistically critical to performance can be identified,
thus providing more accurate candidates for optimization. Beyond statistical anal-
ysis and optimization, a further step is variation resistant design. An example of
such design is proposed in [BBC*08], where the irregularity of layout is reduced
by inserting dummy fill structures. Consequently, variations such as resulting from
interconnect dishing during CMP process can be reduced.

29

3 Problem Description

3.2 Statistical Timing Analysis

Timing performance of circuits is an important measurement for optimization and
sign-off. With process variations considered as variables, all gate delays become
random variables. The timing graph traversal algorithms described in Chapter 2
can be adapted to compute the minimum clock period of a circuit. However, the
resulting clock period is a random variable, denoted as T,;,,. For a given clock
period T, the timing yield of a circuit is evaluated by computing the probability that
Tynin is smaller than T, i.e.,

yield = Prob{T,;, < T}, 0<T < o0 (3.1)

where Prob{-} denotes the probability.

Because all gate delays are positive, the computed minimum clock period T,;, is also
positive. According to probability theory, e.g., [FF91], yield computation in (3.1) is
equivalent to the definition of cumulative distribution function (CDF) of the random
variable T,,;,. The graphic representation of (3.1) is illustrated in Figure 3.5, where
circuit yield approximates 0 when T approximates 0, and 1 when T is large enough.
The latter case indicates that a sequential circuit can work properly at a reasonable
low clock frequency, if no hold time constraint is violated. In this section, methods
for process variations modeling, gate delay mapping and algorithms for analyzing
circuit performance will be explained.

0 clock period T

Figure 3.5: Graphic Representation of Yield Computation

3.2.1 Process Parameter Modeling

The first step of statistical timing analysis is to model process variations in a form
which can simplify modeling of gate delays and arrival time propagation. As de-
scribed in Section 3.1, a process parameter is a sum of components modeling die-
to-die variations, within-die variations and purely random variations. The additive

30

3.2 Statistical Timing Analysis

attribute is determined by applied variation decomposition methods, e.g., [SBC97].
The additive form of a process parameter p is written as

P="Pot+pPstpitpr (3.2)

where py is the nominal value of the parameter. p, models the die-to-die variation
and is shared by all gates. p; is the within-die variation specific to each gate and
is correlated with each other. p, is an independent variable modeling the purely
random effect in manufacturing processes.

Depending on statistical measurements, the parameter p for a device may have
Gaussian or non-Gaussian variations. In [CS03, VRK 04, KPR05], all process varia-
tions are assumed as Gaussian in order to reduce the complexity of timing analysis.
The Gaussian assumption, however, can not provide enough accuracy because only
the first two moments of process parameters are captured with Gaussian variables.
To improve modeling accuracy, non-Gaussian variables are used in [CZNVO05]. Ad-
ditionally, the independent component analysis based non-Gaussian model is pro-
posed in [SS06,SS08]. In both methods, the random variables representing process
variations can be in any form in addition to Gaussian.

3.2.2 Gate Delay Representation

Statistical timing analysis uses abstracted gate delays to evaluate circuit perfor-
mance. A gate delay is defined as the time difference between points of measure-
ment of the input and output waveforms. With given input waveform, the output
waveform of a gate depends on transistor parameters of the gate. For example,
the effective gate length affects the gate delay dominantly. Assuming all process
parameters denoted as a vector p, a gate delay W is expressed as

W= f(p) (3.3)

where f denotes the mapping function from process parameters to the gate delay.
The mapping function is theoretically very complex. Therefore SPICE simulation
is often used to obtain accurate samples of gate delays. To provide fast delay esti-
mation, different models, such as Elmore delay [EIm48], are used to compute gate
delays from lower level parameters [RPHS83].

With process variations considered, a gate delay becomes a random variable. Be-
cause of the correlation between process variations, gate delays are correlated with
each other. For example, the delays of two gates vary in a similar way when these
gates are near on the die. When their distance is large, both gate delays exhibit
more randomness. In order to incorporate the correlation from process variations,
gate delays are described as simplified functions of process parameters, instead of

31

3 Problem Description

identifying the numeric characteristics of their distributions directly. In other words,
the mapping function f in (3.3) is replaced with a simpler form at the expense of
accuracy.

The first popular delay description method uses linear functions [CS03, VRKT04]. A
gate delay in this method is expressed as

W =kp (3.4)

where k is the coefficient vector and can be computed by sensitivity analysis nu-
merically [ABZ"03b], or identified by linear regression [Seb77] from the results of
SPICE based Monte Carlo simulation.

According to (3.2) a parameter can be partitioned into different parts. If each vari-
able in (3.4) is replaced into the form of (3.2), the gate delay is transformed as

W =kp,+kp, +kp, +kp, = Wo + kp, + kp; + p- (3.5

In (3.5) p, represents nominal values of parameters and all its elements are fixed,
so that kp, can be merged into a constant Wy. Because the first order moments are
merged into Wy, the means of p_, p;, and p, are all zero. Representing die-to-die
variations, p, is shared by all gate delays. p, models purely random manufacturing
effects, so that it can be merged into one random variable p;. Unlike the other
vectors in (3.5), p; models within-die variations and needs further processing.

As discussed in Section 3.1.3, correlation exists between within-die variables because
of proximity effects. Consider two gate delays W, and W),

W, = WO,a + kapg + kapl,a + Pra (3.6)
Wb = W()’b + kbpg + kbpl,b + p—;’b (37)

where k,p, , and kyp, , are correlated random variables. During arrival time prop-
agation, these random variables can not be merged because of their correlation.
Therefore, the number of variables describing an arrival time may increase very fast
if the gate delays in (3.6) and (3.7) are directly used to evaluate the performance of
a circuit. Additionally, the correlation between p, , and p, ;, also causes the compu-
tation of the correlation between W, and Wj, to be very SIO,VV, as explained later.

In order to reduce the runtime of timing analysis, principal component analysis
[Jol02] is used to decompose correlated random variables. Assume that variable
vector p; with m elements is the vector containing all the correlated random vari-
ables modeling within-die process variations so that p, , and p, , both are parts of
pi1. The correlation matrix of p; is denoted as C. Under Gaussian assumption, each
element in p; can be expressed as a linear combination of a set of independent
components after applying PCA.

pr=Ax~ A"x (3.8)

32

3.2 Statistical Timing Analysis

where A is the orthogonal transformation matrix formed by the eigenvectors of C.
x=[x1,%,... xm]T is a vector of independent Gaussian random variables with zero
mean. The standard deviation vector of x is formed by the square root of eigenvalues
of C corresponding to the eigenvectors in A. If there are eigenvalues which are
very small compared to other larger eigenvalues, the corresponding variables in x
contribute relative less than other variables in (3.8). Therefore, these variables can be
discarded to reduce the number of the independent variables. Assume x is truncated
to x” with n, variables. The original within-die variations can be approximated by
linear combinations of the 1, independent random variables x". A" is a column
truncated matrix of A.

Because any random variable from p; can be approximated by a linear combination
of x” by selecting the row of A" corresponding to the random variable, as shown in
(3.8), the gate delay in (3.5) can be written as

W =Wy +kpy + kAX" + pr (3.9)

n
=co+) civ; + crv (3.10)
i=1

where Aj is formed by the rows of A" corresponding to the variables in p; in
(3.5). The gate delay in (3.9) can be generalized into the canonical linear delay
form [VRK*04] as in (3.10), where v; are independent random variables and shared
by all gate delays. v, is the purely random variably specific for each delay. ¢ is the
nominal value of the delay. c; and c, are the coefficients of the random variables. The
correlation between gate delays are represented by sharing the same set of random
variables v;.

In the canonical delay model (3.10), the mapping function f from parameters to
delays is assumed as linear. With such linear delay form, arrival times can be prop-
agated very fast with simple computations [VRK"04]. The drawback of this simple
assumption, however, is the loss of accuracy [LLGP04,ZSL"05]. To improve approxi-
mation accuracy, quadratic timing models are proposed in [ZSL*05,ZCH™05,KS05],
where a gate delay is mapped as a second order function of process parameters.
If principal component analysis is still used to decompose correlated random vari-
ables, a parameter in the quadratic form is replaced by a linear combination of
uncorrelated random variables. For a second order term in the quadratic form, this
replacement results in many cross terms, which make timing analysis complex and
slow. To reduce the number of cross terms in a quadratic model, orthogonaliza-
tion method is used in [ZSL705]. In addition to quadratic models, a gate delay is
mapped as a linear function of independent Gaussian and non-Gaussian variables
in [SS06,SS08]. A more general delay mapping method is proposed in [CZNV05].
In this model, a gate delay is mapped as a sum of linear and nonlinear functions
of Gaussian and non-Gaussian random variables. Therefore, it can handle any de-
lay functions without limitation. Using non-Gaussian random variables can improve

33

3 Problem Description

the modeling accuracy of process variations; using non-linear functions can improve
the accuracy of approximating the mapping from process parameters to gate delays
and interconnect delays. Both methods, however, cause complexity in the following
steps of statistical timing analysis.

3.2.3 Statistical Timing Analysis of Combinational Circuits

Similar to static timing analysis, the target of statistical timing analysis is to compute
the timing performance of the circuit. With all gate delays modeled as functions of
random variables, arrival times are propagated across the circuit using the algo-
rithm described in Section 2.4. In this propagation, two computations are involved:
maximum and sum. When multiple edges converge to a node, the maximum of the
incoming arrival times is computed. Thereafter, this arrival time is propagated to the
next node by adding the edge delay. In statistical timing analysis, this timing graph
traversal is completely the same as in static timing analysis. The two computations,
however, must be adapted to handle random gate delays.

In statistical timing analysis, arrival times are computed from gate delays. In order
to use the same sum and maximum computations at all nodes, arrival times are
usually represented in the same form of gate delays. When an arrival time is added
with a gate delay, corresponding coefficients of different variables are summed di-
rectly, whether linear or quadratic gate delays are used. Because of the complexity
in computing the maximum of two random variables and the requirement that the
result of the maximum should have the same form as a gate delay, such computation
is always approximated in statistical timing analysis. In the following, only the sum
and maximum computations of two random variables are discussed. The complete
statistical timing analysis can be implemented by replacing the sum and maximum
computations in Algorithm 1 or 2.

Using the linear delay model, [VRK"04] introduces an arrival time propagation
method which can process the maximum computation efficiently, meanwhile keep-

ing the correlations between arrival times accurately. Consider two random variables
A and B

n
A=ay+ Z a;v; + a; vy, (3.11)
i=1

n
B =bo+) _ biv+ by, (3.12)
i=1

34

3.2 Statistical Timing Analysis

The sum of A and B is computed as

n
A+ B=(ap+by) + Z(ai +b;)v; + (a,vy, + byoy,) (3.13)
i=1

n
=50+ Z S;U; + S, Uy, (3.14)
i=1

where s, is identified by matching the variances of s,v,, and a,v,,+b,vy,.

To compute the maximum of A and B, denoted as max{ A, B}, the tightness proba-
bility (Tp) [VRK™04] is first computed. In [VRK*04], T, is defined as the probability
that A is larger than B. If A and B are both Gaussian, Tp can be computed by

bo

Tp = Prob{A > B} = (2020

) (3.15)

where @ is the cumulative distribution function of the standard Gaussian distribu-
tion. 6 = \/ 0% + 03 —2Cov(A, B), where 03 and o3 are the variances of A and B

respectively. Cov(A, B) is the covariance between A and B, and is computed accord-
ing to [FF91] as

Cov(A, B) Z Z a;b; Coo(vl,v] + Za :byCov(v;, vy,)
i= 1]

+ Z bia,Cov(v;, vy,) + arb,Cov(vy,, vy,) (3.16)
i=1

Because the random variables v,,, v;, and v; in (3.11) and (3.12) are independent of
each other, (3.16) can be simplified as

Cov(A, B) Z a;b;Cov(v;,v;) Z a;b; 0’ (3.17)
i=1

Compare (3.16) and (3.17), the computation is drastically simplified because the ran-
dom variables are uncorrelated. This is the motivation that the correlated random
variables in Section 3.2.2 are decomposed.

According to [Cla61], the mean () and variance (¢%) of max{A, B} can be computed
by

‘1/[:Tpao —|— (1 - Tp)bo + 64)(610 ; bO) (318)
0% =Tp(0} +a§) + (1 — Tp)(cf + b3)
+ (a0 + bo)0p(2 bo) u (3.19)

35

3 Problem Description

Figure 3.6: Correlation Example in Statistical Arrival Time Propagation

where ¢ is the probability density function of the standard Gaussian distribution. In
order to apply the sum and maximum computations iteratively to propagate arrival
times, max{ A, B} is approximated in the same form of (3.10) as

n
max{A,B} =~ Map = mo+ Y _ miv; + myvy, (3.20)
i=1
where my is equal to y. m; is computed by m; = Tpa; + (1 — Tp)b;. m, is computed
by matching the variance of the linear form (3.20) and ¢? in (3.19).

The sum and maximum computations discussed till now process correlation be-
tween arrival times implicitly. An example of such correlation is illustrated in Fig-
ure 3.6. The arrival times from nodes 2 and 3 to 5, denoted as Ajs and Ass, can be
expressed as

Axs = Ax + Wos (3.21)
Azs = max{A1 + Wiz, Ay + W43} + Wiss (3.22)

where A, Ay and Ay are arrival times at node 1, 2 and 4 respectively. In the method
from [VRK'04], the computation of the maximum of Ay; and Ajss requires the co-
variance between them. This covariance can be computed as

COU(A25, A35) :COU(AQ + W25,max{A1 + Wiz, Ay + W43} + W35) (3.23)
=Cov(Ap, max{A + Wiz, Ay + Wy3})+
COU(W25, max{A1 + Wh3, Ag + W43})+
COU(AZ, W35) + COU(W25, W35) (3.24)

In [VRK'04] the maximum in the first two terms in (3.24) is approximated with a
linear form. In order to compute the covariance correctly, the covariance computed
with this linear form approximation should be equal to the covariance computed
with the original maximum. This requirement is met in [VRK"04] by guaranteeing
that the linear approximation has the same covariance to any other random variable.

36

3.2 Statistical Timing Analysis

That is, for a third random variable C in linear form, written as

n
C=co+ Z Ci0; + CrUr, (3.25)
i=1

the maximum and its linear approximation M4 p in (3.20) of two random variables
A and B defined in (3.11) and (3.12) should meet

Cov(max{A,B},C) = Cov(Mup,C) (3.26)

According to [Cla61], the left side of (3.26) can be computed by

Cov(max{A,B},C) = T,Cov(A,C) + (1 - T,)Cov(B,C) (3.27)
n n

=Ty Y aicioy + (1= T,) Y bicios, (3.28)
i=1 i=1

Similar to (3.16) and (3.17), the right side of (3.26) can be computed by
n n n

Coo(Map,C) =Y micioy =T, Y ajcioy + (1= Tp) Y bicioy, (3.29)
i=1 i=1 i=1

From (3.27) to (3.29) the equation of (3.26) is proved, so that the arrival time compu-
tation of the method in [VRK'04] can handle correlation correctly.

The property (3.26) guarantees that the linear approximation in the maximum com-
putation of [VRK'04] can preserve the correlation of the maximum to any random
variable. Therefore, the correlation of the maximum to any independent variable v;
is also preserved. This is the basis of the method proposed in [CS03]. The advan-
tage of the method in [VRK"04] is that the correlation is handled implicitly and the
computation of (3.15) and (3.17)-(3.19) need only to be fulfilled once in a maximum
computation. Therefore this method is more efficient than [CSO03].

In addition to the correlation between gate delays, reconvergent structures in the
circuit cause further correlation. In Figure 3.6, the arrival time A4 at node 4 has
a purely random variable v,,. The two arrival times from node 3 and 4 to 5 are
partially correlated because v,, becomes a part of the arrival time of node 3 af-
ter the maximum computation at node 3. This correlation, however, is discarded
in [VRK"04], because the sum of the purely random variables is merged into one
variable in the maximum computation. At node 5, all the random parts of the incom-
ing arrival times are assumed as independent. This assumption is not true because
a purely random part may converge from different paths at following nodes, thus
causing structural correlation [AZB03, DK03]. To solve this reconvergence problem,
the canonical delay model (3.10) in [VRK"04] is extended in [ZHCO05]. Instead of
merging the initial purely random variables of gate delays, these variables are kept

37

3 Problem Description

separately in arrival times during propagation. Therefore, the correlation from these
random variables can be incorporated.

The linear timing analysis methods require that gate delays are approximated by
linear combinations of Gaussian random variables. As in modeling gate delays,
statistical timing analysis methods using nonlinear or non-Gaussian gate delays or
both are proposed to improve timing accuracy. In [ZSL"05] gate delays and arrival
times are represented as quadratic functions of independent Gaussian random vari-
ables. The maximum computation is performed in a way similar to [CS03], where
the covariances between the maximum and each term in the quadratic form are
matched. As in [CS03], the first order correlation between the maximum and other
variables are preserved. The disadvantage of this method is that numerical integra-
tion is needed for each coefficient identification, which makes the proposed method
slow. In order to reduce the runtime of [ZSL*05], a parameter dimension reduction
technique is proposed in [FLZ07]. Another method with a quadratic model is pro-
posed in [ZCH'05]. This method still uses the tightness probability from [VRK*04],
but only when the maximum of two quadratic variables is Gaussian. This Gaus-
sian property is evaluated by computing the skewness of the maximum using the
formula in [Cla61]. If the skewness is smaller than a threshold, the maximum is
assumed to be Gaussian and is approximated by a linear combination of the two
quadratic inputs. If the skewness is larger than the threshold, the maximum is not
computed but the corresponding arrival times are directly propagated as a collec-
tion of quadratic forms. At each maximum computation, the skewness is evaluated
so that the collections of quadratic forms can be compressed as soon as possible.

Representing gate delays as linear combinations of non-Gaussian variables, the
method in [SS06,5508] approximates the maximum of two variables also using tight-
ness probability. The difference from [VRK'04] is that the tightness probability is
computed from two non-Gaussian random variables, with the formulas proposed
in [LLGP04]. This method has high efficiency, but the correlation between random
variables is compromised during the maximum approximation. In the nonlinear
non-Gaussian case, the method in [CZNV05] samples the nonlinear non-Gaussian
parts of the variables so that the rest part of the arrival times are linear combi-
nations of Gaussian variables, which can therefore be processed with the method
in [VRK"04]. The accuracy of this sampling based method depends heavily on the
number of samples. If the distributions of non-Gaussian variables are very complex
and the number of them is large, this method faces runtime problem for moderate
accuracy.

From the discussion above, correlation handling is always the source of complex-
ity for statistical timing analysis. To avoid this complexity, correlation is simply
discarded in [ABZV03b], where it is proved that the result without considering cor-
relation is an upper bound of the result with correlation after the maximum com-
putation. Without considering correlation, the statistical bounds in [ABZV03b] are

38

3.2 Statistical Timing Analysis

very loose. Therefore, selective enumeration is deployed in [ABZV(03a, AZB03] to
improve the bounding accuracy.

The algorithms discussed above are all block-based. Similar to static timing anal-
ysis, path-based methods are also explored to process statistical gate delays, e.g.,
in [ABZ702,0B04]. To apply these methods, critical paths should be first identi-
fied. However, without a statistical timing method, the critical paths identified from
static timing analysis can not be guaranteed to be critical [LLCP08]. Additionally,
any path in the circuit contributes to the circuit delay distribution with certain prob-
ability. Consequently, it is not very clear how many paths should be selected for
path-based methods to cover the paths which are statistically critical. Furthermore,
it is very hard to implement incremental timing analysis with path-based methods,
because any revision in the circuit can change the critical paths. With these disad-
vantages, path-based methods are currently limited in specific areas of application.

3.2.4 Statistical Timing Analysis of Sequential Circuits

Timing analysis of flip-flop based circuits is similar to the method for static tim-
ing analysis, Algorithm 3 in Section 2.5. The maximum and sum computations in
arrival time propagation are replaced by statistical computations discussed in the
previous section. The result T},;, is a random variable, whose properties define the
performance distribution of the circuit. The clock feeding to all flip-flops must have
a period larger than T,,;, to guarantee the proper behavior of the circuit. Therefore,
timing yield of a flip-flop based circuit at clock period T, defined as the probability
that the circuit works correctly with clock period T, can be computed by (3.1).

For latch based circuit, the reduced timing graph introduced in Section 2.1 is first
established by computing edge delays with statistical engines described in the previ-
ous section. Because of latch transparency described in Section 2.3, statistical timing
analysis for latch based based circuits is more complex. From the timing specifica-
tion (2.10) and (2.11), the arrival times in each local time zone depends on the arrival
times in the previous local time zones. To compute the minimum clock period for a
latch based circuit, a linear programming method is used in [SMO90b], as described
in Section 2.6. However, this method does not work when variations are taken into
account, because all arrival times become random variables and the optimization
target in Algorithm 4 and 5 is also a random variable.

In order to identify the minimum clock period of a latch based circuit, direct tim-
ing specifications are derived in [CZ04,CZ06,ZTC"06]. The timing specification in
common in these methods is that there should be no positive loop in the reduced
timing graph. The cumulative delay shift (M.) of a loop is defined as the sum of all

39

3 Problem Description

delay shifts when the loop is traversed in timing analysis, i.e.,

=) my (3.30)

Ei]'EE

where E is the set of edges on the loop. The nonpositive loop specification is defined
as that there should be no loop in the reduced timing graph whose cumulative delay
shift is positive.

A proof of this nonpositive loop specification is shown in [ZTCT06]. Assume the
arrival time at node i is denoted as AY. After traversing across a loop k times, the
arrival time at i is denoted as Af. According to (2.10), the arrival time across a
latch is no smaller than the one with the latch assumed transparent. Therefore, the
relation between Ai-‘ and AY can be established as

A > A+ kY my =AY + kM, (3.31)
ei]EE

If M. in (3.31) is positive, the arrival time returning to the initial node will eventually
become infinity after sufficient loop traversals and violate the setup time constraint
of the latch. Therefore, the nonpositive constraint can be expressed for each loop as

Mc=) m; <0 (3.32)

El']‘EE

The delay shift m;; in (3.35) is defined as q; + A;; — ¢;; in (2.7), where g; and A;; are
random variables. By replacing m;;, the nonpositive constraint can be expressed as

Y (gi+Aij—gij) <0 (3.33)
El'jEE

In [ZTC"06] the clock phase shift ¢;j is assumed as constant times the clock period,
i.e, ¢;j = g;;T. Therefore the constraint becomes

Y @i+ /) Y <T (3.34)

ei]'EE ez]EE

The left side of (3.34) is a random variable and defines a statistical lower bound for
the clock period, equivalently, minimum clock period for the circuit.

To compute the minimum clock period, all loops in the reduce timing graph should
be enumerated. This is prohibitive when the number of latches is large in the circuit
[CZ06]. To accelerate the enumeration, a loop breaking algorithm is proposed in
[CZ04,CZ06]. In the first step, the reduced timing graph is searched in a depth-first
order. All backward edges which form loops are removed from the graph and saved
as a separate edge set E,. The remaining graph therefore becomes a directed acyclic

40

3.2 Statistical Timing Analysis

graph without any loop, denoted as G,. For each edge e from E,, G, is traversed
with a statistical timing engine to compute the arrival time from the end node to the
start node of e. Thereafter, the maximum of cumulative delay shifts of loops across
e is computed by adding the delay shift from the start node to the end node of ¢ to
the arrival time after the traversal of G,. After all edges in E;, are enumerated, the
minimum clock period is computed as the maximum of the lower bounds, which
are the left sides of the constraints in form of (3.34) from all loop traversals.

As stated in [CZ04, CZ06], the method above may miss loops when there are more
than one backward edge in the loop. To increase loop coverage, the reduced timing
graph is searched several times in random order to create the backward edge set.
After each search, the minimum clock period is updated as described above. In this
way, the probability of missing edges can be reduced, at the expense of runtime. The
result from this heuristics is still an approximation and no guarantee can be made
about the completeness of the loop enumeration.

To avoid the heuristics in [CZ04, CZ06], a method based on cycle mean and iteration
mean is proposed in [ZTCT06]. For a loop with n edges in the reduced timing graph,
the cycle mean for the loop is defined as

me = M¢/n (3.35)

where M, is the cumulative delay shift defined in (3.30). After initialization arrival
times at all latches are updated using (2.10) repeatedly. For latch node i, the arrival
time after the kth iteration is denoted as A;‘. The iteration mean Oi-‘ of the kth iteration
is defined in [ZTCT06] as
Ak
ok = 1
k41

(3.36)

In [ZTC06] it is proved that when the iteration number k becomes large enough,
the iteration mean is equal to the cycle mean m. in (3.35) if the node belongs to a loop
or is affected by an arrival time from a loop. Otherwise, the iteration mean is equal
to 0. Therefore the nonpositive constraint can be described as that the maximum of
the iteration means of all latches is no larger than 0 after sufficient iterations. The
exit condition of the iterative arrival time update is that the first and second order
moments of the iteration means of all latches do not change after an arrival time
update. This is also an approximation because the correlation between arrival times
is not considered in this exit condition. Additionally, the clock period should be
given during the iteration because the computation of the first two moments of the
arrival times requires that the clock period is known. This limitation restricts the
method in [ZTCT06] to be used to compute the yield of the circuit against a given
clock period. The complete cumulative probability function of the yield can only be
achieved by sampling the clock period range and run the method in [ZTC*06] for
each sample.

41

3 Problem Description

According to the reasoning of the nonpositive loop constraint, it is only a necessary
condition for latch based circuits. To complete the timing constraint, it is specified in
[ZTC™06] that the arrival times should meet the timing constraints of corresponding
latches after sufficient iterations. This condition guarantees that the circuit works
correctly after sufficient clock periods from reset, but still can not guarantee the
correct function of the circuit directly after reset. To overcome this limitation, the
timing constraints of latches are checked at the first time when arrival times are
propagated through them in [LCS09a].

3.3 Timing Model Extraction for Static Timing Analysis

Similar to migrating from transistor level to gate level, hierarchical design style is
adopted for further abstraction to overcome increasing design complexities. In a
hierarchical flow, a design is composed of a series of modules at different levels.
In designs using IP macros from third-party vendors, the complete netlists of these
macros are not always available because of IP protection. Instead, timing models
are provided as substitutes of the original netlists. Thereafter, timing analysis is run
using these models to evaluate the performance of the complete system.

Timing models in hierarchical timing analysis are extracted from original circuits
created by IP vendors or other design groups. These models contain only the timing
information needed by the timing verification of the complete design. Therefore they
are much smaller compared to original netlists. Another advantage of using timing
models is the runtime reduction, because most of the timing constraints inside a
module are compressed into a very simple form and only the interfacing constraints
should be verified individually. For static timing analysis, different methods are
already proposed for timing model extraction. In this section, these methods are
reviewed because they may be partially reused in timing model extraction for sta-
tistical timing analysis.

3.3.1 Static Timing Model for Combinational Circuits

To derive the timing model for a combinational circuit, the requirements for such a
circuit are specified first. The timing information of a combinational circuit is rep-
resented using a timing graph, as explained in Section 2.1. An arrival time assigned
to a node in a timing graph saves the maximum delay from inputs of the circuit to
this node. When a combinational circuit is used as a module, there is more than one

42

3.3 Timing Model Extraction for Static Timing Analysis

path from input i to output j. The arrival time A; at output j can be computed by

Aj= max{ max‘{Ai + Wijk}}

iel pi]'kGPi]

= max{A; + max {Wj; }} (3.37)
iel Pijkepij

= max{Ai + Ml]} (3.38)
iel

where [is the set of all inputs of the module. A; is the arrival time at input i and
depends on the application context. W;; is the delay of p;; , which denotes the kth
path between input i and output j. The set of all paths between i and j is denoted
by P;j. M;;j denotes the maximum path delay between i and j.

According to (3.38) the arrival time at an output of a module is determined by the
arrival times at all inputs of the module and the maximum delays from all inputs
to the output. When characterizing the timing model of a module, especially an IP
block, the application context is unknown. For this reason, no assumption about
the arrival times at the inputs should be made. On the contrary, the maximum
input-output delays M;; in (3.38) are exclusively determined by the module.

For a module with m inputs and n outputs, the delay matrix is defined as an m x n
matrix, with entries M;;. From the analysis above, a precharacterized timing model
must have the same delay matrix as the one of the original circuit to retain correct
timing information. For a module with a large number of inputs and outputs, the
delay matrix may be too large to be used as an efficient timing model directly. In
the following, existing timing model extraction methods for combinational circuits
will be reviewed.

Timing models of combinational circuits are normally classified into black-box and
gray-box types [MKB02]. A black-box timing model does not rely on the internal
structure of the circuit and contains the delay information directly. A gray-box
timing model, however, transforms the original timing graph into a smaller one as
the timing model. Therefore, the efficiency of the gray-box timing model extraction
depends heavily on the structure of the original circuit.

For a combinational circuit, the black-box timing model contains the delays between
all inputs and outputs, i.e., the delay matrix directly. An example of black-box is
proposed in [ALST02]. This type of time model has good accuracy because the de-
lay matrix can guarantee accurate arrival time propagation in (3.38). Additionally,
the model extraction algorithm is relatively easy, e.g., the fast algorithm described
in [Sap96] can be used to compute all maximum delays in the delay matrix. How-
ever, the size of a black-box timing model may be much larger than the original
circuit, in case of large numbers of inputs and outputs. To overcome the limitation
of black-box timing models, gray-box timing models are extracted by compressing

43

3 Problem Description

(a) (b)
Figure 3.7: Basic Merge Operations [KM97, MKB02]

the original timing graphs. Some delay edges in the original timing graph are re-
moved or merged and the resulting timing graph is used a gray-box timing model.
The delay matrix of the gray-box timing model, however, is still accurate or a good
approximation to the one of the original circuit.

In a gray-box timing model, two basic merge operations [KM97, MKB02] are applied
to a number of edges and nodes in the timing graph. The serial merge operation
is illustrated in Figure 3.7(a). If n edges with sink nodes ji,...j, leave the same
node k and k has only one fanin edge with source node i, k can be removed and the
edges can be merged so that there are only direct edges between i and jy, ... j,. The
delays of the new edges between i and jj, ... j, are the sums of the weights Wj; and
Wij,, - - - Wg;,, respectively. Similarly, this transformation can be applied in reverse di-
rection, where n edges meet at a node which has only one fanout edge. The parallel
merge operation merges the edges with the same source and sink nodes, as illus-
trated in Figure 3.7(b). A new edge is created to replace the n parallel edges, with
delay equal to the maximum of all delays between i and j, i.e., max{W,... Wj; }.

After applying the serial merge operation, the delays between node i and jj, ...,
do not change. Because the delay between i and j in the parallel operation is de-
termined by the maximum of all edge delays, the parallel operation also does not
change the delay between i and j. Consequently, applying the two basic operations
in the original timing graph does not change the delay of any path going through
a serial or parallel pattern, therefore guarantees the accuracy of the delay matrix.
An example of applying the basic merge operations to the timing graph of c17 from
ISCAS85 benchmarks is shown in Figure 3.8. A serial merge operation is applied to
the subgraph defined by nodes 1, 6, 7 and 10; and to the subgraph defined by nodes
4,5,9 and 11.

The basic merge operations depend on specific structural patterns in the timing
graph. In order to reduce the model size further, the butterfly-a transformation
[KM97] is applied to increase the number of patterns for basic merge operations.
This transformation is illustrated in Figure 3.9 and can only be applied when the

44

3.3 Timing Model Extraction for Static Timing Analysis

—

Figure 3.8: Example of Basic Merge Operations

©
®

50
(b)

condition Wy3 > Wiy + Whs — Woy4 holds in the original structural pattern. After this
transformation, the weights of the newly created edges should meet the conditions
that Wyq = Wis 4+ Wsa, Waz = Wos + Ws3 and Wyy = Wos + Ws4. By adding the first
two conditions together and subtracting the last condition from the sum, the delay
Wis5 + Ws3 of the path formed by nodes 1 — 5 — 3 is always equal to Wy4 + Wo3 —
Wa4. The condition in Figure 3.9 guarantees that the delay Wiz directly between
nodes 1 and 3 dominates the path delay Wj5 4+ Ws3. Therefore the maximum delay
from node 1 to node 3 after this transformation is the same as the one in the original
timing graph. A solution for the weights of the newly created edges is given in
[KM97] as W15 = W14 — W24, W25 = 0, W53 = W23 and W54 = W24. Additional
solutions can be found by adding a value to the weights Ws3 and Ws4 and subtracting
the same value from the weights Wi5 and Wps. After this butterfly-a transformation,
the edge between nodes 2 and 5 and the edge between nodes 5 and 4 can be merged
with edges preceding or following this pattern. If the equal condition in Figure 3.9
holds, the direct edge between nodes 1 and 3 is not needed, because the path delay
Wis5 + Ws3 is equal to the delay Wi3. In this case, the butterfly-a transformation can
always yield very simple structure for the compression of the timing graph.

The butterfly-a transformation in [KM97] can be applied to patterns with two inputs

o @ @& @
Wiz > W Whs — W i
13 = Wiga + Wp3 24 | e

ORO OfRO

Figure 3.9: Butterfly-a Transformation [KM97]

45

3 Problem Description

and outputs. In [ZZH'06], a biclique-star replacement algorithm is introduced to
transform graph patterns with more than two inputs and outputs. In this method,
subgraphs are identified by an iterative search algorithm and transformed to star-
like structure similar to the one in Figure 3.9 for better chance to apply the basic
merge operations.

3.3.2 Static Timing Model for Sequential Circuits

Sequential circuits have two types: flip-flop based and latch based. For each of such
circuit type, different methods to extract timing models will be reviewed in this
section.

In flip-flop based circuits, a signal propagated from an input of a module stops at
the inputs of its fanout flip-flops. The arrival times at the outputs of these flip-flops
start to propagate only after the active clock edges, so they have no dependence
on the arrival times at the inputs of these flip-flops. In other words, the internal
circuit structure between flip-flops is separated from the application context by the
flip-flops at the first level from inputs. The constraints from all paths between flip-
flop pairs are compressed and represented by the minimum clock period, which
can be computed similarly with the method discussed in Section 2.5. Similarly, the
circuit part between the last flip-flops and outputs is also separated from the internal
circuit structure. Consequently, only the constraints from inputs to flip-flops at the
first level and the delays from the last flip-flops to outputs need to be extracted for
timing models. When a module is used in a hierarchical design, the constraints
inside the corresponding timing model are used to verify if the arrival times from
previous modules can meet the timing constraints of the flip-flops at the first level of
the module. The delays in the timing model are used to verify the timing constraints
of the flip-flops inside the succeeding modules.

Normally there is more than one flip-flop which has at least one combinational path
from input i. Because the arrival times at all these flip-flops must meet correspond-
ing setup time constraints, the timing constraint for input i can be written as

max{Ai + Ajj + S]'} <T<+= (3.39)
J
Aj+max{Ajj+sj} < T = (3.40)
J
A +D;<T (3.41)

where A; is the arrival time at input i and is only known after the module is in-
stantiated. A;; is the maximum path delay from i to flip-flop j; s; is the setup time
of flip-flop j. The maximum in (3.40) is performed with all flip-flops which have at
least one combinational path from i. In order to verify the timing of the module,

46

3.3 Timing Model Extraction for Static Timing Analysis

only the result of the maximum computation for input i, denoted as D;, needs to be
contained in the timing model.

The first type of sequential timing model is Interface Logic Model (ILM) [ALS'02].
In this timing model, all circuit components which do not have a combinational
path from an input or to an output are removed from the original circuit. The
remaining circuit components are kept intact in their original status and used as the
timing model. The combinational circuit components in the timing model are not
compacted and contain original delay information corresponding to slope and load.
All interconnects between gates are also kept inside the timing model with extracted
parasitics unchanged. The advantage of ILM is its flexibility and simplicity. Because
the timing model contains the original circuit information, it can be used in any,
even including SPICE-based, design flow.

Another type of timing model for flip-flop based circuits is Extracted Timing Model
(ETM) [ALS'02]. This timing model collapses the gate delays between flip-flops,
inputs and outputs in the interface logic model. The constraint for input i is rep-
resented by the inequality (3.41). For such a constraint, D; is computed using a
static timing analysis engine, e.g., Algorithm 2. Because the slope-load information
should be contained in the timing model, a lookup table is used to describe the
compacted delay D,;.

The extracted timing model has a smaller size compared to the interface logic model
because all circuit components from an input to all its fanout flip-flops are com-
pressed. Similarly, circuit components from the last flip-flops to outputs are also
compressed. This is different from the interface logic model, where all such circuit
components are kept with their original timing information. The extracted timing
model, however, can only be used for gate-level verification, because all information
at transistor level is discarded during the delay collapse step. A similar method to
generate extracted timing model is proposed in [MKB02], where graph based com-
pression is used to identify the constraints and the minimum clock period. This
method has the advantage of retaining delay edges with additional assertions in the
circuit, but with more complex extraction computation.

For latch based circuits, the method in [MKBO02] retains all latch nodes and collapses
all gate delays. The resulting timing model still contains latches to allow arbitrary
level of transparency. Because latches are not merged or discarded, the runtime of
complex timing analysis algorithms, e.g., [SMO90b], is still large when using ex-
tracted timing models. Another method to extract timing models for latch based
circuits is proposed in [VPMS97], where timing constraints at the inputs of a mod-
ule are abstracted. Because latches can be transparent, this method substitutes the
constraints iteratively across latches. To reduce complexity, latch transparency level
is assumed to be a predefined value. This assumption is too strict because latch
transparency can not be fixed during timing model extraction. In the interface logic

47

3 Problem Description

model [ALS"02], timing model extraction for latch based circuits is also covered.
The level of latch transparency, however, is specified before timing model extraction
so that this method assumes the same limitation as [VPMS97]. In the extracted tim-
ing model [ALS™02], the level of latch transparency is computed from prespecified
arrival times at inputs of the module. Anytime these arrival times are out of range
of the specification, the timing model should be regenerated for accuracy.

3.3.3 Timing Verification with Static Timing Models

With extracted timing models, the performance of a hierarchical design can be eval-
uated in shorter runtime and with reasonable accuracy. For combinational circuits,
the acceleration of timing analysis of the complete hierarchical design comes from
the smaller size of timing models compared to original circuits. For sequential cir-
cuits, timing verification of the complete design is performed only with the extracted
timing constraints related to inputs and outputs. Compared to internal structures
of original modules, the numbers of constraints in such timing models are much
smaller. For instance, only one constraint is extracted for an input of a flip-flop
based circuit. Therefore, the total number of constraints contained in the timing
model is always one larger than the number of inputs, regardless of the number of
circuit components inside the module. The additional one constraint specifies the
minimum clock period for the paths between flip-flops.

When using the extracted timing models, the timing verification of the complete de-
sign may need adaption according to the types of timing models. For combinational
circuits, the gray-box timing model is in the form of netlist or timing graph. The
black-box timing model can also be represented with netlist or timing graph, with
direct edges between inputs and outputs. Consequently, the verification algorithm
for the complete hierarchical design needs no revision. However, the extracted tim-
ing models of sequential circuits are in the form of constraints and delays. After a
module is instantiated in a hierarchical design, the arrival times, A; in (3.41) at the
inputs of the module become known. Therefore, each constraint in (3.41) defines
a lower bound of the clock period. Additionally, the minimum clock period T,
specifying the constraints from paths between flip-flop pairs should also be verified.

Timing models for latch based circuits are more complex than for flip-flop based
circuits. Because an arrival time at an input may propagate through several levels of
latches, more than one constraint for the setup times of the transparent latches may
be extracted for the input. All these constraints including the minimum clock period
must be verified for the complete hierarchical design. Therefore the hierarchical
timing verification flow becomes even complicated and needs further adaption to
work with these timing models.

48

3.4 Hierarchical Statistical Timing Analysis

3.4 Hierarchical Statistical Timing Analysis

With process variations modeled by random variables directly, statistical timing
analysis can overcome the pessimism in the worst-case design methodology. Be-
cause the traditional IC design flow heavily depends on the results of timing anal-
ysis, the application of statistical timing analysis demands renovation in the digital
design methodology. In hierarchical timing analysis, new challenges arise when
process variations are considered. Facing these variations, one of the statistical tim-
ing analysis algorithms discussed in Section 3.2 can be applied as a timing engine to
extract timing models from different types of circuits. Because of correlation, timing
verification of the complete hierarchical design with statistical timing models also
needs further processing.

With process variations considered, all gate delays in a module are random vari-
ables. This causes most of the methods proposed for static timing model extraction
not to work anymore. For example, the netlist transformation methods for combi-
national circuits proposed in [KM97, MKB02], such as butterfly-a and biclique-star
replacement, depend on special patterns in edge delays. Because all delays are ran-
dom variables and are represented by their moments of different orders, no simple
relation similar to the one in Figure 3.9 can be established. However, some other
transformations, e.g., basic merge operations in Figure 3.7, still work because only
topological structures are required regardless of the relations between gate delays.

The second challenge in hierarchical statistical timing analysis is correlation han-
dling between different modules. Because of spatial correlation, all gate delays are
correlated with each other. Consider two gates in different modules, the correlation
between their delays depends on their on-die distance. However, this on-die dis-
tance is unknown during timing model extraction because the positions of modules
can only be fixed after they are instantiated into a design. Therefore, no knowl-
edge about correlation between different modules can be established. Additionally,
a module can be instantiated more than once, for example, in multi-core CPU sys-
tems. In this case, there is also correlation between delays in different instances of
the same module. Consequently, correlation information between delays in differ-
ent modules can not be incorporated into timing models. Instead, this correlation
must be handled during timing verification of the complete design with extracted
timing models. This is a completely new challenge in hierarchical statistical timing
analysis, because the correlation between modules needs not to be considered in the
traditional static hierarchical flow.

Hierarchical statistical timing analysis started to attract research attention only after
the gradual maturing of statistical timing analysis. As a new research area, only
one solution [GVTGO08, GVTG09] is proposed to deal with the new challenges. For
statistical timing model generation of flip-flop based circuits, this method extends

49

3 Problem Description

the classical extracted timing models in [ALST02] to incorporate process variations.
For timing verification of the complete design, a new variable substitution method
is proposed to establish the correlation between modules. In the following, both
algorithms will be explained in detail.

3.4.1 State of the Art in Statistical Timing Model Extraction

As the most widely used design style, flip-flop based circuits first gained atten-
tion in statistical timing model extraction. Similar to the extracted timing models
in [ALST02], a timing model in [GVTG08, GVTG09] contains the maximum delays
from inputs of the module to their fanout flip-flops in the reduced timing graph.
The delays from flip-flops to outputs are also included for timing verification of
succeeding modules. These delays are represented as linear functions of process
parameters in [GVTGO08, GVTG09] extracted from the results of SPICE simulation.

A parameter can be split into three parts as in (3.2). If more than one process param-
eter is considered, the die-to-die parts of the random variables for different process
parameters may have correlation between them. With a decomposition method, e.g.,
principal component analysis [Jol02], these random variables can be represented as
linear combinations of independent ones. Assume there are m independent ran-
dom variables ¢;,i = 1,2,...m after decomposition modeling die-to-die variations
of devices; and n random variables 7;,i = 1,2,...n for interconnects. The random
variables ¢; and #; are shared by delays in all modules of a hierarchical design
and need no additional processing during hierarchical statistical timing analysis. In
addition to die-to-die variations, process parameters contain within-die variations.
The correlation between these within-die variations depends on the distance of de-
vices on the die. After the die area of the module is partitioned into a grid [CS03],
the corresponding variables are also decomposed to independent random variables
Aii=1,2,.. k.

With all process parameters represented by independent random variables, the delay
for path p is assumed in linear form as

m n k
dp = d() -+ Z aiéi + Z bﬂ]i + 2 Ci)\i + re (342)
i=1 i=1 i=1
where a;, b; and c; are the coefficients of the independent random variables. €
represents the purely random part of the path delay, with r as coefficient. dj is the
nominal path delay without variation considered. The objective of statistical timing
model extraction in [GVTGO08, GVTGO09] is to determine all coefficients of a critical
path by SPICE simulation.

To reduce the complexity of path delay simulation, the coefficients for ¢;, #;, A; and
€ are processed separately. During the coefficient determination of each type of

50

3.4 Hierarchical Statistical Timing Analysis

random variables, the variations of other random variables are not considered. For
example, if only the die-to-die variations of devices are considered, the path delay
can be simplified as

dp =do+a181 +axlo +alz + - + amlm (3.43)

For a specific path, 2m + 1 path delays are obtained by setting the random variables
in (3.43) to different corners. In the first run, all random variables are set to their
nominal values. In the remaining simulations, each random variable from ¢; is se-
lected and set to its value at o with other variables in ¢; at their nominal values.
Similarly this variable is sampled at its —¢ for another simulation. After the m vari-
ables are processed, 2m samples in total are created. Thereafter, the transformation
matrix for correlation decomposition is used to transform these sample values back
to the values of the original process parameters. These parameters are applied to
run SPICE simulations for path delay samples. With the total 2m + 1 simulation
results, the regression method proposed in [MRO6] is used to determine the m co-
efficients 4; in (3.43), by minimizing the error of mean square. Similar to the steps
for a;, the coefficients b; and c; in (3.42) are also determined considering one type of
variation once a time.

The determination of the purely random part in (3.42) is more complex because
of the large number of random variables used to model mismatch inside digital
gates. In [GVTGO08, GVTG09], an independent random variable is assigned to each
parameter per transistor to model mismatch effect from manufacturing process. In
order to evaluate the sensitivity of a path delay to these mismatch random variables,
process variations from die-to-die and within-die variations are not considered, i.e.,
¢i, n; and A; in (3.42) are assumed to nominal values. This is similar to the way
to determine a;, b; and c; in (3.42). Consider a path with [transistors on it and g
independent random variables are used to model the mismatch of parameters for
each transistor. The path delay is expressed in a linear form as

q q q
dp =do+) _ri€ri+) o€+ -+ Y rii€li (3.44)
i—1 i—1 i—1
=dg + rpep (3.45)

where ¢€j; is the random variable used to model the purely independent process
variation of the ith parameter of jth transistor on the path. rj; is the coefficient of €;;.
The effect of all these independent random variables ¢;; is merged into one random
variable €;, corresponding to € in (3.42).

To determine the coefficients r;; in (3.44), each random variable €;; should be sam-
pled. Because all random variables are independent, the number of them can not be
compressed using parameter decomposition. With a large number of independent

51

3 Problem Description

random variables and different slope-load combinations, the identification of sensi-
tivities of the path delay to mismatch random variables using SPICE simulation is
very expensive. In [GVTG08, GVTG09], SPICE simulations of a path corresponding
to different slope-load combinations are accelerated by ignoring random variables
which are not significant to the path delay. As the initialization step, SPICE simu-
lations corresponding to one slope-load combination with all random variables are
fulfilled. From the results of these simulations, the coefficients r;; are determined for
this slope-load combination. In the following steps to determine rj; corresponding
to other slope-load combinations, the number of random variables is reduced. First,
the random variables with coefficients equal to 0 in the result of the first step are
discarded. Thereafter, the significance of other variables is investigated by setting
them to worst-case points and running SPICE simulations. These worst-case corners
are determined by the standard deviations of the random variables and the sign of
their coefficients from the first step. If some random variables do not affect the vari-
ance of the path delay significantly, they are also discarded in following simulations
to determine coefficients rj; corresponding to further slope-load combinations.

After the coefficients for die-to-die, within-die and the purely random variables
are determined, all delays in the extracted timing model are in the linear form of
(3.42). When such a module is instantiated in a hierarchical design, the successive
delays are summed up and verified against corresponding timing constraints. The
correlation between delays is contained in these linear forms by sharing the same
random variables.

As the first method proposed for statistical timing model extraction, this method
can effectively capture the delays related to inputs and outputs of a flip-flop based
module. However, timing model extraction with SPICE simulation is very slow,
especially when different parameter corners are simulated at transistor level. Ad-
ditionally, the constraints from paths between flip-flop pairs are not considered.
Because the number of these paths are very large in industrial designs, the SPICE
simulation based method can not extract corresponding constraints in reasonable
runtime.

Specifically in the details of this method, the paths are preselected for statistical
evaluation. For example, to extract the setup constraint at a flip-flop which has a
combinational path from an input, the critical path from this input to the flip-flop is
characterized. However, the selected path may not be the critical one in the context
of statistical analysis, because any path has a certain probability to become critical
after manufacturing [XZVV06, LLCP08,MQSB09]. Another limitation of this method
is in the step to determine coefficients of independent variables. These variables are
only sampled at the corners of standard deviation. Thereafter, the coefficients are de-
termined by a regression method using the results of SPICE simulations. However,
the accuracy of such sampling and regression is not proved in [GVTGO08, GVTG09].
For modeling mismatch effect, each parameter per transistor is assigned a purely

52

3.4 Hierarchical Statistical Timing Analysis

random variable. Consequently a large number of random variables are involved
into simulation. This is because the gate modeling level is omitted in the discussed
method, so that identifying a path delay needs to sample all purely random vari-
ables on the path, rather than characterizing the coefficients of the random variables
for each type of gate.

3.4.2 State of the Art in Hierarchical Statistical Timing Analysis

In static timing analysis, extracted timing models can be easily integrated into a hier-
archical flow. The timing verification algorithm for the complete hierarchical design
needs only small revision to incorporate different timing models, as discussed in
Section 3.3.3. Hierarchical statistical timing analysis, however, needs an additional
step to handle the correlation between modules after they are instantiated into a
design. In Figure 3.10 two modules A and B are illustrated on a die as an example.

Because of spatial correlation, the characterized delays in timing models are corre-
lated. Consider the linear delay form in (3.42). The random variables ¢; and #; model
die-to-die variations so that they are shared by all models. The correlation result-
ing from these variables can be computed using their coefficients a4; and b; in (3.42).
But the random variables A; are generated from the correlation matrix of random
variables which model the within-die variations inside the die area of the module.
In different modules, the sets of variables A; are different. Therefore no correlation
from within-die variations between two modules can be established by variable shar-
ing. This is reasonable because within-die correlation between modules can only be
determined with layout information of module instances. During statistical timing
model extraction, such correlation information can not be handled because even the
number of grid cells for the complete hierarchical design is unknown.

To solve this problem, a variable replacement method is proposed in [GVTGOS,
GVTGO09]. The basic idea can be summarized in the following. The die area of a
module is partitioned in the same way during timing model extraction and during
timing analysis of the complete design. Therefore, a random variable representing
the variation of a process parameter is the same when assigned to the same grid
cell during timing model extraction and hierarchical analysis. Assume that the t
correlated random variables modeling process variations in a module are denoted
as p1,p2, ... pt. For module A in Figure 3.10 ¢ is set to nine, equal to the number of
grid cells after partition. During timing model extraction, the t correlated random
variables are decomposed into k independent ones Ay, A, ... Ag. In order to reduce
the number of random variables, the smallest eigenvectors and eigenvalues are not
included into the decomposition, so that ¢t > k. Consequently, the decomposition

53

3 Problem Description

T 1T]
module A | spatial correlation

'“*"“f?’/ 2

F e —+ = =4 — = 4

module B

Figure 3.10: Correlation Between Modules

using PCA can be written as a set of linear equations.

p1 =H1 + a11A1 + oAy + - - aqAy
P2 =M + a1 A1 + oAy + - - -+ appAg

: (3.46)
Pk =Pk + agAr + agoda + - -+ agedi
pr =t +and +apdy + -+ agdy

p=ArA+u (3.47)

where A is the t x k coefficient matrix formed by aq; to ay. p = [p1,p2,...p:]" and

A = [A1, Ay, ... A¢]T. Compared to (3.47) the decomposition in (3.8) does not include
the mean vector y because the nominal values of process variations are already
merged into the nominal gate delay in (3.5).

In the method proposed in [GVTG08, GVTGO09], k equations from (3.46) are stored
in the timing model, where k is the number of independent random variables after
decomposition, used in (3.42). It is not explained in [GVTGO08, GVTG09] how these
k equations are selected. Problems in such a selection will be discussed later in this
section. The variables modeling process variations corresponding to the selected k
equations are denoted with p,, which is a subset of p. The coefficients of the selected
k equations from a k X k matrix Ay, which is a submatrix of A. When the module
is instantiated into a hierarchical design, the k random variables Ay, Ay, - - - Ay are
mapped back to linear combinations of the original variables representing process
variations by

Pr = AkA + (3.48)

where py, are the nominal values corresponding to the selected transformation equa-
tions.

54

3.5 Summary

With (3.48) a delay in the timing model can be expressed as a linear combination of
variables in p,, which are the variables assigned to the grid cells covering the die
area of the module in the complete hierarchical design. After all random variables
in the timing model are replaced by corresponding variables representing process
variations, these variables are decomposed using the correlation matrix created from
the grid for the die area of the complete design. Thereafter, all delays inside tim-
ing models are transformed into linear combinations of the new set of independent
random variables. The correlation between delays inside different modules is es-
tablished again by sharing the same set of random variables. Finally, a standard
statistical timing analysis algorithm, e.g., [VRK"04], or Monte Carlo based method
can be used to compute the timing performance of the complete design.

The discussed correlation handling method can effectively incorporate the correla-
tion between modules after instantiation, thus guaranteeing the accuracy of timing
analysis of the complete design [GVTG08, GVTG09]. However, this method still
has limitations. The correlation is handled by selecting k transformation equations,
but it is not specified how these k equations are selected. If not selected properly,
the submatrix Ay may be rank deficient, because t is larger than k so that the ¢
row vectors in A are linearly dependent. When vector p, is also considered, the
new linear system (3.48) may have more than one solution or have no solution. In
both cases, the backward transformation from the decomposed random variables
to the original variables is not feasible. Additionally, there are also circuit compo-
nents which are directly implemented in the top design. The correlation between
these circuit components and the ones inside modules are not studied in the method
in [GVTGO08,GVTG09].

3.5 Summary

Relative process variations become large in deep submicron technology nodes. Ac-
cording to the characteristics of correlation, a variation can be modeled by a sum of
die-to-die, within-die and independent variables. After decomposing the variables
representing within-die variation, gate delays are modeled as functions of inde-
pendent random variables. Different methods are proposed to evaluate the timing
performance of a circuit from these statistical gate delays, with trade-off between
runtime and accuracy. The first step of applying statistical timing analysis in a
hierarchical design flow is to extract timing models. Methods for timing model ex-
traction without considering process variations are reviewed. Based on these meth-
ods, process variations are considered in a state-of-the-art method of timing model
extraction for flip-flop based circuits. To handle correlation between modules, an
additional step is needed in the hierarchical statistical timing analysis flow. The

55

3 Problem Description

problems of the reviewed method of hierarchical statistical timing analysis will be
addressed in the following chapter.

56

Chapter 4

Statistical Timing Model Extraction

In hierarchical statistical timing analysis, the extracted timing models affect the per-
formance and accuracy of verification significantly. In this chapter, new methods
to extract timing models for combinational circuits, flip-flop based and latch based
circuits are explained. The preliminary results from these methods have been pub-
lished in [LKST08,LCS™09b, LCS09a].

For combinational circuits, the probabilities of delay edges on the critical paths
between any input and output pairs are evaluated. Small probability indicates
that an edge does not affect the delay matrix of the combinational circuit signifi-
cantly. Therefore, edges with such probability smaller than a predefined threshold
are removed to compress the timing model. For flip-flop based circuits, the ex-
tracted timing model [ALST02] is extended with a standard statistical timing anal-
ysis engine [VRK'04]. The constraint from paths between flip-flop pairs missing
in [GVTGO08, GVTG09] is also extracted. For latch based circuits, the timing spec-
ification discussed in Section 2.3 is first reviewed. Thereafter, this specification is
restructured to extract timing constraints for inputs of the module and paths be-
tween latches. The extracted timing models have small size and are adaptive to
yield evaluation against arbitrary clock period.

4.1 Timing Model Extraction for Combinational Circuits

A combinational circuit contains only logic gates, such as AND, OR, NAND etc..
Unlike registers, the arrival times at logic gates start to propagate to the next gates
instantly. Although purely combinational modules are rare in real designs, combi-
national paths between inputs and outputs exist widely in sequential circuits. For
hierarchical statistical timing analysis, these paths should be processed as combina-
tional circuits.

57

4 Statistical Timing Model Extraction

The extracted timing model for a combinational circuit should have the same max-
imum delays between inputs and outputs, as specified in (3.37) and (3.38). The
basic idea of extracting a timing model for a combinational circuit is to trans-
form the timing graph of the original circuit into a smaller one. Because of the
smaller numbers of edges and nodes in the timing model, the runtime of timing
verification for the complete design can be reduced. This concept is already used
in [KM97, MKB02,ZZH*06], where the basic merge, butterfly-a and biclique-star re-
placement operations are used to reduce the number of edges in timing models for
static timing analysis.

When process variations are considered, all edge delays in the timing graph become
random variables. This change makes the delay pattern dependent transformation,
e.g., butterfly-a in [KM97], infeasible. However, the two basic merge operations il-
lustrated in Figure 3.7 can still be applied. In these two operations, only structural
patterns are identified and transformed. The sum and maximum computations in
these transformations can be performed statistically when variations are considered,
so that the delay matrix of the combinational circuit is still maintained. In the result
of Figure 3.8(b), the timing graph cannot be compressed further because no struc-
tural pattern of the basic merge operations exists. In this section, a new method to
remove noncritical edges is proposed. This method can not only reduce the number
of edges in the timing graph effectively, but also increase the number of structural
patterns to apply the basic merge operations.

4.1.1 Concept of Noncritical Edge Removal for Static Timing
Analysis

In this section, the concept of noncritical edge removal will be explained in the
context of static timing analysis. In a combinational circuit there is normally more
than one path from an input to an output in a module. In timing analysis, only
the paths with dominant delays, called critical paths, determine the delay matrix
of the module. From this observation, the edges which are never on critical paths
can be removed without affecting the timing information of the module, therefore
reducing model size while accuracy is still preserved. Note that the definition of
critical path in this section is different from the classical one, where the critical path
dominates the paths starting from all inputs to all outputs of a circuit. A critical
path in this section, however, dominates all the paths starting from a specified input
to a specified output.

Figure 4.1 illustrates the concept of the noncritical edge removal, where all edge
delays are assumed as unit delay for simplicity. If all pairs of inputs and outputs
of the circuit are investigated, it can be found that the edge between nodes 6 and
10 locates only on the paths from inputs 2 and 4 to output 10. However, the critical

58

4.1 Timing Model Extraction for Combinational Circuits

(a) (b) (©)

Figure 4.1: Example of Noncritical Edge Removal

paths of both input-output pairs pass through nodes 6 and 8. In other words, the
edge between nodes 6 and 10 is dominated by the path delay between 6, 8 and 10.
Therefore, the removal of the edge directly between nodes 6 and 10 does not affect
the maximum delays between inputs and outputs of the circuit. After this removal,
a basic serial merge operation can be applied to the subgraph defined by nodes 2, 4,
6 and 8 in Figure 4.1(b) to compress the timing graph further. The resulting timing
graph is shown in Figure 4.1(c). Similarly the noncritical edge between nodes 4 and
11 can also be removed to compress the timing model.

To reduce the size of the timing graph, only edges never on the critical path of any
input-output pair can be removed. To identify the noncritical edges, static timing
analysis from each input using Algorithm 2 is run. This algorithm computes arrival
time from an input to all nodes in its fanout cone in the timing graph. After each
run of Algorithm 2, critical paths from the input to all outputs are identified by
backward tracing from outputs. The complete algorithm is shown in Algorithm 6.

Lines 10-18 in Algorithm 6 identify the edges on the critical path between an input
and an output. At a node in the timing graph, if its arrival time is determined by
the arrival time at one of its fanin nodes and the corresponding edge delay, this
edge is set as critical and the path is traced backwards further, as shown in lines
11-17. Note that the backward tracing selects only one fanin node in the iteration,
because one path is enough to determine the maximum delay between the input
and the output. Lines 4-6 clear all arrival times, so that only the nodes which are in
the fanout cone of the current input have arrival times larger than 0 after running
Algorithm 2. This guarantees that the backward critical path traversal is performed
only in the fanout cone of the current input. After applying Algorithm 6, all edges
which are never marked as critical can be removed from the timing graph without
affecting the maximum delay between any input and output.

4 Statistical Timing Model Extraction

Algorithm 6: Critical Edge Identification in Static Timing Analysis

// variables
ny: nodes;
A,: arrival times;

N =

foreach primary input n, do

foreach node n. in the timing graph do
‘ Ap — —o9;

end

run Algorithm 2 from n,;

foreach primary output n, do

n; <— ng,

10 while n; # n, do

1 foreach fanin node n; of n; do

12 if A] + W]z = Ai then

13 mark edge e;; as critical;

© 0 N S U e W

14 n; < n jr
15 break;
16 end

17 end

18 end

19 end
20 end

4.1.2 Noncritical Edge Removal in Statistical Timing Analysis

When process variations are considered, the basic concept of the noncritical edge
removal needs revision to handle probabilistic gate delays. In statistical timing anal-
ysis, all delays are random variables. A path delay can only dominate the delay of
another path with certain probability. As an example, consider there are two paths
with statistical delays. Because both path delays are described with nontruncated
distributions in most statistical timing analysis algorithms, the probability that one
path delay is larger than the other is always positive. This is different from that in
static timing analysis, where a path dominates another always with either 100% or
0 probability. Because every path can be critical in statistical timing analysis, any
edge can also be critical with certain probability.

If process variations are considered, the arrival time at a node in Algorithm 6 is com-
puted using a statistical timing engine, e.g., [VRK"04], where the maximum of two
arrival times is computed by linear combination of them with variance matching,
shown with (3.20) in Section 3.2.3. This computation makes the backward critical

60

4.1 Timing Model Extraction for Combinational Circuits

path traversal in Algorithm 6 infeasible, because the condition in line 12 can rarely
be true even for all fanin nodes. Therefore, a new method is needed to identify the
edges which are noncritical to the module.

Because the critical path problem is crucial for circuit optimization, several methods,
e.g., [XZVV06, LLCP08, MQSB09], are already proposed for statistical timing analy-
sis. In this section, the method proposed in [XZVO08] is extended to identify critical
edges in the timing graph with the concept of criticality.

The criticality c;; for an edge e;; between node i and j is defined in [XZV08] as the
probability that the edge is on the critical path of the circuit after manufacturing.
This criticality is first computed in [VRK'04] by forward and backward propaga-
tion. Because this method does not consider the correlation during the recursive
computation, the resulting criticalities are inaccurate [XZV08]. To improve the ac-
curacy of criticalities, cutset based methods are proposed in [XZVV06, MQSB09].
However, both methods are complex and time consuming. From circuit view, the
method in [XZV08] directly computes edge criticalities after forward and backward
traversals of the circuit with a standard statistical timing engine. Therefore this
method is very fast and can yield accurate results.

The magnitude of the criticality defined in [XZV08] designates the probability that
the edge affects the delay of the critical path of the complete circuit. In the noncritical
edge removal method in Section 4.1.1, an edge can be removed only if it does not
affect any maximum delay between inputs and outputs. In order to represent the
probability of an edge on the critical path between a pair of input and output, the
definition of criticality in [XZV08] is extended as cf].q, which defines the probability
that the edge is on the critical path between input p and output 4. If the maximum
of cZ.q corresponding to all pairs of inputs and outputs is smaller than a predefined
probability threshold, the edge does not affect the delay matrix of the circuit with
significant probability and can be removed from the timing graph.

The maximum criticality of an edge corresponding to all pairs of inputs and outputs

is defined as
m __ pq
cij = rr;%x{cij 4.1)

where the maximum is computed with all pairs of inputs and outputs. Because
the computation of c;’]? from all cqu is straightforward, only the computation of the

criticality cf}q will be explained in the following.

In [XZV08], the criticality of an edge is computed by splitting the paths into two
sets. This method is applied to compute the criticality of an edge corresponding to
an input-output pair in this section. The concept of path split is the same, but the
paths in consideration are only between an input and an output.

61

4 Statistical Timing Model Extraction

® @

[/

Figure 4.2: Path Partition according to an Edge

In a timing graph, there are many paths passing through edge ¢;;. All paths in the
circuit are categorized into two sets. All paths between an input p and output g and
passing through ¢;; are in the set P;;. All paths not passing through e;; are denoted
as a set 73_1] In the denotations of the two path sets, input and output indexes p
and g are not included for simplicity. The concept of this partition is illustrated in
Figure 4.2. The maximum of delays of all paths passing through e;; is denoted as
D;j; the maximum of delays of all paths not passing through ¢;; is denoted as Dy If
edge ¢;; is on the critical path, the longest path in 7;; dominates the longest path in
ﬁij, which means Di]- > Difj. This statement is also valid vice versa. According to its

definition, the criticality cqu can be computed as

pq _
cij = Prob{D;; > Difj} (4.2)

As proposed in [XZV08], the criticality computation can be performed further as
cgﬂ = Prob{D;; > Dy, D;; > Dy} (4.3)
= PVOb{Di]' > max{Di]', DE}} (44)
where the probability is computed as all the conditions inside the bracket are true at
the same time. max{Djj, D;j} is the maximum delay of all paths between the input
p and the output q and is equal to the maximum input-output delay M, defined in
(3.38). This maximum delay can be evaluated very fast by applying Algorithm 2 to

each input, but with all sum and maximum computations replaced by the statistical
ones proposed in [VRK'04].

Similar to the explanation in [XZV08], the maximum delay of paths passing through
edge ¢;; can be computed by

Dij = A+ Wi]' + R]' (4.5)

where A; is the maximum delay from input p to node i and equal to the correspond-
ing arrival time exclusively from p. R; is the maximum delay from output g to node

62

4.1 Timing Model Extraction for Combinational Circuits

j and equal to the corresponding negative required time exclusively from g, with the
required time at g set to 0. Wj; is the statistical delay of edge e;;.

A short proof of (4.5) is given in the following. The delay of a path ps from node p
to i is denoted as W;. The delay of a path p; from node j to g is denoted as W;. A
path from node p to node g combines three segments and its delay can be computed
by Ws + Wij + W;. Assume there are k; paths from p to i, and k; paths from j to g.
The total number of paths between p and g and passing through ¢;; is k; x k;. The
maximum delay D;; of these paths can be computed as

Dij = s:I{}g.).(.k,-{WS + Wi]' + Wt}
t=1,2,...kj

= W + W;; W, 4.6
pax AWeH Wi+ max {W}) (46)

= Si{}i.’fki{m + Wi + R}

= s:I{}g.).(.k,-{WS} + Wi]' + Rj

:Ai—FWi]'—i—Rj

Combined with statistical sum and maximum computations in [VRK"04], Algo-
rithm 2 [Sap96] is used to propagate arrival times to all nodes from each input. If
an output node is reached, the arrival time at it is the maximum delay between the
current input and the output, i.e., max{D;;, Dﬁ} in (4.4). Similarly, this arrival time
propagation can be performed backwards, so that the maximum delays to all nodes
from the output can be computed. For each input-output pair, the criticality of each
edge is computed using (4.2). The maximum criticality 0?]7 of an edge is updated by
the larger one of its current value and the newly computed criticality.

4.1.3 Timing Model Extraction with Noncritical Edge Removal

The computed maximum criticality designates the maximum of the probabilities
that an edge affects the delays between all pairs of input and output of the circuit. If
this probability is smaller than a predefined small threshold J. approximating 0, the
removal of this edge does not affect the accuracy of the timing model significantly.
The complete algorithm to compute criticality and noncritical edge removal is listed
in Algorithm 7.

In the static version of the noncritical edge identification listed in Algorithm 6, the
required time is not computed for every node. Only one critical path is traced
backwards according to the arrival times computed in the forward propagation.
This is different from the statistical case in Algorithm 7, because required times at

63

4 Statistical Timing Model Extraction

Algorithm 7: Statistical Model Extraction for Combinational Circuits

O© o N &

10
11
12
13
14
15
16
17

18

19

20

21

22

23
24

25
26
27
28
29

30
31
32

// variables
Nny: nodes;
A,: arrival times;

// clear all maximum criticalities
foreach node n. in the timing graph do

m .

Cij +— 0

end

// edge criticality computation

foreach primary input n, do
foreach node n. in the timing graph do
‘ Ac < —o0;
end
run Algorithm 2 from n,;
foreach primary output n,; do
foreach node n. in the timing graph do
‘ Re ¢ —o0;
end
run Algorithm 2 backwards from ng;
foreach edge e;; in the timing graph do
compute D;; with (4.5);
compute criticality cqu with (4.2);
if cf].11> clf;?pghen
Cij < Cij';
end
end
end
end

// noncritical edge removal
foreach edge e;; in the timing graph do

if c?]? < 6. then

‘ remove e;; from timing graph;

end
end
// compress timing graph with basic merge operations
repeat

‘ merge serial and parallel patterns similar to Figure 3.7;

until no change in the timing graph ;

64

4.2 Timing Model Extraction for Flip-flop Based Circuits

all nodes are needed in lines 16-22. In the backward traversal, only the nodes in the
fanout cone of the input n, should be visited. This can be used to accelerate the
computation instead of visiting all edges in the timing graph in Algorithm 7 (line
16). After noncritical edges are removed from the timing graph, the basic merge
operations are applied to compress the timing model further. All the sum and
maximum computations involved in this algorithm are from the statistical engine
[VRK™04]. The final timing graph is used as the timing model for the verification of
the complete design, with much fewer nodes and edges inside.

4.2 Timing Model Extraction for Flip-flop Based Circuits

For timing extraction of flip-flop based circuits, the most recently proposed method
in [GVTGO08, GVTGO09] uses SPICE simulation based path delay extraction. This
method directly establishes the path delay sensitivities to process variations ignor-
ing the intermediate gate level modeling in the design flow. Because of the long
runtime of SPICE simulation, this method can not capture the path delays between
all flip-flop pairs. These delays are crucial in statistical timing analysis because the
minimum clock period specified by them may dominate the circuit performance.

For hierarchical static timing analysis, the ILM and ETM methods are explained in
Section 3.3.2. In the following, the basics of both methods are discussed to explain
whether they are suitable to be enhanced to extract statistical timing models.

The ILM modeling method removes all circuit components which are not on the
combinational paths from inputs to flip-flops or from flip-flops to outputs. The
remaining part of the circuit is kept in the timing model intact. Therefore timing
analysis at any level can be supported. Because the number of circuit components
between flip-flops is large, they can not be kept in the timing model similar to the
components in ILM. Therefore, the timing constraint from paths between all flip-
flop pairs is usually specified by the minimum clock period in static timing analysis.
When process variations are considered, the minimum clock period becomes to a
random variable and should be checked during the timing verification of the com-
plete design. If a standard statistical timing engine, e.g., [VRK'04], is used, the
final result is a random variable representing the minimum clock period. With this
random variable, the ILM timing model can be extended in a mixed style. This
extension, however, conflicts with the concept of ILM, where combinational com-
ponents are not collapsed for flexibility and accuracy, because the minimum clock
period in this simple extension is computed at gate level and the more accurate
timing information at transistor level is discarded.

The other timing model for flip-flop based circuits is ETM. This modeling method
computes the maximum delay from each input to flip-flops and from flip-flops to

65

4 Statistical Timing Model Extraction

each output. The constraint between flip-flop pairs is also computed directly with a
static timing engine. In this section, the ETM method is enhanced with a standard
statistical timing engine to extract the constraints. The proposed method has short
runtime during timing model extraction and timing verification, with accuracy still
well maintained.

Unlike combinational circuits, a sequential circuit runs at a specified clock period.
The target of statistical analysis is to compute the yield of the circuit at a given
clock period, or at different clock periods for chip binning. For the most flexibility,
the timing model of a sequential circuit should not be extracted against a specified
clock period. Therefore, the clock period T can only be assumed as an unknown
fixed value during timing model extraction.

The minimum clock period extracted from each module should be verified for the
complete design. In static timing analysis, this can be done by specifying the min-
imum clock period of the complete design and force each module to meet such
constraint during their own development. When process variations are consid-
ered, this method can not work anymore because the minimum clock period of
each module becomes a random variable. The final minimum clock period of
the design must be computed from the constraints of all modules together; sep-
arately checking such constraint for each module against a specified clock period
can not result correct yield. Additionally, this computation must be performed
again anytime when a module is changed during design iteration, because such
change may affect the correlation between the minimum clock periods of the mod-
ules. Consequently, the minimum clock period for a module should be included
in its model when process variations are considered. This is a supplement to the
method in [ALST02, GVTGO08, GVTGO09], leading to more accurate statistical timing
models for flip-flop based circuits.

When a flip-flop based module is instantiated in a hierarchical design, its inputs
are connected to the outputs of previous modules, and its outputs to the inputs of
following modules. Observed at the boundary of a module, the timing constraints
can be split into three parts. The first part of the constraint is the setup constraints
of flip-flops with combinational fanin paths from other flip-flops; the second part of
the constraint specifies the setup constraints of flip-flops inside the module, but the
fanin paths are through inputs; the last part of the constraint is for flip-flops inside
following modules with partial fanin paths inside the current module.

Using Algorithm 3, the constraint from all flip-flop pairs is computed in one traver-
sal of the virtual combinational circuit in Section 2.5. All sum and maximum com-
putations in Algorithm 3 are performed using the method in [VRK'04] statisti-
cally. The resulting minimum clock period for the module, denoted as Dr, is in a
parametrized statistical form. The constraint from flip-flop pairs is therefore simpli-

66

4.2 Timing Model Extraction for Flip-flop Based Circuits

fied as constraint Cr.
CF : DF < T (47)

This constraint is the one missed in [GVTGO08, GVTGO09].

The second split constraint specifies that the setup time constraints of flip-flops
connected with inputs should be met. Similar to the timing constraint for flip-flop
pairs, the arrival time from an input k to a flip-flop j can be written as

Ak+Akj§T—Sj=>Ak+Akj+Sj§T (4.8)

where Ay is the arrival time at input k relative to the current clock phase of j. When
extracting the timing model, no assumption should be made about Ay. For input k,
there may be more than one fanout flip-flop. The arrival times at the inputs of all
these fanout flip-flops must meet the constraint in the form of (4.8). By combining
these constraints together, the timing constraint at input k can be written as

Cy : max{Ak + Ak]' + S]} <T <= 4.9)
]
Ap+max{Aj+5i} < T+ (4.10)
]
Ay+D <T (4.11)

where Dj_is computed for all flip-flops j which have direct edges coming from input
k in the reduced timing graph.

For an input k, Dj, can be computed by propagating arrival times from k, where the
arrival time Ay is temporarily set to 0. Finally, each constraint of Cr and Cy,...Cy,
is represented by a random variable respectively. These random variables need not
to be updated if a module is not changed during design iteration. When verifying
the timing of the complete design, only these m + 1 variables are involved for the
module.

If a circuit with m inputs is used as a module in a hierarchical design, the probability
that the complete circuit works properly with clock period T can be computed as

Yield = Prob{C,,Cr,Cy,,...Cy, } (4.12)

where C, represents the timing constraint for other modules in the design, and is
also in the same form as Cr and Cj_ in their timing models. The probability in
(4.12) is computed with all the constraints C,, Cr,Cy,,...Cj, are true at the same
time. The acceleration of timing verification with timing models comes from the
fact that Dy, ... Dj, and especially Dr are much simpler than their counterparts in
the original circuit.

When a circuit is used as a module in a hierarchical design, its outputs are connected
to the inputs of following modules. For example, when the output I of a module is

67

4 Statistical Timing Model Extraction

connected to the input k of another module, the arrival time at k is determined by
the arrival time at [. In order to verify the timing constraints for the fanout flip-flops
of k, a timing model should also contain the delay information at all its outputs.
Normally the output [has more than one fanin flip-flop. After the latching clock
edge, data signals are propagated from all these flip-flops i to I. The data stable time
or arrival time Dg, to I is computed as

DOI = miax{qi + Ail} (4.13)

Assuming there are n outputs in the module, the n arrival times Do, ... Do, are
also included in the timing model. Combining with the setup time constraints, the
timing model for a flip-flop based circuit contains only m + n 4 1 random variables.

4.3 Timing Model Extraction for Latch Based Circuits

Latch based circuits have advantages compared to flip-flop based circuits when pro-
cess variations are considered. Because of transparency, the path delay between a
pair of latches can be compensated by the delays in the next stages. This is a remark-
able advantage of latch based circuits because the delays of paths can be canceled
statistically after manufacturing [HBO6]. Although the levels of transparency in dif-
ferent chips after manufacturing may differ from each other, the functions of these
chips are still correct. Because of latch transparency, an arrival time can propagate
through several latch stages. At each stage, the arrival time must meet the setup
time constraint of the corresponding latch. This leads to complexity in timing anal-
ysis of such type of circuits. By using extracted timing models, however, this timing
analysis can be accelerated in several orders of magnitude. Therefore the application
of such type of circuits can be expanded in practice.

For latch based circuits, different methods are already proposed to extract timing
models for hierarchical static timing analysis. However, the limitations of these
methods makes the direct extension of them to incorporate process variations dif-
ticult. The method in [MKBO02] keeps all latches in the timing model to allow ar-
bitrary latch transparency. Consequently, hierarchical timing analysis with such
timing models is still time-consuming because the number of latches is not reduced.
The second method is proposed in [VPMS97,ALS™02], where the level of latch trans-
parency is assumed. This assumption is too strict because latch transparency can not
be fixed during design time. After manufacturing, even the transparency levels in
different chips may be different.

In this section, a statistical timing model extraction method for latch based circuits
will be explained. This method does not make any assumption on the level of
latch transparency. Instead, statistical conservative transparency level is used for

68

4.3 Timing Model Extraction for Latch Based Circuits

constraint extraction. Unlike other methods for statistical timing analysis of latch
based circuits, such as [CZ04, ZTC'06], the proposed method only assumes that the
clock period is an unknown fixed value. Therefore the extracted timing models can
be used in designs with different clock specifications.

4.3.1 Timing Specification with Inputs for Latch Based Circuits

The basics of timing analysis for latch based circuits are explained in Section 2.3. All
timing variables, including arrival times, departure times, times of enabling clock
edge and latching edge etc., are specified with respect to the origin of the local time
zone. With these variables, the timing constraint at a latch is expressed in (2.10)-
(2.11). Because of latch transparency, arrival times at consecutive latch stages are
dependent, as shown in (2.10). In static timing analysis, the minimum clock period
is computed by transforming the timing specifications into a linear programming
problem. This method dos not work when process variations are considered, be-
cause all constraints and the optimization target are specified with random variables.
To solve this problem, structural methods, such as [CZ04,ZTC106], are proposed for
statistical timing analysis. However, both methods compute the yield of the circuit
against a given clock period, so that are not usable in timing model extraction.

As used in (2.7), edge delays A;; in the reduced timing graph are needed to specify
timing requirements. These delays are computed using Algorithm 2. All sum and
maximum computations during such processing are performed with a statistical
timing engine. Consequently, all edge delays in the reduced timing graph become
parametrized random variables.

The timing specification of (2.10) expresses that the arrival time at a latch depends
on all the arrival times at its fanin latches. When used in a hierarchical design, the
constraints from inputs of a latch based circuit should also be specified. Consider
latch j has an edge from input k in the reduced timing graph. The arrival time at j
is determined by the arrival times at the input and all fanin latches. Consequently,
the arrival time A; in (2.10) is revised as

Aj= max{miax{max{Ai, ri}t 4 mij},ml?x{flk + Mgt} (4.14)

where Ay is the arrival time at input k, and is expressed in the local time zone of
j. Similar to timing model extraction for flip-flop based circuits, no assumption
about Ay can be made during timing model extraction. Similar to (2.11), the timing
constraint at latch j is written as

max{max{max{A;,r;} + ml-]-},mkax{flk + At} +5 < T (4.15)
1

69

4 Statistical Timing Model Extraction

4.3.2 Timing Constraint Restructuring for Latch Based Circuits

When a latch based circuit is used as a module in a hierarchical design, the con-
straint (4.15) should be checked for each latch inside the module. This constraint
is restructured in this section to split the constraints from inputs and from latches
inside the module. The latter are compressed into only one random variable, so that
the size of the timing model can be reduced.

As the first step, (4.15) is equivalent to that each input of the maximum plus s; is
smaller than the clock period T, i.e.,

max{A; + mi]'} +s5;<T (4.16)
1
max{r; +m;} +5; < T (4.17)
1
mkax{Ak + Ayt +s < T (4.18)

where the first two maximum operations are performed with all fanin latches i of ;.
The last maximum is performed with all fanin inputs k of latch ;.

For a fanin latch i, A; in (4.16) can be substituted further with the form of (4.14). The
constraint after this substitution can be split into three parts similarly as

mr?X{Ap + mpi} + mjj + Sj <T (4.19)
mr?x{rp +mpi}+mii+s; < T (4.20)
man{Aq + Aqi} + mi]- + S]' <T (4.21)

where the first two maximum operations are performed with all fanin latches p of i,
and the last maximum is performed with all fanin inputs g of i.

According to (4.16)-(4.21), the arrival time after each substitution is shifted by one
latch stage backwards. The constraints (4.17) and (4.20) define that the data signals
starting from the enabling clock edges of the latches in range of two stages before j
should meet the setup time constraint at j, where all latches in between are consid-
ered as transparent. Similarly, the arrival time from any input in this range should
also meet such timing constraint, as defined by (4.18) and (4.21).

By repeating the substitution backwards through all fanin latches recursively, it can
be observed that the arrival times starting from the enabling clock edges of all latches
in the fanin cone of j must meet the timing constraint of j, because new constraints
similar to (4.20) are created after each substitution. For any inputs in the fanin
cone of j, similar constraints can be inferred. Because each latch in the circuit has
a constraint like (4.15), the recursive substitution above can be run for all latches.
From the viewpoints of arrival times starting from enabling clock edges, the timing
constraints for all latches together can be described as

70

4.3 Timing Model Extraction for Latch Based Circuits

Li: The arrival time from the enabling clock edge of any latch to all latches in
its fanout cone must meet the setup time constraints of these latches, with all
intermediate latches assumed transparent.

Similarly the timing constraints for inputs can be described as

Ly: The arrival time from any input must meet the setup time constraints of all
latches in its fanout cone, with all intermediate latches assumed transparent.

For simplicity, the arrival times mentioned in the following are all with the latch
transparency assumption.

After each backward substitution from (4.16) to (4.21), a constraint similar to (4.19)
is created. Therefore, this backward substitution can be performed infinitely from
any latch across all paths. Because any signal propagation in a latch based circuit
starts from the reset state, the infinite backward substitution can eventually reach
the state just after reset. At this stage, the arrival time in the new created constraint
similar to (4.19) is the time that the corresponding latch goes out of the reset state.
As implicitly used in [ZTC"06,SMO90a], this arrival time is equal to the time of
the corresponding enabling clock edge. Therefore, this new constraint can also be
covered by L; and no further substitution is needed. Because L; and L, are derived
from (4.15) and can cover all the constraints created from (4.15), they together specify
the timing constraints of a latch based circuit completely.

In a reduced timing graph, there are loops across latch nodes. An example of such
loop is illustrated in Figure 4.3. According to L, the arrival time starting from
the enabling clock edge of latch i must meet the timing constraints at all following
latches. The arrival time from latch i can go through the loopi — ji--- = jo- -+ — j3
and back to i. Thereafter, it can continue to propagate across the loop further.

After propagating across each latch, the delay shift defined in (2.7) is added to
compute the arrival time at the latch of the next stage. For convenience of the
following discussion, cumulative delay shift in (3.30) is extended for any path starting

Figure 4.3: Loop Example in Reduced Timing Graph

71

4 Statistical Timing Model Extraction

from latch i to j, denoted as M, ,;, which is the sum of all delay shifts across the
path and is formulated as

Mi%j = Z (QS + At — Sst) (4.22)

est€Ejj

where Ej; is the set of all edges on the specified path. g; is the propagation delay of
latch s. Ay is the edge delay between s and ¢ in the reduced timing graph. &g is the
phase shift of the clock phases of s and ¢. If an arrival time traverses from node i to
j, the arrival time at j can be expressed as

A] =A;,+ Mi_>]‘ (4.23)

For a loop in the reduced timing, e.g., Figure 4.3, the cumulative delay shift start-
ing from i and looping back to i is denoted as M;_,;. According to the proof in
Section 3.2.4, any loop must be nonpositive, i.e., for any loop,

M;; <0 (4.24)

From this observation, the third constraint for a latch based circuit can be described
as

Lz: All loops in the reduced timing graph with statistical delays must be non-
positive.

The constraint Lj is also used in [ZTC"06], but not to simplify the complete timing
specification of latch based circuits.

The constraint L; specifies that the setup time constraint at each latch should be
checked even after infinite loops. With L3 specified, the constraint checking of L,
can stop after a loop is traversed only once. This is because that the arrival time
from the enabling edge of latch i to latch j after traversing a loop is smaller than
the arrival time when j is reached the first time, so that the constraint after a loop
is always dominated by the constraint before a loop is traversed, as formulated
following

7 —I—Mi_>]‘-|-M]'_>]'-|-S]' < ri"‘Mi—)j +5j <T (4.25)
where the loop is formed from j and back to j. The property in (4.25) holds also for
timing constraints propagated from inputs. With L3z as condition, L; and L, can be
revised to Lg; and Lgy.

L1, Lro: The constraints of L; and L, without visiting latches after loops, re-
spectively.

72

4.3 Timing Model Extraction for Latch Based Circuits

With Lgj, Lry and L3 together, the yield of a hierarchical design using a latch based
module can be written as

Yield = Prob{La, Lr1, Lo, L3} (4.26)

where L, is the timing constraint set for the latches in other modules.

In following sections, statistical timing model extraction for latch based circuits will
be explained. The basic idea is that each constraint Lgrj, Lrp and L3 is replaced by
a simpler form in the timing model to compress the constraints from the original
circuit. As an example, the maximum loop cumulative delay shifts will be com-
puted and used to represent L3. During timing verification of the complete design,
these loops need not to be enumerated again. Instead, only the provided variable is
verified against the clock period.

4.3.3 Path Traversal and Clock Scheme

The constraint Lg; defines that the arrival time starting from the enabling clock edge
of any latch must meet the setup time constraints of all latches in the fanout cone of
the latch without through loops, with all latches in between assumed as transparent.
In the reduced timing graph in Figure 2.2, there are many paths starting from a latch.
According to Lgj, arrival times should be propagated through all these paths.

Although loops need not to be traversed individually, they cause interdependence
between arrival times during propagation using block-based methods. For instance,
the propagation starting from node 1 stops at node 2 and 3. Because of the backward
edge from node 4 to 2, the computation of arrival time at either node 2 or node 3
requires that the other to be visited first. If a path-based method is used, the paths
1—+3—=+4—2and1— 2 — 3 — 4 — 2 can be enumerated separately. However,
using a direct path-based method is prohibitive in large circuits for the exploding
number of paths.

For short runtime and acceptable accuracy, a block-based method is used to approx-
imate the path traversal from a node in the reduced timing graph. Such approxima-
tion is also used in other methods of statistic timing analysis for latch based circuits,
e.g., [CZ06]. To solve the problem of interdependence between arrival times, the
method in [CZ06] uses a feedback loop breaking algorithm with heuristics.

The basic idea of the feedback loop breaking is explained in the following. The
reduced graph is searched in depth-first order. During this search, if some fanin
edges of the current visited latch i originate from latches which are in the fanout
cone of i, these edges are removed from the reduced timing graph. The removed
edges are called feedback edges, because there are loops through them starting from i

73

4 Statistical Timing Model Extraction

Figure 4.4: Reduced Timing Graph Example with Feedback Edge Removal

and ending at i. Consequently, the reduced timing graph becomes a directed acyclic
graph. Arrival times can be propagated across this revised graph using a standard
block-based statistical timing method. With latch 1 as starting latch, an example of
the revised timing graph of Figure 2.2 is illustrated in Figure 4.4, where all nodes
are assumed as latches and feedback edges are shown with dashed arrows. Note
the result of feedback edge removal is not unique, depending on different traversal
orders when searching feedback edges.

In Figure 4.4, the path1 -+ 3 —+ 4 — 2 — 5 — 7 — 6 is missing when visiting
latches from 1. To solve this problem, it is proposed in [CZ06] to search the original
reduced timing graph with different orders of nodes. Therefore, different feedback
edges are broken during arrival time propagation. In this way, the probability of
missing paths can be reduced.

In this thesis, arrival time propagation is simply run twice to reduce the runtime
of timing model extraction. In the second run, the latch visiting order is the same
as in the first run. The arrival times at source nodes of feedback edges created in
the first run are updated to their sink nodes and propagated further. In this way,
any path with one feedback edge is guaranteed to be traversed. An example is the
path1l — 3 =4 — 2 = 5 — 7 in Figure 4.4. The arrival time from node 1 to 4 is
computed in the fist run. In the second run, this arrival time is used to update the
arrival time at node 2 and propagated further.

Similar to the heuristic method in [CZ06], there are still missing paths with more
than one feedback edge after this two-run traversal. However, traversing reduced
timing graph twice already shows good accuracy for timing model extraction ac-
cording to experimental results. In a reduced timing graph, paths with more than
one feedback edge are relatively longer than other paths. As to be explained later,
the arrival time propagation for Lg; and Lgy stops when the arrival time is smaller
than the enabling clock edge of a latch. Therefore, long paths need not to be tra-
versed completely. Additionally, the delays on a path compensate each other. As a
result, long paths have less chance to affect the constraints. This explains why the
accuracy is still acceptable when traversing the reduced timing graph only twice.
For better path coverage, the traversal can be run more than twice, or the heuristic
algorithm in [CZ06] can be used to replace the two-run traversal in this thesis.

74

4.3 Timing Model Extraction for Latch Based Circuits

Till now the latch traversal order for extracting timing constraints has been dis-
cussed. Like standard statistical timing methods, the sum and maximum computa-
tions are performed during the arrival time propagation. Each time when an arrival
propagates across an edge, the delay of the edge is added to the arrival time. The
arrival time at a latch is computed as the maximum of arrival times from all inci-
dent edges in the reduced timing graph. The difference in this computation from
the standard statistical timing analysis method is that the delay shift m;; from latch
i to j instead of a simple random variable is added to the arrival time, as shown in
(4.14).

From the definition in (2.7), m;; is equal to q; + A;; — €;;. g; and A;; are known random
variables, so that their sum can be computed easily. But ¢;; can not simply be treated
as a known random variable. As shown in Figure 2.4, ¢;; is defined as the clock phase
shift. If the clock phases are generated using an absolute delay based method, ¢;; can
be safely assumed as a known random variable. Therefore, the arrival time update
is the same as in standard statistical timing analysis. The more complex case is that
the clock phases are generated so that the relative clock phase shift is fixed, i.e., ¢;;
has a fixed ratio to the clock period. In the following, the second case will be studied
only. This method can be easily adapted to handle the absolute clock phase shift.

In the second clock scheme, the clock phase shift changes proportionally when the
clock period changes, so that ¢;; is written as

where ¢;; is a positive constant. Similarly, the time of the enabling clock edge in the
local time zone is also assumed as having a fixed ratio to the clock period, i.e.,

v = g,'T (4.28)

where ¢; is a positive constant smaller than 1.

4.3.4 Timing Constraint Extraction from Enabling Clock Edges

To extract setup time constraints from the enabling clock edge of latch i, the arrival
time A; is set to r; as initialization. The arrival time from i to any following latch j
can be written as

Aj=r1i+Minj =T+ Y (s+8a—¢uT) =Dy + C;T (429)

estEEij

where M;_; is the cumulative delay shift across the path from i to j defined in (4.22).
All phase shifts in M; ; are replaced by constant times of clock period, as assumed
in (4.27). All known random variables are summed up and written as D;;. The

75

4 Statistical Timing Model Extraction

same operation is done for the coefficients of clock period and the result is written
as a constant C;;. Because the extracted timing model is verified against different
clock periods, T can only be assumed as an unknown fixed value. Therefore, the
part of clock period can not be merged with the random variables in (4.29). In the
following, D;; and C;j; in (4.29) are called delay part and coefficient part respectively.

When more than one arrival time in the form of (4.29) reaches latch j, their maximum
should be computed. Because these arrival times can reach j through different paths,
their coefficients of T may be different. Because T is unknown, the arrival times with
different coefficients of T can not be merged simply. Instead, they are propagated
in parallel. For the purpose of such parallel propagation, an arrival time at a latch
is represented by a set of elements during timing model extraction for latch based
circuits. Each element in such a set saves a delay part and a coefficient part shown
in (4.29). When the maximum of two arrival times is computed, the coefficients of T
in the elements of these arrival times are first compared. The arrival time elements
with the same coefficient of T are merged by computing the maximum of their
delay parts with a statistical timing engine. The coefficient of T itself is unchanged
in this computation. Thereafter, the resulting arrival time elements with different
coefficients of T are inserted into the arrival time set of the current latch.

When an arrival time propagates across an edge, the delay shift is added. Because
the arrival time is a set of elements in the form of (4.29), the addition is performed to
each element in the set. For each element, the random variables in the delay shift are
added to the delay part. The coefficients of T is also summed up in this operation.

The maximum of all the elements in an arrival time must meet the setup time con-
straint of the corresponding latch. For each element, the constraint can be written
as

Di]' + Ci]'T <T- §j (4.30)
Dij+s; < (1-— Ci]')T <~ (4.31)
(Dij+sj)/(1=Cyj) <T (4.32)

where 1 — C;; is positive because C;; is computed by subtracting the coefficient of T
from ¢; when traversing latch stages, as shown in (4.29).

In (4.32) all random variables and coefficients on the left side are known, so that
(Djj +5;)/ (1 — Cjj) can be treated as a known random variable. At each latch during
arrival time propagation, such a constraint in the form of (4.32) for each element
in the arrival time is created. After propagating arrival times from enabling clock
edges of all latches, all these inequalities together form the constraint described by
Lgry. Because all variables in these constraints should be smaller than T to guar-
antee the correct circuit behavior with clock period T, these inequalities together
are equivalent to the one that the maximum of all the random variables on the left

76

4.3 Timing Model Extraction for Latch Based Circuits

side of them is smaller than T. This maximum is denoted as Vj, with which the
constraint Lg; can be simply written as

V<T (4.33)

During arrival time propagation, each arrival time is represented by a set of elements
in the form of (4.29). As the propagation recurs further, the numbers of elements
in arrival times become large, so that the runtime to compute V; increases. In the
following, the method to reduce the number of elements in an arrival time will be
explained. Based on the discussion before, the arrival time from any enabling clock
edge is propagated and setup time constraint is included implicitly in (4.33). During
the propagation, if an element from an arrival time is smaller than the time of the
enabling clock edge in that local time zone, the constraint created from propagating
this element further is dominated by the constraint created from the arrival time
propagation starting from the enabling clock edge. Therefore, such an element can
be removed from the arrival time without affecting the timing constraint represented
by (4.33). The condition for removing an element is written as

If ¢; — Cjj is positive, (4.34) is equivalent to

Dij/(gi—Cij) <T (4.35)

During arrival time propagation, V; increases gradually while the constraint (4.32)
is merged to (4.33). To merge a constraint, the maximum of V; and the random
variable at the left side of (4.32) is computed. V; is then updated with the result.
When verifying the timing performance of a circuit, the constraint (4.33) will be true.
Comparing (4.35) with (4.33), the former is dominated by the latter when (4.36) is
true.

Dji/(¢j—Cij) <V (4.36)

Both sides of (4.36) are random variables, so that (4.36) can be true only with a
certain probability. If the probability that (4.36) is true approximates 1, the removal
of the corresponding arrival time element affects the timing model only with a very
small probability. Therefore, the probability in (4.37) for each arrival time element
during propagation is computed, as

pr = Prob{Di]-/(gj — Cl’]‘) <V} (4.37)

If p, is larger than a predefined constant J; approximating 1, the arrival time element
can be removed from the arrival time.

77

4 Statistical Timing Model Extraction

Like the timing model extraction for flip-flop based circuits described in Section 4.2,
the timing model for a latch based circuit should contain delays to the outputs of
the circuit. During the arrival time propagation in this section, if the fanout of a
latch is an output, the delay from this latch to the output and the arrival time are
added together and stored as the output delay. From the analysis in Section 4.3.2,
any arrival time can be considered as starting from an enabling clock edge or from
an input initially. In the former case, if an arrival time element can reach an output
without being removed at an intermediate latch, this arrival time element should be
verified against the setup time constraint of the latches in the following modules.
This explains the method to extract output delays from internal latches.

4.3.5 Timing Constraint Extraction from Inputs

After the timing constraint representing Ly, is explained in Section 4.3.4, the timing
constraint extraction from inputs, i.e., finding a simple form to represent Lg,, will
be explained in this section.

The basic idea to extract timing constraint for an input is mostly the same as the
one described in the previous section. The arrival time from an input is propagated
across the reduced timing graph with feedback edge removal. At each latch, the
maximum of the arrival times is computed and the setup time constraint is updated.

In the following, input k is used as an example to extract timing constraints for it.
Compared to (4.29), the starting arrival timing from input k is Ay, which is unknown
until the module is integrated into a hierarchical design. Similar to the method in
Section 4.3.4, the arrival time at a latch becomes a set after Ay is propagate across
latches. Because Ay can not be merged with the delay part or coefficient part, an
element from the arrival time becomes

Aj= A+ Dyj + ijT (4.38)

If this arrival time is propagated across a latch stage further, the corresponding delay
shift is merged with the right side of (4.38) by adding the random variables and the
coefficients of T respectively. Because all arrival time elements are in the form of
(4.38) and share the same Ay, the maximum of two of them can be performed just
like the maximum computation in Section 4.3.4 without considering Ay. The result
of this maximum computation is still a set with A; implicitly appended.

At each latch, the setup time constraint from each element in the arrival time is
extracted. An example of such a constraint is shown below.

Ak + Dk]' + Ck]'T <T- §j = (4.39)
Ar+ (Dxj+5sj) +CT < T (4.40)

78

4.3 Timing Model Extraction for Latch Based Circuits

Unlike (4.31)-(4.32), (4.40) can not be transformed similarly because this transforma-
tion causes the coefficients of Ay to be different in the constraints from arrival time
elements.

To represent Lgy, a constraint set Cy for the input k is created. Each element from
such a constraint set is in the form of (4.40). After an arrival time set is computed,
timing constraint from each element of the set is created. The coefficient of T in the
new constraint is compared with the coefficient of each element in Cy. If there is a
match, only the random variable Dy; + s; in (4.40) is merged with the corresponding
variable of the constraint element. Otherwise, a new constraint is simply inserted
into Cy.

Similar to compressing arrival times in Section 4.3.4, each arrival time element is
compared with the time of the enabling clock edge. An example of such comparison
for latch g is shown in (4.41).

A+ Dy + CgT <1y = 64T (4.41)
Consider that there is already a set of constraints Cy for input k, and each element

in this set is in the form of (4.40). After subtracting both sides of (4.40) from (4.41),
the result is written as

(Dkq - Dk]' - S]) + (qu - Ck]')T < (gq - 1)T <~ (4.42)
Dy — Dyj—5j < (6q — 1= Cpg + Cj) T (4.43)

If (4.42) is true, the arrival time element can be removed because (4.41) is dominated
by (4.40). If ¢; — 1 — Cy, + C; is positive, (4.43) is equivalent to

(Dxg —Dyj—5j)/(6g—1—Ciy +Cij) < T (4.44)

Similar to (4.35)-(4.37), if the probability p; is larger than J;, the arrival time element
can be removed, where p; is defined as

pi = Prob{(Dy; — Dxj — 5j)/ (¢g — 1 — Cig + Cj) < V1 } (4.45)
As in Section 4.3.4, the delays to outputs are also created if a fanout is an output

during the propagation. The only difference is that the output delays depend on the
arrival time Ay at the input.

4.3.6 Nonpositive Loop Constraint Extraction

The last constraint for a timing model is L3, which specifies all feedback loops in
the reduced timing graph should be nonpositive. In this thesis, the two-run traver-
sal method used in Section 4.3.4 is adapted to compute the maximum loop delays.

79

4 Statistical Timing Model Extraction

Other loop breaking algorithms, e.g. [CZ06], can also be used for better path cover-
age.

The basic idea is to compute the maximum arrival time starting from each latch
and looping back to it again. At first, the arrival time at the starting latch is set
to 0. Arrival times are propagated using the two run traversal in Section 4.3.4, but
without updating latch setup time constraints. During the propagation, if a direct
fanout latch is the starting latch, a loop is formed. In this case, the delay shift
between the current latch and the starting latch is added to the arrival time of the
current latch to compute the maximum loop delay. As an example, assume that the
fanout latch j of the current latch i is the starting latch. By summing the delay shift
from i to j and the arrival time at i, the maximum of the cumulative delay shifts
of the loops which are traversed can be computed. Because each loop should be
nonpositive, this maximum should be less than or equal to 0. Consider an element
Dj;i + C;;T in the arrival time A;, the loop constraint can be written as

D]'i + C]'iT +m;j; < 0 <~ (4.46)
D]'i + C]'l'T +q; + Ai]' — gijT <0< (4.47)
(Dji +qi+84) /(65— Cji) < T (4.48)

where g;; — Cj; is positive.

Similar to Vj, a random variable V3 is created to represent the constraint that all
loops are nonpositive. Each time when a constraint like (4.48) is created, the max-
imum of V3 and the variable at the left side of (4.48) is computed. V3 is thereafter
updated with the result of this maximum computation. After the loop traversals
from all latches are fulfilled, all loop constraints are merged into V3. Therefore, the
constraint Lz can be represented by

Vs <T (4.49)

After the loop paths from a latch are traversed, this latch is marked as visited.
This means the nonpositive constraints for all loops through this latch has been
specified. Therefore, arrival times need not to be propagated through visited latches
in the traversal starting from other latches. This can reduce the runtime of the loop
constraint extraction remarkably.

4.3.7 Summary of Timing Model Extraction for Latch Based Circuits

As described by (4.26), constraints Lgj, Lrp and L3 are used to verify the timing of
a latch based module. Lg; and L3 are specified in the proposed method simply by
(4.33) and (4.49), where V; and V3 are known random variables computed from the

80

4.4 Summary

original circuit during timing model extraction. (4.33) and (4.49) can also be merged
into one constraint by computing the maximum of V; and V3.

To specify Lgp for an input k, the constraint set Cy is used. Each element in Ci
is in the form of (4.40). When verifying the timing performance of a hierarchical
design, Ay is computed from the modules logically before the current module. As
Ay becomes known, (4.40) can be rewritten as

(Ak+Dyj+s;)/(1—C) <T (4.50)

As all the constraints can be written in the similar form in (4.33), (4.49) and (4.50),
the constraints related to the current module in (4.26) can be easily represented by
the maximum of all the random variables in (4.33), (4.49) and (4.50), where (4.50) is
computed for the constraint elements of all inputs. Compared to directly verifying
the timing performance of a latch based circuit, the timing constraints contained in
an extracted timing model are very simple so that the statistical timing analysis of a
hierarchical design can be accelerated drastically.

4.4 Summary

In this chapter timing model extraction methods considering process variations are
proposed for common circuit types. Because gate delays are modeled as random
variables, methods depending on special patterns in gate delays for combinational
circuits are not feasible anymore. As a solution, delay edges with maximum crit-
icalities smaller than a predefined threshold are removed from original circuits.
After applying the basic merge operations, statistical timing models for combina-
tional circuits are extracted. For flip-flop based circuits, the extracted timing model
in [ALS'02] is extended with a statistical timing engine directly. For latch based cir-
cuits, the classical clock model proposed in [SMO90b] and discussed in Section 2.3
is restructured and corresponding timing constraints are extracted as the timing
model. Because the circuit components between flip-flops or latches are compressed
into only one constraint, the extracted timing models for sequential circuits have
very small size compared to the original circuits.

81

4 Statistical Timing Model Extraction

82

Chapter 5

Correlation Handling in Hierarchical
Statistical Timing Analysis

Spatial correlation exists between modules in hierarchical designs, as discussed in
Section 3.4.2. During the timing model extraction explained in Section 4, a gate
delay is a function of independent random variables. These variables are from
the decomposition of correlated process parameters, e.g., using principal compo-
nent analysis. In this decomposition, the correlation matrix of process parameters
is needed. Because only the layout of the gates inside each individual module is
known, the correlation matrix is generated in the range of the module, e.g., using
the method in [XZHO07]. Therefore, the gate delays used during timing model ex-
traction contain the correlation information only inside the module. Because the
correlation between modules in a hierarchical design can only be determined after
these modules are instantiated, an additional step to handle such correlation during
the timing verification of the complete design is needed to maintain the accuracy of
timing analysis.

In this chapter, a method to incorporate spatial correlation between modules will
be explained. This method substitutes the independent random variables in tim-
ing models by the variables for the complete design. The correlation between
modules is thus represented by sharing the same set of independent random vari-
ables in the constraints of the timing models. Compared to the method proposed
in [GVTGO08,GVTG09], the method in this chapter always has a solution for the vari-
able substitution, so that the limitation of the method in the previous approach is
overcome. Details of this limitation are already explained in Section 3.4.2. With a
heterogeneous grid, the method in this chapter can also handle the delay correlation
of gates directly implemented in the top design.

83

5 Correlation Handling in Hierarchical Statistical Timing Analysis

5.1 Correlation Handling with Variable Substitution

As shown in Section 3.1.3, the die area is partitioned into a grid. For each grid cell, a
random variable is assigned to represent the variation of a process parameter. A de-
lay of a gate belonging to a grid cell is modeled as a function of the random variables
for the corresponding grid cell. Because the same process parameters of different
gates inside a grid cell are represented by the same random variables, the number of
random variables used to model process variations is reduced. Owing to spatial cor-
relation, the variables assigned to grid cells are correlated, with a precharacterized
correlation matrix computed from the on-die distance.

The basic idea of correlation handling in this chapter is to establish the relation
between the independent random variables for the complete design and the ones
in timing models. This mapping is based on the same die partition mechanism of
the die area covered by a module during model extraction and during the timing
analysis of the complete design. The basic idea is illustrated in Figure 5.1. In the
tirst step, the die areas covered by modules are partitioned with the same grids as
during timing model extraction. In Figure 5.1 the die areas covered by module A and
B are first partitioned using the default cell size and starting from their own origins
respectively, as they are partitioned for timing model extraction. In the second step,
the remaining die area which is not covered by modules is partitioned with the
default cell size. All these grid cells together are considered as the grid partition for
the complete design. Because the origins of modules may move freely during layout,
the grid cells of the complete design may have irregular shapes and sizes. Examples
are the ones in gray in Figure 5.1. Compared to the uniform partition in [CS03]
illustrated in Figure 3.4, the result of the two-step partition is called heterogeneous
grid. Because the size of each grid cell is no larger than the default cell size, this
heterogeneous partition does not lose any modeling accuracy.

For each grid cell of the hierarchical design, a random variable is assigned to model
the within-die variation, even though some grid cells are not regular. Assuming
there are totally m grid cells after partitioning the die of the top design and only

T T T T T T T T T T
I I I I I I I ' Di I
L \ \ LoJdo L _Jo_L_-0-_uL_4
[[[[[[[[[
R I T | | | [[[
r - [[[il it il il
[[[[: : : [
I I Y
module Al Dt
--1--r-1--r-1-__‘__‘r_‘__-r--
[[[[[[
L _J__L_J__L_2 mpduleB _L_
| | | | T T |
[[[[[[[[

Figure 5.1: Heterogeneous Grid

84

5.1 Correlation Handling with Variable Substitution

one parameter is considered, m random variables are assigned to these grid cells,
written as a vector p!, with an m x m covariance matrix C'. By applying principal
component analysis, p' can be decomposed as

p' = B'x' (5.1)

where B! is the orthogonal transformation matrix. x' is the vector of independent
random variables.

In the following, module B is used as an example to explain the independent ran-
dom variable substitution. Other modules can be processed similarly. Because the
area covered by module B is partitioned in the same way as during model extraction,
the number of grid cells inside this area is the same, denoted as n. Without losing
generality, the random variables for grid cells of the die area covered by module B in
the hierarchical design are indexed from 1 to # in p!, and denoted as p!,. The corre-
lation between p! is represented by the n x n submatrix C!, at the upper-left corner
of C'. Considering only the first n random variables in (5.1), the decomposition of
p! can be written as

p, = B! (5.2)

where the n x m matrix B!, contains the first n rows of the transformation matrix B'.

During timing model extraction, the n random variables assigned to module B are
denoted as p,,, with correlation matrix C,. Using principal component analysis, p,,
can be decomposed as

p, = Ax (5.3)

where A is the n x n orthogonal transformation matrix. x is the vector of inde-
pendent random variables. All delays inside a timing model are represented as
functions of the independent random variables x.

The matrix C!, and C, both represent the correlation between the variables for the
grid cells inside the area of module B. The correlation of two grid cells is computed
from the on-die distance between them, regardless of whether this computation is
done during timing model extraction or the timing analysis of the complete design.
Consequently, C!, and C, are completely equal. With the same correlation matrix,
the Gaussian random variable vectors p! and p,, are statistically equal, because they
represent the variations of the same process parameter in different grid cells and
therefore have the same mean and variance vectors.

Comparing (5.2) and (5.3), B,x' and Ax are decompositions of the same set of ran-
dom variables. The difference between them is that in (5.2) the decomposition con-
tains more random variables because m is larger than n. Although some random
variables in x! are redundant in representing correlation defined by C!, or C,, they
are essential for defining the correlation between modules and grid cells at the top

85

5 Correlation Handling in Hierarchical Statistical Timing Analysis

level. From (5.2) and (5.3), the relation between x! and x can be established as

X = ATpn (5.4)
= ATB! x! (5.5)

where AT = A~! because A is orthogonal.

In statistical timing analysis, the decomposition is applied to accelerate the com-
putation of the correlation between random variables and their variances, e.g., in
[VRK"04]. As shown in (5.2) and (5.3), there exists more than one decomposition
for the correlated random variables. In the statistical engine [VRK*04] used in this
thesis, the statistical maximum computation needs only the correlation between two
arrival times. Any set of decomposition can produce the same tightness probabil-
ity in [VRK"04]. Therefore, whether the decomposition of x' or x is used does not
change the result of the timing model extraction except the different sets of random
variables used.

With the transformation in (5.4), the independent random variables inside the timing
model are transformed back to the random variables modeling process variations.
These correlated random variables can be further replaced by (5.2), therefore the
delays inside the timing model are represented by the variable set of the complete
design. The two steps of the transformation can be performed together, as shown
in (5.5). Conceptually, the timing model after this transformation can be thought
as directly generated during the timing analysis of the complete design. In this
case the die area is partitioned and random variables are assigned and decomposed
with (5.1). Thereafter, the module itself is processed as explained in timing model
extraction. The resulting timing model is used in hierarchical analysis, with the
correlation contained by sharing the same set of independent random variables from
decomposition.

With the transformation in (5.5), the correlation between all modules can be es-
tablished. For combinational circuits, the extracted timing model is still a timing
graph. For sequential circuits, the constraints at all inputs of each module should be
checked. The arrival times at these inputs are computed from the delays to the out-
puts of the modules which logically precede to the current module. The minimum
clock period is computed as a random variable, by merging all constraints, e.g., as
described in Section 4.3.7.

5.2 Discussion

In this section several issues about the application of the proposed variable sub-
stitution method in hierarchical statistical timing analysis will be discussed. These

86

5.2 Discussion

issues include the cooperation of the proposed method with existing statistical tim-
ing engines, the loop problem in hierarchical designs with modules and whether
the variable substitution should be performed during timing model extraction or
during the timing analysis of the complete design.

Conceptually, the independent random variables are first mapped back to the ones
representing correlated process variations. This substitution is valid for the linear
statistical methods [VRK'04] and [CS03]. In [VRKT04], the tightness probability
is computed with the correlation of two arrival times. This correlation is the same
whether the decomposed independent random variables or the original correlated
random variables are used. The former is used in [VRK"04] to reduce the runtime
of the correlation computation. Because the maximum and sum computations are
both linear combinations of arrival times with variance mapping, the coefficients
in the results from both computations do not depend on the decomposed variable
set, but only on the correlation between these arrival times and their moments.
From this analysis, either using x or x' results in the same minimum clock period
from timing analysis. The method in [CS03] computes the correlation between the
maximum of two arrival times and each independent random variable using the
formulas in [Cla61]. Because each independent random variable can be considered
as a linear combination of the original correlated random variables, this method
does not depend on a specific decomposition. Therefore it can use the proposed
variable substitution to handle correlation between modules. For the second order
statistical timing analysis methods, e.g., [ZSLT05,FLZ07], the variable substitution
causes the number of terms in arrival times to increase drastically. For example,
if a second order term in a quadratic form is replaced by a linear combination of
another set of independent random variables, many new cross terms are created.
To remove such cross terms, the orthogonalization in [ZSL*05] may be used. This
transformation, however, increases the runtime of timing analysis when the number
of cross terms is very large.

The second issue is about the loops in the hierarchical design with modules. For
combinational circuits, all loops should be broken by registers during design stage.
For latch based circuits, however, loops may exist because an arrival time can pass
through different modules and loop back, with all latches in between in trans-
parency. When using the timing model proposed in Section 4.3, the latch levels
inside modules are compressed. The transparency from inputs to outputs are di-
rectly modeled by delays between them. This compression makes the loops smaller
compared to the ones in the original circuits, and therefore accelerates the nonposi-
tive loop verification of the complete design, as described in Section 4.3.2.

The last issue is when the transformation (5.4) from independent variables inside
a module to the original variables should be performed. If this is done during
timing model extraction, the transformation during the timing verification of the
complete design can be simplified because the matrix product computation in (5.5)

87

5 Correlation Handling in Hierarchical Statistical Timing Analysis

needs not to be computed. This method, however, increases the runtime of timing
model extraction. Because the runtime of the timing verification of the complete
design is already very short, the increase of it by the variable transformation does
not perceivably make the timing analysis of the complete design become slow. In
practice, whether the variable transformation is run during the timing analysis of the
complete design or during timing model extraction should be decided by engineers
according to different design flows.

5.3 Summary

Because of the proximity effect during manufacturing, within-die variations exhibit
correlation depending on the distances between circuit components on the die. With
the method proposed in this chapter, the relation between the random variables
inside timing models and the random variables for the complete hierarchical design
is established. Therefore, the correlation between submodules are represented by
sharing the same set of independent random variables after the variable substitution.
In contrast to the method described in [GVTGO08,GVTGO08], the proposed method can
always produce a solution during the variable substitution step and thus guarantee
the validity of the correlation handling in any case.

88

Chapter 6

Experimental Results

In this chapter, the results of the proposed methods for timing model extraction and
correlation handling are shown. The proposed methods in Section 4 are applied to
ISCAS85 and ISCAS89 benchmark circuits to extract timing models. The sizes of the
extracted timing models and of the original circuits are compared to prove the effi-
ciency of proposed methods. To verify accuracy, maximum delays between inputs
and outputs of combinational circuits are compared to the results from Monte Carlo
simulation; for sequential circuits, timing models are tested in a random generated
application context and also compared to the results from Monte Carlo simulation.
Thereafter, the accuracy of the variable substitution method in Section 5 is evaluated
by applying it to hierarchical designs with modules from ISCAS85 benchmarks. The
focus of this test is the effect of the spatial correlation between modules and the
accuracy of timing analysis using the proposed method.

6.1 Experiment Setup

The proposed methods in this thesis use a statistical timing analysis algorithm as
engine, i.e., the maximum and sum mentioned in previous sections are all computed
statistically. In the experiment, the algorithm proposed in [VRK'04] was used for
such statistical computations. As explained in Section 3.2.3, this algorithm models
gate delays as linear functions of process parameters. The maximum computation
is very simple with tightness probability. The accuracy of this algorithm, however,
is still very good by preserving correlation between arrival times and gate delays
efficiently. Because the proposed timing model extraction methods do not depend
on a specific statistical engine, methods with higher order or non-Gaussian gate
delay models, e.g., [ZSL"05,ZCH"05,5S06], can also be used for better accuracy.

With a 90nm library from an industry partner, the delay of each type of gate was
characterized as a linear function of transistor length, oxide thickness and threshold

89

6 Experimental Results

Table 6.1: ISCAS85 Benchmarks

o num. of | num. of | num. of | num. of | num. of

Circuit | .
inputs | outputs gates edges nodes

432 36 7 160 336 196
c499 41 32 202 408 243
c880 60 26 383 729 443
c1355 41 32 546 1064 587
c1908 33 25 880 1498 913
2670 233 140 1193 2076 1426
c3540 50 22 1669 2939 1719
c5315 178 123 2307 4386 2485
6288 32 32 2416 4800 2448
c7552 207 108 3512 6144 3719

voltage. The standard deviations of transistor length, oxide thickness and threshold
voltage were assigned to 15.7%, 5.3% and 4.4% of the nominal values respectively,
according to [Nas01]. After running layout for each circuit, the area of the die was
partitioned into rectangular grid [CS03] explained in Section 3.2. The number of
gates in a grid cell was smaller than 100 to keep reasonable modeling accuracy of
the spatial correlation as in [CS03]. The correlation between the random variables
for the same type of parameter was set to 0.8 for two neighboring grid cells. This
correlations decreases exponentially to 0.4 for grid cells with distance equal to 15
times the size of a grid cell. The correlation for parameters in grid cells which were
further separated was set to 0.4, modeling global correlation. The correlations be-
tween different types of parameters were set to 0, i.e., independence, for simplicity.

The ISCAS85 benchmark circuits used in the experiment are first presented in [BF85]
for testing. According to the results of the reverse engineering studying in [HYH99],
these circuits are applications ranging from a 27-channel interrupt controller (c432)
to a 32-bit adder/comparator (c7552). These circuits cover different design styles.
Some have long critical paths (c6228); others have large span (c7552). For sequential
circuits, ISCAS89 benchmark circuits are presented in [BBK89]. These circuits are
collected from universities and industry over the world. Therefore most functions
of these circuits are unknown. The number of registers in these benchmark circuits
ranges from 3 to 1728; the number of combinational gates, e.g., AND, OR, NOT etc.,
from 10 to 22179. Because of the differences between these circuits, both ISCAS85
and ISCAS89 benchmarks are widely used in testing EDA algorithms. For example,
they have been used in [CS03, KPR05, ZSL 05, ZCH*05,5506]. An overview of ten
ISCASS5 circuits is given in Table 6.1. Such information will be compared with the
results from timing model extraction to verify the efficiency of the extracted timing
models. The last two columns in Table 6.1 show the numbers of edges and nodes in

90

6.1 Experiment Setup

Table 6.2: ISCAS89 Benchmarks

~_ |[num. of [num. of[num. of [num. of| num. of num. of num. of
Circuit inputs |outputs| gates |registersiedges in TG|nodes in TG|edges in RTG
s298 4 6 119 14 224 137 86
$526 4 6 193 21 445 218 167
s820 19 19 289 5 757 313 185
s1238 15 14 508 18 1041 541 219
s1423 18 5 657 74 1164 749 2226
s5378 36 49 2779 179 4212 2994 2126
s9234 37 39 5597 211 7971 5845 3219
s13207| 63 152 7951 638 11165 8652 4584
s15850| 78 150 9772 534 13645 10384 16490
s38584| 39 304 19253 | 1426 32756 20718 20243

the corresponding timing graphs. Similar information for ISCAS89 benchmarks are
listed in Table 6.2, with additional information about reduced timing graphs also
listed, where TG is the abbreviation for timing graph and RTG for reduced timing
graph. The number of gates is the count of the combinational gates in the original
circuit. The number of the nodes in the reduced timing graph is the sum of the
numbers of the registers, the primary inputs and the primary outputs in the circuit.

In order to verify the accuracy of the extracted timing models, the circuit perfor-
mances were identified by Monte Carlo simulation with 10000 iterations. This sim-
ulation was performed at gate level, with gate delays as precharacterized mapping
functions of process parameters. In each iteration of the Monte Carlo simulation,
the random variables in gate delays were directly sampled; gate delays were com-
puted from such samples with the mapping functions; the circuit performance of
this iteration was computed using a static timing analysis engine. Algorithm 2 was
run for combinational circuits to compute the maximum delays between primary
inputs and outputs in verifying the accuracy of the timing models. With all primary
inputs initialized, Algorithm 2 was also used to compute the maximum delay of the
circuit in verifying the accuracy of the variable substitution method. For flip-flop
based circuits Algorithm 3 was used to compute the minimum clock period in each
iteration of the Monte Carlo simulation. For a similar purpose, Algorithm 5 was
used for latch based circuits. Because Monte Carlo simulation and statistical timing
analysis both used the same set of precharacterized gate delays, the error during the
gate delay modeling step was not included. Therefore, the error in the comparison
of this experiment was only from the statistical analysis engine and the proposed
methods.

All methods mentioned in this experiment were implemented in C++ and tested on

91

6 Experimental Results

a PC with a 2.33GHz CPU and 4G memory. The runtimes of the algorithms were
measured with the clock() function in C++. Because the minimum time unit this
function can measure is 10~° second, shorter runtimes of some experiments, e.g.,
statistical timing analysis with extracted timing models for sequential circuits, were
measured as 0. Such results in this section will be written as <1pus.

6.2 Results of Timing Models for Combinational Circuits

For combinational circuits, black-box timing models can be easily extracted with
Algorithm 2, as discussed in Section 3.3. The size of black-box timing models, how-
ever, may be much larger than that of gray-box timing models. In order to show how
efficient and accurate the black-box timing model is in statistical timing analysis, the
number of edges and nodes in black-box models are listed in Table 6.3. Because the
maximum delays between primary inputs and outputs are computed directly using
a standard statistical timing engine, the accuracy of such delays compared to the re-
sults from Monte Carlo simulations will be used to verify the accuracy of the timing
models extracted with the proposed noncritical edge removal method discussed in
Section 4.1.

In Table 6.3 Columns II and III show the numbers of edges and nodes in the black-
box timing models. As discussed in Section 3.3.1, all internal circuit structure is
discarded in a black-box timing model and an edge is created if a path exists between
a pair of input and output in the original circuit. Therefore, the number of nodes in
a black-box timing model is equal to the sum of the numbers of primary inputs and
outputs, as shown in Table 6.1. In the worst case, the number of edges inside a black-
box model is equal to the product of numbers of inputs and outputs. This worst-
case edge number is shown in column IV in Table 6.3. According to these results,
the black-box timing model is much smaller in average than the worst case in the
test circuits, and therefore can be used in practical design flows. However, the size
of a black-box timing model is still large compared to the size of the corresponding
gray-box timing model, the experimental results of which will be shown later in this
section.

According to Section 3.3.1, a timing model for a combinational circuit should have
the same delay matrix as of the original circuit. To verify the accuracy of black-box
models, the edge delays were compared with the delay distributions from Monte
Carlo simulation. In each iteration of the Monte Carlo simulation, all gate delays
in the circuit were sampled. Thereafter Algorithm 2 was applied to compute the
maximum delay from each input to all outputs. The comparison results of mean
and standard deviation of input-output delays from timing model and from Monte
Carlo simulation are listed in column V and VI. In order to compute the maximum

92

6.2 Results of Timing Models for Combinational Circuits

Table 6.3: Results of Black-Box Timing Models for Combinational Circuits

| num. of | hum. of | worst num. | max. mean | max. std
Circuit edges nodes of edges error error
432 225 43 252 0.46% 0.72%
499 1312 73 1312 0.35% 0.76%
c880 419 86 1560 0.18% 0.57%
c1355 1312 73 1312 1.02% 1.64%
1908 807 58 825 0.60% 1.87%
2670 1067 373 32620 0.81% 1.09%
3540 724 72 1100 1.50% 0.89%
c5315 2978 301 21894 0.64% 1.35%
6288 784 64 1024 1.58% 0.98%
c7552 3543 315 22356 1.21% 1.83%
I II III v \Y VI

mean error, the means of input-output delays from timing models were subtracted
by the ones from Monte Carlo simulation. The absolute values of the results were
divided by the means from Monte Carlo simulation. The maximum of such errors
in all input-output delays are listed in column V of Table 6.3. The relative error
of standard deviation (std) was computed similarly. Because the maximum delays
in the timing models were computed directly by the statistical engine in [VRK'04]
and no other approximation was applied in black-box timing models, the errors
shown in Table 6.3 are totally from the statistical engine. For instance, the correlation
due to path reconvergence is not considered and the maximum is approximated
in [VRK"04]. In Table 6.3, both relative errors of mean and standard deviations are
no more than 2%. This accuracy is acceptable based on the fact that the statistical
engine in [VRK"04] is already used for industrial designs. If needed, the accuracy
can also be improved by applying quadratic or independent component analysis
based statistical engines.

In the gray-box timing models described in Section 4.1, the edges which have small
probabilities on any critical paths corresponding to all input-output pairs are re-
moved. The effectiveness of this method depends on the relative number of such
edges in a circuit. To show the trend of the maximum criticalities, i.e., the distri-
bution of the maximum criticalities of all the edges in each ISCAS85 benchmark
circuit, Monte Carlo simulation was run for each original circuit. In each iteration of
the simulation Algorithm 6 was applied. The criticality of an edge was computed by
the number of iterations in which the edge was critical divided by the total number
of the Monte Carlo iterations. The criticality is in the range from 0 to 1. This range
is divided into 10 subranges and the percentages of edges with criticalities in these
subranges are illustrated in Figure 6.1. According to this figure, a large percentage

93

6 Experimental Results

70%

c432 c499 c880 c1355 c1908
60%-
50%-
40%-
30%1
20% I_J
10%-
0 - J

70%1
60%-

50%1
40%1
30%1
20%1
10%1 I
" J

c2670 c3540 c5315 6288 7552

Figure 6.1: Criticality Distributions of ISCAS85 Benchmarks

of edges in the timing graph have criticalities in the subrange 0-0.1. This proves the
concept of the noncritical edge removal in Section 4.1.

The edge criticalities from Monte Carlo simulation are accurate. This method, how-
ever, is much slower compared to the block-based statistical method proposed in
Section 4.1.2, while [VRK™04] was used as the statistical timing engine. As already
discussed, this engine may introduce computation error. In Table 6.4, the criticali-
ties below J. from Monte Carlo simulation and from the method in Section 4.1.2 are
compared. To keep enough accuracy, the threshold . defined in Section 4.1.2 was set
to 0.05. This threshold was so selected because most of the maximum criticalities in
the 0-0.1 range are actually smaller than 0.05 according to the experimental results.
Additionally, there is inaccuracy in the statistical computation of the maximum crit-
icality. As the threshold was set to 0.05, even with such inaccuracy in the computed
maximum criticalities, the accuracy of the timing models can still be preserved.

Because of the inaccuracy of statistical criticality computation, some edges with crit-
icalities smaller than J, were not identified. The number of such edges is shown
in column V of Table 6.4. These edges were not deleted from the timing graph.
Therefore, the size of the timing model was increased unnecessarily. Column VI
in Table 6.4 shows the number of edges which have criticalities larger than J., but

94

6.2 Results of Timing Models for Combinational Circuits

Table 6.4: Accuracy of Statistical Criticality Computation, 6. = 0.05

Monte Carlo simu. statistical criticality computation
... | num. of . num. of [num. of [num. of max. .
Circuit runtime .. (e 1 runtime
removed removed | missing | wrong | criticality
edges (5) edges edges | edges error (5)
c432 178 86.55 172 6 0 0 0.02
c499 98 183.99 73 26 1 0.0066 0.08
c880 208 192.12 200 8 0 0 0.12
c1355 444 504.77 443 2 1 0.0173 0.24
c1908 875 668.17 848 27 0 0 0.24
2670 543 2323.14 529 14 0 0 6.05
3540 1480 1340.82 1323 159 2 0.0214 0.6
c5315 1588 4256.43 1502 86 0 0 8.9
6288 2831 3657.48 2819 12 0 0 1.37
7552 2187 6142.62 2110 77 0 0 12.93
I II III v \Y VI VII VIII

were identified as noncritical by the statistical method. These edges were incorrectly
removed from the timing model and consequently the accuracy of the timing model
may be degraded. Comparing these two columns it can be found that the proposed
statistical method missed some edges but identified only a few critical edges incor-
rectly.

The maximum deviation of the criticalities of the incorrectly recognized edges from
dc is shown in column VII of Table 6.4. This error indicates that the maximum crit-
icality of the wrongly deleted edges was 0.0714 (é, + 0.0214). This shows that the
wrongly deleted edges still had reasonable small criticalities. Therefore they did
not affect the accuracy of the timing models significantly. In column II and IV, the
numbers of edges identified as critical path by both methods are shown. Compar-
ing these numbers with column V and VI, most of critical edges were recognized
correctly by the proposed statistical method so that its effectiveness is proved. In col-
umn III and VIII, the runtimes of Monte Carlo simulation and the proposed method
are shown. According to this comparison, the proposed method is at least two or-
ders of magnitude faster than Monte Carlo simulation, and therefore is suitable for
timing model extraction.

Finally, the results of timing model extraction for combinational circuits using the
proposed method are listed in Table 6.5. In column II and IV, the numbers of edges
and nodes in timing models are shown. These numbers are divided by the numbers
of edges and nodes in the original timing graphs and the results are shown in col-
umn III and V. According to these compression ratios, the criticality based method

95

6 Experimental Results

Table 6.5: Results of Gray-Box Timing Models for Combinational Circuits
num. of edge num. of| node |max. mean|max. std |runtime|ratio of
edges | ratio | nodes | ratio error error (s) compl.
c432 45 13.39%| 46 2347% | 0.24% 0.75% 0.04 5.54
c499 175 |42.89%| 99 |40.74% | 0.35% 0.61% 0.1 8.88
c880 239 |32.78%| 112 |2528% | 0.18% 0.59% 0.14 1.91
cl1355 | 143 |13.44%| 99 |16.87%| 0.36% 1.65% 026 | 11.37
c1908 | 234 |15.62%| 91 997 % | 0.60% 1.87% 0.27 3.88
c2670 | 410 |19.75%| 335 |23.49% | 0.46% 1.09% 6.1 2.78
c3540 | 448 [15.24%| 143 [832% | 0.52% 1.37% 0.67 1.78
c5315| 960 |21.89%| 421 |16.94% | 0.58% 1.35% 9.02 3.48
c6288 | 427 1890% | 187 |7.64% | 0.67% 1.08% 1.49 2.20
c7552 | 1076 |17.51%| 545 |14.65% | 1.41% 1.81% 13.1 3.85
I II II 1\Y \ VI VII VIII IX

Circuit

can effectively remove the edges which do not affect the maximum delays between
primary inputs and outputs. Especially this method is most effective in circuits with
long paths, e.g., c6288, where most of the paths are dominated by a small number
of critical ones.

Similar to the comparison for black-box timing models, the accuracy of the extracted
gray-box timing models was verified by comparing the maximum input-output de-
lays with the ones from Monte Carlo simulation, shown in column VI and VII. From
the comparison of these two columns to columns V and VI in Table 6.3, the extracted
gray-box models also have reasonable accuracy. In column VIII of Table 6.5, the to-
tal runtimes for timing model extraction are shown. Comparing to column VIII in
Table 6.4, most of the runtime of the algorithm was consumed by the criticality com-
putation. The runtime of the basic merge operations in the last step of the timing
model extraction was negligible.

In order to compare the black-box and gray-box timing models, the complexity of
the timing model for a combinational circuit is first defined. Assume there are m
edges and n nodes except the primary inputs in the timing model. Furthermore,
assume a block-based statistical timing engine is used to verify the timing of the
complete design when this timing model is applied. During such a timing analysis,
the edge delays are added to arrival times. Therefore there are m sum computations
needed. At each node except primary inputs in the timing model, the maximum
of all incident arrival times is computed. If at node i there are k; fanin edges, the
number of the maximum computations at this node is k; — 1. The total number of
maximum computations is then computed as ' (k;—1) =YY" 1ki—n=m—n,
where)Y ! | k; = m because each edge in the timing graph has only one sink node.

96

6.3 Results of Timing Models for Sequential Circuits

From this analysis, the complexity of a timing model is therefore defined as the
number of the computations during a block-based arrival time propagation inside
this model, i.e., the sum of the numbers of the sum and maximum computations,
equal to m +m —n = 2m — n. The complexities of black-box and gray-box timing
models for ISCAS85 benchmarks can be computed from the data in Table 6.1, 6.3
and 6.5. Their ratios are shown in column IX in Table 6.5. These ratios explain that
using a black-box timing model the statistical timing engine needs to perform much
more computations compared to using a gray-box timing model. This proves the
efficiency of the proposed gray-box timing model extraction method.

6.3 Results of Timing Models for Sequential Circuits

Timing models for sequential circuits include the constraints for all inputs, the min-
imum clock period, and the delays to all outputs. For flip-flop based circuits, a
constraint for each input and a statistical delay for each output is extracted; the
minimum clock period for all flip-flop pairs is represented by only one random
variable. Therefore, the size of a timing model for a flip-flop based circuit is always
one larger than the sum of numbers of inputs and outputs. For latch based circuits,
however, the numbers of constraints for an input and the delays to an output be-
come larger than one because of latch transparency. The minimum clock period for
the paths between latches is still represented by one random variable (max{V, V3}
in Section 4.3).

In Section 6.2, the accuracy of the timing models for combinational circuits was
verified by comparing the maximum input-output delays with the results from
Monte Carlo simulation. For sequential circuits, however, there is no such theo-
retical method to verify the accuracy of their timing models. Instead, the arrival
times at the inputs of each sequential circuit were generated randomly to emulat-
ing a practical application context. For each circuit, the maximum mean p); and
standard deviation o of the delays from all inputs to their fanout registers in the
original netlist were computed. Thereafter, a random variable was generated for
each input randomly, with mean in the range between 0 and 0.5u3; and standard
deviation between 0.050); and 0.150,. The correlations between these random vari-
ables were set between 0.4 and 0.8, for the purpose of experiment. The ranges of
means and standard deviations of random generated arrival times were selected to
guarantee that the performances of some circuits were dominated by the minimum
clock period between registers, and others by the timing constraints for inputs.

The results of timing model extraction for flip-flop based circuits are listed in Ta-
ble 6.6, where all registers in ISCAS89 benchmark circuits were assumed as flip-
flops. The size of a timing model for a flip-flop based circuit was computed by

97

6 Experimental Results

Table 6.6: Results of Timing Model Extraction for Flip-flop Based Circuits

~ sizeof relative error runtime’
Circuit model | mean std | 97% yield Monte |SSTA with mode'l
Carlo models | extraction
s298 11 0.06% | 0.55% 0.05% 5.17 <lus <lus
s526 11 0.06% | 0.42% 0.22% 9.34 <lus 0.01
s820 39 0.01% | 0.28% 0.05% 18.82 <lus 0.01
s1238 30 0.14% | 0.99% 0.35% 25.37 <lus 0.02
s1423 24 0.14% | 0.31% 0.69% 45.51 <lus 0.02
s5378 86 0.32% | 0.27% 0.06% 246.41 <lus 0.13
s9234 77 0.65% | 0.43% 0.50% 733.12 <lus 0.3
s13207 | 216 0.36% | 0.91% 0.22% 981.93 <lus 0.48
s15850 | 229 0.68% | 0.41% 0.12% 1258.53 <lus 0.93
s38584 | 344 0.36% | 0.29% 0.09% 3403.98 0.01 1.19
I II II1 IAY A% VI VII VIII

Tunit is second if not specified

summing the numbers of inputs and outputs and plus 1, shown in column II. Ac-
cording to the comparison of this size to the number of combinational cells and the
number of registers in the original circuits shown in Table 6.2, the extracted timing
models have remarkable advantage in size.

To verify the accuracy of the extracted timing models, the results of timing analysis
using the extracted timing models and the results of Monte Carlo simulation were
compared. The relative errors of mean and standard deviation by comparing the
circuit performances from timing analysis with timing models and Monte Carlo
simulation are listed in column III and IV in Table 6.6. These errors are defined
as the absolute difference between the two circuit performances divided by the one
from Monte Carlo simulation. Additionally, the relative errors of the clock periods
at which the designs can achieve 97% yield are shown in column V for accuracy
comparison. These results prove that timing analysis with the extracted timing
models has very high accuracy.

To verify the quality of the timing models for latch based circuits, all sequential
cells in the ISCAS89 benchmark circuits were assumed as latches. In experiment,
all benchmark circuits were assumed with one clock phase and the enabling clock
edges were set to 0.5 times the clock period. The predefined threshold 4; for the
probability comparison with (4.37) and (4.45) was set to 99.9%, which is very close
to 1 so that the removal of arrival time elements during time constraint extraction
affects the accuracy of timing models only with a very small probability.

For comparison, Monte Carlo simulation was run with 10000 iterations for each

98

6.3 Results of Timing Models for Sequential Circuits

Table 6.7: Results of Timing Model Extraction for Latch Based Circuits

size of model relative error runtime’
avg. cons.| ave. dela o SSTA
Circuit m;gm- per nfm. peZ mean | std 9.7 1/21 Monte with mode'l
input output yle Carlo models extraction

s298 2 5 0.09% | 0.05% | 0.05% | 21.27 | <1us 0.01

s526 4 11 0.10% | 1.08% | 0.16% | 42.87 | <1us 0.01

s820 2 36.79 0.04% | 0.69% | 0.21% | 44.18 | <1pus 0.03
s1238 1 13.93 0.14% | 0.99% | 0.35% | 95.28 | <1pus <lus
s1423 4.35 314 0.19% | 1.04% | 0.91% | 556.4 | <1us 1.94
s5378 2.2 55.73 0.89% | 1.31% | 0.58% |2445.7 | <1lus 2.73
s9234 7.36 81.28 0.17% | 0.58% | 1.59% |3578.1| <1us 18.32
s13207 1.27 3.7 0.30% | 0.47% | 0.44% |5031.7 | 0.01 8.58
s15850 2.71 31.61 0.48% | 0.20% | 0.18% (21439.4| <1us 174.08
s38584 2.39 6.82 0.62% | 0.24% | 0.68% [54610.5| <1us 307.32

I II 11 v \Y VI VII VIII IX

Tunit is second if not specified

benchmark circuit. In each iteration, Algorithm 5 was used to compute the mini-
mum clock period of the original circuit from sampled gate delays. The results are
shown in Table 6.7, where the errors are relative to the results of Monte Carlo sim-
ulation. The average number of the constraints for each input is shown in column
II. The average number of the delay elements in the arrival time sets to an output
is shown in column III. Because of latch transparency, arrival times from many in-
ternal latches and from inputs can reach outputs. Therefore, the numbers of delay
elements are larger than the numbers of the constraints for inputs. The relative er-
rors in column IV to VI prove that timing analysis with proposed timing models still
maintains high accuracy.

The runtimes of Monte Carlo simulation and timing analysis using the extracted
timing models are shown in Table 6.6 and Table 6.7. Because most of the circuit
components are between registers in ISCAS89 benchmarks, the runtimes of the pro-
posed timing model extraction method for flip-flop based circuits are roughly equal
to the runtimes of the statistical timing analysis of the original circuits. The com-
parison between column VII and VIII of Table 6.6 shows that timing analysis using
the proposed timing models gains many orders of magnitude in runtime accelera-
tion for flip-flop based circuits. For latch based circuits, the speedup of the existing
statistical timing analysis methods compared to Monte Carlo simulation is about
three orders of magnitude [CZ06,ZTC*06]. According to the comparison of column
VII and VIII in Table 6.7, using the proposed timing models can gain much larger
acceleration to the Monte Carlo simulation than using the original circuits.

99

6 Experimental Results

6.4 Results of Hierarchical Statistical Timing Analysis

To test the correlation handling method proposed in Section 5.1, four experimental
hierarchical circuits were built with ISCAS85 benchmark circuits as modules. In
each design four modules of the same circuit were placed with the layout illustrated
in Figure 6.2.

1 W |
1 2
1
=0
n
gy
3 4

—~Idisi~

Figure 6.2: Layout of the Hierarchical Circuit

The outputs of the two modules in the first column were cross connected with the
inputs of the other two modules in the second column. The distance between mod-
ules was changed in different tests, so that the effect of local correlation can be
investigated. With circuit size and style as standard, the selected circuits as modules
were c432, ¢3540, c6288 and c7552. The distances between modules were set to O,
one time the module width, and two times the module width. For each circuit and
module distance, statistical timing analysis using timing models with random vari-
able substitution (Case A) and without random variable substitution (Case B) were
run to show the usefulness of correlation handling. In Case B, only the correlation
from die-to-die variation was considered, because these variations were shared by
all modules without the need of special processing. To verify the accuracy of the
proposed method, Monte Carlo simulation was run with the original circuits (Case
C). The results are listed in Table 6.8, where all runtimes without unit specified are
in seconds.

In Table 6.8, the errors of mean and standard deviation are given as relative ratios.
They are determined by comparing the maximum circuit delays computed from
hierarchical statistical timing analysis to Monte Carlo simulation. Compare Case A
and Case B in the different distance configurations. The accuracy with correlation
handling is better than the accuracy without correlation handling in most cases. In
other cases, e.g., dis=2W with ¢3540, c6288 and c7552, both tests have comparable
accuracy. The inaccuracy in Case A is actually caused by the approximation during
timing model extraction and statistical timing analysis, and is already acceptable for
industrial application.

100

6.4 Results of Hierarchical Statistical Timing Analysis

Table 6.8: Results of Hierarchical Statistical Timing Analysis
c432 c3540 | 6288 | c7552

mean error | 1.59% 1.04% 1.49% | 0.65% I
case A std error 1.27% 0.34% 1.41% 1.43% II
runtime 0.01 0.06 0.14 0.75 III
dis=0 mean error | 5.35% | 2.69% | 4.82% | 0.17% IV
case B std error 19.76% | 11.68% | 13.74% | 8.04% A%
runtime <lus 0.01 0.01 0.02 VI
case C runtime 12.09 302.54 | 478.75 | 696.21 VII

mean error | 1.71% 1.23% 2.33% | 0.23% VIII
case A std error 1.21% 1.05% 2.80% | 2.20% IX
runtime <lus 0.06 0.15 0.78 X
dis=1W mean error | 4.51% | 1.81% | 3.17% | 0.13% XI
case B std error 15.66% | 3.91% 5.30% | 3.06% XII
runtime <lus 0.01 0.01 0.02 XIII
case C runtime 12.58 314.95 | 496.36 | 747.85 XIV

mean error | 1.63% 1.48% 2.64% | 0.01% XV
case A std error 0.74% 1.01% 229% | 1.21% XVI
runtime <lus 0.06 0.13 0.61 XVII
dis=2W mean error | 3.77% | 1.48% | 2.61% | 0.01% XVIII
case B std error 11.35% | 0.80% 2.30% | 1.21% XIX
runtime <lus 0.01 0.01 0.03 XX
case C runtime 13.13 322.05 | 513.72 | 74824 XXI

Case A: Hierarchical SSTA with random variable substitution
Case B: Hierarchical SSTA without random variable substitution
Case C: Monte Carlo simulation

Another conclusion can be drawn by comparing case B in different distance con-
tigurations, e.g., rows V, XII, and XIX. The accuracy of these test cases increases as
the distance between modules becomes larger. This is because the correlation be-
tween modules decreases with larger distance. Therefore, ignoring correlation from
within-die variation affects the accuracy less. Compare the accuracy of Case B for
different circuits. The accuracy of ¢7552 is obviously better than the other test cases.
The first reason is that the width of ¢7552 is larger than the other modules, so that
the correlation between modules is smaller when distance is set to 1W and 2W. In
the test with distance 0, the accuracy of c7552 is also better than the other circuits.

101

6 Experimental Results

This is because the area of ¢7552 is larger enough so that a part of circuit compo-
nents inside the four instances, e.g., circuit components at the upper side of module
1 and the ones at the lower side of module 3, do not have correlation from within-die
variation. Therefore, discarding such correlation has less impact on the accuracy of
c7552 than on the accuracy of the other circuits with smaller area.

In Table 6.8 the runtimes of Case A are always larger than the ones of Case B because
of the random variables substitution. Both runtimes, however, are less than one
second and make no difference in a real design flow. Additionally, the proposed
hierarchical analysis method using the extracted timing models in this experiment is
faster by several orders of magnitude than Monte Carlo simulation with flat netlists.
This proves the effectiveness of the proposed hierarchical statistical analysis in this
thesis.

6.5 Summary

With the experimental results in this chapter, the efficiency and accuracy of the pro-
posed timing model extraction methods are proved. The maximum criticalities in
all ISCAS85 benchmark circuits exhibit the tendency to approximate 0 and 1. By
removing edges with maximum criticalities smaller than the predefined threshold
dc = 0.05 and applying the basic merge operations, the sizes of extracted timing
models are only about one fifth of the original circuits. By comparing the delays
between primary inputs and outputs, the extracted timing models show about 1%
inaccuracy, which is acceptable in statistical timing analysis because of the approxi-
mation during the maximum computation. For flip-flop based circuits, the extracted
timing models have remarkable size compression ratios. Because of latch trans-
parency, there is more than one constraint element for a primary input of a latch
based circuit and more than one delay element to a primary output, as described
in Section 4.3. Consequently the size of the extracted timing model is relative large
but still has remarkable advantage compared to the size of the original circuit. The
accuracy of the extracted timing models for sequential circuits was confirmed by
applying them into a random generated test design individually.

The variable substitution algorithm handling correlation between modules in the
complete hierarchical design was verified with hierarchical designs created from
ISCAS85 benchmark circuits. The results show that the proposed method maintains
good accuracy compared to Monte Carlo simulation and the accuracy degradation
caused by discarding the correlation between modules is large, so that the usefulness
of applying the proposed variable substitution is confirmed.

102

Chapter 7

Conclusion

With continuing feature size scaling semiconductor devices face more relative pro-
cess variations than in past days. These variations cause the timing evaluation of a
design more complex because a drastically increasing number of corners should be
checked. To reduce the runtime and improve the accuracy of such evaluation, sta-
tistical timing analysis is introduced. In a parametrized statistical timing flow, gate
delays are modeled as functions of process parameters; the performance of a circuit
is computed by a propagation algorithm. The main challenge in such a propagation
is to handle the correlation from reconvergent paths and the proximity effect from
manufacturing.

As a method to conquer the complexities in design and verification, hierarchical
flow is widely adopted. Moreover, this flow enables more independent coopera-
tion between different design units. For example, more and more modules in SoC
designs are provided as IP blocks by third-party vendors nowadays. The aggrava-
tion of process variations and the emergence of statistical timing analysis, however,
demand a new renovation in the hierarchical design flow.

Traditionally, the hierarchical design flow contains two steps. At first, modules are
designed and verified independently, with interface specifications defined by sys-
tem engineers. Thereafter, these modules are integrated together to form a complete
system. After this stage, the functional and timing verifications are performed for
the complete design, without inspecting the internal details in each module. Base on
this observation, timing models containing only interfacing constraints and delays
are extracted for modules during the first step. Because these models are relative
small and in a simple form, the timing verification of the complete design can be ac-
celerated drastically. When process variations are considered, all gate delays inside
a module become random variables. This new characteristic makes most existing
algorithms proposed for timing model extraction without considering process vari-
ations infeasible. The second challenge is the correlation between modules. During

103

7 Conclusion

the timing model extraction step, the correlation between modules are unknown.
Such information must be incorporated into timing verification of the complete de-
sign later.

The focus of this thesis is to solve the two problems above. For the three common
circuit types timing model extraction methods were proposed. For combinational
circuits, it was observed that many delays in such a circuit do not affect any critical
paths between inputs and outputs. Therefore, the removal of these delays does not
affect the interfacing timing characteristics. When process variations are considered,
however, each path can affect the input-output delays of the module with a certain
probability. To evaluate the importance of edges in timing analysis, the concept of
maximum criticality was defined. Any edge with maximum criticality smaller than
a predefined small threshold was removed. According to the experiment results, all
ISCASS5 circuits exhibit the tendency of having a large portion of delays with crit-
icalities approximating 0. This proves the effectiveness of the proposed noncritical
edge removal algorithm.

For flip-flop based circuits, this thesis extended the extracted timing models in
[ALST02] to incorporate variations. A parametrized statistical timing analysis en-
gine was used to extract all constraints and delays so that the resulting timing mod-
els can be seamlessly integrated into the statistical timing analysis flow. For latch
based circuits, the classical clock model proposed in [SMO90b] was restructured to
expose the timing requirements at the inputs of a module. Without assuming trans-
parency level, timing constraints through different latch stages were extracted. The
extracted models can be used to evaluate the yield of a circuit against any clock
period and latch transparency. The accuracy of extracted timing models was veri-
tied by applying them into a random generated application context. Compared to
Monte Carlo simulation, timing analysis with proposed models had several orders
of magnitude of speedup. The accuracy, however, was still well maintained.

Because the correlation between modules can not be integrated into timing models,
a random variable substitution method was proposed in this thesis to reestablished
such correlation. The relation from the decomposed random variable sets inside
timing models to the random variable set for the complete hierarchical design was
established by a linear transformation. The correlation was therefore represented
by sharing the same set of random variables in different modules. With a heteroge-
neous grid, the proposed method can handle the correlation between modules and
circuit components in the top design at the same time. Experimental results proved
that the correlation between modules had a significant effect on the accuracy of tim-
ing analysis. With the proposed random variables substitution method, the accuracy
of hierarchical timing analysis can be well preserved in reasonable runtime.

With the proposed methods, a complete and effective hierarchical statistical tim-
ing analysis flow is established. This design flow not only maintains efficiency

104

and accuracy when process variations are considered, but also enables the modern
system-on-chip designs in the new era of deep submicron realm.

105

Bibliography

[ABZ102]

[ABZ03a]

[ABZ*03b]

[ABZV03a]

[ABZV03b]

[ADM92]

[ALST02]

[AZB03]

Aseem Agarwal, David Blaauw, Vladimir Zolotov, Savithri Sun-
dareswaran, Min Zhao, Kaushik Gala, and Rajendran Panda. Path-
based statistical timing analysis considering inter- and intra-die cor-
relations. In ACM/IEEE International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU), pages 16-21, 2002.

Aseem Agarwal, David Blaauw, and Vladimir Zolotov. Statistical timing
analysis for intra-die process variations with spatial correlations. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 900-907, 2003.

Aseem Agarwal, David Blaauw, Vladimir Zolotov, S. Sundareswaran,
M. Zhao, K. Gala, and R. Panda. Statistical delay computation con-
sidering spatial correlation. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 271-276, 2003.

Aseem Agarwal, David Blaauw, Vladimir Zolotov, and Sarma Vrudhula.
Computation and refinement of statistical bounds on circuit delay. In
ACMY/IEEE Design Automation Conference (DAC), pages 348-353, 2003.

Aseem Agarwal, David Blaauw, Vladimir Zolotov, and Sarma Vrudhula.
Statistical timing analysis using bounds. In Design, Automation and Test
in Europe (DATE), pages 62-67, 2003.

Pranav Ashar, Sujit Dey, and Sharad Malik. Exploiting multi-cycle
false paths in the performance optimization of sequential circuits. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 510-517, 1992.

Daga A.J., Mize L., Sripada S., Wolff C., and Qiuyang Wu. Automated
timing model generation. In ACM/IEEE Design Automation Conference
(DAC), pages 146-151, 2002.

Aseem Agarwal, Vladimir Zolotov, and David T. Blaauw. Statistical tim-
ing analysis using bounds and selective enumeration. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 22(9):1243—
1260, 2003.

107

Bibliography

[BBC'08]

[BBKS9]

[BCSS08]

[BFS5]

[BN99]

[BS99]

[Cad04]
[CCBCO06]

[CKO08]

[Cla61]

[Cla06]

[CS03]

108

Duane S. Boning, Karthik Balakrishnan, Hong Cai, Nigel Drego, Ali
Farahanchi, Karen M. Gettings, Lim Daihyun, Ajay Somani, Hayden
Taylor, Daniel Truque, and Xie Xiaolin. Variation. IEEE Transactions on
Semiconductor Manufacturing, 21(1):63-71, 2008.

Franc Brglez, David Bryan, and Krzystof Kozminski. Combinational
profiles of sequential benchmark circuits. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1929-1934, 1989.

David Blaauw, Kaviraj Chopra, Ashish Srivastava, and Louis Scheffer.
Statistical timing analysis: from basic principles to state of the art. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(4):589-607, 2008.

E. Brglez and H. Fujiwara. A neutral netlist of 10 combinational bench-
mark circuits and a target translator in Fortran. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 695-698, 1985.

Duane S. Boning and Sani Nassif. Models of process variations in device
and interconnect. In Design of High Performance Microprocessor Circuits,
chapter 6. IEEE Press, 1999.

Mark Birnbaum and Howard Sachs. How VSIA answers the SoC
dilemma. IEEE Computer, 32(6):42-50, 1999.

Cadence. Clock Domain Crossing (White Paper), Dec 2004.

Brian Cline, Kaviraj Chopra, David Blaauw, and Yu Cao. Analysis and
modeling of cd variation for statistical static timing. In IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), pages 60 — 66,
2006.

Yen-Kuang Chen and S. Y. Kung. Trend and challenge on system-on-a-
chip designs. Journal of Signal Processing Systems, 53(1-2):217-229, 2008.

Charles E. Clark. The greatest of a finite set of random variables. Oper-
ations Research, 9(2):145-162, 1961.

Theo A. C. M. Claasen. An industry perspective on current and future
state of the art in system-on-chip (SoC) technology. Proceedings of the
IEEE, 94(6):1121-1137, 2006.

Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analysis
considering spatial correlations using a single PERT-like traversal. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 621-625, 2003.

Bibliography

[CSH95]

[CZ04]

[CZ06]

[CZNVO05]

[CZVT08]

[Dar91]

[DKO03]

[Elm48]

[FF91]

[Fis90]

[FLZ07]

[GVTGO8]

Weitong Chuang, Sachin S. Sapatnekar, and Ibrahim N. Hajj. Tim-
ing and area optimization for standard-cell VLSI circuit design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
14(3):308-320, 1995.

Ruiming Chen and Hai Zhou. Clock schedule verification under pro-
cess variations. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 619-625, 2004.

Ruiming Chen and Hai Zhou. Statistical timing verification for trans-
parently latched circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(9):1847-1855, 2006.

H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah. Parameterized
block-based statistical timing analysis with non-Gaussian parameters,
nonlinear delay functions. In ACM/IEEE Design Automation Conference
(DAC), pages 71-76, 2005.

R. Chen, L. Zhang, C. Visweswariah, J. Xiong, and V. Zolotov. Static
timing: back to our roots. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 310-315, 2008.

Richard B. Darst. Introduction to linear programming: applications and ex-
tensions. Marcel Dekker Inc., 1991.

A. Devgan and C. Kashyap. Block-based static timing analysis with un-
certainty. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 607-614, 2003.

W. C. Elmore. The transient response of damped linear networks with
particular regard to wide-band amplifiers. Journal of Applied Physics,
19:55-63, 1948.

Dorian Feldman and Martin Fox. Probability, The Mathematics of Uncer-
tainty. Marcel Dekker, Inc, 1991.

John P. Fishburn. Clock skew optimization. IEEE Transactions on Com-
puters, 39(7):945-951, 1990.

Zhuo Feng, Peng Li, and Yaping Zhan. Fast second-order statisti-
cal static timing analysis using parameter dimension reduction. In
ACM/IEEE Design Automation Conference (DAC), pages 244-249, 2007.

A. Goel, S. Vrudhula, E. Taraporevala, and P. Ghanta. A methodology
for characterization of large macro cells and ip blocks considering pro-

cess variations. In International Symposium on Quality Electronic Design
(ISQED), pages 200-206, 2008.

109

Bibliography

[GVTGO09] A. Goel, S. Vrudhula, F. Taraporevala, and P. Ghanta. Statistical timing
models for large macro cells and IP blocks considering process varia-
tions. IEEE Transactions on Semiconductor Manufacturing, 22(1):3-11, 2009.

[HBO6] Aaron P. Hurst and Robert K. Brayton. The advantages of latch-based
design under process variation. In International Workshop on Logic &
Synthesis, pages 241-246, 2006.

[Hen03] Jorg Henkel. Closing the SoC design gap. IEEE Computer, 36(9):119-121,
2003.

[Hit82] Robert B. Hitchcock. Timing verification and the timing analysis pro-
gram. In ACM/IEEE Design Automation Conference (DAC), pages 594-604,
1982.

[HKOO01] Aapo Hyvérinen, Juha Karhunen, and Erkki Oja. Independent component
analysis. Wiley & Sons, 2001.

[HSC82] Robert B. Hitchcock, Gordon L. Smith, and David D. Cheng. Tim-
ing analysis of computer hardware. IBM Journal Research Development,
26(1):100-105, 1982.

[HYH99] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling the
ISCAS-85 benchmarks: a case study in reverse engineering. IEEE De-
sign & Test of Computers, 16(3):72-80, 1999.

[IEEO5] IEEE. IEEE Standard SystemC Language Reference Manual, 2005.

[IEEQ7] IEEE. Standard for SystemVerilog - Unified Hardware Design, Specification,
and Verification Language, 2007.

[Jol02] LT. Jolliffe. Principal Component Analysis. Springer, 2002.

[KCJT00] Ken Kundert, Henry Chang, Dan Jefferies, Gilles Lamant, Enrico
Malavasi, and Fred Sendig. Design of mixed-signal systems-on-a-chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 19(12):1561-1571, dec 2000.

[KM97] Noriya Kobayashi and Sharad Malik. Delay abstraction in combina-
tional logic circuits. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 16(10):1205-1212, 1997.

[Knu98] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, 1998.

[KPRO5] Kunhyuk Kang, Bipul C. Paul, and Kaushik Roy. Statistical timing anal-
ysis using levelized covariance propagation. In Design, Automation and
Test in Europe (DATE), pages 764-769, 2005.

110

Bibliography

[KS05]

[KYC'81]

[LCS09a]

[LCST09b]

[Lee05]

[LKST08]

[LLCPO8]

[LLGP04]

[MKBO02]

[Moo65]

[Moo03]

[MPO03]

V. Khandelwal and A. Srivastava. A general framework for accurate
statistical timing analysis considering correlations. In ACM/IEEE Design
Automation Conference (DAC), pages 89-94, 2005.

Ryotaro Kamikawai, Minoru Yamada, Tsuneyo Chiba, Kenichi Furu-
maya, and Yoji Tsuchiya. A critical path delay check system. In
ACMY/IEEE Design Automation Conference (DAC), pages 118-123, 1981.

Bing Li, Ning Chen, and Ulf Schlichtmann. Timing model extraction
for sequential circuits considering process variations. In IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), pages 336-343,
20009.

Bing Li, Ning Chen, Manuel Schmidt, Walter Schneider, and Ulf
Schlichtmann. On hierarchical statistical static timing analysis. In De-
sign, Automation and Test in Europe (DATE), pages 1320-1325, 20009.

Ki Won Lee. SoC R&D trend for future digital life. IEICE Transactions
on Electronics, E88-C(8):1705-1710, 2005.

Bing Li, Christoph Knoth, Walter Schneider, Manuel Schmidt, and Ulf
Schlichtmann. Static timing model extraction for combinational circuits.
In International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), pages 156-166, 2008.

Xin Li, Jiayong Le, Mustafa Celik, and Lawrence T. Pileggi. Defining sta-
tistical timing sensitivity for logic circuits with large-scale process and
environmental variations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(6):1041-1054, 2008.

X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi. Asymptotic probabil-
ity extraction for non-normal distributions of circuit performance. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2004.

Cho W. Moon, Harish Kriplani, and Krishna P. Belkhale. Timing model
extraction of hierarchical blocks by graph reduction. In ACM/IEEE De-
sign Automation Conference (DAC), pages 152-157, 2002.

Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), 1965.

Gordon E. Moore. No exponential is forever ... but we can delay for-
ever’. In presentation at ISSCC, 2003.

Philippe Magarshack and Pierre G. Paulin. System-on-chip beyond the
nanometer wall. In ACM/IEEE Design Automation Conference (DAC), 419-
424, 2003.

111

Bibliography

[MQSB09] H.D. Mogal, Haifeng Qian, S.S. Sapatnekar, and K. Bazargan. Fast
and accurate statistical criticality computation under process variations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 28(3):350-363, March 2009.

[MRO6] Douglas C. Montgomery and George C. Runger. Applied Statistics and
Probability for Engineers. Wiley, 2006.

[MS99] Naresh Maheshwari and Sachin S. Sapatnekar. Timing Analysis and Op-
timization of Sequential Circuits. Kluwer Academic Publishers, 1999.

[Nas01] Sani R. Nassif. Modeling and analysis of manufacturing variations. In
IEEE Custom Integrated Circuits Conference (CICC), pages 223-228, 2001.

[OB04] Michael Orshansky and Arnab Bandyopadhyay. Fast statistical timing
analysis handling arbitrary delay correlations. In ACM/IEEE Design Au-
tomation Conference (DAC), pages 337-342, 2004.

[PS73] David J. Pilling and Henry B. Sun. Computer-aided prediction of delays
in Isi logic systems. In ACM/IEEE Design Automation Conference (DAC),
pages 182-186, 1973.

[PTBT99] T. Park, T. Tugbawa, D. Boning, J. Chung, S. Hymes, R. Muralidhar,
B. Wilks, K. Smekalin, and G. Bersuker. Electrical characterization of
copper chemical mechanical polishing. In International Conference on
Chemical-Mechanical Polish Planarization for ULSI Multilevel Interconnec-
tion (CMP-MIC), pages 184-191, 1999.

[RPHS83]]. Rubinstein, P. Penfield, and M. A. Horowitz. Signal delay in RC tree
networks. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2(3):202-211, 1983.

[Sap96] Sachin S. Sapatnekar. Efficient calculation of all-pairs input-to-output
delays in synchronous sequential circuits. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 520-523, 1996.

[SBC97] Brian E. Stine, Duane S. Boning, and James E. Chung. Analysis and
decomposition of spatial variation in integrated circuit processes and
devices. IEEE Transactions on Semiconductor Manufacturing, 10(1):24-41,
February 1997.

[SBSV93] N.V. Shenoy, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Minimum
padding to satisfy short path constraints. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 156-161, 1993.

[Sch02] Lou Scheffer. Explicit computation of performance as a function of pro-
cess variations. In ACM/IEEE International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems (TAU), pages 1-8, 2002.

112

Bibliography

[Seb77]
[SMO90a]

[SMO90b]

[SS06]

[SS08]

[SYAT81]

[Syn09]
[VPMS97]

[VRK"04]

[XZHO7]

[XZV08]

[XZVV06]

G. Seber. Linear Regression Analysis. John Wiley & Sons, 1977.

K.A. Sakallah, T.N. Mudge, and O.A. Olukotun. checkT. and minT,:
Timing verification and optimal clocking of synchronous digital circuits.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 552-555, 1990.

Karem A. Sakallah, Trevor N. Mudge, and Oyekunle A. Olukotun. Anal-
ysis and design of latch-controlled synchronous digital circuits. In
ACM/IEEE Design Automation Conference (DAC), pages 111-117, 1990.

Jaskirat Singh and Sachin Sapatnekar. Statistical timing analysis with
correlated non-Gaussian parameters using independent component
analysis. In ACM/IEEE Design Automation Conference (DAC), pages 155—
160, 2006.

Jaskirat Singh and Sachin S. Sapatnekar. A scalable statistical static tim-
ing analyzer incorporating correlated non-Gaussian and gaussian pa-
rameter variations. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 27(1):160-173, 2008.

Tohru Sasaki, Akihiko Yamada, Toshinori Aoyama, Katsutoshi
Hasegawa, Shunichi Kato, and Shinichi Sato. Hierarchical design veri-
fication for large digital systems. In ACM/IEEE Design Automation Con-
ference (DAC), pages 105-112, 1981.

Synopsys. PrimeTime Fundamentals User Guide, 2009.

S.V. Venkatesh, Robert Palermo, Mohammad Mortazavi, and Karem A.
Sakallah. Timing abstraction of intellectual property blocks. In IEEE
Custom Integrated Circuits Conference (CICC), pages 99-102, 1997.

C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, and
S. Narayan. First-order incremental block-based statistical timing anal-
ysis. In ACM/IEEE Design Automation Conference (DAC), pages 331-336,
2004.

Jinjun Xiong, Vladimir Zolotov, and Lei He. Robust extraction of spa-
tial correlation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26(4):619-631, April 2007.

Jinjun Xiong, Vladimir Zolotov, and Chandu Visweswariah. Incremental
criticality and yield gradients. In Design, Automation and Test in Europe
(DATE), pages 1130-1135, 2008.

Jinjun Xiong, V. Zolotov, N. Venkateswaran, and C. Visweswariah. Crit-
icality computation in parameterized statistical timing. In ACM/IEEE
Design Automation Conference (DAC), pages 63-68, 2006.

113

Bibliography

[YCO06]

[YCSO05]

[ZCH™05]

[ZHCO05]

[ZSL*05]

[ZTC*06]

[ZZH06]

114

Kai Yang and Kwang-Ting Cheng. Efficient identification of multi-cycle
false path. In IEEE/ACM Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 360-365, 2006.

Jie Yang, Luigi Capodieci, and Dennis Sylvester. Advanced timing anal-
ysis based on post-OPC extraction of critical dimensions. In ACM/IEEE
Design Automation Conference (DAC), pages 359-364, 2005.

L. Zhang, W. Chen, Y. Hu,]J. A. Gubner, and C. C.-P. Chen. Correlation-
preserved non-Gaussian statistical timing analysis with quadratic tim-
ing model. In ACM/IEEE Design Automation Conference (DAC), pages
83-88, 2005.

Lizheng Zhang, Yuhen Hu, and C.C.-P. Chen. Block based statistical
timing analysis with extended canonical timing model. In IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-DAC), pages
250-253, January 2005.

Y. Zhan, A.]. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma.
Correlation-aware statistical timing analysis with non-Gaussian delay
distributions. In ACM/IEEE Design Automation Conference (DAC), pages
77-82, 2005.

Lizheng Zhang, Jengliang Tsai, Weijen Chen, Yuhen Hu, and Char-
lie Chung-Ping Chen. Convergence-provable statistical timing analysis
with level-sensitive latches and feedback loops. In IEEE/ACM Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 941-946,
2006.

Shuo Zhou, Yi Zhu, Yuanfang Hu, Ronald Graham, Mike Hutton, and
Chung-Kuan Cheng. Timing model reduction for hierarchical timing
analysis. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 415-422, 2006.

Abstract in German

Mit fortschreitender Verkleinerung der Fertigungsgrofien von integrierten Schal-
tungen nehmen die relativen Schwankungen der Prozessparameter zu. Dies fiihrt
bei der konventionellen Statischen Timing Analyse zu einer erheblichen Uberab-
schiatzung der zu erwartenden Signallaufzeiten, da nur Extremwerte der Parameter
berticksichtigt werden. Im Gegensatz dazu werden bei der Statistischen Timing
Analyse Prozessparameter nicht auf ihre Extremwerte reduziert, sondern als Zu-
fallsgrofien inklusive ihrer Korrelationen behandelt. In dieser Arbeit wurde die An-
wendung der Statistischen Timing Analyse im Rahmen des hierarchischen Entwurfs
digitaler Schaltungen erforscht. Dazu wurde eine Methode zur Generierung statis-
tischer Timing Modelle fiir kombinatorische und sequentielle Schaltungen vorgestellt,
die auch die Korrelationen der hierarchisch geschachtelten Module beriicksichtigt.

115

	Introduction
	Challenges in SoC Design
	Contributions of This Work
	Organization of This Dissertation
	Summary

	Static Timing Analysis
	Sequential Circuits and Timing Graphs
	Timing of Flip-flop Based Circuits
	Timing of Latch Based Circuits
	Static Timing Analysis of Combinational Circuits
	Static Timing Analysis of Flip-flop Based Circuits
	Static Timing Analysis of Latch Based Circuits
	Summary

	Problem Description
	Variations
	Sources of Variations
	Decomposition of Process Variations
	Correlation Modeling
	Process Variation Handling

	Statistical Timing Analysis
	Process Parameter Modeling
	Gate Delay Representation
	Statistical Timing Analysis of Combinational Circuits
	Statistical Timing Analysis of Sequential Circuits

	Timing Model Extraction for Static Timing Analysis
	Static Timing Model for Combinational Circuits
	Static Timing Model for Sequential Circuits
	Timing Verification with Static Timing Models

	Hierarchical Statistical Timing Analysis
	State of the Art in Statistical Timing Model Extraction
	State of the Art in Hierarchical Statistical Timing Analysis

	Summary

	Statistical Timing Model Extraction
	Timing Model Extraction for Combinational Circuits
	Concept of Noncritical Edge Removal for Static Timing Analysis
	Noncritical Edge Removal in Statistical Timing Analysis
	Timing Model Extraction with Noncritical Edge Removal

	Timing Model Extraction for Flip-flop Based Circuits
	Timing Model Extraction for Latch Based Circuits
	Timing Specification with Inputs for Latch Based Circuits
	Timing Constraint Restructuring for Latch Based Circuits
	Path Traversal and Clock Scheme
	Timing Constraint Extraction from Enabling Clock Edges
	Timing Constraint Extraction from Inputs
	Nonpositive Loop Constraint Extraction
	Summary of Timing Model Extraction for Latch Based Circuits

	Summary

	Correlation Handling in Hierarchical Statistical Timing Analysis
	Correlation Handling with Variable Substitution
	Discussion
	Summary

	Experimental Results
	Experiment Setup
	Results of Timing Models for Combinational Circuits
	Results of Timing Models for Sequential Circuits
	Results of Hierarchical Statistical Timing Analysis
	Summary

	Conclusion
	Bibliography
	Abstract in German

