TECHNISCHE UNIVERSITAT MUNCHEN
Zentrum Mathematik

Optimal Containment

Lucia Barbara Roth

Vollstandiger Abdruck der von der Fakultat fiir Mathematik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. Richter-Gebert
Prifer der Dissertation: 1. Univ.-Prof. Dr. P. Gritzmann

2. Prof. Dr. E. Welzl, Eidgendssische Technische
Hochschule Ziirich/Schweiz

3. Univ.-Prof. Dr. M. Henk, Otto-von-Guericke
Universitat Magdeburg (schriftliche Beurteilung)

Die Dissertation wurde am 20. Mai 2009 bei der Technischen Universitat Miinchen ein-
gereicht und durch die Fakultat fiir Mathematik am 15. Dezember 2009 angenommen.






Abstract

We study algorithmic aspects of optimal containment problems in this thesis. We
consider 1- and k-containment problems under homothety, with the special case of
the k-center problem, as well as rotational containment problems, especially some
problems involving cylinders. We discuss the complexity of such problems along-
side algorithms to compute bounds for the optimal value, relying amongst other on
geometric inequalities, mathematical programming formulations, and the concept
of core-sets to achieve these results. The thesis includes experimental studies of the
practical performance of the described algorithms, too.

Zusammenfassung

Thema dieser Arbeit sind optimale Containment-Probleme unter algorithmischen
Gesichtspunkten. Es werden 1- und k-Containment-Probleme unter Homothetie
betrachtet, darunter der Spezialfall des k-Center-Problems, sowie Containment-
Probleme unter Rotation, insbesondere solche mit Zylindern. Dabei sind sowohl die
Komplexitdat der Probleme als auch Algorithmen zur Naherung des Optimalwerts
von Interesse. Hierzu werden unter anderem geometrische Ungleichungen, Formu-
lierungen als mathematische Programme, sowie Core-Sets eingesetzt. Die Arbeit
enthélt weiterhin Tests zur praktischen Uberpriifung der beschriebenen Algorith-
men.



il



Contents

1 Introduction 1
1.1 Applications of Containment Problems . . . . . .. ... ... ... 1
1.1.1 Robot Example . . . . . .. ... ... ... ... 2

1.1.2  Ray Source Example . . . . .. .. ... ... ... 2
1.1.3 Extremity Correction Example . . .. .. .. ... .. ... 3

1.2 Related Problems . . . . . . .. ... ... L 3
1.2.1 Clustering . . . . . . . ... 3
1.2.2  Covering, Packing, and Piercing Problems . . . . . .. . .. 4
1.2.3  Facility Location and Motion Planning . . . . . . .. .. .. 4

1.3 Thesis Outline and Main Results . . . . .. . ... ... ... ... 5
1.4 Acknowledgments . . . . . . . ... ... 6
2 Preliminaries 9
2.1 Containment Problems . . . . . . . .. .. ... ... ........ 9
2.2 Definitions . . . . . . ... 9
2.3 Basic Classes of Outer Containment Problems for Point Sets . . . . 11
2.4 Fundamental Terms . . . . . . . . . . ... ... ... ... ... 14
2.4.1 Computational Convexity . . . . . ... .. ... ... ... 14
2.4.2 Complexity and Algorithms . . . . ... ... ... ... .. 15
2.4.3 Optimization . . . . .. .. .. 16

3 1-Containment under Homothety 19
3.1 Methods for Special Container Shapes . . . . . .. ... ... ... 19
3.1.1 Polytopes . . . . . . . .. 19
3.1.2 FEuclidean Containers . . . . . . . . .. ... ... ...... 21
3.1.3 Combined Containers . . . . . . . . . .. .. .. ... .... 22

3.2 General Container Shapes . . . . . .. ... ... ... ... .... 23
3.2.1 Previous Work . . . ... ... 23
3.2.2  Cutting Plane Algorithm . . . . . . . ... ... ... .... 24

3.3 Experiments and Examples . . . . .. .. ... 00000 29
3.3.1 Polytopal Containers . . . . . . .. ... .. ... .. .... 30
3.3.2 Euclidean Containers . . . . . . . . ... ... ... ..... 30
3.3.3 Nonlinear, Nonsmooth Containers . . . . . . . ... ... .. 33
3.3.4 Further Remarks on the Implementation . . . . .. ... .. 33

il



Contents

4

6

k-Containment under Homothety
4.1 Partitioning Procedures . . . . . . ... ... o000
4.1.1 Previous Work on Partitioning . . . . . . . .. .. ... ...
4.1.2 Diameter Partitioning . . . . . . . . ... ... .. ... ..
4.2 Polynomial k-Containment Problems . . . . .. .. ... ... ...
4.2.1 2-Containment for Parallelotopes . . . . . ... ... .. ..
4.2.2  2-Containment for Axis-Aligned Boxes Sharing a Common
Translation Vector . . . . . ... ... ... ... ... ...
4.2.3 Nonconvex Containment for Objects Decomposable by Hy-
perplanes . . . .. ..
4.3 Approximating k-Containment Problems for Point Sets . . . . . . .
4.3.1 A Basic Algorithm . . . . .. ... ... ... ... ...
4.3.2 MICP Relaxation . . . . . . ... ... ... ... .. ...,
4.3.3 Using Diameter Partitioning within the B&B . . . . . . ..
4.3.4 Experiments . . . . . .. ...
4.4 Approximating Euclidean k-Center Problems for V-Polytopes . . . .
4.4.1 Core-Set Points from V-Polytopes . . . . . .. .. .. .. ..
4.4.2 Complexity of the Algorithm . . . . . .. ... ... .. ...
4.4.3 Euclidean 2-Center for V-Polytopes . . . . . . .. ... ...

Rotational Containment

5.1 Complexity and Basic Properties . . . . . . .. .. ... ... ...
5.1.1 Approximation via Discretizations . . . . . . ... ... ...
5.1.2  Containers with axial symmetry . . . . . . .. ... ... ..

5.2 Approximating Smallest Enclosing Cylinders and Related Problems
5.2.1 A-priori Bounds . . . . . ... ...
5.2.2 Core-Sets for Cylinders . . . . . . . ... .. ... ... ...
5.2.3  Approximating Anchored 1-Rays by Convex Programming .
5.2.4  Core-Set Based Approximation Algorithms for Cylinders
5.2.5 Implementation and Experiments . . . . . . .. ... .. ..

5.3 A Cylinder Problem in Extremity Surgery . . ... .. ... .. ..
5.3.1 Motivation . . . . . . ...
5.3.2 Problem Treatment . . . . . . . ... .. ... ... ... ..
5.3.3 Background . . . .. .. ...

Open Questions

List of Figures

List of Tables

List of Algorithms

v

113

115

117

119



Contents

Bibliography 121

Index 133



vi



1 Introduction

Containment problems are questions from applied geometry which aim at finding or
approximating an extremal body in a given class of bodies such that it either con-
tains or is contained in another given body [67]. We consider optimal containment
problems and related questions from an algorithmic viewpoint.

Maybe the most famous containment problem is the question of the smallest
enclosing ball of a point set, originally posed by J.J. Sylvester in 1857 [129]. This
problem is still subject to research today [140] — alongside many other containment
questions. In this thesis, we focus on some specific classes of containment problems
(introduced in Chapter 2), and particularly on the following aspects of the topic:

e We ask for the complexity of a given problem in general dimension and for
algorithms to solve or approximate the problem.

e On the practical side, we discuss implementations of algorithms and their
performance on concrete examples.

We now proceed with some exemplary applications of containment problems, men-
tion related topics, and finish the introduction with an outline of the thesis and the
acknowledgments.

1.1 Applications of Containment Problems

A variety of real-world applications motivates studying containment problems. An
example of an application of the smallest enclosing ball problem in 2D is the place-
ment of an emergency facility for a set of “customers” modeled as demand points.
We seek a center of the point set minimizing the maximum Euclidean distance to
the demand points. When not only one but k facilities can be placed, we have the
Euclidean k-center problem, where we look for k centers instead of one. Besides lo-
cation planning, 2D and 3D containment problems frequently arise in robotics and
computer graphics, whereas high-dimensional applications can be found in mathe-
matics itself, for instance in optimization and statistics (see [66] for examples).
Many other shapes besides Euclidean balls can arise in containment problems.
In some applications, other distance measures are simply more natural. For in-
stance, in [82], polygons are covered by rectangles which is motivated by finding
good layouts for maps. Protein structures can be encoded into binary strings [55],



Chapter 1. Introduction

and so can occurrences of keywords in text documents. In order to analyze simi-
larity of binary strings, the Hamming distance and its geometric counterpart, the
[; distance (see also [59]), are suitable measures since they count the number of
different entries (in contrast to, e.g., the I, distance). In other cases, there is no
particular reason to prefer a specific norm to measure distance, but some norms
have desired computational properties such as the [; norm in the medical diagnosis
problem described in [108]. We now present two examples of location problems
where more “exotic” shapes arise.

1.1.1 Robot Example

Consider the situation where a robot arm should be able to reach a set of object
locations in the plane. The arm may rotate freely in any direction, so it can reach
objects within a circle whose radius depends on the arm length. Now assume the
robot itself may also move along tracks above the plane, for instance, two orthogonal
tracks as depicted in Figure 1.1. The robot can reach all the objects whenever

Figure 1.1: A robot arm, hinged to two axis parallel tracks.

the object locations in the plane can be covered by the resulting shape, i.e., the
Minkowski sum of a circle and a rectangle (see Figure 1.2). Placing the robot can
therefore be modeled as a containment problem in 2D. (A proper definition of the
classes of containment problems we consider can be found in Chapter 2.)

In case we have a robot arm with joint limits in a way that it only reaches a
section of the full circle (compare [72]), we get a conical section — just as in the
following example.

1.1.2 Ray Source Example

Let a sender emit signals which should reach a set of given target objects in the
plane or in 3-space. If the source emits equally to all sides, we get a disk or a ball.
However, the source is often bounded on its sides, limiting the directions of the



1.2. Related Problems

emitted rays or waves such that only a section of the ball remains (see Figure 1.2).
We get the same type of shapes when the objects are required to be within the field
of sight of a camera. Finding the minimal required reach and the corresponding
optimal location of the sender is also a containment problem. In practice, one might
like to place several senders, too, maybe with different transmission ranges.

Figure 1.2: Possible shapes for containment problems from robot and ray source
examples.

1.1.3 Extremity Correction Example

A number of applications of containment problems can be found in the life sci-
ences. We consider another example, this time from human medicine, where defor-
mities of the extremities (especially the legs) are to be corrected. Such deformities
can be congenital or post-traumatic. Frequently, the affected bones are not only
malaligned but also too short. Such deformities can be corrected by a method of
G. llizarov [86], [87]. It involves cutting the bone, and, with help of an externally
attached apparatus, slowly extending the cut making the bone tissue grow in be-
tween. Whereas this method is incriminating for the patient due to the external
apparatus, a new technique [22] places the device (“intramedullary nail”) directly
into the bone marrow. Though the new method is more patient-friendly, it en-
tails higher demands on the planning of the operation and the precision of the nail
placement. Locating the cylindrical nail (see Figure 1.3) within the bone marrow
can be modeled as a containment problem, where the bone data is extracted from
CT scans. The approach is explained in detail in Section 5.3; see also [36].

1.2 Related Problems

We shortly mention some further topics which are strongly connected to the con-
tainment problems we consider in this thesis.

1.2.1 Clustering

Given a set of objects, most frequently data points, we seek to partition it into a
number of clusters, optimizing a given objective function. The k-center problem
mentioned before is a typical clustering problem. However, many other variants



Chapter 1. Introduction

Figure 1.3: Schematic illustration of an implantable nail used in extremity cor-
rection. Picture credit: © 2004 Beinverlingerung.de

of clustering problems are studied. Instead of minimizing the maximum distance
to the cluster center, one can also choose to minimize the sum of distances, which
is known as the k-median problem. Discrete clustering problems require choosing
the cluster centers from a discrete set. In other settings, it may be desirable not
to consider the distance of the clustered objects to the cluster center, but their
pairwise distances [14]. Moreover, the number of clusters need not be fixed but
can also be subject to the objective function. The complexity of such problems is
studied in [51]. For a survey on clustering, see [117].

1.2.2 Covering, Packing, and Piercing Problems

Covering and packing problems are closely related to containment questions. Cov-
ering asks for a set of objects such that their union contains a given body; packing
requires that the intersection of the set of packed objects has empty interior and
that its union is contained in a given body. Packing of polygons is studied for in-
stance in [1] and [15]. A famous question in this context is sphere packing. Piercing
problems,; in contrary, seek for a hitting set of points such that each member of a
set of given objects contains at least one point. Note that a number of Euclidean
unit balls can be pierced by k points if and only if the set of centers of the balls
can be covered by k unit balls [113], [123]. In this sense, k-piercing problems for
Euclidean balls are polar to Euclidean k-center problems.

1.2.3 Facility Location and Motion Planning

Location problems seek for the optimal placement of a number of facilities, most
frequently in 2D, 3D, or within a given discrete set. The placement of supply



1.3. Thesis Outline and Main Results

units for a given set of customers can be modeled as a k-median problem; for
emergency facilities, k-center is an appropriate choice [47]. However, these problems
often involve capacities, costs, and additional constraints. Typically, there are also
existing facilities which should be considered in the problem formulation. Moreover,
the facilities need not be modeled as points but may also be more complicated
objects such as lines or polygonal chains. See [48] for a survey. An interesting
variant is the optimal placement of obnoxious or hazardous facilities, e.g., waste
disposal sites or pipelines. Here, it is desirable to maximize the distance instead
of minimizing it [23], [46], [97]. The problem of finding a widest empty corridor
[24] arises when an object has to be transported through a set of obstacles. Such
motion planning problems also come up in robotics research, and some of them
can be formulated as inner containment problems. See the survey [121] on motion
planning.

1.3 Thesis Outline and Main Results

We now outline the structure of this thesis and provide a summary of the main
results. To begin with, Chapter 2 contains basic definitions and formally introduces
containment problems.

In Chapter 3, we consider the basic 1-containment problem under homothety,
that is covering a point set by a homothetic copy of a given container. We review
known methods for the problem, and extend some LP and SOCP formulations to
more general container shapes. We also propose a cutting-plane algorithm for the
problem. Though it may need an exponential number of iterations in general di-
mension and is therefore not polynomial in the worst case, we can provide examples
where it is superior to known polynomial methods in moderate dimensions, for in-
stance when the container is the cross polytope and the number of input points
gets large.

Chapter 4 addresses containment under homothety, too, but with several con-
tainers. This is a generalization of the well-known k-center problem, also allowing
for non-symmetric and different containers. We introduce a diameter partitioning
scheme based on distance graphs which can be used to compute upper and lower
bounds with provable guarantees for 2-containment problems. The analysis of the
method is based on (partly new) geometric inequalities, and we provide results for
general container shapes and also different containers. For some special cases of
the k-containment problem, we are able to verify the existence of polynomial time
methods.

Moreover, we consider a branch-and-bound procedure to approximate the general
k-containment problem. It can be used to find fast approximations of the Euclidean
k-center problem, and improves on previous implementations for this problem. We
discuss how to further accelerate the method using a new MICP-formulation which



Chapter 1. Introduction

is integrated into the branch-and-bound. It is also possible to use the bounds
computed by the diameter partitioning scheme to speed up the procedure.

Finally, we consider the case where not a point set but its convex hull has to be
covered by k£ Euclidean balls. We see that the core-set results for the Euclidean
k-center problem can be extended and derive a method to construct these core-
sets in general dimension. Thereby, we prove the existence of a polynomial time
approximation scheme for this problem.

In Chapter 5, we allow rotations in addition to homotheties. We are especially
interested in containment problems where the containers are rotational symmetric
about an axis. We discuss their complexity and structural properties, and show that
covering a point set on the unit sphere with an anchored circular double cone is NIP-
complete. In particular, we consider problems involving cylinders and provide an
overview of methods to compute a-priori bounds for smallest enclosing (anchored)
cylinders.

It is then shown that core-sets for the anchored 1-ray problem exist whose size
depends only on the desired accuracy and the shape of the point set, but not
on the number of input points or the dimension. We can extend these results
to anchored cylinder, anchored k-ray, and anchored k-line problems. We then
consider approximation algorithms for these problems, based on core-sets and a
convex programming formulation for the anchored 1-ray. We prove the existence
of a polynomial time approximation scheme when k is fixed and the ratio of the
maximal norm of a point from the input set and the optimal radius is bounded by
a constant. We also discuss an implementation of the resulting algorithm for the
anchored cylinder problem and computational examples.

Finally, we introduce a cylinder problem originating from extremity surgery.
We provide an approximation algorithm based on semidefinite programming, and
discuss practical questions in 3D. In addition, we show that the problem is NP-
complete in general dimension, and depict relations to geometric transversal theory.

An overview of some open questions related to these problems can be found in
Chapter 6.

1.4 Acknowledgments

Co-authors. Some of the work presented in this thesis has been published previ-
ously. Chapters 3 and 4 are joint work with René Brandenberg, and major parts
thereof also appear in [37] and [38]. The extremity correction part in Section 5.3 re-
sulted from an interdisciplinary project!, and is joint work with René Brandenberg,
Tobias Gerken, and Peter Gritzmann, see [36]. I would like to thank my co-authors
for their work, and for sharing their thoughts and ideas with me.

lsee http://www-m9.ma.tum.de/Allgemeines/Extremit%E4tenkorrektur



1.4. Acknowledgments

Grants. Throughout most time of my PhD research, I was supported by the
“Deutsche Forschungsgemeinschaft” through the graduate program “Applied Al-
gorithmic Mathematics” which I gratefully acknowledge. I received financial sup-
port to take part in PreDoc Course “Optimization Methods in Discrete Geometry”
(in Berlin, 2006), too, and would like to thank the organizers and everybody else
involved for this valuable experience. I also want to thank René Brandenberg for
organizing a stay at University College London in 2008 and supporting it with his
Walther-von-Dyck grant, and David Larman for inviting us.

Thanks. [ thank Peter Gritzmann for offering me the possibility to join his re-
search group and work on these questions, for always supporting me and my work,
and for his helpful comments on drafts. I thank René Brandenberg for his sup-
port, for introducing me to this area of mathematics and pointing out interesting
problems, and for numerous helpful suggestions and inspiring discussions. I have
enjoyed working at M9, and would also like to thank all other current and former
group members, namely Klaudia Bachmeier, Oliver Bastert, Steffen Borgwardt, Ju-
lia Bottcher, David Bremner, Andreas Brieden, Markus Brill, Christoph Buchheim,
Nico Diivelmeyer, Tobias Gerken, Soubhi Elias Janjal, Peter Heinig, Jan Hladky,
Markus Jorg, Barbara Langfeld, Katja Lord, Diana Piguet, Tanja Stadler, Anusch
Taraz, Barbara Wilhelm, and Andreas Wiirfl. I am grateful for many amusing
conversations, for learning essential things about life in academia, and for help
whenever I needed it.

This thesis contains some experimental studies, and it is pointed out when the
implementations use code from student projects at M9. Therefore, I would like to
thank Andreas Arnold, Kathrin Frankl, Brigitte Golles, and Stefan Konig for their
work.

Many thanks also to my fellow students and colleagues, especially Andrea, Irmi,
Martin, and Vinzenz who often cheered me up.

Last but not least I want to thank my family and my husband for all their support
and encouragement during the ups and downs while I was working on this thesis.






2 Preliminaries

In the following, we introduce the necessary concepts and notation in order to deal
with problems involving the containment of objects in other objects.

The geometric objects we consider live in n-dimensional Euclidean space over R,
the real field. By || - ||, we denote the Euclidean norm and by (-,-) the standard
scalar product. We use eq, ..., e, to denote the standard basis of R”. Any point
x € R™ is given by n coordinates, z = (&1,...,&,)", such that © = Y7 | &e;.

2.1 Containment Problems

For optimal containment, among a fixed family of objects, we look for an element
satisfying the containment conditions and optimizing a given measure function. In
order to be able to handle this kind of problems algorithmically, we do of course
need further conditions on both the objects involved and the measure function, as
well as concrete containment conditions.

Containment problems can be defined in the following setting: Let Z, O be sub-
sets of P(R"), where P(-) denotes the power set. We call a problem a containment
problem when the task can be classified as finding I € Z, O € O satisfying the con-
tainment condition I C O. For optimal containment, we distinguish between outer
and inner containment problems. Outer containment problems are minimization
problems. Let w be a non-negative functional on O which is monotone with respect
to set inclusion. For outer containment, the task is to find I € Z, O € O satisfying
the containment condition such that w(O) is minimal in O. Analogously, for inner
containment problems, w is defined on Z, and we seek I € Z, O € O, such that O
contains I and w([/) is maximal in Z. Of course, without further specification, such
I, O need not even exist. For the problems we consider later on, we specify Z, O,
and w.

We proceed with some necessary terminology, and then introduce the specific
classes of containment problems we consider in Section 2.3. See [67] on general
containment problems.

2.2 Definitions

Let A, A" C R". By conv(A), pos(A4), aff(A), and lin(A), we denote the conver,
positive, affine, and linear hull of A, respectively. The distance dist(A, A’) between



Chapter 2. Preliminaries

A and A’ is defined as inf{|ja — d|| : a € A,a’ € A'}. The Minkowski sum A+ A’
is the set {a +d' :a € A,a’ € A’}. For A € R, AA denotes the set {\a :a € A}.

We consider translations, dilatations, and rotations in R". A translation is a
mapping = — x + t where ¢ is a vector in R™. A dilatation is a mapping = — Az,
where A is a non-negative scalar. A rotation is a mapping = +— Az, where A
is an orthogonal matrix with positive determinant. A homothety is a mapping
composed by translations and dilatations. A similarity is a mapping composed by
homotheties and rotations. By a translation, dilatation, rotation, homothety, or
similarity of A C R"™ we refer to its image under the specified map. The identity
matrix is referred to as Id.

A convex body in R™ is a compact, convex set. Polytopes are convex bodies that
are represented as the convex hull of a finite point set or as the intersection of a
finite set of half-spaces. We refer to this as the vertex and hyperplane representation
of the polytope. For short, we call polytopes in vertex representation V-polytopes
and polytopes in hyperplane representation H-polytopes.

By B ={z € R": ||z|| < 1}, we denote the Fuclidean unit ball, and by S = {x €
R™: ||z|| = 1} the Euclidean unit sphere. The set {x € R™ : (e;,z) <1, (—e;,z) <
1,1 <i <n} =[-1,1]"is the unit cube, and conv{ey, ..., e,, —ey, ..., —e,} denotes
the unit cross polytope in R".

In order to address the containment problems we consider in the following, we
introduce the notion of a container. By a container, we denote an n-dimensional
convex body C with 0 € int(C'). We denote the set of all n-dimensional containers
by C,. We can associate a distance (or gauge) functional F with a container C:
Fo(x) = inf{A > 0 : x € A\C'}. We may write minimum instead of infimum here
since C' is closed, compact, and has the origin in its interior. For O-symmetric
containers, F¢ is a norm on R"™. For instance, the cube induces the oo-norm and
the cross-polytope induces the 1-norm. However, since we do not get a norm for
containers C' that are not 0-symmetric, we simply address the containers as objects
in Euclidean space and do not consider general Minkowski spaces here.

Let us also define the Minkowski measure of symmetry. For any container C' C
R", let s¢ denote the Minkowski symmetry of C', that is the maximal dilatation
factor p such that some translate of —pC' is contained in C. Obviously, s¢ < 1,
and we say that C' is symmetric if and only if s¢ = 1. In the latter case C' can be
translated such that the translate is O-symmetric. Furthermore, s¢ > 1/n follows
from John’s theorem [93].

10



2.3. Basic Classes of Quter Containment Problems for Point Sets

2.3 Basic Classes of Outer Containment Problems
for Point Sets

In the following, we introduce the special containment problems considered in this
thesis. In particular, we consider classes of outer containment problems with finite
point sets as inner objects where the dimension n is part of the input.

The first class of containment problems we introduce is containment under ho-
mothety for point sets. Given a finite point set P = {py,...,p,} and a container,
we are looking for the smallest homothetic copy of the container that contains the
point set. Note that we minimize the dilation factor here, though other measures
are possible, too.

MINIMAL 1-CONTAINMENT PROBLEM UNDER HOMOTHETY (MCPy,,)

Input: neNmeN CeC,, P={p1,...,pm} withp; e R" for 1 <i<m
Task: min p, such that P C ¢+ pC, c € R"

In the notion of Section 2.1, we can express the task using Z = {P}, O =
{c+pC: ceR" p >0}, and w(c+pC) = p for any instance of the MCPy,p,. With
Ruom (P, C), we denote the optimal radius of the MCPyq,, for P and C. A special
case is the smallest enclosing ball problem, where the container is the Euclidean
unit ball B. Another example is the computation of the Minkowski symmetry s¢
for a V-polytope V = conv(P), since s¢c = 1/Ryom(—P,V).! We can also rotate
the container instead of translating it:

MINIMAL 1-CONTAINMENT PROBLEM UNDER ROTATION AND DILATATION
(MCPgot)

Input: neN meN CeC,, P={p1,...,pm} withp, e R" for 1 <i<m
Task:  min p, such that P C p®(C), ¢ a rotation

The optimal radius is denoted by Rre (P, C'). Allowing both rotations and trans-
lations, we get containment under similarity:

MINIMAL 1-CONTAINMENT PROBLEM UNDER SIMILARITY (MCPg;y,)

Input: neNmeN CeC,, P={p1,...,pm} withp; eR" for 1 <i<m
Task: min p, such that P C ¢+ p®(C), ¢ € R", & a rotation

'For other types of containers, computing the Minkowski symmetry is also a containment problem
under homothety, but not with a point set as inner object. Note that so can be computed by
linear programming both for V- and H-polytopes [67].

11



Chapter 2. Preliminaries

Q

0]

40

Figure 2.1: 2D Example of a point set P (black) and a container C' (blue), and
the corresponding solutions of MCPye,, MCPRet, and MCPeg;y,.

The optimal radius is denoted by Rgim(P,C). A special case is the smallest en-
closing finite cylinder, where C' = [ +B NI+, [ a line segment in R™.2 Figure 2.1
demonstrates the differences of the MCPyom, the MCPRry:, and the MCPg;y, in an
example where the container C' is a cube in 2D. Naturally, it always holds that
RHom(P, C) S RSim(P, C) and RRot(Pa C) S RSim(P7 C)

We are also interested in covering a point set with more than one container. We
consider the problem where the number of containers k is fixed.

MINIMAL k-CONTAINMENT PROBLEM UNDER HOMOTHETY (MCPY, )

Input: neN meN C,...,Cy €Cp, P={p1,...,pm} with p; € R"
for1 <i<m
Task:  min p, such that P C U5, (¢; + pCy), c; € R for 1 <4 < k

In the notion of Section 2.1, we now have O = {J,(¢; + pC;) : ¢; € R*, p > 0}.
When all k containers are identical, we talk about the k-center problem. A special

case is the Euclidean k-center problem (see Figure 2.2), where C; = ... = C; = B.
We use Ryom(P,C4,...,Cy) for the optimal radius of the MCP},__ for P and the
containers Cj, ..., Cy. When all k containers are equal, we refer to RE_ (P, C) for

shortness. As before, we can also define k-containment under rotation and dilata-
tion:

MINIMAL k-CONTAINMENT PROBLEM UNDER ROTATION AND DILATATION
(MCPIE{ot)

Input: neN meN, Cy,...,C, €C,, P=A{p1,...,pm} with p; € R”
for1 <i<m
Task:  min p, such that P c |Ji_, p®;(C;), ®; rotations for 1 <4 < k

2Since we require containers to be compact, the usual smallest enclosing infinite cylinder does
not meet the requirements. However, when [ is long enough (depending on P, of course), the
two problems are equivalent.

12



2.3. Basic Classes of Quter Containment Problems for Point Sets

O
o N
OOO o % \
O / 00\
O O

[ |
| oo

O
O @) O Oy
O -

Figure 2.2: Illustration of an optimal solution of an instance of the Euclidean
k-center problem in 2D, where k£ = 5.

Note that this definition requires all C; to still intersect in the origin after rotation
and scaling. This does of course not hold for k-containment under similarity:

MINIMAL k-CONTAINMENT PROBLEM UNDER SIMILARITY (MCPE, )

Input: neN meN Cy,...,Cr €Cph, P={p1,...,pn} with p; € R"
for1<i<m

Task:  min p, such that P C UL, (c; + p®:(Cy)), ¢ € R,
®, rotations for 1 <3 <k

With these fundamental problems, we are able to classify a wide range of con-
tainment questions. In Chapters 3, 4, and 5 we consider both the general questions
but also interesting special cases. For instance, in case of containment problems in-
volving rotations, we restrain our considerations to highly symmetric objects since
the general problem is suspected to be extremely hard. Moreover, problems arising
in applications frequently involve additional constraints or provide further informa-
tion. Therefore, we also consider containment problems with extra constraints, for
instance in Section 4.2, where we address the MCP%_  with the centers ¢; depending
on each other.

Strictly speaking, we should always address the above problems as outer contain-
ment problems for point sets. For better readability and since we consider these
cases in the major part of this thesis, we use the shorter notation. Nevertheless,
other settings are possible. In Section 4.4, we address V-polytopes as input, that is
we try to cover the convex hull of a point set with the containers, and in Section 5.3,
we consider an inner containment problem where the input is a set of ellipsoids. All
those problems are covered by the general classification for containment problems
introduced in Section 2.1.

Well studied containment problems include the minimum volume bounding box
[21] and minimum volume enclosing ellipsoid [104], [127] of a point set. Extend-
ing the notation used above, these are containment problems under affinity. The
2-containment variants of these problems are also subject to research, including dif-

13



Chapter 2. Preliminaries

ferent objective functions [12], [26], [125]. Another example of outer containment
under affinity is the computation of minimum volume enclosing simplices [67], [114].

2.4 Fundamental Terms

For the remainder of this chapter, we mention some basic terms from the areas of
Computational Convexity, Algorithms, Complexity Theory, and Optimization we
deal with in this thesis.

2.4.1 Computational Convexity

Convex containment problems in general dimension belong to the field of Compu-
tational Convexity (compare [67]).

Radii

A class of geometric measures strongly related to containment questions are geo-
metric radii.

Definition 2.1 (outer j-radius). Let B be a convez body, and C' a container. For
any 1 < 57 < n, the outer j-radius of B with respect to C' is the infimum value
p >0, such that B is contained in F + pC and F is a (n — j)-dimensional affine
subspace of R™.

Again, we may write minimum instead of infimum here since B and C are com-
pact. When C' is the Euclidean unit ball, we refer to Euclidean radii. Note that,
similarly, one can define the inner j-radii of a convex body. See [65] and [66] on
radii of convex bodies and their computation.

Solving an instance of containment under homothety is therefore equivalent to
computing the optimal outer n-radius and center. When C' is the Euclidean unit
ball, the radii can be cast as containment under similarity except that the containers
here are infinite for j < n and therefore not compact (compare Section 2.3).

Core-Sets and Helly Numbers

The notion of core-sets in geometry inspired many recent publications, e.g., [18],
[19], [43], [73], [75], [102], [141]. When considering containment problems or related
questions for point sets, the idea is to extract a (desirably small) subset of points
providing a good approximation of the complete set. Whether a given subset of P
allows a good approximation naturally depends on the measure to be computed.
Therefore, core-sets are defined with respect to a specific containment problem. In
this thesis, we consider core-sets for 1-containment and k-containment problems

14



2.4. Fundamental Terms

under homothety [18], [19], [102] and for smallest enclosing cylinders [141]. See [4]
for a survey on core-sets and the related concept of kernels.

Core-sets are strongly related to Helly-type theorems and Helly numbers. For
illustration, an alternative formulation for Helly’s theorem [79] is that for any point
set P and any container C', n + 1 points exist that suffice to find the optimal value
of an instance of the MCPpyo,. This implies that for the MCProm, a core-set of size
n+ 1 exists yielding the exact solution (and not just an approximation). When the
container is the Euclidean unit ball B, we cannot do with less than n + 1 points
for the exact solution in general. We may also say that B has Helly number n + 1.
The cube, however, has Helly number 2 [30], implying that a point set P is covered
by a cube if and only if each pair of points is covered. This immediately implies
that any pair p;, p; of points in P maximizing Ryom({pi, pj},[—1,1]") is a core-set
providing us with the exact solution.

We are especially interested in the existence of core-sets whose size depends only
on the desired approximation quality and is independent of both the dimension and
the number of points in P. For some of the problems we consider, the running time
of the best known exact algorithms depends exponentially on the input dimension.
In these cases, polynomial time computation of dimension-independent core-sets
enables approximation algorithms whose running times are only polynomial in the
input dimensions. We address such questions in Sections 3.1, 4.3, 4.4, and 5.2, but
before, we need to specify the terms from complexity theory used here.

2.4.2 Complexity and Algorithms

We assume the Turing machine or bit model of computation when making state-
ments about complexity. See [56] on the Turing model and NP-completeness. When
talking about NP-hardness and membership in NP, we assume that we deal with
the decision version of a containment problem, though we usually state them in the
optimization version. Within this thesis, we use reductions from and to satisfiabil-
ity problems. In particular, we show polynomiality by reducing problems to 2-SAT
in Sections 4.1.2, 4.2.1, and 4.2.2, and prove NPP-hardness by reduction from 3-SAT
in Sections 5.1.2 and 5.3.3.

When no fast method computing the optimal solution is at hand, one may settle
for suboptimal solutions. We therefore consider approximation algorithms for op-
timal containment problems. For a given minimization problem and § > 1, we say
that an algorithm computes a factor 0 approximation, if the algorithm outputs a
feasible solution that is at most by a factor of § larger than the optimal value [134]
(and vice versa for maximization problems). An algorithm is called a polynomial
time approzimation scheme (PTAS) if it determines a factor (14 ¢) approximation
for any € > 0 in polynomial time in the input size for any fixed € > 0.

Of course, a theoretically efficient algorithm need not always be the best choice
for an implementation. Worst-case super-polynomial methods can be extremely

15



Chapter 2. Preliminaries

fast for “real-world” input (for instance the simplex method mentioned in the next
section) and an algorithm with proven linear running time may be impractical due
to huge constants. We therefore point out practical issues besides the theoretical
complexity where we consider it appropriate in this thesis.

2.4.3 Optimization

Some containment problems as well as subproblems occurring in containment algo-
rithms can be cast as special optimization problems.

LP and LP-type

A linear program (LP) in standard form is determined by a linear objective func-
tion which is to be minimized subject to a set of linear constraints. Widely used
algorithms for LP are simplex and interior-point methods. See, for instance, [109]
on LP and examples.

The notion of LP-type problems describes a class of (nonlinear) optimization
problems satisfying a number of abstract conditions. The key observation is that
this is sufficient to be able to apply simplex-like algorithms to these problems. A
famous example is the Euclidean 1-center problem. See [57] on LP-type problems
and Section 5.1.2 for another example.

QP, SOCP, and SDP

The arguably simplest generalization of LP is minimizing a convex quadratic objec-
tive function, resulting in a convex quadratic program with linear constraints (QP).
We consider the more general second-order cone programs (SOCP), too, which may
also involve quadratic constraints of the type that a vector of variables is in the
cone of second order. A semidefinite program (SDP) may also contain constraints
requiring that a matrix of variables is in the cone of symmetric positive semidefi-
nite matrices. All SOCPs can be formulated as SDPs and both subsume linear and
quadratic programming. On examples of SOCP see [106]; for SDP [80], [107], and
[132]. LP, SOCP, and SDP are examples of optimizing over self-dual cones. The
most common approach to such problems are interior-point methods [34], [112].

General Convex Programming

Besides the special cases of LP, SOCP, and SDP, we deal with optimization problems
that cannot be formulated in such a scheme but are at least convex, that is, a convex
objective function is minimized over a closed convex feasible region. By means
of the ellipsoid method, convex programming problems in suitable representation
and under mild boundedness assumptions are computationally tractable (see [69]).
Essentially, an oracle to compute the objective function value and its subgradient

16



2.4. Fundamental Terms

at a given point as well as a separation oracle for the feasible region are required.
However, in practice, almost exclusively other algorithms are used since the ellipsoid
method is slow even for medium size problems [112]. Interior point methods for the
general convex programming problem and especially practical algorithms are still
subject to research (compare [34]).

Integer Programming

Moreover, we come across programs with integer constraints imposed on the vari-
ables. Even integer linear programming (ILP) is NP-hard. See, for instance, [120]
on ILP. Mized integer programming (MIP) refers to programs where only some of
the variables underlie the integer constraints. The most common methods for this
kind of problems are branch-and-bound (B&B) and branch-and-cut algorithms.

17



18



3 1-Containment under Homothety

The first type of containment problems we consider in detail is the MCPyqy,, the
1-containment problem under homothety for point sets. We are interested in this
problem not only for its occurring in applications itself, but also because it is the
base case in solving harder containment problems. Therefore, particular attention
is paid to approximation methods in practice. This chapter resumes joint work
with René Brandenberg which is currently accepted for publication [37].

For suitable container representations, 1-containment under homothety for point
sets is a convex programming problem (see Section 2.4.3) and is tractable by means
of the ellipsoid method. In some cases, for instance with polytopal or ellipsoidal
containers, specialized methods are available. The MCPy,,, for balls and polyhedra
is first considered in [49]. Here, we also present a cutting plane algorithm applying
to the general case when the container is represented in terms of a separation oracle.
Finally, the practical performance of the methods is discussed providing examples
and experiments.

Since we require containers to be convex, the MCPy,, for a point set P is
equivalent to the 1-containment problem for the convex hull of P. Of course, this
does not hold for k-containment problems where covering V-polytopes is a different
problem, see Section 4.4.

3.1 Methods for Special Container Shapes

In this section, we review methods to solve or approximate the MCPy,,, for some
special container shapes, namely polytopes, Euclidean containers, and combinations
thereof.

3.1.1 Polytopes

When (' is restricted to facet or vertex presented polytopes, the MCPy,, can be
formulated as an LP [66].

‘H-Polytopes

In this case, C'is presented as an intersection of half-spaces. We have assumed that
0 € int(C) for all containers C', so the offsets of the half-space defining inequalities

19



Chapter 3. 1-Containment under Homothety

can be normalized to 1. Let C' = N\, {z : ¥z <1} C R". Then
PCc+pC & (ap,pj—c)<pforalll<i<k and1<j<m.

Therefore, the smallest p with P C ¢+ pC' for any ¢ € R" is the optimal solution

of the following LP (compare [66]):

min p
) > oy <1 <

ptlaic) > max {a;p;) 1<i<k (3.1)

p=>0
Program (3.1) has n + 1 variables (p and ¢) and k inequalities (not counting
non-negativity constraints). Note that the number of points in P affects only the
right hand side computations of the LP, not the size of the program itself. For
parallelotopal containers C', and especially when C' is the cube, it is sufficient to
check whether all pairs of points in P can be covered. That is, Rgom(P,C) =

maxi <, j,<m @i, Pj, — Pj,) and it suffices to compute these values to determine the
optimal radius.

V-Polytopes
If the container is a polytope in vertex-representation, C' = conv{ws, ..., wg} it
holds that for any p > 0,

1
PCc+pC & —(pj—c)€conv{wy,...,wg} forall 1 <j<m.
p

If dim(P) > 0, the optimal radius is surely positive, and by setting p’ = 1/p and
¢ = ¢/p we can again find an LP representation [66]:

max p’

k

p,pj_cl_z)\ijwizo 1<j<m
i—1

i (3.2)

=1

Aij =0 1<i<k 1<j<m

Program (3.2) has km+n+1 variables and m(n+1) constraints (not counting non-
negativity constraints). Consequently, the size of the LP depends quadratically on
m, the number of points in P, since both the number of variables and the number of
constraints are linear in m. Provided that we can choose between the vertex and the
hyperplane representation for the container, and the sizes of the two representations

20



3.1. Methods for Special Container Shapes

are of the same order of magnitude (for instance when C' is a simplex), we surely
prefer LP (3.1) to LP (3.2). Yet, when the hyperplane representation of C' is
significantly larger than the vertex representation, we cannot apply the formulation
in (3.1) directly. For instance when the container is the cross-polytope , it is
impossible to use the H-presentation even in moderate dimensions, but one is not
forced to using LP (3.2) either. We present a cutting plane method based on H-
polytopal approximations of the container in Section 3.2.2. The experiments in
Section 3.3.1 show that, even for the cross polytope, the cutting plane method is
much faster than using LP (3.2).

3.1.2 Euclidean Containers

As mentioned before, the MCPyg,, is the well-known 1-center or smallest enclosing
ball problem when the container is the Euclidean unit ball B. It has attracted
considerable attention and many different solution or approximation techniques
are available. Their adequacy depends on the dimension, the number of points and
the desired level of accuracy.

In [52], geometric properties of the Euclidean 1-center are used, especially the
fact that at most n + 1 points define the ball uniquely and are situated on its
surface. The problem is LP-type (see also [136]), and the resulting combinatorial
algorithm computes the exact center and squared radius. It has exponential worst-
case running time, yet it works well in practice and is widely accepted as the
best solution method in the Euclidean setting. In [58], an exact solver for general
convex quadratic programs is presented, and the experiments include a comparison
of different solvers for the smallest enclosing ball.

The minimum enclosing ball problem can also be formulated as a second-order
cone program

min p, s.t. ||p; — ¢/ < p, 1<j<m,

and tests show that implementations can compete with the LP-type algorithms in
terms of running time [102], [142].

We have already shortly addressed core-sets for geometric optimization problems
in Section 2.4.1. In the case of the Euclidean 1-center problem, a very easy incre-
mental core-set algorithm has been stated in [19] and improved in [18] and [102].
The principle is the following: Starting with an arbitrary point, compute a suitable
approximation of the smallest enclosing ball for the core-set in each iteration and
check whether the ball with its radius enlarged by a factor of (1+ ¢) already covers
P, if not, add an uncovered point to the core-set. One can show that the radius
increases in each iteration by a constant factor depending on ¢, and therefore, the
number of iterations and the number of points in the core-set also depend only on
. This algorithm is important for Euclidean k-center computations, too, so we get
back to it in Chapter 4. A similar analysis yields a basic subgradient method for

21



Chapter 3. 1-Containment under Homothety

the 1-center problem [18]. Two related algorithms are introduced in [140].

3.1.3 Combined Containers

We can now combine the linear and second-order cone constraints to formulate LPs
and SOCPs for more complicated containers.

Intersections

When the container is given as the intersection of Euclidean balls and polytopes,
we can formulate the MCPyon, as follows. Suppose C = ﬂle(cl- +rB)N ﬂ§=1 Q;,
where the (); are polytopes in H- or V-presentation.

min p

lpj —c— pail| < pri 1<i<k 1<j<m

pj — ¢ € pQ; 1<i<k 1<j<m
The p; — ¢ € pQ; conditions can be expressed as linear constraints using the same
manipulations as in Section 3.1.1.

Hulls and Minkowski Sums

Consider the kind of 2D shapes mentioned in Sections 1.1.2 and 1.1.1 for the robot
placement and the sender location problems. They can be cast as the Minkowski
sum of a box and a ball and as the intersection of a cone and a ball (compare
Figure 1.2). We can also express the containment problems for these type of shapes
in terms of SOCPs.

Let C' = pos(t+Q)NB be the intersection of the positive hull of either a Euclidean
ball, a V- or H-polytope @ (where t € R", t ¢ int(—(@))) and a Euclidean ball. For
‘H-polytopes and balls, it can be cast as follows:

min p
pj—C—)\th)\jQ 1§j§m
le +psll < p 1<j<m
A >0 I<j<m
For V-polytopes, we can write the constraints as p; —c € A\jt + \; conv(wy, ..., wy),

A; > 0. Since this is equivalent to p; — ¢ € pos(t + wy, ..., t + wy), we get

min p

le+pill <p 1<j<m
fiy > 0 1<i<k 1<j<m

22



3.2. General Container Shapes

Suppose now that C' is the Minkowski sum of a number of polytopes and a
Euclidean ball, that is, C' = Z;:ll Q; + B, where Q1, ..., Qr_1 are polytopes in H-
or V-presentation. Since

k

pj€Ec+pC & pj—czzxij and z;; € pQi, xx; € pB
=1

we can again express the problem as an SOCP. Of course, we can also skip the ball
in this formulation. The following are two special cases of such Minkowski sums.

When C' is a zonotope, that is the Minkowski sum of a number of line segments,
C' =% o, Bi]zi we obtain the following LP with g/ and ¢ as in (3.2):

max p’

k
p’pj—c’—Zuijzi:O 1<j<m
i=1
Wi € [, Bil 1<i<k, 1<j<m

In case C'is the outer parallel body ) + B of an H-polytope @) = ﬂle{x eR":
al'z < 1}, it suffices to solve the following SOCP:

min p
lpj—c—zj[<p 1<j<m
(ai,z) <p  1<i<k 1<j<m

3.2 General Container Shapes

We now proceed to more general container shapes.

3.2.1 Previous Work

For general containers in suitable representation, the ellipsoid method can be used
to show polynomiality of the 1-containment problem. In [66] it was shown that
any instance of the MCPy,,, can be approximated up to any given accuracy within
polynomial time, if C' is the unit ball of an [,-space with p € N. The variant of
the ellipsoid method stated there only requires a bounding body B O C (e.g., a
ball or box) and a separation oracle for C'. The polynomiality proof needs a strong
separation oracle. As stated in [112], the ellipsoid method is hardly a practical tool.

So far, practical implementations for general containers are rarely subject to re-
search. Since the Euclidean case is well-studied both theoretically and practically,

23



Chapter 3. 1-Containment under Homothety

a natural question to ask is whether the fast algorithms for this problem general-
ize. Extensions of both the LP-type and the core-set method addressed in Section
3.1.2 to more general containers may be possible, however both methods essentially
rely on a “half-space lemma” [31], [19, Lemma 2.2] which is not applicable if the
container is not an ellipsoid. When the container is the Euclidean ball, the center
of the smallest enclosing ball is unique. The “half-space lemma” states that any
closed half-space containing the center of the smallest enclosing ball also contains
a point from P lying on the boundary of the ball. Naturally, this holds for all
ellipsoidal containers, since the statement is invariant under affine transforms. It
does not hold for other than Euclidean containers, since, for n > 3 and any other
symmetric container C, there exist point sets P C R" and corresponding centers ¢
such that ¢ & conv(P) [98].

The existence of core-sets for more general containers whose size depends only on
¢ is an interesting question both from a theoretical and practical viewpoint. If P is a
regular simplex with center 0 and C' = — P, we need a subset of P of size depending
on the dimension n to approximate the containment factor up to a given constant.
So dimension independent core-set sizes for arbitrary combinations of P and C are
impossible. For general, symmetric containers it is not known whether such core-
sets exist. The incremental core-set algorithm does not provide the desired result,
since it may generate core-sets whose size grows with the dimension if applied to
other than Euclidean containers.

In the following, we introduce a cutting plane algorithm approximating the
MCPyom. For previous work on cutting plane algorithms for this problem, see
[115], where a general purpose cutting plane method is introduced and, among
other problems, applied to the MCPyqy,.

3.2.2 Cutting Plane Algorithm

In order to be able to handle the container C' in a cutting plane algorithm, we need
to find suitable cutting planes. This can be done with help of a separation oracle,
which also enables us to present the results as general as possible.

Separation Oracles

A strong separation oracle for C', given a point p, either identifies p € C' or returns
a vector a such that max,cc(a,z) =1 and (a,p) > 1 [69].

Efficient strong separation oracles can be provided for a huge class of presen-
tations of convex bodies. For instance, whenever a subgradient of the objective
o(x) = min{p : P C = + pC} can be computed, we have such an oracle. Note
that the ability to provide a separation oracle for C' naturally relies on the repre-
sentation of C. For instance, a separation oracle can be hard to deduce when C' is
represented as the integer hull of a polytope.

24



3.2. General Container Shapes

Lemma 3.1. Let a € R” such that —a is a subgradient of ¢(x) = min{p : P C
x4+ pC} at ¢, that is p(x) — @(c) > (a,z — ¢) for all x € R™. Then a is an outer
normal of a hyperplane supporting c + pC D P at a point p; € P.

Proof. The vector —a is a subgradient of ¢ in ¢ if and only if (—a, —1) is an outer
normal of a hyperplane supporting the epigraph of ¢, epi(¢), in (¢, p(c)). The level
sets of epi(p) are [;(p; —pC), so —a is an outer normal of a hyperplane supporting
pj — pC in ¢ for some p; € P. Equivalently, a is an outer normal of a hyperplane
supporting ¢ + pC' at p;,. U

Like the ellipsoid algorithm, the following cutting plane method only requires an
initial bounding body and a strong separation oracle for C. When only a weak
separation oracle is available, we can perform binary search for the appropriate
dilatation factor by calling the oracle successively, until we reach a sufficient ap-
proximation quality.

Algorithm

Let P = conv{py,...,pm} and let € > 0 be the desired accuracy. During the run of
the cutting plane algorithm, Algorithm 3.1, we maintain an H-polytope H which
is an outer approximation of the container C'. At first, H is assigned an arbitrary
‘H-polytope containing C'. In the following we call H the bounding polytope. As
long as the approximation H of C' is not sufficient, it will be refined adaptively by
cutting hyperplanes. Let p, ¢ be the solution of the MCPy,,,, with input P and H
obtained via linear programming using the formulation from (3.1). As C' C H, the
value of p is a lower bound for the minimal radius Rygom (P, C) of the MCPy,,, with
input P and C' (see Figure 3.1).

Obviously, even if the objective ¢ is not given in an explicit form, ¢(c) for any
fixed ¢ can be computed using the oracle. Hence, we can easily check for every
point p; of P if p; € ¢+ pC, and if not, compute p = ¢(c), which is an upper bound
for Ryom (P, C).

If p/p < 1+ e we are done. Otherwise, we refine the bounding polytope to
Hn{x: (agy1,z) <1} where {x : (ax1,2) < p} is a hyperplane supporting pC' at
a point p; —c € P — ¢, and continue iterating.

Finally, as each bounding polytope H is a subset of the preceding one, the se-
quence of lower bounds p is increasing. The sequence of upper bounds p, though,
need not decrease monotonically (see Figure 3.2). Hence, it makes sense to store
the best obtained upper bound and the corresponding center.

Discussion

The presented cutting plane algorithm is intuitive as its approximation of the opti-
mal value is based purely on polytopal approximations of the underlying container

25



Chapter 3. 1-Containment under Homothety

Algorithm 3.1 Cutting plane algorithm

Input: P = conv{py,...,pm}, C via separation oracle, H = ﬂle{x :{a;, ) < 1}
a bounding polytope of C, and € > 0
Output: e-approximation p of Ryom (P, C) and corresponding center ¢
p =00
loop = true
while loop do
solve the LP: p, :==min {p: p+ (a;,c) > max;(a;,p;) V i}
if p; —c € p.C Vj then

set p = py

c=c¢

loop = false
else

compute p = min{p, ¢(c)}
set ¢ to the corresponding ¢

end if

if p/p. <1+ ¢ then
set loop = false

else
get aj41 from the strong separation oracle with input (p; —¢)/p
set H=HnN{x: (ags1,x) <1}

end if

end while

26



3.2. General Container Shapes

A
\ %f;m =

Figure 3.1: Two iterations of the cutting plane method: Here C'is the Minkowski
sum of a square and a disc and P contains the vertices of the green
polygon. In the first step (left picture) H is the square circumscribed
C. Obviously, ¢ and p are an optimal solution for MCPy,,, with P
and H as input. Since p; is a vertex with maximal distance to ¢ (with
respect to ¢) the cut {x : (a,z) < 1} supporting C in (p; — ¢)/p
will be added to H. The right picture shows the same scene for the
updated H. Surely, we get a better lower bound and here a better
upper bound, too.

e

Figure 3.2: An example of the cutting plane method where C' is the Euclidean
unit ball and P is indicated by the vertices of the yellow polygon.
The bounding polytope H is indicated in blue. The upper bound p
(the radius of the red circle) increases after adding a cut.

27



Chapter 3. 1-Containment under Homothety

C. In contrast, general purpose cutting plane methods try to generate better linear
approximations of the involved convex constraints or the epigraph of the objective
function. This is the case for the cutting plane approach described in [115], al-
though this method can be reduced to operate directly on the container C' in case
of the MCPxop-

One may understand the cutting plane approach as a dual core-set method.
Instead of finding a subset of the points in P with almost the same radius, the
cutting plane method looks for a small subset of the hyperplanes describing C
where it is essential for the containment.

It is possible to prove a theoretical upper bound on the running time of the
cutting plane algorithm which is linear in m since the size of P is only involved in
computing the two maxima for the right-hand side of the LP and the new upper
bound. However, the method may not be polynomial in n. Essentially the number
of iterations is bounded by O(1/(ge)"™'), where ¢ > ¢ is the ratio between the
smaller and the bigger radius of the smallest annulus containing C'. This can be done
by estimating the number of possible hyperplane directions on the unit sphere for a
given accuracy €. Therefore, the same bound is valid for an a-priori approximation
of C' by a polytope @ in hyperplane representation, such that Q@ C C' C (1 + ¢)@Q.
This shows that the algorithm converges and has a polynomial number of iterations
in fixed dimensions.

However, since the analysis above does not pay credit to the adaptive principle
of the cutting plane algorithm, the a-priori upper bound on the number of itera-
tions is much too pessimistic compared to the computational results. For example,
approximating the 3-dimensional Euclidean ball (¢ = 1) via equilateral triangula-
tion by an H-polytope consisting of 512 hyperplanes yields ¢ = 0.03. In 4-space,
using barycentric subdivision [139], 9216 hyperplanes only suffice for ¢ = 0.45. The
following tests for different data sets P and C show a substantially better general
performance of the cutting plane algorithm.

We emphasize that fast methods for the MCPy,,, are crucial especially when
many instances occur within another approximation algorithm. Hence, this usually
demands quick results in small dimensions, whereas high dimensions are out of reach
anyway. Examples for this can be found in Chapters 4 and 5, where instances of the
MCP¥, . and the MCPyg;,,, are approximated, creating a huge number of MCPyop,
instances. Nevertheless, note that in some of the examples there, the problem size
of the MCPy,y, is even too small to benefit from the cutting plane approach. This
happens when both the dimension is small and the point sets contain only a few
points due to the use of core-set algorithms.

28



3.3. Experiments and Examples

3.3 Experiments and Examples

We have already addressed several possibilities to tackle containment problems
apart from the cutting plane algorithm, though some of those approaches only apply
to special instances. Still, a natural question to ask is why we do not use a tool for
general convex programming for the MCPyp,,. In [63] such a framework for unifying
convex programming (cvx) is proposed, providing a Matlab©! implementation, too.
Some instances of the MCPy,,,, can easily be formulated in cvx, others would require
separate “graph implementations” (see [63] for details). One should keep in mind
that the main purpose of the cvx-framework is to simplify the specification. In
doing so, the performance is limited by the environment [64, p.6].

The experiments in the following are performed on a SUNW SPARC Sun Fire 440
Workstation (1.3 GHz) with 1.6 GB RAM. A C++ implementation of the cutting
plane algorithm and Xpress-MP©? as LP-Solver are used. Further details of the
implementation are discussed in Section 3.3.4.

A small test on different data sets (see Table 3.1) shows that cvx is not the
appropriate choice for this kind of problems as even the smallest example takes
more than five seconds.

mput " 3 10 30
m 100 1000 10000 | 100 1000 10000 | 100 1000 10000
cutting | iterations 10 20 11 93 71 49 641 702 751
plane | time (s) [[0.03 0.05 011010 015 0.68| 577  8.68 30.46
[evx [ time(s) [[5.31 7531 * 1651 211.18 *128.05 856.20 * ]

Table 3.1: The cutting plane algorithm and cvx in exemplary tests. The input
polytopes P are samples of (0, 1)-normally distributed points, the ac-
curacy is 107° and C is formed by the intersection of five n-dimensional
balls.

Secondly, the running time increases noticeably with the number of points in P.
Considering the intersection of k balls as container (with notation as in Section
3.1.3), the SOCP formulation yields O(kmn) constraints and variables

l’ijzc—pj_pciandfij:pri fOTlSZSk,lgjgm

where the variables (x;;, ;) underlie the second-order cone conditions. That is why
data sets of 10000 points and a C' defined by five balls already cause an “out of
memory” error (indicated by a “*” in Table 3.1) in cvx. Directly using SeDuMi (the
SDP solver inside cvx, see [116], [126]) does not cause the “out of memory” error
but needs 1h 45min for the instance with 10000 points in R3. One can see that

!The MathWorks, see http://www.mathworks.com
2Dash Optimization, see http://www.dashoptimization.com/

29



Chapter 3. 1-Containment under Homothety

the performance of the cutting plane algorithm deteriorates noticeably in higher
dimensions in this example, but it has the important advantage that the number
of constraints in the programs depends only on the number of iterations.

Surely, our implementation is specialized on a specific convex problem and the
algorithm itself makes use of the given problem structure. For these reasons and
because of the environments being different (Matlab© versus C++), an extensive
comparison of the cutting plane approach to cvx (or similar solvers) would be of
minor value. Instead, we present some examples to illustrate and analyze the course
of the cutting plane algorithm.

3.3.1 Polytopal Containers

When C'is a H-polytope, the LP formulation in (3.1) is a convenient way to ap-
proach the problem. For a reasonable number of hyperplanes, we do not need the
cutting plane algorithm here. In comparison, V-polytopes as containers are more
interesting.

In a first experiment (see Table 3.2), we compared the cutting plane algorithm
with the direct approach via linear programming given in Section 3.1.1 for V-
polytopal containers. As mentioned before, the sizes of those LPs depend quadrat-
ically on the number of input points. The first V-polytope that comes to mind is
surely the regular cross polytope .

Considering for instance the 30-dimensional cross-polytope, it seems obvious that
solving the containment problem via the hyperplane representation is simply im-
possible and one is forced to use the vertex representation as shown in Section 3.1.1.
However, when m = 10000, the vertex representation of the cross polytope yields
an LP (3.2) with a constraint matrix of about 300000 rows, 600000 columns, and
1500000 nonzero entries, whereas, applying the cutting plane algorithm, one can
see that only about 200 of the 23° hyperplanes in the hyperplane representation are
enough to solve the containment problem for P. An accuracy of 107!* (about the
tolerance of the LP solver) is reached after less than 200 iterations. The algorithm
computes a suitable approximation (depending on P) of the cross-polytope in facet
representation, and as we can see from the formulation in (3.1), the corresponding
LP can be solved much faster. Moreover, upper bounds and cutting planes can
easily be generated, so the running times stay small (see Table 3.2). Clearly, we
suggest to use the direct approach when the number of points m is very small.

3.3.2 Euclidean Containers

In a second experiment (see Figure 3.3) we considered six differently distributed
types of data sets P of different sizes in several dimensions n < 30 with the Eu-

30



3.3. Experiments and Examples

input n 10 30

m 100 1000 10000 | 100 1000 10000
cutting iterations 24 24 27 | 194 196 182
plane time (s) 0.04  0.04 0.16 | 0.67 0.85 4.12

[LP (3.2) | time () || 0.37 15.20 2143.60 | 2.11 107.42 5594.63 |

Table 3.2: Running times of the cutting plane method compared to directly solv-
ing the linear program in 3.2. The container is the cross polytope
in dimension n. The point sets P are samples of (0, 1)-normally dis-
tributed data points. In both cases, the problem is approximated up
to an accuracy of € < 10714,

clidean unit ball as container C' and ¢ = 0.0001. 3

700

—— N 100
—&— N 1000

10 15 20 25 30

Figure 3.3: Averaged number of iterations for different data sets P in dimensions
n = 10,15, 20,25, and 30. Here, C' is the Euclidean unit ball and
e = 0.0001. N - (0,1) normally distributed data, B — points on the
surface of the unit ball, C — vertices of the unit cube chosen at random,
R — equally distributed data in [0,1]". The numbers 100, 1000, and
10000 refer to the number of points in the input polytope P.

In high dimensions, the cutting plane method with container B cannot compete
with specialized algorithms for the Euclidean 1-center problem. In [52], the imple-
mentation described there is compared to those from [102] and [142]. Their tests
go up to dimension 2000 which is out of reach for our algorithm. Yet, our program

3A previous implementation of a cutting plane algorithm for the Euclidean case is described in
[119].

31



Chapter 3. 1-Containment under Homothety

seems to be competitive for moderate dimensions which is sufficient for many ap-
plications. For instance, all calculations are finished successfully within 1 second in
dimension 10 and calculations with at most 1000 points within 6 seconds in dimen-
sion 30. The computations for the largest input sets (10000 points, dimension 30)
take about 15 seconds on average. We sample 100 instances for each data point in
Figure 3.3.

The results illustrated in Figure 3.3 corroborate that the number of vertices m of
P has no influence on the number of iterations performed and therefore it has only
secondary influence on the running time. This seems reasonable since we know from
Helly’s theorem that n + 1 points suffice to determine the MCPy,,, solution. The
shape of P on the other hand affects the number of iterations. Points distributed
on the surface of a ball or randomly chosen vertices of a cube behave much better
with growing dimension than test cases with normally or equally distributed data
points. For the normally distributed data sets, bigger input data sets even reduce
the number of iterations performed. This observation may be natural, as the shapes
where the algorithm performs less iterations are more symmetric or ball-like.

In our tests, we also observe the accuracy (the difference between upper and
lower bound) during the iteration process. The tests depicted in Figure 3.4 suggest
that it is exponential with a rate depending on the dimension for the examples
considered here.

—+—dimension 30
—=—dimension 25
dimension 20| |
dimension 15

. . . . .
50 100 150 200 250 300

Figure 3.4: Exemplary analysis of the accuracy achieved by the cutting plane
algorithm in different dimensions, where C' is the Euclidean unit ball
and P is again a normally distributed data set of 1000 points. The
x-axis shows the number of iterations performed so far. For each
dimension, the mean over 100 samples is shown.

32



3.3. Experiments and Examples

3.3.3 Nonlinear, Nonsmooth Containers

We now proceed with non-polytopal, nonsmooth containers. The nonsmoothness
may increase the number of iterations, but the algorithm is still stable (for sensible
input) and achieves fast results.

In the first example (see Figure 3.5), P consists of 1000 normally distributed
points in [0, 1]", with n = 3,10,30, e = 0.0001, and C' is the intersection of two
Euclidean balls with equal radius. The value of ¢ (here the ratio of the inner and
outer radius of C') varies between 0.3 and 0.8. The dependence of the average
number of iterations on the value of ¢ is shown. The running times increase a bit
with smaller ¢ values, especially in higher dimensions. However, even this increase
is by no means as steep as predicted in terms of the upper bound.

800

—*— dimension 3
—=8— dimension 10|

700 dimension 30|

600

500

400 -

300

200

100 I = S

¥ ¥ f *
0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.5: Number of iterations for different values of ¢ and different dimensions.
The value of ¢ is indicated on the x-axis. For P, 100 samples of 1000
normally distributed points are used.

Figure 3.6 illustrates the average number of iterations where C' is the intersection
of one to five Euclidean balls. Again, P consists of 1000 normally distributed points
and the accuracy is 0.0001. For moderate values of ¢, the number of balls forming
the intersection does not seem to affect the number of iterations (of course, the
computing time per iteration increases a bit). The sample size for Figures 3.5 and
3.6 is again 100.

3.3.4 Further Remarks on the Implementation

We use the solver Xpress-MP© with a dual simplex algorithm for the linear pro-
grams. Experiments show that this method is superior to interior-point methods
here as it starts from the solution of the preceding iteration. Therefore, we do not
have to reconsider the whole program again. Though the LP size grows in every
iteration, the time consumed per iteration is almost constant.

33



Chapter 3. 1-Containment under Homothety

600

500

400 -

300

200

100 -

Figure 3.6: Number of iterations for different dimensions, where C' is the inter-
section of 1 to 5 balls. The number of balls is indicated on the x-axis.
For P, 100 samples of 1000 normally distributed points are used.

For the initial bounding polytope H of C', boxes, regular simplices, and polytopes
with random normal vectors are suggestive choices. Experiments show that a finer
initial approximation can reduce the number of iterations. However, though the box
is usually a better approximation, the simplex performs slightly better in tests. The
reason is probably that this choice allows less ambiguity in the optimal solutions of
the linear programs. Box-shaped containers, in contrast, usually permit an (n—1)-
dimensional set of centers for the optimal radius. Concerning the experiments with
random directions, picking n + 1 random normal vectors is comparable to choosing
the simplex. Experiments suggest that choosing twice or even ten times as many
vectors adds many unnecessary constraints to the LP, making the algorithm perform
slower especially in higher dimensions. For O-symmetric C', it seems reasonable to
not only add the identified cutting plane but also its symmetric counterpart. This
leads to a small reduction in the number of iterations in some cases, but on the
other hand the sizes of the LPs grow faster.

In order to overcome ambiguities in optimal LP solutions which allow the centers
to oscillate, one may try to minimize the distance (measured in the distance function
induced by H) between the new center and its predecessor. This involves a second
linear program in each iteration. The number of iterations reduces noticeably at
least for normally distributed input data, but again, the observed running time
deteriorates due to the effort spent for the additional linear programs.

Finally, instead of approximation by cutting planes, more sophisticated approxi-
mations, for instance by balls or ellipsoids, may provide faster convergence towards
the optimum. This alternate approach results in subproblems where the contain-
ers are formed by intersections of ellipsoids and polytopes. Our experiments with
such container shapes indicate that solving this type of problems directly using

34



3.3. Experiments and Examples

an SOCP solver is currently not competitive to the LP approach (at least, in the
dimensions considered). This is apparently due to the fact that the SOCPs have
many more constraints, as exclusively in the case of linear constraints, considering
just one point (where the maximum is attained) in order to ensure that the whole
set P satisfies the constraint is possible. More specialized subroutines than the
general SOCP solvers might be helpful to improve the performance of the alternate
approach. Yet, as stated before, we are aware of the existence of such methods only
for the Euclidean case.

Another idea to improve the performance of cutting plane algorithms is reported
in [115]. There, the computing times are improved using an interpolation technique.
From our experiments with this technique, we can confirm that the interpolation
step reduces the number of iterations a little. However, we observe that the overall
running time deteriorates again due to the additional effort spent in each iteration.
The reasons may be that the technique is not adequate for minimax approximation
or for our point set sizes, since the positive examples mentioned in [115] involve
other objective functions and point sets with less than 50 points.

35



36



4 k-Containment under Homothety

The major part of the results presented in this chapter is published in [38]. This is
also joint work with René Brandenberg.

In the following, we consider the MCP¥,_ . the k-containment problem under
homothety. Recall that we want to cover a point set P C R"™ with homothetic
copies ¢; + pC; of k given, fixed containers C;, 1 < i < k, such that the radius p is
as small as possible. Here, it is crucial to find out which of the points in the input
set P should go to which of the containers, that is, the partition of the point set P.
The MCP¥,__ is a kind of clustering problem, and we refer to the particular subsets

Hom

of P, C P clusters. As stated in Chapter 2, a special case of the MCP¥_  is the
k-center problem, where the point set P is covered with £ identical containers. The
cases when the containers are Euclidean balls and unit cubes have so far attracted
most attention. It is known that the 2-center problem for balls and the 3-center
problem for cubes are NP-hard, whereas the 2-center for cubes can be solved in
polynomial time [110]. As far as we know, it is not known whether the 2-center
problem for cross polytopes is NP-hard.

In Section 4.1, we summarize methods to partition a point set in order to achieve
bounds for the optimal solution of the MCP%_ . In particular, we develop and
analyze a diameter partitioning method for the problem with general and even
different containers. In some cases, we can even find an optimal partition in poly-
nomial time and therefore solve the MCPY,_  efficiently (see Section 4.2). In this
context, we also consider problems where the container centers underlie additional
constraints. In Section 4.3, we show how to approximate the general MCP¥,__ using
a branch-and-bound scheme, and how to further accelerate this method. Finally,
in Section 4.4, we consider a variant of the problem where not a discrete point set
but its convex hull is to be covered. Of course, when k£ > 1, this is not equivalent

to the problem for point sets.

4.1 Partitioning Procedures

Consider a k-containment problem for a point set P and assume that we know an
optimal assignment of the points to k clusters. In that case, the problem reduces
to k independent 1l-containment problems of the type considered in Chapter 3.
The problem can be treated efficiently for many container classes, and in addition
to that, fast practical methods exist, too. Any partition of the point set into k

37



Chapter 4. k-Containment under Homothety

clusters can therefore be used to compute upper bounds. This section deals with
partitioning procedures with provable approximation guarantees.

4.1.1 Previous Work on Partitioning

A simple partitioning procedure for general k-center problems is proposed in [62].
It is a greedy approach: one after another, k£ points from P, the so-called heads
of clusters, are chosen, each in a way that it maximizes the distance to the heads
already selected. The point set is then partitioned into £ clusters, where each point
is assigned to its nearest head. It is shown that this method yields an approximation
quality of 2 for the general k-center problem. We come back to it in Lemma 4.16.

As stated before, besides k-center clustering, other objective functions are consid-
ered in the literature. One possibility is to minimize the diameter of the clusters.
This kind of diameter clustering problems is addressed in [14] and [59], and the
algorithms we consider are similar to those there, though our problem setting is
different.

When the container is a cube, diameter and radius clustering are equivalent.
This is because the Helly number of the cube is 2, and therefore, a point set is
covered by a cube if and only if any two points are covered. Assume now that the
optimal radius is known. Then any two points with a distance larger than this
radius have to go to different clusters. Consider the graph with vertices P and
edges between all point pairs with distance larger than the desired radius. If and
only if this graph is bipartite, P can be covered by two cubes of the desired radius.
This observation is used in [110] to show that the 2-center problem for cubes can
be solved in polynomial time.

4.1.2 Diameter Partitioning

In the following, we address diameter partitioning for general k-containment prob-
lems and prove bounds for the approximation quality. Concerning the practical
value of those bounds, see Sections 4.3.3 and 4.3.4.

Before proceeding with the diameter partitioning procedure, we define the gen-
eralized half-diameter of a convex body:

Definition 4.1 (half-diameter). Let B be a convex body, and C' a container. The
half-diameter of B with respect to the container C is defined as

diam(B, C) = max{ Ryom ({b1, b2}, C), by,by € B}.

Recall that the distance functional F for C' satisfies norm properties for sym-
metric containers C'. If and only if C' is symmetric, diam(B, C) is just the usual
half-diameter which of course satisfies

2diam(B, C') = max{Fx(b; — by), by,by € B}.

38



4.1. Partitioning Procedures

Whenever C' is not symmetric, there are by, by € R™ such that Fe(by — by) #
Fo(by —by).

The p-Distance Graph

Consider a k-center problem with container C'. In order to partition the point set
P into clusters, we consider the pairwise “distance” between points, that is, the
dilatation factor needed to cover a point pair with a homothetic copy of C. This
information is captured in the p-distance graph of the point set P.

Definition 4.2 (p-distance graph of (P,C)). For every p > 0 we call the graph
G(p) = (P, E) with edges in E for every pair {p,q} with Ruom({p,q},C) > p the
p-distance graph of (P, ().

This is merely the complete graph on the vertices P, where all edges of length
< p are removed. The maximal edge length occurring is of course diam(P,C').

Algorithm 4.1 now computes the minimal p such that G(p) is k-colorable. Finding
a k-coloring of G(p) corresponds to partitioning the point set P into k subsets,
where no pair of points with Rygom({p, ¢}, C) > p is within one set. The aim is to
prove that such a clustering can never be too bad.

Algorithm 4.1 Diameter partitioning for k-center

Input: P a point set, C' a container in suitable representation
Output: p a lower bound for Ry, (P, C)

let [ be the number of pairs {p, ¢} of points in P
for j=1tol do

compute p; = Ruom({p, ¢}, C) where {p, ¢} is the jth point pair
end for
sort and relabel such that py > ... > p;
for j=1tol do

if G(p,) is not k-colorable then

break

end if

set p = p;
end for
return p

Surely, if £ > 3 deciding whether a graph is k-colorable is itself a hard problem
and no method is known to make Algorithm 4.1 polynomial. Things look better
when k = 2. In that case, an implementation of Algorithm 4.1 can maintain a
2-coloring of G(p) and, with growing p, successively insert new edges. One should
note that since G(p) need not be connected, more than two labels (or colors) may

39



Chapter 4. k-Containment under Homothety

Figure 4.1: Example of diameter partitioning for £ = 2 and Euclidean containers.
On the left, the final p-distance graph where the dotted edge is the first
to interfere with bipartiteness. The coloring is extended in a greedy
manner on all the points, considering the distance to the centers for
the points already assigned in the first step. In this example, this is
not optimal, and we would get a better radius assigning the points as
indicated by the dotted circles.

be necessary. When an edge is inserted which is not connected to the subgraph
already built, a new pair of labels is created. When an edge joins two previously
disconnected components, the relevant labels are merged.

In computations, an incomplete partition can be extended in a greedy manner
upon all points in P, resulting in £k clusters P; such that PP U P U ... U P, =
P. Besides the lower bound output p of Algorithm 4.1, an upper bound p =
max; Ryom(F;, C) is obtained. See Figure 4.1 for an example.

Parallelotopes

If (and only if) C is a parallelotope, for instance the unit cube, the Helly number
of C is 2; that is, any set of points P is contained in a translate of C', if and only
if every pair of points in P is contained in a translate of C' [30, 14.3], for short
Ryom(P,C) = diam(P,C) for all P. This implies that P can be packed into k
translates of pC' if and only if G(p) is k-colorable [14], [110]. Hence, Algorithm 4.1
solves the k-center problem for parallelotopes exactly. When the parallelotope is
given in H-representation C' = (,{z : ! z < 1} and especially when the container
C' is the unit cube,

Riom({p, ¢}, C) = m?XCLiT(p —q)

and can easily be computed.

Of course, when C'is not a parallelotope, and therefore Ry (P, C') # diam(P, C')
for certain P, using diameter partitioning cannot guarantee optimal solutions. Yet,
at least for £ = 2, Algorithm 4.1 provides useful bounds and can even be altered
into a pre-partitioning procedure (see Section 4.3.3).

40



4.1. Partitioning Procedures

Euclidean Containers

Let us now consider Euclidean containers.

Lemma 4.3. Algorithm 4.1 computes a /2n/(n + 1)-approzimation of the optimal
radius R, (P,C) for any point set P and any ellipsoid C'.

Proof. Algorithm 4.1 outputs the smallest value of p such that G(p) is k-colorable.
Let Py, ..., P, be a partition of P obtained from a k-coloring of G(p). Usually, such
a partition is not unique. For each P;, diam(P;, C') is a lower bound for the optimal
radius RE_ (P,C). We get an upper bound for the optimal radius by computing

the radii of the P, namely max; Ryom(P;, C) > RE, . (P,C), since Rk (P,C) is
the radius for an optimal partition. Hence, by Jung’s inequality [95], we obtain

2
max diam(P;, C') < RF(P,C) < max Ryem(P;, C') < max 4/ n—fl diam(P;, C),

finishing the proof. O

Remark 4.4. Algorithm /4.1 is stated without addressing explicitly what happens
when edges of equal length occur. In the worst case, when P is a reqular simplex
and all pairwise distances between vertices are equal, the algorithm might assign all
points to the same cluster even when k = n. More precisely, consider the vertices of
the standard simplex {ey, ..., e 11} in R™ and let P be the image of these points
under the canonical embedding of aff(ey, ..., en41) in R™. Then G(\/2/2) is the
complete graph on n + 1 wvertices and certainly not n-colorable. When all points
are assigned to the same cluster, the bound provided by Lemma 4.3 is then tight,
since the Buclidean radius of this cluster is \/n/(n -+ 1) but v/2/2 is optimal. See
Figure 4.2 for an illustration.

General, Identical Containers

We proceed with bounds for general containers. For symmetric containers, the
bounds get slightly weaker than in the Euclidean case. For nonsymmetric contain-
ers, the quality of our bound depends on the Minkowski symmetry of C' (compare
Section 2.2).

Lemma 4.5. Algorithm 4.1 computes an 15 (1 + é)-appmximation of R*(P,C)

for any point set P C R™ and any container C' C R™.

Proof. Following the proof of Lemma 4.3 it suffices to show that

n 1
< LR
Ryom(P,C) < ] (1 + SC) diam (P, C)

41



Chapter 4. k-Containment under Homothety

Figure 4.2: Worst case examples for diameter partitioning in 2D, where the con-
tainer is a cube, Euclidean ball, or regular simplex. An optimal so-
lution is indicated in black. A worst case solution for the diameter
partitioning (if different) is indicated in red.

for any point set P. Suppose diam(P,C) = 1, i.e. every two points in P can be
covered by a translate of C'. It easily follows that every two points of P — P can
be covered by C' — C, and since both P — P and C' — C' are symmetric Rygom (P —
P,C —C) =diam(P — P,C — C) =1 [65]. Since (1 + sp) P can be covered by a
translate of P — P and C'— C by a translate of (1 + %)C, we conclude with sp > 1
that P is contained in a translate of -5 (1 + é)C O
Remark 4.6. If C is symmetric, sc = 1 and a well known inequality about the
ratio between the outer radius and the diameter of convex sets (or point sets) in
arbitrary Minkowski spaces [29] can immediately be obtained from Lemma 4.5:
Ryom (P, C) < 2n
diam(P,C) — n+1
When C' is regarded as the unit ball of the norm of a Minkowski space, Ryom(P,C)

and diam(P,C') here obviously correspond to the half-diameter and circumradius
there.

Remark 4.7. If the set of containers C, is a special subset of the set of convex
bodies in R™, the approrimation error may actually be much better than predicted
by Lemma 4.5. The bounds improve when a better guarantee on lower bounds for the
Minkowski symmetry of the input point set P can be given, too. Yet, the worst case
approzimation error actually occurs when P is a regular simplex in R", C' = —P,
and k = n as in Remark 4.4. The optimal radius is then 1, but the algorithm
returns a radius of n in case all points are put in the same cluster. See Figure 4.2
for an example.

Different Containers

Regarding the general MCPY, . we also allow for different containers. Now two

points p and ¢ which are far apart in the (maybe nonsymmetric) “distance” induced

42



4.1. Partitioning Procedures

by the function F for one container may be close by means of another. We need
to pay credit to this by modifying the definition of the p-distance graph, Definition
4.2. We now consider edge-colored multigraphs with vertices in P. Each container
C; gets an individual edge set F;.

Definition 4.8 (p-distance graph of (P,Cy,...,Cy)). For every p > 0 the edge-
colored multigraph G(p) = (P, E1, . .., Ey) with edges in E; for all pairs {p, q} which
satisfy Ruom({p, q}, Ci) > p is called the p-distance graph of (P,CY,...,Cy).

We define a generalized k-coloring of G(p) which has to respect the different edge
sets:

Definition 4.9 (generalized k-coloring). Let G = (P, Ey,..., Ey) be an (edge-
colored) multigraph with vertex set P and k edge sets Fy, ..., Ey. A generalized k-

coloring of G is a partition Py, ..., Py of the vertices P such that for any {p,q} € E;
it follows {p,q} ¢ P;,i=1,...,k.

Again, a solution of the generalized k-coloring problem for the p-distance graph
G(p) implies that p is a lower bound for the radius Rygom (P, C1, . . ., Cy). Figure 4.3
shows an example of a 2-containment problem with two different boxes and the
corresponding p-distance graph. Algorithm 4.2 extends the diameter partitioning

‘07

. i

ol

Figure 4.3: An example of an optimal containment with two boxes as containers
and the corresponding edges in the final p-distance graph.

to k-containment problems. It uses generalized k-coloring as a subroutine.

Generalized k-coloring has stronger conditions than usual coloring as the different
edge sets have to be respected. Yet, if & = 2, the problem can still be solved
efficiently:

Lemma 4.10. The generalized 2-coloring problem can be reduced to 2-SAT.

Proof. Assigning boolean variables (;, where (; = 1 < (p; € P;), shows that the
generalized 2-coloring instance (P, Ey, Es) is equivalent to the following instance of

43



Chapter 4. k-Containment under Homothety

Algorithm 4.2 Diameter partitioning for k-containment

Input: P a point set, containers (', ..., Cj in suitable representation
Output: p a lower bound for Ryow (P, Ch, ..., Ck)

let [ be the number of combinations of pairs {p,q} of points in P and i €
{1,...,k}
for j=1tol do
compute p; = Ruom({p, ¢}, Ci)
end for
relabel such that p; > ... > p
for j=1tol do
if G(p;) has no valid generalized k-coloring then

break
end if
set p = p;
end for
return p
2-SAT:
N Gv-g) A~ N\ (GVG).
(pi:py) (pi>p;)
FE1—edges FEo—edges
A feasible assignment of the (; implies a feasible coloring of the p;. O

A valid assignment of a 2-SAT instance (or evidence that no valid assignment
exists) can be found in time linear in the number of edges, e.g. by the BinSat
algorithm [131]. Any coloring of the p; obtained from such a valid assignment yields
a partition into two sets P, and P, with the following property: Rygom({p,q},C;) <
p, 1 = 1,2 for any pair of points p,q € P,.

Lemma 4.11. Algorithm 4.2 computes
(a) an HLH (maxy<i<r(1/s¢,) + 1)-approximation for the general MCP¥

om?’

(b) a = -approzimation for the MCPY, . if all containers are 0-symmetric,

(c) a n+1 -approzimation for the MCPY, . if all containers are ellipsoids or par-

allelotopes,
(d) and an exact solution of the MCPyy . if all containers are parallelotopes.

Proof. Algorithm 4.2 computes the smallest value p such that a generalized k-
coloring for G(p) exists. Let Pi,..., P, be a partition of P obtained from such a

44



4.2. Polynomial k-Containment Problems

coloring. We have Ryom (P, C1,...,Ckr) < max; Ryom(P;, C;). For the first state-
ment, we use

n 1
R om Piaci < - 1) di B)CZ
Hom )_n+1<%2?§}§csci+ ) fam( )
as in Lemma 4.5. The other three statements follow analogously using the approxi-
mation factors obtained for symmetric containers, ellipsoids, and parallelotopes. [

4.2 Polynomial k-Containment Problems

As already mentioned, the k-center problem is already NP-complete for cubes
when k& = 3 and Euclidean balls when & = 2 [110]. Nevertheless, some specific
k-containment problems can be solved in polynomial time.

4.2.1 2-Containment for Parallelotopes

In [110], it is shown that the 2-containment problem for cubes can be solved in
polynomial time when the dimension is part of the input (see Section 4.1). Lemma
4.11 shows that a more general statement is possible: the containers may be two
arbitrarily oriented parallelotopes.

Note that solving the 2-center problem for the cube via diameter partitioning is
not optimal. A faster algorithm is proposed in [25]. It computes a minimal axis-
parallel enclosing box for P and determines the position of the two cubes in this
box by maximizing consecutively in the directions of the n coordinate axes. How-
ever, Algorithm 4.1 has the advantage of being adaptable to general 2-containment
problems as a diameter partitioning scheme and, in addition to that, it works for
different parallelotopes. The algorithm in [25], however, is limited to two identical
parallelotopal containers.

4.2.2 2-Containment for Axis-Aligned Boxes Sharing a
Common Translation Vector

We consider the modified problem where the translations of two containers depend
on each other, that is, t = ¢; — ¢y is fixed. Equivalently, this is a nonconvex 1-
containment problem where the container is the union of the first container C}
and a translate ¢t + Cy of the second container with ¢t € R™. We show that the
decision version of this problem can be solved in polynomial time when C} and C,
are axis-aligned boxes. We now seek for a common translation vector ¢ such that
PCc+ (CLUt+ Cy).

First observe that we can check which assignments are valid for any two points
pi, p;j from P. For instance, when p; should go to the first and p; to the second

45



Chapter 4. k-Containment under Homothety

pi — Ch

Dio Di®

C & | c+t+ s

c+C, \ +\

O Pj pi—t—Cy  [ep;

Figure 4.4: Covering two points p;, p; with a union of two boxes ¢+ (Cy Ut + Cy).
We can place p; in the first and p; in the second box if and only if the
intersection (in blue) of p; — C; and p; —t — Cy is nonempty, and any
¢ from the intersection is feasible.

container, this is equivalent to the existence of a translation vector ¢ such that
pi € c+ C) and p; € ¢+t + Cy. Such a c exists if and only if the intersection of
two boxes p; — Cy and p; —t — C5 is nonempty (see Figure 4.4).

Now introduce a variable (; for each p;, such that (; is true if and only if p; goes
to the first container (compare Lemma 4.10). Algorithm 4.3 now checks for each
point pair which assignments are valid and solves the resulting 2-SAT problem.

Note that this problem can again be captured as a variant of a graph coloring
problem, yet it is more complicated since it involves directed edges. Generating
a 2-SAT instance with a set of variables {(;} and a set of clauses IC, however,
is straightforward. Compared to the 2-SAT instance in Lemma 4.10, we have to
consider two additional cases here.

Lemma 4.12. Algorithm 4.3 solves the decision version of the 2-containment prob-
lem for two bozxes sharing a common translation vector.

Proof. Clearly, the conditions checked by Algorithm 4.3 are necessary for covering
P with the two boxes. They are also sufficient. This is because any assignment
of the variables (; satisfying K assigns the points in P to two sets such that the
intersection of the corresponding sets of feasible translation vectors ¢ for any pair
of points p;, p; is nonempty. Since the sets of feasible translation vectors are
themselves boxes having Helly number 2, this implies that the overall intersection
is nonempty. We conclude that a feasible translation vector ¢ exists. O

Remark 4.13. (a) Of course, the argument also works when Cy and Cy are iden-
tically aligned parallelotopes, that is, with mutually parallel sides.

46



4.2. Polynomial k-Containment Problems

Algorithm 4.3 Containment for the union of two boxes

Input: P a point set, C;, Cs boxes, t translation vector
Output: true if P can be covered by a translate of C} Ut + Cy, false otherwise

set KK =10
for all pairs of points (p;, p;) do
ifpi—C'l ﬂpj—C’l :(Dthen
K=KU{=¢V-G}
end if
if p, —CiNp; —t—Cy =0 then
K=KU{~GV}
end if
lfpl—t—CQHPJ—Cl :Q)then
K=KU{GV-G}
end if
if p—t—CyNp;—t—Cy =0 then
K=Ku{GV}
end if
end for
if K is satisfiable then
return true
else

return false
end if

47



Chapter 4. k-Containment under Homothety

Figure 4.5: For some objects, for instance the union of a fixed number of balls,
nonconvex containment can be solved efficiently. The nonconvex ob-
ject is decomposed into convex subsets by hyperplanes. For each hy-
perplane, at most m+ 1 possible partitions of a point set P can occur.
These are indicated by the dotted lines for the containers C; and Cs
in the picture on the right.

(b) If the containers satisfy C1 = Cy, solving the intersection problems to set up
K in Algorithm 4.3 reduces to computing Feo for all p; — p;, pi — p; +1 and
pi — pj — t, where p;,p; € P.

(c) As far as we know, no polynomial time algorithm is known for the case of two
bozes (or parallelotopes) that are not identically aligned. Neither is it known
whether this problem is NPP-hard.

4.2.3 Nonconvex Containment for Objects Decomposable by
Hyperplanes

Nonconvex containment problems in general are hard. However, for special contain-
ers, a simple method exists. Assume that C' can be decomposed by [ hyperplanes
to k convex objects Ci, ..., Cj such that C' = Ule C;, where both k£ and [ are
bounded by a constant. This is the case for instance when C' is the union of a fixed
number of Euclidean balls, since for any two balls, a separating hyperplane can be
given (compare Figure 4.5). The number of hyperplanes therefore depends only on
the number of balls (and not on the input dimension). It also works when C' is
the union of k disjoint compact convex bodies for which separating hyperplanes are
known.

We seek for a homothetic copy of C' covering a given point set P. For each of
the [ hyperplanes, we have to decide which of the points in P are to lie above
it and which below. Therefore, we get m + 1 possible partitions of the point set
for each hyperplane, and a polynomial bound on the number of possible partitions

48



4.3. Approximating k-Containment Problems for Point Sets

(P, ..., P) altogether, namely O(m!). Note that, in general, not all these parti-
tions are feasible. We can now try all possible partitions, and for each partition
and each point determine the corresponding P;. Since the information about the
relative position of a point to one of the hyperplanes excludes at least one possible
container for this point, we are left with at most one possible container for each
point in the end. If no container is left for some point, the partition considered
is not feasible and can be disregarded. For each of the P;,, we now have a con-
vex containment problem: minimize p subject to the constraints P; C ¢ + pCh,
P, C c+ pCy, ..., and P, C ¢+ pCj. Overall, we can reduce the problem to a
polynomial number of MCPy,,,, instances.

4.3 Approximating k-Containment Problems for
Point Sets

We now address how to approximate the optimal k-containment radius up to a given
constant €. A number of approximation algorithms exists for k-center problems;
see [5] and the surveys [9], [117]. In many cases, the aim is improving complexity
bounds rather than practicability. For practical purposes, in contrast, numerous
purely heuristic approaches are available (see e.g. [11], [78], [88], or [135] for a
concrete application). Although they work well for many inputs in practice, these
methods fail to provide provable guarantees.

The most popular problem in this context is arguably the Euclidean k-center
problem. Until recently, bigger instances, i.e., n > 3 or £ > 3, seemed to be out
of reach even in this case (see e.g. [117]). This motivated studying the planar Eu-
clidean 2-center problem separately, for instance in [8], [40], [50], [81], [91], and
[122]. Progress is due to the existence of small core-sets for the Euclidean k-center
problem, yielding a polynomial time approximation scheme (PTAS) in general di-
mension [19].

When the containers are cubes, fast algorithms are known when k = 2 (see
Section 4.2.1). The case when k& = 3 and n = 2 is addressed in [83]. In other cases,
only super-polynomial methods are at hand.

4.3.1 A Basic Algorithm

In this section, a basic branch-and-bound algorithm for the Euclidean k-center
problem is reviewed and adapted to the general case.

Core-Sets

k

Hom Which are

The main idea of the algorithm is based on core-sets for the MCP
defined as follows:

49



Chapter 4. k-Containment under Homothety

Definition 4.14 (e-core-set for MCPY_ ). Let P, Cy, ..., C, be an instance of
the MCPY,... Let S C P and (Sy,...,Sy) be a partition of S into k clusters such
that max; Ryom(Si, Ci) < Ruom(P,Ch,...,Cy). Let c1, ..., ¢ be optimal centers

for the MCPyow with S; and C;. If it holds that

k
PcC U(cZ + (1 + &) max Ruom (S, Ci)Cs)

i=1

S is called an e-core-set for the MCPY, . instance defined by P and the containers
Ci, ..., C.

Remark 4.15. Let S be an e-core-set for the MCPY . instance defined by P and
the containers Cy, ..., Cy. It holds that

max Riom (S, Ci) < Ruom (P, Ch, - .., Cr) < (1 + ) max Ryom (Si, Ci),

so max; Ryom (S, C;) is an e-approximation of the optimal radius.

The condition max; Ryom (S, C;) < Rpom (P, Ch, ..., Ck) appears a little awkward
at first glance. We need it to guarantee the approximation quality. The clue
is that this condition can be satisfied by checking all possible labeled core-sets
S C P and choosing the labeling with minimal radius max; Ryom (S;, C;) (compare
Algorithm 4.4). Naturally, this labeling has at most the radius achieved by a
labeling of S which is consistent with an optimal solution of the k-containment
problem. Since S C P, the maximal radius for this labeling is surely at most as
large as Ryom(P, C1, ..., Cy).

In [19], the existence of small core-sets for the Euclidean k-center problem is
proven. The argumentation works as follows. First, assume the existence of an
oracle: for each point in P, it returns a cluster index from {1, ..., k} corresponding
to a (fixed) optimal partition. The core-set is now constructed via an iterative
procedure starting with an arbitrary point p € P. The iteration step is as follows.
Let S = Uy, Si denote a subset of points from P, partitioned into k sets each
corresponding to a cluster. The smallest enclosing ball is then computed for each
of the sets S;, yielding centers ¢; and a maximal radius p. As long as P is not
covered by ¢; + (1 + &)pB, we find a point p € P which is not covered and call the
oracle to determine to which cluster the point should go. We may choose a point
maximizing the distance to the current centers c;.

After adding k-+1 points to the set S, the current radius p is at least RE__ (P, B)/2
([62], compare Lemma 4.16). After this, we only choose points having distance at
least (1+¢)p from the current centers, so any set S; containing more than one point
satisfies Ryom(S;, B) > (1 + )R, (P, B)/4. For every subsequent step, one can
show that the radius of a cluster increases at least by O(?) Ry, (P, C) when a point
is added, using the half-space lemma already mentioned in Section 3.2.1. For each

50



4.3. Approximating k-Containment Problems for Point Sets

cluster, at most O(1/&?) steps can be performed until all points are covered, yielding
an upper bound of O(k/e?) overall. The oracle is removed by exhaustively labeling
all the possible core-sets. The proof does not extend to other than Euclidean
containers as the half-space property used does not hold there (see Section 3.2.1).

One should note that for cubes every diametrical pair of points is a 0-core-set
and that Helly’s theorem [79] implies the existence of 0-core-sets whose size is
independent of the number of points in P for all containers (see Section 2.4.1). It
is an open question whether core-sets whose size is independent of the dimension
exist for general, symmetric containers (compare Section 3.2.1). The incremental
algorithm, however, may compute a core-set of size O(n) even when the container
is the unit cube.

The developers of the core-set algorithms [19] seem to be mainly interested in
proving new complexity bounds for Euclidean k-center. This may be the reason
why neither in [19] nor in the following papers [17] and [102] (improving the 1-
center algorithm), explicit procedures for solving the k-center problem are stated.
However, the PTAS for Euclidean k-center indicated in these papers is easily com-
bined with a B&B scheme. In [101], an implementation of such an algorithm for
the Euclidean k-center problem is reported.

Branch-and-Bound Scheme

Algorithm 4.4 is a basic B&B scheme for the MCPY,_ . At each node in the B&B
tree, we regard a set S C P already partitioned into clusters S; which have to
be covered by homothetic copies of the corresponding containers Cj, that is S; C
¢;+ p;C;. For the branching, a point p € P\ S not (yet) covered is chosen and added
to each of the sets .S; consecutively. We choose a point p maximizing min; Fe, (p—¢;),
the minimum of the values of the distance functionals Fy;, for p — ¢;. In case the
maximum is too expensive to compute, one may choose any point p with Fg,(p—c¢;)
bigger than the current (1 + ¢) max; p;.! The remaining points play no further role
in this step of the basic B&B procedure. (This will be improved in Section 4.3.2.)

For the branching, the clusters are sorted according to the distances Fg,(p — ¢;)
and then p is assigned to the nearest cluster first. With this greedy-like strategy,
good upper bounds are computed at an early stage of the algorithm, resulting in
fast truncation of many branches and shorter overall running time. The radii of the
1-center instances for the C; and their assigned core-set points generate first lower
bounds on the optimal value for the subtree below the current node. Before doing
this, computing the Fi,-distances between the new point and the points already
assigned to .S; is recommendable. This step helps preventing unnecessary radius
computations.

Tn [101], the next core-set point p maximizes min;(Fe,(p — ¢;) — p;), but our tests show that
min; Fe, (p — ¢;) yields better results, see Table 4.1.

51



Chapter 4. k-Containment under Homothety

Algorithm 4.4 returns an e-core-set S C P consisting of the points chosen at
the nodes of an optimal branch, partitioned into subsets Sy, ..., Sk, corresponding
to the assignment of the points to the containers C4, ..., . Here, the algorithm
is written down recursively for better readability. However, to gain good running
times, we do not use recursion in the implementation described in Section 4.3.4.

Algorithm 4.4 Branch-and-bound for k-containment

Input: P a point set, containers C,...,Cy, € >0
Output: S =S5, U---U S subset P an e-core-set for Ryom (P, C1,...,Ck) , pi, G
radius and center for S;
initialize:
set S; =0, p; = 0, ¢; arbitrarily for all ¢
set p to an upper bound for Ryom (P, C, ..., C)

k-containment(S;, p;, ¢;):
update the global upper bound p
compute § = max, ep\(Js, Min; F,(p; — ¢;)
let p be a point where the maximum is attained
if (1 +¢)max; p; > 6 then
return
else
sort the cluster indices in descending order according to F¢,(p — ¢;)
for j =4, to i, do
recompute ¢; and p; for S; = S; U p*
if max; p; < p(1 + ¢) then
call k-containment(.S;, p;, ¢;)
end if
end for
end if
return the best S;, p;, and ¢; found

The number of nodes in the branch-and-bound tree is bounded by O(k"), where
h is the size of a maximal core-set constructed during the algorithm. It follows
from [19] that for Euclidean k-center this B&B algorithm is a PTAS with an
O(2F1°ek/* nm) worst case running time.

If an upper bound for the optimal radius is known, p can be initialized accord-
ingly. Since the first k& steps of Algorithm 4.4 (that is, when each cluster contains
exactly one point), match the first k steps of the greedy algorithm in [62] (assuming
that the distance to an empty cluster is set to zero), an approximation factor of
at least 2 can be guaranteed in the symmetric case at that stage and n 4+ 1 in the
general case for identical containers:

52



4.3. Approximating k-Containment Problems for Point Sets

Lemma 4.16. For identical containers C; = C for all 1 < 1 < k which have
been translated such that sc(—C) C C holds, Algorithm 4.4 computes a (1 + é)—

approzimation of R¥(P,C) in k steps.

Proof. The proof follows the same lines as in [62], but is more involved since it allows
for non-symmetric containers. Assume that P contains at least k+ 1 points (other-
wise RF(P,C) = 0). After k steps, each set S; consists of exactly one point from P.2
Denote those points by py, ..., pr. Consider p = maxyecp\s mini<;<; Fo(p — ¢;) and
let pr+1 be a point where the maximum is attained. Since minj<;<x Fo(p —¢;) < p
for all p € P, the value of p is an upper bound for the optimal radius. On the
other hand, each of the p; was chosen to maximize min,<;-; Fo(p —¢;) and ¢; = p;.
Therefore, all distances F:(p; — p;) are at least p for all 1 < j < i < k. Since the
optimal solution has to assign two of those points to the same cluster (without loss
of generality, p;, p; with j < i), the value of Ryom({pi,p;},C) is a lower bound for
RE o (P, C). Since p;,p; € ¢+ Ruom({pi, pj}, C)C for some c, we get

1
Pi —DPj € RHom({piapj}vc)(C - () C (1 + ;) RHom<{pi7pj}7 C)C.

Consequently,

1
R (P.CY< < Folpi—p;) < (1 i —C) Buon({piopi}, C)

which implies that
1
le-:lom<P7 C) < p < (1 + _) RIIZ:Iom(P7 C)?

proving the statement. O

The statement from Lemma 4.16 does not hold for different containers. We assign
the first k£ points to the k clusters in any order, so the resulting factors may get
arbitrarily large.

4.3.2 MICP Relaxation

Good lower bounds are particularly important for the performance of a B&B pro-
cedure. Whereas Algorithm 4.4 computes local lower bounds by determining the
radii of the current clusters, we now propose lower bounds taking both assigned

2This is not stated explicitly in the algorithm description but it surely makes sense to put empty
clusters first when sorting the clusters. Moreover, when we have identical containers, we do
not need to distinguish between them as long as they are empty.

53



Chapter 4. k-Containment under Homothety

and unassigned points into account. The new bounds are at least as good as the
old ones, but usually much better.

We derive a problem-specific convex relaxation of a mixed integer convex program
(MICP) accelerating the B&B. In the following, a version of the MCPY_ ~ with
additional information is considered. It is assumed that the correct clusters are
known for some of the points in P. This is a natural hypothesis in the context of a
B&B scheme and enhances the chances to compute good upper and lower bounds
for the optimal solution.

A Mixed Integer Convex Program

Recall that, during the run of the algorithm, the set S = S; U ... U S denotes
the assigned subset of P, that is, the containers are fixed for these points and we
require S; C ¢; + pC; for some ¢; € R" and p > 0,i=1,... k. Now, let Sy C P\ S
denote some of the unassigned points. Then the MCP¥,  with assigned points in
Si,..., Sk # 0 and unassigned points in Sy can be formulated as a mixed integer
convex program with variables p, ¢; and \;; € {0,1} for each 1 < i < k and
pj € So. In particular, for each p; € Sy and each possible cluster S;, a reference
point ¢;; € conv(S;) is fixed. A scalar \;; determines whether p; is in cluster 4.
Using the reference points ¢;;, we require that A;;p; + (1 — \;j)g;; is in the i-th
cluster. Since the containers are convex, any such ¢;; has to be covered by the i-th
container anyway, together with the points in S;. So, whenever \;; = 0 only the
reference point g;; has to be covered, a redundant condition. In contrast, if \;; = 1,

p; actually has to be contained in the homothetic copy of C; .

min p
FCl<pj_Cz)§p VPJESZ, 1<i<k
Fe,(Miypj — ci + (1= Xij)aij) < p Vp; € So, 1<i <k

. (4.1)
Z )\ij =1 Vp] S So
i=1

)\Z‘jE{O,l} VPJESO,lg’lS/{?

Relaxation

Relaxing the {0, 1}-condition on the multipliers \;; yields a convex program, provid-
ing a lower bound for the radius Ryom (P, Ch,...,Ck). A geometric interpretation
of the relaxation is including not the point p; itself but a point on the line section
between p; and g;; for all ¢, whereas the constraint Zle Aij = 1 enforces that not
all of these points can be close to the reference points (see Figure 4.6).

3If it is known (e.g. from a pre-partitioning step) that p; cannot be in cluster i, the corresponding
constraint and variables );; can simply be removed.

54



4.3. Approximating k-Containment Problems for Point Sets

Picking ¢;; € conv(S;) such that the distance between ¢;; and p; is small gives
the best bounds. However, the projection of p; onto the convex hull of S; causes
longer overall computing time. Balancing between fast computations and a good
choice of g;;, the most successful strategy seems choosing ¢;; as a point in S; as
close as possible to p;.

Figure 4.6: Geometric interpretation of the relaxed program for Euclidean 2-
center. Optimal cluster radii with (black) and without (red respec-
tively. blue) considering the unassigned point p.

For polytopal C;, the relaxation of Program (4.1) is a linear program; for Eu-
clidean containers, we get a second-order cone program. Some other cases can be
cast as SOCPs, too (compare Section 3.1).

When S is empty, we get the same bounds as before since we do not consider any
unassigned points. The more points from P\ S belong to Sy, the better we expect
the lower bound on Ryom (P, Cy, . .., C) to be. However, as each p € Sy results in
at least k—1 additional variables and constraints, the relaxation of Program (4.1) is
practicable only when both k£ and S are not too big. Experiments show that even
very small sets Sy usually provide enough potential to reduce the running times
significantly (compare Table 4.2, where 5 points are chosen).

There are different possible strategies to select points for Sy, e.g., randomly, max-
imizing the minimal distance to a current cluster, maximizing the distance to the
most recent core-set point, or maximizing the minimal distance to the unassigned
points already picked.

The solution of the convex program provides not only lower bounds. Upper
bounds can easily be obtained by assigning the points p; € P\ S to the clusters,
using min; Fg, (p; — ¢;) or max; \;; (for p; € Sp) as a criterion. The effectiveness of
this approach is evaluated in experiments in Section 4.3.4.

55



Chapter 4. k-Containment under Homothety

4.3.3 Using Diameter Partitioning within the B&B

Let us now consider another method to accelerate the branch-and bound. We try
to make use of the bounds obtained by the diameter partitioning in Section 4.1.2,
at least when k£ = 2. When the number of points in P, m, is not too big, we can
perform the diameter partitioning on the whole point set as a preprocessing step. Of
course, we can initialize the upper bound for the branch-and-bound routine with the
upper bound found by the diameter partitioning. Since the bounds obtained by the
diameter partitioning frequently happen to be significantly better than predicted
by the analysis in Section 4.1, this already prevents us from having to explore wide
parts of the tree. Depending on the shape of the container and the dimension,
different approximation qualities for the underlying 2-containment problem can be
guaranteed.

Moreover, we can reuse the information captured in the pairwise distances. After
completing the diameter partitioning, we simply rebuild the graph G(p) for the
upper bound and color it. Since p is an upper bound, we can be sure that the
graph is 2-colorable. Again, we may need to use different label pairs since the
resulting graph may not be connected. We call the resulting collection of label
pairs a pre-partitioning of the point set P. During the B&B, for every new core-set
point, we can now check whether it is labeled in the pre-partitioning. If it is not,
we proceed as before. But if it has a label, we can immediately assign all points
from this label pair to the two clusters by deciding where to put the new core-set
point. In this setting, instead of picking an arbitrary point as first core-set point,
choosing one from the largest labeled component is advantageous. In the following
section, this method is tested in experiments.

4.3.4 Experiments

In the following, we present exemplary test results for the B&B algorithm, the
MICP relaxation, and the diameter partitioning. The implementations used are
based upon code from [13] and [54]. We use Matlab© R2006B for all tests in this
section.

Improvements on the B&B

The experiments in [101] show that the B&B algorithm used there performs much
better on practical data sets than the predicted worst case running times suggest.
It is concluded that in dimensions 2 and 3, Euclidean k-center is practical for
€ > 0.01 and k£ < 4, where computations in 3-space are significantly more expensive
than in 2-space. The latter is caused in the fact that, though the upper bounds
on core-set sizes are dimension independent, in practical computations the core-
set sizes in lower dimensions are far from the upper bounds and grow noticeably

56



4.3. Approximating k-Containment Problems for Point Sets

running time (s)
data set m | n | k || original | (1) | (2) | final
cat 352 | 3| 2 3.4 2.5 1.0 0.9
cat 3521 31| 3 62.2 29.3 10.0 9.0
cat 352|314 *11952.1 | 552.7 | 505.6
shark 1744 | 3 | 2 3.3 2.4 1.0 0.6
shark 1744 | 3| 3 248.8 15.8 6.7 3.8
seashell 18033 | 3| 2 29.8 114 8.2 1.3
seashell 18033 | 3| 3 169.9 81.5 65.4 11.5
dragon 437645 | 3 | 2 132.9 70.7 69.1 3.6
dragon 437645 | 3 | 3 5536.2 | 2468.1 | 2196.3 154.9
norm. dist. 1000 | 5| 3 929.8 460.0 104.0 86.3
norm. dist. 10000 | 5 | 3 || 10843.5 | 7074.8 | 2840.1 | 1085.1

Table 4.1: Step-by-step comparison of the running time of the original algorithm
proposed in [101] and our improvements for the Euclidean k-center.
In column (1), we change the rule for picking core-set points, and in
column (2), we additionally replace the 1-center computation. The last
column contains the results for the final method, also using the modified
Euclidean distance computation. In Tables 4.2 and 4.3, we refer to this
program as “pure B&B”. We use 3D geometric model data sets as well
as two examples of (0,1) normally distributed points (“norm. dist.”).
We report running times in seconds for € = 0.01. Concerning the entry
* the calculation was interrupted when it was still unfinished after 24
hours.

with the dimension (and so do the running times of the B&B procedure). Our
experiments show that the running times of [101] can substantially be improved
by our realization of Algorithm 4.4 and even further by the methods presented in
Sections 4.3.2 and 4.3.3.

According to [101], the implementation reported there is the first to practically
solve huge k-center instances. However, it is also reported that “some of the data
sets [...] solved in 3D [...], ran for almost a week on an Intel Itanium system”. The
same holds for our original implementation of the algorithm on a 2.0 GHz Intel
Core 2 system. In Table 4.1, we illustrate our modifications of the B&B algorithm
proposed in [101] for the case of the Euclidean k-center. We use geometric model
data sets comparable to the ones in [101] for these tests.*

We start from a straightforward implementation of the method, using the code
[103] (as it is done in [101] and [102]) for the 1-center computations, and we imple-
ment a node stack for the B&B instead of using recursion since this is much faster.

4For data set sources, see: Large Geometric Models Archive, Georgia Institute of Tech-
nology http://www.cc.gatech.edu/projects/large_models/, ORC Incorporated http:
//www.ocnus.com/models/, and 3D Cafe http://wuw.3dcafe.com/

o7



Chapter 4. k-Containment under Homothety

This original implementation can be improved in different ways. In a first step, we
replace the rule for picking new core-set points. Instead of the maximal value of
min;(Fe, (p — ¢;) — p;) we choose the maximal value of min; F, (p — ¢;) as a criterion
for the next core-set point. This results in significantly smaller B&B trees and
running times. The reason seems to be that the new rule for picking core-set points
is more likely to assign points to the clusters with larger radii, so less points are
needed overall. We then decrease the time spent per node by replacing the 1-center
with an alternate implementation relying on the solver SeDuMi [116], [126], as well
as using “vectorized” code [39] for Euclidean distance computations. Naturally,
this last step especially helps when m is large.

Note that, though the Euclidean case is considered in Table 4.1, our B&B method
applies to general k-containment problems. In the following, we refer to this imple-
mentation as the “pure B&B”. Since the cases where containers are Euclidean balls
or cubes are those which have been studied most intensively, we present examples
for these cases. We now consider the effects of the relaxation and the diameter
partitioning on the B&B scheme.

MISOCP-relaxation for Euclidean k-Center

We consider the Euclidean k-center problem, and compare the pure B&B imple-
mentation with the modified method from Section 4.3.2. The relaxation of the
mixed integer second-order-cone program is used to determine cluster centers and
lower bounds at each node in the B&B tree.

The test results in Table 4.2 show that the MISOCP-relaxation significantly
reduces the size of the tree for Euclidean k-center. Since the larger program with the
additional constraints for the points from Sy is time-consuming, the improvement
in the running time is still considerable but not as striking as in the number of
nodes. Therefore, further speedup should be possible by advanced strategies for
the MISOCP-relaxation. In particular, we expect that improvements to the current
method can be achieved through more elaborate techniques for determining the
nodes at which to solve the program, the accuracy to which it should be solved,
and the strategy to pick the points in Sy.

Diameter Partitioning for 2-Containment with Balls and Cubes

In Table 4.3, test results for diameter partitioning both with Euclidean balls and
cubes as containers are listed.

For the Euclidean balls, we compare the pure B&B method to the B&B with
diameter partitioning as described in Section 4.3.3. One can see from Table 4.3
that the bounds obtained by the diameter partitioning are already quite good. For
point sets of 100 points, the diameter partitioning is very fast, too.

58



4.3. Approximating k-Containment Problems for Point Sets

pure B&B B&B with relaxed MISOCP
data set m|n|k nodes | leaves | time nodes | leaves | time
cat 352 | 3| 4| 10353 2138 505.6 2380 144 207.7
shark 1744 | 3 | 4 649 126 26.1 225 27 13.6
seashell 18033 | 3 | 4 || 12718 2365 925.6 3266 479 371.0
dragon 437645 | 3 | 3 341 96 154.9 161 43 89.2
rand. box 1000 | 5| 3 889.3 57.8 44.6 623.9 35.7 45.6
rand. box 1000 | 5| 4 || 20919.9 | 3249.8 | 1272.6 6544.0 | 238.4 611.2
rand. box 10000 | 5 | 3 2595.1 167.6 166.6 1577.7 | 84.3 139.0
rand. box 10000 | 5 | 4 || 32611.9 | 3021.6 | 2273.7 || 13768.3 | 808.1 1459.4
trunc. cube 1000 | 5| 3 1146.9 96.8 111.7 690.9 | 43.7 60.5
trunc. cube 1000 | 5| 4 || 17407.5 689.8 | 1783.3 9313.0 | 165.8 942.8
trunc. cube 10000 | 5| 3 2282.8 148.3 258.5 1380.2 70.2 145.3
trunc. cube 10000 | 5 | 4 || 62343.6 | 2771.5 | 8087.4 || 32311.5 | 965.0 4096.1

Table 4.2: The B&B algorithm with and without SOCP bounds for Euclidean k-

center and an approximation error of 0.01. The 3D geometric model
data sets are comparable to the ones used in [101]. The 5D “rand. box”
data sets refer to equally distributed points within boxes with randomly
scaled axes. The 5D “trunc. cube” data sets refer to equally distributed
points within the unit cube, truncated by randomly generated hyper-
planes.
k-center problems than, e.g., equally distributed points within the unit
cube.) Sizes of the B&B tree and running times (in seconds) are listed
— in case of the random data sets, the mean over samples of 20.

(We assume that these data sets are more appropriate for

99



Chapter 4. k-Containment under Homothety

pure B&B B&B with diameter partitioning
containers | data set n time || DP error | DP time | B&B time | overall time
Euclidean | rand. box 10 7.2 0.06 0.5 2.6 3.1
Euclidean | rand. box 20 26.2 0.11 0.5 14.1 14.6
Euclidean | rand. box 30 88.3 0.15 0.8 67.3 68.2
Euclidean | norm. dist. | 10 10.9 0.12 0.5 7.1 7.6
Euclidean | norm. dist. | 20 56.1 0.15 0.6 32.5 33.1
Euclidean | norm. dist. | 30 135.5 0.17 0.8 89.0 89.9
Euclidean | trunc. cube | 10 25.7 0.12 0.4 12.8 13.2
Euclidean | trunc. cube | 20 129.8 0.16 0.5 93.8 94.3
Euclidean | trunc. cube | 30 568.2 0.19 0.5 425.0 425.5
rot. cubes | rand. box 10 12.8 <e€ 2.1 - 2.1
rot. cubes | rand. box 20 103.2 <e€ 2.4 - 2.4
rot. cubes | rand. box 30 639.9 <e 3.1 - 3.1
rot. cubes | norm. dist. | 10 21.5 <e€ 1.1 - 1.1
rot. cubes | norm. dist. | 20 210.9 <e€ 2.1 - 2.1
rot. cubes | norm. dist. | 30 1153.1 <e€ 2.7 - 2.7
rot. cubes | trunc. cube | 10 34.6 <e€ 1.7 - 1.7
rot. cubes | trunc. cube | 20 744.8 <e€ 2.7 - 2.7
rot. cubes | trunc. cube | 30 2832.7 <e 3.7 - 3.7
Table 4.3: Test results for diameter partitioning where the containers are ei-

60

ther two Euclidean balls or two arbitrarily, independently rotated unit
cubes. The “rand. box” data sets refer to 100 equally distributed points
within boxes with randomly scaled axes. The “norm. dist.” data sets
refer to 100 (0, 1)-normally distributed points. The “trunc. cube” data
sets refer to 100 equally distributed points within the unit cube, trun-
cated by randomly generated hyperplanes. The accuracy is € = 0.01
for all tests.



4.4. Approximating Euclidean k-Center Problems for V-Polytopes

We also list test results for the 2-containment problem with two arbitrarily ro-
tated cubes. Note that the usual 2-center algorithm for cubes from [91] does not
work here since we have non-identical containers. The diameter partitioning, how-
ever, solves the problem exactly, and it is much faster than the B&B.

Note that the core-sets generated by the B&B method are usually larger for cubes
than for Euclidean balls (and so are the running times). The reason are possibly
ambiguities in the center locations when the containers are cubes, so, frequently,
adding a point to the core-set only results in a translation of the corresponding
container center but not in an increase of the radius. The increase in the radius is
guaranteed only for Euclidean containers by means of the half-space lemma already
mentioned, see also Sections 3.2.1 and 4.3.1.

4.4 Approximating Euclidean k-Center Problems for
)V-Polytopes

In this section, we consider a different variant of the k-containment problem under
homothety. Instead of a finite point set P, the task is now to cover the convex
hull of P, i.e., we want to cover a non-discrete object. In some applications, this
setting is more appropriate than a discrete point set (see [128]). For instance, in a
2D location planning problem when placing emergency sirens, the whole city area
is to be covered [135]. The 2D variant of the problem is also addressed in [124].
Note that “clustering for geometric objects” usually refers to a different problem
[138], since in that setting, each of the objects (polytopes, for instance) goes to one
of the clusters as a whole.

We restrict ourselves to the Euclidean k-center in this section, since the main
result is a PTAS for this specific problem. The argumentation uses the aforemen-
tioned core-set results for Euclidean k-center on point sets.

Let V' be a n-dimensional polytope in vertex representation, and let P be a finite
point set, P = {p1,...,pm}, such that conv(P) = V. The task is to cover V with
k Euclidean balls ¢; + p;B, 1 < ¢ < k such that the maximal radius p = max; p; of
the balls is minimized.

4.4.1 Core-Set Points from )-Polytopes

In case of the Euclidean k-center problem for point sets, only a discrete set of points
has to be covered. An algorithm for covering P is introduced in Section 4.3.1. The
algorithm is a PTAS when the containers are Euclidean balls [19]. Now observe that
the result about the core-set size is independent of the representation of the object
to be covered. When transferring it to other types of input data, the crucial step is
finding a point which is far enough from the current centers as a new core-set point.
This is sufficient for an increase of the radius in the next iteration. Therefore, the

61



Chapter 4. k-Containment under Homothety

same result on the size of the core-set holds when V' = conv(P) is to be covered.
The only problem arising here is actually checking whether V' is covered yet and
finding a new core-set point.

Whenever J, (ci + (14 e)p]B%) does not cover the whole set V', naturally, any
point p € V maximizing min;<;<x ||p — ¢|| is not covered yet. Possible candidates
for such points are, of course, the points p; € P, but there may be more. Consider
the Voronoi cells induced by the centers ¢; and intersect them with the polytope
V. A point furthest from the current centers can be found by norm-maximization
on the resulting finite cells (compare Figure 4.7).

Figure 4.7: Intersection of the polytope V with the Voronoi cells induced by the
centers of a Euclidean 3-center solution for a set S of four points.
The points in the clusters Sy, Sy, and S3 are colored red, blue, and
green. The radius p of the current solution is also shown. The point
p € V maximizing min; << |p — ¢||, indicated in white, is here at the
common vertex of the three Voronoi cells.

The key observation here is the following lemma, showing that considering low-
dimensional faces of V' is sufficient in order to find all relevant points:

Lemma 4.17. A polytope V' C R" is covered by k Euclidean balls of unit radius if
and only if all j-faces of V' with j < k are covered.

Proof. Let n > k since otherwise the statement is trivial. Assume that all j-faces
with j < k of P are covered. Consider the centers of the balls ¢y, ..., ¢;. Their
affine hull aff(cy, ..., ¢;) has dimension at most £ — 1. All faces of the Voronoi cells
induced by the centers ¢; are perpendicular to aff(cy, ..., ). Therefore, all those
faces have at least dimension dim(aff(cy,...,cx)t) > n — (k —1). Consider now
the intersection of V' with one of the (closed) Voronoi cells. This intersection is a
polytope whose vertices are either vertices of V' or formed by intersections of faces
of V with faces of the Voronoi cell. In order to obtain a vertex, we need a face of
V' whose dimension is less than or equal to £ — 1. From the assumption, all these

62



4.4. Approximating Euclidean k-Center Problems for V-Polytopes

faces are completely covered by the k balls. This implies that the distance between
the vertex and any of the centers of the adjacent cells is less than 1. Therefore, for
each Voronoi cell, its intersection with V' is completely covered by the single ball
centered there. Since V' is the union of those k polytopes, V is also covered. O

The above lemma implies that searching for new core-set points on the j-faces
of V where j < k is enough. This is surely an improvement since k, in contrast to
n, is fixed.

4.4.2 Complexity of the Algorithm

With help of Lemma 4.17, we have a PTAS for the Euclidean k-center problem
for V-polytopes. Using the core-set approach from [19], we can determine the
complexity of the method. We get the following theorem:

Theorem 4.18. Fuclidean k-center for vertex-represented polytopes can be approx-
imated up to an accuracy of € in O(ke_Qnmke’k) time, where n denotes the dimen-
ston and m the number of input points.

Proof. Since there are O(1/£2) points in the core-set, we have to consider O(k/<")
possible labelings. The core-set points and labelings can be processed in a B&B
scheme as described in Section 4.3.1. At each node of the B&B tree, we have to find
a new core-set point or decide that V' is already covered. This involves checking
O(mF) potential faces of V. We can now compute the vertices explicitly or use an
a-priori computed discretization of the low dimensional faces. Such a discretization
requires O(1/¢") points. Computing the Euclidean distances takes O(n) operations.
The Euclidean 1-center problems can be approximated up to the required accuracy
in time linear in n (see, e.g., [102]). O

Remark 4.19. Assume we want to cover a nonconvex non-discrete region presented
as the union of a set of V-polytopes, U2:1 Vi, where each V; is the convex hull of m;
vertices. We can use the same approach, checking for each of the V; whether it is
covered. In that case, we need to consider O(Zézl mF) faces in each iteration.

4.4.3 Euclidean 2-Center for V-Polytopes

When k = 2, some simplifications are possible. The polytope V' is covered by two
balls exactly when all edges of V' are covered (see Figure 4.8).

Remark 4.20. When an assignment of the points in V' to two clusters is given, the
FEuclidean 2-center problem for V. = conv(P) can be formulated as a second-order
cone program. This is due to the fact that the requiring to cover the whole edge from

63



Chapter 4. k-Containment under Homothety

Figure 4.8: Example of the 2-center problem for a V-polytope. For points assigned
to different clusters, we need to make sure that the connecting edges
are covered.

p1 to pa such that py is in c; + pB and py is in co + pB is equivalent to satisfying
the following constraints with A € [0, 1]:

[Ap1 + (1 = N)p2 — ]| < p
[Ap1 + (1= N)p2 —cof| < p

In general, the situation is much easier when k£ = 2, since any point in V' max-
imizing the distance to the current centers is either a vertex of V' or it has equal
distance to both centers. A new core-set point can therefore be found by computing
the distances from the two centers to all vertices of V' and by solving the above
SOCP for each pair of points py, ps with p; in the first and py in the second cluster.

64



5 Rotational Containment

A natural generalization of containment under homothety is the minimal contain-
ment problem under similarity, the MCPyg;,,,. It allows rotations of the concerned
bodies and consequently increases the number of degrees of freedom. We also con-
sider the anchored version where the container rotates about the origin, and no
translation is permitted, the MCPg.. We first discuss some general properties of
rotational containment problems. The main part of this chapter deals with approx-
imation algorithms for smallest enclosing cylinders and related problems. Finally,
we introduce a rotational containment problem derived from an application in hu-
man medicine.

5.1 Complexity and Basic Properties

Research on rotational containment problems is focused mainly on the 2D and 3D
cases, see, for instance, [1], [16], [42], or [111]. In higher dimensions, less is known.

In case the container in an MCPyg;,, instance has rotational symmetries, many
possible rotations are equivalent. For instance, when the container is invariant
under rotation about an axis, the problem of finding an optimal rotation can be
cast as finding an optimal axis direction and considering the resulting instance of
the MCPyo. The smallest enclosing cylinder problem is an example of such a
problem which we discuss in detail in Sections 5.1.2 and 5.2. It is proven to be
NP-hard [110].

Without rotational symmetries, the problem is suspected to be even harder, since
the number of degrees of freedom is higher. However, it is an open question whether
containment under similarity is NP-hard when the container is the unit cube [110].
Note that this problem subsumes the Hadamard determinant problem in the sense
that the MCPg,; where the unit cross polytope is to be covered with a cube in
dimension n has an optimal radius of 1/y/n if and only if a Hadamard matrix with
n columns exists (see also [85]).

5.1.1 Approximation via Discretizations

An option to approximate general rotational containment problems is discretiz-
ing the space of possible container orientations. Finding an approximation of the
rotational containment problem, the MCPyg;, is thereby reduced to a number of

65



Chapter 5. Rotational Containment

MCPhom instances. The same can be done for the MCP . though this results
in as many as O(¢~*™1") instances of the MCP¥_  in the general case, which is
practicable only when both the number of containers k and the dimension n are
small.

Figure 5.1 depicts the approximate solution of such a 4-containment problem with
18512 data points' and identical 2-dimensional containers being conical sections of
circles. These ‘pie slice’ shapes arise in applications when points should be within
the sight of cameras, in the transmission range of oriented senders, or reachable by
robot arms with joint limits (see also Section 1.1.2 and [72]). In the example in
Figure 5.1, a discretization of the possible space of rotations is combined with the
B&B algorithm for the MCPY_  as presented in Section 4.3. In the planar case,
the number of container orientations considered is only linear in €. Even then, the
computational effort increases severely compared to the MCPY_ as the rotations
of the four containers have to be addressed independently of each other. Still, the
computation is finished within some hours due to the fast methods for containment
under homothety.

We also consider discretizations of the orientation space in Sections 5.2 and 5.3.
The objects considered there have an axis of symmetry, so the number of possible
container orientations does not get too large, at least in small dimensions. Still,
in order to consider all possible orientations of the axis, we have to discretize
the unit sphere. In general dimensions, the barycentric subdivision method [139]
is available. In 3-space, it is recommendable to use an equilateral triangulation,
for instance obtained by successively refining the faces of the 3-dimensional cross
polytope, the octahedron.

The number of direction vectors in the discretization is determined by the desired
accuracy, but also by the shape of the container. We can determine a bound on
the quality of the discretization by considering a smallest annulus containing the
boundary of C'. The smaller the ratio g of the inner and outer radius of the annulus,

the higher are the demands on the accuracy of the discretization.

Remark 5.1. In the following section, we consider infinite cylinders as containers,
where we cannot find an enclosing ball of finite radius. However, since P is finite,
we can find a bound depending on the ratio of the optimal radius and the mazimum
norm of a point in P, max; ||p;||. Obviously, when this value gets small, we need to
find a very good approximation for the axis since then, even a small perturbation
in the angle can cause large errors.

On the other hand, in such cases, good approximations can only be achieved with
axes enclosing a small angle with an optimal solution. Compared to more ball-
like point sets where the ratio is close to one, it is easier to identify unnecessary
directions (which can only provide large radius values) and discard them.

1See TSPLIB, Ruprecht-Karls-Universitit Heidelberg for the data set, http://www.iwr.
uni-heidelberg.de/groups/comopt/software/TSPLIBI5.

66



5.1. Complexity and Basic Properties

Figure 5.1: Approximate solution of a 4-containment problem under similarity
with 18512 data points and accuracy € = 0.02. The full computation
takes less than 5 hours using the same environment as in Section 4.3.
The implementation used here is due to [13].

67



Chapter 5. Rotational Containment

5.1.2 Containers with axial symmetry

We formulate rotational containment problems where the containers are cylinders
and cones which are rotationally symmetric about an axis. Note that these con-
tainers are not bounded, different to the definition in Section 2.3. However, since
the following problems are outer containment problems for finite point sets, this
is not a problem. Once the point set is fixed, one can always find an equivalent
finite container. We therefore simply use the notation from Section 2.3 for infinite
containers, too.

Cones

Containment problems involving circular cones arise for instance in robotics or
transmitter location, compare Sections 1.1.1 and 1.1.2. The complexity of these
problems in general dimension is regarded in the following.

Consider the problem of covering a point set with a circular cone C' = pos(t +
B), t € R" \ B of minimal angle?. This is a containment problem according to
Section 2.1, but not an instance of MCPg,;. Nevertheless, when we fix the angle of
the cone, we can solve the decision problem by checking whether a given point set
can be covered by a rotated copy of C' = pos(t + B), t € R* \ B. (Note that this
“container” C' has the origin on its boundary.)

Covering a point set with a cone of minimal angle can be reduced to solving a
1-center problem for points on a sphere, at least in case a solution exists where the
angle is not as large as 7 [20], [105] (see the applications section in [66], too).

When we consider a circular double cone C' = pos(t+B)Upos(—t+B), t € R"\ B
instead, the problem is NIP-complete:

Theorem 5.2. Deciding whether a set of points P can be covered with a double
cone of fixed angle is NIP-complete.

Proof. The proof uses a related construction to those in the proofs in [68], [110] to
obtain a reduction from 3-SAT. Consider a 3-SAT problem with [ variables (; and
a set IC of clauses k.

Let us now construct the point set P. We choose the dimension n such that
n=1[01+9.

We use the following condition to specify the cone: A point p is contained in
the cone if and only if (v, p)* > L||p[|||v[|%, where v denotes a vector spanning the
cone axis. (This corresponds to an angle of o = arc cos %, which we do not use
for specification since it may be non-rational.)

We use a set P = {£e;, i = 1,...,n} to get a discrete structure for the set of
solutions, that is, the feasible axis directions to cover the point set with a double

2We are not interested in the extreme cases here where the cone is a line or a half-space.

68



5.1. Complexity and Basic Properties

cone. Let v € {£1}" and consider the partition of the points in Ps induced by
the hyperplane perpendicular to v. Let p € Pg and (v,p) > 0, then (v,p) = 1
holds. For points p in the negative half-space, (v, p) = —1. Therefore, all points in
Pg are covered, and moreover, the v € {£1}" are the only possible solutions. We
now require v € ({£1}' x {1}?). In order to avoid two representations of an axis,
fixing one additional coordinate would be sufficient. However, we need the extra
coordinates in order to represent the clauses. Therefore, we have to ensure that the
last nine coordinates of v have the same sign. For this purpose, we use another set

of two points,
Po= 1l {0} x 1)’
O — 5 5 )

to eliminate unwanted axis orientations. For v € {£1}", (v,p)® > | p|?||v[* = 1
for both points p € Py if and only if the last nine coordinates of v have the same
sign. There are now 2! possible axes left to cover the point set Ps U Pp with an
anchored double cone of the specified angle.

The point set Pk representing the clauses is constructed as follows. We assume
without loss of generality that each clause consists of three distinct variables. For
each clause k € K, include a point u = (vy,...,v,) in Pk:

1/2 1 <l and (; occurs in k
—1/2 i <l and —(; occurs in k
0 1 < [ and neither (; nor —(; occurs in k
1/6  i>1

v; =

Let P = PsUPpU Pg. Any axis direction v now defines an assignment of [ values
+1 to the variables in the 3-SAT formula. Let 7 denote the number of literals
satisfied in clause k& € K under the assignment defined by v, i.e., 7 € {0,1,2,3}
and the clause k is false under this assignment if and only if 7 = 0. We have

1 9
(v,u) = 5(7‘— (3—7‘))+6 =T.
In case 7 = 0, we get
1
(v,u)* =0 < 1=—[ul?[v]*
n
Otherwise, 7 > 1 and we get

1
(v, ) =72 > 1= —lulP"|lv]*.

Therefore, a feasible assignment to the 3-SAT problem exists if and only if the

constructed point set P can be covered by an anchored double cone of angle «.
The problem is in NP since we can verify the containment of a point set in the

cone in polynomial time. O

69



Chapter 5. Rotational Containment

Figure 5.2: Illustration of a circular double cone in 3D, and the caps it covers on
the unit sphere.

All the points in P have norm 1, that is, P C S. Note that covering a point set
on the unit sphere with an anchored double cone (see Figure 5.2) is equivalent to
finding an empty anchored slab. See [45] on computing largest empty slabs in 3D.

Remark 5.3. When a point set P on the unit sphere can be covered with an an-
chored double cone of angle o, we can find an empty anchored slab of width at
least 2 cos v within the point set, too. The axis direction of the cone can be used as
normal vector for the slab.

Cylinders

Let us recall the smallest enclosing Euclidean cylinder of a point set P. The small-
est enclosing cylinder radius is the outer (n — 1)-radius of a point set, compare
Section 2.4.1. Let [ denote a line in R", passing through the origin, e.g., [ = lin(ey).

Definition 5.4. The smallest enclosing cylinder of P is an optimal solution of
the MCPsyy, for P and the container C' = | + B. FEquivalently, we seek for the
smallest cylinder containing P, that is, among all 1-dimensional linear subspaces a
and points c in R"™, we choose a, ¢ such that P C c+a—+ pB and p is minimal. For
any cylinder ¢+ a + pB we call ¢+ a the axis and p the radius.

Definition 5.5. The smallest enclosing anchored cylinder of P is defined alike the
smallest enclosing cylinder, with the additional condition that the axis has to pass

through the origin, i.e., ¢ = 0 € R™. [t is therefore an optimal solution of the
MCPgre for P and the container C' =1+ B.

The decision version of the smallest enclosing anchored cylinder problem is NIP-
hard [110]. Naturally, the smallest enclosing anchored cylinder radius is at least as
large as the smallest enclosing cylinder radius (with equality for O0-symmetric P).
For point sets P with 0 € conv(P), the optimal radius for the anchored problem is
at most twice as large as the smallest enclosing cylinder radius.

70



5.1. Complexity and Basic Properties

We now consider another related problem, the anchored 1-ray problem, where
the point set is to be covered by the union of an anchored semi-infinite cylinder
and a ball centered at the origin. The non-anchored variant of this problem is not
so interesting. As the starting point for the ray can move anywhere, one can as
well consider the smallest enclosing cylinder of the point set. Let r be a fixed ray
in R", e.g., r = pos(ey).

Definition 5.6. The anchored 1-ray problem for P is the MCPgry with C' = r+B.
For any outer parallel body a+ pB of a ray a emanating from the origin, a is called
the axis and p the radius.

Of course, the optimal radius for the anchored 1-ray problem may be arbitrarily
larger than the radius of the smallest enclosing anchored cylinder. An algorithm
for the 3D anchored 1-ray problem can be found in [53].

In contrast to the smallest enclosing (anchored) cylinder problem, the 1-ray prob-
lem is a convex problem in the following sense: The decision problem where p is
fixed can be formulated as a convex quadratically constrained feasibility problem
(see also [19], [68], and Figure 5.3). Let p be fixed, and v a variable representing
the axis direction. When ||p;|| < p, the point is covered no matter what the axis
direction is. For any p; € P with ||p;|| > p, p; is covered whenever the line spanned
by v passes within distance p of p;, or, equivalently, v is in the conic hull of a ball
with radius p and center p;. Therefore, the following SOCP constraint has to be
satisfied in order to cover p; with pos(v) + pB for ||p;|| > p:

[olVAlpill* = p* < (v, pi) (5.1)

We still have to prevent v = 0 in this formulation, which, for instance, may be done
by adding a linear constraint (v,p;) > v for some v > 0. We then have an SOCP
feasibility problem. SOCP feasibility is a subclass of SDP feasibility problems.
Their complexity is unknown (see [99] for a summary), but polynomial time meth-
ods exist when we settle for approximations of SOCPs or SDPs. See Section 5.2.3
on approximating the anchored 1-ray problem using a modified formulation of (5.1).

We now consider some basic structural properties of the anchored 1-ray problem.
Setting [|v|| = 1 in (5.1), we see that a feasible anchored 1-ray for a given radius p
exists if and only if the spherical caps formed by the intersection of the conic hulls
of the balls and the unit sphere have a common point (compare Figure 5.3).

Remark 5.7. If the spherical diameter® of the caps on the unit sphere is less than
27/3, we have a Helly-type theorem as shown in [118] (for more general sets): If
each n members of the set of caps intersect, they all have a common intersection.
Or, equivalently, if each set of n points in P admits an anchored 1-ray for radius

3the maximum angle between two points in the cap, seen from the origin

71



Chapter 5. Rotational Containment

+
LA 7’7’ \\\
- f x\\ +
// \ | \\ ‘
‘\ | 77777%77\7;‘_: i/ S
N/ —

Figure 5.3: An example of an anchored 1-ray problem in 2D with 4 points. The
balls centered at the points have the optimal cylinder radius. Each
ball spans a cone, and the intersection of these cones determines the
axis direction indicated by the red arrow. The intersection of the
cones with the surface of the unit ball (in red) results in spherical
caps with radii depending on the distance of the input points to the
origin. On the right, the optimal solution is shown in red.

p, all points do. The same holds if we consider point sets P with (p,v) > 0 for all
p € P and some v # 0, since we may then restrict the problem to a half sphere.

Remark 5.8. The anchored 1-ray problem is an LP-type problem (see also Sec-
tion 2.4.3), that is, it satisfies the properties of monotonicity and locality. Let
P CcP'"CP.

(a) The optimal radius for P" is at least as large as for P’.

(b) In case that the radii for P' and P" are equal, and there is a p € P such that
the radius of P" U{p} is larger than the radius of P", the radius of P'U{p} is
larger than the radius of P’, too.

LP-type problems admit the use of simplex-like algorithms, see [57] for details. Such
a method, however, also requires a routine solving the base case, that is, computing
an optimal 1-ray for sets P' C P.

We can formulate a k-containment version for the cylinder problems considered
here, too. Covering a point set with k cylinders is known as the k-line center
problem, an example of the MCPE. . See [6], [7], [8], and [92] on 2-line center and
k-line center. We may also consider the problem variant where the point set is to
be covered with cylindrical containers spanned by £ rays. The case when k£ = 2
and the rays emit from a common, yet not fixed source is known as the double-ray
center problem [60]. See Section 5.2.2 for some results on the anchored version of

this problem where the center is fixed, an example of the MCP%,, .

72



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

5.2 Approximating Smallest Enclosing Cylinders and
Related Problems

We now consider approximating smallest enclosing cylinders, smallest enclosing
anchored cylinders, anchored 1-rays, and the corresponding k-containment variants.

5.2.1 A-priori Bounds

In many applications, an approximation of the smallest enclosing cylinder is enough
and no exact solution is needed. A typical approach in such approximation algo-
rithms is generating, and then solving or approximating a huge number of sub-
problems, e.g., of type MCPyop,. In order to downsize the number of computations
for subproblems in such an approximation algorithm, even rough estimates for the
radius can provide useful a-priori lower or upper bounds. In the following, we dis-
cuss possibilities to obtain such bounds for cylinders. Even without reducing the
overall worst-case complexity of the algorithm, these methods can be very useful
in practice.

Geometric Inequalities

Geometric inequalities are one possibility to get bounds for the smallest enclosing
cylinder radius. Computing other geometric measures of P can help narrowing the
interval for the radius whenever suitable bounds on the ratio of the two measures
are known. The measure of choice should provide significant information but must
not be too expensive to compute.

The following simple construction yields a 4-approximation of the smallest en-
closing cylinder radius as follows [77]: We choose an arbitrary point p; € P and a
second point py from arg max; ||p; — p1||. Choosing the line defined by p; and p, as
an axis, we get a cylinder with a radius at most twice as large as the best cylinder
through py, since due to ||p; — p1]| < [|p2 — p1l|;

dist(p;, p1 + lin(ps — p1)) < dist(p;, p1 + a) + dist(p2, p1 + a)

holds for any p; € P and any line a through the origin. Another factor of 2 in
the approximation quality originates from fixing p;. In the anchored version of
the problem, simply taking the anchor point for p; yields a factor 2 approximation
overall.

We can still do better for the free cylinder when we choose p; and py as a pair
of points spanning the diameter of P (compare [2]). Now consider a point ¢ € P
maximizing the distance to the axis spanned by p; and ps. The three points form
a triangle with its longest edge between p; and p,. Now consider the projection
of an optimal cylinder axis in aff(py, ps, q). Each of the points has a distance less

73



Chapter 5. Rotational Containment

or equal than the optimal cylinder radius from the projected axis. Therefore, the
smallest height of the triangle can be at most twice the optimal radius and we have
found a factor 2-approximation. In case we consider computing the exact diameter
as too expensive in terms of running time, we may replace it by an approximation,
resulting in a slightly worse factor than 2.

A good choice to get bounds for the cylinder is the minimum volume enclosing
ellipsoid of the point set P. The radius of the smallest enclosing cylinder of P is
bounded from above by the value of the second largest semi-axis of the smallest
enclosing ellipsoid of P [35]. Moreover, it is shown in [35], that a lower bound
is available by means of a scaled volume of the (d — 1)-dimensional ellipsoid ob-
tained from projecting the smallest enclosing ellipsoid along its largest semi-axis.
There are fast methods to approximate the smallest enclosing ellipsoid in practice,
and in addition to the bounds described above, its axes also can provide valuable
information about the cylinder axis. See also [100] for more on this topic.

Semidefinite Programming

The following SDP [133] in the variables X and p? yields a lower bound for the
smallest enclosing anchored cylinder radius. Adding a (nonconvex) rank constraint
rank(X) = n — 1 would yield the exact solution.

min p?
s.t. trace(p;p! X) < p? 1<i<m
trace(X) =n—1 (5.2)
X =0
I-X>=0

Any matrix X satisfying the constraints from Program (5.2) and the rank constraint
can be decomposed as X = YY7 with an n x (n — 1) matrix Y whose columns
form an orthonormal basis of an (n — 1)-dimensional linear subspace. The value of
trace(p;p! X) is just the squared length of the projection of p; into this subspace.
Therefore, an enclosing cylinder with an axis perpendicular to this subspace needs
at least this radius.

In [133], the SDP-solution for the Euclidean outer j-radius is rounded by a ran-
domized routine resulting in a /12 log(m)-approximation with probability at least
1 — 2/m. This is not very useful for the smallest enclosing anchored cylinder
as a 2-approximation is easily obtained. Yet, it is straightforward to show that
for the special case j = n — 1, the same rounding routine actually computes a
V/2-approximation of the optimal radius with probability 1. More precisely, the
rounded upper bound for the squared radius is within 2 times the optimal value of
the SDP. See Figure 5.4 for a geometric interpretation of the SDP bound in 2D.

74



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

1™

Figure 5.4: Example for SDP (5.2) in 2D. The set P consists of the black points.
Minimizing yields max; trace(p;p! X) = 3 and an optimal matrix X
with full rank. The matrix X indicated on the upper right is optimal.
Geometrically, the condition {z € R™ : trace(zz? X) = 3} defines
the red ellipsoid containing the point set. A matrix X corresponding
to an optimal cylinder has rank 1 and gives max; trace(p;p! X) = 4
here. Such a matrix X is indicated on the lower right hand side. The
corresponding cylinder (or ellipsoid with one infinite axis) is indicated
in blue.

Note that the ellipsoid defined by an optimal matrix from Program (5.2) is gen-
erally not the minimum volume enclosing ellipsoid of P. Obviously, the objective
functions are different.

By a similar approach, we get a convex relaxation for the free cylinder problem:

min p
IXpi—cl<p  1<i<m
trace(X) =n—1 (5.3)
X =0
I-X>0

Again, adding a rank constraint rank(X) = n — 1 would yield the exact solution.
Comparing this relaxation to the relaxation in (5.2) when both are used for the
anchored cylinder problem, we see that Program (5.3) results in weaker bounds.
This is because, assuming that ¢ = 0, we minimize max; trace(p;p! X) in (5.2) and
max; trace(p;p! X?) in (5.3), under the same constraints. Since 0 < X =< I, we have
trace(p;pl X?) < trace(p;p! X) for any p; € P.

Remark 5.9. One may also try to fix the projection direction and rotate the point

75



Chapter 5. Rotational Containment

set, yielding a formulation of the following type:

min p
| projes (Xpi + o)l < p 1<i<m

X a rotation matrix

However, it is difficult to find a suitable convex relaxation for this kind of formu-
lation. When we simply relaz the nonconvex condition, we get at least the convex
hull of the feasible set. Since the matrix with all entries 0 is in the convex hull
of the set of rotation matrices [130], this yields nothing but trivial bounds. This
observation may also be a reason why so far, there is no simple, suggestive SDP
relazation known for general rotational containment.

5.2.2 Core-Sets for Cylinders

As for the containment problems in Sections 3 and 4, the concept of core-sets can
also be applied to cylinders.

Previous Work

An easy method to compute a-priori core-sets is to put a grid on the input set P
and round the points to grid points. A more elaborate variant is the computation
of an e-kernel as described in [3], [4], and [141]. An e-kernel is a subset S of the
points in P such that any slab containing the set .S, when expanded by a factor of
(1 + ¢) also contains the set P. Such kernels help approximating a wide range of
extent measures of point sets, including the smallest enclosing cylinder, the smallest
bounding box, the width, and the diameter. Alternatively, one can try to apply the
incremental approach as described for the smallest enclosing ball in Section 3.1.2
to construct a core-set. The analysis of the grid technique, the e-kernels, and the
incremental algorithm yields bounds on the core-set size depending on the accuracy
e and the dimension n [4], [141] for smallest enclosing cylinders. The question is
still open whether dimension-independent core-sets for this problem exist.

It is known that all the points in P may be necessary to compute the exact
cylinder radius. One can find a set of m points such that each subset of m — 1
points can be covered by a cylinder of given radius p, yet not the whole set. So
point sets P exist where choosing less than m points can never provide an optimal
cylinder. This observation is originally formulated for line transversals of sets of
balls of equal radius ([44], see also [84]), as the existence of a line transversal for a
set of balls with radius p situated at the points in P is equivalent to the existence
of an enclosing cylinder with radius p for P.*

4Another way to phrase this statement is therefore that there is no Helly-type theorem for line

76



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

An even stronger negative result is stated for the 2-line center problem, i.e., the
MCP%,,, where the containers are cylinders [74].

The smallest enclosing cylinder algorithms in [19], [76], and [77] do not compute
core-sets but use similar ideas to generate an approximate cylinder axis. In the
following, we show that core-sets whose size is independent of the dimension and
the number of points in P exist for the anchored 1-ray and cylinder problems. Our
method does not extend to “free” cylinders. Nevertheless, it can be used to simplify

the approach presented in [19]. See Section 5.2.4 for more on this topic.

Core-Sets for the Anchored 1-Ray Problem

For shortness, let p(P) := Rgot(P, pos(e;) + B) denote the optimal radius for the
anchored 1-ray problem for P and let a(P) denote a corresponding axis. First, let
us formally define core-sets for the anchored 1-ray problem.

Definition 5.10. Let P C R". We call S C P an e-core-set for the anchored 1-ray
problem if P C a(S) + (1 +¢)p(P)B.

Even when p(P) is unknown, one can still check the following condition:

Remark 5.11. A sufficient, but not necessary condition for S C P to be an e-core-
set is that P C a(S) + (1 +¢)p(S)B, since p(S) < p(P).

The points close enough to the origin do not contribute to the axis direction and
are not needed in the core-set. More precisely, it suffices to consider P’, where P’
is the set P without the points that are within distance (1 + ¢)p(P) of the origin.

Lemma 5.12. For any ¢ > 0, when S is an e-core-set for P, it is also an e-core-
set for P. Moreover, for any point p from such a point set P', (p,v) > 0 where v
denotes the unit direction vector of a(P’).

Proof. The first assertion follows directly from the core-set definition. Note that,
in case P’ = (), we get an empty core-set S, and a(S) may be an arbitrary axis.
This happens when P is within a ball of radius (1 + ¢)p(P).

For the second assertion, verify that any optimal axis is in the intersection of the
cones spanned by the balls p + p(P")B, p € P’ and none of those balls contains the
origin. Therefore, an optimal axis encloses an angle of at most arctan(1/(14¢)) <
7/2 with any of the points in P’ O

transversals of balls. Consequently, modifications of the problem where stronger conclusions
are possible are subject to research. One option are generalizations of Helly’s theorem which
are of the same type as Hadwiger’s transversal theorem (see [71]) for this problem with addi-
tional information. In case the balls centered at the points in P are all disjoint (that is, the
points in P are far enough apart), the existence of an order-respecting line transversal for each
subset of 2n balls implies the existence of a line transversal for the whole set [32].

77



Chapter 5. Rotational Containment

\J

Figure 5.5: Illustration of the construction in the proof of the conic half-space
lemma. The axis and cylinder spanned by v are indicated in black,
and so is the half-space perpendicular to w. The new axis spanned
by v 4+ Aw is indicated in red. For any point p € P, we calculate the
distance to the new axis.

Before proceeding with the existence of core-sets, we observe that the following
half-space lemma holds. It is strongly related to a similar property for smallest
enclosing balls used in core-set proofs for the Euclidean 1-center problem [31], [19,
Lemma 2.2], see also Section 3.1.2. However, here, we formulate a “conic” version.

Lemma 5.13. Let P C R"™ with min; ||p;|| > p(P). For each direction vector w in
a(P)*, there is at least one point ¢ € P in the closed half-space containing a(P)
and perpendicular to w satisfying dist(a(P),q) = p(P).

Proof. From the assumption, we know that an optimal axis encloses an angle of
at most m/2 with any of the points in P. Let therefore v € R™, ||v|| = 1 be the
direction of an arbitrary axis a with (v,p) > 0 for all points p. Furthermore, let
w € R, |Jw|| = 1 be another direction vector with (w,v) = 0. For a scalar A > 0,
we now compute the distance of a point p to the axis spanned by v + Aw (see
Figure 5.5):

2

(v + Aw, p)(v + \w)

. 2 .
”pro.](iH*)\w)L(p)” - Hp H'U+ )\U}HQ

(v,p) 42X (v, p)(w, p) + N*(w, p)*
14+ )2

= |lpllI* -

o (.5l + (1 -

) (0, p)? - 2M(v, p) (w, p) + X*(w, p)*

14 )2 14 )2

T (022 = (w0, p)*A = 2(v, p) (w, b))

We now assume that all points in P with maximal distance to the axis a satisfy
(w,p) > 0, i.e. they are not in the closed half-space {z : (w, z) < 0}.

Of course, \/(\?+1) is always positive. The remaining term ((v, p)? — (w, p)?)\—
2(v,p){w, p) is a linear function in A. Consider the case when (w,p) > 0. When

= llp = (v.p)vll* +

78



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

(v, p) = 0, this is negative for all A > 0. Otherwise, the expression is surely negative
for X = (w,p)/(v,p), and therefore for all A € ]0, (w,p)/(v,p)]. Any such A\ will
decrease the distance to the axis for such a point p.

Now consider a point with (w,p) < 0. From the assumption, we know that
lp — (v,p)v|| is strictly smaller than max; dist(p;,a). We can now choose A > 0
small enough such that the distance to the new axis gets larger, but is still smaller
than max; dist(p;, a). This completes the proof of the lemma, as it implies that a
is not an optimal axis. ]

Now we are ready to prove the main theorem of the core-set section. The good
news is that we can find core-sets whose size is independent of both the number
of points in P and the dimension of the space R". The drawback of the following
statement, however, is that the core-set size depends on the shape of the point set.
Intuitively, one might expect that the computation of anchored 1-rays for “long
and skinny” point sets is easier, since the axis direction seems to be almost settled.
However, we get larger core-sets when the ratio between the optimal radius and
the maximal distance of a point in P to the origin is small. It is obvious that when
p is far from the origin, a slight change of the axis may have a huge impact on
the distance between the axis and p. This issue is also discussed in Remark 5.1
concerning discretizations. We do not know whether smaller core-sets exist for
such point sets in general. However, when the radius is 0 and all points are on a
line, any point from P is a 0-core-set. So, of course, it is possible that our way of
constructing core-sets or the analysis here can still be improved for such point sets.

Theorem 5.14. For any 0 < € < 1, there exists an e-core-set for the anchored
1-ray problem for P whose size depends only on € and the ratio max; ||p;||/p(P).

Proof. We may assume p(P) > 0 and min; ||p;|| > (1 +¢)p(P) in the following. We
show that Algorithm 5.1 computes the desired core-set under the assumption that
p(S) and a(S) can be computed exactly for S C P.

Before entering the loop in Algorithm 5.1, we choose two points p,p’ as initial
set S. We know that dist(pos(p),p’) > p(P), and therefore

/

p({p.p'}) = dist (pos (p r ) ,p’> > dist(pos(p), p')/2 > p(P)/2.

Since p(S) is non-decreasing during the course of the algorithm, we have that
p(S) < p(P) < 2p(S) (compare Section 5.2.1). Set

7 = (log p(P) — log max |[pi| —log2)/loge.

5We are mainly interested in the structural result here, i.e., the existence of core-sets. In order
to improve readability, we discuss the computational details of an approximation algorithm in
Section 5.2.4.

79



Chapter 5. Rotational Containment

Algorithm 5.1 Core-set algorithm for anchored 1-ray

Input: P a point set, € > 0
Output: S C P a core-set, e-approximation of optimal anchored 1-ray p(S) radius,
a(S) axis

let p be a point in P maximizing ||p||
let p’ be a point in P maximizing the distance to pos(p)
set S = {p,p'}, compute a(S), p(S)
while P ¢ a(S) + (1 +¢)p(S)B do
let pe Pandp ¢ a(S)+ (1+¢)p(S)
set S to SU{p}
recompute a(S), p(S)
end while
return S, a(9), p(9)

Therefore, v > 0 and for any p; € P, it holds that 2||p;||/p(P) < 1/¢7. We now
claim that in every following step of Algorithm 5.1, the radius increases by at least
p(P)et™3/20.

Let p € P be the new core-set point. Let v denote the unit length direction of the
axis a(S) for the previous set S, and v’ the unit direction of the new axis a(SU{p}).
Note that (v,v") > 0 always holds (see Lemma 5.12). We distinguish two cases,
namely whether the “old” and the “new” axis are far or close, respectively. For
this purpose, we choose a threshold § = £%%2/16. This choice is justified in the
calculation.

After computing the new axis, one of the following two cases occurs:

Case 1: (v,v') > 1—45. When v and v’ are close, the distance of p to the new axis
is almost as large as its distance to the old axis. We first estimate the new squared
radius which is bounded from below by the distance of p to the new axis:

p(SU{p})* = lIp — (p,v")0'|?

= [lp = (p, v)v + (p, v)v — (p, v")V'|]?

= |lp = (o, v)ol* + [{p,v)* = (p,v")?|
(1+2)p(S)* + (p,v + V') (p,v — ')
(1+2)p(8)? = [IplPllv + v'[[lv = o]
> (1+2)p(5) = P>V (2 + 2(v,v)) (2 — 2(v, "))
72\/255275> p(S)?

Y

>
>

> <1+5—

We use the inequality ||p||/p(S) < 1/e” which holds for all p € P since v is chosen
to meet 2||p||/p(P) < 1/7 here. We now get the following bound for the increase

80



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

in the radius:

p(SU{p}) — p(5) = \/1 +e————n(S) = p(5)
2 (5— 2\/25—52) A(S)

=5 2
> % (8 - %) p(S)
> 150/)(5)

We see that when ||p|| is large compared to p(P), a slight move of the axis may
change the distance of p considerably. In order to ensure that the radius increases
in such a step, we have to make the threshold very small.

Case 2: (v,v') <1—0. When v and v’ are far, clearly, the new axis is closer to p.
Different from the first case, it is no use considering the distance from p to the new
axis in order to bound the increase in the radius. We need to find another point ¢
from the set S with sufficient distance from the new axis. For this purpose, we use
Lemma 5.13, the conic half-space lemma. It implies that a point ¢ € S exists, such
that || proj,.(q)|| = p(S) and ¢ is in the half-space perpendicular to proj,.(v').
Since 0 > (q,proj,.(v')) = {(q,v" — (v, v)v), it holds that (g,v") < (v,v"){(q,v).
Therefore, we get the following bound for the squared radius of the new set S.

p(SU{p})?* > llg— (g, v")'|?

= llgll* = (g,v")*

> [lglI> = (v,v")*(g, v)?

> |lgl]> = (1 = 6)*(g, v)?

— lall? = (1 = (I’ — lla — {g, v}ol) (54)

= (20 — 52)H(JH2 +(1-6)%p(5)?

> (1+ J(1+¢)? =25+ 6%)p(9)>

=(1+ )(2e + %)) p(S)>.

Note that we are using ||¢q|| > (1 4+¢)p(P) > (1+¢)p(S) here. Altogether, we have
p(SU{p}) — p(S) > \/p + (20 — 62)(2e + £2)p(5)? — p(S)

> 5(25 —6%)(2¢ +£%)p(S) (5.5)
> 5;0 p(S).

81



Chapter 5. Rotational Containment

Taking the two cases together proves an increase in the radius in each iteration.
Since we have to choose the threshold very small for “long and skinny” point sets
in order to deal with the first case, the bound for the increase of the radius gets
small for such point sets in the second case.

As we start from a 2-approximation of p(P), and each step increases the radius

p(S) by at least
547+3 g 547+3
>
0 ") = 5

we are done after incrementing the set S at most [20/e¥73] times. As only one
point is added in each step, we have found a core-set of size O(1/e73). With

p(P),

4
84fy+3 _ 84(log p(P)—log max; ||p;||—log2+loge)/loge+3 __ < p(P) ) 57
= = | )
2 max; ||pi|

we can conclude for the final core-set S, that

si-o () <)

Of course, this is a bound on the number of steps taken by Algorithm 5.1, too. O

Though we introduce an incremental algorithm constructing a core-set in the
proof of Theorem 5.14, there are still some questions remaining open in order to
obtain a practicable method. So far, we do not know how to actually compute an
optimal axis and radius for the set S. We also assume that P does not contain
any points with norm smaller than (1 4 €)p(P), but do not know the optimal
radius either. In Section 5.2.4, we address how to deal with these issues in an
approximation algorithm. But before, we generalize our core-set results to cylinders.

Core-Sets for Anchored Cylinders

The following observation shows how to relate smallest enclosing anchored cylinders
and anchored 1l-rays of point sets. Let now a(P) denote the axis of a smallest
enclosing anchored cylinder for the point set P with optimal radius Rge (P, + B).
The point set P is separated by the hyperplane perpendicular to an optimal axis.
Reflect the points on the negative side of this hyperplane at the origin. Let v
denote a direction vector spanning the axis and P™ = {p : p € P, (v,p) > 0} and
P~ ={-p:pe€ P, {(v,p) <0} (see also Figure 5.6).

Lemma 5.15. The smallest enclosing anchored cylinder problem can be reduced to
an anchored 1-ray problem where the point set PT U P~ is to be covered.

82



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

Proof. On the one hand, for each p € P, any cylinder containing p also contains
—p. Therefore, the radius does not get any larger when we swap points to the other
side of the origin. On the other hand, (P™ U P7)U —(P* U P7) is a symmetric
point set whose smallest enclosing cylinder is just the symmetric extension of an
optimal 1-ray for (PT U P~). Since P C (PTUP~)U—(PT U P™) the radius does
not get any smaller either. O

Figure 5.6: Example of an anchored cylinder problem in 2D, where the optimal
cylinder is indicated in red. On the right, the point set P U P~ for
the corresponding anchored 1-ray problem is shown. The black points
form the set P™ and the blue points the set P~.

Consequently, the anchored cylinder problem can be reduced to an anchored 1-
ray problem assuming the existence of an oracle: For any point p € P, the oracle
reports whether p is in P™ or in P~. We call such an assignment a labeling® of
the points in P. By enumerating all possible core-set labelings, the oracle can be
removed. Therefore, we immediately get the following corollary:

Corollary 5.16. For any 0 < e < 1, a labeled e-core-set S of size

4
max; ||pi|| ) 7
SISO | =——F—=| ¢
151= ((RRot(P,l+]B)
for the anchored cylinder problem exists. It can be found by checking at most
O(2maxi [pill/ Brou(PIB)*e™T) possible labeled core-sets.

The labeling strategy is similar to the approach for Euclidean k-center core-sets
in [19], [101]. We also observe that the same approach works for the corresponding
k-containment problems.

Scompare the labeled core-sets for the k-containment problem in Section 4.3

83



Chapter 5. Rotational Containment

Corollary 5.17. (a) For any 0 < e < 1, a labeled e-core-set S of size

max; [l '
SISOk —F"—=
151 < ( (RMARZ+E) :
for the anchored k-ray center problem exists. It can be found by checking
O (kFmass pill/ Brou(PIHB) T yy056ible labeled core-sets.

(b) For any 0 < e <1, a labeled e-core-set S of size

max; [l '
SISOk —"—=
151 < ( (RMARZ+E) )
for the anchored k-line center problem exists. It can be found by checking
O((2k)*maxi lpill/Broc (PIAB) ™" 055ible labeled core-sets.

These results rely essentially on the fact that we consider the MCPgry here and
not the MCPg;,,. They do not generalize to non-anchored objects. As already
mentioned in Section 5.2.2, it is known that core-sets for the general 2-line center
problem do not exist. In practice, we recommend a B&B scheme to approximate the
smallest enclosing anchored cylinder as described in Section 5.2.4. In the following,
we address how to obtain core-set based approximation algorithms for the problems
considered here.

5.2.3 Approximating Anchored 1-Rays by Convex Programming

With Algorithm 5.1, we already have a framework for an approximation algorithm
for the anchored 1-ray problem. Firstly, we address how to approximate the an-
chored 1-ray using convex quadratic programming. This is then used for the sets
S C P within Algorithm 5.1 and a core-set based B&B method for the smallest
enclosing anchored cylinder (see Section 5.2.4).

Convex Programming Formulation

As stated in Section 5.1, finding an anchored 1-ray is a convex problem for a fixed
radius p. We now modify the constraints in the formulation in (5.1) to obtain the
following optimization problem:

min [|v||
(,pi) >V pill? = p*  1<i<m, |lpi|| >p

Recall that a given radius p is feasible if and only if the intersection of the cones
spanned by balls of radius p centered at the points from P contains a line. Equiv-
alently, the spherical caps formed by the intersection of the cones with the unit

(5.6)

84



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

sphere intersect in at least one point. The linear constraints in Program (5.6) now
define hyperplanes perpendicular to the p; with ||p;|| > p. The right hand sides are
chosen such that each hyperplane exactly separates the corresponding spherical cap
from the rest of the unit sphere. See Figure 5.7 for an example. The optimal value
of Program (5.6) is 1 if and only if those spherical caps intersect in one point.

Remark 5.18. Let us resume some important properties of Program (5.6):

(a) In case that p is larger than the optimal radius, we can find v with norm ||v|| <
1, and in case p is too small to admit an enclosing cylinder, the optimal value
of Program (5.6) is larger than 1 or the program is even infeasible.

(b) When the points in P with ||p;|| > p are strongly separable from the origin
by a hyperplane, or, equivalently, 0 ¢ conv(P), the ray defined by the normal
vector of the separating hyperplane (pointing away from 0) intersects each of
the hyperplanes for the linear inequalities in Program (5.6) and therefore, a
feasible point exists on this ray.

c) If it exists, the optimal solution v is unique since the squared objective || - ||? is
(c) If : 14 q q ]

strictly convex.

Comparing (5.1) to (5.6), the second version has the advantage that we do not
need to deal with the scaling of v by adding additional constraints. Moreover, we
only have linear constraints here which are generally easier to handle.

Program (5.6) is a linearly constrained convex optimization problem. Note that
the square roots on the left hand side of the linear constraints and in the objective
function cannot be represented exactly in the bit model of computation but have to
be approximated. Strictly speaking, the program is not a QP as we do not use the
squared norm in the objective (since this simplifies some of the calculations later).
Anyhow, we can use any QP solver to compute an approximate solution for this
program, too.

Binary Search Algorithm

We now approximate the anchored 1-ray problem by using the bisection method
(see, e.g., [34]), that is, performing binary search to determine the radius. We
approximate the optimal solution of Program (5.6) and get a solution ¢ which is
feasible and has ||0|| within a given (additive) error of the optimum. Moreover,
we do not consider the exact constraints involving square roots but approximate
values instead, adding to the overall error. In order to find an approximation of
the optimal radius p(P), we only need to know whether a given value p is feasible.
Without the exact solution of Program (5.6) it may occur that our decision on the
feasibility of p is incorrect. Nevertheless, the goal is to show that an approximation
of the optimal solution of Program (5.6) is sufficient for our purpose.

85



Chapter 5. Rotational Containment

Figure 5.7: Program (5.6) in a 2D example with three points. The unit sphere

86

is drawn in red. On the upper left, the cones spanned by the balls
centered at the input points for a given radius p are shown. Clearly,
p is larger than the optimal radius here. Each point in P adds one
linear constraint to the program. Geometrically, these are hyperplanes
which separate the intersection of the corresponding cone and the
sphere from the rest of the sphere. These linear constraints are shown
again on the upper right. Since p is too large, the optimal solution v
has [|v|| < 1 (indicated by the red dotted circle). The axis spanned
by v is shown, too. Below, the same example, but this time for the
optimal radius p. The optimal cylinder is shown on the lower right.



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

Parameterized, linearly constrained programs with convex quadratic objective
function are studied for instance in [27], [28], and [70], and in particular, the stability
of the solution under small perturbations of the parameters is analyzed. By all
means, in our case, the parameter p is only affecting the right hand side of the
linear constraints, and the overall problem structure is simple. Though technical,
the following analysis is straightforward and directly shows that an optimal value
close enough to 1 implies that the radius is close to optimal.

Lemma 5.19. Let P C R" and 0 & conv(P). Let 0 < p; < ps < max; ||p;||, and
let vy, vy be optimal solutions of Program (5.6) for p1, ps respectively. It holds that

2 max; ||p;||*

_ < v — ||v
pr= o < (ol = eal) == -

Proof. We know that neither v; nor v, = 0 € R™ as both radii are strictly smaller
than max; ||p;||. Since p; < p2, vy is feasible for po:

(wrp) 2\ Ipil2 = o2 > JIpl2 =8 pe <Ilpi

When we scale v; by a factor of maxi(l — (Vpill2 = o3 = VIpill2 - p%)/(vl,p,)),
all these constraints stay feasible. We can bound this factor by

2 — 2 2 — 2
nax (1_ VInlP =7 = Vi p2>

2

<U17pi>
1- s — Pt
maxi{or,po) (VI = o+ VIl = 73)
Y
2[|v1 || max; ||pi|>

<1

Since vy is optimal for py, we have that

2 9
leall < fou] (1 P2 = ) )

-+ 2lfon| max; |pi]|?

proving the claimed statement. O

Remark 5.20. Note that an inverse statement of Lemma 5.19 does not hold without
further assumptions. For instance, we can choose P such that ||p;|| = 1 for all p; and
p(P) is strictly smaller, but arbitrarily close to 1. When p = p(P), we get a solution
v with ||v]] = 1. When p = 1, however, the optimal solution of Program (5.6) is
v = 0 with optimal value 0.

87



Chapter 5. Rotational Containment

In the following, we address the required approximation quality. Let p > 0 be
a fixed radius, and for all ||p;|| > p let m; = /||p:i]|> — p?, and let 7; denote an
approximation of m;. We require that

7 —ml <
Up;

and 7; > 0 for all ¢ with ||p;|| > p. Let v denote the optimal solution of the convex
program with right hand sides 7;, and let © denote an approximation of the optimal
solution of the program with right hand sides 7;. We may assume that ¢ is feasible
for this program and that the value of the objective function is within an additive
error 0o of the optimum. Such a ¥ can be found in polynomial time e.g. by an
interior-point method. Since we know that m; < (v, p;) for all p;, we also have that

~ T — T ‘7Tz'—7f'z‘|
Uv S 1 + ) U, Pi S <1 + 7) v, Pi),
( <U7pi> < > Uy < >

implying )
T, — T
o - 8o < o (14 22, (5.7

i
Of course, we can use the same argument again with the roles of v and © exchanged,
yielding

- |7Ti - 7ﬂ|
ol < ol (1 251 (53)

Putting (5.7) and (5.8) together, we get

A~

N ‘7%'—7&\ N
[[lvll = ll9]| < max  — (ol + ol = lall]) + b,
and with
|7Tz‘ —ﬁi| 01
max
{ 7Tz_|7rz_7%z‘_1_51
this implies
. 4} + (1 —1061)0

1—25

Now assume that the approximate solution of Program (5.6) has a value larger
than 1 for the radius p, but p is feasible, or vice versa. This implies that 1 is in
the interval between the exact optimal value ||v|| and our approximation |||, and
we can ensure that this interval is sufficiently small by our choice of d; and d,. In
particular, in case of such a wrong decision, it holds that

o+ (1—61)d
1— 36,

ol — 1] < (5.10)

88



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

With the statement from Lemma 5.19, we can use this bound to make sure that
a wrong decision can only happen when p is already very close to p(P). We are
now ready to consider the binary search algorithm for the anchored 1-ray problem,
Algorithm 5.2.

Algorithm 5.2 Binary search for anchored 1-ray radius

Input: P = conv{pi,...,pm}, € > 0, p; a lower and p, an upper bound for the
optimal radius
Output: p radius within (1 + &€’) times the optimum

set dg = p1€’/2
set 01 = (p1/ max; |[py[|)*’ /16
set 0y = (p1/ max; [[pi[[)%’ /8
while p; — p; > dp do
set p = (p1 + p2)/2
fori=1,...,mdo
let 7r; be an approximation of 7; up to a relative accuracy of d;
end for
solve Program (5.6) with 7; up to an accuracy of ds
if program feasible and approximated optimal value ||0|| < 1 then

set py = p
else
set p1 = p
end if
end while

Lemma 5.21. For any given accuracy €', Algorithm 5.2 finds an &' -approzimation
for the optimal radius of the anchored 1-ray problem taking at most O(log(1/e"))
iterations.

Proof. We use Lemma 5.19 and the bound from the inequality in (5.10). By a
simple calculation, setting the values of §; and 5 as in Algorithm 5.2, we see that
|p(P)—p| < €'/2p(P) in case of a wrong decision. By the value of dy, we assure that
this does no harm to the overall approximation quality. The number of iterations
depends only on ¢’ and the quality of the initial bounds p; and p,. We know
that we can easily find such bounds that are at most by a factor of 2 apart (see
Section 5.2.1). O

5.2.4 Core-Set Based Approximation Algorithms for Cylinders

We now show that we can use Algorithm 5.2 within Algorithm 5.1 in order to
approximate the anchored 1-rays, that is, we can rely on an approximation of p(.5)

89



Chapter 5. Rotational Containment

and a(S) instead of the exact values. The analysis of the core-set size still holds up
to a constant factor.

Details for the Anchored 1-Ray Core-Set Algorithm

In order to obtain the desired approximation quality overall, we need to set the
accuracy both in Algorithm 5.1 and in Algorithm 5.2 appropriately. Note that we
use ¢ for Algorithm 5.1 and &’ for Algorithm 5.2.

Within Algorithm 5.1, we do not only need the radius for the set .S, but also an
axis in order to check whether the current cylinder already approximately covers
the point set P. We consider the axis © computed within Algorithm 5.2 for the
return value p. In particular, we show that this axis satisfies an approximate version
of the half-space lemma which we need to adapt the proof of Theorem 5.14. We
derive some properties of the output of Algorithm 5.2 for a given point set P.” We
again assume p(P) > 0 in the following.

The first lemma considers the optimal solution of Program (5.6) which satisfies
a kind of half-space property, too.

Lemma 5.22. Let P be a point set, p > 0 a given radius such that 0 & conv(P\pB),
and let v be the exact optimal solution of Program (5.6) for p. For any vector w L v,
there is a point p; in P such that (w,p;) <0 and (v, p;) = 7;.

Proof. 1t follows from the premises that (v, p;) > 0 for all p; and that ||v|| > 0, too.
Consider the dual® of Program (5.6), that is,

w; >0 1<:<m

where w; denote the dual variables. Both the primal and the dual problem are
strictly feasible due to our assumptions. Using the strong duality theorem, we get
that

w; >0 (v,p;) =m and v= v Zwipi
i=1
hold for primal and dual optimal solutions (see, e.g., [106]). This means that v is
in the positive hull of the points p; whose constraints are satisfied with equality.

"We later apply these results to the point sets S within Algorithm 5.1.

80ne can also prove Lemma 5.22 without using duality theory, but by explicitly constructing
a better axis in case the claim is not satisfied. The elementary proof is, however, longer and
more technical.

90



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

When we project these points p; onto v, we get that
0 € conv(proj,. (pi))-
Therefore, the claim is satisfied for any w € v+. O

The aim is now to derive an approximate version of the half-space lemma,
which can be achieved by Lemma 5.22 and some technical calculations, resulting in
Lemma 5.26. In order to get a half-space property of the type we need, we consider
the distance of the points in P to the axis spanned by 9, that is, ||p— (p, 0)0/||0]]?||-
We therefore need to bound ||0||. As a first step, we consider ||v||.

Lemma 5.23. Let P such that min, ||p;|| > (14-¢)p(P), let p be the radius computed
by Algorithm 5.2 for accuracy &' < i52, and let v be the exact optimal solution of
Program (5.6) for p. It holds that

&J

1-— < —.
1ol < £
Proof. In order to bound |||v|| —1|, we again apply the method used for Lemma 5.19
as well as (5.7) and (5.8). Here, we get

[VIpill* = p(P)? = /llpill> = 7]

VIpill? = p(P)? = [V/llpill? = p(P)? = /[Ipil1? — 7|
< max p(P)* — 7|
i lpllP = p(P)? = [p(P)? — p?

28/—1-8/2
T 2e+e2— (26 +€?)

/ 2 /
<€ 24¢%/4 <€

1= [lvl| < max
(2

T e 24¢/4 ~ ¢’
since ¢’ < g%/4. O

The assertion here is inverse to the statement in Lemma 5.19. However, compared
to the proof there, we need the additional assumption min; ||p;|| > (1 + €)p(P),
compare Remark 5.20. We can now easily bound |[|9]|.

Corollary 5.24. Let P such that min; ||p;|| > (1+¢)p(P), let p and 0 be the radius
and azis direction computed by Algorithm 5.2 for accuracy €' < £2/4, and let v be
the exact optimal solution of Program (5.6) for p. It holds that

6I

I1T—lof]] < (1 +51)g + 495.

91



Chapter 5. Rotational Containment

Proof. With Lemma 5.23, the inequality in (5.9), and the values for §; and d from
Algorithm 5.2, we get

11— ol < |1 = lloll| + [lvll = (2]
P ] R CRE AL
T ¢ 1 — 20

1—6, ¢ 30, — 262

1-25,¢  1-26

&J

IA

as claimed. O

In order to simplify the final calculation, we also show that v and © are close.

Lemma 5.25. Let P such that min, ||p;|| > (1 +¢)p(P), let p and © be computed
by Algorithm 5.2 for accuracy €' < €%/4, and let v be the exact optimal solution of
Program (5.6) for p. It holds that

- < (32 +5) Vo,

Proof. Adding up the inequalities in Program (5.6) for the exact solution and the
approximation, we get

(pi,v +0) > m + 7,
and with the same argument as before,

Uy

[0l < l[v+ 0]l max < [lv+2f

T+ T 2—0;
Consequently,
(3 =401 +)v]* = [|o]* < 2(v, )
and therefore we get for the distance of v and v
lo = ol = [[loll* + 10]1* = 2(v, 8) < 2/]8]]* — (2 — 46, + 67)[Jv]|*.
In particular, using (5.7), the values for J; and d,, and Lemma 5.23, it holds that

o — ol < /20011 +01) + 02)* = (2 — 46y + 62) o]
= /(861 + 82)Jol|? + 462(1 + 61) ]| + 263

2

< \/(8(51 + 5%)‘2—2 4 (240, + 105%)’5g + 160, + 1752
< (3% + 5) Vo

finishing the proof. O

92



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

We are now ready to proof the approximation version of the conic half-space
lemma, Lemma 5.13.

Lemma 5.26. Let P such that min, ||p;|| > (14¢)p(P), and let © be an approximate
azis computed by Algorithm 5.2 for accuracy € < &2/4. For anyw L o, |lw|| =1,
there is a point p; in P close to the half-space opposed to w

582 ) ()

and close to the boundary of the enclosing cylinder

o [[2 /
| dist(pi, pos(8))? — p(P)?| < (% (5% + 3\/9) +2¢ + 5'2) p(P)2.

Proof. Let w be a direction vector with ||w|| =1 and 0 L w.

Consider the projection of w onto v+, the hyperplane perpendicular to the op-
timal solution of Program (5.6) for the computed radius p, that is, w — (v, w)v.
From Lemma 5.22, we know that a point p; exists with p; € P, (w — (v, w)v, p;) <0
and (v,p;) = m;. This implies that (w,p;) < (v,w){v,p;). It holds that (v, w) =
(v —0,w) since w L v, so

ﬁi ~ <®7pl>
< |lv— 9
1—0; 1—0

(w,pi) < (v =0, w)(v,pi) = (v =V, w)m < [lv -0

With Corollary 5.24 and Lemma 5.25, we have

(w,pi) < (35 +9) \/5_15, < v ,pz~>
(1—=61) (1= (14 0)Z —46,) \ 9]
(@)%
TR

/ A
<ova (S (L),
€ [t

and the first statement holds. Now consider the distance of p; to the axis spanned
by o:

N 2
dist(pi, pos(®))? = [lpil” — <Wp>
’IAJ 2
— pal? = {0, + (v,p1)? <Wp>
QA} 2
=p* + <v7pi>2 - <W7Pi>

93



Chapter 5. Rotational Containment

Consequently, we look for an upper bound for

o] ‘
e’ 9 R .
< (24— ) el (o = 2l + [l|o]l = 1)
e e’ g 9
<(2+-)((32+0 \/5’1+<1+51)g+451 il
6./
< (5 +3v7) I
which holds with Corollary 5.24, Lemma 5.25, and since ¢; < &'/16. Altogether,
| dist(ps, pos(0))* — p(P)?| < | dist(p;, pos(0))* — p*| + |p* — p(P)?|
max; Hp2”2 g / 2 2
< | ——=— (56— +3Ve 2 P
_( (D)2 €+\/5_+5+5 p(P)

proving the second statement. O

A

< (lloll + 1) Ipal* ||o -

Let us now reconsider the proof of Theorem 5.14. The calculations for the first
case in the proof do not use any specific properties of the computed cylinder. The
second case, however, uses Lemma 5.13 which is now replaced by the approximative
version from Lemma 5.26.

Recall the following terms from the proof of Theorem 5.14: We consider a set
S C P and add a new core-set point p. The new axis direction is denoted by v'. It
holds that max; ||p;||*/p(P)? < &7 and § = e1+3/16.

Instead of the exact axis for S, we now have an approximation of the old axis
direction 0/||0]]. Moreover, a point ¢ € P exists, satisfying the conditions from
Lemma 5.26. We choose ¢ = §3/4. With this choice, we have

/ 2 /
2v/e' (5—+1) < apa Dl <5€—+3\/§) 42 42 < ed
£ 2 p(P)? £
for the two factors from Lemma 5.26. Consequently, two new terms come up in the
calculation in (5.4). We get
)

o502t~ (104 2) (ol
> (1 — <1 — g)2> (1+¢)%p(S)* + <1 — g)g (1 —¢26) p(S)>.

- (1) (”q”2 e (o) 7

94



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

This results in a change by a constant factor in (5.5). More precisely, we get the
following:

Remark 5.27. Using an approzimation for p(S) and a(S) as described above, it
holds that the (exact) radius for S increases by at least

p(SU{p}) — p(5) = (V1+ed —1)p(5) >

when p s added to the set S.

The fact that we have an ’-approximation of the optimal radius in Algorithm 5.1
adding a little to the overall error implies that we should choose the accuracy ¢ in
Algorithm 5.1 slightly smaller than the desired accuracy. Again, this results in a
constant factor close to one.

In order to save steps when calling Algorithm 5.2, we recommend to use the best
values for p; and py available, that is the best upper bound found so far and the
lower bound obtained for the preceding set S.

Finally, we discuss how to deal with the condition min; ||p;|| > (1 + €)p(P). One
possibility is to perform another binary search at the top level, calling the core-set
algorithm to decide whether the current radius is feasible, resulting in O(log(1/¢))
executions of Algorithm 5.1. This approach has the drawback that it is likely that
similar core-sets are computed over and over, which is an undesirable overhead
from a practical viewpoint. It seems preferable to reuse already computed core-
sets. When we use Algorithm 5.1 for the original point set P, simply ignoring the
condition, the method is still correct. However, we cannot prove that the lower
bound increases by at least a fixed positive quantity in each iteration step. A
third possibility is combining the two ideas: For a given radius p, we may use all
the core-set points computed so far (for other values of p) as an initial core-set.
Summing up all the sizes of all these sets, we immediately get an upper bound
of O(log(1/¢)) times the original bound for the core-set size. In experiments, the
computed core-sets turn out to be small even when we simply drop the condition
min; [|pi]| > (1 +¢€)p(P) (see Section 5.2.5).

Branch-and-Bound for Anchored Cylinders

Labeling the core-sets as described in Section 5.2.2, we can approximate anchored
cylinders, too. In order to explore all possible labelings, we use a B&B algorithm
related to the one described in Section 4.3.1. Naturally, we can use the same
approach for anchored k-line or k-ray center problems, too. The resulting algorithm
is a PTAS for fixed k and point sets with bounded ratio max; ||p;||/p(P). As far as
we know, this is the first approximation algorithm with polynomial running time
for these problems in general dimension.

95



Chapter 5. Rotational Containment

Algorithm 5.3 identifies a core-set S C PU —P as well as an axis direction v and
a radius p of an enclosing cylinder. The algorithm is written down recursively since
this simplifies the presentation, though the implementation used in Section 5.2.5
does not use recursion. We also omit the accuracies determined in Section 5.2.4 in
order to improve the readability.

Algorithm 5.3 Branch-and-bound for anchored cylinders

Input: P a point set, € > 0

Output: a core-set with S C PU—P, v, p approximate axis direction and radius
initialize:
set S = argmax; [|pil|, p=0
set the global upper bound p = max; ||p;||

anchored_cylinder(S, p, p):
approximate the anchored 1-ray of S
let v be the axis direction and p the radius
if p < p then
if P Clin(v) + (14 ¢)pB then
update the global upper bound p
else
let p be a point in P with maximal distance to lin(v)
if (v,p) > 0 then
set 0 =1
else
set 0 = —1
end if
call anchored_cylinder(S U {op}, p, p)
call anchored_cylinder(S U {—op}, p, p)
end if
end if
return the best S, v, and p found

When approximating the anchored 1-ray of S in Algorithm 5.3, it can of course
happen that a set S generated in the course of the algorithm does not admit a
1-ray solution with a radius between p and p. In this case, we do not need to
further consider the current node since the subtree below does not provide any
better solutions than the best one already found. Also note that the new nodes are
sorted such that the more promising node is considered first. Therefore, we check
whether the new core-set point is on the “4” or “—" side according to the current
axis, and use this sign first. This helps to find a good upper bound at an early
stage of the B&B process.

Concerning “ball-like” versus “long and skinny” point sets, we get larger core-sets

96



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

in the second case (see Section 5.2.2). However, the B&B algorithm honors a large
ratio of max; ||p;|| and the optimal radius. The assignment of “+” and “—” labels
to points is obvious in many cases, and therefore, a lot of branches of the tree can
be cut at a very early stage.” In this sense, finding smallest enclosing anchored
cylinders for “long and skinny” point sets is in fact easier.

The number of nodes in the B&B tree is bounded by 2% where |S| is the size
of the largest core-set occurring during the run of the algorithm. In practice, the

computed core-sets turn out to be much smaller than predicted by the worst-case
bounds for |S|.

Non-Anchored Cylinders

Considering “free”, that is non-anchored cylinders, the core-sets constructed so far
do not provide new insights for this problem. It remains an open problem whether
dimension-independent core-set sizes are possible for non-anchored cylinders. Yet,
we can still make use of the algorithm described for the anchored cylinder problem.
As described in [19], one can find a point sufficiently close to an optimal axis of
a smallest enclosing free cylinder by checking an e-net of size O(27'°8(5)/ 62) for all
subsets of P containing O(1/£?) points. This is improved to O(1/¢) in [18] and
[102], resulting in e-nets of size O(271°6(5)/€). We can translate this point to the
origin and then solve the anchored version of the problem.

A number of smallest enclosing cylinder algorithms exist [19], [76], and [77] which
do not compute core-sets but use related concepts to generate an axis close to opti-
mal. In [19] and [76], the point set P is embedded in a lower dimensional subspace.
An optimal solution of the lower dimensional problem does not necessarily corre-
spond to a solution of the original problem. However, one can determine a number
of possible candidate lines in the subspace, and at least one of them has to be close
to an optimal axis. The stated running times are polynomial in the dimension n,
but involve a term of m=”"”. In [77], however, a linear time approximation algo-
rithm for the smallest enclosing cylinder is presented. It can be seen as an extension
of the incremental approach (see also Sections 3.1.2 and 4.3.1). In each iteration,
a set of lines is generated such that, checking all lines, one finds at least one that
is close to an optimal axis.

We resume that, combining the core-set algorithm developed here with “guess-
ing” a point near the axis is similar to the method presented in [19] for the cylinder
problem, but the computation of the anchored cylinder here has a much simpler
structure. Neither of the two methods is competitive in terms of worst case running
time, since an algorithm for the free cylinder that is linear both in the number of
points and the dimension exists [77]. We are, however, not aware of any practical
implementation of this algorithm. (The running time involves quite a large constant

9This is also supported by the experimental results in Section 5.2.5.

97



Chapter 5. Rotational Containment

depending on €.) Our method seems to be quite practicable for anchored cylinder
problems (see Section 5.2.5), but especially in higher dimensions, finding an anchor
point gets computationally challenging. Practical algorithms for the smallest en-
closing cylinder problem in small dimensions can be found in [41] and [141]. We
therefore restrain the experiments in the following section to the anchored version,
with a special focus on the practical core-set sizes.

5.2.5 Implementation and Experiments

In the following, we present and discuss some exemplary tests of the anchored ray
and anchored cylinder algorithms.

Implementation

We use Matlab® implementations of Algorithms 5.1 and 5.3, calling the solver
Xpress-MP© from a C++ program via the Matlab MEX interface!® for the convex
programs in Algorithm 5.2. Again, we use code provided by [39] for Euclidean
distance computations. As stated before, the implementation of Algorithm 5.3
avoids recursion which is replaced by a node stack. The upper bound p is a global
variable, ensuring that we always use the best value available no matter whether
the node considered was generated at an earlier stage of the algorithm.

The reported running times are obtained for a SUNW SPARC Sun Fire 440
Workstation with a 1.3 GHz CPU and 1.6 GB RAM.

Note that we do not use the value for ¢’ derived in the previous section in the
implementation. In theory, we choose & very small in order to prove an upper
bound on the core-set size. In practice, we see that the core-sets stay small anyway.
It also turns out that ignoring the condition of min; ||p;|| > (1 + €)p(P) does no
harm to the size of the computed core-sets.!!

Experimental Results for Anchored 1-Rays

In a first test, we compare the core-set approach for the anchored 1-ray problem
to directly solving Program (5.6). The test results are resumed in Table 5.1. For
point sets consisting of 1000 points, the direct solution is faster than the core-set

0gee http://www.mathworks.com for details on Matlab MEX

HTn [102], the authors mention a similar issue concerning the 1-center core-set algorithm (see
Section 3.1.2). The core-set algorithm there is iterative as well, and the subproblems are
Euclidean 1-center problems. The authors derive an accuracy of €2 for the subproblems. They
write that they assumed an accuracy of ¢ in the first place (and suggest that the same holds
for the results reported in [19]), which is insufficient in theory. However, they had already
conducted their experiments with the accuracy for the subproblems set to ¢ only. They observe
that the core-sets computed for the examples do not differ no matter whether ¢ or €2 is used
for the subproblems.

98



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

core-set algorithm direct algorithm

n | m || core-set size | time (s) time (s)

3] 1000 3.58 0.14 () 0.13

3| 5000 3.45 0.16 0.36

3 | 10000 3.31 0.37 0.76

3 | 50000 3.19 0.50 4.26

10 | 1000 6.20 0.38 0.28
10 | 5000 6.52 0.50 0.86
10 | 10000 6.28 0.59 (x) 1.60
10 | 50000 6.25 1.61 10.27
20 | 1000 8.58 0.83 0.60
20 | 5000 8.96 1.09 1.89
20 | 10000 9.46 1.42 4.24
20 | 50000 9.71 3.74 27.91
30 1000 10.48 1.41 1.04
30 | 5000 11.48 1.95 4.43
30 | 10000 11.26 2.34 8.86
30 | 50000 12.50 6.27 56.06

Table 5.1: Test results for the anchored 1-ray problem, both for the direct solution
via quadratic programming and the core-set algorithm. We list m and
n and report the average running time for both algorithms and the
average core-set size for € = 0.01. The data sets are generated as (0, 1)
normally distributed data, and then randomly scaled and shifted (such
that the anchor point is in P). The sample size is 100, except for the
rows indicated by (%), where the direct algorithm fails for one instance
and the average running time of the direct algorithm is indicated for
the remaining 99 instances.

99



Chapter 5. Rotational Containment

algorithm but gets slower for larger m. This is not surprising when we recall the
results from Section 3.3. The standard quadratic programming solvers are designed
for cases where the numbers of rows and columns in the constraint matrix are
comparable in size, or, in case of large input dimension, when the constraint matrix
is sparse. Neither of the two is applicable in our case. The same observation is made
in [58] where an exact LP-type solver for convex quadratic programs is compared to
other approaches, one of them a standard quadratic programming solver. As in an
LP-type algorithm, the core-set approach can take advantage of the small number
of points necessary to find a good solution. The results in Table 5.1 corroborate
that the sizes of the core-sets in practice grow a little with the dimension, and are
much smaller than predicted by the worst case analysis, just as in the case of the
k-center core-sets in Section 4.3.4 and in [101]. In the dimensions considered here,
the average core-set size gets only slightly larger when we make € smaller than 0.01,
and in many cases, the core-set points stay the same. The core-set algorithm is
stable in all testes instances, but it happens that the direct algorithm fails, albeit
rarely. In these cases, the solver terminated without finding a satisfactory solution.
We resume that the direct approach is preferable only when the point set is not too
large compared to the dimension.

Experimental Results for Anchored Cylinders

We proceed with the smallest enclosing anchored cylinder. In Table 5.2, the core-set
size, the size of the branch-and-bound tree, and the running time for the smallest
enclosing anchored cylinder of some exemplary input sets are listed. The algorithm
is extremely fast for the geometric model data sets. We observe that the B&B
trees generated for these data sets only have one leaf, since all other branches are
discarded at an early stage. The sphere, however, is a kind of worst case input.
Though the core-set stays small, many branches of the tree have to be explored.
Nevertheless, the number of nodes in the tree is far from the worst-case bound here.
We also consider cross polytopes in dimensions 5 and 10. For the 5-dimensional
cross polytope, we get the exact solution for both values of ¢ considered.!? In
dimension 10, only the accuracy of 0.01 is small enough to make the algorithm
return the exact solution. In this example, we have 2" optimal axis directions. By
fixing the sign of the first core-set point, we can discard half of them. We therefore
get 2771 possible labeled core-sets of n points and 2"~! — 2 inner nodes in the B&B
tree. Of course, in higher dimensions, we can do with less than n core-set points
for ¢ = 0.01.

In Figure 5.8, test results for the core-set algorithm in different dimensions are
shown. The practical core-set sizes grow with the dimension and the number of
points in P, but are still small, even in dimension 30. For the type of data set

12The running time for € = 0.1 is smaller due to the faster calculations for the subproblems.

100



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

—+— 100
—&— 1000
1 10000

core-set size

—+— 100
—&— 1000
4 7 10000 4

running time (s)
N
T
.

dimension dimension

—— 100
—&— 1000
1 10000

core-set size

running time (s)
N
T
.

Figure 5.8:

dimension dimension

Test results for the smallest enclosing anchored cylinder algorithm.
The average core-set size and running time for different dimensions is
shown. The numbers of 100, 1000, and 10000 refer to m, the number
of points in P and € = 0.01. The data sets in the upper two graphs
are generated as described in Table 5.1. For the data sets in the lower
two graphs, we skipped the translation, so they have mean 0.

101



Chapter 5. Rotational Containment

B&B algorithm
data set n m € core-set size nodes time (s)
cat 3 352 0.01 6 10 2.32
shark 3 1744 0.01 4 6 1.40
seashell 3 18033 0.01 4 12 2.78
dragon 3 437645 0.01 4 6 2.03
sphere 3 1000 0.01 7 122 27.74
sphere 5 1000 0.01 11 1188 42.70
cross polytope 5 10 0.1 5 30 0.60
cross polytope 5 10 0.01 5 30 1.03
cross polytope 10 20 0.1 0 62 1.46
cross polytope 10 20 0.01 10 1022 28.07

Table 5.2: Test results for the smallest enclosing anchored cylinder algorithm on
exemplary data sets. See Section 4.3.4 for the origin of the geometric
model data sets. The “sphere” data sets refer to points on the surface
of the unit sphere, and “cross polytope” indicates that P consists of the
vertices of the unit cross polytope. We report the size of the core-set
computed, the number of nodes processed during the B&B, and the
running time in seconds.

in the upper two graphs, an approximate cylinder axis is usually not hard to find.
The data sets are generated as (0, 1) normally distributed data, and then randomly
scaled and translated by choosing a random anchor point in P. The translation
frequently makes finding the axis direction a lot easier, resulting in small B&B trees
and running times. When we consider data sets with mean 0 as in the lower two
graphs, the computed core-sets have almost the same size, but many more possible
labelings have to be considered. This results in larger B&B trees and longer running
times. Still, even in this case, we can find a good approximation for the smallest
enclosing anchored cylinder within a few seconds for 10000 points in dimension 30.

In the next example, we consider smallest enclosing anchored cylinders of cylin-
drical data sets of different aspect ratio in order to have a look at the dependence
of the core-set size and the shape of P. For this purpose, we generate data points
equally distributed on a circular cylindrical surface for different ratios of cylinder
height and radius. Using points exactly on the surface frequently results in core-sets
consisting of two points only, independent of the dimension. We therefore slightly
perturb the point sets. Figure 5.9 depicts the results of the calculation. We see a
slow rise in the core-set size, especially in higher dimensions, but clearly, it is far
from the theoretical upper bound. The running times are actually smaller for a
larger ratio of cylinder height and radius in spite of the larger core-sets. This is
again because the B&B tree can be cut down to almost a single branch for “long
and skinny” point sets. For a ratio close to one, however, larger parts of the tree
have be explored.

102



5.2. Approximating Smallest Enclosing Cylinders and Related Problems

18 T T

—#— dimension 5
—&— dimension 10|

dimension 15|
dimension 20|
dimension 25| A
16 £— dimension 30) R

‘
b
K

14~ A B

core-set size
e
N
1

10 B

I I I I I I I I
US 10 15 20 25 30 35 40 45 50
height to radius ratio

Figure 5.9: Test results for cylindrical data sets in dimensions 5 to 30. For each
data point, 100 point sets are sampled. Point sets consist of 1000
points equally distributed on a cylindrical surface with a (0,¢) nor-
mally distributed error. On the x-axis, the height to radius ratio of
the cylindrical surface for the input data is shown, varying from 5 to
50. Again, the accuracy € = 0.01.

103



Chapter 5. Rotational Containment

Figure 5.10: Schematic illustration of a deformity correction procedure: initial
state, post-operational state, projected post-treatment state, and
consolidated state.

5.3 A Cylinder Problem in Extremity Surgery

As announced in Section 1.1.3, we introduce an application in extremity surgery.
It yields a containment problem involving the placement of a cylinder. This section
differs from the preceding ones since it involves modeling for a specific application.
Moreover, the resulting containment question is a case of inner containment, and
the input is not a point set. The following is joint work with René Brandenberg,
Tobias Gerken, and Peter Gritzmann, see also the publication [36].

5.3.1 Motivation

The problem setting from extremity surgery is the following: A patient suffers from
a malalignment of an extremity which may be congenital or post-traumatic. A 3D
model of the concerned bones is available from a CT scan. Such a scan consists of
a number of layers in the direction of the body axis. The surgist determines a goal
state of the extremity to be reached after treatment. Based on the goal state, a
corresponding placement of the intramedullary nail is to be found.

The treatment itself consists of several steps: First, the bone is cut, the bone parts
are aligned and the intramedullary nail is implanted. The nail can be lengthened
using a built-in electric motor which is controlled from the outside. After the
operation, the nail is slowly extended, making the bone tissue grow in the gap
between the bone parts. This results in an overall lengthening of the bone in
the direction of the implanted nail. Note that the precise placement of the nail is
crucial since, once implanted, its position can only be changed by another operation.
Figure 5.10 depicts the basic steps of the procedure. Here, we merely address the
placement of the intramedullary nail. For other steps of the operation planning
procedure and the medical background, see [36] and the references therein.

104



5.3. A Cylinder Problem in Extremity Surgery

We model the intramedullary nail by a cylinder (see also Figure 1.3). In order to
describe that the nail has to pass through the interior of the bone, we use ellipses to
approximate the circumference of the bone in relevant CT layers. Note that these
layers are usually not parallel any more since in order to correct the deformity, the
bone parts are newly aligned before implanting the nail. Cutting the bone, aligned
the parts, and implanting the lengthening device can be simulated in the planning
procedure using the CT data (see [36] for the description of a software tool). Any
feasible placement of the cylindrical nail has to intersect each layer within the
interior of the ellipse defining the bone. The bone is therefore approximated by a
piecewise convex object determined by the convex hulls of pairs of adjacent ellipses,
and the cylinder has to be contained in this object.

For a good nail placement, we look for a corridor of maximal radius through
the ellipses (compare Figure 5.11). Centering the nail in this corridor ensures that
sufficient margins are left on all sides.

5.3.2 Problem Treatment

Though the problem originates from a 3D application, we consider the cylinder
problem in general dimension. If appropriate, we address specific properties of the
3D case.

Problem Statement

Given a set of (n—1)-dimensional ellipsoids F1, ..., F,, C R" we seek for a cylinder
of maximal radius passing through all ellipsoids such that the intersection of an
ellipsoid and the cylinder is contained in the ellipsoid. We therefore have the
following problem

max p

(a+pB)NE;, CE;, 1<i<m

where the cylinder axis a may be an arbitrary line in R™. Note that this is an inner
containment problem in the notion introduced in Section 2.1. In the following, we
address the feasible cylinders as traversing cylinders of the set of ellipses.

As we try to find a maximal cylindrical corridor, this problem is related to some
of the facility location and motion planning problems mentioned in Section 1.2.3.

Algorithm

We introduce a method to approximate a maximal traversing cylinder. We tackle
the problem using a discretization of the direction space. It turns out that, when
the direction of the axis is known, the problem is convex and can be formulated as
an SDP. Using a discretization is justified here since we seek for an approximation

105



Chapter 5. Rotational Containment

of the maximal cylinder radius and are not interested in cylinders of very small
radius.

Projecting the ellipsoids along a given axis, we get full dimensional ellipsoids in
R"~!. In order to find a maximal cylinder with this axis direction, we have to find
the largest ball in the intersection of the ellipsoids. This can be done as stated in
[33]. Let E; = {(z— )T A; '(x — %) < 1} denote a representation of the projection
of the i-th ellipsoid, 1 <1i < m. We require that for any x with ||z|| =1, pxr + ¢ is
contained in E;. We get the following program, where p, \; € R, ¢ € R*L:

max p
A; —pld c¢—z
—pld A Id 0 =0 1<i<m (5.11)
(C—ZZ')T 0 1—)\2
A >0 1<i<m

It is not obvious that the program actually formulates the problem. Using Schur
complement formula, we see that the matrix inequality in Program (5.11) is equiv-
alent to

(e i ) (0 ) o

This means that ¢ and p are feasible for Program (5.11) if and only if A\; > 0 exist
satisfying the above matrix inequality. By terms of the S-procedure!®, the existence
of such a multiplier )\; is equivalent to the following condition which occurs in this
form in [94, Theorem 3] and is due to [89], [90]:

—p* T AT e — 22T (pA; ) (c—2) +1— (c—z) A7 (c—2) >0
for all z with — 272z +1 > 0.
Rewriting the first equation, we get
(c+pr — 2) A7 e+ pr — 2) < 1,

which is just the inequality defining F;, when z is replaced by c+ px. This holds for
any x in the (n — 1)-dimensional unit ball by the second equation, so the condition
actually describes that the ball ¢ + pB is covered by the ellipsoid.

We may of course assume that the set of ellipsoids is bounded, so we can use
a discretization of the direction space to find an approximately optimal axis for
any given accuracy €. The SDP (5.11) has to be considered for each direction
in the discretization in order to approximate the corresponding cylinder radius as
described in Algorithm 5.4. See Figure 5.11 for an example. The implementation
of the above algorithm used for Figure 5.11 is due to [61].

13The S-procedure is a sort of Lagrange relaxation method frequently used in problems with
quadratic constraints, see [33], [94] for an introduction.

106



5.3. A Cylinder Problem in Extremity Surgery

Algorithm 5.4 Largest traversing cylinder

Input: £y, ..., E,, C R"” ellipsoids, € > 0

Output: e-approximation of the largest traversing cylinder (if existent)

discretize the upper half-sphere guaranteeing accuracy e
set p' = o0
for each direction vector v in the discretization do
project the ellipsoids into v+
if feasible point found in SDP (5.11) for the projected ellipsoids then
let p, ¢ be an approximate solution
if p > p/ then
set p) =p,d=c, v =0
end if
end if
end for
if p' < oo then
use ¢ and v to obtain the corresponding axis a in R"
return p’ and a
end if

25.]

05. i

05 E.

A5 4 020 02 04 08 08

Figure 5.11: Four ellipses in 3D and the largest cylinder found by Algorithm 5.4.

On the right is the 2D projection along the corresponding axis.

107



Chapter 5. Rotational Containment

Practical Considerations

In order to achieve a practical algorithm, it is convenient to consider only parts of
the discretization, not the full sphere. For inputs from the application, the area of
the sphere admitting feasible cylinder directions is usually quite small. Moreover,
from a practical viewpoint, it is justified to consider the 3D case only and impose
some additional constraints on the input. Naturally, in the application, the order in
which the ellipsoids are to be traversed by the cylinder is known. We can now, for
instance, use the lower and the upper most ellipsoid to bound the cone of feasible
directions.

Let E; and E,, denote the lower most and upper most ellipses, respectively.
Any plane separating the two ellipses can be used to bound the cone of feasible
directions. Orient the normal vector of the plane such that F,, is in the positive
half-space. Any feasible line traversing F, before traversing F,, has to intersect the
separating plane, enclosing an angle < 7 with the normal vector. We can therefore
get a polytopal approximation of the cone of feasible directions for E; and FE,,. Let

v1,...,Ux be an outer approximation of E; by a convex polygon in aff(F;), and
w1, ..., w for £, In an optimal solution of the LP
max

(av) <6 1<i<k

(a,w)) >  1<i<k
(a,v1) =0
(a,v9) = ¢

equality holds for at least one w;, and {z : (a,z) = 0} defines a separating plane
with vy, vy on it. We can do this for each consecutive pair of v; (or w;, of course)
and get a number of bounding planes for the cone of possible cylinder axes.

5.3.3 Background

The decision version of the traversing cylinder problem introduced here is a special
stabbing or transversal problem.

NP-Completeness

We show that the problem is NPP-complete in general dimension using a construction
similar to those already considered in Section 5.1. Again, we reduce 3-SAT to the
geometric problem.

Let (; denote the variables in the set K of [ clauses k. Set n = [+ 1. In order
to get a discrete structure for the solution space, we place 2n (n — 1)-dimensional
disks at the points +e;, 1 < ¢ < n, such that the normal vector of the disk placed

108



5.3. A Cylinder Problem in Extremity Surgery

at e; is also e; (and —e; for —e; ). The squared radius of all the disks is set to n— 1.
Lines passing through all those disks are (as in Section 5.1.2) determined by the
v € {£1}", and to avoid having two different representations for the same line we
require the last coordinate of v to be 1.

Now we place a disk for each clause k. Without loss of generality, we may assume
that each clause has three distinct variables. The centers of the disks are placed at
points u, where

1 t <[ and (; occurs in k
-1 1 < [ and —(; occurs in k
v; =
' 0 ¢ < [ and neither (; nor —(; occurs in k
3 1=n

The normal vector of the disk centered at w is also set to u. The squared radius
of the disks representing clauses is chosen to be 36mn.

Let 7 denote the number of true literals in clause k when the values defined by
v are assigned to the variables. If 7 = 0, clause k is not satisfied and (v,u) = 0,
implying that the line spanned by v is parallel to the disk representing k and
therefore does not intersect it (since the line spanned by v passes through the
origin).

Let now 7 > 1. The line determined by v intersects the disk at u in the point

6v/T. Since
6 ? 36< 2 1, 13)
== |\n—gT+ 7"+ =T

—U—U

T T2 3 3 9

this intersection point is within the disk for 7 € {1,2,3}. Therefore, we have a line
transversal if and only if the assignment defined by v satisfies all clauses in .

Links to Transversal Theory

When we consider the question whether at least a cylinder of radius 0 (i.e. a
traversing line) exists, we get a geometric transversal problem. Such geometric line
transversal problems may yield solution spaces of complicated structure, consisting
of several connected components (see [137] for a survey).

In some settings of line transversal problems, stronger statements about the
structure of the solution space are possible. Recent results address line transversals
for disjoint balls [32]. In case the balls are disjoint, the space of feasible directions
is convex for fixed traversion orders of the balls, yielding bounds on the number of
connected components of the solution space.

In our application, we deal with flat objects. It is shown in [96], that provided
the case that the affine hull aff(£;) of any ellipsoid does not intersect any other
ellipsoids, the number of geometric permutations (that is, the number of traversion

109



Chapter 5. Rotational Containment

orders of the sets) is at most one. In case the ellipsoids are parallel, one can even
show that the feasible line transversals can be parameterized to form a convex set
in a higher dimensional space [10].

However, there are also negative results. For instance, one can easily verify that
three line segments in 3D already may have a nonconvex cone of feasible directions
(see Figures 5.12, 5.13).

1
-2
-1
o -1
1 N °
275 2

Figure 5.12: Four different views of the set of line transversals for three line seg-
ments in 3D.

It is not clear whether the cone is still nonconvex when we bound the eccentricity
of the ellipses or even consider circular disks only. In [32], some fundamental
properties of the problem for balls are used which do not apply here, so the method
used there does not extend to circular disks.

110



5.3. A Cylinder Problem in Extremity Surgery

0.6

0.4

0.2

-0.2

-0.4

-0.6

-08.

Figure 5.13: The (nonconvex) cone of feasible directions for the line transversals
of the line segments in Figure 5.12.

111



112



6 Open Questions

Finally, we point out open problems related to the topics of this thesis and recall
some unanswered questions.

In Chapter 3, the 1-containment problem under homothety is considered. As
stated there, it is known that core-sets whose size is independent of the dimension
exist for special cases of the MCPy,,,. Moreover, non-symmetric containers exist
which do not permit such core-sets. As far as we know, the question is open for
general, symmetric containers. It is interesting merely for investigating fundamen-
tal structural properties of convex bodies, but also for designing approximation
algorithms for the problem.

The k-containment problem under homothety is considered in Chapter 4. We
address a number of special cases of 2-containment problems under homothety.
Firstly, as far as we know, it is an open problem whether the MCP%_  for cross-
polytopes is NP-hard. Defining an instance with an appropriate discrete structure
of the set of solutions (as it is done in the Euclidean case) seems to be more difficult
here (see also [68]). The complexity of the MCP%__ for a cube and a ball remains
open, too, and the same holds for some examples of containment problems where
the containers share a common translation vector, for instance 2-containment for

arbitrarily aligned parallelotopes and 3-containment for cubes.

Concerning the rotational containment problems considered in Chapter 5, the
most famous open question is probably Megiddo’s cube cover problem [110].

The question whether dimension-independent core-sets for the (non-anchored)
smallest enclosing cylinder exist is also of fundamental interest. Such core-sets
may provide simple and fast algorithms for the problem. Moreover, the question is
closely related to finding line transversals of sets of balls.

We considered core-sets for circular anchored cylinders, and it would be interest-
ing to see whether the statements can be extended to smallest enclosing anchored
elliptical cylinders, that is, where C' = a+ E and E C a* is an (n — 1)-dimensional
ellipsoid, and the objective is to minimize vol,,_;(E) (compare [100]). Core-sets for
smallest enclosing ellipsoids exist [104].

For the transversal questions arising in the extremity surgery problem, it would
be interesting to gain further insight into the structure of the transversal space of
(ordered) subdimensional objects, such as disks.

113



114



List of Figures

1.1 A robot arm, hinged to two axis parallel tracks . . . .. ... ... 2
1.2 Shapes for containment examples . . . . . . . . ... ... ... .. 3
1.3 Implantable nail used in extremity correction . . . . . . . . . .. .. 4
2.1 Different 1-containment problems . . . . . ... ... ... ..... 12
2.2 Tlustration of the Euclidean k-center problem . . . . . ... .. .. 13
3.1 Two iterations of the cutting plane method . . . . . . . .. . .. .. 27
3.2 Cutting plane method example . . . . . . . ... ... ... .. ... 27
3.3 Averaged number of iterations for different data sets P . . . . . . . 31
3.4  Accuracy achieved by the cutting plane algorithm . . . . . . . . .. 32
3.5 Tterations for different valuesofq . . . . . . .. ... ... ... 33
3.6 Iterations for different container shapes . . . . . . . . ... ... .. 34
4.1 Euclidean diameter partitioning example . . . . . . . . ... .. .. 40
4.2 Worst case examples for diameter partitioning . . . . . . . . .. .. 42
4.3 Containment with two boxes and the p-distance graph . . . . . .. 43
4.4 Covering two points with a union of boxes. . . . . . . . .. ... .. 46
4.5 Nonconvex containment where the container is the union of three balls. 48
4.6 Geometric interpretation of the relaxed program . . . . . . . . . .. 95
4.7 Voronoi cells induced by the centers of a Euclidean 3-center . . . . 62
4.8 2-Center problem for a V-polytope . . . . ... ... .. ... ... 64
5.1 4-Containment under similarity . . . . . . ... .. ... ... ... 67
5.2 Circular double cone . . . . . . .. ..o 70
5.3 2D example of an anchored 1-ray problem . . . . ... .. .. ... 72
5.4 2D example for SDP bound . . . . . ... ... ... ... ..... 75
5.5 Proof of the half-space lemma . . . . . . . .. ... ... ... ... 78
5.6 2D example of anchored cylinder and corresponding anchored 1-ray 83
5.7 Example of Program (5.6) . . . . ... ... ... ... . ... ... 86
5.8 Test results for the smallest enclosing anchored cylinder algorithm. . 101
5.9 Test results for cylindrical data sets. . . . . . ... ... ... ... 103
5.10 Schematic illustration of a deformity correction procedure . . . . . . 104
5.11 Four ellipses in 3D and the largest cylinder found . . . . . . .. .. 107
5.12 Line transversals for line segments in 3D . . . . . . . ... ... .. 110
5.13 Cone of feasible directions . . . . . . . ... ... ... .. 111

115



116



List of Tables

3.1
3.2

4.1

4.2
4.3

5.1
5.2

The cutting plane algorithm and cvx . . . . . ... ... ... ... 29
The cutting plane method compared to directly solving the LP . . . 31
Step-by-step comparison of the improvements for the FEuclidean k-

center B&B ... 57
The B&B algorithm with and without SOCP bounds . . . . . ... 59
Test results for diameter partitioning . . . . . . . . .. .. ... .. 60
Test results for the anchored 1-ray problem . . . . . . ... ... .. 99
Exemplary results for smallest enclosing anchored cylinder. . . . . . 102

117



118



List of Algorithms

3.1

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4

Cutting plane algorithm . . . . . . . ... .. ... ... ... ... 26
Diameter partitioning for k-center . . . . . . . . ... ... 39
Diameter partitioning for k-containment . . . . . . ... ... ... 44
Containment for the union of two boxes. . . . . . . .. .. ... .. 47
Branch-and-bound for k-containment . . . . . . . ... .. ... .. 52
Core-set algorithm for anchored 1-ray . . . . . .. ... .. .. ... 80
Binary search for anchored 1-ray radius . . . . . . . .. .. ... .. 89
Branch-and-bound for anchored cylinders . . . . . . .. .. ... .. 96
Largest traversing cylinder . . . . . . . .. ... ... 107

119



120



Bibliography

1]

2]

[10]

[11]

P.K. Agarwal, N. Amenta, and M. Sharir. Largest placement of one convex
polygon inside another. Discrete and Computational Geometry, 19(1), 1998.

P.K. Agarwal, B. Aronov, and M.Sharir. Line transversals of balls and small-
est enclosing cylinders in three dimensions. Discrete and Computational Ge-
ometry, 21:473-388, 1999.

P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent
measures of points. Journal of the ACM, 51(4):606-635, 2004.

P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation
via coresets. In J.E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial
and Computational Geometry, volume 52 of MSRI publications, pages 1 —30.
Cambridge University Press, 2005.

P.K. Agarwal and C.M. Procopiuc. Exact and approximation algorithms for
clustering. Algorithmica, 33(2):201-226, 2002.

P.K. Agarwal, C.M. Procopiuc, and K.R. Varadarajan. A (1 + e)-
approximation algorithm for 2-line-center. Computational Geometry: Theory
and Applications, 26(2):119-128, 2003.

P.K. Agarwal, C.M. Procopiuc, and K.R. Varadarajan. Approximation algo-
rithms for a k-line center. Algorithmica, 42:221-230, 2005.

P.K. Agarwal and M. Sharir. Planar geometric location problems. Algorith-
mica, 11(2):185-195, 1994.

P.K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization.
ACM Computing Surveys, 30(4):412-458, 1998.

N. Amenta. K-transversals of parallel convex sets. In Proceedings of the Sth
Canadian Conference on Computational Geometry, pages 80-86, 1996.

M.R. Anderberg. Cluster analysis for applications. Probability and mathe-
matical statistics. Academic Press, London, 1973.

121



Bibliography

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

122

E.M. Arkin, G. Barequet, and J.S.B. Mitchell. Algorithms for two-box cov-
ering. In Proceedings of the 22nd Annual Symposium on Computational ge-
ometry, pages 459-467. ACM, 2006.

A. Arnold. Approximationsalgorithmen zur Losung von allgemeinen k-
Containment Problemen unter Homothetie. Diplomarbeit, Zentrum Math-
ematik, Technische Universitat Miinchen, in preparation.

D. Avis. Diameter partitioning. Discrete and Computational Geometry,
1:265-276, 1986.

F. Avnaim and J.-D. Boissonnat. Simultaneous containment of several poly-
gons. In Proceedings of the 3rd Annual Symposium on Computational Geom-
etry, pages 242-247, 1987.

F. Avnaim and J.-D. Boissonnat. Polygon placement under translation and
rotation. In Proceedings of the 5th Annual Symposium on Theoretical Aspects
of Computer Science, pages 322-333, 1988.

M. Badoiu and K.L. Clarkson. Smaller coresets for balls. In Proceedings of the
14th ACM-SIAM Symposium on Discrete Algorithms, pages 801-802, 2003.

M. Badoiu and K.L. Clarkson. Optimal core-sets for balls. Computational Ge-
ometry: Theory and Applications, 40(1):14-22, 2008. Preliminairy versions:
2002, 2003.

M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-
sets. In Proceedings of the 3/th Annual ACM Symposium on the Theory of
Computing, pages 250 — 257. ACM Press, 2002.

G. Barequet and G. Elber. Optimal bounding cones of vectors in three di-
mensions. Information Processing Letters, 93:83-89, 2005.

G. Barequet and S. Har-Peled. Efficiently approximating the minimum-
volume bounding box of a point set in three dimensions. Journal of Al-
gorithms, 38(1):91 — 109, 2001.

R. Baumgart, P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and
W. Mutschler. A fully implantable, programmable distraction nail (fitbone)
— new perspectives for corrective and reconstructive limb surgery. In K.S.
Leung, G. Taglang, and R. Schnettler, editors, Practice of Intramedullary
Locked Nails. New developments in Techniques and Applications, pages 189—
198. Springer Verlag Heidelberg, New York, 2006.



Bibliography

[23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

[31]

[32]

[33]

B. Ben-Moshe, M.J. Katz, and M. Segal. Obnoxious facility location: Com-
plete service with minimal harm. International Journal of Computational
Geometry and Applications, 10(6):581-592, 2000.

S. Bereg, J.M. Diaz-Béanez, C. Seara, and I. Ventura. On finding widest
empty curved corridors. Computational Geometry: Theory and Applications,

38(3):154-169, 2007.

S. Bespamyatnikh and D. Kirkpatrick. Rectilinear 2-center problems. In
Proceedings of the 11th Canadian Conference on Computational Geometry,
pages 6871, 1999.

S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parallel
boxes. Information Processing Letters, 75(3):95-100, 2000.

M.J. Best and N. Chakravarti. Stability of linearly constrained convex
quadratic programs. Journal of Optimization Theory and Applications,
64(1):43 — 53, 1990.

M.J. Best and B. Ding. On the continuity of the minimum in parametric
quadratic programs (technical note). Journal of Optimization Theory and
Applications, 86(1):245 — 250, 1995.

H.F. Bohnenblust. Convex regions and projections in Minkowski spaces. An-
nals of Mathematics, 39:301-308, 1938.

V. Boltyanski, H. Martini, and P.S. Soltan. FEzcursions into Combinatorial
Geometry. Springer, 1997.

T. Bonnesen and W. Fenchel. Theorie der konvexren Korper. Springer, Berlin,
1974.

C. Borcea, X. Goaoc, and S. Petitjean. Line transversals to disjoint balls.
Discrete and Computational Geometry, 39(1-3):158-173, 2008.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matriz in-
equalities in system and control theory, volume 15 of SIAM studies in applied
mathematics. STAM, Philadelphia, 1994.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University
Press, 2004.

R. Brandenberg. An affine invariant geometric inequality on minimal enclos-
ing ellipsoids and an application in computing minimal enclosing elliptical
cylinders. In preparation.

123



Bibliography

[36]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

[47]

[48]

124

R. Brandenberg, T. Gerken, P. Gritzmann, and L. Roth. Modeling and opti-
mization of correction measures for human extremities. In W. Jager and H.-J.
Krebs, editors, Mathematics — Key Technology for the Future. Joint Projects
between Universities and Industry 2004-2007, pages 131-148. Springer, 2008.

R. Brandenberg and L. Roth. Minimal containment under homothetics: A
simple cutting plane approach. Computational Optimization and Applica-
tions, to appear, 2009.

R. Brandenberg and L. Roth. New algorithms for k-center and extensions.
Journal of Combinatorial Optimization, 18(4):376-392, 2009. Preliminairy
version in Combinatorial Optimization and Applications, LNCS 5165, pages
64-78, 2008.

R. Bunschoten. A fully vectorized function that computes the Euclidean
distance matrix between two sets of vectors. Via http://www.mathworks.
com/matlabcentral/fileexchange/loadFile.do?objectId=71, 1999.

T.M. Chan. More planar two-center algorithms. Computational Geometry:
Theory and Applications, 13(3):189-198, 1999.

T.M. Chan. Approximating the diameter, width, smallest enclosing cylinder,
and minimum-width annulus. In Proceedigs of the 16th Annual Symposium
on Computational Geometry, pages 300 — 309, 2000.

B. Chazelle. The polygon containment problem. In F. Preparata, editor, Com-
putational Geometry, volume 1 of Advances in Computing Research, pages
1-33. JAI Press, 1983.

K. Chen. On k-median clustering in high dimensions. In Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1177
1185, 2006.

L. Danzer. Uber ein Problem aus der kombinatorischen Geometrie. Archiv
der Mathematik, 8:347-351, 1957.

J.M. Diaz-Banez, M.A. Lépez, and T. Sellares. Computing largest empty
slabs. In ICCSA (3), volume 3045 of LNCS, pages 99-108, 2004.

J.M. Diaz-Béanez, M.A. Lépez, and T. Sellares. Locating an obnoxious plane.
Furopean Journal of Operational Research, 173:556-564, 2006.

7. Drezner. The p-centre problem — heuristic and optimal algorithm. Journal
of the Operational Research Society, 35(8):741-748, 1984.

Z. Drezner, editor. Facility Location. Springer, 2004.



Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

B.C. Eaves and R.M. Freund. Optimal scaling of balls and polyhedra. Math-
matical Programming, 23:138 — 147, 1981.

D. Eppstein. Faster construction of planar two-centers. In Proceedings of the
S8th ACM-SIAM Symposium on Discrete Algorithms, pages 131-138, 1997.

T. Feder and D.H. Greene. Optimal algorithms for approximate clustering.
In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
pages 434-444, 1988.

K. Fischer, B. Gartner, and M. Kutz. Fast smallest-enclosing-ball computa-
tion in high dimensions. In Algorithms - ESA 2003, volume 2832 of LNCS,
pages 630-641, 2003.

F. Follert. Maxmin location of an anchored ray in 3-space and related prob-
lems. In Proceedings of the 7th Canadian Conference on Computational Ge-
ometry, pages 7-12, 1995.

K. Frankl. Praktische Methoden zur Losung minimaler Multi-Containment
Probleme unter Homothetie. Projektarbeit, Zentrum Mathematik, Technis-
che Universitat Miinchen, 2007.

J. Gabarro-Arpa and R. Revilla. Clustering of a molecular dynamics trajec-
tory with a Hamming distance. Computers € Chemistry, 24:693-698, 2000.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

B. Gértner. A subexponential algorithm for abstract optimization problems.

SIAM J. Comput., 24:1018-1035, 1995.

B. Gartner and S. Schonherr. An efficient, exact, and generic quadratic pro-
gramming solver for geometric optimization. In Proceedings of the 16th An-
nual Symposium on Computational Geometry, pages 110-118, 2000.

L. Gasieniec, J. Jansson, and A. Lingas. Approximation algorithms for Ham-
ming clustering problems. Journal of Discrete Algorithms, 2(2):289-301, 2004.

T. Gerken. On the double-ray center problem in 3-space with an application to
surgical operation planning. Diplomarbeit, Zentrum Mathematik, Technische
Universitat Miinchen, 2003.

B. Golles. Ein Problem der Transversalentheorie und seine Anwendung in
der medizinischen Operationsplanung. Projektarbeit, Zentrum Mathematik,
Technische Universitat Miinchen, 2007.

125



Bibliography

[62]

[63]

[71]

[72]

[73]

[74]

[75]

126

T.F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293-306, 1985.

M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In L. Liberti
and N. Maculan, editors, Global optimization: From theory to implementa-
tion, Nonconvex Optimization and its Applications. Kluwer, 2005.

M. Grant, S. Boyd, and Y. Ye. cvx Users’ guide, version 1.0. http://www.
stanford.edu/~boyd/cvx/cvx_usrguide.pdf, 2006.

P. Gritzmann and V. Klee. Inner and outer j-radii of convex bodies in finite-
dimensional normed spaces. Discrete and Computational Geometry, 7:255—
280, 1992.

P. Gritzmann and V. Klee. Computational complexity of inner and outer
j-radii of polytopes in finite-dimensional normed spaces. Mathmatical Pro-
gramming, 59:163-213, 1993.

P. Gritzmann and V. Klee. On the complexity of some basic problems in
computational convexity I: Containment problems. Discrete Mathematics,
136:129-174, 1994.

P. Gritzmann and T. Theobald. On algorithmic stabbing problems for poly-
topes. Manuscript.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 1993.

J. Guddat. Stability in convex quadratic parametric programming. Mathe-
matische Operationsforschung und Statistik, 7(2):223 — 245, 1976.

H. Hadwiger. Ueber Eibereiche mit gemeinsamer Treffgeraden. Portugaliae
mathematica, 16(1):23-29, 1957.

D. Halperin, M. Sharir, and K. Goldberg. The 2-center problem with obsta-
cles. Journal of Algorithms, 42(1):109-134, 2002.

S. Har-Peled. Clustering motion. Discrete and Computational Geometry,
31(4):545-565, 2004.

S. Har-Peled. No coreset, no cry. In FSTTCS 2004: Foundations of Software
Technology and Theoretical Computer Science, volume 3328 of LNCS, pages
324-335, 2004.

S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means
clustering. Discrete and Computational Geometry, 37(1):3-19, 2007.



Bibliography

[76]

[77]

[78]

[79]

[80]

[31]

[82]

[83]

[84]

S. Har-Peled and K.R. Varadarajan. Projective clustering in high dimensions
using core-sets. In Proceedings 18th Annual Symposium on Computational
Geometry, pages 312-318, 2002.

S. Har-Peled and K.R. Varadarajan. High-dimensional shape fitting in linear
time. Discrete and Computational Geometry, 32:269-288, 2004.

J.A. Hartigan. Clustering algorithms. Wiley series in probability and math-
ematical statistics. John Wiley and Sons, New York, 1975.

E. Helly. Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten.
Jahresbericht der Deutschen Mathenatiker- Vereinigung, 32:175-176, 1923.

C. Helmberg. Semidefinite programming for combinatorial optimization. Ha-
bilitationsschrift, TU Berlin, 2000.

J. Hershberger. A faster algorithm for the two-center decision problem. In-
formation Processing Letters, 47(1):23-29, 1993.

M. Hoffmann. Covering polygons with few rectangles (extended abstract). In
17th European Workshop on Computational Geometry (EuroCG '01), pages
39-42, 2001.

M. Hoffmann. A simple linear algorithm for computing rectilinear 3-centers.
Computational Geometry: Theory and Applications, 31(3):150-165, 2005.

A.F. Holmsen. Recent progress on line transversals to families of translated
ovals. In J.E. Goodman, J. Pach, and R. Pollack, editors, Surveys on discrete
and computational geometry: twenty years later, volume 453 of Contemporary
Mathematics, pages 283-297. AMS, 2008.

M. Hudelson, V. Klee, and D. Larman. Largest j-simplices in d-cubes: Some
relatives of the Hadamard maximum determinant problem. Linear Algebra
and its Applications, 241/243(1-3):519-598, 1996.

G. Ilizarov. Clinical application of the tension-stress effect for limb lengthen-
ing. Clinical Orthopaedics and Related Research, 250:8 — 26, 1990.

G. Ilizarov. Transosseous osteosynthesis: Theoretical and clinical aspects of
the regeneration and growth of tissue. Springer Verlag, Berlin, Heidelberg,
New York, 1992.

AK. Jain and R.C. Dubes. Algorithms for clustering data. Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

127



Bibliography

[39]

[90]

[91]

[92]

[100]

[101]

102]

128

V.A. Jakubovi¢. Minimization of quadratic functionals under quadratic con-
straints and the necessity of a frequency condition in the quadratic criterion
for absolute stability of nonlinear control systems. Soviet Mathematics Dok-
lady, 14(2):593-597, 1973.

V.A. Jakubovi¢. S-procedure in nonlinear control theory. Vestnik Leningrad
University, 4(1):73-93, 1977.

J.W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean
two-center problem. In Proceedings of the 10th Annual Symposium on Com-
putational Geometry, pages 303-311. ACM Press, 1994.

J.W. Jaromczyk and M. Kowaluk. The two-line center problem from a polar
view: a new algorithm and data structure. In Algorithms and Data Structures,
volume 955 of LNCS, pages 13-25, 1995.

F. John. Extremum problems with inequalities as subsidiary conditions. In
Courant Anniversary Volume, pages 187-204. Interscience, 1948.

U.T. Jonsson. A lecture on the S-procedure. KTH Lecture Notes, Royal Insti-
tute of Technology, Stockholm, Sweden, http://www.math.kth.se/~ulfj/
5B5746/Lecture.ps, 2006.

H.W.E. Jung. Uber die kleinste Kugel, die eine rdumliche Figur einschlieft.
Journal fiir die reine und angewandte Mathematik, 123:241-257, 1901.

M. Katchalski. Thin sets and common transversals. Journal of Geometry,

14(2):103 - 107, 1980.

M.J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing unde-
sirable facilities. Computers & Operations Research, 29(13):1859-1872, 2002.

V. Klee. Circumspheres and inner products. Mathematica Scandinavica,

8:363-370, 1960.

E. de Klerk. Aspects of semidefinite programming. Kluwer Academic Pub-
lishers, 2002.

S. Konig. Containment mit Ellipsoiden, elliptischen Zylindern und Kegeln.
Projektarbeit, Zentrum Mathematik, Technische Universitat Miinchen, 2008.

P. Kumar. Clustering and reconstructing large data sets. PhD thesis, Depart-
ment of Computer Science, Stony Brook University, 2004.

P. Kumar, J.S.B. Mitchell, and E.A. Yildirim. Approximate minimum en-
closing balls in high dimensions using core-sets. Journal of Ezperimental
Algorithmics, 8, 2003.



Bibliography

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

P. Kumar, J.S.B. Mitchell, and E.A. Yildirnm. Minimum enclosing balls:
Matlab code. http://www.compgeom.com/~piyush/, 2003.

P. Kumar and E.A. Yildirim. Minimum volume enclosing ellipsoids and core
sets. Journal of Optimization Theory and Applications, 126(1):1-21, 2005.

C.L. Lawson. The smallest covering cone or sphere (C. Groenewod and L.
Eusanio). SIREV, 7(3):415 — 416, 1965.

M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-
order cone programming. Linear Algebra and its Applications. Special Issue

on Linear Algebra in Control, Signals and Image Processing, 284:193-228,
1998.

L. Lovasz. Recent Advances in Algorithms and Combinatorics, chapter
Semidefinite programs and combinatorial optimization, pages 137-194. CMS
Books in Mathematics. Springer, 2003.

O.L. Mangasarian, R. Setiono, and W.H. Wolberg. Pattern recognition via
linear programming: theory and application to medical diagnosis. In T.F.
Coleman and Y. Li, editors, Large-Scale Numerical Optimization, pages 22—

31. STAM, 1990.

J. Matousek and B. Gartner. Understanding and Using Linear Programming.
Springer, 2007.

N. Megiddo. On the complexity of some geometric problems in unbounded
dimension. Journal of Symbolic Computation, 10(3/4):327-334, 1990.

V.J. Milenkovic. Rotational polygon containment and minimum enclosure.
In Proceedings of the 14th Annual Symposium on Computational Geometry,
pages 1-8, 1998.

A. Nemirovski. Advances in convex optimization: Conic programming. In
M. Sanz-Sol, J. Soria, J.L. Varona, and J. Verdera, editors, Proceedings of
International Congress of Mathematicians, volume 1, pages 413-444, Madrid,
2007. EMS - European Mathematical Society Publishing House.

F. Nielsen and R. Nock. Approximating smallest enclosing balls. In F. Nielsen
and R. Nock, editors, Computational Science and Its Applications - ICCSA
2004, volume 3045 of LNCS, 2004.

A. Packer. NP-hardness of largest contained and smallest containing simplices
for V- and H-polytopes. Discrete and Computational Geometry, 28(3):349—
377, 2002.

129



Bibliography

[115] F. Plastria. Solving general continuous single facility location problems by
cutting planes. Furopean Journal of Operational Research, 29:98-110, 1987.

[116] 1. Pélik. Addendum to the sedumi user guide version 1.1. Technical report,
Advanced Optimization Laboratory, McMaster University, 2005.

[117] C.M. Procopiuc. Clustering problems and their applications: A survey. De-
partment of Computer Science, Duke University, 1997.

[118] C.V. Robinson. Spherical theorems of Helly type and congruence indices of
spherical caps. American Journal of Mathematics, 64(1):260-272, 1942.

[119] L. Roth. Exakte und e-approximative Algorithmen zur Umkugelberechnung.
Diplomarbeit, Zentrum Mathematik, Technische Universitat Miinchen, 2005.

[120] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986.

[121] M. Sharir. Algorithmic motion planning in robotics. Computer, 22(3):9-20,
1989.

[122] M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete
and Computational Geometry, 18:125-134, 1997.

[123] M. Sharir and E. Welzl. Rectilinear and polygonal p-piercing and p-center
problems. In Proceedings of the 12th Annual ACM Symposium on Computa-
tional Geometry, pages 122-132, 1996.

[124] C.-S. Shin, J.-H. Kim, S.K. Kim, and K.-Y. Chwa. Two-center problems
for a convex polygon (extended abstract). In Proceedings of the 6th Annual

FEuropean Symposium on Algorithms, volume 1461 of LNCS, pages 199-210,
1998.

[125] R. Shioda and L. Tungel. Clustering via minimum volume ellipsoids. Com-
putational Optimization and Applications, 37(3):247-295, 2007.

[126] J.F. Sturm. Using SEDUMI 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.

[127] P. Sun and R. Freund. Computation of minimum volume covering ellipsoids.
Operations Research, 52(5):690 — 706, 2004.

[128] A. Suzuki and Z. Drezner. The p-center location problem in an area. Location
Science, 4(1/2):69-82, 1996.

[129] J.J. Sylvester. A question in the geometry of situation. The Quarterly Journal
of Mathematics, 1:79, 1857.

130



Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

[139]

[140]

[141]

[142]

R.C. Thompson. Singular values, diagonal elements, and convexity. SIAM
Journal on Applied Mathematics, 32(1):39-63, 1977.

A. del Val. On 2-SAT and renamable Horn. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, pages 279-284, 2000.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Reviews,
38(1):49-95, 1996.

K.R. Varadarajan, S. Venkatesh, Y. Ye, and J. Zhang. Approximating the
radii of point sets. SIAM Journal on Computing, 36(6):1764-1776, 2007.
Preliminary versions 2002, 2003.

V.V. Vazirani. Approximation Algorithms. Springer-Verlag, corrected second
edition, 2003.

H. Wei, A.T. Murray, and N. Xiao. Solving the continuous space p-centre
problem: planning application issues. IMA Journal of Management Mathe-
matics, 17:413-425, 2006.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, number 555 in LNCS,
pages 359-370. Springer-Verlag, 1991.

R. Wenger. Progress in geometric transversal theory. In B. Chazelle, J.E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational
Geometry, pages 375-393. AMS, Providence, 1998.

G. Xu and J. Xu. An efficient k-center clustering algorithm for geomet-
ric objects. 14th Annual Fall Workshop on Computational Geometry, MIT,
Cambridge, MA, 2004.

A.C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11:721-736, 1982.

E.A. Yildirnm. Two algorithms for the minimum enclosing ball problem.
SIAM Journal on Optimization, 19(3):1368-1391, 2008.

H. Yu, P.K. Agarwal, R. Poreddy, and K.R. Varadarajan. Practical methods
for shape fitting and kinetic data structures. In Proceedings of the 20th Annual
Symposium on Computational Geometry, pages 263 —272, 2004.

G.L. Zhou, K.C. Toh, and J. Sun. Efficient algorithms for the smallest enclos-
ing ball problem. Computational Optimization and Applications, 30(2):147—
160, 2005.

131



132



Index

1-center, Euclidean, see ball, smallest
enclosing

1-ray, anchored, 71, 77-82, 84-95, 98—
100

2-SAT, 15, 44, 46

3-SAT, 15, 68, 108

annulus, 28, 66
approximation algorithm, 15, 23-28,
49-56, 61-64, 73-98, 105-106

B, see ball, Euclidean
ball
Euclidean, 10, 21-24, 28, 32, 37,
42, 48, 60-62, 109
smallest enclosing, 1, 11, 21
body
convex, 10
outer parallel, 23, 71
bone, 3, 104, 105
box, 34, 45
bounding, 13, 76
branch-and-bound, 17, 49-53, 95-97,
100-102
branch-and-cut, 17

cap, spherical, 71, 84

cluster, 3, 37, 38, 4042, 50, 51

C,, see container

coloring, 39-41, 43

cone, 6870, 84

constraint
convex, 22, 28, 55, 64, 71, 84
integer, 17, 54

linear, 16, 20, 22, 29, 30, 34, 35,
54, 85-87, 90, 100
nonconvex, 74
container, 10
containment
inner, 9, 104
optimal, 9
outer, 9, 13
under homothety, 11, 14, 19-35
under rotation, 11, 65-102
under similarity, 12, 6572
core-set, 14
1-center, 21, 24, 51
cylinder, 76-84, 90-102
k-center, 49-53, 56, 61
covering, 4
cross polytope, 10, 21, 30, 66
cube, 10, 15, 37, 38, 42, 45, 49, 51, 60
cutting plane, 24-35
cvx, 29, 30
cylinder, 66, 68, 70-72, 105
anchored, 70, 74, 82—-84, 95-97, 100—
102
elliptical, 113
smallest enclosing, 12, 70, 73-77
traversing, 105, 107, 108

diameter, 38, 40, 73, 76
spherical, 71
dilatation, 10
discretization, 6568, 105-108
disk, 108, 110
distance
functional, 10, 38, 51-54

133



Index

graph, 39, 43
double-ray center, 72
duality theorem, 90

ellipsoid, 41, 75, 105, 110
enclosing, 13, 74
method, 16, 17, 23, 25

epigraph, 25, 28

extremity correction, 3, 104

face, 62

facility location, 4

Fe, see distance functional
feasibility problem, 71

G(p), see distance graph
graph
bipartite, 38
complete, 41
greedy, 38, 40

‘H-polytope, 10, 19, 30
Hadamard matrix, 65
Hadwiger’s transversal theorem, 77
half-diameter, see diameter
half-space lemma, 24, 78, 93, 94
Hamming distance, 2
Helly’s theorem, 15, 32, 51, 71, 77
Helly number, 15, 38, 40
homothety, 10
hull

affine, 9

convex, 9

linear, 9

positive, 9
hyperplane, separating, 85, 108
hyperplane representation, 10, see also

‘H-polytope

ILP, 17
inequality, geometric, 41, 42, 73-74
interior-point method, 16, 33, 88

j-radius, outer, 14

134

John’s theorem, 10
Jung’s inequality, 41

k-center, 1, 3, 4, 37, 49

k-containment
under homothety, 12, 37-64
under rotation, 13, 72, 84
under similarity, 13, 66, 72

k-line center, 77

k-median, 4

k-ray, anchored, 72, 84

kernel, 15, 76

label, 39, 50, 51, 56, 63, 83, 84, 97, 100
location planning, 1, 2, 61

LP, 16, 17, 19, 20, 25, 30, 34, 35
LP-type, 16, 21, 24, 72

m, 11
Matlab®©, 29, 30, 56, 98
MCPxom, MCPgry, and MCPs;n, see

containment
MCP%, .., MCP% .. and MCP%, , see
k-containment
Minkowski
space, 10, 42

sum, 2, 10, 22, 23
symmetry, 10, 11, 41, 42
MIP, 17, 54
motion planning, 5

n, 9
nail, intramedullary, 3, 104
norm, 9

NP, 15, 68, 108

objective, 14, 16, 24, 25, 28, 35, 38,
75, 85, 87, 88

oracle, 50, 51, 83, see also separation or-
acle

P, 11
packing, 4
parallelotope, 40, 45-48



Index

partitioning, 37-49, 56
permutation, geometric, 109
piercing, 4
programming
convex, 16, 19, 29
integer linear, see ILP
linear, see LP
mixed integer, see MIP
quadratic, see QP
second-order-cone, see SOCP
semidefinite, see SDP
projection, 55, 73, 75, 78, 81, 91, 93,
106, 107
PTAS, 15, 49, 61, 95

QP, 16, 84-89

rank, 74, 75

relaxation, 54, 55, 75, 76
Ryom (P, C), 11
Ruom (P, Cy, . ..
RE.(P,C), 12
robot placement, 2, 22, 66
rotation, 10

Rypet(P,C), 11
Rsim(P,C), 12

,Cr), 12

S, see sphere, Euclidean
scalar product, 9
Schur complement, 106
SDP, 16, 71, 74, 75, 105, 106
search, binary, 25, 85, 89
section, conical, 2, 66
SeDuMi, 29, 58
sender location, 3, 22, 66, 68
separation oracle, 17, 19, 23-25
similarity, 10
simplex, 24, 34, 41, 42
enclosing, 14
method, 16, 33
slab, 70, 76
SOCP, 16, 21, 29, 35, 55, 63, 71
sphere, Euclidean, 10, 66, 108

string, binary, 1
subdivision, barycentric, 28, 66
subgradient, 16, 24

translation, 10

transversal, 77, 109
triangulation, 28, 66
Turing machine, 15

V-polytope, 10, 20, 30, 61-64

vertex representation, 10, see also V-
polytope

volume, 14, 74, 113

Voronoi cell, 62

width, 76

Xpress-MP®©, 29, 33, 98

zonotope, 23

135



