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Abstract—Achieving the boundary of the capacity region in
the multiple-input multiple-output (MIMO) broadcast channel
requires the use of dirty paper coding (DPC). As practical nearly
optimum implementations of DPC are computationally complex,
purely linear approaches are often used instead. However, in this
case, the problem of maximizing a weighted sum rate constitutes
a nonconvex and, in most cases, also a combinatorial optimization
problem. In this paper, we present two heuristic nearly optimum
algorithms with reduced computational complexity. For this
purpose, a lower bound for the weighted sum rate under linear
zero-forcing constraints is used. Based on this bound, both greedy
algorithms successively allocate data streams to users. In each
step, the user is determined that is given an additional data stream
such that the increase in weighted sum rate becomes maximum.
Thereby, the data stream allocations and filters obtained in the
previous steps are kept fixed and only the filter corresponding
to the additional data stream is optimized. The first algorithm
determines the receive and transmit filters directly in the down-
link. The other algorithm operates in the dual uplink, from which
the downlink transmit and receive filters can be obtained via the
general rate duality leading to nonzero-forcing in the downlink.
Simulation results reveal marginal performance losses compared
to more complex algorithms.

Index Terms—Broadcast channel, linear precoding, mul-
tiple-input multiple-output (MIMO) systems.

I. INTRODUCTION

A popular method to achieve a point on the boundary of
the capacity region of the multiple-input multiple-output

(MIMO) broadcast channel, which has recently been found in
[1], is to solve a weighted sum rate maximization. Viswanathan
et al. have first presented a solution to this problem for the
MIMO broadcast channel [2] and more efficient algorithms have
been developed afterwards in [3], [4] and in [5] for multiple-
input single-output (MISO) systems. By varying the weights,
different points on the boundary can be achieved. In other ap-
plications, where a weighted sum rate maximization occurs, the
weights correspond to the priorities of the users or the length
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of the queues of the users [5]. Other quality-of-service (QoS)
constrained problems in the MIMO broadcast channel are often
solved by an iterative application of the weighted sum rate max-
imization, i.e., the appropriate weights are determined fulfilling
the given QoS constraints and optimizing the objective function
in an iterative manner. That applies for the problem of maxi-
mizing sum rate under a total power and relative rate constraints
[6], the maximization of a weighted sum rate under a power
constraint and minimum rate requirements [7], and the mini-
mization of transmit power required to satisfy minimum rate re-
quirements [8]. All these algorithms operate on the boundary
of the capacity region and therefore require the use of dirty
paper coding (DPC) [9]. To achieve the capacity region with
DPC in practice, numerically complex methods such as vector
precoding [10] or the coding scheme from [11] must be em-
ployed. The latter method also exhibits long encoding delays.
When some losses in sum rate compared to the optimum are ac-
ceptable, the complexity of the implementation of DPC can be
reduced, for example through the use of Tomlinson-Harashima
precoding (THP) [12], [13]. The reasons for the suboptimality
of this scheme are for example explained in [14]. Nevertheless,
THP still exhibits practical challenges, such as the implementa-
tion of modulo operators at all receivers due to the dynamics of
the received signals. For this reason, linear approaches, which
minimize or cancel completely the interference between data
streams by linear signal processing and therefore avoid the use
of DPC, are of high practical relevance. However, in contrast
to the DPC case, determining the optimum transmit and re-
ceive filters requires the solution of a nonconvex optimization
problem. In case the sum of receive antennas at the terminals
in the system is larger than the number of transmit antennas
at the base station—a setup that is very likely in a practical
system—the optimization problem additionally becomes com-
binatorial. Obviously that is the case when zero-forcing is em-
ployed at the transmitter, as the number of data streams that can
be multiplexed in space is limited by the number of transmit
antennas and a combinatorial search for the optimum alloca-
tion of data streams to users is required. In [15], it has been
shown that such a combinatorial search is also required for the
optimum linear solution without zero-forcing constraints, as the
(weighted) sum rate utility is nonconcave. Since globally op-
timum solutions have prohibitive complexity, one has to go for
locally optimum ones which are prone to converge to local op-
tima with the same stream configuration they have been initial-
ized with, see the precoder based projected gradient approach
in [16]. Hence, all possible stream configurations would in prin-
ciple have to be probed to come to an almost globally optimum
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performance which then leads to the combinatorial search. Fur-
thermore, the optimum rate region achievable with linear pre-
coding still constitutes an open problem. Only for the special
case of two users and single antenna receivers a solution to
achieve points on the boundary of the rate region has been pre-
sented in [17]. The problem of weighted sum rate maximization
with linear precoding is claimed to be solved by the algorithm
of [16]. However, convergence to the optimum solution is not
guaranteed and strongly depends on the initialization. The algo-
rithm works iteratively, requires formulating and solving a geo-
metric program in each step and is based on a repeated trans-
formation from the dual multiple access channel to the broad-
cast channel and back enabled by the single data stream duality
of [18]. A general concept for the duality between these chan-
nels with joint coding has been developed in [19]. Due to the
involved repeated formulations and solutions of geometric pro-
grams, the algorithm of [16] exhibits a considerable amount of
computational complexity. The approach presented in [20] also
requires an iterative application of geometric programming. Be-
sides aiming at maximizing a weighted sum rate, [20] considers
the problem of feedback reduction. A projected gradient method
is used to solve the weighted sum rate maximization problem
with linear precoding in [4] and [15].

To avoid the complexity associated with the power alloca-
tion, which requires the use of geometric programming in [16]
and [20], linear zero-forcing techniques will be employed in this
paper. Interference is thereby suppressed completely by linear
signal processing. We first apply linear zero-forcing directly in
the downlink and then in the dual uplink, where from the fil-
ters in the downlink can be computed via the general duality
of [19]. In case the number of transmit antennas is larger than
or equal to the total number of receive antennas in the system,
block diagonalization (BD) [21] can be applied to determine the
precoders in the downlink for complete interference suppres-
sion, that reduces to zero-forcing beamforming (ZFBF) [22] in
MISO systems. However, if the number of transmit antennas is
smaller than the total number of receive antennas, not all users
get as many data streams as they have receive antennas. Thus,
a search for the best allocation of data streams to users is in-
evitable. Optimally this would imply an exhaustive search over
all possible allocations. As such a search becomes infeasible al-
ready for a moderate number of users, several heuristic methods
for this problem have been proposed.

For the special case of equal weights for all users, i.e., max-
imization of sum rate, heuristic user selection methods for BD
have been proposed in [23], [24], and [25]. For ZFBF in MISO
systems, this selection is performed in a greedy manner in [26],
i.e., beginning with the strongest user, a data stream is given to
the user that leads to the strongest increase in sum rate in each
step. A low complexity implementation of the algorithm is pre-
sented in [27]. In [28], the required search for the best user in
each step is simplified by excluding users due to their spatial
channel properties. These approaches for MISO systems can be
extended to MIMO by simply applying the left singular vectors
of each user’s channel matrix as receive filters and considering
each resulting product of singular value and corresponding right
singular vector as a virtual user channel. A more advanced ex-
tension of the algorithm from [26] to MIMO can be found in

[29], where the receive filters are initialized with the left singular
vectors and adjusted in case when more than one data stream is
allocated to one user. An algorithm which includes the receive
filters into the successive optimization and is additionally less
complex than the previous approaches at no performance loss
is described in [30] and [31]. The concept of successive filter
determination is also utilized in [32] for sum rate maximization
in the downlink as well as the uplink. As the algorithms in [32]
rely on an a priori fixed power allocation, their application to the
weighted sum rate maximization considered in this paper is not
straightforward. In [33], the concept of successive allocation is
extended to the problem of weighted sum rate maximization for
MISO systems, where the weighted sum rate is approximated by
a lower bound to avoid computing sum rates explicitly for each
tested user in every step. As in [33] for MISO systems, we also
employ a successive allocation of data streams to users, where
in each step not only the user but also the corresponding filter at
the user that lead to the strongest increase in weighted sum rate
are determined. Since even with this simplification the resulting
optimization problem is still too complex, we use a lower bound
for the weighted sum rate. By maximizing this lower bound, the
resulting optimization can be solved via the computations of
generalized eigenvectors and in contrast to state-of-the-art ap-
proaches, no iterative application of the algorithm is required at
marginal performance loss. The proposed allocation can be ap-
plied directly in the downlink as well as in the dual uplink.

The outline of the paper is as follows: After explaining the
system model in Section II, the main concept of the proposed
linear zero-forcing scheme for weighted sum rate maximization
is explained in Section III. The algorithm operating directly in
the downlink is presented at a glance in Section IV and the algo-
rithm based on the duality between uplink and downlink is de-
scribed in Section V. Simulation results are shown in Section VI
and the paper is concluded in Section VII.

Notation: Bold lower and uppercase letters denote vectors
and matrices, respectively. and describe the transpose
and the Hermitian of a matrix, respectively. , ,

, , and are the maximum eigenvalue, the trace,
the determinant, the Frobenius norm, and the element in row

and column of the matrix , respectively. denotes the
Moore-Penrose pseudoinverse of the matrix , stacks
the columns of the matrix in one vector and
denotes a diagonal matrix with the elements on its
diagonal. is the identity matrix, is the zero
matrix, and denotes the th canonical unit vector.
and denote the nullspace of the matrix and the
orthogonal complement to this nullspace, respectively.

II. SYSTEM MODEL

We consider a multiuser MIMO system with one base station
and noncooperative users. The base station is equipped with

antennas and the number of antennas at user is denoted by
. The system model of the broadcast channel is depicted in

Fig. 1. denotes the th user’s precoding matrix in
the broadcast channel, where accounts for the number
of data streams of user . and
are the channel and the receive filter of user , respectively.
We assume that each user has perfect knowledge of its channel
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Fig. 1. System model of the MIMO broadcast channel.

matrix and all users’ channels are perfectly known at the
base station. denotes the additive noise experienced
by user , where we assume in the following that is circu-
larly symmetric Gaussian with zero mean and identity covari-
ance matrix, i.e., . All noise signals are un-
correlated with all input signals , which have been
encoded with Gaussian codebooks, i.e., . The
received signal of user in the downlink is then given by

When no DPC is used, the th user’s rate computes according
to

(1)

The average power constraint at the base station implies that
.

III. SUCCESSIVE WEIGHTED SUM RATE MAXIMIZATION

We consider the maximization of a weighted sum of the users’
rates employing linear signal processing only, which leads to the
following optimization problem for the broadcast channel:

maximize maximize

s.t. (2)

with a priori given weights . Note that in (2)
for all users . The case that a user can transmit
over less than active data streams is modeled by allocating
zero power to the inactive data streams. Equation (2) consti-
tutes a nonconvex optimization problem even in the dual uplink,

for which to the authors’ best knowledge no optimum solution
has been found so far. We, therefore, propose to simplify the
problem in three steps.

1) Introduction of Zero-Forcing Constraints: We impose
zero-forcing constraints such that the data streams of different
users do not interfere with each other. Although at low SNR
zero-forcing suffers from noise enhancement, zero-forcing is
optimum when interstream interference becomes dominant at
high SNR. Introducing these zero-forcing constraints, Opti-
mization (2) reduces to

maximize

s.t.

(3)

The zero-forcing constraints in (3) imply that at most data
streams can be active, i.e., obtain nonzero power. Consequently,
an exhaustive search for the optimum allocation of data streams
to users would be necessary if the global optimum shall be
found. Considering the fact that there are pos-

sible allocations, where , this problem becomes
infeasible already with a moderate number of users. Further-
more the problem of determining the optimum transmit and re-
ceive filters for a fixed allocation is still nonconvex.

In (3) can be right-hand side (RHS) multiplied with any
invertible matrix without changing the objec-
tive function and the constraints. Consequently, if maxi-
mizes (3), so does . We can therefore restrict
to have orthonormal columns without changing the optimiza-
tion problem to simplify the rate expression in (3). Thus, (3) is
equivalent to

maximize

s.t.

(4)

Still, the solution of (4) is not unique with respect to and
as multiplying these matrices RHS with any or-

thonormal matrix does not change the objective function nor the
constraints. We can therefore restrict the matrices to
be diagonal, which leads to the following optimization problem

maximize

s.t.

(5)
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This way, the power allocation over the resulting interference-
free data streams is drastically simplified as it can be found with
weighted water-filling and all zero-forcing constraints in (5) can
be incorporated easily into the objective function as described
in the following. Consider the case that data streams are active,
which are indexed by . denotes the receive filter
for the th data stream and is the user to which the th
data stream is allocated to. Note that therefore corresponds to
one column of in our system model. Then the composite
channel matrix can be defined as

... (6)

From now on, corresponds to the number of active data
streams, i.e. the columns of and corresponding to
inactive data streams are omitted. Furthermore we subsume the
precoders of the active data streams into the effective precoder

, from which each precoding matrix can be obtained
by extracting all columns that correspond to data streams
allocated to user 1. The effective precoder can be de-
rived from the composite channel matrix with the zero-forcing
constraints according to

(7)

The pseudoinverse is used to diagonalize the composite
channel. This precoder structure leads to the optimum solu-
tion of (5) (e.g., [34, Theorem 1]). The diagonal matrix

is necessary to set the column norms of the
pseudoinverse multiplied by to unity, i.e.,

(8)

such that the power can be allocated to the subchannels ac-
cording to . The weighted sum rate
after step can be written as [cf. (5)]

(9)

where the ’s depend on the set of allocated users
and on the receive filters as shown in

(8) and (6). Maximizing (9) with respect to the nonnegative
’s under a total transmit power constraint leads to a concave

optimization problem. By solving the Karush-Kuhn-Tucker
conditions [35], we obtain

(10)

where is chosen such that the transmit power constraint is
fulfilled with equality, i.e., .

1All columns � � �� � � � � � of ��� for which ���� � � are therefore
collected in ��� .

2) Successive Data Stream Allocation and Filter Computa-
tion: To avoid the full combinatorial search necessary to solve
(5), we follow a greedy successive allocation scheme along the
lines of [26] and [33], i.e., the user allocation of the previous
steps is kept fixed. The resulting problem in step can therefore
be written as

s.t.

(11)

For , (11) reduces to

s.t. (12)

Correspondingly is the eigenvector belonging to the strongest
eigenvalue of the channel Gram matrix . As the
receive filters are coupled with each other via the pseudoin-
verse and both the channel gains and the optimum power alloca-
tion depend on the pseudoinverse, (11) becomes intractable for

. As proposed in [30] for the sum rate maximization with
equal weights, we also keep the receive filters of the previous
steps fixed, which leads to the following optimization problem:

s.t. (13)

Problem (13) is solved by first computing the optimum receive
filters for every user , i.e.

s.t. (14)

Afterwards these receive filters optimum with respect to
(14) are used to compute the weighted sum rates and the next
data stream is allocated to that user that leads to the largest
weighted sum rate, i.e.,

(15)

While for given receive filters , (15) can be solved straight
forwardly via computing (9) with (8) and (10) for every user,
(14) is still nonconvex, as all channel gains depend
on via the pseudoinverse [cf. (8)].

Authorized licensed use limited to: T U MUENCHEN. Downloaded on April 19,2010 at 13:29:13 UTC from IEEE Xplore.  Restrictions apply. 



2288 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 4, APRIL 2010

3) Optimization of a Lower Bound: To make (14) more
tractable we use a lower bound for the weighted sum rate in the
following. This bound is given by

(16)

and has been derived in [36]. An alternative proof is presented in
Appendix A. Note that (16) is only valid, when all data streams
receive powers strictly greater than zero. For the finally chosen
user allocation this is always the case, as a data stream with zero
power cannot transmit data but imposes zero-forcing constraints
on the other users and therefore degrades those users’ channel
gains. The algorithm has therefore to prevent such a situation
by not choosing such a user allocation. As simulation results
will reveal, the bound in (16) is tight. Interestingly, this lower
bound can be achieved by using the composite channel matrix’s
pseudoinverse with normalized columns as precoder together
with sub-optimum powers . This
way, each data stream exhibits the same transmission rate. By
using the lower bound (16), (14) is approximated by

s.t. (17)

Using the successive update of the pseudoinverse with the
LQ-decomposition of the matrix derived
in [27], we have

(18)

As the matrix is independent of the index and the filter
, the optimization of the receive filter for user reduces to

[cf. (17)]

s.t. (19)

where we have inserted the unity norm constraint
into the denominator of the objective function. The objective

function in (19) is maximized by choosing to be a general-
ized eigenvector belonging to the principal generalized eigen-
value of the matrix pair and

. As the objective function is inde-
pendent of the norm of , the norm-one constraint on can be
easily fulfilled by taking the norm-one generalized eigenvector.
In the following, we will show that additionally the orthogo-
nality constraints with are also ful-
filled, when the objective function becomes maximum. At this
maximum fulfills

(20)

where corresponds to the maximum generalized
eigenvalue. Note that is
always invertible due to the fact that all eigenvalues are greater
than or equal to one. Therefore,

Due to the properties of the LQ-decomposition, the
vector lies com-
pletely in

. Therefore

As , and
are orthogonal for all with . The generalized
eigenvalue

can be expressed in terms of the maximum eigenvalue of the
matrix

(21)

i.e.,

By using (18) the weighted sum rate
can therefore be also expressed in

terms of the maximum eigenvalue of the matrix such
that

(22)
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TABLE I
OVERVIEW OF THE DOWNLINK ALGORITHM

In summary we have made the following simplifications to
approximate the optimum solution to (2) at drastically reduced
computational complexity. At first, zero-forcing constraints
have been introduced between data streams of different users
as well as data streams allocated to the same user. Secondly,
the allocation of data streams to users and the determination
of the corresponding receive filters has been conducted in a
successive manner, where in each step only the next allocated
user and its receive filter are determined. Thirdly, the receive
filters have been chosen to maximize a lower bound for the
weighted sum rate.

IV. DOWNLINK ALGORITHM

In this section we will give an overview of the proposed algo-
rithm operating directly in the downlink and comment on some
implementation aspects. A pseudocode of the algorithm is given
in Table I.

A. Initialization

The first user and the corresponding filter are determined
using (12), i.e.,

s.t.

B. Successive Allocation of Data Streams

The proposed method assumes that the users allocated in the
previous steps and the corresponding receive filters are kept
fixed and optimize the newly allocated data stream and the cor-
responding receive filter at the corresponding terminal, as de-
scribed in the following for a certain step .

1) Determination of Filters at the Terminals: For each user ,
whose allocated number of data streams is less than its number
of antennas, the receive filter in the downlink maximizing
a lower bound for the weighted sum rate is computed according
to (19)

s.t. (23)

where we have omitted the orthogonality constraints of (19),
which are inactive at the optimum. Note that above optimization
is independent of the weights . The same equation
has already been derived for the special case of equal weights for
all users in the downlink in [30] and [31]. Hence, we have shown
that the same receive filters also maximize a lower bound for
the weighted sum rate. For the sake of complexity reduction the
matrix inversion necessary in (23) can be avoided at the expense
of slight performance losses by using different downlink filters

s.t. (24)

Using the same reasoning as in [30] and [31] it can be shown that
the maximize an even looser lower bound for the weighted
sum rate. A derivation of this bound is given in Appendix B.

2) User Selection: For the user selection, the next data stream
is tentatively allocated to each user applying the receive filters

. For each allocation, the resulting weighted sum rate is
computed and the user that leads to the strongest increase in
weighted sum rate is finally selected, i.e.,

(25)

In case of the simplified receive filter determination (24), the
corresponding receive filters need to be used
in (25). Consequently a different user allocation can be obtained.
If it is observed that zero power is allocated to a data stream, this
data stream must be removed. This removal will lead most likely
to an increase of the other subchannel gains and therefore to an
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increase in weighted sum rate as one zero-forcing constraint is
removed from the optimization problem.

The user selection can be alternatively performed with the
lower bound from (22), i.e.

The usage of this bound only leads to marginal gains in terms of
computational complexity, since the power allocation according
to (10) exhibits negligible computational complexity compared
to the computation of the principal generalized eigenvalues.
However, this bound can be used for a user preselection. This
preselection implies that some users are excluded without
explicitly computing their generalized eigenvalues, which
helps to reduce the computational complexity dramatically. As
shown in Appendix C, the maximum eigenvalue of the matrix

can be bounded as follows:

(26)

The rationale of the proposed user preselection grounds on the
conservative rule that, if the upper bound of the estimated sum
rate allocating the next data stream to a certain user is smaller
than the maximum lower bound over all user allocations, that
user will certainly not lead to the maximum increase in esti-
mated weighted sum rate. Hence, only for users with

(27)

the maximum generalized eigenvalue needs to be computed.
Thus, with almost no additional effort matrix inversions can be
avoided and therefore the total complexity of the algorithm is
reduced drastically. Although this rule might be considered as
too conservative it turns out that in practical applications it has
a considerable impact on complexity reduction without any loss
of performance. For the selection of the first data stream ac-
cording to (12), which requires the computation of the principal
eigenvalues of the matrices , the lower and upper bounds
are given by

Fig. 2. System model of the MIMO multiple access channel.

which coincides with the bounds for principal eigenvalues in
[37, Ch 2.3] and leads to the same user preselection as proposed
in [38].

C. Termination

As with each next allocated data stream, the channel gains of
the previously allocated subchannels decrease, it might happen
that all possible new data stream allocations do not lead to any
increase in weighted sum rate. In that case the algorithm must
be terminated, which happens at the latest after .

D. Signaling of Receive Filters

Determining the filters at the terminals directly would re-
quire the knowledge of all users’ channel matrices at all termi-
nals, which is rather unrealistic in practice. The are therefore
determined solely at the transmitter. In a signaling phase before
data transmission these filters are made known to the receivers
together with the user allocation. Similarly to [32] or [39], this
can be done as follows. First common pilot symbols are sent to
the users, where the pilot symbols are precoded such that the
estimate is equal to the filters to be applied at the corresponding
users. In a second step user identifiers are sent over the resulting
subchannels such that each user is able to detect on which sub-
channels he will receive data. Alternatively, [40] proposes sig-
naling schemes with quantized feedforward of the terminals’ fil-
ters. It should be noted that the problem of signaling the receive
filters arises generally in the MIMO broadcast channel with per-
fect CSI at the transmitter, i.e., also with the algorithms from
[15], [16], [20], or [21].

V. DUALITY BASED WEIGHTED SUM RATE MAXIMIZATION

In this section we will present an algorithm that performs the
successive data stream allocation and filter determination in the
dual uplink and leads to additional gains by using minimum
mean square error (MMSE) filters in the uplink and further op-
timizing the receive filters after the transformation in the down-
link. First the system model of the dual uplink is introduced,
which is depicted in Fig. 2.

In the dual multiple access channel, decentralized users
transmit their data to the base station. To this end, user ’s
symbol vector is precoded with the matrix and
the filtered symbol vector then propagates over the Hermitian

Authorized licensed use limited to: T U MUENCHEN. Downloaded on April 19,2010 at 13:29:13 UTC from IEEE Xplore.  Restrictions apply. 



GUTHY et al.: EFFICIENT WEIGHTED SUM RATE MAXIMIZATION 2291

channel . At the receiver side, the signals of the users are
summed up and zero mean circularly symmetric Gaussian noise

with identity covariance matrix is added. Finally, the
linear filter generates the respective symbol esti-
mate of user out of the noisy received signal, with
ranging from 1 to . Therefore, the symbol estimate in the
dual uplink channel reads as

Similarly to the downlink rate term in (1), the rate of user that
can be achieved in the dual uplink under linear filtering can be
expressed as

In the dual uplink, we can optimize the weighted sum rate
under a total power constraint in the
same successive fashion as in the original downlink. This results
from the rate region duality between the MAC and the BC under
linear filtering, since any rate tuple in the broadcast channel
can also be achieved in the dual multiple access channel, and
vice versa, see [19]. Following the same argumentation as in the
downlink, jointly optimized transmit and receive filters cannot
easily be obtained one by one. Therefore, we restrict the filters
to completely suppress the interstream interference between all
allocated streams and end up with a zero-forcing system in the
dual MAC as well. Additionally, we again operate on a lower
bound of the weighted sum rate instead of the original utility.

Let denote the unit-norm beamforming vector associated
to the data stream that is allocated at the th step of the successive
algorithm and that belongs to user . To obtain , the vector

must be multiplied by the square root of the power allocated
to the th data stream2. Then, we can define a composite channel
matrix for the th stage in the dual MAC as the concatenation of
the channel and the unit-norm beamformers

(28)

Storing the receive filters for the active data
streams in the effective receive filter of stage

... (29)

the zero-forcing condition can compactly be written as

(30)

2The filters ��� are obtained from the ��� in the same way as the filters ��� are
determined from the ��� in the downlink.

and leads to the effective receive filters

(31)

representing the pseudoinverse of the composite channel
matrix. Feeding the unit-norm beamformers with
powers at stage , the received signal-to-noise
ratio (SNR) of the th stream with reads as

SNR (32)

cf. (8) for the downlink counterpart. Using (32), the weighted
sum-rate which is obtained by the zero-forcing transmission
strategy can be expressed as

(33)

and completely coincides with the downlink term (9) up to the
different variable names of the arguments. Note that the op-
timum water-filling results from (10) in the uplink as well. The
key observation here is that from now on, the same successive
algorithm to determine the receive filters in the down-
link can be applied to determine the unit-norm beamformers

in the dual uplink, no matter how this algorithm se-
lects those filters in detail. The power allocation does not differ
in both domains and the same SNRs are obtained for the active
data streams. The only difference is that any successive algo-
rithm in the downlink returns the receive filters from which the
transmitters are found via the pseudoinverse of the composite
channel, while the same successive algorithm in the dual uplink
returns the transmit filters.

It is worth to mention that due to the fact that the dual MAC
achieves the same rates as the original broadcast channel if
transmitters and receivers of both domains are designed ac-
cording to the successive algorithm, we would not have gained
anything by designing the successive algorithm in the dual
uplink. In order to go beyond this result, we propose replacing
the receive filters that arise from the zero-forcing algorithm
through optimum MMSE receive filters such that the joint
decoding of all streams of every single user leads to an increase
in every user’s rate. Doing so, the dual MAC system reacts
differently on the application of MMSE receivers

(34)

than the original system in the broadcast channel on its MMSE
receivers

(35)
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Fig. 3. Supported rate regions for different algorithms. � � � three-antenna
users are served by an � � � antenna base station. The weights � and �
have been varied to achieve the complete region.

On average, MMSE receivers lead to a larger increase of the
rates in the dual MAC, but not for every single channel real-
ization. Moreover, the transformation from the dual MAC to
the downlink entails the possibility for an additional gain of
rates. Since the duality transformation generates receive filters
in the broadcast channel which preserve the obtained rates in
the dual MAC but are not optimum, we can furthermore replace
the receivers in the transformed broadcast channel by MMSE
receivers. Summing up, we first perform the successive data
stream allocation with zero-forcing constraints until no increase
in weighted sum rate can be achieved by a further allocation.
Then we equip the dual MAC with MMSE receivers instead
of the ones of the algorithm in (31). This could also be done
directly in the broadcast channel but leads to smaller gains
there on average. Next, we convert the obtained filter pairs

to the downlink. The arising precoders
are then used to set up the MMSE receivers via

(35). Due to the special properties of our rate duality, the joint
decoding of every user’s streams will not become necessary,
separate stream decoding also achieves the two mentioned rate
gains, see [19]. As in the previous section, all filters are com-
puted at the base station and then signaled to the corresponding
user terminals.

VI. SIMULATION RESULTS

In order to evaluate the performance of the proposed algo-
rithms, we first plot the achievable two user rate regions by
varying the user weights and for a particular channel
realization and a fixed transmit power. Afterwards, we present
ergodic results by averaging the weighted sum rates over many
channel realizations for fixed weights and different transmit
powers. In Fig. 3, the rate of user 2 is plotted versus the
rate of user 1 where both users have antennas each
and are served by an antenna base station. The chosen
channel realization has been drawn from a complex Gaussian

distribution with independently and identically distributed en-
tries, i.e., . Obviously, all rate
regions of the linear filters are outer bounded by the capacity
region of the precoder incorporating nonlinear interference
cancellation via dirty paper coding. This outer bound (DPC)
corresponds to the black dash-dotted curve. Rate pairs on the
boundary of this region have been obtained with the weighted
sum rate maximization algorithm from [3] and the connec-
tion of widely separated rate pairs is done via time sharing.
Switching to the class of linear precoders, the successive
stream allocation approach in [15] utilizing iterative projected
gradient ascent steps performs best. Plotted with blue square
markers (Successive Gradient Ascent), its performance comes
at the expense of a relatively high computational complexity
compared to the two schemes proposed in this paper. These
two have approximately the same performance as the iterative
algorithm in [15], irrespective of whether they are implemented
in the broadcast channel directly (Proposed BC, red curve, cross
marker) or in the dual MAC with the twofold MMSE gain, but
much smaller complexity. As the rate region of the algorithm
operating directly in the broadcast exhibits hardly any visible
difference with the MAC+duality algorithm in this scenario,
we have omitted the latter region for a better visualization. If a
looser lower bound on the weighted sum rate is maximized by
choosing the precoders according to (24) to avoid the matrix
inversion, the dashed red curve (Proposed (BC) with L.B.) is
obtained which has to face slight deteriorations. The multiuser
MIMO system can be converted to a multiuser MISO system
model with virtual users by choosing the left singular vectors
of the channel matrices as the receive filters for the respective
users [28], [29]. Doing so, the green curve with the star markers
(MISO with SVD-Receivers) is achieved. This algorithm is only
slightly less complex than the proposed method. Although it
requires no generalized eigenvalue computations, a complete
SVD has to be computed for each user and instead of users
in each step virtual users need to be tested
for the maximum weighted sum rate, which implies that for
each of those virtual users the precoders have to be computed.
Furthermore it offers no possibilities for complexity reduction,
as the proposed method. By using the further lower bound for
the determination of filters at the terminals a better performance
than with the MISO algorithm can be achieved at a lower com-
putational complexity. Finally, the cyan-colored dash-dotted
curve (TDMA) shows the rate region of the time division
multiple access scheme. We did not simulate the algorithm in
[16] for weighted sum rate maximization due to complexity
reasons. In its original form in [16], the objective can only be
converted to a posynomial if all users have rational weights.
In this case, expanding the objective would lead to an huge
number of monomials in the posynomial. Moreover, the geo-
metric programming toolbox will rather apply the log operator
to the objective instead of expanding it. Thus, [16] inherently
corresponds to solving the original weighted sum rate problem
where every summand corresponds to the weighted rate of the
respective user.

To overcome the influence of a particular channel real-
ization, we average over 1000 independent realizations and
increase the number of users from two to , again with
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Fig. 4. Weighted sum rate versus transmit power for six different algorithms.
� � � three-antenna users are served by an � � � antenna base station. The
weights are � � � � � and � � � � �.

antennas each. Moreover, the user weights read as
and . Fig. 4 shows the averaged

weighted sum rate versus the logarithmic transmit power in
the small power regime. For very little transmit power , all
curves will coincide as only one data stream will be allocated
according to the best metric ,
see Section IV-A. If the transmit power is increased, different
weighted sum rates are obtained by the simulated algorithms
since now, more than one data stream will be activated. The
performance ranking of all algorithms in Fig. 4 matches that
from Fig. 3, and we again observe, that the two proposed
complexity reduced algorithms (Proposed (MAC+Duality)
and Proposed (BC)) almost achieve the same weighted sum
rate as the iterative algorithm (Successive Gradient Ascent)
from [15] despite their noniterative structure. Using the looser
bound on the weighted sum rate according to (24) to avoid a
matrix inversion for the computation of the strongest eigen-
mode (Proposed (BC) with L.B.) almost does not change the
performance, which is still better than the one of the MISO
algorithm with right singular vectors of the channels as re-
ceive filters (MISO with SVD-Receivers), see [28] and [29].
Simulation results for transmit powers between 20 and 24 dB
are shown in Fig. 5. All curves now seem to have the same
slope and differ only by a power shift. Again, the performance
ranking does not change even for such high . For the chosen
user weights, the two proposed algorithms reach the weighted
sum rate of the best simulated linear algorithm up to a power
shift of only 0.15 and 0.2 dB, respectively. By applying the
user preselection from (27), 25% of the necessary generalized
eigenvalue computations and 50% of the eigenvalue computa-
tions necessary for the selection of the user to which the first
data stream is allocated to can be avoided in this setting at 24
dB at no performance losses. This reduced complexity together
with the little performance losses clearly motivates the appli-
cation of the two proposed algorithms for weighted sum rate
maximization under linear filtering. For the channel averaged

Fig. 5. Weighted sum rate versus transmit power for six different algorithms.
� � � three-antenna users are served by an � � � antenna base station. The
weights are � � � � � and � � � � �.

Fig. 6. Actual and estimated weighted sum rate versus transmit power for the
proposed algorithm in the broadcast channel. � � � three-antenna users are
served by an � � � antenna base station. The weights are � � � � � and
� � � � �.

sum rate results the simulation of the algorithm in [16] has
again prohibitive complexity. Given the weights
and , the objective in [16, (9)] has more than
summands.

Finally, Fig. 6 compares the average weighted sum rate
achievable with the proposed algorithm in the broadcast with
the lower bound derived in (16). The same setting as for the
previous two simulations has been chosen, i.e., there are
users each equipped with antennas and a base station
with antennas. The weights have been chosen according
to , . The weighted sum rate and the
estimated sum rate has been averaged over 1000 independent
channel realizations. As shown in Fig. 6, the derived bound
approaches the actual weighted sum rate quite well.
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VII. CONCLUSION

In this paper, we have presented two heuristic algorithms
which aim at maximizing a weighted sum rate in the MIMO
broadcast channel by means of linear signal processing. The first
algorithm directly operates in the downlink, while the other one
works in the dual uplink, from which the downlink solutions
can be obtained via a general rate duality. To avoid the non-
convex and combinatorial optimization problems zero-forcing
constraints are introduced and a successive approach is used
in both cases. In each step, the user to which the next data
stream is allocated to and its corresponding filter are determined,
such that the increase in weighted sum rate becomes maximum,
whereas the user allocation and filters from previous steps are
kept fixed. To simplify things further a lower bound to compute
the weighted sum rate has been applied. This way, the filters
at the terminals can be determined by a generalized eigenvalue
problem.

APPENDIX A
DERIVATION OF A LOWER BOUND FOR THE

WEIGHTED SUM RATE

Plugging the optimum power allocation from (10) into the
weighted sum rate (9) and exchanging the sum of logarithms by
the logarithm of the product leads to

where the Lagrange multiplier in (10) reads as

under the assumption that all powers are strictly greater than
zero. As already explained below (16), for the finally chosen
user allocation this assumption always holds. By applying the
inequality between the weighted geometric and the weighted

harmonic mean (e.g., [33, Lemma 1]), we obtain a lower bound
for the weighted sum rate:

Finally, by using (8) we have

which leads to the desired result

APPENDIX B
DERIVATION OF A WEAKER LOWER BOUND FOR THE

WEIGHTED SUM RATE

In this section, we will derive a weaker lower bound
for the weighted sum rate

which can be obtained as follows:
[see (36) at the bottom of page]. Hence, the receive filters

(36)
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maximizing this lower bound can be determined as described
in (24)

s.t.

The first inequality is obtained by inserting (18) into (16). The
second inequality in (36) is due to the following:

which has been derived in [30] and [31]. We will review its
derivation here again for the sake of completeness.

(37)

which is independent of and . (a) stems from the facts that
is constrained to have norm one throughout the paper and that a
quadratic form is always smaller or equal to the product of
the maximum eigenvalue of and the norm of , where equality
holds if is a principal eigenvector of . Exploiting the fact that
the trace of a positive semi-definite matrix cannot be smaller
than the maximum eigenvalue of that matrix leads to (b). Finally
(c) is obtained with the same reasoning as (a), the introduction
of the -operator over all users and by using the identities

and .

APPENDIX C
LOWER AND UPPER BOUNDS FOR A

GENERALIZED EIGENVALUE PROBLEM

In this section we will derive a lower and an upper bound
for the maximum eigenvalue of a matrix , where

and are positive semi-definite Hermitian
matrices. For (23) we have and

. This maximum eigenvalue
can be upper bounded by (e.g. [41], Ch.9, Theorem H.1.a)

As the minimum eigenvalue of the matrix is greater than
or equal to one, when is positive semi-definite, the maximum
eigenvalue of its inverse is equal to or smaller than one. Further-
more the maximum eigenvalue of a positive semi-definite matrix

is smaller than or equal to the trace of that matrix which leads
to the upper bound

For the derivation of the lower bound we use the lower bound
for the maximum eigenvalue from [37], Ch. 2.3

where equality holds, if all eigenvalues are identical. Denoting
the eigenvalue decompositions of the matrices and

as

where the ’s and the ’s correspond to the eigenvalues of the
matrix and the matrix , respectively, we obtain

(38)

As is positive semi-definite, all its eigenvalues can be
upper bounded by its trace, i.e., . Hence, we can
lower bound the expression (38) as

As the vectors form an orthonormal basis, we obtain

(39)

which is the desired result.
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[26] G. Dimić and N. Sidoropoulos, “On downlink beamforming with
greedy user selection,” IEEE Trans. Signal Process., vol. 53, no. 10,
pp. 3857–3868, Oct. 2005.

[27] J. Wang, D. Love, and M. Zoltowski, “User selection with zero-forcing
beamforming achieves the asymptotically optimal sum rate,” IEEE
Trans. Signal Process., vol. 56, no. 8, pp. 3713–3726, Aug. 2008.

[28] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broad-
cast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas
Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

[29] F. Boccardi and H. Huang, “A near-optimum technique using linear
precoding for the MIMO broadcast channel,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Apr. 2007, vol. 3, pp.
III-17–III-20.

[30] C. Guthy, W. Utschick, G. Dietl, and P. Tejera, “Efficient linear suc-
cessive allocation for the MIMO broadcast channel,” in Proc. 42nd
Asilomar Conf. Signals, Syst., Comput., Oct. 2008.

[31] C. Guthy, W. Utschick, and G. Dietl, “Low complexity linear zero-
forcing for the MIMO broadcast channel,” IEEE J. Sel. Topics in Signal
Process., Special Issue on Managing Complexity in Multiuser MIMO
Syst., Dec. 2009.

[32] Y. Hara, L. Brunel, and K. Oshima, “Spatial scheduling with inter-
ference cancellation in multiuser MIMO systems,” IEEE Trans. Veh.
Technol., vol. 57, no. 2, pp. 893–905, Mar. 2008.

[33] J. Wang, D. Love, and M. Zoltowski, “User selection for the MIMO
broadcast channel with a fairness constraint,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2007, pp. III-9–III-12.

[34] A. Wiesel, Y. Eldar, and S. Shamai, “Zero-forcing precoding and
generalized inverses,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp.
4409–4418, Sep. 2008.

[35] M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming-Theory
and Applications, 3rd ed. New York: Wiley Interscience, 2006.

[36] C. Swannack, E. Uysal-Biyikoglu, and G. Wornell, “Low complexity
multiuser scheduling for maximizing throughput in the MIMO broad-
cast channel,” in Proc. 42nd Ann. Allerton Conf. Commun., Control,
Comput., 2004, pp. 440–449.

[37] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
MD: The John Hopkins Univ. Press, 1989.

[38] C. Guthy, W. Utschick, J. A. Nossek, G. Dietl, and G. Bauch, “Rate-in-
variant user preselection for complexity reduction in multiuser MIMO
systems,” in Proc. IEEE Veh. Technol. Conf. (VTC), Sep. 2008.

[39] P. Tejera, W. Utschick, G. Bauch, and J. Nossek, “Efficient
implementation of successive encoding schemes for the MIMO
OFDM broadcast channel,” in Proc. IEEE Int. Conf. Commun. (ICC),
Istanbul, Jun. 2006.

[40] C.-B. Chae, D. Mazzarese, T. Inoue, and R. Heath, “Coordinated beam-
forming for the multiuser MIMO broadcast channel with limited feed-
forward,” IEEE Trans. Signal Process., vol. 56, no. 12, pp. 6044–6056,
Dec. 2008.

[41] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications, ser. Math. Sci. Eng., R. Bellman, Ed. New York:
Academic, 1979, vol. 143.

Christian Guthy (S’10) was born in Munich, Ger-
many, in 1979. He received the B.Sc. and Dipl.-Ing.
degrees (the latter with summa cum laude) in elec-
trical engineering from the Technische Universität
München (TUM), Munich, in 2004 and 2005,
respectively.

Since 2005, he has been with the Associate
Institute for Signal Processing, TUM, where he is
currently working toward the Ph.D degree. His main
research interests include design and analysis of low
complexity signal processing algorithms for next

generation wireless communication systems with focus on multiantenna and
multicarrier systems.

Wolfgang Utschick (SM’06) was born on May 6,
1964. He completed several industrial education pro-
grams before he received the diploma and doctoral
degrees, both with honors, in electrical engineering
from the Technische Universität München, Germany
(TUM), in 1993 and 1998, respectively. In this period
he held a scholarship of the Bavarian Ministry of Ed-
ucation for exceptional students.

From 1998 to 2002, he codirected the Signal Pro-
cessing Group of the Institute of Circuit Theory and
Signal Processing, TUM. Since 2000, he has been

consulting in 3 GPP standardization in the field of multielement antenna sys-
tems. In 2002, he was appointed Professor at the TUM where he is Head of
the Fachgebiet Methoden der Signalverarbeitung. He teaches courses on signal
processing, stochastic processes, and optimization theory in the field of digital
communications.

Dr. Utschick was awarded in 2006 for his excellent teaching records at TUM,
and in 2007, he received the ITG Award of the German Society for Information
Technology (ITG). He is a senior member of the German VDE/ITG where he has
been appointed in the Expert Committee for Information and System Theory.
He is currently also serving as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on April 19,2010 at 13:29:13 UTC from IEEE Xplore.  Restrictions apply. 



GUTHY et al.: EFFICIENT WEIGHTED SUM RATE MAXIMIZATION 2297

Raphael Hunger (S’06) was born in Illertissen, Ger-
many, 1979. He studied electrical engineering at the
Technische Universität München (TUM), Germany,
from 1999 until 2005 and, in 2004, at the RWTH
Aachen, Germany. He received the Dipl.-Ing. and
Master of Science degrees in electrical engineering
from the TUM in 2004 and 2005, respectively.

Since 2005, he has been working toward the
doctorate degree at the Associate Institute for Signal
Processing, TUM. His research interests focus on
the joint optimization of transmitters and receivers

in multiuser MIMO communications.

Michael Joham (S’99–M’05) was born in Kufstein,
Austria, 1974. He received the Dipl.-Ing. and Dr.-
Ing. degrees (both summa cum laude) in electrical en-
gineering from the Technische Universität München
(TUM), Germany, in 1999 and 2004, respectively.

He was with the Institute for Circuit Theory and
Signal Processing, TUM, from 1999 to 2004. Since
2004, he has been with the Associate Institute for
Signal Processing, TUM, where he is currently a
Senior Researcher. During summers 1998 and 2000,
he visited Purdue University, West Lafayette, IN.

In spring 2008, he was a Guest Lecturer with the University of the German
Federal Armed Forces, Munich, and a guest professor with the University of A
Coruna, Spain. In winter 2009, he was a Guest Lecturer with the University of
Hanover, Germany. His current research interests are precoding in mobile and
satellite communications, limited rate feedback, MIMO communications, and
robust signal processing.

Dr. Joham received the VDE Preis for his diploma thesis in 1999 and the
Texas-Instruments-Preis for his dissertation in 2004. In 2007, he was a corecip-
ient of the Best Paper Award at the International ITG/IEEE Workshop on Smart
Antennas in Vienna.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on April 19,2010 at 13:29:13 UTC from IEEE Xplore.  Restrictions apply. 


