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Résumé—We propose an upper and a lower bound on the
mutual information of a pilot-aided MIMO link operating und er
imperfect receiver CSI. Said bounds depend on the linear channel
estimator employed. They can be understood as a generalization
of results from [1] and [2]. Furthermore, we prove that any
bijective operation performed on the channel estimation does
not modify the value of the mutual information bounds. Also,
we prove that any sufficient channel estimator is equivalently
optimal in terms of maximizing the upper and lower mutual
information bounds. These two properties result to be identical
to known properties of the true mutual information, namely the
invariance against bijective (invertible) operations performed on
the random variables, and the optimality of sufficient estimation
(e.g., [3]). The study of these bound properties offers new insights
and a deeper understanding of them, as compared to their
original derivation in [1] and [2]. To complete the analysis, we
show that the gap between the upper and lower bound (and
thus also between the true mutual information and the lower
bound) is generally upper-bounded by a constant which only
depends on the number of receive antennas. This can be seen as
a generalization of findings from [1]. Additionally, we showthat
by taking certain parameter interdependencies more accurately
into account, this bound gap becomes significantly smaller,and
the mutual information bounds are thus shown to be even tighter.
Finally, we focus on the optimization of the pilot symbols asa
function of the channel/noise statistics and derive the optimal
pilot sequence for a SISO channel.

I. I NTRODUCTION

Most of the papers onmultiple-input multiple-output
(MIMO) communications make the assumption that thechan-
nel state information(CSI) at the receiver side is error-free
(e.g., [4], [5]). The resultinglog-det expression for the data
rate enabled the waterfilling solution in [4], the efficient
solution for the MIMOmultiple access channel(MAC) in [6],
the duality results in [7], [8], [9], [10], the result for theMIMO
BC capacity region in [11], and the efficient solution for the
MIMO broadcast channel(BC) in [12], [13] for example.

Unfortunately, the receiver does not know the CSIa priori
and must therefore estimate it. Clearly, the resulting estimate
is only error-free approximately. In this paper, the case iscon-
sidered that the errors cannot be neglected. Consequently,the
classicallog-det expression for the mutual information is not
applicable anymore. The treatment of such channels is difficult
in general, especially due to the fact that the output distribution
for typical input alphabets such as Gaussian alphabets—and

thus the computation of mutual information—is intractable
and costly to estimate via simulation, let alone the capacity-
achieving distribution. While for less realistic assumptions
(e.g., perfectly known channel statistics at the transmitter
and the receiver), partial characterizations of the capacity-
achieving distributions have been achieved [14], results are
still scarce for the more realistic assumption of erroneousCSI.
In fact, accurate characterizations of these distributions do not
even exist for single-antenna systems, as of now.

Lower and upper bounds for the mutual information in the
case of erroneous CSI for asingle-input single-output(SISO)
system were proposed in [15]. The results from [15] were
then generalized to MIMO channels and employed in [2] for
predicting the amount of necessary channel estimation.

In [1] and [2], it is assumed that aminimum mean square
error (MMSE) channel estimator is used. By following the
ideas of these two works, we derive upper and lower mutual
information bounds for erroneous CSI that are valid for any
linear1 channel estimator. We will show that any sufficient
channel estimator is optimal for simultaneously maximizing
the upper and lower mutual information bound. Moreover,
unlike [1], we do not assume that the channel estimation error
covariance is a scaled identity matrix that does not depend
on the noise covariance, but take into account the existing
dependency between those two. In particular, this allows us
to show that the bounds are substantially tighter than in the
analysis of [1]. Finally, we derive the pilot sequence for a
SISO channel that maximizes the mutual information lower
bound.

II. SYSTEM MODEL

We use the standard MIMO model with anM ×N channel
matrix H , whose entries are zero-mean circularly symmetric
complex Gaussian distributed and can have any correlations,
i.e., h = vec(H) ∼ NC(0, Ch) with the covariance matrix
Ch = E[hhH]. The received signal for data transmission is

x = Hs + η ∈ C
M (1)

where s ∈ C
N is the MIMO channel input and the noise

is η ∼ NC(0, Cη). Under the assumption of perfect CSI at

1Here, linear estimators are optimal owing to the joint Gaussianity of the
observation and the channel.



the receiver and for Gaussian channel inputss, the mutual
information can be shown to be (e.g., [4])

I(s; x) = log det
(

I + C−1
η HCsH

H
)

. (2)

In this paper, however, it is assumed that the channelH is
not perfectly known to the receiver. Instead, it is estimated via
the pilot channel

xT = Sh + ηT (3)

with the matrix of training symbolsS ∈ CMT×MN , the noise
ηT ∼ NC(0, CηT) = NC(0, CT

η,time ⊗ Cη), where Cη,time

captures the temporal noise correlation, and the received signal
xT ∈ CMT of the pilot channel. The duration of the training
phase isT , and the sequence of training symbols is collected
in a matrixT ∈ C

N×T such thatS = T T ⊗ IM , where ‘⊗’
denotes the Kronecker product.

Clearly, since the training symbols are known to the re-
ceiver, the received signalxT and the channelh are jointly
Gaussian. Therefore, the optimal channel estimator is linear
and its output̂h is zero-mean Gaussian with covarianceC

ĥ
.

With the linear estimatorG ∈ CMN×MT , the estimate can be
written as

ĥ = GxT = G(Sh + ηT). (4)

Accordingly, Ĥ ∈ CM×N is the estimate ofH such that
ĥ = vec(Ĥ). The channel estimation error is the difference

Ω = H − Ĥ. (5)

We will often refer to it in vectorized form, i.e.,ω = vec(Ω).
With these variables, the equation (1) governing the MIMO
system can be rewritten as

x = Hs + η = Ĥs + η′, (6)

whereĤ can be seen as a perfectly known channel variable,
andη′ = Ωs+η ∈ CM is called theeffective noise[2]. Note
that unlike η, it is non-Gaussian and depends on the input
signals.

III. M UTUAL INFORMATION BOUNDS

A. Mutual Information

The quantity of interest is the mutual information between
the system inputs and the output pair(x, Ĥ). Due to the
Bayes rule and the fact thats and Ĥ are independent, this
mutual information can be written as

I(s; (x|Ĥ)) = I(s; x|Ĥ) + I(s; Ĥ) = I(s; x|Ĥ). (7)

From now on, we append a subscript G to any mutual
information quantity, whenever it is assumed that the input
alphabet is Gaussian, e.g.,IG(s; x|Ĥ). The steps for obtaining
an upper and a lower bound are essentially the same as in [2]
for the lower bound and [1] for the upper bound, except that
we generalize the derivation of these bounds so as to hold for
any linear channel estimator.

B. Lower Bound

Since the covarianceCs may be rank-deficient, we sub-
stitute s by an appropriate dimension-reduced representation
š ∈ Cr with r = rank(Cs) ≤ N related tos by s = Rš with
a tall subunitary matrixR ∈ C

N×r. The covariance matrices
of s and š are related viaCs = RCšRH. The differential
entropies ofs and š are the same, i.e.,

H(s) = H(š) H(s|Ĥ) = H(š|Ĥ).

We first expandIG(s; x|Ĥ) as follows:

IG(s; x|Ĥ) = H(š|Ĥ) −H(s|Ĥ , x)

= log det(πe Cš) −H(s|Ĥ , x), (8)

since the transmit signals is assumed to be Gaussian, so its
entropy equalslog det(πe Cš). Next, the subtrahend in (8) is
upper-bounded in several steps until we obtain [2]

H(s|Ĥ, x) ≤ E
Ĥ

[

log det
(

πe
(

Cš − C
š,x|ĥC−1

x|ĥ
C

x,š|ĥ

)

)]

.

(9)

The matrix inside the determinant is regular, since it is a Schur
complement of the full-rank covariance matrix of the Gaussian
variable

[

šT|Ĥ xT|Ĥ
]T

. We can thus invert it, so that the
right-hand side of (9) reads as

−E
Ĥ

[

log det

(

1

πe

(

Cš − C
š,x|ĥC−1

x|ĥ
C

x,š|ĥ

)−1
)]

. (10)

With the matrix inversion lemma,
(

Cš − C
š,x|ĥC−1

x|ĥ
C

x,š|ĥ

)−1

, C−1
š + RHH̆HC̆−1

η′ H̆R,

where the matrices̆H andC̆η′ are abbreviations defined via

H̆R = C
x,š|ĥC−1

š =
(

Ĥ + E
[

Ω|Ĥ
])

R (11a)

C̆η′ = C
x|ĥ − C

x,š|ĥC−1
š C

š,x|ĥ

= Cη + Cs ∗ C
ω|ĥ (11b)

where ‘∗’ denotes a bilinear operator defined as

X ∗ Y = (1T
N ⊗ IM )

(

(X ⊗ 1M×M ) ⊙ Y
)

(1N ⊗ IM ).

wherein ‘⊙’ stands for the Hadamard (entry-wise) product.
From (11a), we can settle on the choicĕH = Ĥ +E

[

Ω|Ĥ
]

.
Assembling (8)–(11b), we obtain the lower bound

IG(s; x|Ĥ) = E
H̆

[

log det
(

I + C̆−1
η′ H̆CsH̆

H
)]

. (12)

In the special case of MMSE channel estimation, we have by
the orthogonality principleE

[

Ω|Ĥ
]

= 0, so H̆ = Ĥ and
C̆η′ = Cη′ , becauseC

ω|ĥ = Cω, whereby

IG = E
Ĥ

[

log det
(

I + C−1
η′ ĤCsĤ

H
)]

. (13)

The latter lower bound is a generalization of that given in
[1], [2]. This bound is valid for Gaussian input signalss and
superior input distributions, including the unknown capacity-
achieving distribution.



C. Upper Bound

We expand the mutual information as

I(x, s|Ĥ) = H(x|Ĥ) −H(x|s, Ĥ) (14)

and upper bound the entropy of the outputx|Ĥ by the
Gaussian entropy of covariancecov(x|Ĥ) [1]:

H(x|Ĥ) ≤ E
Ĥ

[

log det
(

πe cov(x|Ĥ)
)

]

.

On the other hand, the subtrahend in (14) equalsH(η′|s, Ĥ)
becauseη′ = x − Ĥs and a constant added to a random
variable does not change its entropy. Sinceη′|s, Ĥ is Gaus-
sian, said subtrahend can be expressed with the classiclog det-
formula of Gaussian entropy, i.e.,

H(η′|s, Ĥ) = Es

[

log det
(

πe
(

ssH ∗ C
ω|ĥ + Cη

)

)]

Assembling all the results above, one can show that the
resulting upper bound can be represented as

I = IG + ∆ (15)

where the non-negative bound gap∆ reads as

∆ = I − IG = Es

[

log
det(Cη + Cs ∗ C

ω|ĥ)

det(Cη + ssH ∗ C
ω|ĥ)

]

. (16)

Note that in contrast toIG, for which we needed to assume
Gaussian input symbols, the upper boundI as given in (15)
still depends on the distribution ofs. This means that it
is not restricted to any particular input distribution. It may
be used, for instance, as an upper bound for the Gaussian
distribution (we then writeIG for notational consistence), or
for the unknown capacity-achieving distribution.

Figure 1 represents the three mutual information boundsIG,
IG, and the perfect CSI upper boundIp, which is used e.g.
in [15], and whose general definition is

Ip = EH

[

log det
(

I + C−1
η HCsH

H
)]

. (17)

The plot of Figure 1 was generated for a SISO channel with a
channel varianceσ2

h = 1, no temporal noise correlation (i.e.,
Cη,time = I) and equal transmit powerσ2

s for both the training
and data transmit phases. In the considered SISO case, all three
bounds have closed-form expressions. The aspect of Figure 1,
however, is similar for higher-dimensional cases. The closed-
form expressions allow for the calculation of the following
two limits [cf. (31) and (33)]:

∆high SNR = log(2) − ς(1) ≈ 0.0968 ≪ γ ≈ 0.5772

where the functionx 7→ ς(x) is defined asς(x) = ex E1(x),
with the exponential integralE1(x) =

∫∞

x
e−t/t dt, and

lim
SNR→∞

[

Ip − IG

]

= log(2) ≈ 0.6931.
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FIG. 1. Lower boundIG, upper boundIG and perfect CSI upper boundIp
as functions of the SNR

IV. OPTIMAL CHANNEL ESTIMATION

It is difficult to show anything about the optimal structure
of the estimator just by differentiating the mutual information
bounds as given in (12) and (15) with respect to the channel
estimatorG. So, for the purpose of studying how the bounds
behave as a function of the channel estimator, a more viable
approach consists in resorting to a parametrization of the
channel estimatorG, which reads as

G = C
1/2

ĥ
F H(SChSH + CηT)

−1/2, (18)

whereF ∈ CMT×MN is a tall subunitary matrix, i.e.,F HF =
I. The three matrix factors in (18) can be interpreted as three
consecutive stages, which successively

• decorrelate and whiten the estimator’s input,
• perform a subunitary rank-reduction,
• recorrelate the estimator’s output with the covarianceC

ĥ
.

For sufficient estimators, the subunitary rank-reduction (sec-
ond stage) reads as

F H
opt =

(

ChSH(SChSH + CηT)
−1SCh

)1/2
·

· ChSH(SChSH + CηT)
−1/2. (19)

Theorem IV.1. Any linear bijective operation applied on the
channel estimatêh does not modify the value of the mutual
information bounds, as long as the estimatorG is full-rank.

It can be shown, in fact, that by inserting the parametrized
expression (18) of the channel estimatorG into the expres-
sions ofIG and of∆, the latter result to be independent of the
last estimator stageC1/2

ĥ
(recorrelator). From this observation,

we can directly infer Theorem IV.1.

Theorem IV.2. All sufficient channel estimators are equiva-
lently optimal with regard to maximizing both mutual infor-
mation bounds.

Due to space limitations, we omit the proof. Note that the
Theorems IV.1 and IV.2 are closely linked. Indeed, the invari-
ance property IV.1 implies that all sufficient estimators are
equivalent, because they all have the formX−1SHC−1

ηT
with

an arbitrary last stageX−1. On the other hand, said invariance



property IV.1 holds not only for sufficient estimators, but also
for any non-sufficient full-rank estimatorG.

Corollary IV.1. The lower bound expression(13), which is
valid for an MMSE channel estimator, is also valid for any
other sufficient channel estimator. As another consequence,
the worst-case noise interpretation given in [2] of said lower
bound (13) is more generally applicable to any sufficient
channel estimator.

The properties described by the above Theorems IV.1 and
IV.2 are similar to certain properties of thetrue mutual
information I(s; x|ĥ). In fact, the invariance property IV.1
is analogous to the invariance ofI(s; x|ĥ) against invert-
ible operations performed on̂h. In fact, such an operation
corresponds to a change of variables (variable substitution in
the integral representation of the mutual information) which
does not affect the value ofI(s; x|ĥ). As to the optimality
of sufficient estimation IV.2, it also holds for the true mutual
information: it has been proven in [3] that the pilot receive
symbolsxT are as informative as the conditional mean esti-
mation ĥ, i.e.,

I(s; x|ĥ) = I(s; x|xT). (20)

Hence, there can exist no better estimator than the conditional
mean estimator. Combining this result with the aforementioned
invariance property, we can infer that all sufficient channel
estimators are optimal with regard to maximizing the true
mutual information.

V. ON THE BOUND GAP

In order to analyze the accuracy and tightness of the lower
and upper bound pair, we are interested in knowing the highest
possible values attained by their difference∆ as given in (16).
That is, we search for the supremum of∆ over all admissible
triples (C

ω|ĥ, Cη, Cs). The individual constraints imposed
on these three matrices are thatCs ∈ CN×N is positive
semidefinite withtr(Cs) ≤ Etx, and thatC

ω|ĥ ∈ CMN×MN

and Cη ∈ CM×M are positive definite. Additionally,C
ω|ĥ

andCη are interdependent via the relation

C
ω|ĥ =

(

C−1
h + SHGH(GCηTG

H)−1GS
)−1

(21)

with CηT = CT
η,time ⊗ Cη. Let us callDindep. the set of ad-

missible triples(C
ω|ĥ, Cη, Cs) without this interdependence

constraint, andDinterdep. the set of these triples fulfilling said
interdependence constraint. Let us call

∆sup,interdep.= sup
Dinterdep.

∆ ∆sup,indep. = sup
Dindep.

∆.

We obviously haveDinterdep.⊂ Dindep., and thus

∆sup,interdep.≤ ∆sup,indep.. (22)

In the next two subsections, we successively investigate the
suprema∆sup,indep. and∆sup,interdep..

A. Independent Noise and Estimation Error Covariance

If Cη and C
ω|ĥ can be chosen freely, as was implicitly

assumed in [1], it is easy to show that the supremum of∆
over all positive definiteCη is attained whenCη → 0, i.e.,

∆sup,indep. = sup
(C

ω|ĥ,Cs)

[

log
det(Cs ∗ C

ω|ĥ)

det(ssH ∗ C
ω|ĥ)

]

. (23)

The remaining two matrix variablesCs and C
ω|ĥ can be

merged into one by introducing a white complex Gaussian
z ∼ NC(0, I) such thats = C

1/2
s z. Then, due to a property

of the ‘∗’ operator, we have

ssH ∗ C
ω|ĥ = zzH ∗ C (24)

with a positive definiteC ∈ CMN×MN defined as

C =
(

CT/2
s ⊗ I

)

C
ω|ĥ

(

C∗/2
s ⊗ I

)

. (25)

Since the trace ofCs is upper-bounded, but the trace of
C

ω|ĥ may take any value, the trace constraint onCs can
be disregarded for finding the supremum (23). With (25), the
expression (23) now reads as

∆sup,indep. = sup
C≻0

[

log
det(I ∗ C)

det(zzH ∗ C)

]

. (26)

Due to the linearity of the ‘∗’ operator, we see in (26)
that ∆sup,indep. is independent of any norm ofC. Therefore,
∆sup,indep. is also expressible as a maximum:

∆sup,indep. = max
C�0

[

log
det(I ∗ C)

det(zzH ∗ C)

]

. (27)

For a channelH with i.i.d. Gaussian unit-variance entries and
aC

ω|ĥ having the structure of a scaled identity matrix, a proof
was given in [1] that this supremum (27) equals

∆sup,indep. = Mγ (28)

with the Euler-Mascheroni constantγ = 0.57721 56649 . . .
However, in [1], this specific structure ofC

ω|ĥ is assumeda
priori , which is a somewhat unrealistic assumption. In order
to be fulfilled, it would require very specific assumptions
on the system parameters. However, by following a different
approach from that in [1], it can be shown that (28) holds
generally for MISO (M = 1) and SIMO channels, without
any further assumptions. The proof of the equality (28) can
even be extended to MIMO channels if the following three
assumptions2 are met:

• H is a Kronecker channel with only transmit correlation,
i.e., h ∼ NC(0, CT

Tx ⊗ I),
• The additive noiseη is spatially white, i.e.,Cη = σ2

ηI,
• The receive antennas are non-cooperative during the

channel estimation phase, which signifies thatG =
GT

r ⊗ I with Gr ∈ CT×N .
Simulations for the most general case of a MIMO channel
with arbitrary channel correlations suggest that the equality

2With these three assumptions, one can show that the matrixC from (25)
adopts the form of a Kronecker product, which facilitates the search for a
maximum as in (27).



(28) holds generally. When expressed as a maximum as in
(27), it is attained whenC = eje

T
j ⊗ C0 with any positive

definiteC0 ∈ CM×M and any1 ≤ j ≤ N .

B. Interdependent Noise and Estimation Error Covariance

In constrast to the previous section, we now take into
account the interdependency betweenCη andC

ω|ĥ via (21).
We write Cη = α Cη,0 with a factor α > 0 and a unit-
trace positive definiteCη,0. The factorα thus represents the
noise power, i.e.,α = σ2

η, while the structure of spatial
noise correlations is captured in the normalized matrixCη,0.
Accordingly, we writeCηT = α CT

η,time⊗Cη,0 for the training
noise. It can be shown that, if we define the low- and high-
SNR limits of ∆ respectively as

∆low SNR = lim
α→∞

∆ ∆high SNR = lim
α→0

∆, (29)

then the low-SNR limit is for any type of channel estimation

∆low SNR = 0, (30)

whereas the high-SNR limit forsufficientchannel estimation
is

∆high SNR = MEs

[

log
1 + tr

(

Cs(TC−1
η,timeT

H)−1
)

1 + sH(TC−1
η,timeT

H)−1s

]

. (31)

It can be shown that for all admissibleCs, this high-SNR limit
is not larger than a constant which is itself strictly smaller than
Mγ. Additionally, we claim that∆ grows monotonically with
the SNR (in the sense that it decreases monotonically withα),
taking values from0 for the low-SNR limit (30) up to the high-
SNR limit (31). This monotonicity can be proven for SIMO
channels. A proof for MISO/MIMO channels seems more
difficult, but simulations seem to corroborate this conjecture.
Therefore,

∆sup,interdep.= max
Cs�0

tr(Cs)≤Etx

∆high SNR, (32)

and we have, all in all,

∆sup,interdep.< ∆sup,indep. = Mγ. (33)

VI. OPTIMAL TRAINING

It can be shown that for a SISO channel, the lower
bound for an MMSE estimator (13) acquires the formIG =
ς(σ2

η′/σ2
sσ2

ĥ
), where ς(x) = ex E1(x), as in Section III-C.

The pilot symbol matrixT reduces to the row vectortT, the
training noise matrixCηT reduces toσ2

ηCη,time. The problem
of finding the optimal training sequencetT which maximizes
the mutual information lower bound can be stated as

topt = argmax
‖t‖2

2
≤1

[

ς

(

σ2
η′

σ2
sσ2

ĥ

)]

. (34)

It can be shown that

topt = argmax
‖t‖2

2
≤1

[

tHC−1
ηT

t
]

, (35)

that is, topt is the eigenvector ofCηT corresponding to the
smallest eigenvalue ofCηT , i.e., of Cη,time. In [16], based
on findings from [2], the pilot symbols are chosen so as
to minimize the channel estimation error variance. As a
consequence of this and several other system assumptions, the
optimalT is found via a waterfilling algorithm and the authors
show thatT is tall (in constrast to our model, which assumes
thatT is broad). However, the above result (35) suggests that
the approach from [16] of minimizing the channel estimation
MSE may be suboptimal in terms of maximizingIG.
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