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Résumé—We propose an upper and a lower bound on the
mutual information of a pilot-aided MIMO link operating und er
imperfect receiver CSl. Said bounds depend on the linear chanel
estimator employed. They can be understood as a generalizan
of results from [1] and [2]. Furthermore, we prove that any
bijective operation performed on the channel estimation des
not modify the value of the mutual information bounds. Also,
we prove that any sufficient channel estimator is equivalery
optimal in terms of maximizing the upper and lower mutual
information bounds. These two properties result to be idertal
to known properties of the true mutual information, namely the
invariance against bijective (invertible) operations peformed on
the random variables, and the optimality of sufficient estimation
(e.g., [3]). The study of these bound properties offers newsights
and a deeper understanding of them, as compared to their
original derivation in [1] and [2]. To complete the analysis we
show that the gap between the upper and lower bound (and
thus also between the true mutual information and the lower
bound) is generally upper-bounded by a constant which only

thus the computation of mutual information—is intractable
and costly to estimate via simulation, let alone the capacit
achieving distribution. While for less realistic assurops
(e.g., perfectly known channel statistics at the tran&mitt
and the receiver), partial characterizations of the cayaci
achieving distributions have been achieved [14], resulés a
still scarce for the more realistic assumption of errone@8k

In fact, accurate characterizations of these distribstidm not
even exist for single-antenna systems, as of now.

Lower and upper bounds for the mutual information in the
case of erroneous CSI forsingle-input single-outpuiSISO)
system were proposed in [15]. The results from [15] were
then generalized to MIMO channels and employed in [2] for
predicting the amount of necessary channel estimation.

In [1] and [2], it is assumed that minimum mean square
error (MMSE) channel estimator is used. By following the

depends on the number of receive antennas. This can be seen asdeas of these two works, we derive upper and lower mutual

a generalization of findings from [1]. Additionally, we showthat
by taking certain parameter interdependencies more accuriely
into account, this bound gap becomes significantly smalleand
the mutual information bounds are thus shown to be even tigter.
Finally, we focus on the optimization of the pilot symbols asa
function of the channel/noise statistics and derive the ojnal
pilot sequence for a SISO channel.

|. INTRODUCTION

Most of the papers onmultiple-input multiple-output
(MIMO) communications make the assumption that ¢than-

information bounds for erroneous CSI that are valid for any
lineart channel estimator. We will show that any sufficient
channel estimator is optimal for simultaneously maxinggzin
the upper and lower mutual information bound. Moreover,
unlike [1], we do not assume that the channel estimatiorrerro
covariance is a scaled identity matrix that does not depend
on the noise covariance, but take into account the existing
dependency between those two. In particular, this allows us
to show that the bounds are substantially tighter than in the
analysis of [1]. Finally, we derive the pilot sequence for a

nel state information(CSI) at the receiver side is error-freeSISO channel that maximizes the mutual information lower
(e.g., [4], [5]). The resultindog-det expression for the data bound.

rate enabled the waterfilling solution in [4], the efficient

solution for the MIMOmultiple access chann@AC) in [6],
the duality results in [7], [8], [9], [10], the result for ti¢IMO

II. SYSTEM MODEL
We use the standard MIMO model with dd x N channel

BC capacity region in [11], and the efficient solution for th&natrix H, whose entries are zero-mean circularly symmetric

MIMO broadcast channglBC) in [12], [13] for example.
Unfortunately, the receiver does not know the @Spriori

and must therefore estimate it. Clearly, the resultingrestie

is only error-free approximately. In this paper, the caseois-

complex Gaussian distributed and can have any correlations
i.e., h = vec(H) ~ Nc(0,Cp) with the covariance matrix
C}, = E[hh1]. The received signal for data transmission is

x=Hs+neCM (1)

sidered that the errors cannot be neglected. Consequtdly, h N is the MIMO ch i d th .
classicallog-det expression for the mutual information is notVhere SNE CC'S L ed h channe .|nputf an ft ecnglse
applicable anymore. The treatment of such channels isuliffic'S 7 ™~ c(0,Cy). Under the assumption of perfect CSI at
In gengral, gspemally due to the fact that the. output diistion IHere, linear estimators are optimal owing to the joint Gausty of the
for typical input alphabets such as Gaussian alphabets—aisgkrvation and the channel.



the receiver and for Gaussian channel inpsitgshe mutual B. Lower Bound

information can be shown to be (e.g., [4]) Since the covarianc€, may be rank-deficient, we sub-
L 1 H stitute s by an appropriate dimension-reduced representation
Z(s; ) = log det (I +C, HC.H ) ' @) 3 € C" with r = rank(C5) < N related tos by s = R3 with
In this paper, however, it is assumed that the chadideis & tall subunitary matrix® € CV*", The covariance matrices

not perfectly known to the receiver. Instead, it is estirdaga  Of s and s are related viaC; = RC;R". The differential
the pilot channel entropies ofs and s are the same, i.e.,

xr = Sh+nr 3) H(s) = H(3) H(s|H) = H(s|H).

with the matrix of training symbol§ € CM7>*M~N the noise We first expandZg(s; z|H) as follows:

nr ~ Nc(0,Cyr) = Ne(0, Gy ime ® Cy), where C ime B 7 :

captures the temporal noise correlation, and the receigedls To(s;z|H) = H(s|H) — H(s|H, z) A

xt € CMT of the pilot channel. The duration of the training = log det(me C3) — H(s|H, x), (8)

phase isI’, and the sequence of training symbols is collected I . . .
in a matrixT € CN*T such thatS = T © I,;, where &’ since the transmit signal is assumed to be Gaussian, so its

denotes the Kronecker product entropy equaldog det(me Cs). Next, the subtrahend in (8) is

Clearly, since the training symbols are known to the réj_pper-bounded in several steps until we obtain [2]
ceiver, the received signatr and the channeh are jointly /(5| 1, z) < B, [logdet (We (Cs-C,iCoLC, s|h))}
Gaussian. Therefore, the optimal channel estimator isatine ' zlh = ®

. S X . . 9
and its outputh is zero-mean Gaussian with covarianCg.
With the linear estimato& € CMN*MT the estimate can be The matrix inside the determinant is regular, since it is lausc
written as complement of the full-rank covariance matrix of the Gaaissi
h = Gzt = G(Sh +n7). (4) variable ERl: mT|I§[]T. We can thus invert it, so that the
. right-hand side of (9) reads as
Accordingly, H € CM*X is the estimate ofH such that

. . . . 1 _ —1
h = vec(H). The channel estimation error is the difference —E, {logdet <E(C§ -C,.nC }7,09375”1) )] (10)

x|
2=H - H. (5)  With the matrix inversion lemma,

We will often refer to it in vectorized form, i.ew = vec(S2). (Cg _C. -.Cclc . A)’l 20 REAYG'HR
With these variables, the equation (1) governing the MIMO s:2lh ™ z|h @ 5lh s K ’

system can be rewritten as where the matrice$ andC,, are abbreviations defined via
x=Hs+n=Hs+1, (6) Iu{R:Cm_’énglz (ﬂ+E[Q|Iﬂ)R (11a)
where H can be seen as a perfectly known channel variable, c“'n, = Cm\fz -C, gmcglcg olh

andn’ = 2s+n € CM is called theeffective nois¢2]. Note

that unliken, it is non-Gaussian and depends on the input =Ch+ Cs Cwlfl (11b)
signal s. where %’ denotes a bilinear operator defined as

[1l. M UTUAL INFORMATION BOUNDS X+Y =1y Ly)((X @ 1uxn) OY)(1y @ In).
A. Mutual Information wherein ©’ stands for the Hadamard (entry-wise) product.

From (11a), we can settle on the choite= H + E[£2|H].

The quantity of interest is the mutual information betweeﬂssembling (8)~(L1b), we obtain the lower bound

the system input and the output pai(cc,IS[). Due to the
Bayes rule and the fact thatand H are independent, this  Z(s;z|H) = Ey [1ogdet (I + Cvf;/lﬁcsﬁH)}' (12)
mutual information can be written as

In the special case of MMSE channel estimation, we have by

I(s;(x|H)) =Z(s;z|H) + Z(s; H) = I(s;z|H). (7) the orthogonality principleét[£2|H] = 0, so H = H and
, Cyy = Cy, becauseC,, j, = C.,, whereby

From now on, we append a subscript G to any mutual
informatic_m quant!ty, whenever it is assumed that thg _input Is=Ep [logdet (I 4 C—/lIfICSI;IH)} (13)
alphabetis Gaussian, e.@g(s; z|H). The steps for obtaining n
an upper and a lower bound are essentially the same as inTBE latter lower bound is a generalization of that given in
for the lower bound and [1] for the upper bound, except thft], [2]. This bound is valid for Gaussian input signalsand
we generalize the derivation of these bounds so as to hold gmperior input distributions, including the unknown capac
any linear channel estimator. achieving distribution.



C. Upper Bound

[e2)

We expand the mutual information as

N

T(x,s|H) = H(x|H) — H(x|s, H) (14)

and upper bound the entropy of the outpt:||tFI by the
Gaussian entropy of covariancev(x|H) [1]:

mutual information [nats]

H(z|H) < Eg {1ogdet(ﬂ'e cov(m|ﬁ))} .

1
On the other hand, the subtrahend in (14) eq@lg’|s, H) SNR [dB]
becausen’ = « — Hs and a constant added to a random _ _
variable does not change its entropy. Singes, H is Gaus- aFlstL;#:ticI;r?gvi; tbh%“gd,ng’ upper bound’g and perfect CSI upper bourity
sian, said subtrahend can be expressed with the claggiet-
formula of Gaussian entropy, i.e.,

H(n’|s,ﬁ) —E, {logdet(we (SSH * Cwm + C’,,))] IV. OPTIMAL CHANNEL ESTIMATION
It is difficult to show anything about the optimal structure

Assembling all the results above, one can show that tbéthe estimator just by differentiating the mutual infortina

resulting upper bound can be represented as bounds as given in (12) and (15) with respect to the channel
_ estimatorG. So, for the purpose of studying how the bounds
I=1s+A (15) pehave as a function of the channel estimator, a more viable

approach consists in resorting to a parametrization of the
channel estimato&, which reads as

] . (16) G = c;/ *FH(sc,Lst +C,,)" V2, (18)

where the non-negative bound gapreads as

| det(Cp + Cs + C3,)
o8 det(Cy, + ssH C.ii)

A=T—-Z5=E, [
whereF € CMTxMN jg g tall subunitary matrix, i.e F F =

Note that in contrast td, for which we needed to assumel. The three matrix factors in (18) can be interpreted as three

Gaussian input symbols, the upper bouhas given in (15) consecutive stages, which successively

still depends on the distribution of. This means that it , decorrelate and whiten the estimator’s input,

is not restricted to any particular input distribution. ltajn | perform a subunitary rank-reduction,

be used, for instance, as an upper bound for the GaussiaQ recorrelate the estimator's output with the covariaGte

distribution (we then writeZg for notational consistence), Of tor sufficient estimators, the subunitary rank-reductisecy
for the unknown capacity-achieving distribution. ond stage) reads as
Figure 1 represents the three mutual information bodngds
T, and the perfect CSI upper boufg, which is used e.g. Fggt: (ChSH(SChSH 4 Cm)*lsch)l/?
in [15], and whose general definition is . CLS"(SCS" + Cm),l/g' (19)

7 —1 H

Ip = Ep[logdet (I+ C,"HC.H")]. (17)  Theorem IV.1. Any linear bijective operation applied on the

The plot of Figure 1 was generated for a SISO channel WitthfanneI_esUmatéL does not modify the. valug of the mutual
. 5 ) .~ . _information bounds, as long as the estima@ris full-rank.

channel variance; = 1, no temporal noise correlation (i.e.,

C,, ime = I) and equal transmit powet? for both the training It can be shown, in fact, that by inserting the parametrized

and data transmit phases. In the considered SISO caseaedl tiexpression (18) of the channel estima@rinto the expres-

bounds have closed-form expressions. The aspect of Figuraibns ofZ5 and of A, the latter result to be independent of the

however, is similar for higher-dimensional cases. Theetes last estimator stag€’}’* (recorrelator). From this observation,

form expressions allow for the calculation of the followingve can directly infer Theorem IV.1.

two limits [cf. (31) and (33)]:
[ef. 31) (33)] Theorem [V.2. All sufficient channel estimators are equiva-

Ahigh snr = log(2) — ¢(1) ~ 0.0968 < v =~ 0.5772 lently optimal with regard to maximizing both mutual infor-
mation bounds.
where the function: — ¢(x) is defined as;(z) = e* Eq (2),

with the exponential integrdt; (x) — fzoo o~/ dt, and Due to space limitations, we omit the proof. Note that the

Theorems IV.1 and IV.2 are closely linked. Indeed, the invar
lim [Zp — Zg] = log(2) ~ 0.6931. ance property 1V.1 implies that all sufficient estimatore ar

SNR— o0 equivalent, because they all have the foln 'S C, ! with

an arbitrary last stag& —'. On the other hand, said invariance



property 1V.1 holds not only for sufficient estimators, bigea A. Independent Noise and Estimation Error Covariance
for any non-sufficient full-rank estimata. If C, and C_; can be chosen freely, as was implicitly

Corollary IV.1. The lower bound expressioii3), which is assumed in [1], it is easy to show that the supremumof
valid for an MMSE channel estimator, is also valid for anyVer all positive definiteC’, is attained wherC’, — 0, i.e.,

other sufficient channel estimator. As another consequence det(Cs * Cw|iz)
the worst-case noise interpretation given in [2] of said &w Asupindep. =  Sup log W . (23)
bound (13) is more generally applicable to any sufficient (CujCo) wlh

channel estimator. The remaining two matrix variable€s and C_; can be
W&rged into one by introducing a white complex Gaussian
a 12
z ~ N (0,1) such thats = Cs'“z. Then, due to a property
1 of the *«’ operator, we have

The properties described by the above Theorems V.1
V.2 are similar to certain properties of theue mutual
information Z(s; z|h). In fact, the invariance property IV.
is analogous to the invariance df(s;m|ﬁ) against invert- ssH x Cu\iz — 254 (24)
ible operations performed oh. In fact, such an operation
corresponds to a change of variables (variable substitutio With & positive definiteC’ CMNXMN defined as
the integral representation of the mutual informati(_)n) G@hi C - (C;r/z ® I) Cwm(C;/Q ® I). (25)
does not affect the value df(s;x|h). As to the optimality
of sufficient estimation 1V.2, it also holds for the true maitu Since the trace ofC, is upper-bounded, but the trace of
information: it has been proven in [3] that the pilot receiv€’,,, May take any value, the trace constraint 6 can
symbolszt are as informative as the conditional mean estpe disregarded for finding the supremum (23). With (25), the

mation h, i.e., expression (23) now reads as
- B det(I+C)
I(s;xz|h) = I(s;x|xT). (20) Asupindep. = gli]% [log W} . (26)

Hence, there can exist no better estimator than the conditioDue to the linearity of the s’ operator, we see in (26)
mean estimator. Combining this result with the aforemestib that Asypingep. is independent of any norm af. Therefore,
invariance property, we can infer that all sufficient chdnne\g,yindep. is also expressible as a maximum:
estimators are optimal with regard to maximizing the true det(I%C

| information. Asupi = max |lo & .
mutua supindep. = ¢ & det(zz" « C)

a.
~0
V. ON THE BOUND GAP For a channeH with i.i.d. Gaussian unit-variance entries and

. anm having the structure of a scaled identity matrix, a proof
In order to analyze the accuracy and tightness of the lowgk d given in [1] that this supremum (27) equals
and upper bound pair, we are interested in knowing the highes

possible values attained by their differendeas given in (16). Asupindep. = M~y (28)
That is, we search for the supremumafover all admissible i the Euler-Mascheroni constant = 0.57721 56649 ...

triples (C,,j,, Cn, Cs). The individual co]réstjrvairlts imposedyygever, in [1], this specific structure @, ;, is assumed

on these three matrices are that € C7~ IS POSIVe " priori, which is a somewhat unrealistic assumption. In order

semidefinite withtr(Cs) < Er, and thatC,,;, € CHY* % 9 pe fulfilled, it would require very specific assumptions

and C,, € CM*M are positive definite. Additionally”,,;, on the system parameters. However, by following a different

andC,, are interdependent via the relation approach from that in [1], it can be shown that (28) holds

. T _— . generally for MISO (/ = 1) and SIMO channels, without
C i = (C' + 8"GNGC,,GN)T'GS) (21) any further assumptions. The proof of the equality (28) can

. even be extended to MIMO channels if the following three

with Cyp, = C, e ® Cyy. Let us call Dingep. the set of ad- assumptiorisare met:

m|SS|bI¢ tnples(Cwm, Cy, Cs) W|thoutth|s_ mterdepgndenc_e o H is a Kronecker channel with only transmit correlation,

constraint, andDinerdep. the set of these triples fulfilling said . T

. . |.e.,hNN(C(0,CTX®I),

interdependence constraint. Let us call

(27)

» The additive noise; is spatially white, i.e.C,, = o—%I,
Ner — sup A Ae o — sup A o The receive antennas are non-cooperative during the
supinterdep. Dime}d)ep_ supindep. Dde:p. channel estimation phase, which signifies thGt =
G! @I with G, € CT*V,
Simulations for the most general case of a MIMO channel
(22) with arbitrary channel correlations suggest that the etyal

We obviously haveDinterdep. C Dindep, and thus

Asupinterdep. < Asupindep.-

In th b . ivelv i . 2With these three assumptions, one can show that the m@tdsom (25)
n the next two subsections, we successively investigate tghopts the form of a Kronecker product, which facilitates gearch for a

SupremaAsupmdep and Asupinterdep, maximum as in (27)



(28) holds generally. When expressed as a maximum asthat is, top is the eigenvector oy, corresponding to the
(27), it is attained wherC = eje;F ® Cy with any positive smallest eigenvalue of,,,, i.e., of Cy, ime. In [16], based
definite Cy € CM*M and anyl < j < N. on findings from [2], the pilot symbols are chosen so as
) o ) to minimize the channel estimation error variance. As a
B. Interdependent Noise and Estimation Error Covariance consequence of this and several other system assumptiens, t
In constrast to the previous section, we now take intptimalT is found via a waterfilling algorithm and the authors
account the interdependency betwegp and Coin via (21). show thatT is tall (in constrast to our model, which assumes
We write C,, = aC, with a factorae > 0 and a unit- thatT is broad). However, the above result (35) suggests that
trace positive definite”,, . The factora thus represents thethe approach from [16] of minimizing the channel estimation

noise power, i.e.q
noise correlations is captured in the normalized mat?jy.
Accordingly, we writeC,,, = « C’T{time@ C,,o for the training
noise. It can be shown that, if we define the low- and hight
SNR limits of A respectively as

(2]

Alow snr = lim A Ahigh SNR= lim A, (29)

then the low-SNR limit is for any type of channel estimationl3]

Ajow snr = 0, (30)

whereas the high-SNR limit fosufficientchannel estimation (4]

is
(5]

1+tr(Co(TC L TH)—1
Anigh s\e= ME; |log (H ( _?’nmeH _)1 ) - (31)
1+s (TCn,timeT )~ ls [6]

It can be shown that for all admissible;, this high-SNR limit

is not larger than a constant which is itself strictly smatlen
M~. Additionally, we claim thatd grows monotonically with
the SNR (in the sense that it decreases monotonically ayith
taking values front) for the low-SNR limit (30) up to the high-
SNR limit (31). This monotonicity can be proven for SIMO
channels. A proof for MISO/MIMO channels seems morgg
difficult, but simulations seem to corroborate this conjeet
Therefore,

(7]

[10]
Asupinterdep.: (I;n% Ahigh SNRy (32)
tr(Ca) < Fix
. [11]
and we have, all in all,
Asupinterdep.< Asupindep.: M'Y- (33) [12]

V1. OPTIMAL TRAINING

It can be shown that for a SISO channel, the lower
bound for an MMSE estimator (13) acquires the fofg = (13
s(op,/0307), whereg(z) = e”Ei(z), as in Section IlI-C.
The pilot symbol matrixI" reduces to the row vectar', the
training noise matrixC,,, reduces tof,%C,,,time. The problem
of finding the optimal training sequen¢é which maximizes
the mutual information lower bound can be stated as

[14]

[15]

Unl
topt = argmax | ¢ Py
lel3<1 s%h

(34)
[16]

It can be shown that

topt = argmax [tHC;Tlt} , (35)

tl5<1

03,, while the structure of spatial MSE may be suboptimal in terms of maximizitg.
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