
Designing Heterogeneous ECU Networks via Compact
Architecture Encoding and Hybrid Timing Analysis∗

Michael Glaß†, Martin Lukasiewycz†, Jürgen Teich†, Unmesh D. Bordoloi‡, Samarjit Chakraborty?
†University of Erlangen-Nuremberg,

Germany
{glass,martin.lukasiewycz,teich}@cs.fau.de

‡Verimag, France
unmesh.bordoloi@imag.fr

?Technical University of Munich,
Germany

samarjit@tum.de

This is the author’s version of the work. The definitive work was published in Proceedings of Design Automation Conference (DAC 2009), pp. 43-46, 2009. The
work is supported in part by the German Science Foundation (DFG), SFB 694.

ABSTRACT
In this paper, a design method for automotive architectures is pro-
posed. The two main technical contributions are (i) a novel hard-
ware/software architecture encoding that unifies a number of de-
sign steps, i.e., resource allocation, process binding, message rout-
ing, scheduling, and parameter estimation for the processor and bus
schedulers, and (ii) a hybrid scheme that allows different timing
analysis techniques to be applied to different bus protocols (viz.,
CAN and FlexRay) within the same architecture in order to derive
global performance estimates such as end-to-end delays of mes-
sages. The use of the compact encoding technique substantially
reduces the underlying search space, and the hybrid timing analy-
sis scheme allows the combination of known timing analysis tech-
niques from the real-time systems domain. The proposed tech-
niques were combined into a tool-chain and a real-life case study
to illustrate their advantages.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

General Terms
Design, Performance

Keywords
Automotive, Design Space Exploration, Timing Analysis

1. INTRODUCTION AND MOTIVATION
Today, it is fairly common for high-end cars to have more than

80 different electronic control units (ECUs) running a variety of dis-
tributed control applications and communicating via multiple buses
and gateways implementing different communication protocols, e.g.,
CAN, LIN, and FlexRay. Optimally designing such a complex and
heterogeneous ECU network poses several challenges, which has
led to a lot of recent interest in developing design and analysis tech-
niques specifically directed towards the automotive domain. Design
methodologies for such complex embedded systems typically fol-
low a series of design steps such as resource allocation, process
binding, message routing, scheduling and parameter estimation for
different processor and bus schedulers. Since a number of design
constraints, e,g., real-time properties of safety-critical applications
cannot be verified until all the design steps are complete and a con-
crete implementation is derived, such that multi-phase approaches
hardly come up with global optimal solutions.
Contributions: This paper adresses the general design space ex-
ploration problem, cf. Fig. 1, by proposing an architecture encod-
ing scheme that allows a number of hardware/software co-design

∗Supported in part by the German Science Foundation (DFG), SFB 694

c©ACM, 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 46th Annual De-
sign Automation Conference, (San Francisco, CA, USA, July 26 - 31,
2009) http://doi.acm.org/10.1145/1629911.1629925.

Allocation
Binding
Routing

Scheduling
Parameters

Real-Time
Analysis

Figure 1: Proposed design space exploration approach.
tasks – such as resource allocation, process binding, message rout-
ing, scheduling, etc. – to be represented as linear constraints with
binary variables. As a result, the design space exploration problem
can now be formulated as a binary search problem, and the draw-
backs associated with multi-phase design approaches can largely be
avoided. The encoding scheme also substantially reduces the under-
lying search space and solutions to the resulting search problem are
complete feasible implementations which respect all system con-
straints. As a result, it is now possible to use combinations of binary
search and efficient heuristics for quickly solving multi-objective
optimization problems arising in real-life automotive designs.

The presented techniques are geared towards automotive archi-
tectures, consisting of a large and heterogeneous collection of ECUs,
buses, and gateways running distributed control applications and
processing several message streams connecting sensors to actua-
tors. The optimization schemes clearly need to rely on timing anal-
ysis and performance evaluation techniques. Given the heteroge-
neous nature of the architectures in the automotive domain, having
a single general-purpose timing analysis technique for all resources
is difficult and often impossible. For example, different bus proto-
cols such as CAN and FlexRay require very different modeling and
analysis techniques. To get around this problem, a hybrid analysis
technique is proposed which allows results from different timing
analysis techniques to be composed together. In particular, it is
shown how response time analysis techniques – which use a system
of recurrence relations – for CAN protocol can be used with timing
analysis techniques for FlexRay to derive overall timing properties
of architectures containing buses of both these types.

Both, the architecture encoding scheme, as well as the hybrid
timing analysis technique have been implemented into a tool-chain
which is capable of analyzing real-life case studies from the auto-
motive electronics domain. The utility of the proposed approach is
illustrated through a detailed case study later in this paper.

Related Work: Resource allocation and process binding strate-
gies are studied in [1, 11], mostly based on either exact approaches
like Integer Linear Programs (ILPs) or using meta-heuristics like
Evolutionary Algorithms (EAs). Process and message scheduling
as well as the parameter estimation has been thoroughly studied
in approaches like [4]. There exist design space exploration ap-
proaches that unify some or all steps in a single exploration tool,
cf., e.g., [16]. However, these approaches are not able to restrict
their search space to the set of feasible implementations only. This
leads to serious drawbacks in case few feasible implementations
exist due to stringent constraints. Real-time analysis of automotive
networks has been studied in [6, 14]. For the sake of flexibility and
extensibility, the work at hand proposes a jitter propagation model
that utilizes existing analysis techniques, depending on the individ-
ual resource type and used scheduler.

2. DESIGN SPACE EXPLORATION
This section presents the proposed one-step design space explo-

ration approach for automotive networks. After an introduction of
the used exploration model, the encoding of the tasks of resource
allocation, process binding, message routing, scheduling, and pa-

rameter estimation as a binary search problem based on linear con-
straints is presented. The combination of the binary search problem
and a meta-heuristic to ensure a fast convergence to the optimal
implementations with respect to multiple objectives completes this
section.

The exploration model is defined by a specification that consists
of an application and an architecture. From this specification, var-
ious implementations can be derived by defining the allocation of
the architecture and the mapping of the application, the routing of
messages and the used parameters. The specification consists of
an architecture graph GR and an application graph GT : The ar-
chitecture is given by a directed graph GR(R,ER). The vertices
R represent resources such as ECUs (RECU ⊂ R), buses like
FlexRay (RFR ⊂ R) or CAN (RCAN ⊂ R), communication con-
trollers (RCC ⊂ R), as well as sensors and actuators. The directed
edges ER indicate available communication connections between
two resources. The application is given by a bipartite directed graph
GT (T,ET) with T = P ∪M . The vertices T are either processes
p ∈ P or messages m ∈ M . Each edge e ∈ ET connects a vertex
in P to one in M , or vice versa. Each process can have multiple
incoming edges that indicate the data dependencies to communica-
tion information of the predecessor message. On the other hand,
each message has exactly one predecessor process as the sender,
but a process can of course have multiple successor messages. To
allow multicasts, each message can have multiple successor pro-
cesses. Each process p ∈ P can be implemented on a unique set
of resources Rp ⊆ R. Each message m ∈ M can be routed on
a subset of resources from Rm with Rm ⊆ R. An implementa-
tion consists of the allocation graph GA that is deduced from the
architecture graph and a function i that maps the application onto
the allocation graph. The allocation is a directed graphGA(A,EA)
that is an induced subgraph of the architecture graph GR. The al-
location contains all resources that are available in the current im-
plementation and the edges are induced from the graph GR. Each
process p ∈ P is bound to exactly one allocated resource i(p) such
that i(p) ∈ (A ∩ Rp). Each message in m ∈ M is routed on a
tree that is a subgraph of the allocation such that i(m) ⊆ GA with
all vertices in Rm. These bindings and routings have to be per-
formed such that all data dependencies given by the following two
conditions are satisfied:

1. For each message m ∈M , the root of the routing has to equal
the binding of the predecessor sender process p ∈ P . It holds:

∀(p,m) ∈ ET : root(i(m)) = i(p)

2. For each process p ∈ P the routings of the predecessor message
m ∈ M have to be routed on the same resource as the binding of
process p. The following holds:

∀(c,m) ∈ ET : i(p) ∈ i(m)

An implementation is feasible if all requirements regarding the
process and message mapping, the data dependencies, and the sys-
tem constraints are fulfilled.

With the definition of a feasible implementation, the task of the
design space exploration can be formulated as the following multi-
objective optimization problem:

DEFINITION 1 (DESIGN SPACE EXPLORATION).
optimize f(x)
subject to:

x is a feasible implementation

In real-world problems, the objective function f consists of multi-
ple functions including also non-linear equations. In single-objective
optimization, the feasible set of networks is totally ordered, whereas
in multi–objective optimization problems, the feasible set is only
partially ordered and, thus, there is generally not only one global
optimum, but a set of Pareto solutions. A Pareto-optimal solution
is better in at least one objective when compared to any other feasi-
ble solution.

2.1 Model Encoding
In the following, a binary search problem is defined such that a

solution x corresponds to a feasible implementation x, regarding
the allocation of resources, the binding of processes, the routing of

messages, and the parameter set. The symbolic encoding consists
of the following binary variables:
• r - one variable for each resource r ∈ R indicating whether

this resource is allocated (1) or not (0).
• pr - one variable for each pair of process p ∈ P and available

resources r ∈ Rp, indicating whether the process is bound
onto the resource r (1) or not (0).
• mr - one variable for each message m ∈ M and available

resources r ∈ Rm, indicating whether m is routed over the
resource r (1) or not (0).
• mr,n - one variable for each message and resource pair in-

dicating on which communication step n ∈ N (messages are
propagated in steps) a message is routed over the resource.

The linear constraints are formulated as follows:
∀p ∈ P :

∑
r∈Rp

pr = 1 (1a)

∀m ∈M :
∑

r∈Rm

mr,0 = 1 (1b)

∀m ∈M,p ∈ {p̃|(p̃,m) ∈ ET }, r ∈ Rp ∩Rm :

pr −mr,0 = 0 (1c)

∀p ∈ P,m ∈ {m̃|(m̃, p) ∈ ET }, r ∈ Rp ∩Rm :

mr − pr ≥ 0 (1d)

∀m ∈M, r ∈ Rm : n∑
i=1

mr,i ≤ 1 (1e)

n∑
i=1

mr,i −mr ≥ 0 (1f)

∀m ∈M, r ∈ Rm, i = {1, ..., n} :
mr −mr,i ≥ 0 (1g)

∀m ∈M, r ∈ Rm, i = {1, ..., n− 1} :
−mr,i+1 +

∑
r̃∈Rm∧e=(r̃,r)∈ER

mr̃,i ≥ 0 (1h)

∀p ∈ P, r ∈ Rp : r− pr ≥ 0 (1i)

∀m ∈M, r ∈ Rm : r−mr ≥ 0 (1j)

∀r ∈ R : −r+
∑

m∈M∧r∈Rm

mr +
∑

p∈P∧r∈Rp

pr ≥ 0 (1k)

Equation (1a) ensures that each process is bound exactly once. Equa-
tions (1b) and (1c) imply that each message has exactly one root that
equals the used resource of the predecessor process. Analogously,
for each process the predecessor messages have to be
routed on the corresponding resources as stated in Equation (1d).
Equation (1e) ensures that a message can pass a resource at most
once such that no cycles occur in the route of a message. A mes-
sage has to exist in one communication step on a resource in order
to be correctly routed on this resource as implied by the Equations
(1f) and (1g). Equation (1h) states that a communication is only
possible between adjacent resources. The Equations (1i) and (1j)
imply that a process or message, respectively, is bound or routed on
an allocated resource only. On the other hand, Equation (1k) states
that a resource is only allocated if at least one process is bound or a
message is routed on this resource.

Besides the constraints arising from resource allocation, process
binding, and message routing, additional constraints regarding the
system and the parameters of its components have to be respected.
In this work, an encoding for system constraints that depend on
the chosen parameters of a system component is proposed. In par-
ticular, this encoding carries out the task of parameter estimation
implicitly.

In the automotive area, stringent bus load constraints are applied
to the used CAN buses. The maximal rational load of a CAN bus is
manufacturer-dependent and commonly between 0.4 and 0.6 [12].
The capacity of a high-speed CAN is 64, 000 byte/s and the low-
speed CAN has a capacity of 16, 000 byte/s. The constraints are
formulated as follows:
∀r ∈ RCAN :

Variation

Decoding

Evaluation Real-Time
Analysis

variables,
parameters

x

f(x)

x

{0, 1}

Figure 2: Proposed design space optimization flow.∑
m∈M

dσCAN (m)

ρ(m)
e ·mr ≤ bλ(r) · 64000c ·rhi+ bλ(r) · 16000c ·rlo

(2a)
rhi + rlo = 1 (2b)

• σCAN : M → N - size of bytes of each message (including
additional CAN overhead per message)
• ρ :M → N - period of a message
• λ : RCAN → [0; 1] - maximal rational load of the bus

Equation (2a) states that the load of a CAN bus does not exceed
the allowed bus load. Equation (2b) ensures that exactly one CAN
variant, high-speed or low-speed, is chosen.

With respect to energy consumption, ECU processors can be set
to different operation modes leading to different characteristics re-
garding computational capacity and energy consumption. The con-
straints are formulated as follows:
∀r ∈ RECU :∑

p∈P
dσECU (p)

ρ(p)
e · pr ≤

∑
o∈µ(r)

bλ(r) · γ(r, o)c · ro (3a)∑
o∈µ(r)

ro = 1 (3b)

• σECU : P × RECU → N - instructions of a process on an
ECU
• ρ : P → N - period of a process
• µ : RECU → 2O - set of operation modes of an ECU
• γ : RECU ×O → N - the computational capacity of an ECU

under a given mode in instructions per second
• λECU : RECU → [0; 1] - the maximal utilization of an ECU

Equation (3a) states that the computational load of an ECU bus does
not exceed the allowed utilization, Equation (3b) ensures that ex-
actly one operation mode is chosen.

Given a single solution x of this search problem, the correspond-
ing implementation x is deduced by constructing the allocation from
the r variables, the binding for each process from the pr variables,
the routing of the message from the mr and mr,n variables, and
the system parameters from the corresponding variables.

2.2 Optimization
Common optimization approaches that are based on Integer Lin-

ear Programs, cf. [11], or Evolutionary Algorithms, cf. [8], only
are either restricted to a single linear objective function or do not
perform well on optimization problems with many constraints and
few feasible solutions. With the linear constraints using binary vari-
ables introduced previously, the design space exploration problem
as stated in Def. 1 can be carried out efficiently by using a heuristic
SAT decoding optimization approach based on [9]. This hybrid op-
timization approach based on an Evolutionary Algorithm and a PB
(pseudo Boolean) solver allows the optimization of multiple con-
flicting and non-linear objectives under linear constraints in a binary
search space, cf. Fig. 2. In particular, the approach varies the vari-
ables of the binary search problem as well as additional parameters
used, e.g., for process and message priorities or scheduling poli-
cies. These additional parameters are optimized in parallel to the
binary search problem if they do not affect the feasibility of the im-
plementation. The decoding solves the binary search problem with
respect to the varied variables and, thus, gathers feasible implemen-
tations. Decoded implementations are evaluated to determine their

objectives and their real-time properties are verified. The results
from the evaluation guide the variable and parameter variation in
the next iteration. The optimization approach iteratively improves
found implementations such that with a higher runtime and more
evaluated implementations, respectively, the quality of the results
increases.

3. HYBRID TIMING ANALYSIS
Next, a timing analysis is presented that determines the real-time

properties for an application by handling each process and mes-
sage separately and only considering the jitter propagation. The
distinction between processes and messages allows a specific anal-
ysis which has an effect on the response time delay of multicast and
multihop routed messages. The jitter propagation model allows a
component-wise analysis either with a common method based on
recurrence functions, e.g., [7, 14], or with more sophisticated meth-
ods like the Real-Time Calculus (RTC) [5, 13].

3.1 Function Timing Analysis
Each process p ∈ P is implemented on a single resource i(p) ∈

R such that the worst case response time ap is calculated dependent
on the scheduler of this resource. On the other hand, each message
m ∈ M is implemented on the tree i(m) ∈ GA such that the
response am,r has to be determined for each resource in the graph
i(m). The end-to-end latency of one path of the application π with
π ⊆ T is determined as follows:

aπ =
∑

p∈π∩P

ap +
∑

m∈π∩M

∑
r∈route(m)

am,r (4a)

with
route(m) = (i(p), ..., i(p̃)) ⊆ i(m) and (p,m), (m, p̃) ∈ GT

(4b)
This means that the end-to-end latency is given by the sum of all
process execution times and message response times that arise on
the path π.

Given a function of the applicationGF ⊆ GT which is described
by a directed acyclic graph, the worst case execution time of the
function is:

aGF = max
π∈{all paths in GF }

aπ (5)

Instead of enumerating all paths in GF and searching for the max-
imal aπ , the evaluation is performed efficiently by applying the
Bellman-Ford algorithm [2] to the graph GF with the cost for the
nodes being ap or am,r , respectively. Thus, the complexity of
Equation (5) is O(|F | · |EF |) with F being the nodes of GF and
EF the edges, respectively.

The real-time analysis of an application requires the process ex-
ecution times ap and messages response times am,r . For this pur-
pose, a jitter propagation model also becomes necessary. Here, the
jitter is the unwanted variation between two consecutive periodic
processes executions or messages. The output jitter of the process
execution is jp for p ∈ P and a message is jm,r for m ∈ M and
the resource r ∈ R. The input jitter j∗p of a process p ∈ p is system
dependent if this process is time-triggered or the maximum of the
jitter values of the predecessor messages max(jpred(p),i(p)) if the
process is event-triggered, respectively. The input jitter j∗m,r of a
message m ∈M with the predecessor task p with (p,m) ∈ ET on
the resource r ∈ R is calculated as follows:

j∗m,r =

{
jp, if r = root(i(m))

jm,pred(r), else
(6)

Where pred(r) denotes the predecessor resource of the resource r
on the routing tree i(m). Taking these jitter values into account
allows an exact and flexible real-time analysis independent of the
underlying methodology. With the given jitter values, each process
execution time ap and messages response time am,r can be calcu-
lated independently as shown exemplarily in the following subsec-
tions.

3.1.1 Process Execution Time (Priority Scheduling)
Given a priority-based scheduler with preemption, the worst case

response time and jitter is calculated as follows:

ap = cp +
∑

p̃∈hp(p)

⌈
ap + j∗p
τp̃

⌉
· cp̃ (7a)

jp = ap − cp (7b)
Where cp (cp̃) is the required time for the execution of the process
p (p̃), τp̃ is the period of the process p̃, and the function hp(p)
determines all processes that are implemented on the same resource
as p and have a higher priority.

3.1.2 Message Response Time on CAN (ET)
For an event-triggered (ET) CAN bus r ∈ RCAN , one message

m ∈M induces the following response time and jitter:

am,r = cm,r + bm,r +
∑

m̃∈hp(m)

⌈
am,r + j∗m,r − cm,r

τm̃,r

⌉
· cm̃,r

(8a)
jm,r = am,r + cm,r (8b)

Here, cm,r (cm̃,r) is the transmission time of the message m (m̃)
on the bus r, τm̃ is the period of the message m̃, and the function
hp(m) determines all message that are routed over the CAN bus r
and have a higher priority than m. In contrast to the priority-based
scheduler, preemption is not possible on the CAN bus and bm,r is
added which denotes the maximal transmission time of one lower
priority message.

3.1.3 Message Response Time on FlexRay (TT)
Each message m ∈ M that is routed on the time-triggered (TT)

static segment of the FlexRay bus r ∈ RFR induces the response
time and jitter as follows:

am,r = cm,r + sm,r (9a)

jm,r = cm,r +

⌈
j∗m,r
sm, r

⌉
· sm,r (9b)

Where cm,r denotes the transmission time for a static slot and sm,r
the maximal time difference (usually a multiple of the cycle time)
between two static slots that transmit the message m.

The analysis of the dynamic segment of the FlexRay bus is based
on the demand-bound criteria approach which is well-known in the
real-time scheduling literature [3]. This is approach is adapted to
specifically model the dynamic segment of the FlexRay protocol.
The model and the associated analysis mechanisms have been inte-
grated into a publicly-available Matlab-based tool called the Real-
Time Calculus Toolbox [15].

4. CASE STUDY
The methodology presented in this paper, cf. Fig. 2, is realized

as a tool-chain: The proposed exploration is implemented using the
OPT4J framework [10] while the real-time analysis is based on re-
currence relations and the RTC toolbox [15]. The methodology was
applied to a case study, modeling a typical automotive subnetwork:
The network architecture consists of 15 ECUs, connected via two
CAN buses, one FlexRay bus, and a central gateway. The 9 sen-
sors, and 5 actuators are connected via LIN buses to the ECUs. The
application consisting of four functions, an adaptive cruise control
(ACC), a brake-by-wire (BW), an air conditioning function (C1),
and a multimedia control (C2), with 46 processes and 42 messages
in total has to be mapped onto the given architecture.

The subnetwork is optimized in terms of the monetary cost in
Euro(e) and energy consumption in Watts. Given constraints are
the maximal load 40% for the CAN bus, the maximal utilization
95% for ECUs as well as real-time constraints regarding the end-
to-end delay from the sensors to the corresponding actuators, given
in Table 1.

The optimization of this subnetwork was performed by an explo-
ration with the presented approach including a parallel optimization
of priorities of the processes and messages as well as the scheduling
of the messages on the static or dynamic segment of the FlexRay
bus. The exploration was performed with an Evolutionary Algo-
rithm meta-heuristic, improving the implementations iteratively by
5075 objective evaluations within 4 hours and 43 minutes on an In-
tel Core 2 Quad 2.66 GHz with 3GB RAM. Only 21 seconds are

energy(W) cost(e) ACC(ms) BW(ms) C1(ms) C2(ms)
deadline - - 100 50 30 50

ref. 432.5 214.4 99.7 30.2 11.8 32.8
impl. 1 394.9 189.1 43.1 37.5 17.3 39.6
impl. 2 396.2 184.7 41.2 34.0 15.1 49.0
impl. 3 399.5 182.8 41.2 34.0 12.5 49.0
impl. 4 416.7 182.3 38.1 28.9 13.9 39.7

Table 1: Detailed results of the best found implementations.

spent on the variation and decoding while the remaining time ac-
counts for evaluation, in particular the real-time analysis due to a
delaying file interface of the RTC.

The results of the optimization are given in Table 1. Given is a
hand-made reference implementation with the monetary cost
214.40e and an energy consumption of 432.5 Watts that respects
all real-time constraints. Four non-dominated high quality imple-
mentations are found improving the reference implementation in
both objectives, monetary cost and energy consumption. The found
implementations allow to decrease the monetary cost by 11.8% to
15% while decreasing the energy consumption by about 3.6% to
8.7% at the same time. These results are obtained by binding the
processes such that a higher utilization is achieved and some ECUs
become redundant and can be removed from the implementation.
At the same time, the priorities of the messages and processes are
varied such that the real-time constraints are still respected.

5. CONCLUSION
The paper presents a unified design space exploration approach

for real-time automotive networks that performs the design steps
of resource allocation, process binding, message routing, schedul-
ing, and parameter optimization. A combination of a binary search
problem and a meta-heuristic allows to reduce the search space to
the feasible implementations only while achieving a fast conver-
gence to the optimal implementations. For the verification of the
real-time constraints, a hybrid timing analysis is introduced that
combines the benefits of known analysis techniques that each fit
best for particular resource types like buses, ECUs, etc. A case
study modeling an automotive subsystem shows the capability of
the proposed methodology.

6. REFERENCES
[1] N. Banerjee and R. Kumar. Multiobjective network design for realistic traffic

models. In Proceedings of GECCO ’07, pages 1904–1911, 2007.
[2] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,

16:87–90, 1958.
[3] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Springer, 2005.
[4] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and

A. Sangiovanni-Vincentelli. Period optimization for hard real-time distributed
automotive systems. In Proceedings of DAC ’07, pages 278–283, 2007.

[5] A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath, P. V. V. Ganesan, and
S. Ramesh. Performance analysis of flexray-based ECU networks. In
Proceedings of DAC ’07, pages 284–289, 2007.

[6] A. Hamann, R. Racu, and R. Ernst. Formal methods for automotive platform
analysis and optimization. In Proceedings Future Trends in Automotive
Electronics and Tool Integration Workshop (DATE Conference), 2006.

[7] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for
fixed-priority scheduling of hard real-time systems. IEEE Trans. Softw. Eng.,
20(1):13–28, 1994.

[8] R. Kumar, P. K. Singh, and P. P. Chakrabarti. Multiobjective EA approach for
improved quality of solutions for spanning tree problem. In Proceedings of
EMO ’05, pages 811–825, 2005.

[9] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. Sat-decoding in
evolutionary algorithms for discrete constrained optimization problems. In
Proceedings of CEC ’07, pages 935–942, 2007.

[10] Opt4J. The optimization framework for java. http://www.opt4j.org/, Version 1.5.
[11] D. Rajan and A. Atamtürk. A directed cycle-based column-and-cut generation

method for capacitated survivable network design. Networks, 43(4):201–211,
2004.

[12] K. Richter and R. Ernst. How OEMs and suppliers can face the network
integration challenges. In Proceedings of DATE ’06, pages 183–188, 2006.

[13] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proceedings of ISCAS ’00, pages 101–104, 2000.

[14] K. Tindell, A. Burns, and A. Wellings. Calculating controller area network
(CAN) message response times. Control Engineering Practice, 3:1163–1169,
1995.

[15] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[16] H. Zeng, A. Davare, A. Sangiovanni-Vincentelli, S. Sonalkar, S. Kanajan, and
C. Pinello. Design space exploration of automotive platforms in metropolis. In
SAE Congress, 2006.

