The Neural Bucket Brigade

In R. Pfeifer, Z. Schreter, Z. Fogelman, and L. Steels, editors, Connectionism in Perspective, pages

439-446. Amsterdam: Elsevier, North-Holland, 1989.

Jiirgen Schmidhuber*

Institut fur Informatik
Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

Although there are straightforward methods for training neural nets to show certain
types of sequential behavior, the general problem of structural and temporal credit as-
signment (appropriate weight changes) in networks existing in a changing environment
remains unsolved. In this paper we argue that a learning mechanism for finding temporal
input/output relations ought to depend solely on computations local in both space and
time, and that no teacher should be required to indicate the starts and ends of relevant
sequences to the network. We ask whether there are learning rules which do not depend
on such external hints yet still can deal with ‘hidden units’ and with units whose past
activations are ‘hidden in time’. (Back propagation, for instance, is not even local in
time.) We propose a discrete time version and a continuous time version of a simple
on-line method local in space and time which is designed to deal with hidden states. The
approach is inspired by Holland’s idea of the bucket brigade for classifier systems, which
is transformed to run on a neural network with fixed topology. The result is a recur-
rent ‘neural’ dissipative system which is consuming ‘weight-substance’ and permanently
trying to distribute this substance onto its connections in an appropriate way. Simple
experiments demonstrating the feasability of the algorithm are reported.

Keywords: recurrent networks, credit assignment, local computations, dissipative sys-
tems, autonomous agents, internal feedback, external feedback, reinforcement learning,
supervised learning, neural bucket brigade.

1 Motivation

Many researchers in the field of neural network research are concerned with the study of static
input/output mappings, emphasizing the parallel aspects of such networks. Standard methods
for supervised learning of such mappings are Werbos’ back propagation (BP)(Werbos, 1974)
and Almeida’s extension (Almeida, 1987) for networks with arbitrary feedback, where the
activations flowing through the network have to reach a state of equilibrium. However, if we
want a net to learn sequences of time-dependent outputs then an equilibrium is something
we usually wish to avoid. Rumelhart, Hinton and Williams show how to correctly use BP

*Research supported by a scholarship of SIEMENS AG

for learning time-dependencies by utilizing Minsky and Papert’s idea of unfolding a recurrent
net into a feedforward net (Rumelhart et al., 1986). We will point out reasons why such an
approach cannot give a satisfactory solution for all problems involved with time, and we want
to present some constructive criticism.

A general setting for dynamic actions depending on dynamic inputs is given in the case of
an autonomous agent existing in a changing environment. The agent, which shall be regarded
preliminarily as a black box, is continuously receiving inputs from the environment by means
of simple feature detectors. The agent is able to produce outputs (actions) by means of
effectors which may influence the state of the environment. Since useful actions in general
depend on previous temporal context the agent must be able to let future system states
depend on the current state (i.e. short time memory storage in activations wandering around
feedback loops). The agent is expected to learn succesful temporal behavior depending on
time varying perceptions from the environment.

We can identify learning situations with different degrees of supervision: In a highly
unsupervised situation only a global reinforcement signal may be available to the system at
isolated points in time. In a highly supervised situation any part of the system is instructed by
the environment at any time. In between these extremes there is a continuum of possibilities.
Recurrent BP, for instance, requires teaching signals just for a subset of all units.

The system ought to find relevant structures in spatial/temporal input patterns by means
of a memory that stores just the significant aspects of some particular input. Here ‘rele-
vance’ and ‘significance’ is implicitly defined by the environment which rewards certain ac-
tions and punishes others. However, the system generally does not know in advance which
spatial/temporal input patterns are relevant for fulfilling the tasks. It generally does not
know how much time some particular relevant input sequence takes. It generally does not
even know the beginning of such a sequence.

If the inside of the black box was a recurrent BP network the teacher would have to
provide such information a priori: The teacher would have to tell the network when to start
spreading activation, and he would have to tell it when to stop and start back-propagaton
and weight changing. We identify one of the main problems of such BP networks in not being
‘really’ local. Although (Rumelhart et al., 1986) say that BP is a ‘local’ algorithm in so far
as all relevant information needed to change some weight (error signal and activation signal)
becomes available close to the weight (in a physical sense), BP is only what we informally
call ‘local in space’. It is not ‘local in time’, since in general the weight-changing pieces of
information appear at very different, externally controlled points in time. !

If the inside of the black box was a network taught by an extended REINFORCE algorithm
(Williams, 1988) then there would be no need of extensive book-keeping of past activations, as
with BP. However, even in this case starts and ends of sequences would have to be indicated
by an external teacher. Weights would not change permanently, but only after accumulation
of activation information for a predefined number of time steps.

Correlation based learning rules like Hebb’s rule, or e.g. Grossberg’s and Kohonen’s
modifications, are local in both space and time and are not concerned with starts and ends
of sequences. Such rules make external control of the global system behavior unnecessary.
However, these methods seem to lack the ability to deal with hidden units and with unit
activations hidden in time. We now ask whether there are methods local in space and time

'Recently Williams and Zipser have introduced a procedure for ‘supervised’ learning which is local in time
but not in space (Williams and Zipser, 1988).

that require a minimum of external teaching information (in the sense described above) and
still allow credit assignment to hidden units and to units whose past activations are hidden
in time.

2 Classifier Systems and the Bucket Brigade.

Holland (Holland, 1985) has proposed the meanwhile well-known bucket brigade algorithm for
classifier systems, which in principle incorporates the desirable properties mentioned above.
In this section we shortly review the main idea of this algorithm.

Messages in form of bitstrings of size n can be placed on a global message list either by the
environment or by entities called classifiers. Each classifier consists of a condition part and
an action part defining a message it might send to the message list. Both parts are strings
out of {0,1, _}" where the ‘_’ serves as a ‘don’t care’ if it appears in the condition part. (Less
important for our purposes, the ‘_’ serves as a ‘pass-through’ if it appears in the action part.)
A non-negative real number is associated with each classifier indicating its ‘strength’.

During one cycle all messages on the message list are compared with the condition parts
of all classifiers of the system. FEach matching classifier computes a ‘bid’ by multiplying
its specificity (the number of non-don’t cares in its condition part) with the product of its
strength and a small factor. The highest bidding classifiers may place their message on the
message list of the next cycle, but they have to pay with their bid which is distributed among
the classifiers active during the last time step which set up the triggering conditions (this
explains the name bucket brigade).

Certain messages result in an action within the environment (like moving a robot one step).
Because some of these actions may be regarded as ’useful’ by an external critic who can give
payoff by increasing the strengths of the currently active classifiers, learning may take place.
The central idea is that classifiers which are not active when the environment gives payoff
but which had an important role for setting the stage for directly rewarded classifiers can
earn credit by participating in ‘bucket brigade chains’. The success of some active classifier
recursively depends on the success of classifiers that are active at the following time ticks.

As an additional means for improving performance Holland introduces a genetic algorithm
to construct new classifiers from old successful ones. This feature will not be important for
our purposes.

3 The Neural Bucket Brigade

In this section we propose a combination of principles of the bucket brigade algorithm with
principles of neural networks. Competition can be introduced naturally into neural networks
by a mechanism of lateral inhibition. What we still need is a mechanism analogous to the
process of bidding and paying in classifier systems. This mechanism must establish recursive
dependencies ‘through time’. We introduce a local method for shifting ‘weight substance’
(initially provided by the environment) from weights that are allowed to transport activation
information at a certain time to those weights that were ‘setting the stage’ one time tick
earlier. We assume the following scenario for the inside of the black box:

The basic structure is some rather arbitrary cyclic directed graph, where the nodes are
quite familiar processing units. Some units are used for input purposes, others serve as

outputs and may be coupled with effectors that may change the environment, which in turn
may change the current input. Thus we have external and internal feedback.

The set of non-input units is partitioned into predefined ‘competitive subsets’. All non-
input units synchronously try to get activated by summing their weighted inputs at each
time tick. All members of a predefined competitive subset laterally inhibit each other (by
some ‘winner-take-all’ mechanism) thus competing for being active. All weights are randomly
initialized with a positive real value, and are modifiable. Initially we will assume that there
is instant decay: A unit active at time £ manages to send its contributions to connected units
that try to get activated at ¢t + 1, then the sender is switched off instantly.

All units active at time t take away a fraction of the positive weights of their outgoing
connections (if there are any) that lead to winners active at time t+1, and distribute this
‘weight-substance’ proportionally to the respective contributions among the incoming connec-
tions (if there are any) coming from winners (or input units) active at time t-1. Since the
weights determine the context-dependent strength of a unit, winners ‘get paid’ for setting the
stage for their successors. Input units do not have any incoming connections that they could
strengthen, they get activated by the environment thus representing holes through which the
weight-substance of the system is leaking. The environment’s influence is completed by some-
times rewarding (or punishing) the connections to currently active units in the case of useful
output behavior. (An external critic decides what kind of behavior is useful.) The sum of
all positive weights in the system remains constant, except for the weight-substance that is
leaking through the input units and the new substance that is entering the system in the case
of payoff. Thus we have a dissipative system which is consuming weight-substance provided
by the environment.

More formally, at time ¢ we denote the activation of the jth unit by z;(¢), the weight
on the directed connection between units i and j by w;;(t), and the contribution of some
connection by ¢;;(t) = z;(t — 1)w;;(t — 1).

The activation rule works as follows: Unit j gets activated at time ¢ if it is an input unit
and receives a perception, or if it wins the competition between the units in the competitive
subset it belongs to by having the largest positive net input net;(t) = 3, ¢;j(t). We assume
the simplest case: z;(t) equals 1 if unit j is active, and 0 0therw1se.

If unit j is active then its weights change according to

A'wZY(t) = _>\CZY() ZCZ]C 7(Z)\C]k + E.’Etz]()

kwmc

where 0 < A < 1 determines how much of its weight some particular connection has to
pay to those connections that were responsible for setting the stage at the previous time step.
Ext;;(t) is the ‘external payoff’ that the environment gives to w;; at time ¢, and may be
computed like this: If the external critic does not know at time # whether useful behavior
took place then Ext;;(t) = 0. Else, if the critic notices a useful action , and if unit j was active
at time ¢, then Ext;;(t) = nc;;(t) with 1 being a proportionality factor. There is much room
for more or less supervised strategies to determine Ext;;: Every unit might get instructed at
every time step, or just a few units at certain isolated time steps, etc.

The weights of the system (as opposed to the activations in Hopfield-networks or feedback-
BP) have reached a stable state when every connection at any time is giving back as much
weight-substance as it is receiving during the next time step. This means that (parallel)
chains of units and connections cooperating in time have evolved.

Figure 1: Weight substance given by the environment in case of successful behavior is flowing
through an agent living in a changing environment. The direction of weight flow is opposite to
the direction of activation flow originating from perceptions. Credit assignment (appropriate
weight changes) is done by local computations only. (See text for full explanation).

It is important to see the local character of this method. No book-keeping of past acti-
vations is required, not even the accumulative computation of, say, a weighted sum of past
activations. Each weight and each unit in principle performs the same operation at each time
tick. No such things as ‘epoch boundaries’ are required during training.

However, the method introduced above still has elements of global control: There is
the clock for synchronous updates, for instance. To come closer to asynchronous models from
biology we now give up the assumption of predefined competitive subsets and of instant decay.
To save the concept of winning units we explicitly introduce fixed inhibitory connections (e.g.
an on-center-off-surround structure (see (Kohonen, 1988) and (Grossberg, 1976)). We assume
that the output z; of unit j and the transmission properties of the connections are governed
by differential equations that say that z; does not change significantly during the time needed
to transport activation information from one unit to its successors. Then we may write down
a continuous time version of the weight changes caused by the neural bucket brigade in case
of net; being greater than zero:

811)7;j
ot

TiW;;
= —\zjw;it; + ——I— AL wipXE + Bxt;;
] JWj J

g i.’I}ﬂl)ij &

Only positive weights appear in this formula, the inhibitory connections have to remain
fixed. Tentatively denoting Y, wjzzy by back; we find (by letting 6;;;-]- = 0) that the weight-
flow through a positive weight w;; that does not receive external payoff has reached a dynamic

equilibrium if net; equals back; all the time.

4 Simple Experiments

Any algorithm for learning sequential tasks also should allow the learning of static pattern
association, since static learning tasks can be viewed as sequential tasks where inputs and
desired outputs do not change over time.

In a preliminary experiment we tested whether the NBB is capable of adjusting a network
such that it solves a static non-linearily separable task. The classical example for such a task
is the XOR-problem.

The network was of the feed-forward type: A layer of three input units was connected to
a predefined competitive subset of three hidden units and a predefined competitive subset of
two output units. The subset of hidden units also was connected to the subset of output-units.

The discrete time version of the algorithm described above was employed. 32-bit floating
point arithmetic was used for the simulations. In the beginning all weights were randomly
initialized between 0.999 and 1.001. At the beginning of each cycle all unit activations were
reset to 0, and one of the four binary XOR input patterns was randomly chosen. During the
cycle this pattern was presented to the first two input units for a period of 6 time ticks. The
activation of the remaining input unit was always set to 1, in order to provide a modifiable
bias for every non-input unit in the network.

The task for the network was to switch on the first output unit if the XOR. of the input
pattern was 1, and to switch on the second output unit otherwise. The task was formulated
as a reinforcement learning task: At each time tick the environment gave a payoff (playing
a role similar to the role of a reinforcement signal) Ext;;(t) = nc;j(t) to w;; if unit j was an
output unit and if it was switched on correctly at time t. In all other cases Ext;;(t) was set
equal to 0. (Recall that payoff can be considered as a bit of weight substance which has to

be distributed in an appropriate way by the NBB algorithm.) Both 5 and A were set equal
to 0.005.

The network was said to correctly classify a single pattern if it switched on the corre-
sponding output unit during the last three time ticks of a cycle, without the weight changing
mechanism being employed. The network was said to have solved the problem if it correctly
classified the four input patterns.

During 20 test runs the network needed an average of 619 pattern presentations to find
a solution. So each of the four patterns had to be presented for about 155 times, which
corresponds to the notion of 155 ‘epochs’. No systematic attempt has been undertaken to
optimize this performance.

Most of the 20 solutions were brittle in the sense that further training did not necessarily
stabilize them. For instance, after a solution had been found, another 5 training cycles could
lead to worse performance, again. So we measured the number of cycles needed to achieve a
stable solution.

A solution was considered to be stable if 100 additional pattern presentations did not
disturb the performance of the network. During 10 test runs it was found that each pattern
had to be presented for about 674 times in order to reach this criterion.

We also conducted experiments where the input patterns for successive cycles were not
chosen randomly but in periodical sequential order. Here we found that the average time to
find a solution increased, and that the solutions tended to be more brittle in the sense that it
took much longer to achieve stable solutions. This suggests that the random element in the
process of pattern selection introduces a stabilizing effect. One might suppose that similar
stabilizing effects could be achieved by using stochastic activation rules. However, this has
not been tested.

Where can instabilities arise from? The brittleness of the first solutions was attributed
to the empirically observed fact that competing units within a competitive subset often had
very similar net inputs. This in turn was attributed to a property of the NBB algorithm:
Weights of connections leading to units that loose a competition remain the same. Consider
a unit j that does not participate in a bucket brigade chain causing a correct classification
of pattern A. This means that j’s weights do not change. If the weights of j are slightly
increased during the presentation of another correctly classified pattern, this modification
may also lead to a winning situation for j during the next presentation of A, if the net input
of the competitor of 5 who usually won during A’s presentation was only slightly larger than
j’s net input. This may cause an incorrect classification of A. The interplay of these effects
may lead to instabilities.

The raisons d’étre for the NBB are non-stationary environments. One of the simplest
tasks involving non-stationary environments may be to recognize different kinds of motion.
We conducted a simple experiment with varying perceptions. A one dimensional ‘retina’
consisting of 5 input units (plus one additional unit which was always turned on) was fully
connected to a competitive subset of two ouput units. This subset of output units was
completely connected to itself, in order to allow recurrency. The task for the network was
to switch on the first output unit after an illumination point has wandered across the retina
from the left to the right (within 5 time ticks), and to switch on the first output unit after
the illumination point has wandered from the right to the left.

During one cycle one of the two sequences (which had been chosen randomly) was pre-
sented to the network twice. Payoff was given as described for the stationary experiment, the
same initialization and the same parameters 7 and A were used. In 1 out of 10 test runs the

network did not find a stable solution within 3000 cycles (according to a criterion analogue
to the one used for the stationary experiment). In the remaining 9 test runs an average of
223 cycles per sequence were needed to achieve a stable solution.

The experiments described above share a rather simple nature. It remains to be seen how
well the NBB can deal with more difficult problems, like the learning of motor control for
autonomous agents in a changing environment. We currently do not have sufficient empir-
ical and mathematical results to decide under which environmental circumstances solutions
represent attractors, and how fast convergence could be.

5 Concluding Remarks

There is an analogy between the NBB and competitive learning (Grossberg, 1976)(Kohonen,
1988)(Rumelhart and Zipser, 1986). Competitive learning also can be interpreted as a shifting
of weight substance. However, here it is the weakly contributing incoming connections to a
unit that have to pay to the strongly contributing incoming connections. In contrast, the
NBB causes weight shifts from outgoing to incoming connections. This is the key feature
used for relating present system states to past states.

Due to the local nature of all computations, the discrete time version can easily be im-
plemented such that the time complexity of one update cycle (activation changes and weight
changes) is O(n) where n is the number of weights in the system. For some particular con-
nection all information needed at a given time is its current weight, its contribution during
the current time step and its contribution during the last time step. For some particular unit
all information needed at a given time is its current activation, the summed contributions it
receives during the current time step, and the summed contributions it received during the
last time step.

Short term memory can be identified in activations wandering around feedback loops.
Such loops may even become stable: A competitive subset of units that is permanently
referencing itself can lead to a local dynamic equilibrium of weight flow (and of activation
flow running in the opposite direction). Such equilibria may get perturbed by new inputs
from the environment or from other competitive subsets that do not participate in the loop.

One difference to Holland’s bucket brigade algorithm is that there is no analogue to the
creation of new classifiers at run time: The number of connections in an NBB system remains
fixed. The justification for this is given by the fact that weights are modifiable, while the
‘specificity’ of a classifier is not. (In (Compiani et al., 1989) Compiani, Montanari, Serra and
Valastro consider more relationships between classifier systems and neural networks.)

Finally we would like to address the question of biological plausibility. We certainly do
not want to suggest that the brain uses a weight shifting mechanism for e.g. physically
transporting transmitter substance from synapses of outgoing connections to synapses of
incoming connections. However, we do not want to exclude the possibility that some kind of
feedback mechanism exists whose effects on the synapses are similar to the effects caused by
the NBB.

A major property of the brain seems to be that the motoric actions which it causes depend
on local computations only. The major contribution of this paper is to propose at least one
possibility for how completely local computations within a neural network-like system may
lead to goal directed parallel/sequential behavior.

The NBB represents a general credit assignment scheme for neural network-like structures.

‘General’ often seems to imply ‘weak’. How ‘weak’ is the NBB? It remains to be seen whether
the NBB can be successfully applied to difficult control tasks.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In IEEFE 1st International Conference on Neural Networks,
San Diego, volume 2, pages 609-618.

Compiani, M., Montanari, D., Serra, R., and Valastro, G. (1989). Classifier systems and
neural networks. In Caianello, E. R., editor, 1st Workshop on Parallel Architectures and
Neural Nets.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding, 1: Parallel
development and coding of neural feature detectors. Biological Cybernetics, 23:187-202.

Holland, J. H. (1985). Properties of the bucket brigade. In Proceedings of an International
Conference on Genetic Algorithms. Hillsdale, NJ.

Kohonen, T. (1988). Self-Organization and Associative Memory. Springer, second edition.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations
by error propagation. In Parallel Distributed Processing, volume 1, pages 318 362. MIT
Press.

Rumelhart, D. E. and Zipser, D. (1986). Feature discovery by competitive learning. In Parallel
Distributed Processing, pages 151-193. MIT Press.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behawioral Sciences. PhD thesis, Harvard University.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems.
Technical Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston,
MA.

Williams, R. J. and Zipser, D. (1988). A learning algorithm for continually running fully
recurrent networks. Technical Report ICS Report 8805, Univ. of California, San Diego,
La Jolla.

10

