
The Neural Bucket BrigadeIn R. Pfeifer, Z. Schreter, Z. Fogelman, and L. Steels, editors, Connectionism in Perspective, pages439-446. Amsterdam: Elsevier, North-Holland, 1989.J�urgen Schmidhuber�Institut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deAbstractAlthough there are straightforward methods for training neural nets to show certaintypes of sequential behavior, the general problem of structural and temporal credit as-signment (appropriate weight changes) in networks existing in a changing environmentremains unsolved. In this paper we argue that a learning mechanism for �nding temporalinput/output relations ought to depend solely on computations local in both space andtime, and that no teacher should be required to indicate the starts and ends of relevantsequences to the network. We ask whether there are learning rules which do not dependon such external hints yet still can deal with `hidden units' and with units whose pastactivations are `hidden in time'. (Back propagation, for instance, is not even local intime.) We propose a discrete time version and a continuous time version of a simpleon-line method local in space and time which is designed to deal with hidden states. Theapproach is inspired by Holland's idea of the bucket brigade for classi�er systems, whichis transformed to run on a neural network with �xed topology. The result is a recur-rent `neural' dissipative system which is consuming `weight-substance' and permanentlytrying to distribute this substance onto its connections in an appropriate way. Simpleexperiments demonstrating the feasability of the algorithm are reported.Keywords: recurrent networks, credit assignment, local computations, dissipative sys-tems, autonomous agents, internal feedback, external feedback, reinforcement learning,supervised learning, neural bucket brigade.1 MotivationMany researchers in the �eld of neural network research are concerned with the study of staticinput/output mappings, emphasizing the parallel aspects of such networks. Standard methodsfor supervised learning of such mappings are Werbos' back propagation (BP)(Werbos, 1974)and Almeida's extension (Almeida, 1987) for networks with arbitrary feedback, where theactivations 
owing through the network have to reach a state of equilibrium. However, if wewant a net to learn sequences of time-dependent outputs then an equilibrium is somethingwe usually wish to avoid. Rumelhart, Hinton and Williams show how to correctly use BP�Research supported by a scholarship of SIEMENS AG1



for learning time-dependencies by utilizing Minsky and Papert's idea of unfolding a recurrentnet into a feedforward net (Rumelhart et al., 1986). We will point out reasons why such anapproach cannot give a satisfactory solution for all problems involved with time, and we wantto present some constructive criticism.A general setting for dynamic actions depending on dynamic inputs is given in the case ofan autonomous agent existing in a changing environment. The agent, which shall be regardedpreliminarily as a black box, is continuously receiving inputs from the environment by meansof simple feature detectors. The agent is able to produce outputs (actions) by means ofe�ectors which may in
uence the state of the environment. Since useful actions in generaldepend on previous temporal context the agent must be able to let future system statesdepend on the current state (i.e. short time memory storage in activations wandering aroundfeedback loops). The agent is expected to learn succesful temporal behavior depending ontime varying perceptions from the environment.We can identify learning situations with di�erent degrees of supervision: In a highlyunsupervised situation only a global reinforcement signal may be available to the system atisolated points in time. In a highly supervised situation any part of the system is instructed bythe environment at any time. In between these extremes there is a continuum of possibilities.Recurrent BP, for instance, requires teaching signals just for a subset of all units.The system ought to �nd relevant structures in spatial/temporal input patterns by meansof a memory that stores just the signi�cant aspects of some particular input. Here `rele-vance' and `signi�cance' is implicitly de�ned by the environment which rewards certain ac-tions and punishes others. However, the system generally does not know in advance whichspatial/temporal input patterns are relevant for ful�lling the tasks. It generally does notknow how much time some particular relevant input sequence takes. It generally does noteven know the beginning of such a sequence.If the inside of the black box was a recurrent BP network the teacher would have toprovide such information a priori: The teacher would have to tell the network when to startspreading activation, and he would have to tell it when to stop and start back-propagatonand weight changing. We identify one of the main problems of such BP networks in not being`really' local. Although (Rumelhart et al., 1986) say that BP is a `local' algorithm in so faras all relevant information needed to change some weight (error signal and activation signal)becomes available close to the weight (in a physical sense), BP is only what we informallycall `local in space'. It is not `local in time', since in general the weight-changing pieces ofinformation appear at very di�erent, externally controlled points in time. 1If the inside of the black box was a network taught by an extended REINFORCE algorithm(Williams, 1988) then there would be no need of extensive book-keeping of past activations, aswith BP. However, even in this case starts and ends of sequences would have to be indicatedby an external teacher. Weights would not change permanently, but only after accumulationof activation information for a prede�ned number of time steps.Correlation based learning rules like Hebb's rule, or e.g. Grossberg's and Kohonen'smodi�cations, are local in both space and time and are not concerned with starts and endsof sequences. Such rules make external control of the global system behavior unnecessary.However, these methods seem to lack the ability to deal with hidden units and with unitactivations hidden in time. We now ask whether there are methods local in space and time1Recently Williams and Zipser have introduced a procedure for `supervised' learning which is local in timebut not in space (Williams and Zipser, 1988). 2



that require a minimum of external teaching information (in the sense described above) andstill allow credit assignment to hidden units and to units whose past activations are hiddenin time.2 Classi�er Systems and the Bucket Brigade.Holland (Holland, 1985) has proposed the meanwhile well-known bucket brigade algorithm forclassi�er systems, which in principle incorporates the desirable properties mentioned above.In this section we shortly review the main idea of this algorithm.Messages in form of bitstrings of size n can be placed on a global message list either by theenvironment or by entities called classi�ers. Each classi�er consists of a condition part andan action part de�ning a message it might send to the message list. Both parts are stringsout of f0; 1; gn where the ` ' serves as a `don't care' if it appears in the condition part. (Lessimportant for our purposes, the ` ' serves as a `pass-through' if it appears in the action part.)A non-negative real number is associated with each classi�er indicating its `strength'.During one cycle all messages on the message list are compared with the condition partsof all classi�ers of the system. Each matching classi�er computes a `bid' by multiplyingits speci�city (the number of non-don't cares in its condition part) with the product of itsstrength and a small factor. The highest bidding classi�ers may place their message on themessage list of the next cycle, but they have to pay with their bid which is distributed amongthe classi�ers active during the last time step which set up the triggering conditions (thisexplains the name bucket brigade).Certain messages result in an action within the environment (like moving a robot one step).Because some of these actions may be regarded as 'useful' by an external critic who can givepayo� by increasing the strengths of the currently active classi�ers, learning may take place.The central idea is that classi�ers which are not active when the environment gives payo�but which had an important role for setting the stage for directly rewarded classi�ers canearn credit by participating in `bucket brigade chains'. The success of some active classi�errecursively depends on the success of classi�ers that are active at the following time ticks.As an additional means for improving performance Holland introduces a genetic algorithmto construct new classi�ers from old successful ones. This feature will not be important forour purposes.3 The Neural Bucket BrigadeIn this section we propose a combination of principles of the bucket brigade algorithm withprinciples of neural networks. Competition can be introduced naturally into neural networksby a mechanism of lateral inhibition. What we still need is a mechanism analogous to theprocess of bidding and paying in classi�er systems. This mechanism must establish recursivedependencies `through time'. We introduce a local method for shifting `weight substance'(initially provided by the environment) from weights that are allowed to transport activationinformation at a certain time to those weights that were `setting the stage' one time tickearlier. We assume the following scenario for the inside of the black box:The basic structure is some rather arbitrary cyclic directed graph, where the nodes arequite familiar processing units. Some units are used for input purposes, others serve as3



outputs and may be coupled with e�ectors that may change the environment, which in turnmay change the current input. Thus we have external and internal feedback.The set of non-input units is partitioned into prede�ned `competitive subsets'. All non-input units synchronously try to get activated by summing their weighted inputs at eachtime tick. All members of a prede�ned competitive subset laterally inhibit each other (bysome `winner-take-all' mechanism) thus competing for being active. All weights are randomlyinitialized with a positive real value, and are modi�able. Initially we will assume that thereis instant decay: A unit active at time t manages to send its contributions to connected unitsthat try to get activated at t+ 1, then the sender is switched o� instantly.All units active at time t take away a fraction of the positive weights of their outgoingconnections (if there are any) that lead to winners active at time t+1, and distribute this`weight-substance' proportionally to the respective contributions among the incoming connec-tions (if there are any) coming from winners (or input units) active at time t-1. Since theweights determine the context-dependent strength of a unit, winners `get paid' for setting thestage for their successors. Input units do not have any incoming connections that they couldstrengthen, they get activated by the environment thus representing holes through which theweight-substance of the system is leaking. The environment's in
uence is completed by some-times rewarding (or punishing) the connections to currently active units in the case of usefuloutput behavior. (An external critic decides what kind of behavior is useful.) The sum ofall positive weights in the system remains constant, except for the weight-substance that isleaking through the input units and the new substance that is entering the system in the caseof payo�. Thus we have a dissipative system which is consuming weight-substance providedby the environment.More formally, at time t we denote the activation of the jth unit by xj(t), the weighton the directed connection between units i and j by wij(t), and the contribution of someconnection by cij(t) = xi(t� 1)wij(t� 1).The activation rule works as follows: Unit j gets activated at time t if it is an input unitand receives a perception, or if it wins the competition between the units in the competitivesubset it belongs to by having the largest positive net input netj(t) = Pi cij(t). We assumethe simplest case: xj(t) equals 1 if unit j is active, and 0 otherwise.If unit j is active then its weights change according to�wij(t) = ��cij(t) + cij(t� 1)Pi cij(t� 1) Xk wins�cjk(t) +Extij(t)where 0 < � < 1 determines how much of its weight some particular connection has topay to those connections that were responsible for setting the stage at the previous time step.Extij(t) is the `external payo�' that the environment gives to wij at time t, and may becomputed like this: If the external critic does not know at time t whether useful behaviortook place then Extij(t) = 0. Else, if the critic notices a useful action , and if unit j was activeat time t, then Extij(t) = �cij(t) with � being a proportionality factor. There is much roomfor more or less supervised strategies to determine Extij : Every unit might get instructed atevery time step, or just a few units at certain isolated time steps, etc.The weights of the system (as opposed to the activations in Hop�eld-networks or feedback-BP) have reached a stable state when every connection at any time is giving back as muchweight-substance as it is receiving during the next time step. This means that (parallel)chains of units and connections cooperating in time have evolved.4



Figure 1: Weight substance given by the environment in case of successful behavior is 
owingthrough an agent living in a changing environment. The direction of weight 
ow is opposite tothe direction of activation 
ow originating from perceptions. Credit assignment (appropriateweight changes) is done by local computations only. (See text for full explanation).
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It is important to see the local character of this method. No book-keeping of past acti-vations is required, not even the accumulative computation of, say, a weighted sum of pastactivations. Each weight and each unit in principle performs the same operation at each timetick. No such things as `epoch boundaries' are required during training.However, the method introduced above still has elements of global control: There isthe clock for synchronous updates, for instance. To come closer to asynchronous models frombiology we now give up the assumption of prede�ned competitive subsets and of instant decay.To save the concept of winning units we explicitly introduce �xed inhibitory connections (e.g.an on-center-o�-surround structure (see (Kohonen, 1988) and (Grossberg, 1976)). We assumethat the output xj of unit j and the transmission properties of the connections are governedby di�erential equations that say that xj does not change signi�cantly during the time neededto transport activation information from one unit to its successors. Then we may write downa continuous time version of the weight changes caused by the neural bucket brigade in caseof netj being greater than zero:@wij@t = ��xiwijxj + xiwijPi xiwijXk �xjwjkxk +ExtijOnly positive weights appear in this formula, the inhibitory connections have to remain�xed. Tentatively denoting Pk wjkxk by backj we �nd (by letting @wij@t = 0) that the weight-
ow through a positive weight wij that does not receive external payo� has reached a dynamicequilibrium if netj equals backj all the time.4 Simple ExperimentsAny algorithm for learning sequential tasks also should allow the learning of static patternassociation, since static learning tasks can be viewed as sequential tasks where inputs anddesired outputs do not change over time.In a preliminary experiment we tested whether the NBB is capable of adjusting a networksuch that it solves a static non-linearily separable task. The classical example for such a taskis the XOR-problem.The network was of the feed-forward type: A layer of three input units was connected toa prede�ned competitive subset of three hidden units and a prede�ned competitive subset oftwo output units. The subset of hidden units also was connected to the subset of output-units.The discrete time version of the algorithm described above was employed. 32-bit 
oatingpoint arithmetic was used for the simulations. In the beginning all weights were randomlyinitialized between 0:999 and 1:001. At the beginning of each cycle all unit activations werereset to 0, and one of the four binary XOR input patterns was randomly chosen. During thecycle this pattern was presented to the �rst two input units for a period of 6 time ticks. Theactivation of the remaining input unit was always set to 1, in order to provide a modi�ablebias for every non-input unit in the network.The task for the network was to switch on the �rst output unit if the XOR of the inputpattern was 1, and to switch on the second output unit otherwise. The task was formulatedas a reinforcement learning task: At each time tick the environment gave a payo� (playinga role similar to the role of a reinforcement signal) Extij(t) = �cij(t) to wij if unit j was anoutput unit and if it was switched on correctly at time t. In all other cases Extij(t) was setequal to 0. (Recall that payo� can be considered as a bit of weight substance which has to6



be distributed in an appropriate way by the NBB algorithm.) Both � and � were set equalto 0:005.The network was said to correctly classify a single pattern if it switched on the corre-sponding output unit during the last three time ticks of a cycle, without the weight changingmechanism being employed. The network was said to have solved the problem if it correctlyclassi�ed the four input patterns.During 20 test runs the network needed an average of 619 pattern presentations to �nda solution. So each of the four patterns had to be presented for about 155 times, whichcorresponds to the notion of 155 `epochs'. No systematic attempt has been undertaken tooptimize this performance.Most of the 20 solutions were brittle in the sense that further training did not necessarilystabilize them. For instance, after a solution had been found, another 5 training cycles couldlead to worse performance, again. So we measured the number of cycles needed to achieve astable solution.A solution was considered to be stable if 100 additional pattern presentations did notdisturb the performance of the network. During 10 test runs it was found that each patternhad to be presented for about 674 times in order to reach this criterion.We also conducted experiments where the input patterns for successive cycles were notchosen randomly but in periodical sequential order. Here we found that the average time to�nd a solution increased, and that the solutions tended to be more brittle in the sense that ittook much longer to achieve stable solutions. This suggests that the random element in theprocess of pattern selection introduces a stabilizing e�ect. One might suppose that similarstabilizing e�ects could be achieved by using stochastic activation rules. However, this hasnot been tested.Where can instabilities arise from? The brittleness of the �rst solutions was attributedto the empirically observed fact that competing units within a competitive subset often hadvery similar net inputs. This in turn was attributed to a property of the NBB algorithm:Weights of connections leading to units that loose a competition remain the same. Considera unit j that does not participate in a bucket brigade chain causing a correct classi�cationof pattern A. This means that j's weights do not change. If the weights of j are slightlyincreased during the presentation of another correctly classi�ed pattern, this modi�cationmay also lead to a winning situation for j during the next presentation of A, if the net inputof the competitor of j who usually won during A's presentation was only slightly larger thanj's net input. This may cause an incorrect classi�cation of A. The interplay of these e�ectsmay lead to instabilities.The raisons d'être for the NBB are non-stationary environments. One of the simplesttasks involving non-stationary environments may be to recognize di�erent kinds of motion.We conducted a simple experiment with varying perceptions. A one dimensional `retina'consisting of 5 input units (plus one additional unit which was always turned on) was fullyconnected to a competitive subset of two ouput units. This subset of output units wascompletely connected to itself, in order to allow recurrency. The task for the network wasto switch on the �rst output unit after an illumination point has wandered across the retinafrom the left to the right (within 5 time ticks), and to switch on the �rst output unit afterthe illumination point has wandered from the right to the left.During one cycle one of the two sequences (which had been chosen randomly) was pre-sented to the network twice. Payo� was given as described for the stationary experiment, thesame initialization and the same parameters � and � were used. In 1 out of 10 test runs the7



network did not �nd a stable solution within 3000 cycles (according to a criterion analogueto the one used for the stationary experiment). In the remaining 9 test runs an average of223 cycles per sequence were needed to achieve a stable solution.The experiments described above share a rather simple nature. It remains to be seen howwell the NBB can deal with more di�cult problems, like the learning of motor control forautonomous agents in a changing environment. We currently do not have su�cient empir-ical and mathematical results to decide under which environmental circumstances solutionsrepresent attractors, and how fast convergence could be.5 Concluding RemarksThere is an analogy between the NBB and competitive learning (Grossberg, 1976)(Kohonen,1988)(Rumelhart and Zipser, 1986). Competitive learning also can be interpreted as a shiftingof weight substance. However, here it is the weakly contributing incoming connections to aunit that have to pay to the strongly contributing incoming connections. In contrast, theNBB causes weight shifts from outgoing to incoming connections. This is the key featureused for relating present system states to past states.Due to the local nature of all computations, the discrete time version can easily be im-plemented such that the time complexity of one update cycle (activation changes and weightchanges) is O(n) where n is the number of weights in the system. For some particular con-nection all information needed at a given time is its current weight, its contribution duringthe current time step and its contribution during the last time step. For some particular unitall information needed at a given time is its current activation, the summed contributions itreceives during the current time step, and the summed contributions it received during thelast time step.Short term memory can be identi�ed in activations wandering around feedback loops.Such loops may even become stable: A competitive subset of units that is permanentlyreferencing itself can lead to a local dynamic equilibrium of weight 
ow (and of activation
ow running in the opposite direction). Such equilibria may get perturbed by new inputsfrom the environment or from other competitive subsets that do not participate in the loop.One di�erence to Holland's bucket brigade algorithm is that there is no analogue to thecreation of new classi�ers at run time: The number of connections in an NBB system remains�xed. The justi�cation for this is given by the fact that weights are modi�able, while the`speci�city' of a classi�er is not. (In (Compiani et al., 1989) Compiani, Montanari, Serra andValastro consider more relationships between classi�er systems and neural networks.)Finally we would like to address the question of biological plausibility. We certainly donot want to suggest that the brain uses a weight shifting mechanism for e.g. physicallytransporting transmitter substance from synapses of outgoing connections to synapses ofincoming connections. However, we do not want to exclude the possibility that some kind offeedback mechanism exists whose e�ects on the synapses are similar to the e�ects caused bythe NBB.A major property of the brain seems to be that the motoric actions which it causes dependon local computations only. The major contribution of this paper is to propose at least onepossibility for how completely local computations within a neural network-like system maylead to goal directed parallel/sequential behavior.The NBB represents a general credit assignment scheme for neural network-like structures.8



`General' often seems to imply `weak'. How `weak' is the NBB? It remains to be seen whetherthe NBB can be successfully applied to di�cult control tasks.
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