
ADAPTIVE HISTORY COMPRESSION FOR LEARNING TODIVIDE AND CONQUERIn Proc. International Joint Conference on Neural Networks, Singapore, volume 2, pages 1130-1135. IEEE, 1991.J�urgen Schmidhuber�Department of Computer ScienceUniversity of ColoradoCampus Box 430Boulder, CO 80309, USAAbstractPrevious approaches to on-line supervised sequence learning (back-prop through time (BPTT), e.g.[7], the IID- or RTRL-algorithm [1][8], its more e�cient relative [5], and others) do not try to selectivelyfocus on relevant inputs, they waste e�ciency and resources by focussing on every input. With manyapplications, a second drawback of these methods is the following: The longer the time lag between anevent and the occurrence of a corresponding error the less information is carried by the correspondingback-propagated error signals. This paper asks: How can a system learn to reduce the descriptions ofevent sequences without loosing information? It is shown that the learning system ought to concentrateon unexpected inputs and ignore expected ones. This insight leads to the construction of neural systemswhich learn to `divide and conquer' by recursively composing sequences. The �rst system (section 2)creates a self-organizing multi-level hierarchy of recurrent predictors. The second sytem (section 3)involves only two recurrent networks: It tries to collapse a multi-level predictor hierarchy into a singlerecurrent net. Experiments show that the system can require less computation per time step and muchless training sequences than the conventional training algorithms for recurrent nets.1 HISTORY COMPRESSIONConsider a discrete time predictor whose state at time t is described by an environmental input vector i(t),an internal state vector h(t), and an output vector o(t). At time 0, the predictor starts with i(0) and aninternal start state h(0). At time t � 0, the predictor computeso(t) = f(i(t); h(t)):At time t > 0, the predictor furthermore computesh(t) = g(i(t� 1); h(t� 1)):If o(t) = i(t + 1) at a given time t, then the predictor was able to predict the input i(t + 1) from theprevious inputs. The new input was derivable by means of f and g. All information about the input at agiven time tx can be reconstructed from the knowledge abouttx; f; g; i(0); h(0); and the pairs (ts; i(ts)) : 0 < ts � tx; o(ts � 1) 6= i(ts):�This work has been done at Technische Universit�at M�unchen, Germany1



The information about the observed input sequence can be even more compressed: There is no need tostore all the i(tk); k = 1; : : : ; l; it su�ces to store only those components of the i(tk) that were not correctlypredicted.The observation above implies that we can di�erentiate various input sequences by knowing only theunpredicted inputs and the corresponding time steps: No discriminating information will be lost if weignore the expected inputs. We call this the principle of history compression.2 A MULTI-LEVEL PREDICTOR HIERARCHYWith the help of the principle of history compression we can build a hierarchical chunking system. Eachith-level predictor Pi (a conventional dynamic recurrent neural network, e.g. [1][8][7][5]) is trained topredict its own next input (plus potentially available external target vectors) from the previous ones. Ateach time step the input of the lowest-level recurrent predictor P0 is the current external input. We createa new higher-level adaptive predictor Ps+1 whenever a lower-level adaptive predictor Ps stops to continueimproving its predictions. Only if at a given time step Ps (s � 0) fails to predict its next input (or target)then Ps+1 will receive as input the concatenation of this next input of Ps plus a unique representation of thecorresponding time step; the activations of Ps+1's hidden and output units will be updated. Otherwise Ps+1will not perform an activation update. This procedure ensures that Ps+1 is fed with a reduced descriptionof the input sequence observed by Ps. In general, Ps+1 will receive fewer inputs over time than Ps. Withthe known learning algorithms, the higher-level predictor will have less di�culties in learning to predictthe critical inputs than the lower-level predictor. This method [4] will lead to a hierarchy of predictors andis related to the recent chunking-method described in [2].Here it should be mentioned that with many practical tasks there is no need for unique representationsof time steps [4].Often a multi-level predictor hierarchy will be the fastest and safest way of learning to deal withsequences with multi-level temporal structure (e.g speech). Experiments have shown that multi-level systemsas above can learn tasks which are practically not learnable by conventional recurrent networks. Onedisadvantage of a predictor hierarchy, however, is that it is not known in advance how many levels therewill be needed. Another disadvantage is that levels are explicitly separated from each other. It is possible,however, to collapse the hierarchy into a single network as described next.3 COLLAPSING THE HIERARCHY INTO A SINGLE RE-CURRENT NET3.1 OUTLINEThe 2-net system described below consists of two conventional recurrent networks: The `automatizer' andthe `chunker'. At each time step the automatizer receives the current external input. Its error functionis threefold: One term forces it to emit certain desired target outputs at certain times. The second termforces it at every time step to predict its own next input. The third (crucial) term will be explained below.Only if the automatizer makes an error concerning the �rst and the second term of its error function,the unpredicted input (including a potentially available teaching vector) plus a unique representation of thecurrent time step will become the new input of the chunker. Before this new input can be processed, thechunker (whose last input may have occurred way back) is trained to predict this higher-level input fromits current internal state and its last input (a conventional recurrent net algorithm is employed). After thisthe chunker performs an activation update which contributes to a higher level internal representation of theinput history. Note that according to the principle of history compression the chunker is fed with a reduceddescription of the input history. The information deducable by means of the predictions of the automatizercan be considered as redundant. (The beginning of an episode usually is not predictable, therefore it is fedto the chunking level, too.)



The chunker currently might be able to quickly learn to predict its next input although the automatizercurrently is not. This is because the `credit assignment paths' of the chunker often will be short compared tothose of the automatizer (this will usually happen if the incoming inputs carry global temporal structurewhich has not yet been discovered by the automatizer). Then the chunker will develop useful internalrepresentations of previous unexpected input events. Due to the �nal term of its error function, theautomatizer will be forced to reproduce these internal representations, by predicting the state of the chunker.Therefore the automatizer will be able to create useful internal representations by itself in an early stageof input processing. These internal representations must carry the relevant information for enabling theautomatizer to improve its predictions. Therefore the chunker will receive less and less inputs, since moreand more inputs become predictable by the automatizer. This is the collapsing operation. Ideally, thechunker will become obsolete after some time.3.2 DETAILS OF THE 2-NET CHUNKING ARCHITECTUREThe system described below is the on-line version of a representative of a number of variations of the basicprinciple described in 3.1. It must be mentioned that unlike with the o�-line creation of a multi-levelpredictor hierarchy as in section 2 there is no formal proof that the on-line version described below willnever be subject to instabilities. See [4] for a 2-net o�-line version and various modi�cations.The automatizer has nI + nD input units, nHA hidden units, and nOA output units. The chunker hasnHC hidden units, and nOC output units. All input units and all hidden units of the automatizer havedirected forward connections to all non-input units of the automatizer. All input units of the automatizerhave directed forward connections to all non-input units of the chunker. This is because the input units ofthe automatizer serve as input units for the chunker at certain time steps. There are additional nS inputunits for the chunker for providing unique representations of time steps. These additional input units alsohave directed forward connections to all non-input units of the chunker. All hidden units of the chunkerhave directed forward connections to all non-input units of the chunker.At time t the environment provides a nI + nD-dimensional real input vector d(t) � x(t) to the system.(Here `�' is the concatenation operator). d(t) is a nD-dimensional teacher-de�ned target vector. With pureprediction tasks nD = 0. For convenience we de�ne �d(t) = 1 if at time t the teacher provides such a targetd(t) and �d(t) = 1 otherwise. If �d(t) = 0 then d(t) takes on some default value, e.g. the zero vector.The nI + nD-dimensional real input vector of the automatizer at time t is iA(t). The nHA -dimensionalreal activation vector of the hidden units of the automatizer at time t is hA(t). The real nOA -dimensionaloutput vector of the automatizer at time t is oA(t). hA(t) and oA(t) are based on previous inputs andare computed without knowledge about d(t) and x(t). oA(t) is the concatenation dA(t) � pA(t) � qA(t) ofthe nD-dimensional vector dA(t), the nI -dimensional vector pA(t) and the nHC + nOC -dimensional vectorqA(t). Therefore, nOA = nD + nI + nHC + nOC . The automatizer will try to make dA(t) equal to d(t) if�d(t) = 1, and it will try to make pA(t) equal to x(t) (thus trying to predict x(t)). Here we de�ne thetarget prediction problem as a special case of an input prediction problem. Finally, and most importantly,the automatizer will try to make qA(t) equal to hC(t) � oC(t), thus trying to predict the internal state ofthe chunker.The real nHC -dimensional activation vector of the hidden units of the chunker at time t is hC(t).The real nOC = nD + nI + nS-dimensional output vector of the chunker at time t is oC(t). oC(t) is theconcatenation dC(t) � pC(t) � sC(t) of the nD-dimensional vector dC(t), the nI -dimensional vector pC(t),and the nS-dimensional vector sC(t). The chunker will try to make dC(t) equal to the externally providedteaching vector d(t) if �d(t) = 1 and if the automatizer failed to emit d(t). Furthermore, it will always tryto make pC(t) � sC(t) equal to the next non-teaching input to be processed by the chunker. This inputmay be many time steps ahead.Both chunker and automatizer simultaneously are trained by a conventional algorithm for recurrentnetworks. Both the IID-Algorithm and BPTT are appropriate. In particular, a computationally inexpen-sive variant of BPTT is interesting: There are tasks with hierarchical temporal structure where only a fewiterations of `back-propagation back into time' per time step are su�cient to bridge arbitrary time lags(see section 4).



The algorithm described below refers to the procedure of `updating a network N '. Such an update isbased on an activation spreading phase which can look as follows:Repeat for a constant number of iterations (typically one or two):1. For each non-input unit j of N compute âj = fj(Pi aiwij), where aj is the currentactivation of unit j, fj is a semilinear di�erentiable function and wij is the weight on thedirected connection from unit i to unit j.2. For all non-input units j: Set aj equal to âj.Now it su�ces to specify the input-output behavior of the chunker and the automatizer as well as thedetails of error injection:INITIALIZATION: All weights are initialized randomly. In the beginning, at time step 0,make hC(0) and hA(0) equal to zero, and make iA(0) equal d(0) � x(0). Represent time step0 in s(0). Update the chunker to obtain hC(1) and oC(1).FOR ALL TIMES t > 0 UNTIL INTERRUPTION DO:1. Update the automatizer to obtain hA(t) and oA(t). The automatizer's error eA(t) isde�ned as2eA(t) = (pA(t) � qA(t)� x(t) � hC(t) � oC(t))T (pA(t) � qA(t)� x(t) � hC(t) � oC(t))+�d(t)(dA(t)� d(t))T (dA(t)� d(t)):Use a gradient descent algorithm for dynamic recurrent nets to change each weight wij of theautomatizer in proportion to (the approximation of) �@eA(t)@wij . Make iA(t) equal to d(t)�x(t).Uniquely represent t in s(t).2. If the low-level error of the automatizer2eP (t) = (pA(t)� x(t))T (pA(t)� x(t)) + �d(t)(dA(t)� d(t))T (dA(t)� d(t))is less or equal to a small constant � � 0, then set hC(t+ 1) = hC(t), oC(t+ 1) = oC(t).Else de�ne the chunker's prediction error eC(t) as2eC(t) = (pC(t)� x(t))T (pC(t)� x(t)) + �d(t)(dC(t)� d(t))T (dC(t)� d(t))+(sC(t)� s(t))T (sC(t)� s(t));use a gradient descent algorithm for dynamic recurrent nets to change each weight wij of thechunker in proportion to (the approximation of) �@eC(t)@wij , and update the chunker to obtainhC(t+ 1) and oC(t+ 1).4 EXPERIMENTSJosef Hochreiter (a student at TUM) implemented variants of the chunking algorithm and tested them ona prediction task involving comparatively long time lags. He compared the results to the results obtainedwith the conventional learning algorithm for recurrent nets. It turned out that chunking systems can besuperior to the conventional algorithm in two respects: They may require less computation per time step,and in addition they may require fewer training sequences.A prediction task with a 20-step time lag was constructed. There were 22 possible input symbolsa; x; b1; b2; : : : ; b20. The learning systems observed one input symbol at a time. There were only twopossible input sequences: ab1 : : : b20 and xb1 : : : b20. These were presented to the learning systems inrandom order. At a given time step, one goal was to predict the next input (note that in general it wasnot possible to predict the �rst symbol of each sequence due to the random occurrence of x and a). Thesecond (and more di�cult) goal was to make the activation of a particular output unit (the `target unit')



equal to 1 whenever the last 21 processed input symbols were a; b1; : : : ; b20 and to make this activation 0whenever the last 21 processed input symbols were x; b1; : : : ; b20. No episode boundaries were used: Inputsequences were fed to the learning systems without providing information about their beginnings and theirends. Therefore there was a continuous stream of input events: On-line versions of the methods had tobe used. The task was considered to be solved if the local errors of all output units (including the targetunit) were always below 0.3 (with the exception of the errors caused by the occurrences of a and x whichwere unpredictable)With both the conventional and the novel approach, all non-input units employed the logistic activationfunction f(x) = 11+e�x . Weights were initialized between -0.2 and 0.2. Local input representations of 22possible input symbols a; x; b1; : : : ; b20 were employed: Each symbol was represented by a bit-vector withonly one non-zero component.The conventional recurrent net had one hidden unit, one input unit for each of the input symbolsa; x; b1; : : : ; b20, one input unit for the last target, and one input unit whose activation was always 1 forproviding a modi�able bias for the non-input units. In addition, it had 23 output units for predicting thenext input plus the target (if there was any) (the bias unit was not predicted by the system). 21 iterationsof error propagation `back into the past' were performed at each time step. This is the minimal numberrequired for 20-step time lags (in [7] this method is referred to as `truncated back-propagation throughtime'). Note that more iterations `back into the past' would just cause additional confusion instead ofbeing bene�cial. Therefore one may say that external knowledge about the nature of the task was givento the system.With various learning rates the result was: Apparently it is not possible for the conventional algorithmto solve the task in reasonable time. Of course, the network quickly learned to predict the occurrencesof the symbols b1; : : : ; b20, but the 20-step time lags seemed to pose insurmountable problems (the testruns were interrupted after 1.000.000 training sequences). (It should be mentioned, however, that limitedcomputer time did not allow a systematic test of all possible parameters.) Note that in the context ofspeech processing 20 time frames are not at all a long time.To �nd out about the limits of the conventional algorithm (and to test whether something was wrongwith the implementation of the conventional algorithm) the prediction problem was simpli�ed such thatan analoguous 5-step time lag problem was obtained. With this simpli�ed task, in addition to a and xthere were only 4 (instead of 20) more input symbols b1; : : : ; b4. With 4 test runs and a learning rate of1.0, the following numbers of training sequences were necessary to obtain satisfactory solutions: 1.900.000,900.000, 3.500.000, 250.000.How did the chunking system perform on the 20-step task? Like the conventional network, the autom-atizer had one hidden unit, one input unit for each of the input symbols a; x; b1; : : : ; b20, one input unit forthe last target, and one input unit which was always 1 for providing a modi�able bias for the non-inputunits. The error criterion was the following: The chunker was updated whenever the maximal error ob-served at one of the automatizer's low-level output units exceeded 0.2. The chunker had 1 hidden unit and23 output units for predicting its next input plus the target (if there was any). With this experiment, thechunker did not need unique time step representations s(t). The automatizer had 23 output units for pre-dicting the next environmental input plus the target (if there was any), and 23 output units for predictingthe non-input units of the chunker. One iteration per network update was performed. The `unfolding intime' method (e.g. [7]) was applied to both the chunker and the automatizer. Only 3 iterations of errorpropagation `back into the past' were performed at each time step. Both learning rates were equal to 1.0.The chunking system was able to solve the task. 17 test runs were conducted. With 13 test runs thesystem needed less than 5000 training sequences to make the error of the automatizer's target unit alwayssmaller than 0.12. With the remaining 4 test runs the following numbers represent upper bounds for thenumber of training sequences required to make the error of the automatizer's target unit smaller than 0.06:30.000, 35.000, 25.000, 15.000.The �nal weight matrix of the automatizer often looked like the one one would expect: Typicallythe hidden unit turned on whenever the terminal a occurred. A strong recurrent connection from thathidden unit to itself kept it alive for the following 21 time steps, then it became inhibited if an x occurred(symmetrical solutions were observed, too). A major result is that this structure evolved although only



3 iterations of error propagation `back into the past' were performed at each time step! The particularchunking system needed less computation per time step than the conventional method. It was local in bothspace and time. Still it required less training sequences (due to limited computer time the experiments didnot tell how many training sequences the conventional algorithm needs).It is intended to apply both multi-level chunking systems and 2-net chunking systems to real worldtasks. For instance, with speech processing tasks there seems to be an abundancy of multi-level temporalstructure. Therefore chunking systems seem to be interesting candidates for learning to process and predictspeech.5 CONCLUDING REMARKSIt seems that humans tend to memorize and focus on non-typical and unexpected events and that theytend to try to explain new unexpected events by previous unexpected events. In the light of the principleof history compression this makes a lot of sense.Once events become expected, they tend to become sub-conscious. There is an obvious analogy to thechunking algorithm: The chunker's attention is removed from events that become expected; they become`sub-conscious' and give rise to even higher-level `abstractions' of the chunker's `consciousness'.Aspects of hierarchical reinforcement learning can be found in [3] and [4] (the latter mentions anextension of the non-compositional approach described in [6]).6 ACKNOWLEDGEMENTSI wish to thank Josef Hochreiter for conducting the experiments.References[1] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical ReportCUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.[2] J. Schmidhuber. Adaptive decomposition of time. In T. Kohonen, K. M�akisara, O. Simula, andJ. Kangas, editors, Arti�cial Neural Networks, pages 909{914. Elsevier Science Publishers B.V., North-Holland, 1991.[3] J. Schmidhuber. Learning to generate sub-goals for action sequences. In T. Kohonen, K. M�akisara,O. Simula, and J. Kangas, editors, Arti�cial Neural Networks, pages 967{972. Elsevier Science Pub-lishers B.V., North-Holland, 1991.[4] J. Schmidhuber. Neural sequence chunkers. Technical Report FKI-148-91, Institut f�ur Informatik,Technische Universit�at M�unchen, April 1991.[5] J. Schmidhuber. An O(n3) learning algorithm for fully recurrent networks. Technical Report FKI-151-91, Institut f�ur Informatik, Technische Universit�at M�unchen, May, 6 1991.[6] J. Schmidhuber. Reinforcement learning in Markovian and non-Markovian environments. In D. S.Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information ProcessingSystems 3, pages 500{506. San Mateo, CA: Morgan Kaufmann, 1991.[7] R. J. Williams and J. Peng. An e�cient gradient-based algorithm for on-line training of recurrentnetwork trajectories. Neural Computation, 4:491{501, 1990.[8] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning algorithm.Connection Science, 1(1):87{111, 1989.


