
LEARNING UNAMBIGUOUS REDUCED 
SEQUENCE DESCRIPTIONS 

Jiirgen Schmidhuber 
Dept. of Computer Science 

University of Colorado 
Campus Box 430 

Boulder, CO 80309, USA 
yirgan@cs.colorado.edu 

Abstract 

Do you want your neural net algorithm to learn sequences? Do not lim­
it yourself to conventional gradient descent (or approximations thereof). 
Instead, use your sequence learning algorithm (any will do) to implement 
the following method for history compression. No matter what your fi­
nal goals are, train a network to predict its next input from the previous 
ones. Since only unpredictable inputs convey new information, ignore all 
predictable inputs but let all unexpected inputs (plus information about 
the time step at which they occurred) become inputs to a higher-level 
network of the same kind (working on a slower, self-adjusting time scale). 
Go on building a hierarchy of such networks. This principle reduces the 
descriptions of event sequences without 1088 of information, thus easing 
supervised or reinforcement learning tasks. Alternatively, you may use 
two recurrent networks to collapse a multi-level predictor hierarchy into a 
single recurrent net. Experiments show that systems based on these prin­
ciples can require less computation per time step and many fewer training 
sequences than conventional training algorithms for recurrent nets. Final­
ly you can modify the above method such that predictability is not defined 
in a yes-or-no fashion but in a continuous fashion. 

291 



292 Schmidhuber 

1 INTRODUCTION 

The following methods for supervised sequence learning have been proposed: Simple 
recurrent nets [7][3], time-delay nets (e.g. [2]), sequential recursive auto-associative 
memories [16], back-propagation through time or BPTT [21] [30] [33], Mozer's 'fo­
cused back-prop' algorithm [10], the IID- or RTRL-algorithm [19][1][34], its ac­
celerated versions [32][35][25], the recent fast-weight algorithm [27], higher-order 
networks [5], as well as continuous time methods equivalent to some of the above 
[14)[15][4]. The following methods for sequence learning by reinforcement learning 
have been proposed: Extended REINFORCE algorithms [31], the neural bucket 
brigade algorithm [22], recurrent networks adjusted by adaptive critics [23](see also 
[8]), buffer-based systems [13], and networks of hierarchically organized neuron-like 
"bions" [18]. 

With the exception of [18] and [13], these approaches waste resources and limit 
efficiency by focusing on every input instead of focusing only on relevant inputs. 
Many of these methods have a second drawback as well: The longer the time lag 
between an event and the occurrence of a related error the less information is carried 
by the corresponding error information wandering 'back into time' (see [6] for a more 
detailed analysis). [11], [12] and [20] have addressed the latter problem but not the 
former. The system described by [18] on the other hand addresses both problems, 
but in a manner much different from that presented here. 

2 HISTORY COMPRESSION 

A major contribution of this work is an adaptive method for removing redundant 
information from sequences. This principle can be implemented with the help of 
any of the methods mentioned in the introduction. 

Consider a deterministic discrete time predictor (not necessarily a neural network) 
whose state at time t of sequence p is described by an environmental input vector 
zP(t), an internal state vector hP(t), and an output vector zP(t). The environment 
may be non-deterministic. At time 0, the predictor starts with zP(O) and an internal 
start state hP(O). At time t ~ 0, the predictor computes 

zP(t) = f(zP(t), hP(t)). 

At time t> 0, the predictor furthermore computes 

hP(t) = g(zP(t - 1), hP(t - 1)). 
All information about the input at a given time t z can be reconstructed from 
tz,f,g,zP(O),hP(O), and the pairs (t"zP(t,)) for which 0 < t, ~ tz and zP(t, -l);j: 
zP(t,). This is because if zP(t) = zP(t + 1) at a given time t, then the predictor is 
able to predict the next input from the previous ones. The new input is derivable 
by means of f and g. 

Information about the observed input sequence can be even further compressed 
beyond just the unpredicted input vectors zP(t,). It suffices to know only those 
elements of the vectors zP(t,) that were not correctly predicted. 

This observation implies that we can discriminate one sequence from another by 
knowing jud the unpredicted inputs and the corresponding time steps at which they 



Learning Unambiguous Reduced Sequence Descriptions 293 

occurred. No information is lost if we ignore the expected inputs. We do not even 
have to know f and g. I call this the principle of history compression. 

From a theoretical point of view it is important to know at what time an unexpected 
input occurs; otherwise there will be a potential for ambiguities: Two different input 
sequences may lead to the same shorter sequence of un predicted inputs. With many 
practical tasks, however, there is no need for knowing the critical time steps (see 
section 5). 

3 SELF-ORGANIZING PREDICTOR HIERARCHY 

Using the principle of history compression we can build a self-organizing hierarchical 
neural 'chunking' system l . The basic task can be formulated as a prediction task. 
At a given time step the goal is to predict the next input from previous inputs. If 
there are external target vectors at certain time steps then they are simply treated 
as another part of the input to be predicted. 

The architecture is a hierarchy of predictors, the input to each level of the hierarchy 
is coming from the previous level. Pi denotes the ith level network which is trained 
to predict its own nezt input from its previous inputs2 • We take Pi to be one of 
the conventional dynamic recurrent neural networks mentioned in the introduction; 
however, it might be some other adaptive sequence processing device as well3 . 

At each time step the input of the lowest-level recurrent predictor Po is the current 
external input. We create a new higher-level adaptive predictor P,+l whenever 
the adaptive predictor at the previous level, P" stops improving its predictions. 
When this happens the weight-changing mechanism of P, is switched off (to exclude 
potential instabilities caused by ongoing modifications of the lower-level predictors). 
If at a given time step P, (8 > 0) fails to predict its next input (or if we are at 
the beginning of a training sequence which usually is not predictable either) then 
P'+l will receive as input the concatenation of this next input of P, plus a unique 
representation of the corresponding time step4; the activations of P,+l 's hidden and 
output units will be updated. Otherwise P,+l will not perform an activation update. 
This procedure ensures that P'+l is fed with an unambiguous reduced descriptionS 
of the input sequence observed by P,. This is theoretically justified by the principle 
of history compression. 

In general, P,+l will receive fewer inputs over time than P,. With existing learning 

1 See also [18] for a different hierarchical connectionist chun1cing system based on similar 
principles. 

2Recently I became aware that Don Mathis had some related ideas (personal commu­
nication). A hierarchical approach to sequence generation was pursued by [9]. 

3For instance, we might employ the more limited feed-forward networks and a 'time 
window' approach. In this case, the number of previous inputs to be considered as a basis 
for the next prediction will remain fixed. 

• A unique time representation is theoretically necessary to provide P.+l with unam­
biguous information about when the failure occurred (see also the last paragraph of section 
2). A unique representation of the time that went by since the lad unpredicted input oc­
curred will do as well. 

& In contrast, the reduced descriptions referred to by [11] are not unambiguous. 



294 Schmidhuber 

algorithms, the higher-level predictor should have less difficulties in learning to 
predict the critical inputs than the lower-level predictor. This is because P,+l'S 
'credit assignment paths' will often be short compared to those of P,. This will 
happen if the incoming inputs cany global temporal structure which has not yet 
been discovered by P,. (See also [18] for a related approach to the problem of credit 
assignment in reinforcement learning.) 

This method is a simplification and an improvement of the recent chunking method 
described by [24]. 

A multi-level predictor hierarchy is a rather safe way of learning to deal with se­
quences with multi-level temporal structure (e.g speech). Experiments have shown 
that multi-level predictors can quickly learn tasks which are practically unlearnable 
by conventionalrecunent networks, e.g. [6]. 

4 COLLAPSING THE HIERARCHY 

One disadvantage of a predictor hierarchy as above is that it is not known in advance 
how many levels will be needed. Another disadvantage is that levels are explicitly 
separated from each other. It may be possible, however, to collapse the hierarchy 
into a single network as outlined in this section. See details in [26]. 

We need two conventional recurrent networks: The automatizer A and the chunker 
C, which cones pond to a distinction between automatic and attended events. (See 
also [13] and [17] which describe a similar distinction in the context ofreinforcement 
learning). At each time step A receives the current external input. A's enor function 
is threefold: One term forces it to emit certain desired target outputs at certain 
times. If there is a target, then it becomes part of the next input. The second term 
forces A at every time step to predict its own next non-target input. The third 
(crucial) term will be explained below. 

If and only if A makes an enor concerning the first and second term of its en or 
function, the un predicted input (including a potentially available teaching vector) 
along with a unique representation of the current time step will become the new 
input to C. Before this new input can be processed, C (whose last input may have 
occuned many time steps earlier) is trained to predict this higher-level input from 
its cunent internal state and its last input (employing a conventional recunent net 
algorithm). After this, C performs an activation update which contributes to a 
higher level internal representation of the input history. Note that according to the 
principle of history compression C is fed with an unambiguous reduced description 
of the input history. The information deducible by means of A's predictions can be 
considered as redundant. (The beginning of an episode usually is not predictable, 
therefore it has to be fed to the chunking level, too.) 

Since C's 'credit assignment paths' will often be short compared to those of A, C will 
often be able to develop useful internal representations of previous unexpected input 
events. Due to the final term of its error function, A will be forced to reproduce 
these internal representations, by predicting C's state. Therefore A will be able 
to create useful internal representations by itself in an early stage of processing a 



Learning Unambiguous Reduced Sequence Descriptions 295 

given sequence; it will often receive meaningful error signals long before errors of 
the first or second kind occur. These internal representations in turn must cany 
the discriminating information for enabling A to improve its low-level predictions. 
Therefore the chunker will receive fewer and fewer inputs, since more and more 
inputs become predictable by the automatizer. This is the collapsing operation. 
Ideally, the chunker will become obsolete after some time. 

It must be emphasized that unlike with the incremental creation of a multi-level 
predictor hierarchy described in section 3, there is no formal proof that the 2-net 
on-line version is free of instabilities. One can imagine situations where A unlearns 
previously learned predictions because of the third term of its enor function. Rel­
ative weighting of the different terms in A's enor function represents an ad-hoc 
remedy for this potential problem. In the experiments below, relative weighting 
was not necessary. 

5 EXPERIMENTS 

One experiment with a multi-level chunking architecture involved a grammar which 
produced strings of many a's and b's such that there was local temporal structure 
within the training strings (see [6] for details). The task was to differentiate between 
strings with long overlapping suffixes. The conventional algorithm completely failed 
to solve the task; it became confused by the great numbers of input sequences with 
similar endings. Not so the chunking system: It soon discovered certain hierarchical 
temporal structures in the input sequences and decomposed the problem such that 
it was able to solve it within a few hundred-thousand training sequences. 

The 2-net chunking system (the one with the potential for collapsing levels) was 
also tested against the conventionalrecUlrent net algorithms. (See details in [26].) 
With the conventional algorithms, with various learning rates, and with more than 
1,000,000 training sequences performance did not improve in prediction tasks in­
volving even as few as ~o time steps between relevant events. 

But, the 2-net chunking system was able to solve the task rather quickly. An 
efficient approximation of the BPTT-method was applied to both the chunker and 
the automatizer: Only 3 iterations of error propagation 'back into the past' were 
performed at each time step. Most of the test runs required less than 5000 training 
sequences. Still the final weight matriz of the automatizer often resembled what 
one would hope to get from the conventional algorithm. There were hidden units 
which learned to bridge the 20-step time lags by means of strong self-connections. 
The chunking system needed less computation per time step than the conventional 
method and required many fewer training sequences. 

6 CONTINUOUS HISTORY COMPRESSION 

The history compression technique formulated above defines expectation­
mismatches in a yes-or-no fashion: Each input unit whose activation is not pre­
dictable at a certain time gives rise to an unexpected event. Each unexpected event 
provokes an update of the internal state of a higher-level predictor. The updates 
always take place according to the conventional activation spreading rules for re-



296 Schmidhuber 

current neural nets. There is no concept of a partial mismatch or of a 'near-miss'. 
There is no possibility of updating the higher-level net 'just a little bit' in response 
to a 'nearly expected input'. In practical applications, some 'epsilon' has to be used 
to define an acceptable mismatch. 

In reply to the above criticism, continuous history compression is based on the 
following ideas. In what follows, Viet) denotes the i-th component of vector vet). 

We use a local input representation. The components of zP(t) are forced to sum 
up to 1 and are interpreted as a prediction of the probability distribution of the 
possible zP(t + 1). Z}(t) is interpreted as the prediction of the probability that 
zHt + 1) is 1. 

The output entropy 

- 2: zr(t)log zr(t) 
j 

can be interpreted as a measure of the predictor's confidence. In the worst ease, 
the predictor will expect every possible event with equal probability. 

How much information (relative to the current predictor) is conveyed by the event 
z~(t + 1) = 1, once it is observed? According to [29] it is 

-log Z}(t). 

[28] defines update procedures based on Mozer's recent update function [12] that 
let highly informative events have a stronger influence on the history representation 
than less informative (more likely) events. The 'strength' of an update in response 
to a more or less unexpected event is a monotonically increasing function of the 
information the event conveys. One of the update procedures uses Pollack's recur­
sive auto-associative memories [16] for storing unexpected events, thus yielding an 
entirely local learning algorithm for learning extended sequences. 

7 ACKNOWLEDGEMENTS 

Thanks to Josef Hochreiter for conducting the experiments. Thanks to Mike Mozer 
and Mark Ring for useful comments on an earlier draft of this paper. This research 
was supported in part by NSF PYI award IRI-9058450, grant 90-21 from the James 
S. McDonnell Foundation, and DEC external research grant 1250 to Michael C. 
Mozer. 

References 

[1] J. Bachrach. Learning to represent state, 1988. Unpublished master's thesis, 
University of Massachusetts, Amherst. 

[2] U. Bodenhausen and A. Waibel. The tempo 2 algorithm: Adjusting time-delays 
by supervised learning. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, 
editors, Advances in Neural In/ormation Processing Systems 3, pages 155-161. 
San Mateo, CA: Morgan Kaufmann, 1991. 



Learning Unambiguous Reduced Sequence Descriptions 297 

[3] J. L. Elman. Finding structure in time. Technical Report CRL Technical 
Report 8801, Center for Research in Language, University of California, San 
Diego, 1988. 

[4] M. Gherrity. A learning algorithm for analog fully recurrent neural networks. In 
IEEE/INNS International Joint Conference on Neural Networks, San Diego, 
volume 1, pages 643-644, 1989. 

[S] C. L. Giles and C. B. Miller. Learning and extracting finite state automata. 
Accepted for publication in Neural Computation, 1992. 

[6] Josef Hochreiter. Diploma thesis, 1991. Institut fur Informatik, Technische 
Universitiit Miinchen. 

[7] M. I. Jordan. Serial order: A parallel distributed processing approach. Tech­
nical Report ICS Report 8604, Institute for Cognitive Science, University of 
California, San Diego, 1986. 

[8] G. Lukes. Review of Schmidhuber's paper 'Recurrent networks adjusted by 
adaptive critics'. Neural Network Reviews, 4(1):41-42, 1990. 

[9] Y. Miyata. An unsupervised PDP learning model for action planning. In Proc. 
of the Tenth Annual Conference of the Cognitive Science Society, Hillsdale, 
NJ, pages 223-229. Erlbaum, 1988. 

[10] M. C. Mozer. A focused back-propagation algorithm for temporal sequence 
recognition. Complez Systems, 3:349-381, 1989. 

[11] M. C. Mozer. Connectionist music composition based on melodic, stylistic, 
and psychophysical constraints. Technical Report CU-CS-49S-90, University 
of Colorado at Boulder, 1990. 

[12] M. C. Mozer. Induction of multiscale temporal structure. In D. S. Lippman, 
J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information 
Processing Systems 4, to appear. San Mateo, CA: Morgan Kaufmann, 1992. 

[13] C. Myers. Learning with delayed reinforcement through attention-driven buffer­
ing. TR, Imperial College of Science, Technology and Medicine, 1990. 

[14] B. A. Pearlmutter. Learning state space trajectories in recurrent neural net­
works. Neural Computation, 1:263-269, 1989. 

[IS] F. J. Pineda. Time dependent adaptive neural networks. In D. S. Touretzky, 
editor, Advances in Neural Information Processing Systems 2, pages 710-718. 
San Mateo, CA: Morgan Kaufmann, 1990. 

[16] J. B. Pollack. Recursive distributed representation. Artificial Intelligence, 
46:77-10S, 1990. 

[17] M. A. Ring. PhD Proposal: Autonomous construction of sensorimotor hierar­
chies in neural networks. Technical report, Univ. of Texas at Austin, 1990. 

[18] M. A. Ring. Incremental development of complex behaviors through automatic 
construction of sensory-motor hierarchies. In L. Birnbaum and G. Collins, 
editors, Machine Learning: Proceedings of the Eighth International Workshop, 
pages 343-347. Morgan Kaufmann, 1991. 

[19] A. J . Robinson and F. Fallside. The utility driven dynamic error propagation 
network. Technical Report CUED/F-INFENG/TR.l, Cambridge University 
Engineering Department, 1987. 



298 Schmidhuber 

[20] R. Rohwer. The 'moving targets' training method. In J. Kindermann and 
A. Linden, editors, Proceedings of 'Distributed Adaptive Neural Information 
Processing', St.Augustin, ~4.-~5.5,. Oldenbourg, 1989. 

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep­
resentations by error propagation. In D. E. Rumelhart and J. L. McClelland, 
editors, Parallel Distributed Processing, volume I, pages 318-362. MIT Press, 
1986. 

[22] J. H. Schmidhuber. A local learning algorithm for dynamic feedforward and 
recurrent networks. Connection Science, 1(4):403-412, 1989. 

[23] J. H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In Proc. 
IEEE/INNS International Joint Conference on Neural Networks, Washington, 
D. C., volume I, pages 719-722, 1990. 

[24] J. H. Schmidhuber. Adaptive decomposition of time. In T. Kohonen, 
K. Miikisara, O. Simula, and J. Kangas, editors, Artificial Neural Network­
s, pages 909-914. Elsevier Science Publishers B.V., North-Holland, 1991. 

[25] J. H. Schmidhuber. A fixed size storage O(n3 ) time complexity learning algo­
rithm for fully recurrent continually running networks. Accepted for publication 
in Neural Computation, 1992. 

[26] J. H. Schmidhuber. Learning complex, extended sequences using the principle 
of history compression. Accepted for publication in Neural Computation, 1992. 

[27] J. H. Schmidhuber. Learning to control fast-weight memories: An alternative 
to recurrent nets. Accepted for publication in Neural Computation, 1992. 

[28] J. H. Schmidhuber, M. C. Mozer, and D. Prelinger. Continuous history com­
pression. Technical report, Dept. of Compo Sci., University of Colorado at 
Boulder, 1992. 

[29] C. E. Shannon. A mathematical theory of communication (parts I and II). Bell 
System Technical Journal, XXVII:379-423, 1948. 

[30] P. J. Werbos. Generalization of back propagation with application to a recurrent 
gas market model. Neural Networks, 1, 1988. 

[31] R. J. Williams. Toward a theory of reinforcement-learning connectionist sys­
tems. Technical Report NU-CCS-88-3, College of Compo Sci., Northeastern 
University, Boston, MA, 1988. 

[32] R. J. Williams. Complexity of exact gradient computation algorithms for re­
current neural networks. Technical Report Technical Report NU-CCS-89-27, 
Boston: Northeastern University, College of Computer Science, 1989. 

[33] R. J. Williams and J. Pengo An efficient gradient-based algorithm for on-line 
training of recurrent network trajectories. Neural Computation, 4:491-501, 
1990. 

[34] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent 
learning algorithm. Connection Science, 1(1):87-111, 1989. 

[35] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent 
networks and their computational complexity. In Back-propagation: Theory, 
Architectures and Applications. Hillsdale, NJ: Erlbaum, 1992, in press. 



PART VI 

RECURRENT 
NETWORKS 




