
In J. A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, Proc. of the 2nd International Conference onSimulation of Adaptive Behavior, pages 196-202. MIT Press, 1992.

PLANNING SIMPLE TRAJECTORIES USING NEURALSUBGOAL GENERATORSJ�urgen SchmidhuberDepartment of Computer ScienceUniversity of ColoradoCampus Box 430Boulder, CO 80309, USAemail: yirgan@cs.colorado.edu
Reiner WahnsiedlerInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2GermanyAbstractWe consider the problem of reaching a given goal state from a given start state by lettingan `animat' produce a sequence of actions in an environment with multiple obstacles. Simpletrajectory planning tasks are solved with the help of `neural' gradient-based algorithms forlearning without a teacher to generate sequences of appropriate subgoals in response to novelstart/goal combinations.Relevant topic areas: Problem solving and planning, goal-directed behavior, action selectionand behavioral sequences, hierarchical and parallel organizations, neural correlates of behavior,perception and motor control.1 INTRODUCTIONMany researchers in neuro-control and reinforcement learning believe that some `compositional'method for learning to reach new goals by combining familiar action sequences into more complexnew action sequences is necessary to overcome scaling problems associated with non-compositionalalgorithms.The few previous ideas for attacking `compositional neural sequence learning' are inspiredby dynamic programming and involve reinforcement learning networks arranged in a hierarchicalfashion (e.g. (Watkins, 1989), (Jameson, 1991), (Singh, 1992), see also (Ring, 1991) for alternativeideas).Our approach is entirely di�erent from previous approaches. It is based on some initial ideaspresented in (Schmidhuber, 1991a). We describe gradient-based procedures for transforming knowl-edge about previously learned action sequences into appropriate subgoals for new problems. Noexternal teacher is required. Our approach is limited, however, in the sense that it relies ondi�erentiable (possibly adaptive) models of the costs associated with known action sequences.2 A TYPICAL TASKThe following task is representative of a variety of analoguous tasks solvable by our method.Consider �gure 1. An `animat' moves in the real plane de�ned by the x and y axis, producinga trajectory ! in R2. There are obstacles in the form of circular swamps. As long as the `animat'does not cross a swamp, there are no costs1 (= negative reinforcement). The i-th swamp �i with1It would be straight-forward, however, to introduce a term penalizing the length of !.2

center (xi; yi) builds the basis of a cone (growing in the third dimension) with tip (xi; yi;�hi).Crossing �i costs Z! g(x; y;�i) dx dy; (1)where g(x; y;�i) = 0 if (x; y) lies outside of �i, else g(x; y;�i) is the distance between (x; y) and�i's cone (measured along the the line through (x; y) perpendicular to the real plane). In �gure1, the grey area indicates the costs associated with a trajectory leading straight through a singleswamp.A problem p is de�ned by a start state sp 2 Rm and a goal state gp 2 Rm. In the aboveexample, m = 2 { start states and goal states are simply given by pairs of cartesian coordinates.We are looking for an action sequence leading from sp to gp with minimal costs.It is true that in theory such sequences could be learned by conventional reinforcement learningalgorithms (e.g. (Barto, 1989), (Barto et al., 1983), (Anderson, 1986), (Schmidhuber, 1991b),(Sutton, 1984), (Lin, 1991), (Williams, 1988), (Watkins, 1989)). For the sake of argument, assumethat the maximal step size of the `animat' is just a tiny fraction of the obstacle diameter. Thenall the above algorithms will take nearly forever to �nd appropriate cost-free trajectories for otherthan trivial start/goal combinations. One drawback of conventional algorithms is that they willtry to learn each new task from scratch, instead of exploiting a possibility for speeding up learningand gaining e�ciency by solving new tasks through composition of solutions for older tasks.3 BASIC MODULESOur approach is based on three modules.The �rst module is a `program executer' C, which may be a neural net (but does not have tobe one). With a given problem p, C emits a sequence of actions in response to its input vector,the `problem name' sp � gp. Here `�' denotes the concatenation operator for vectors. We assume(1) that there are problems for which C does not `know' solutions with minimal costs but (2) thatthere also are many problems for which C does `know' appropriate action sequences (otherwiseour method will not provide additional e�ciency). C may have learned this by a conventionallearning algorithm { or possibly even by a recursive application of the principle outlined below.The second module is the evaluator E. E's input can be the concatenation s � g of two statess and g. E's non-negative output eval(s; g) 2 R+0 is interpreted as a prediction of the costs (=negative reinforcement) for an action sequence (known by C) leading from s to g. eval(s; g) = 0means minimal expected costs.E represents a model of C's current abilities. For the purposes of this paper, we need notspecify the details of E { it may be an adaptive network (like in (Schmidhuber, 1991a)) as well asany other mapping whose output is di�erentiable with respect to the input.The third module is the module of interest: the adaptive subgoal generator S. S is supposed tolearn to emit a list of appropriate subgoals in response to a novel start/goal combination. Section4 will present two architectures for S { one for simultaneous generation of all subgoals, the otherone for sequential generation of the subgoal list.The i-th sub-goal of the list (i = 1 : : : n) is denoted by the vector sp(i) 2 Rm, its j-th com-ponent by spj (i). We set sp = sp(0); gp = sp(n + 1). Ideally, after training the subgoal-listsp(1); sp(2); :::; sp(n) should ful�ll the following condition:eval(sp(0); sp(1)) = eval(sp(1); sp(2)) = : : :: : : = eval(sp(n); sp(n+ 1)) = 0: (2)Not all environments, however, allow to achieve (2). See section 5.

START

ZIEL

KOSTEN

HINDERNIS

y

x

z

Figure 1: An `animat' moving in the x; y plane walks through a swamp. The costs are indicatedby the grey area.

4 TWO SUBGOAL CREATING ARCHITECTURES4.1 ARCHITECTURE 1Figure 2 shows a static subgoal generator S (a feed-forward back-prop net, e.g. (Werbos, 1974)).With problem p, the input vector of S is sp � gp.The output of S is sp(1) � sp(2) � : : : � sp(n):n+1 copies of E need to be connected to S such that the input of the k-th copy of E is equalto sp(k � 1) � sp(k). The output of the k-th copy of E is eval(sp(k � 1); sp(k)).4.2 ARCHITECTURE 2Figure 3 shows a recurrent subgoal generator S (a back-prop net that feeds its output back to partof its input).With problem p, the input vector of S at the �rst `time step' of the sequential subgoal generationprocess is sp � gp. The output of S is sp(1).At time step t; 1 < t < n+ 1, the input of S is sp(t� 1) � gp. Its output is sp(t).Again we use E to compute eval(sp(k � 1); sp(k)); k = 1; : : : n+ 1, from sp(k � 1) � sp(k).5 OBJECTIVE FUNCTIONWith both architectures we want to minimizeEp =Xp n+1Xk=1 12(eval(sp(k � 1); sp(k)))2: (3)In words, we wish to �nd a sequence of subgoals such that the sum of the costs of all involvedsubprograms is minimized. This will be done by using gradient descent techniques to be describedin the next section.6 ALGORITHMSWith both architectures we apply the chain rule to compute the gradient@Pn+1k=1 12eval2(sp(k � 1); sp(k))@WS ;where WS denotes the weight vector of S. During each training iteration, WS has to be changedin proportion to this gradient.With architecture 1, this is essentially done by back-propagating error signals (e.g. (Werbos,1974), (Parker, 1985), (LeCun, 1985), (Rumelhart et al., 1986)) through copies of the evaluatormodules down into the subgoal generator. Loosely speaking, each subgoal `receives error signalsfrom two adjacent copies of E'. These error signals are added and
ow down into S, where theycause appropriate weight changes. One might say that in general two `neighboring' evaluator copies(see �gure 2) tend to pull their common subgoal into di�erent directions. The iterative processstops when a local or global minimum of (3) is found. This corresponds to an `equilibrium' of thepartly con
icting forces originating from di�erent evaluator copies.The derivation of the more complex algorithm for the recurrent architecture 2 is analoguous tothe derivation of conventional discrete time recurrent net algorithms (e.g. (Robinson and Fallside,1987), (Williams, 1989), (Williams and Zipser, in press), (Schmidhuber, 1992)).

E

E

eval(SUBZIEL(1),
 SUBZIEL(2))

eval(SUBZIEL(2),
 ZIEL)

eval(START,
 SUBZIEL(1))

START

ZIEL

SUBZIEL-
GENERATOR

SUBZIEL(1)

SUBZIEL(2)

E

Figure 2: An adaptive non-recurrent subgoal generator emitting two subgoals. Three copies of thedi�erentiable evaluation module are required to compute the proper gradient.

START

ZIEL

RUECKKOPPLUNG

SUBZIEL-
GENERATOR

EVALUATOR

eval(SUBZIEL(t),
 SUBZIEL(t+1))

S

S

E

E

E

eval(START, SUBZIEL(1))

eval(SUBZIEL(1),
 SUBZIEL(2))

eval(SUBZIEL(2),
 ZIEL)

START

ZIEL

SUBZIEL(1)

SUBZIEL(2)

a)

b)

Figure 3: A recurrent subgoal generator emitting an arbitrary number of subgoals in response toa start/goal combination. Each subgoal is fed back to the START-input of the subgoal generator.The dashed line indicates that the evaluator needs to see the GOAL at the last step of the subgoalgeneration process. See text for details.

7 EXPERIMENTS(Schmidhuber, 1991a) gives a simple example where the evaluator module E itself is an adaptiveback-prop network. In this section, however, we concentrate on the learning process of the subgoalgenerator S; the eval function and its partial derivatives are computed analytically.For illustration purposes, we assume that C `knows' all possible action sequences leading tostraight movements of the `animat', and that the costs of all these action sequences are alreadyknown by E. In that case it is easy to compute (1). The start of the k-th `sub-program' issp(k) = (sp1(k); sp2(k)), its end point is sp(k+1) = (sp1(k+1); sp2(k+1)). (1) becomes equal to thearea F (sp1(k); sp2(k); sp1(k + 1); sp2(k + 1);�i) (4)de�ned by the trajectory of the `animat' and the corresponding parabola-like projection onto thecone. See again �gure 1.For the k-th `sub-program', eval is de�ned aseval((sp(k); sp(k + 1)) =Xi F (sp1(k); sp2(k); sp1(k + 1); sp2(k + 1);�i): (5)Consider �gure 4. A single swamp has to be overcome by the `animat'. With 40 hidden nodesand a learning rate �S = 0:03, a recurrent subgoal generator (architecture 2) needed 20 iterationsto �nd a satisfactory solution.Now consider �gure 5. Multiple swamps separate the start from the goal. With 40 hidden nodesand a learning rate �S = 0:002, a static subgoal generator (architecture 1) needed 22 iterations to�nd a satisfactory solution.8 LIMITATIONSGeneralization performance. In most non-trivial cases, the approach did not generalize very well.After training S on a range of di�erent subgoal generation tasks (various randomly generatedstart/goal combinations), the subgoals emitted in response to previously unseen problems oftenwere far from being optimal. More research needs to be directed towards improving generalizationperformance.Another limitation of our approach has been mentioned above: It relies on di�erentiable (al-though possibly adaptive) models of the costs associated with known action sequences. The domainknowledge resides in these models { from there it is extracted by the subgoal generation process.There are domains, however, where a di�erentiable evaluator module might be inappropriate ordi�cult to obtain.Even in cases where there is a di�erentiable model at hand the problem of local minima remains.Local minima did not play a major role with the simple experiments described above { with largescale applications, however, some way of dealing with suboptimal solutions needs to be introduced.ACKNOWLEDGEMENTSThanks to Mike Mozer for helpful comments on a draft of this paper. This research was supportedin part by a DFG fellowship to J. Schmidhuber, as well as by NSF PYI award IRI{9058450, grant90{21 from the James S. McDonnell Foundation, and DEC external research grant 1250 to MichaelC. Mozer.

SUBZIEL(1)

SUBZIEL(2)

START
ZIEL

START START

START

ZIEL

ZIELZIEL

SUBZIEL(1)

SUBZIEL(1)

SUBZIEL(1)

SUBZIEL(2)
SUBZIEL(2)

SUBZIEL(2)

Figure 4: In this example, the task is to �nd a trajectory (composed of three `sub-trajectories')leading from START to GOAL. The big circle represents a single swamp. The evolution of twosubgoals emitted by an adaptive recurrent subgoal generator is shown.

ReferencesAnderson, C. W. (1986). Learning and Problem Solving with Multilayer Connectionist Systems.PhD thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci.Barto, A. G. (1989). Connectionist approaches for control. Technical Report COINS 89-89,University of Massachusetts, Amherst MA 01003.Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Transactions on Systems, Man, andCybernetics, SMC-13:834{846.Jameson, J. (1991). Delayed reinforcement learning with multiple time scale hierarchical back-propagated adaptive critics. In Neural Networks for Control.LeCun, Y. (1985). Une proc�edure d'apprentissage pour r�eseau �a seuil asym�etrique. Proceedings ofCognitiva 85, Paris, pages 599{604.Lin, L. (1991). Self-improving reactive agents: Case studies of reinforcement learning frameworks.In Meyer, J. A. and Wilson, S. W., editors, Proc. of the International Conference on Simula-tion of Adaptive Behavior: From Animals to Animats, pages 297{305. MIT Press/BradfordBooks.Parker, D. B. (1985). Learning-logic. Technical Report TR-47, Center for Comp. Research inEconomics and Management Sci., MIT.Ring, M. B. (1991). Incremental development of complex behaviors through automatic construc-tion of sensory-motor hierarchies. In Birnbaum, L. and Collins, G., editors,Machine Learning:Proceedings of the Eighth International Workshop, pages 343{347. Morgan Kaufmann.Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation network.Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department.Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations byerror propagation. In Parallel Distributed Processing, volume 1, pages 318{362. MIT Press.Schmidhuber, J. (1991a). Learning to generate sub-goals for action sequences. In Kohonen, T.,M�akisara, K., Simula, O., and Kangas, J., editors, Arti�cial Neural Networks, pages 967{972.Elsevier Science Publishers B.V., North-Holland.Schmidhuber, J. (1991b). Reinforcement learning in Markovian and non-Markovian environments.In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Informa-tion Processing Systems 3, pages 500{506. San Mateo, CA: Morgan Kaufmann.Schmidhuber, J. (1992). A �xed size storage O(n3) time complexity learning algorithm for fullyrecurrent continually running networks. Neural Computation, 4(2):243{248.Singh, S. (1992). The e�cient learning of multiple task sequences. In Moody, J., Hanson, S., andLippman, R., editors, Advances in Neural Information Processing Systems 4, pages 251{258,San Mateo, CA. Morgan Kaufmann.Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis, Uni-versity of Massachusetts, Dept. of Comp. and Inf. Sci.Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King's College, Oxford.Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the BehavioralSciences. PhD thesis, Harvard University.

START

ZIEL

NACH 5 SCHRITTEN NACH 10 SCHRITTEN

NACH 15 SCHRITTEN NACH 20 SCHRITTEN

STARTSTART

START

ZIEL

ZIEL

Figure 5: Here many swamps separate the START location from the GOAL location. The evolutionof �ve subgoals (represented by little black dots) emitted by a non-recurrent subgoal generator isshown.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems. TechnicalReport NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA.Williams, R. J. (1989). Complexity of exact gradient computation algorithms for recurrent neuralnetworks. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern Univer-sity, College of Computer Science.Williams, R. J. and Zipser, D. (1992). Gradient-based learning algorithms for recurrent networksand their computational complexity. In Back-propagation: Theory, Architectures and Appli-cations. Hillsdale, NJ: Erlbaum.

