A ‘SELF-REFERENTIAL’ WEIGHT MATRIX

J. Schmidhuber

Institut fiir Informatik

Technische Universitat Miunchen
Arcisstr. 21, 8000 Miinchen 40, Germany

ABSTRACT. Weight modifications in traditional neural nets are computed by hard-wired
algorithms. Without exception, all previous weight change algorithms have many specific
limitations. Is it (in principle) possible to overcome limitations of hard-wired algorithms
by allowing neural nets to run and improve their own weight change algorithms? This paper
constructively demonstrates that the answer (in principle) is ‘yes’. I derive an initial gradient-
based sequence learning algorithm for a ‘self-referential’ recurrent network that can ‘speak’
about its own weight matrixz in terms of activations. It uses some of its input and output
units for observing its own errors and for explicitly analyzing and modifying its own weight
matriz, including those parts of the weight matriz responsible for analyzing and modifying
the weight matriz. The result is the first ‘“introspective’ neural net with explicit potential
control over all of its own adaptive parameters. A disadvantage of the algorithm is its high
computational complexity per time step which is independent of the sequence length and equals
O (Meonnl0gNconn), Where negny, s the number of connections. Another disadvantage is the high
number of local minima of the unusually complex error surface. The purpose of this paper,
however, is not to come up with the most efficient ‘“introspective’ or ‘self-referential’ weight
change algorithm, but to show that such algorithms are possible at all.

1. INTRODUCTION

In contrast to traditional machine learning systems, humans do not appear to rely on hard-
wired learning algorithms only. Instead, they tend to reflect about their own learning behavior
and modify it and tailor it to the needs of various types of learning problems. To a degree,
humans are able to learn how to learn. The thought experiment in this paper is intended to
make a step towards ‘self-referential’ machine learning by showing the theoretical possibility
of ‘self-referential’ neural networks whose weight matrices can learn to implement and improve
their own weight change algorithm, without any significant theoretical limits.

Structure of the paper. Section 2 starts with a general finite, ‘self-referential’ architec-
ture involving a sequence-processing recurrent neural-net (see e.g. Robinson and Fallside [2],
Williams and Zipser [8], and Schmidhuber [3]) that can potentially implement any computable
function that maps input sequences to output sequences the only limitations being unavoid-
able time and storage constraints imposed by the architecture’s finiteness. These constraints
can be extended by simply adding storage and/or allowing for more processing time. The ma-
jor novel aspect of the system is its ‘self-referential’ capability. The network is provided with
special input units for explicitly observing performance evaluations (external error signals are
visible through these special input units). In addition, it is provided with the basic tools for
explicitly reading and quickly changing all of its own adaptive components (weights). This
is achieved by (1) introducing an address for each connection of the network, (2) providing
the network with output units for (sequentially) addressing all of its own connections (in-
cluding those connections responsible for addressing connections) by means of time-varying
activation patterns, (3) providing special input units whose activations become the weights
of connections currently addressed by the network, and (4) providing special output units
whose time-varying activations serve to quickly change the weights of connections addressed
by the network. It is possible to show that these unconventional features allow the network

(in principle) to compute any computable function mapping algorithm components (weights)
and performance evaluations (e.g., error signals) to algorithm modifications (weight changes)

the only limitations again being unavoidable time and storage constraints. This implies that
algorithms running on that architecture (in principle) can change not only themselves but also
the way they change themselves, and the way they change the way they change themselves,
etc., essentially without theoretical limits.

Connections are addressed, analyzed, and manipulated with the help of differentiable
functions of activation patterns across special output units. This allows the derivation of an
exact gradient-based initial weight change algorithm for ‘introspective’ supervised sequence
learning. The system starts out as fabula rasa. The initial weight change procedure serves to
find improved weight change procedures — it favors algorithms (weight matrices) that make
sensible use of the ‘introspective’ potential of the hard-wired architecture, where ‘usefulness’
is solely defined by conventional performance evaluations (the performance measure we use
is the sum of all error signals over all time steps of all training sequences).

A disadvantage of the algorithm is its high computational complexity per time step which
is independent of the sequence length and equals O(nconnl09nconn), Where 1y, is the number
of connections. Another disadvantage is the high number of local minima of the unusually
complex error surface. The purpose of this paper, however, is not to come up with the most
efficient ‘introspective’ or ‘self-referential’ weight change algorithm, but to show that such
algorithms are possible at all.

2. THE ‘INTROSPECTIVE’ NETWORK

Throughout the remainder of this paper, to save indices, I consider a single limited pre-
specified time-interval of discrete time-steps during which our network interacts with its
environment. An interaction sequence actually may be the concatenation of many ‘con-
ventional’ training sequences for conventional recurrent networks. This will (in theory) help
our ‘self-referential’ weight matrix to find regularities among solutions for different tasks. The
network’s output vector at time ¢, o(t), is computed from previous input vectors z(7), 7 < t,
by a discrete time recurrent network with n; input units and n, non-input units. A subset of
the non-input units, the ‘normal” output units, has a cardinality of n, < n,,.

zx 1s the k-th unit in the network. w, is the k-th non-input unit in the network. x; is the
k-th ‘normal’ input unit in the network. oy is the k-th ‘normal’ output unit. If u stands for
a unit, then f, is its differentiable activation function and w’s activation at time ¢ is denoted
by u(t). If v(t) stands for a vector, then v, () is the k-th component of v(¢).

Each input unit has a directed connection to each non-input unit. Each non-input unit
has a directed connection to each non-input unit. There are (n; + ny)n, = Neon, connections
in the network. The connection from unit j to unit 7 is denoted by w;;. For instance, one
of the names of the connection from the j-th ‘normal’ input unit to the the k-th ‘normal’
output unit is we, ;. w;;’s real-valued weight at time ¢ is denoted by w;;(t). Before training,
all weights w;;(1) are randomly initialized.

The following features are needed to obtain ‘self-reference’. Details of the network dynam-
ics follow in the next section.

1. The network receives performance information through the eval units, which are special
input units. evaly is the k-th eval unit (of ne.y such units) in the network.

2. Each connection of the net gets an address. One way of doing this is to introduce a bi-
nary address, adr(w;;), for each connection w;;. This will help the network to do computations
concerning its own weights in terms of activations, as will be seen later.

3. anay is the k-th analyzing unit (of ng,, = ceil(logaNeonn) such units, where ceil(x)
returns the first integer > x). The analyzing units are special non-input units. They serve

to indicate which connections the current algorithm of the network (defined by the current
weight matrix plus the current activations) will access next (see next section). A special input
unit for reading current weight values that is used in conjunction with the analyzing units is
called val.

4. The network may modify any of its weights. Some non-input units that are not ‘normal’
output units or analyzing units are called the modifying units. mod, is the k-th modifying
unit (of nmeq = ceil(loganeonn) such units). The modifying units serve to address connections
to be modified. A special output unit for modifying weights (used in conjunction with the
modifying units, see next section) is called A. fa should allow both positive and negative
activations A(t).

2.1. ‘SELF-REFERENTIAL’ DYNAMICS AND OBJECTIVE
FUNCTION

[assume that the input sequence observed by the network has length nym,. = ngn, (where
ng,n, € N) and can be divided into n, equal-sized blocks of length n, during which the
input pattern z(t) does not change. This does not imply a loss of generality — it just means
speeding up the network’s hardware such that each input pattern is presented for n, time-
steps before the next pattern can be observed. This gives the architecture n, time-steps to do
some sequential processing (including immediate weight changes) before seeing a new pattern
of the input sequence.

In what follows, unquantized variables are assumed to take on their maximal range. The
network dynamics are specified as follows:

net, (1) =0, Vt>1: xx(t) «— environment, yx(t) = f,, (net,, (1)),
VE> 11 mety, () =Y wy(t—1)I(t—1), (1)
I

The network can quickly read information about its current weights into the special val input
unit according to

val(1) =0, Vt>1: val(t+1) =Y glllana(t) — adr(w;;)|*|wi;(t), (2)
]
where ||...|| denotes Euclidean length, and g is a differentiable function emitting values

between 0 and 1 that determines how close a connection address has to be to the activations
of the analyzing units in order for its weight to contribute to val at that time. Such a function
g might have a narrow peak at 1 around the origin and be zero (or nearly zero) everywhere
else. This essentially allows the network to pick out a single connection at a time and obtain
its current weight value without receiving ‘cross-talk’ from other weights.

The network can quickly modify its current weights using mod(t) and A(t¢) according to

VE> 10 wy(t+1) = wy(t) + At) g |ladr(wy;) — mod(t)]]*]. (3)

Again, if g has a narrow peak at 1 around the origin and is zero (or nearly zero) everywhere
else, the network will be able to pick out a single connection at a time and change its weight
without affecting other weights.

Objective function and dynamics of the eval units. As with typical supervised sequence-
learning tasks, we want to minimize

t
1
Etotal(nrns)’ where Ettd (7‘) — ZE(T), where E(f) = B Z(evalk(t + 1))27

T=1 k

where
eval,(1) =0, YVt >1:evalp(t+1) = dp(t) — ox(t) if di(t) exists, and 0 else. (4)
Here di(t) may be a desired target value for the k-th output unit at time step ¢.

3. INITIAL LEARNING ALGORITHM

The following algorithm! for minimizing %! is partly inspired by (but more complex than)
conventional recurrent network algorithms (e.g. Robinson and Fallside [2]).

Derivation of the algorithm. We use the chain rule to compute weight increments (to be
performed after each training sequence) for all initial weights w,,(1) according to

aEt()tal (nrns)
Owgp(1) (5)

where 7 is a constant positive ‘learning rate’. Thus we obtain an exact gradient-based algo-
rithm for minimizing £ under the ‘self-referential’ dynamics given by (1)-(4). To reduce
writing effort, T introduce some short-hand notation partly inspired by Williams [7]. For all
units « and all weights wg,, w;; we write

Wap(1) — wep(1) —

Ju(t) y Ow;;(t)
w(t) = ——+~, g (t) = —1=%. 6
pab() awab(l)a qab() awab(l) ()
To begin with, note that
8Etotal (1) 8Etotal (f) 8Efm‘al (
= N t>1: = 1 f 1
Owap(1) 0, vi> Owap (1) Owyp (1 ;m;a it + D (1)- (7)

Therefore, the remaining problem is to compute the p7; (¢), which can be done by incrementally
computing all p%(¢) and ¢% (1), as we will see. We have

pE(L) =0; pit(t+ 1) 0; poo™(t+1) = —p%(t), if di(t) exists, and 0 otherwise, (8)
Pay (¢ + Z{ Qs (t)gllana(t) — adr(wi)|*)] +wi(t) [¢'(lana(t) — adr(w;;)]*)

X 2) (anap(t) — adry, ()i (1) 1} (9)
(where adry,(w;;) is the m-th bit of w;;’s address),

Do+ 1) = fy, (nety, (t+ 1)) Y wya(8)plhy(t) + 1(t)azs (1), (10)

where)
¢ (1) =1 if we, = w;j, and 0 otherwise, (11)

Vi > 1z g (t) = it — 1) +pg(t — Dg(llmod(t — 1) — adr(wy)[|*)+
+2A(t—1) g(|lmod(t — 1) — adr(w;;)||*) x Z[modm(t — 1) — adry, (wi;)]ph* (t —1). (12)

m
According to (8)-(12), the p/,(t) and ¢”(t) can be updated incrementally at each time
step. This implies that (5) can be updated incrementally at each time step, too. The storage
complexity is independent of the sequence length and equals O(n?,). The computational

conn
complexity per time step (of sequences with arbitrary length) is O(n?,,,,109%conn)-

'Tt should be noted that in quite different contexts, previous papers have shown how one net may learn
to perform appropriate lasting weight changes for a second net [4] [1]. However, these previous approaches
could not be called ‘self-referential’ they all involve at least some weights that can not be manipulated
other than by conventional gradient descent.

4. CONCLUSION

The thought experiment presented in this paper is intended to show the theoretical possibility
of certain kinds of ‘self-referential’ weight matrices. The network I have described can, besides
learning to solve problems posed by the environment, also use its own weights as input data
and can (in principle) learn new algorithms for modifying its weights in response to the
environmental input and evaluations. This effectively embeds a chain of ‘meta-networks’ and
‘meta-meta-...-networks’ into the network itself.

5. ACKNOWLEDGEMENTS

Thanks to Mark Ring, Mike Mozer, Daniel Prelinger, Don Mathis, and Bruce Tesar, for
helpful comments. Parts of this paper are based on previous publications [6][5]. This research
was supported in part by a DFG fellowship to the author, as well as by NSF award IRI
9058450, grant 90-21 from the James S. McDonnell Foundation, and DEC external research
grant 1250.

References

[1] K. Moller and S. Thrun. Task modularization by network modulation. In J. Rault, editor,
Proceedings of Neuro-Nimes 90, pages 419-432, November 1990.

[2] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Depart-
ment, 1987.

[3] J. H. Schmidhuber. A fixed size storage O(n?®) time complexity learning algorithm for
fully recurrent continually running networks. Neural Computation, 4(2):243-248, 1992.

[4] J. H. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent
nets. Neural Computation, 4(1):131-139, 1992.

[5] J. H. Schmidhuber. An introspective network that can learn to run its own weight change
algorithm. In Proc. of the Third International Conference on Artificial Neural Networks,
Brighton. IEE, 1993. Accepted for publication.

6] J. H. Schmidhuber. A neural network that embeds its own meta-levels. In Proc. of the
International Conference on Neural Networks ’93, San Francisco. IEEE, 1993. Accepted
for publication.

[7] R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neu-
ral networks. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern
University, College of Computer Science, 1989.

(8] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
networks. Neural Computation, 1(2):270-280, 1989.

