
A `SELF-REFERENTIAL' WEIGHT MATRIXJ. SchmidhuberInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 40, GermanyABSTRACT. Weight modi�cations in traditional neural nets are computed by hard-wiredalgorithms. Without exception, all previous weight change algorithms have many speci�climitations. Is it (in principle) possible to overcome limitations of hard-wired algorithmsby allowing neural nets to run and improve their own weight change algorithms? This paperconstructively demonstrates that the answer (in principle) is `yes'. I derive an initial gradient-based sequence learning algorithm for a `self-referential' recurrent network that can `speak'about its own weight matrix in terms of activations. It uses some of its input and outputunits for observing its own errors and for explicitly analyzing and modifying its own weightmatrix, including those parts of the weight matrix responsible for analyzing and modifyingthe weight matrix. The result is the �rst `introspective' neural net with explicit potentialcontrol over all of its own adaptive parameters. A disadvantage of the algorithm is its highcomputational complexity per time step which is independent of the sequence length and equalsO(nconnlognconn), where nconn is the number of connections. Another disadvantage is the highnumber of local minima of the unusually complex error surface. The purpose of this paper,however, is not to come up with the most e�cient `introspective' or `self-referential' weightchange algorithm, but to show that such algorithms are possible at all.1. INTRODUCTIONIn contrast to traditional machine learning systems, humans do not appear to rely on hard-wired learning algorithms only. Instead, they tend to re
ect about their own learning behaviorand modify it and tailor it to the needs of various types of learning problems. To a degree,humans are able to learn how to learn. The thought experiment in this paper is intended tomake a step towards `self-referential' machine learning by showing the theoretical possibilityof `self-referential' neural networks whose weight matrices can learn to implement and improvetheir own weight change algorithm, without any signi�cant theoretical limits.Structure of the paper. Section 2 starts with a general �nite, `self-referential' architec-ture involving a sequence-processing recurrent neural-net (see e.g. Robinson and Fallside [2],Williams and Zipser [8], and Schmidhuber [3]) that can potentially implement any computablefunction that maps input sequences to output sequences | the only limitations being unavoid-able time and storage constraints imposed by the architecture's �niteness. These constraintscan be extended by simply adding storage and/or allowing for more processing time. The ma-jor novel aspect of the system is its `self-referential' capability. The network is provided withspecial input units for explicitly observing performance evaluations (external error signals arevisible through these special input units). In addition, it is provided with the basic tools forexplicitly reading and quickly changing all of its own adaptive components (weights). Thisis achieved by (1) introducing an address for each connection of the network, (2) providingthe network with output units for (sequentially) addressing all of its own connections (in-cluding those connections responsible for addressing connections) by means of time-varyingactivation patterns, (3) providing special input units whose activations become the weightsof connections currently addressed by the network, and (4) providing special output unitswhose time-varying activations serve to quickly change the weights of connections addressedby the network. It is possible to show that these unconventional features allow the network

(in principle) to compute any computable function mapping algorithm components (weights)and performance evaluations (e.g., error signals) to algorithm modi�cations (weight changes){ the only limitations again being unavoidable time and storage constraints. This implies thatalgorithms running on that architecture (in principle) can change not only themselves but alsothe way they change themselves, and the way they change the way they change themselves,etc., essentially without theoretical limits.Connections are addressed, analyzed, and manipulated with the help of di�erentiablefunctions of activation patterns across special output units. This allows the derivation of anexact gradient-based initial weight change algorithm for `introspective' supervised sequencelearning. The system starts out as tabula rasa. The initial weight change procedure serves to�nd improved weight change procedures { it favors algorithms (weight matrices) that makesensible use of the `introspective' potential of the hard-wired architecture, where `usefulness'is solely de�ned by conventional performance evaluations (the performance measure we useis the sum of all error signals over all time steps of all training sequences).A disadvantage of the algorithm is its high computational complexity per time step whichis independent of the sequence length and equals O(nconnlognconn), where nconn is the numberof connections. Another disadvantage is the high number of local minima of the unusuallycomplex error surface. The purpose of this paper, however, is not to come up with the moste�cient `introspective' or `self-referential' weight change algorithm, but to show that suchalgorithms are possible at all.2. THE `INTROSPECTIVE' NETWORKThroughout the remainder of this paper, to save indices, I consider a single limited pre-speci�ed time-interval of discrete time-steps during which our network interacts with itsenvironment. An interaction sequence actually may be the concatenation of many `con-ventional' training sequences for conventional recurrent networks. This will (in theory) helpour `self-referential' weight matrix to �nd regularities among solutions for di�erent tasks. Thenetwork's output vector at time t, o(t), is computed from previous input vectors x(�); � < t,by a discrete time recurrent network with nI input units and ny non-input units. A subset ofthe non-input units, the `normal' output units, has a cardinality of no < ny.zk is the k-th unit in the network. yk is the k-th non-input unit in the network. xk is thek-th `normal' input unit in the network. ok is the k-th `normal' output unit. If u stands fora unit, then fu is its di�erentiable activation function and u's activation at time t is denotedby u(t). If v(t) stands for a vector, then vk(t) is the k-th component of v(t).Each input unit has a directed connection to each non-input unit. Each non-input unithas a directed connection to each non-input unit. There are (nI + ny)ny = nconn connectionsin the network. The connection from unit j to unit i is denoted by wij. For instance, oneof the names of the connection from the j-th `normal' input unit to the the k-th `normal'output unit is wokxj . wij's real-valued weight at time t is denoted by wij(t). Before training,all weights wij(1) are randomly initialized.The following features are needed to obtain `self-reference'. Details of the network dynam-ics follow in the next section.1. The network receives performance information through the eval units, which are specialinput units. evalk is the k-th eval unit (of neval such units) in the network.2. Each connection of the net gets an address. One way of doing this is to introduce a bi-nary address, adr(wij), for each connection wij. This will help the network to do computationsconcerning its own weights in terms of activations, as will be seen later.3. anak is the k-th analyzing unit (of nana = ceil(log2nconn) such units, where ceil(x)returns the �rst integer � x). The analyzing units are special non-input units. They serve

to indicate which connections the current algorithm of the network (de�ned by the currentweight matrix plus the current activations) will access next (see next section). A special inputunit for reading current weight values that is used in conjunction with the analyzing units iscalled val.4. The network may modify any of its weights. Some non-input units that are not `normal'output units or analyzing units are called the modifying units. modk is the k-th modifyingunit (of nmod = ceil(log2nconn) such units). The modifying units serve to address connectionsto be modi�ed. A special output unit for modifying weights (used in conjunction with themodifying units, see next section) is called 4. f4 should allow both positive and negativeactivations 4(t).2.1. `SELF-REFERENTIAL' DYNAMICS AND OBJECTIVEFUNCTIONI assume that the input sequence observed by the network has length ntime = nsnr (wherens; nr 2 N) and can be divided into ns equal-sized blocks of length nr during which theinput pattern x(t) does not change. This does not imply a loss of generality | it just meansspeeding up the network's hardware such that each input pattern is presented for nr time-steps before the next pattern can be observed. This gives the architecture nr time-steps to dosome sequential processing (including immediate weight changes) before seeing a new patternof the input sequence.In what follows, unquantized variables are assumed to take on their maximal range. Thenetwork dynamics are speci�ed as follows:netyk(1) = 0; 8t � 1 : xk(t) environment; yk(t) = fyk(netyk(t));8t > 1 : netyk(t) =Xl wykl(t� 1)l(t� 1); (1)The network can quickly read information about its current weights into the special val inputunit according toval(1) = 0; 8t � 1 : val(t + 1) =Xi;j g[kana(t)� adr(wij)k2]wij(t); (2)where k : : :k denotes Euclidean length, and g is a di�erentiable function emitting valuesbetween 0 and 1 that determines how close a connection address has to be to the activationsof the analyzing units in order for its weight to contribute to val at that time. Such a functiong might have a narrow peak at 1 around the origin and be zero (or nearly zero) everywhereelse. This essentially allows the network to pick out a single connection at a time and obtainits current weight value without receiving `cross-talk' from other weights.The network can quickly modify its current weights using mod(t) and 4(t) according to8t � 1 : wij(t+ 1) = wij(t) +4(t) g[kadr(wij)�mod(t)k2]: (3)Again, if g has a narrow peak at 1 around the origin and is zero (or nearly zero) everywhereelse, the network will be able to pick out a single connection at a time and change its weightwithout a�ecting other weights.Objective function and dynamics of the eval units. As with typical supervised sequence-learning tasks, we want to minimizeEtotal(nrns); where Etotal(t) = tX�=1 E(�); where E(t) = 12Xk (evalk(t+ 1))2;

where evalk(1) = 0; 8t � 1 : evalk(t+ 1) = dk(t)� ok(t) if dk(t) exists; and 0 else: (4)Here dk(t) may be a desired target value for the k-th output unit at time step t.3. INITIAL LEARNING ALGORITHMThe following algorithm1 for minimizing Etotal is partly inspired by (but more complex than)conventional recurrent network algorithms (e.g. Robinson and Fallside [2]).Derivation of the algorithm. We use the chain rule to compute weight increments (to beperformed after each training sequence) for all initial weights wab(1) according towab(1) wab(1)� �@Etotal(nrns)@wab(1) ; (5)where � is a constant positive `learning rate'. Thus we obtain an exact gradient-based algo-rithm for minimizing Etotal under the `self-referential' dynamics given by (1)-(4). To reducewriting e�ort, I introduce some short-hand notation partly inspired by Williams [7]. For allunits u and all weights wab, wij we writepuab(t) = @u(t)@wab(1) ; qijab(t) = @wij(t)@wab(1) : (6)To begin with, note that@Etotal(1)@wab(1) = 0; 8t > 1 : @Etotal(t)@wab(1) = @Etotal(t� 1)@wab(1) �Xk evalk(t + 1)pokab(t): (7)Therefore, the remaining problem is to compute the pokab(t), which can be done by incrementallycomputing all pzkab(t) and qijab(t), as we will see. We havepzkab(1) = 0; pxkab (t + 1) = 0; pevalkab (t + 1) = �pokab(t); if dk(t) exists; and 0 otherwise; (8)pvalab (t+ 1) =Xi;j f qijab(t)g[kana(t)� adr(wij)k2)] + wij(t) [g0(kana(t)� adr(wij)k2)�� 2Xm (anam(t)� adrm(wij))panamab (t)] g (9)(where adrm(wij) is the m-th bit of wij's address),pykab(t + 1) = f 0yk(netyk(t + 1))Xl wykl(t)plab(t) + l(t)qyklab (t); (10)where qijab(1) = 1 if wab = wij; and 0 otherwise; (11)8t > 1 : qijab(t) = qijab(t� 1) + p4ab(t� 1)g(kmod(t� 1)� adr(wij)k2)++24 (t� 1) g0(kmod(t� 1)� adr(wij)k2)�Xm [modm(t� 1)� adrm(wij)]pmodmab (t� 1): (12)According to (8)-(12), the pjab(t) and qijab(t) can be updated incrementally at each timestep. This implies that (5) can be updated incrementally at each time step, too. The storagecomplexity is independent of the sequence length and equals O(n2conn). The computationalcomplexity per time step (of sequences with arbitrary length) is O(n2connlognconn).1It should be noted that in quite di�erent contexts, previous papers have shown how one net may learnto perform appropriate lasting weight changes for a second net [4] [1]. However, these previous approachescould not be called `self-referential' | they all involve at least some weights that can not be manipulatedother than by conventional gradient descent.

4. CONCLUSIONThe thought experiment presented in this paper is intended to show the theoretical possibilityof certain kinds of `self-referential' weight matrices. The network I have described can, besideslearning to solve problems posed by the environment, also use its own weights as input dataand can (in principle) learn new algorithms for modifying its weights in response to theenvironmental input and evaluations. This e�ectively embeds a chain of `meta-networks' and`meta-meta-...-networks' into the network itself.5. ACKNOWLEDGEMENTSThanks to Mark Ring, Mike Mozer, Daniel Prelinger, Don Mathis, and Bruce Tesar, forhelpful comments. Parts of this paper are based on previous publications [6][5]. This researchwas supported in part by a DFG fellowship to the author, as well as by NSF award IRI{9058450, grant 90{21 from the James S. McDonnell Foundation, and DEC external researchgrant 1250.References[1] K. M�oller and S. Thrun. Task modularization by network modulation. In J. Rault, editor,Proceedings of Neuro-Nimes '90, pages 419{432, November 1990.[2] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network.Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Depart-ment, 1987.[3] J. H. Schmidhuber. A �xed size storage O(n3) time complexity learning algorithm forfully recurrent continually running networks. Neural Computation, 4(2):243{248, 1992.[4] J. H. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrentnets. Neural Computation, 4(1):131{139, 1992.[5] J. H. Schmidhuber. An introspective network that can learn to run its own weight changealgorithm. In Proc. of the Third International Conference on Arti�cial Neural Networks,Brighton. IEE, 1993. Accepted for publication.[6] J. H. Schmidhuber. A neural network that embeds its own meta-levels. In Proc. of theInternational Conference on Neural Networks '93, San Francisco. IEEE, 1993. Acceptedfor publication.[7] R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neu-ral networks. Technical Report Technical Report NU-CCS-89-27, Boston: NortheasternUniversity, College of Computer Science, 1989.[8] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrentnetworks. Neural Computation, 1(2):270{280, 1989.

