
Technische Universität München

Lehrstuhl Computation in Engineering

ALE-type and fixed grid fluid-structure interaction involving the

p-version of the Finite Element Method

Stefan Kollmannsberger

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. K.-U. Bletzinger

Prüfer der Dissertation:

1. Univ.-Prof. Dr.rer.nat. E. Rank

2. Univ.-Prof. Dr.-Ing. habil. M. Krafczyk,

Technische Universität Carolo-Wilhelmina zu Braunschweig

Die Dissertation wurde am 24.09.2009 bei der Technischen Universität München eingereicht
und durch die Fakultät für Bauingenieur- und Vermessungswesen am 15.02.2010 angenommen.





para las pajaritas

iii





Abstract

This treatise addresses the efficient, numerical simulation of the interaction between fluids
and structures. The discretization of the structure is either based on high-order hexahe-
dral or quadrilateral elements (p-version). Both types of elements allow for an independent
choice of the polynomial degrees for the different local directions as well as for the different
components of the cartesian displacement vectors, which provides scope for strictly two- or
three-dimensional structural discretizations. Three different approaches for the fluid are re-
garded: the Finite Volume Method, the Spectral Element Method and the Lattice Boltzmann
Method. Whereas the first two approaches discretize the ALE form of the incompressible
Navier-Stokes equations, the Lattice Boltzmann Method discretizes the Boltzmann equation
stemming from the kinetic gas theory with a fixed, hierarchical grid. Algorithms are suggested
for the coupling of these discretizations to the structural p-version, which are then verified and
validated against benchmark examples. In this context, the coupling to the Lattice Boltzmann
Method turned out to be particularly favourable.

Zusammenfassung

Diese Arbeit befasst sich mit der effizienten, numerischen Simulation der gegenseitigen Wech-
selwirkung zwischen Fluiden und Strukturen. Die Diskretisierung der Struktur basiert auf
Hexaeder- oder auf Viereckselementen hoher Ordnung (p-Version). Beide Elementtypen er-
lauben eine anisotrope Wahl der Polynomgrade für die lokalen Richtungen und für die Kom-
ponenten des kartesischen Verschiebungsvektors. Dies ermöglicht effiziente, strikt zwei- oder
dreidimensionale Diskretisierungen. Für das Fluid werden unterschiedliche Ansätze verwen-
det: eine Finite Volumen Methode, eine Spektralelement Methode und eine Lattice Boltz-
mann Methode. Die ersten beiden Ansätze diskretisieren die ALE-Form der inkompressiblen
Navier-Stokes Gleichung; die Lattice Boltzmann Methode hingegen diskretisiert die aus der
Gaskinetik stammende Boltzmanngleichung mit einem Finite Differenzen Ansatz auf einem
ortsfesten, hierarchischen Gitter. Es werden Verfahren zur Kopplung dieser Ansätze an die
mit der p-Version diskretisierten Struktur vorgeschlagen und an Referenzbeispielen verifiziert
und validiert. Hierbei hat sich die Kopplung an die Lattice Boltzmann Methode als besonders
vorteilhaft herausgestellt.
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1

Chapter 1

Introduction

Computational fluid-structure interaction aims to predict the behaviour of fluids and structures
as a result of their interplay. The basic idea is simple and easily explained by imagining a
leaf on a tree subject to wind. The air i.e. the fluid flows around the leaf thereby exerting
forces on it. The leaf i.e. the structure deflects. As a result, the wind is forced to change its
direction in the proximity of the leaf which in turn changes the forces exerted on the structure
et cetera. The deflection of the leave may become static after a while or its motion may
continue periodically or a-periodically. In the worst case the motion of the leaf may become
so large as to detach the leaf from the tree or lead to its destruction. These effects may not
be computed by only considering one physical field. On the contrary, only the consideration
of their interplay leads to a concise description forming the basis for drawing conclusions and
making forecasts.

The same situation may arise in aircraft wings, turbine blades, tall buildings, membrane or
shell like structures in civil engineering, marine engineering or blood flow in arteries. Fluid-
structure interaction is thus an important phenomenon. As a matter of course, it is interesting
to know in advance if and how an aircraft wing or turbine blade vibrates, if and how tall
buildings, membrane or shell structures deform under wind loads and if or how aneurysms in
arteries have to be treated. All of these phenomena have in common that the two fields are
interacting at their boundary. As such, they are termed surface coupled problems.

Civil i.e. non military applications of surface coupled fluid-structure interaction are countless.
Yet, it comes at no surprise that first investigations into computational algorithms were carried
out in a military context as means of studying submarines [43].

Many approaches and methods emerged from the intensive research carried out on the subject
since. In an effort to evaluate selected methods from the broad range of possibilities of com-
puting fluid-structure interaction, the “Deutsche Forschungsgemeinschaft” has established the
research group 493. One goal of this research group was to set up and establish a Benchmark
for fluid-structure interaction similar to the famous cylinder in a cross flow benchmark [133].
This benchmark exists in two forms, one of purely numerical nature and one set up as an
experiment. The results of these Benchmarks will be published in a common paper and pre-
sented to the community in upcoming conferences. It is to serve industry and academia alike
to evaluate new methods, calibrate new models or verify and validate computational codes.

On the most general level and following [147], fluid-structure interaction can be divided into
two main problem categories. Class one problems have two physically different domains whose
common boundary defines an interface, such as a solid body submerged or in contact with a
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fluid. Class two problems deal with overlapping fluid and structural domains, such as seepage
through porous media. In this thesis class one problems are addressed in which the submerged
structural body undergoes large (i.e. geometrically nonlinear), transient deformations.
There are two different approaches for solving this type of fluid-structure interaction. The
monolithic approach discretizes the two separate domains using a similar discretization scheme
and solves the resulting equation system within one solver. The compatibility conditions at
the interface are treated inherently within this equation system. By contrast, the partitioned
approach uses separate solvers for the fluid and the structural system. The two solvers then
need to communicate on their common boundary to fulfill the continuity conditions required
on this interface. In this thesis such a partitioned solution strategy is employed.
In a partitioned approach, each domain may utilize any type of discretization considered
efficient for its field. For the fluid, however, two main approaches have been employed in
the context of partitioned f luid-structure interaction (FSI) for large deformations. The fluid
is usually described either (a) on a suitably moving grid (Arbitrary Lagrangian Eulerian
(ALE)-formulation) or (b) on a fixed Cartesian grid. In both cases, the geometry of the
moving boundary needs to be described explicitly by means of an interface. From a geometric
point of view, the main difference between (a) and (b) is that, for the ALE-formulation, the
movement of the boundary is propagated into the fluid domain i.e. the fluid discretization
needs to follow the description of the interface not only at the boundary but also in the
interior of the domain. Regardless of the underlying discretization method (Finite Elements,
Finite Volumes), the fluid is usually discretized by means of a mesh, which needs to fulfill
certain geometric requirements (e.g. element size and aspect ratio). This, in turn, restricts
the movement of the boundary. Difficulties arise in particular in situations where boundary
deflections are very large with regard to the fluid domain concerned, which may make it
necessary to remesh the fluid domain. Remeshing can be a challenging task, especially in
three dimensions, not only because of the meshing process itself, but also because of the need
to transfer the data between the old and the new mesh correctly.
In case (b) these restrictions do not apply. Here, the structure can move freely over the fixed
Cartesian fluid grid without imposing restrictions onto the discretization of the fluid. The
difficulty hereby lies elsewhere, namely in establishing the interface conditions between the
structure and the fluid. Another challenge in case (b) is to accurately resolve boundary layers
as body fitted meshes are not innate to this formulation. However, at the boundary, adaptive
mesh refinement may be used to address this issue.
A combination of cases (a) and (b) is also possible but not discussed in this thesis. One
approach proposed by [47] is to use a Chimera scheme in which a fixed Eulerian fluid back-
ground mesh is overlapped by a moving, deformable fluid mesh, called patch, which is attached
to the structure and uses an ALE formulation. The interaction is then preferably achieved
by performing a Dirichlet-Neumann or a Dirichlet-Robin type coupling. Here, the forces are
transferred from the fixed background mesh to the outer boundary of the moving patch and the
velocities from the structural boundary to the patch and from there to the fixed background
mesh. This approach can provide a remedy to the body fitted mesh problems mentioned above
while simultaneously allowing for large deflections.
Another interesting approach utilizing an XFEM formulation for the fluid is taken by [54,
86, 138]. An interface mesh is introduced to which both solvers couple by means of mortar
methods. To be able to represent the interface sharply, the fluid domain elements are enriched
by step functions to deal with the jumps occurring in the pressure and velocity fields when
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the structure strides over the fluid. Both approaches are compared in [139, 55].
For the sake of completeness, the Particle Element Method proposed in [69], is mentioned as a
representative example of another approach for solving FSI problems with large deformations.
A good overview, including a comparison between the methods belonging to categories (a) and
(b), but with a different focus, is also given in [87]. To complete the overview it is remarked
that partitioned fluid-structure interaction can be considered as an application of domain
decomposition methods into which [131] gives a purely mathematical insight.
In this thesis both cases (a) and (b) are investigated where the structure is always discretized
via finite elements of high order.
This thesis is structured as follows:
The structural part is covered in Chapter 2 which introduces the relevant equations describing
the dynamics of deformable bodies and their discretization by means of the p-version of the
Finite Element Method. This method is used throughout the thesis for the computation of
the structure.
The basic fluid equations are treated in Chapter 3. First, the fluid is described as a continuum
in Chapter 3.1. The resulting equations form the basis for a discretization on deformable
grids corresponding to a computation of fluid-structure interaction of type (a). Chapter 3.2
briefly describes the Finite Volume Method (FVM) while Chapter 3.3 introduces the Spectral
Element Method (SEM) as two representatives of discretization methods for fluids. The Lattice
Boltzmann Method is introduced in Chapter 3.4 as an attractive alternative. It stems from gas
dynamics and treats the fluid by modelling the interaction of particles. The Lattice Boltzmann
Method discretizes the fluid via a fixed, undeformable grid. It is utilized in this thesis as a
representative for fluid-structure interaction of type (b).
Some relevant algorithms concerning partitioned fluid-structure interaction for surface coupled
problems are introduced in Chapter 4 and put into perspective. Utilizing high order finite
element methods in fluid-structure interaction requires a close look to the data exchange at
the interface and demands methods beyond the current standard in Fluid Structure interaction
which are introduced here as well.
All methods are evaluated against the Benchmarks defined in Chapter 5. These have been
the result of the common effort of the Research Group 496 by the "Deutsche Forschungsge-
meinschaft" and the author of this thesis is a member to this group. These methods presented
in the previous chapters are applied and refined in Chapter 6 where the fluid is computed by
the commercial Finite Volume solver CFX and in Chapter 7 where the fluid is discretized by
the Spectral Element Method solver Nǫκταρ. Here, the limits of the methods w.r.t. fluid
structure interaction with very large deflections becomes eminent. A fixed grid type coupling
(case (b)) to a lattice Boltzmann solver is verified and validated in Chapter 8. This approach
can be a remedy to some of the problems encountered in an ALE formulation.
As the combination of p-FEM and lattice Boltzmann turned out to be an efficient alternative,
some show case examples are presented in Chapter 9. They motivate the use of these methods
beyond Benchmarks towards examples possibly of interest to industrial applications before
conclusions are drawn in Chapter 10.
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Chapter 2

Computational structural dynamics

This chapter serves to introduce only the most important concepts of geometrically non-linear
structural dynamics. This theory forms the basis upon which the structural solver AdhoC
is based. These concepts are not new and have been presented countless times by numerous
authors of which Wriggers [143], Bonet and Wood [11] and Szabo [125] were found to be most
helpful. The following quick introduction is based on the notation in [143].

2.1 Basic mechanics for large deflections

In the Lagrangian description commonly employed for structural mechanics, the coordinate
system is attached to the particles of the continuum and deforms with them. In this con-
text, states of particles before deformation are denoted by capital letters or / and an index
·0. This undeformed configuration is also called material or initial configuration. States of
particles after a deformation are labeled by minuscules. The deformed state is termed spatial
configuration.
The position of a particle is described by its position vector X before and by x after deformation
as depicted in Figure 2.1.

Ω

Ω0

Γ
Γ0

u

x
X

e1

e2

e3

φ(X, t)

t n

bb

ρü

t0 N

ρ0ü

dadA

Figure 2.1: Configurations of a particle and forces acting on a domain Ω within a boundary Γ

The domain of the body where the particle is contained is generally denoted by Ω or by A in
the case it is stressed that a two dimensional body is described. Its boundary is in general
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denoted either by Γ or by ∂A for a two dimensional description. The particle deformation is
characterized by the time dependent mapping:

x(t) = φ(X, t) (2.1)

The displacement of a particle is the difference of its position vectors:

u = x −X (2.2)

The change of the deformed configuration with respect to the initial configuration is expressed
by the gradient of the mapping Equation (2.1) and termed deformation gradient F:

F =
dx

dX
= Grad x = Gradφ(X, t) = Gradu + I (2.3)

The unit tensor is denoted by I. While F describes the absolute change of the position of a
particle, strain is defined as the change of the positions of two particles relative to each other.
It is determined by computing the difference of the square of the positions of the two particles
before and after deformation:

dxTdx− dXTdX = (FdX)T FdX− dXTdX

= dXT
(

FT F
)

dX− dXT I dX

= dXT
(

FT F− I
)

dX

= dXT 2E dX (2.4)

where

E =
1

2
(FT F− I) (2.5)

is the Green-Lagrangian strain tensor. It describes the relation between strains and displace-
ments with respect to (w.r.t.) the undeformed configuration.
While the undeformed volume is obtained by dV = dX1dX2dX3, changes of volume and area
can be computed by:

J = detF (2.6)

da = J F−TdA (2.7)

dv = JdV (2.8)

where da = nda and dA = NdA with n and N being the unit normal vector perpendicular
to the surface element da and dA, respectively (see Figure 2.1). A detailed derivation is given
e.g. in [11].
Strains are caused by forces which are related to tractions and/or stresses. Important measures
are the spatial traction vector t:

t(n) = σn (2.9)

in which the Cauchy stress tensor σ describes the stress state w.r.t. the deformed configura-
tion. Its counterpart, the material traction vector:

t0(N) = PN (2.10)
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is defined by the first Piola-Kirchhoff stress tensor P. For the scope of this thesis it is not
suitable to use this stress measure due to its asymmetry1 which is why the symmetric second
Piola-Kirchhoff stress tensor S is utilized:

S = F−1P = J F−1σF−T (2.11)

All forces acting on a differential volume must be in equilibrium. They are constituted of the
rate of change of momentum within the considered volume and the sum of all surface and
volume forces.

∂t

∫

Ω

ρu̇ dΩ =
∮

Γ

t da +
∫

Ω

ρbdv (2.12)

where the spatial quantities ρ, b and u̇ refer to the density, the mass related to the force
of gravity and the velocity, respectively. This balance equation can be transformed to the
material configuration by application of Equations (2.7) and (2.8) to give:

∂t

∫

Ω0

ρ0u̇ dV =
∮

Γ0

t dA +
∫

Ω0

ρ0bdV (2.13)

From Equation (2.13) it can be deduced that density and tractions transform according to:

ρ0 = ρJ (2.14)

t0 = JF−T t (2.15)

Application of the Cauchy theorem 2.9, and the divergence theorem of Gauss to convert the
boundary integral to a volume integral leads to the following fundamental Cauchy equations
of motion in spatial and reference configuration.

divσ + ρb = ρü (2.16)

DivFS + ρ0b = ρ0ü (2.17)

In Equation (2.17) the second Piola-Kirchhoff stress tensor S is already incorporated and
ü refers to the acceleration of the considered particle. Neither Equation (2.17) nor Equa-
tion (2.16) are closed and must be supplemented with a material law. In this thesis only the
St.-Vernant-Kirchhoff material is used2:

S = CE (2.18)

where C is a constant material tensor (see e.g. [11])
The weak form of Equation (2.17) is obtained via application of a standard Galerkin pro-
cedure involving the multiplication of Equation (2.17) with a suitable test function δv =
{v|v = 0 on ΓD}3, integration over the domain, partial integration of the emerging first term

1its basis is defined in both configurations as
∑3

i,I=1
PiIei ⊗ EI

2which is, strictly spoken, only suitable for small strains. However, it does allow for large deflections. The
combination of large deflections with small strains is, for example, present in the plate like structures dealt
with in this thesis.

3the subscript ·D refers to a Dirichlet boundary. Additionally v needs to be a member of the energy space
o

E, i.e. functions whose derivative is square integrable, see e.g. [125]
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and application of the Gaussian theorem. The procedure and its background is presented in
detail e.g. in [110, 143]. The weak form reads:

δW(u,v) =
∫

Ω0

S : δE dV

︸ ︷︷ ︸

(a)

+
∫

Ω0

ρ0ü · δv dV

︸ ︷︷ ︸

(b)

−
∫

Ω0

ρ0b · δv dV

︸ ︷︷ ︸

(c)

−
∫

Γ0

t0 · δv dA

︸ ︷︷ ︸

(d)

= 0 (2.19)

This weak form is also termed virtual work, as the test functions δv can be interpreted as
a virtual displacement which is indicated by the symbol δ. In this context, the individual
terms represent the virtual work due to (a) the internal stress due to strains, (b) d’Alambert’s
acceleration force, (c) the body forces e.g. due to gravity and the (d) external forces due to
tractions on the boundary. The abbreviation δE is the variation of the Green-Lagrange strain
tensor:

δE =
1

2

(

FT Gradδv + GradT δvF
)

(2.20)

Supplemented with suitable boundary and initial conditions Equation (2.19) forms the basis
of the solution to problems of computational continuum dynamics via the Finite Element
Method. In general, it covers all types of nonlinearities, of which only geometrical nonlinear-
ities are considered in this thesis. This manifests itself in the nonlinear strain-displacement
relation of Equation (2.5).
In this thesis, a nonlinear solver based on the Newton-Raphson procedure is utilized. This
procedure requires the linearization of Equation (2.19) via a Taylor series according to:

W(ū + ∆u,v) = W(ū,v) +DW(ū,v)[∆u] = 0 (2.21)

It is carried out w.r.t. the displacements u at the linearization point ū in the direction
∆u. The directional derivative is denoted by D. Only the nonlinearity of the first term in
Equation (2.19) is considered and linearized w.r.t. u4. This has been carried out in detail e.g.
in [143], and the final form of the directional derivative is:

DW(ū,v)[∆u] = D
∫

Ω

S : δE dV [∆u] =
∫

Ω0

Grad ∆u S̄ : Grad δvdV +
∫

Ω0

δE : C : D̄E[∆u]dV

(2.22)

The first term in Equation (2.22) is called the geometric component. It needs to be accounted
for in the computation of the stiffness matrix when large deformations are to be considered

4In FSI with large displacements, the external forces t0 depend on the deformation and should therefore
be linearized as done i.e. with follower loads. However, in the framework of a partitioned solution, it is more
convenient to disregard the dependency on the load configuration in the linearization of Equation (2.19) and
treat it incrementally in the overall search for a converged equilibrium position within the FSI cycles. Then,
only the change of the area on which the force acts needs to be considered as the direction of the force emerges
automatically. The area change can conveniently be respected via a direct integration of the loads in the
deformed configuration as presented in Chapter 8.4.1.

The acceleration ü can be dropped in the linearization as well since, at this continuous level, ü is considered
as a primary unknown variable and its nonlinear connection to u is treated at the discrete level in Chapter 2.2.
Additionally, δv and b are independent of u and are dropped as well.
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and vanishes for small displacements. The second component is the constitutive component
and remains for small as well as large displacements. It contains the variation of the Green-
Lagrangian strain tensor δE defined in 2.20 and its directional derivative is given by:

D̄E[∆u] =
1

2

(

F̄T Grad∆u + GradT ∆uF̄
)

(2.23)

For small displacements F ≡ I such that Equation (2.23) transforms to the engineering strain

tensor ε = 1
2

(

GradT u + Grad u
)

.

2.2 p-FEM discretization for structural dynamics

2.2.1 Preliminary discussion

Two and three-dimensional structures are investigated in this thesis for which elements of high
orders are utilized. These have been implemented in the in-house p-FEM code AdhoC[31].
These elements are either based on a hexahedral or a quadrilateral element formulation uti-
lizing the shape functions introduced in [125, 32, 126]. The following presentation of the
discretization will be based on the three-dimensional formulation as the two-dimensional one
can be obtained via cancellation of the terms associated with the third coordinate.

2.2.2 Spatial discretization

In principle, an incremental solution is sought to Equation (2.19) where at each step Equa-
tion (2.22) must be solved and the solution is updated accordingly. This results in the following
basic procedure:

solve : DW(ū,v)[∆u] = −W(ū,v)

update : ū← ū + ∆u (2.24)

Equations (2.24) are iterated until the update of the linearization state ∆u is small.
A Bubnov Galerkin discretization is utilized, where the only difference w.r.t. low order meth-
ods is that the degree of the Ansatz functions is arbitrarily high. The displacement field is
approximated by u = Nû with N being the matrix of global shape functions:

N :=








N1(x, y, z) 0 0 N2(x, y, z) 0 . . . 0

0 N1(x, y, z) 0 0 N2(x, y, z) . . . 0

0 0 N1(x, y, z) 0 0 . . . NG(x, y, z)








(2.25)

To improve the condition number of the stiffness matrix, hierarchic shape functions instead
of standard nodal based Lagrange shape functions are chosen5. The vector û contains the

5This hierarchy can also be utilized for constructing error estimators, see [38] for example.
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coefficients of the Ansatz functions N approximating the displacement field u6. All compu-
tations aim at determining these coefficients and the displacement field is only recovered in
a postprocessing step. The hat ·̂ will thus be dropped to simplify notation in the sequel.
Computations are, in general, carried out on the local element level and assembled into a
global matrix as common practice in the FEM. This point is therefore disregarded as well for
notational simplicity.
The 3D shape functions used in our implementation can be classified into four groups: the
nodal or vertex modes, the edge modes, the face modes, and the internal modes. The nodal
or vertex modes are defined by the standard trilinear shape functions, well known from the
isoparametric eight-noded brick element. The edge and face modes are non-zero on the edges
and faces which they are associated to and vanish on all other edges and faces, whereas the
internal modes are purely local being zero on all faces and edges of the hexahedral element.
Three different types of trial spaces can be defined: the trunk space Spξ ,pη,pζ

ts (Ωh
st), the tensor

product space Spξ ,pη,pζ
ps (Ωh

st) and an anisotropic tensor product space Sp,p,q(Ωh
st). A detailed

description of these trial spaces can be found in [125, 32, 126]. The polynomial degree for the
trial spaces Spξ,pη,pζ

ts (Ωh
st) and Spξ ,pη,pζ

ps (Ωh
st) can be varied separately in each local direction. It is

possible to construct discretizations where the polynomial degree for the in-plane and thickness
direction of thin-walled structures can be treated differently. High order solid elements can
therefore provide a fully three-dimensional solution also including arbitrary three-dimensional
stress states and, nevertheless, can cope with high aspect ratios of thin-walled structures. It
was shown e.g. in [5, 4, 63] that these elements are less prone to locking effects than classical
low order elements. Additionally, only one element type for thin- as well as thick-walled
structures is sufficient. Transition elements between thin-walled and massive parts of the
structure are not needed. A detailed discussion of the advantages of high order solid elements
for thin-walled (nonlinear) continua can be found in [118, 125, 32, 37, 35, 34, 126, 108, 38].
In the process of solving Equation (2.24) a solution is sought for u (i.e. ū in every iteration)
whose weak form is described by Equation (2.19). The spatial discretization of Equation (2.19)
leads to the following semidiscrete form:

R(u) + Mü = F (2.26)

in which the time derivative has yet to be discretized. The mass matrix emerges from term
(b) in Equation (2.19) as:

M = ρ0

∫

Ω

NT Nd Ω (2.27)

The body forces constituting term (c) of Equation (2.19) and the external forces (d) form the
two parts of the load vector:

F =
∫

Ω

NTρ0bd Ω

︸ ︷︷ ︸

(c)

+
∫

Γ

NT t0d A

︸ ︷︷ ︸

(d)

(2.28)

6As in the standard Galerkin approach, the virtual displacements are discretized with the same shape
functions. Their (arbitrary) coefficients , say δv̂, drop out in the derivation and are not considered here from
the start.
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The internal forces stem from the internal stresses due to strains as given in term (a) in
Equation (2.19) are symbolized by R(u) and discretized according to:

R(u) =
∫

Ω0

BT S dV

︸ ︷︷ ︸

(a)

(2.29)

where the symmetric tensor S can be written as a vector using the notation of Voigt[143]:

ST :=
[

S11 S22 S33 S12 S23 S31

]

(2.30)

The strain-displacement matrix B is defined as

B :=


















F11
∂N
∂X

F21
∂N
∂X

F31
∂N
∂X

F12
∂N
∂Y

F22
∂N
∂Y

F32
∂N
∂Y

F13
∂N
∂Z

F23
∂N
∂Z

F33
∂N
∂Z

F11
∂N
∂Y

+ F12
∂N
∂X

F21
∂N
∂Y

+ F22
∂N
∂X

F31
∂N
∂Y

+ F32
∂N
∂X

F12
∂N
∂Z

+ F13
∂N
∂Y

F22
∂N
∂Z

+ F23
∂N
∂Y

F32
∂N
∂Z

+ F33
∂N
∂Y

F13
∂N
∂X

+ F11
∂N
∂Z

F23
∂N
∂X

+ F21
∂N
∂Z

F33
∂N
∂X

+ F31
∂N
∂Z


















(2.31)

In Equation (2.31) Fij refers to the entries of the deformation gradient F according to its
definition in Equation (2.3).

The directional derivative DW(ū,v)[∆u] utilized in Equations (2.24) whose continuous form
is given in Equation (2.22) leads to a tangential stiffness matrix KT ∆u composed of the initial
stress and the geometrical component. Its discrete form is:

DW(ū,v)[∆u] ≈ KT ∆u =





∫

Ω

GIdΩ +
∫

Ω

B̄T : C : B̄dV



 [∆u] (2.32)

where G

G = (GradN)T
S̄ GradN (2.33)

2.2.3 Temporal discretization

The spatial discretization of the weak form results in the semidiscrete form given in Equa-
tion (2.26) which has to be discretized in time. A wide variety of methods may be utilized of
which [68] provides a good overview. All of these methods may directly be applied to high
order spatial discretizations. Herefrom, the generalized-α method has been selected for im-
plementation in AdhoC. It was first presented in [19] and is a generalization of the Newmark
method [96]. Implementational details are given in [20, 62]. For the generalized-α method in
context with energy conserving algorithms see e.g. [81].
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To include damping, Equation (2.26) is extended by a damping matrix C which is formed by
a linear combination of the mass and the stiffness matrix according to C = aK + bM. This
type of damping is also termed Rayleigh damping7.
The extension of Equation (2.26) with a damping term Cu̇ leads to the additional unknown
velocity u̇. In the Newmark method, the velocity u̇ and acceleration ü are approximated
via a finite difference Ansatz in terms of the primary unknown variable, the displacement u.
The supporting points of this finite difference scheme are the values computed at the end of
the previous time steps. The generalized-α method extends this principle. Here, the support
points of the finite difference scheme are themselves linear interpolations between the values
computed at the beginning and the end of the previous time steps. The semidiscrete form of
the generalized-α method is thus given by:

Mün+1−αm + Cu̇n+1−αf
+ R(u)n+1−αf

= Ftn+1−αf
(2.34)

where αf and αm are scalars. Essentially, acceleration terms are evaluated at a point in time
linearly interpolated from tn+1−αm = (1− αm)tn+1 + αmtn while velocities as well as internal
and external forces are evaluated at the point tn+1−αf

= (1−αf)tn+1+αftn. This interpolation
offers the possibility of numerical damping while keeping the algorithm second order accurate
w.r.t. the time step size. The Ansatz to reduce the velocity and acceleration terms to the
primary unknown variable u reads:

u̇n+1−αf
= 1−αm

β∆t2 (un+1 − un)− 1−αm

β∆t
u̇n − 1−αm−2β

2β
ün

ün+1−αm =
(1−αf )γ

β∆t
(un+1 − un)− (1−αf )γ−β

β
u̇n − (γ−2β)(1−αf )

2β
∆tün

(2.35)

where β and γ are scalars determining the properties of the scheme. They are defined in
Equations (2.42) and (2.43). Insertion of Equations (2.35) into Equation (2.34) leads to the
following effective structural equation system for the determination of un+1:

G (un+1) = M

[

1− αm

β∆t2
(un+1 − un)− 1− αm

β∆t
u̇n −

1− αm − 2β

2β
ün

]

+ C

[

(1− αf)γ

β∆t
(un+1 − un)− (1− αf )γ − β

β
u̇n −

(γ − 2β)(1− αf )

2β
∆tün

]

+ R
(

un+1−αf

)

− Fn+1−αf
= 0 (2.36)

In addition to boundary conditions defined for the static problem, Equation (2.36) requires
the definition of velocities and displacements at time step t0 as initial conditions.
Equation (2.36) is nonlinear in un+1 and must be linearized to be accessible to a Newton-
Raphson scheme. The linearization leads to the dynamic stiffness matrix KTdyn

:

KTdyn
= (1− αf)

[

KTt+1 +
γ

β∆t
C

]

+
1− αm

β∆t2
M (2.37)

7It offers computational simplicity, however describes a damping behaviour which is more suited for nu-
merical reasons than for describing real physical damping behaviour. See e.g. [104]
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where the tangential (static) stiffness matrix KTt+1 is computed via Equation (2.32).
The discrete Newton-Raphson procedure is given by:

Ki
Tdyn

∆ui+1
n+1 = −G (un+1) (2.38)

ui+1
n+1 = ui+1

n+1 + ∆ui+1
n+1 (2.39)

For geometric linear computations, unconditional stability and second order accuracy with
maximal algorithmic damping for high frequencies is obtained by (see [19]):

αm =
2ρ∞ − 1

ρ∞ + 1
(2.40)

αf =
ρ∞

ρ∞ + 1
(2.41)

β =
1

4
(1− αm + αf)2 (2.42)

γ =
1

2
− αm + αf (2.43)

where ρ∞ can be chosen to either maximize or eliminate the damping of frequencies that are
high relative to the resolution level. If ρ∞ is chosen to be zero the method is said to annihilate
the highest frequency in one step (only for a linear problem). If ρ∞ is chosen to be one then
the highest frequency (as well as all other others) are preserved (in the linear problem). The
method then corresponds to the midpoint rule which is equivalent to the trapezoidal rule for
linear problems [71]. The second order accurate Newmark scheme with no numerical damping
is obtained by setting αm = αf = 08. For geometrical nonlinear computations, the Newmark
method and the generalized alpha method both loose their unconditional stability. In the
Newmark method, conditional stability may be controlled by introducing stronger damping
of higher modes via selection of β according to:

β =

(

γ + 1
2

)2

4
(2.44)

where 1
2
≤ γ < 1. An increasing γ increases the damping of the higher modes and explains

the choice for the parameters γ = 0.9 and β = 0.49 in Chapter 8. The trade off is the loss of
second order accuracy. A more profound discussion of these parameters can be found in [67].
Alternatively, a stiffness proportional damping is used to damp out the frequencies which are
higher than those which can be resolved by the time step itself. This may be achieved by the
Newmark Method with pure stiffness proportional damping i.e. C = aK. In this case, the
modal damping ξn is given by:

ξn =
1

2
aωn =

π

Tn
a (2.45)

8Other schemes such as the Hilber-α Method [64] emerge via setting αm = 0 and the Bossak-α Method
suggested in [142] is obtained by setting αf = 0
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For a time step length ∆t equal to the time duration of a period Tn a modal damping with
a value of at least one for the specific frequency ω associated with Tn can be assigned by
choosing a according to:

a = ξn
∆t

π
(2.46)

The damping of the other frequencies is then given by the relationship in Equation (2.45).
This type of damping was used e.g. in Chapter 7.2.1.

2.2.4 Remarks on p-FEM for fluid-structure interaction

One advantage of utilizing three-dimensional models for fluid-structure interaction problems is
that a correct representation of the wet surface in contact with the fluid emerges directly from
the formulation without having to reconstruct this skin surface from the middle surface and
certain kinematic assumptions, as in the usual approach for dimensionally reduced plate and
shell models. This is an issue which has long been recognized in FSI but still is described as
unresolved (see e.g. [88]). It may be avoided altogether elegantly by using high order, spatially
adapted discretizations as suggested in this thesis. Curved geometries are described by means
of the blending function method. This method also works very well for three-dimensionally
curved surfaces. A detailed description is given in [32, 126]. Moreover, by using an adaptive
selection of the polynomial degree in the three directions, a very cost-efficient discretization
can be found while maintaining control of the approximation and modelling errors. See [38, 90]
for elastostatic problems and [117, 114, 116] for elastodynamic problems as further references.
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Chapter 3

Computational fluid mechanics

3.1 Basic mechanics for incompressible fluids

Incompressible fluids are characterized by the incompressible form of the Navier-Stokes equa-
tions. They provide the basis for the formulation of the Finite Element Method (FEM) and the
Finite Volume Method (FVM) alike. They can be written in conservative or non-conservative
form. Integral and weak forms, index and vector notation contribute to the variations in
their appearance. The Navier-Stokes equations have been derived in numerous textbooks in
all forms and this shall not be repeated here. Instead, the appropriate formulation will be
chosen from literature as a starting point to describe the basic layout of the discretization
method. However, to introduce some important notions and concepts, a general layout of
their derivation is attempted as given in more detail e.g. in [65].

The behaviour of an incompressible, isothermal Newtonian fluid is well described consider-
ing the conservation of mass and momentum in an arbitrary control volume as depicted in
Figure 3.1.

U is a given scalar or vector valued quantity and F represents the flux of that quantity through
the surface S enclosing a volume Ω. Within Ω, one may have sources or sinks of the quantity
to be preserved either on the surface Qs or within the domain Qv. The domain Ω can depend
on time but is considered fixed for now. The conservation equation balancing gains and losses
of U reads:

∂t

∫

Ω

U dΩ = −
∮

S

F · dS +
∫

Ω

Qv dΩ +
∮

S

Qs · dS (3.1)

If the conservation of mass is considered, then U is equal to the scalar function ρ describing the
variation of density (mass per volume) in space. The flux F of the mass ρ through the surface
element dS is taken into account by the velocity of the mass v times the mass itself. Only
the perpendicular portion of this flux through the surface is of importance. Neglecting mass
sources in the interior and diffusion of mass through the surface Equation (3.1) transforms to:

∂t

∫

Ω

ρ dΩ +
∮

S

ρv · dS = 0 (3.2)
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S
Ω

Qs

Qv
F −F · dS

dS
≡ n · dS

UdΩ

Figure 3.1: Conservation of quantity U at a finite fixed but arbitrarily shaped volume

Application of the divergence theorem of Gauss to Equation (3.2) transforms the surface
integral to a volume integral of the divergence of the considered fluxes. The mass conservation
then reads:

∂t

∫

Ω

ρ dΩ +
∫

Ω

∇ · (ρv) dΩ = 0 (3.3)

In incompressible fluids, the density is constant in time as well as in space such that the mass
conservation simplifies to

∫

Ω

∇ · v dΩ = 0 (3.4)

in integral form. As Equation (3.4) is valid for arbitrary volumes, including infinitesimally
small ones, the integral may be dropped to give Equation (3.4) in differential form as:

∇ · v = 0 (3.5)

The conservation of momentum ρv is accounted for by Equation (3.1) if U ≡ ρv. The
convective flux tensor is then given by ρv ⊗ v where ⊗ symbolizes the dyadic product. The
conservation of momentum stated in the integral form then reads:

∂t

∫

Ω

ρv dΩ +
∮

S

ρv (v · dS) =
∫

Ω

ρFe dΩ +
∮

S

τ · dS (3.6)

The stresses inside the fluid are denoted by τ . Inside the control volume, they cancel each
other and appear as stresses acting on the surface with an intensity of τ · dS. In a Newtonian
fluid these stresses are split up into pressure and shear stresses:

τ = −pI + σ (3.7)
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where σ contains the constitutive relation. Inserting Equation (3.7) into Equation (3.6) gives:

∂t

∫

Ω

ρv dΩ +
∮

S

ρv (v · dS) =
∫

Ω

ρFe dΩ−
∮

S

pI · dS +
∮

S

σ · dS (3.8)

Application of the Gauss Theorem1 and neglecting volume forces leads to the integral form of
the momentum conservation for a Newtonian fluid:

∂t

∫

Ω

ρv dΩ +
∫

Ω

∇ · (ρv⊗ v) dΩ +
∫

Ω

∇ · (pI− σ) dΩ = 0 (3.9)

Equation (3.9) is valid for all volumes and the integration may be dropped to give the mo-
mentum conservation in differential form as:

∂tρv +∇ · (ρv⊗ v) +∇ · (pI− σ) = 0 (3.10)

The second and third term of Equation (3.10) can be written as:

∇ ·Π = ∇ · (ρv⊗ v + pI− σ) (3.11)

where Π is termed momentum flux tensor, because it describes the transport of the momentum.
Equations (3.4) and Equation (3.9) are termed Navier-Stokes equations for incompressible,
Newtonian fluids in integral form and vector notation. The differential form is restated next
for clarity:

ρ∂t (v) +∇ · (Π) = 0 (3.12)

∇ · v = 0 (3.13)

It is sometimes more illustrative to use index notation with the summation convention of
Einstein. The Navier-Stokes equations read:

ρvi,t + Πij,i = 0 (3.14)

vi,i = 0 (3.15)

The momentum flux tensor Πij in index notation reads:

Πij = ρvjvi + pδij − µ (vi,j + vj,i) (3.16)

The constitutive relations are given by:

1and thereby assuming differentiable fluxes
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τij = pδij − µ (vi,j + vj,i) (3.17)

pi = pδij (3.18)

σij = µ (vi,j + vj,i) (3.19)

Assuming that the density ρ = 1, introducing the kinematic viscosity:

ν =
µ

ρ
(3.20)

and respecting the mass conservation described in Equation (3.5), Equation (3.14) may as well
be written as:

vi,t + vjvi,j = −(pδij),j + νvi,jj (3.21)

Further, the Reynolds number has to be mentioned. It is a dimensionless number measuring
the ratio between internal forces stemming from inertia (ρv) to viscous forces ( µ

L
). Using

Equation (3.20), the Reynolds number Re can be written as:

Re =
Lv

ν
(3.22)

where L is a characteristic length. This ratio is a decisive measure for characterising flow
behaviour. Among other purposes, it is used to determine dynamic similitude between different
numerical or experimental setups.

3.2 Discretization by the Finite Volume Method

Extensive literature exists on Finite Volume Methods (FVM) for fluid flows (see e.g. [65] and
the literature cited therein). Implementational issues for FVM on deforming grids are nicely
laid out e.g. in [121].
In this research work, the solver utilized to compute flows with the Finite Volume Method
was the commercial solver CFX [2]. Unlike in the other two solvers, no changes were made
to the kernel of the solver such that the formulation used is identical to the one given in the
solver manual [2]. Only the basis of the method is presented here for completeness.
Starting point are the conservation equations for mass and momentum in their integral form
as given in Equation (3.4) and Equation (3.9) respectively. In order to incorporate deflecting
boundaries, CFX utilizes the Arbitrary Eulerian-Lagrangian (ALE) formulation of these con-
servation laws. The ALE formulation of Equation (3.4) and Equation (3.9) needs to account
for an extra source term stemming from the deformation of Ω with respect to time ∂Ω

∂t
.

A derivation may be found, e.g. in [2] and the final form restated here for completeness reads:

∂t

∫

Ω(t)

ρ dΩ +
∮

S(t)

ρ(v− vg) · dS = 0 (3.23)

∂t

∫

Ω(t)

ρv dΩ +
∮

S(t)

ρv ((v− vg) · dS) =
∫

Ω(t)

ρFe dΩ +
∮

S(t)

τ · dS (3.24)
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where vg is the velocity of the boundary of the control volume.
Additionally, the geometric conservation law (see e.g. [24, 25, 41]) needs to be obeyed. It
prevents the appearance of artificial mass in a moving domain. In a fluid at rest with a
constant density and the absence of sources and sinks, the change of mass in the volume must
only stem from the change of volume2:

ρ∂t

∫

Ω(t)

dΩ + ρ
∮

S(t)

vg · dS = 0 (3.25)

The basic idea in the FVM is to directly discretize the integral form of the conservation laws
expressed in Equations (3.23), (3.24) and (3.25) at finite control volumes (cells). The discrete
form of the conservation laws is obtained by replacing the volume integrals with an averaged
value over the considered cell and the surface integrals by the sum over all bounding faces of
the considered volume.
CFX solves the pressure velocity coupling not by a pressure correction algorithm but by a
coupled approach in which at any given timestep, the velocity and pressures are determined
simultaneously.
The mesh deformation is solved at each time step by a Poisson equation which diffuses speci-
fied displacements homogenously throughout the mesh. A mesh stiffness proportional to the
volume may be provided to improve performance w.r.t. overlapping meshes.

3.3 Discretization by the Spectral Element Method

The differential form of the Navier-Stokes Equations (3.21) and (3.13) are written in a fixed
(Eulerian) reference frame. The state of the art concerning their spectral discretization was
summarized in the books by Canuto [16] and further treated extensively by Karniadakis in
[73].
Equations (3.21) and (3.13) serve as a starting point in deriving their weak form in an arbi-
trarily moving reference frame (ALE-form). The procedure of how to derive their weak form
in an ALE reference frame was presented e.g. in [66, 99] and is not restated here but in turn
serves as a starting point for the following description of the Spectral Element Method (SEM)
in ALE-form:

d

dt

∫

Ω(t)

viδvi dΩ +
∫

Ω(t)

[(vj − wj)vi,jδvi − viwj,jδvi] dΩ+

∫

Ω(t)

[(−pδij + νvi,j) δvi,j − fiδvi] dΩ = 0 (3.26)

∫

Ω(t)

vj,j δq dΩ = 0. (3.27)

where it is assumed for simplicity that the fluid density ρ = 1. The kinematic viscosity is
defined according to Equation (3.20). Fluid and mesh velocity are represented by vi and wi,

2It is interesting to note that obeying the geometric conservation law formally leads to a time independent
mass conservation. Insertion of Equation (3.25) into Equation (3.24) leads to

∮

S
v · dS = 0.
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internal fluid forces are denoted by fi and pressures by p, where δij is the Kroneker delta.
δ denotes, that the following letter symbolizes a suitable test function. Equation (3.26) is
transferred to the Eulerian or Lagrangian form by setting wi = 0 or wi = vi, respectively. A
straight forward Galerkin discretization of Equations (3.26) and (3.27) in which the velocity,
pressure and mesh unknowns are expressed as vi = Φvi, p = Φp, wi = Φwi and xi = Φxi,
with Φ containing the global shape functions Φ:

Φ :=
[

φ1(x, y) φ2(x, y) . . . φG(x, y)
]

(3.28)

leads to:

Mvi,t + Ni(v,w) = DT
i p− νLvi + Fi (3.29)

Divi = 0, (3.30)

where M is the mass matrix, Di is the derivative matrix, L is the stiffness (Laplacian) matrix,
and Fi is the vector of body forces. They are computed by:

M =
∫

Ω

ΦT Φ dΩ (3.31)

Di =
∫

Ω

ΦT (∇iΦ) dΩ (3.32)

L =
∫

Ω

(∇Φ)T (∇Φ) dΩ (3.33)

Fi =
∫

Ω

fiΦ
T dΩ, (3.34)

where ∇ is the Nabla operator. The nonlinear convective term is denoted by Ni(v,w) to
describe the dependency on both the fluid and mesh velocity. The mesh velocity is defined
based on the mesh coordinates from

dxi

dt
= wi. (3.35)

Again, the main difference compared to low order methods is the choice of the shape functions
contained in Φ. They are chosen to improve the condition of the mass matrix and are based
on Jacobi polynomials. For a detailed description of the corresponding suitable polynomial
expansion basis, the reader is referred to [73].

The spectral Finite Element solver Nǫκταρ , described in [73] is freely available for download
(including sources) at [1] and incorporates this discretization method. The time integration
algorithm implemented in Nǫκταρ is the high order stiffly stable time integration scheme
discussed in [73, 72] where comments on the stability of such schemes may be found as well. An
explicit version was further extended in [7] for the ALE-formulation. It is a high order explicit
splitting scheme in which the nonlinear term, mesh velocity term and pressure boundary
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conditions are first treated explicitly by:

1

∆t



ṽi −
Ji−1∑

q=0

αqMv
n−q
i



 = −
Je−1∑

q=0

βqN(vn−q,wn−q) + Fn+1, (3.36)

1

∆t



γ0x
n+1
i −

Jx−1∑

q=0

αqx
n−q
i



 =
Jw−1∑

q=0

βqw
n−q
i , (3.37)

∂pn+1

∂n
= −n ·




∂vn+1

∂t
+

Je−1∑

q=0

βqN(vn−q,wn−q) + ν
Je−1∑

q=0

βq[∇× (∇× vn−q)]



 (3.38)

The timestep is denoted by n. Equation (3.36) determines the non-divergence free velocity
ṽi from the divergence free velocities vi of the previous time steps, the external forces and
the nonlinear convective term. The orders of integration for the advection and the diffusion
terms are denoted as Je and Ji, respectively. Then, the new mesh position xi at time step
n + 1 is computed via Equation (3.37) where Jx and Jw denote the orders of integration for
the material position and the mesh velocity, respectively. All integration weights, including α,
β and γ, are dependent on the order of time integration and may be found in [73] in Table 5.2.
Equation (3.37) then computes the pressure pn+1 normal to the boundary. Next, the implicit
terms are treated as follows:

Lpn+1 =
1

∆t
Diṽi, (3.39)

1

∆t

(

γ0Mvn+1
i − ˜̃vi

)

= νLvn+1
i , (3.40)

Lwn+1
i = 0 (3.41)

where the intermediate field ˜̃vi is computed by:

˜̃vi = Mṽi + DT
i pn+1. (3.42)

The pressure is computed in Equation (3.39) and the divergence free velocity is obtained
via the viscous correction in Equation (3.40). The mesh velocity is obtained here from the
Laplacian Equation (3.41). In principle, its choice may be arbitrary which is why it can be
adjusted to minimize mesh deformation in an effort to avoid overlapping elements for large
deformations.
In order to achieve a stable implicit coupling procedure for FSI, the explicit stiffly stable
time integration scheme needed to be changed to an implicit version. The corresponding
implicit stiffly stable time integration scheme was derived by modifying the right-hand side of
Equations (3.36)-(3.38) as follows:

1

∆t



ṽi −
Ji−1
∑

q=0

αqMv
n−q
i



 = −N(vn+1,wn+1) + Fn+1, (3.43)

1

∆t



γ0x
n+1
i −

Jx−1∑

q=0

αqx
n−q
i



 = wn+1
i . (3.44)

∂pn+1

∂n
= −n ·

[

∂vn+1

∂t
+ N(vn+1,wn+1) + ν[∇× (∇× vn+1)]

]

(3.45)
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Effectively, the right-hand side now only considers terms from the current timestep n + 1.
An iteration over Equations (3.43)-(3.45) and Equations (3.39)-(3.41) is now needed for the
implicit solution of pressure and velocities. Beyond the necessity to have an implicit scheme
for an overall implicit coupling procedure for FSI, the presented implicit scheme offers a
(theoretical) increase of the stable region for an increase of the order of integration, as opposed
to the explicit integration scheme. This has, however, not been validated for implementational
reasons.
The stresses at the boundary are computed by Equation (3.17), which requires evaluating the
derivatives of the velocity field.

3.4 The Lattice Boltzmann Method

All methods presented previously are based on differential equations which were derived from
macroscopic continuum theory. Not so the Lattice Boltzmann Method (LBM). It is based on
the Boltzmann equation and emerged from molecular gas dynamics, investigating collision and
propagation of particles. The Lattice Boltzmann Method has been presented and reviewed
numerous times in literature (see e.g. [18, 59, 78]). The implementation of the method on
dynamically adaptive grids is described in [130]. All computations with LBM were carried
out in close cooperation with Sebastian Geller from IRMB [49]. The following is an attempt
to introduce the most important concepts and to put the LBM into context with the Finite
Volume Method introduced in Chapter 3.2 and the Spectral Element Method introduced in
Chapter 3.3.
An important measure in molecular gas dynamics is the Knudsen number:

Kn =
lf
L

(3.46)

where lf is the mean free path of a particle flying in space without colliding with others and L
is a characteristic, macroscopic length over which macroscopic variations of the flow situation
can be noticed. Two extreme values of Kn classify gases. The presence of a continuum3 may
be assumed if Kn ≪ 1. This assumption is violated at Kn ≥ 1 classifying free molecular
streams4. The Knudsen number is inversely proportional to the density of the gas.
In the sequel it is assumed that, at microlevel, molecules travel with an absolute speed ξ which
may be decomposed according to:

ξ = c + v (3.47)

where c is a peculiar speed stemming from the motion of particles due to temperature and
describes the speed of the particles relative to the fluid speed v.
Another important definition is that of the Mach number. It describes the relation between
the microscopic speed c to the macroscopic flow velocity U0, in the form:

Ma =
U0

c
(3.48)

3e.g. air at atmospheric pressure
4e.g. satelites reentering the atmosphere
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3.4.1 The Boltzmann equation and the Maxwell distribution

In vector notation and without external forces, the Boltzmann equation reads:

∂f

∂t
+ ξ · ∂f

∂x
= Ω (f) (3.49)

where f(t,x, ξ) is the unknown particle distribution function. The particle distribution func-
tion is defined as:

f (t, x, y, z, ξx, ξy, ξz) =
dN

dx dy dz dξx dξy dξz

(3.50)

The distribution function f(t,x, ξ) can be viewed deterministically as a density function de-
scribing the absolute number of particles N present in a volume of space and velocity. It can
also be viewed probabilistically describing the probability to find a molecule at a specific time
instance t at a specific location x with a specific velocity ξ. Equation (3.49) therefore has
seven dimensions.
The left hand side is the total derivative of the particle distribution function f w.r.t. time t
and space x. It is thus a linear advection equation, whose whole purpose is to transport the
unknown “concentration” or “mass fractions” f along characteristic lines with a constant speed
ξ = ∂tx without changing their value. The nonlinearity is hidden in the collision operator Ω
on the right-hand side:

Ω (f) =
1

m

∫

U (f(ξ′)) (f(ξ′
1)− f(ξ)) (f(ξ1)) dωξ1 (3.51)

It models the collision of the molecules (or mass fractions), whereby ′ denotes their state after
the collision and the index 1 is used to distinguish the two different mass fractions which are
colliding. U is a potential and ω denotes the effective cross section on which U acts, thus
describing the local interaction of the molecules.
The following interpretation of the Boltzmann Equation (3.49) is thus possible: The total
change to the particle distribution function f is equal to its advection with the velocity ξ

along characteristics plus (minus) the changes which emerge from the collision of particles
symbolized by Ω. For gases at thermodynamic equilibrium, the net change of the particle
distribution function in collisions is zero and thus the collision operator is equal to zero Ω = 0.
Necessary simplifications for the derivation of the collision operator Ω include:

• the gas contains only hard, elastic molecules

• the collision times are so short that the collision has no influence on the distribution
function

• only binary collisions are allowed, three particles do not collide at the same time

• there is no correlation between molecules entering a collision (Boltzmann’s closure as-
sumption)
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Figure 3.2: one dimensional Maxwell distribution for air at 273[K] and at 373[K]

among others5. Nevertheless, the Boltzmann Equation is the most general equation describing
gas dynamics be it gases with Knudsen numbers Kn ≪ 1 to free molecular streams with
Kn ≫ 1. It is therefore more general than the Naiver-Stokes Equations, which emerge from
Equation (3.49) by a Chapman-Enskog expansion as a first order approximation of f for small
Kn inserted in Equation (3.49).
An analytic solution for f in Equation (3.49) is only possible for special cases, one of which
is a gas in equilibrium at small Kn. The basic procedure is outlined e.g. in [59] and leads to
the Maxwell distribution:

f eq (c) =
n

(2πRT )
D
2

· e
(

−c
2

2RT

)

(3.52)

where D is the number of dimensions, R is the gas constant, T is the temperature and
n is the number of molecules per considered volume6. It is illustrative to represent 3.52
graphically in two dimensions by decomposing it into each individual direction i by f(c2)/n =
g′(c1)g′(c2)g

′(c3) and to visualize only one component of c as depicted in Figure 3.2.
The area

∫

g′dci is constant and a measure of the density while the width can vary and is a
measure for the temperature7. It should be noted that Equation (3.52) describes the state with

5It should be noted that the last assumption is violated e.g. for water, due to the hydrogen bonding. More
sophisticated models exist with which even multi phase modelling is possible as presented for example in [119].
However, hydrogen bonding does seem to have only a minor effect on the results of the computed examples in
this thesis.

6The exact definition of n is n(x, t) = lim
∆V →0

∆N
∆V

=
∫

f(t, x, ξ) · dξ

7The peculiar (scalar) speed c emerges as a root means square measure of the absolute values of feq(c2) as
c =
√

3RT . It is directly related to the kinetic energy of a gas, see e.g. [59]
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the highest probability. Therefore, without imposing external energy onto a closed system, the
equilibrium state described by Equation (3.52) is reached by an enclosed gas after a sufficiently
large time span. The gas then has a constant density and mass throughout space. Although
in equilibrium, the gas may have a uniform flow velocity such that c = ξ − v.
In Equation (3.52) f eq(c) is independent of location and time. In order to be able to describe
macroscopically varying properties (e.g. density, temperature), while having local equilib-
rium, it is assumed as a first approximation that the equilibrium is reached instantly at the
microlevel, but may vary at the macrolevel such that f eq (t, ξ,x). This scale separation is
justified when limKn→ 0 since this implies:

Kn =
lf
L
≈ τ

T
→ 0 (3.53)

and therefore the collision time τ is much smaller than the timescale T relevant for the global
solution of the flow field. This is the case in a wide range of flows and also for the examples
discussed in this thesis. It is not the case, e.g. within shockwaves which are not considered
here.

3.4.2 Macroscopic values via moments of microscopic quantities

The link between the microscopic and macroscopic quantities is given by the moments of
the distribution functions. Specifically, the macroscopic density and momentum are obtained
through:

ρ (t,x) =

∞∫

ξ=−∞

f (t, ξ,x) dξ (3.54)

ρ (t,x) v (t,x) =

∞∫

ξ=−∞

ξf (t, ξ,x) dξ (3.55)

In what follows, Greek indices are used for denoting a macroscopic spatial direction as opposed
to the regular latin i which will later denote microscopic characteristics.
The pressure tensor Dα,β (t,x) is related to Equation (3.17) and emerges as a higher moment
by considering the relative particle velocities c = ξ − v:

Dα,β (t,x) = pδαβ − σαβ =

∞∫

ξ=−∞

cαcβ · f (t, ξ,x) dξ (3.56)

where σαβ is a shear tensor stemming from the difference to the equilibrium distribution. It
directly relates to Equation (3.19) and is computed by:

σαβ =

∞∫

ξ=−∞

ξαξβ (f eq − f) dξ (3.57)
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in a Boltzmann context. At equilibrium, f → f eq and σ → 0.
The momentum flux tensor Παβ can be computed by:

Παβ = ρvαvβ +Dα,β (t,x) = ρvαvβ + pδαβ − σαβ =

∞∫

ξ=−∞

ξαξβf (t, ξ,x) dξ (3.58)

and is directly related to Equation (3.16). Only at v = 0 is Dα,β (t,x) ≡ Παβ .
It can be shown, that the collision operator 3.51 has exactly five invariants, which satisfy the
following property:

∞∫

ξ=−∞

Ω (f) · ψkdξ = 0 (3.59)

with {ψ1 = 1, ψ1..3 = ξ, ψ4 = ξ2}. These invariants correspond to the conservation of mass,
momentum and energy.

3.4.3 Simplification of the collision operator: BGK-Modell

The collision operator on the right hand side of Equation (3.49) converts the linear advection
equation on the left hand side to a nonlinear integro differential equation. Although direct
methods to solve this type of equations exist [3], it is computationally more advantageous
to simplify the collision operator by means of an Ansatz which preserves the invariants of
Equation (3.59). A widely used Ansatz is the BGK collision operator [9]:

ΩBGK (f) = −1

τ
(f − f eq) (3.60)

where τ is one global scalar parameter which determines the relaxation time at which f
approaches f eq. It is related to the collision rate ω as ω = 1

τ
.

The idea of modelling the collision via the “relaxation” ω to an equilibrium state can be
illustrated via developing the Boltzmann equation with the BGK operator of Equation (3.60)
by a Taylor series w.r.t. the time t. Truncated after the first term this gives:

df

dt
= ω (f − f eq) ≈ f(x + ∆x, t+ ∆t) = f(x, t) + dt ω (f(x, t)− f eq(x, t)) (3.61)

Where df
dt

symbolizes the total derivative of f w.r.t. time and ω clearly is a relaxation parameter.

3.4.4 Discretization of the BGK-Modell

The solution to the Boltzmann Equation (3.49) with the simplified collision operator given
in Equation (3.60) is a distribution function f (t, ξ,x) which depends on seven independent
variables. For limKn→ 0 i.e. for dense gases, it is possible to discretize the microscopic
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velocity ξ by a finite set of discrete velocities ei at a set of N finite points. The Boltz-
mann Equation (3.49) then converts to a set of differential equations, the discrete Boltzmann
equation:

∂fi

∂t
+ eiα ·

∂fi

∂xα

= −1

τ
(fi − f eq

i ) i = 1, ..., N (3.62)

The integrals in Equations (3.54) to (3.56) for the computation of the macroscopic flow vari-
ables are then converted to sums to perform a numerical integration via collocation points and
their corresponding weights. For the density:

ρ (t,x) =

∞∫

ξ=−∞

f (t, ξ,x) dξ =
N−1∑

i=0

wif̃i =
N−1∑

i=0

fi (3.63)

where fi = wif̃i. Likewise, the momentum and the momentum flux are computed by:

ρv =
∑

i

eifi (3.64)

Παβ =
∑

i

eiαeiβfi (3.65)

With Equation (3.52) not being a polynominal, no exact integration is possible for a finite
number of collocation points. However, the goal is to reflect the Navier-Stokes equations,
which crop up as an approximation to the Boltzmann equation in the low mach number limit.
The art then is to choose the collocation points, corresponding weights and the equilibrium
distribution such that the invariants mass, impuls and energy correspond to Equation (3.59).
A possible choice for f eq is to expand Equation (3.52) in a Taylor series for small Mach numbers
w.r.t. the macroscopic velocity. This leads to the following equilibrium distribution [107] :

f eq
i (t,x) = wiρ

(

1 +
eiαuα

c2
s

+
uαuβ

2c2
s

(

eiαeiβ

c2
s

− δαβ

))

(3.66)

where wi are the corresponding weights.
Most of the computations in this thesis were carried out using a D2Q9 model [107] describing
two dimensional flows discretized into nine discrete microscopic directions. The D2Q9 model
is depicted in Figure 3.3. The coordinates of the collocation points are defined as:

{ei, i = 0, . . . , 8} =

{

0 c 0 −c 0 c −c −c c
0 0 c 0 −c c c −c −c

}

(3.67)

They generate a space-filling lattice and mark end points of the vector valued microscopic
propagation speed c. For the D2Q9 model the corresponding weights are w0 = 4

9
,w1 = w2 =

w3 = w4 = 1
9

and w5 = w6 = w7 = w8 = 1/36. The speed of sound is constant within the
lattice and given as cs = 1√

3
c and the viscosity is ν = τ

3
c2ρ.
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Figure 3.3: discrete velocities ei of the D2Q9 model

The semi-discrete Boltzmann Equation (3.62) may be discretized by characteristic based finite
elements [85], high oder finite elements using a discontinuous Galerkin formulation [33], finite
volumes [101, 102, 144, 145, 134, 135] or finite differences. In this thesis the finite difference
discretization according to [107] is utilized where a forward Euler finite different Ansatz is
employed. This Ansatz leads to the following form of Equation (3.62):

fi (t+ ∆t,x)− fi (t,x)

∆t
+c

fi (t+ ∆t,x + ei∆x)− fi (t+ ∆t,x)

∆x
= −1

τ
(fi (t,x)− f eq

i (t,x))

(3.68)

The finite difference grid is chosen to coincide with the discretization of the microscopic velocity
space such that the finite difference scheme resolves the transport along the characteristics of
the right-hand side of 3.49.
Moreover, the grid spacing is chosen to be ∆x = c∆t such that by multiplication with ∆t
Equation (3.68) simplifies to:

fi (t+ ∆t,x + ei∆x) = fi (t,x)− ∆t

τ
(fi (t,x)− f eq

i (t,x)) (3.69)

The explicit forward Euler scheme introduces an artificial negative viscosity. Thus, Equa-
tion (3.69) results in an inherently instable scheme [129]. This artificial viscosity can be

quantified to be ν = c2ρ
(

τ
3
− ∆t

6

)

and is substracted again to lead to a stable discretization.
With c = ∆t = ∆x = 1, the following, explicit scheme results:

fi (t+ ∆t,x + ei∆x) = fi (t,x)− 1

τ
(fi (t,x)− f eq

i (t,x)) (3.70)

with a viscosity of ν =
(

τ
3
− 1

6

)

. The pressure can be computed directly from the density as:

p =
1

3
ρ =

1

3

8∑

i=0

fi (3.71)
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The stress tensor emerges as a part of the momentum stream tensor. It is locally available
and can be computed at each node from the non equilibrium distribution as:

Sαβ = −
(

1− 1

2τ

) 8∑

i=1

eiαeiβ (fi − f eq
i ) (3.72)

It directly relates to Equation (3.19). In the Lattice Boltzmann Method, the complete stress
tensor τij as given in Equation (3.17) is locally available and can be computed via a summation
of Equation (3.71) and Equation (3.72) in the lattice Boltzmann context, without the need of
computing derivatives of the velocity field.
It can be shown by a Chapman-Enskog analysis that the moments of Equations (3.63), (3.64)
and (3.65) of the solution of Equation (3.70) converge to the incompressible Navier-Stokes
equation with an error of O (∆x2) and O (Ma) ∆t.
A typical scheme for implementation is to split Equation (3.70) into two steps, a collision step
and a propagation step. The collision step computes the new post-collision values f̃i (t+ ∆t,x)
at the same grid points to be:

f̃i (t+ ∆t,x) = fi (t,x)− 1

τ
(fi (t,x)− f eq

i (t,x)) (3.73)

The propagation step then propagates these values to the neighboring nodes by a simple copy
or memory shift operation.

3.4.5 The incompressible model

The presented formulation describes a compressible fluid where the equation of state is p = 1
3
ρ

and the resulting macroscopic velocities are not divergence-free. The computations performed
here use an incompressible formulation first presented by [61]. This can be achieved by in-
troducing a pressure variable as pi = c2

sfi. The incompressible equivalent of Equation (3.66)
is:

f
eqincompr

i (t,x) = wi

(

ρ+ ρ0

(

3
eiαuα

c2
s

+
9uαuβeiαeiβ

2c4
s

− 3u2
α

2c2
s

))

(3.74)

while the other parts of the method remain unchanged. The incompressible model is able
to reconstruct a divergence-free velocity field for stationary problems. However, in practical
computations, the Mach number is finite such that some compressibility remains in the model.

3.4.6 The multiple relaxation time model

The stability of the method is improved by use of the Multible Relaxation T ime model MRT
first introduced in [28, 29]. A very well readable contribution is also found in [78].
The basic idea is to transform the distributions fi into an equivalent moment space before the
collision is carried out. This separates moments which describe conservation quantities such as
density and transport of momentum from others which can be tuned to suit numerical needs.
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The moments are then relaxed by individually determined relaxation rates tuned to optimize
the stability of the algorithm. This is where the MRT model derives its name from. After
relaxation, the moments are transformed back to the space of the distributions. The imposition
of boundary conditions as well as the propagation step, however, remain unchanged.
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Chapter 4

Partitioned fluid-structure interaction

This Chapter describes the general framework of fluid-structure interaction and focuses on
its partitioned solution.

4.1 Definitions

The entire physical domain termed Ω, is bounded by Γ and may be dependent on time. It
is partitioned into the domain occupied by the fluid Ωf(t) and the structural domain Ωs(t)
such that Ω = Ωf (t) ∪ Ωs(t). An interface Γfs(t) exists between Ωf (t) and Ωs(t) such that
Γfs(t) = Ωs(t)∩Ωf (t) and whose position is time dependent. Γfs is termed wetted boundary.
As it will be clear from context if time dependent (instationary) or time independent (station-
ary) problems are treated, the notation (t) is only used when it is stressed that instationary
problems on deforming domains are addressed. The notation Γf and Γs is used when it is
emphasized that only the portion of the wetted boundary of the fluid or structure is addressed.

4.2 Interface conditions

In short, two conditions need to be fulfilled at the interface. The structure is assumed imper-
meable for the fluid. Thus, at all times, the displacements, velocities and accelerations at Γfs

of the structure must be equal to the displacements, velocities and accelerations of the fluid
in contact with this boundary:

d(t)s = d(t)f ∧ ḋ(t)s = ḋ(t)f ∧ d̈(t)s = d̈(t)f (4.1)

These conditions are termed the kinematic compatibility conditions. Similarly, the dynamic
compatibility conditions ensure the equilibrium of tractions at all times at the boundary.

t(t)s = −t(t)f (4.2)

The negative sign is due to the opposite direction of the normal vectors at the boundary.
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4.2.1 Preliminary remarks on conservation of mass, momentum

and energy

The consequences of the intuitive conditions presented in Equations (4.1) and (4.2) are the con-
servation of mass, momentum and energy at the interface. Mass is conserved at the interface
if fluid and solid boundaries match at all times as required by Equation (4.1). Conservation
of momentum requires that the change in momentum at the interface is to be zero as time
advances:

∆mn→n+1
Γfs

=
∫

Γfs

tn+1∫

tn

(tf + ts) dt dΓfs = 0 (4.3)

Equation (4.2) it is a necessary and sufficient condition in order to satisfy Equation (4.3).

The conservation of energy at the interface requires that energy is neither created nor dissi-
pated by the interface.

∆En→n+1
Γfs

=
∫

Γfs

tn+1∫

tn

(

tf · ḋf + ts · ḋs

)

dt dΓfs = 0 (4.4)

∆En→n+1
Γfs

is the artificial interface energy and ts is the traction vector as seen from the struc-
tural point of view. tf is the traction vector of the fluid on its boundary to the structure and

ḋf , ḋs are the corresponding interface velocities. Equation (4.4) is automatically satisfied if
Equation (4.1) and Equation (4.3) are fulfilled. Since the conservation of energy contains the
conservation of mass and momentum it will be used in Chapter 8 as first suggested by [105]
as an indicator for the error introduced by the selected coupling algorithm and its influence
on the stability of the computation.

It is stressed that Equation (4.4) contains an integration over time. Thus, not only does the
discrete time integration method of the individual codes play a role. Additionally, the point in
time at which the information is exchanged is equally important. The conservation of energy is
a relevant issue for partitioned fluid structure interaction. It has been shown e.g. in [136, 93],
that an incorrect transfer of energy can taint the benefits of the chosen coupling algorithm.

Two main considerations are therefore necessary in an effort to drive ∆En→n+1
Γfs

to zero in
partitioned, transient simulations.

A first step is to try to achieve mass and momentum conservation via an accurate transfer
of forces and displacements (or velocities). This can be performed e.g. via the projection
methods introduced in Chapter 4.2.2 through Chapter 4.2.4 which were employed throughout
this thesis. At this stage only stationary problems are considered in which the increment of
the displacements is zero as tn− > tn+1 and thus Equation (4.4) is always fulfilled.

In a second step instationary situations are considered where it is additionally necessary to try
to reduce ∆En→n+1

Γfs
either via the use of implicit methods for the overall iteration procedure

or via utilizing more sophisticated explicit staggered solution procedures tailor made for this
purpose. These are introduced in Chapter 4.3.



32 4. Partitioned fluid-structure interaction

4.2.2 Preliminary remarks on transfer of variables at the boundary

The transfer of variables at the boundary may be achieved by a number of methods. The
most simple method is to match the space (and time) discretization at the interface mesh.
However, it is computationally more favourable to adapt the individual meshes to the needs of
the discretization methods used for the fluid and the structure. Different spatial discretizations
then result in non matching interface meshes. Not only do the element boundaries usually
not match. In general, at the interface, the representation of tf , ts, df , ds may differ in their
order of approximation as well such that the situation depicted in Figure 4.1 is present.

structure

exchange

fluid

ff = Nf ĉf

fs = Nsĉs

r, s

x, y

Γf

Γs a1 a2 a3

b1 b2 b3 b4 b5

Figure 4.1: Transfer of variables between the boundary Γf and Γs

In Figure 4.1, the fluid variables i.e. tractions and velocities are represented by a vector
valued function ff described by its Ansatz functions composed of coefficients ĉf and their
basis Nf(r, s) defined in fluid innate coordinates, here r, s. The solid, on the other hand, must
be able to “see” an equivalent function now termed fs, expressed in its own coordinate system,
say (x, y), with its own coefficients ĉs in its own basis N̂s(x, y). A mapping must be defined
to exchange these functions i.e. to be able to represent one and the same function on different
grids with different bases. To achieve this, the main task is to tune the (free) coefficients of
the Ansatz into which the given function is to be projected.
Force transfers between non-matching interface meshes have been investigated before. A fa-
mous approach was first introduced in [40], but unfortunately it implicitly requires the Ansatz
functions to sum up to one at every point of the domain. This is not the case for the hierarchic
Ansatz functions introduced in [125] and used in the structural discretization employed in this
thesis. Coupling high order structural finite element methods to fluid solvers thus requires
a more subtle approach. One remedy is to transfer forces by a composed integration scheme
as utilized in this thesis. It was first used by [109, 80] in the context of the hp-d method1.
Convergence studies of this method concerning fluid-structure interaction were investigated in
[123] and published in [118]. Its application to coupling high-order solid discretizations with
fluids can be found in [75]. An article by Xiangmin [146] also treats the subject in the broader
setting of data transfer between non matching meshes in multiphysics simulations. Herein this
method is called common refinement. The force transfer utilized in the thesis at hand can be
viewed as a subset of the method described by [146]. A more recent investigation into the
subject was carried out by [74] in the context of high order structural and fluid solvers loosely
coupled in time.

1The hp-d method is further extended to model adaptive computations in [36]
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A general comparison of the currently available methods and their performance w.r.t. errors
may be found in e.g. [22, 23].
Among these, a L2 projection of the form:

∫

Γfs

(ff − fs)
2 dΓfs →min (4.5)

was chosen. The reasons for this choice are highlighted in the following:

• The L2 projection of the data is equivalent to a weighted residual approach forming the
basis of the FEM. The error is thus in the same range as the one inherent to the methods
used for the discretization of the fields themselves.

• By construction, an L2 projection is conservative in an integral sense and consequently
preserves the momentum likewise.

• For the force transfer, a composed integration is equivalent to an L2 projection. No
additional computational effort is needed.

The first point is fundamental to functional analysis and proven e.g. in [39]. It can easily be
reconstructed by inserting the definitions of the functions fs, ff into Equation (4.5). To find
the minimum, the residual R = Nf ĉf−Nsĉs must be differentiated w.r.t. the free coefficients.
The common basis can then be factored. In case of a projection of ff to fs the final form reads:

∫

Γfs

NT
s (Nf ĉf −Nsĉs) dΓfs = 0 (4.6)

In Equation (4.6), the residual R = Nf ĉf − Nsĉs is weighted by a weighting function Ns.
This is similar to a standard Galerkin procedure, in which the weighting function is chosen
equal to the one of the discretization of the field variables.
The second point can be reproduced by considering that Equation (4.6) is valid for the basis
Ns which must form a complete basis also containing Ns = 1. For a stationary problem, a
comparison to Equation (4.2) then demonstrates the momentum conservation in an integral
sense.
The third point is shown in Chapter 4.2.3.

4.2.3 Traction transfer

Specifically, projecting the forces from the fluid boundary to the structural boundary the
following expression has to be minimized:

∫

Γfs

(ts(x, y)− tf(r, s))2 dΓfs →min (4.7)

where ts(x, y) is the load function as seen from the structural point of view. tf(r, s) is the force
function on the fluid boundary computed by the fluid solver and is therefore given. Clearly,
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tf(r, s) needs to be transferred to ts(x, y) and the only way to minimize (4.7) is to adjust
the representation of ts(x, y) on the structural side. The integral (4.7) needs to be minimized
over the entire wetted surface Γfs. ts(x, y) as well as tf(r, s) are defined on their own domain
(x, y) and (r, s) and it is assumed that a proper mapping was defined such that (r, s) may
be mapped onto (x, y) and vice versa. Therefore, in what follows the coordinates are not
explicitly denoted. The function ts is represented by piecewise polynomials defined by the
vector of coefficients t̂ and the matrix of the shape functions N. Expanding ts(x, y) leads to:

∫

Γfs

(

Nst̂s − tf

)2
dΓfs →min (4.8)

tf is prescribed, but the coefficients t̂s may be adjusted to solve the least squares problem. To
minimize the integral (4.8) one needs to derive (4.8) w.r.t. to these free variables t̂s. Solving
for t̂s results in:

t̂s = M−1
∫

Γfs

NT
s tfdΓfs (4.9)

In equation (4.9) M corresponds to a mass matrix defined as:

M =
∫

Γfs

NT
s NsdΓfs (4.10)

The discretized load vector on the structural side Fs is defined as the integral over the struc-
tural shape functions NT

s times the traction vector ts:

Fs =
∫

Γfs

NT
s tsdΓfs = Mt̂s (4.11)

It is important to remember that ts is actually the load function imposed onto the structure
by the fluid and that we may choose the coefficients t̂s to minimize (4.7). Hence, we can
substitute the solution of the minimization (4.9) into the definition of the force vector (4.11):

Fs =
∫

Γfs

NT
s tfdΓfs (4.12)

Now, (4.12) represents the force vector which needs to be integrated exactly to perform an
accurate least squares projection of the fluid forces onto the structure. It is worth emphasizing
the following points:

1. There is no need to explicitly invert the mass matrix or solve a system of equations in
the process of minimizing (4.8) in this context. Exact integration of (4.9) guarantees a
L2 projection.
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2. This projection is equivalent to a Galerkin projection of the fluid function into the
function space used by the structural solver.

3. This holds independently of the type and degree of the shape functions used.

The idea of the composed integration is very simple. For a computation of the left-hand side
of Equation (4.12), the integral needs to be evaluated partially as a sum of sub integrals. For
example in Figure 4.1, the right-hand side of Equation (4.12) is evaluated as:

∫

Γfs

NT
s tfdΓfs =

b4∑

i=b1

i+1∫

i

NT
s tfdΓ∆i (4.13)

This process requires the knowledge of the footprint of the fluid discretization on the structural
mesh, i.e. the location of bi on the boundary Γs. This footprint is computed via mesh
intersection, see e.g. [123].

4.2.4 Velocity and displacement transfer

Unfortunately, the L2 projection has to be computed explicitly for the transfer of the velocities.
This is due to the fact that the mass matrix does not cancel out as conveniently as is the case
for the force transfer. Instead the coefficients must be computed via an explicit solution of:

Mf ḋf =
∫

Γfs

NT
f ḋsdΓfs (4.14)

in which the mass matrix is now composed of the fluid shape functions:

Mf =
∫

Γfs

NT
f NfdΓfs (4.15)

The evaluation of the right hand side of Equation (4.14) must again be carried out via a
composed integration.
In principle, the projection defined in Equation (4.14) must be carried out globally over the
entire wetted boundary to ensure global conservation of momentum. To avoid having to solve
a global system, the hierarchy of the basis stored in Nf is exploited. First, the nodal modes
are projected, i.e. the corresponding nodes are set to have the same value. This guarantees
C0 continuity. Next the edge modes are projected and last, if present, the face modes. The
procedure is depicted in Figure 4.2.
This hierarchic type of projection is termed H

1
2 and layed out e.g. in [73]2 The H

1
2 projection

is not momentum preserving but is a good compromise between accuracy and efficiency. For
numerical studies and comparison to an L2 projection as well as an interpolation see [99].

The H
1
2 projection is carried out explicitly in the case the spatial resolution of the velocities

or displacements at the boundary have an order of greater then one in the fluid solver. While

2The same projection is termed projection based interpolation in [26].
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(a) vertex projection (b) edge projection (c) face projection

Figure 4.2: Visualization of a H
1
2 projection

this is the case for coupling to the spectral element method as in Chapter 7, the Finite Volume
Method only represents the displacements with linear shape functions. For the coupling to the
Finite Volume Method in Chapter 7, a simple evaluation of the displacements at the structural
boundary at the footprint of the nodes of the fluid mesh is performed. The H

1
2 projection is

then equivalent to an interpolation.

4.3 Algorithms for partitioned fluid-structure interac-

tion

One of the first publications for a partitioned solution of fluid structure interaction was by
Felippa [43]. Quite a number of different algorithms have been suggested in the literature
since. A good review of the available methods can be found e.g. in [95, 82, 83, 27].

Most of the methods can be classified as either explicit or implicit in their nature. The
general concept will be introduced and only those methods will be laid out in detail, which
have actually been applied in the context of this thesis.

Algebraically, the coupled problem can be represented by (see e.g. [95]):






A
f
II A

f
IΓ 0

A
f
ΓI A

f
ΓΓ + As

ΓΓ As
ΓI

0 As
IΓ As

II











x
f
I

xΓ

xs
I




 =






f
f
I

fΓ

f s
I




 (4.16)

The matrix A is a coefficient matrix which is in general nonlinear and thus depends on the
solutions x. The indices I and Γ indicate with which part of the domain the coefficient matrix
is associated with. In case it can be assembled by considering internal states only the double
index inII is used whereas ΓΓ indicates that the coefficients emerge from the boundary only.
A mixture of both is possible as well. The generic interface variable x is used to symbolize
displacements, velocities and tractions alike.

The objective now is to solve for x. On this abstract level, all solution methods for solv-
ing nonlinear systems of equations may in principle be employed: From block Gauss-Seidel
techniques possibly accelerated by over- or stabilized by underrelaxation to Newton methods.
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4.3.1 Explicit coupling schemes

Explicit coupling schemes attempt the solution of the coupled problem by exchanging the
required data only once per timestep. They are thus also termed loosely coupled schemes. In
an FSI context, they were first reported by [43] and have been used by a countless number of
authors since. Review articles such as e.g. [100, 106, 105, 44] have summarized and analyzed a
large number of possible algorithms for the partitioned solution of coupled mechanical systems.
Their analysis extends far beyond the procedure presented in this chapter.
Generally, explicit coupling schemes are unable to obey the conservation conditions given by
Equations (4.1), (4.2) and (4.4) as a one step solution to the coupled nonlinear system is
only possible approximately. This eventually leads to instabilities in case of low solid to fluid
density ratios [17, 45] especially in combination with incompressible fluids. However, explicit
methods prove to be stable, efficient and accurate for most compressible flow simulations.
Moreover, the error induced by these procedures is measurable, can be computed online and
it is thus deducible if the instability stems from the explicit coupling algorithm itself or has
other, possibly physical sources. For these reasons, explicit coupling methods are widely used
in partitioned FSI.
The simplest way of solving a coupled system iteratively in an explicit manner is to follow
these intuitive steps:

1. advance the fluid system from tn to tn+1 and compute the forces at the wetted boundary

2. apply the loads on the structural boundary and advance the structural system from tn
to tn+1

3. compute the structural displacements at the boundary and apply them to the fluid
boundary

and hope the computation remains stable. A generalization of this scheme has been analyzed
in detail in [106] and is termed conventional serial staggered (CSS) procedure. It reads:

1. predict the structural displacement of the wetted boundary at time tn+1 e.g. using

d(n+1),p = dn + α0∆tsḋ
n + α1∆ts(ḋ

n − ḋn−1) (4.17)

where d(n+1),p is the predicted position of the structural wetted boundary and α0, α1 are
two real constants determining the order of the prediction. First order accuracy in space
is obtained by setting: α0 = 1 ∧ α1 = 0. Second order spatial accuracy is obtained by
setting α1 = 1 ∧ α1 = 1

2
.

2. update the position of Γf to the position d(n+1)p . Then, advance the fluid-subsystem
from time step tn to tn+1. Subcycle the flow solver if ∆ts > ∆tf

3. compute the fluid tractions t
(n+1)
f at Γf . These are the fluid tractions which would have

resulted if the structure had been advanced to d(n+1),p. From this, compute a corrected
traction vector t(n+1),c

s

4. apply t(n+1),c
s to Γs and advance the structural system from tn to tn+1
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An energy based, analytical evaluation of the CSS procedure has been performed for a sim-
plified setting in [105]3. A detailed presentation is given in [95] as well. The principle idea is
as follows:
The artificial energy created at the interface is composed of the energy created by fluid solver
∆En→n+1

Γf
as its interface moves from d(n) to d(n+1) and the energy created by the structural

solver En→n+1
Γs

:

∆En→n+1
Γfs

= ∆En→n+1
Γf

+ ∆En→n+1
Γs

(4.18)

The individual energies can be computed by:

∆En→n+1
Γf

= −
(

θ tn+1
f + (1− θ)tn

f

)

·
(

d
(n+1),p
f − d

n,p
f

)

(4.19)

∆En→n+1
Γs

=
(

(1− αf)t(n+1),c
s + αftn,c

s

)

·
(

dn+1
s − dn

s

)

(4.20)

Explicit coupling procedures always produce artificial energy at the interface [105]. This can
easily be comprehended by considering the favourable case of integrating the structure by the
trapezoidal rule (αf = 0) and the fluid by a backward Euler method (θ = 1). Then, the
interface Energy would be:

∆En→n+1
Γfs

= t(n+1),c
s ·

(

dn+1
s − dn

s

)

− tn+1
f ·

(

d
(n+1),p
f − d

n,p
f

)

6= 0 (4.21)

The “corrector” can easily be chosen to lead t(n+1),c
s ≡ tn+1

f . However, the “predictor” is

inherently wrong and can only give d
(n+1),p
f ≈ dn+1

s such that ∆En→n+1
Γfs

6= 0
Thus, one can merely try to minimize the energy artificially produced at the interface at each
time step by choosing an appropriate combination of d

(n+1),p
f and t(n+1),c

s . Each choice gives a
particular instance of the CSS procedure.
The interface energy ∆En→n+1

Γfs
may be computed discretely at the interface for each time step

and summed up to give the total artificial interface energy Etot.

Etot =
n=ncurrent∑

n=1

En→n+1
Γ . (4.22)

By monitoring Etot it is possible to assess the influence of the explicit coupling algorithm on
the stability of the coupled computation. A sudden increase of Etot hints a loss of stability due
to the partitioned, staggered solution. If a loss of stability is encountered without a sudden
increase of Etot, then either an instable integration inside the fluid- or structural solver is the
culprit or the system is physically instable. A negative Etot hints artificial damping.
This criterion has been used to asses the stability of the coupling to the lattice Boltzmann
solver in Chapter 8.

3The most important simplifications include: 1st consideration of a single point on the fluid-structure
interaction interface, and surrounding patch of unit length in two dimensions, and unit area in three dimensions
2nd invicit flow, 3rd integration of the structural subsystem via the 2nd order accurate version of the Newmark
method
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Other more stable algorithms have been developed. These are usually catered for the use in
ALE formulations and not utilized in this thesis but are mentioned for completeness. Among
these is the Improved Serial Staggered Procedure (ISS), whose main goal is to meet yet
another important condition which has been neglected so far: the Geometric Conservation
Law (GCL).
The GCL [127, 137] basically states, that the change in area (volume) of each control volume
between tn and tn+1 must be equal to the area (volume) swept by the cell boundary during
∆t = tn − tn+1.
A carefully designed algorithm to achieve second order temporal accuracy while at the same
time showing a very stable behaviour is laid out in [42].
Despite the advantages of these more sophisticated procedures solely the CSS procedure was
used in this thesis as it proved to be sufficiently accurate and stable for computing the examples
in Chapter 8.

4.3.2 Implicit coupling schemes

Unlike explicit partitioned approaches, implicit coupling schemes attempt to obey Equa-
tions (4.1), (4.2) and (4.4) by iterating within the same timestep over both fields until conver-
gence is obtained. Provided this inter-field iteration converges they are stable w.r.t. advancing
the coupled system in time also for incompressible flows and for unfavourable fluid to structural
density ratios. This stability comes at the cost of efficiency.
The approach of iterating over both fields until convergence can be considered as a fixed point
iteration scheme applied to the usually large non-linear system of equations as represented by
Equation (4.16). Symbolically:

A(x) = x (4.23)

in which x is the fixed point of A. The system described by Equation (4.23), can be solved
efficiently by condensing it to the interface degrees of freedom xΓ, solving for these iteratively
and recovering the internal solutions via backward substitution. The fixed point iterations
can therefore be considered as being carried out on the interface degrees of freedom only. An
interface operator C can be defined as:

C : x̄
n+1
i+1 = As

Γ

(

A
f
Γ

(

x
n+1
i

))

(4.24)

In Equation (4.24) A
f,s
Γ now symbolizes the coefficients related to the concerned fluid (f)

or solid (s) boundary. The interface operator C maps the generic variables x, implicitly
containing only variables on the interface x = xΓ, from iteration i to iteration i+ 1. The time
step is fixed to the current time step tn+1 (for implicit solvers) and may be formulated using
either the displacements, velocities, or the interface tractions. The bar in x̄ hints that the
current solution was only obtained by a crude application of the operator C and has not been
postprocessed in any way. Assuming for a minute that x represents the displacements d at
the interface, then the solution d at the interface at dt+1

i+1 is found as follows. Application of

the displacements at iteration i to the boundary of the structural solver via tn+1

i+1
= A

f
Γ

(

dn+1
i

)
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gives the tractions tn+1

i+1
on the boundary at iteration step i+ 1. These are directly applied to

the structural boundary dn+1
i+1 = As

Γ

(

tn+1

i+1

)

to lead to the new displacement solution dn+1
i+1 .

The convergence of the iteration is usually measured by the discrete, length scaled L2 norm
‖ · ‖ of the residual r between two consecutive applications of C as:

rn+1
i+1 =

1

neq
‖xn+1

i+1 − x
n+1
i ‖ =

1

neq
‖rn+1

i+1 ‖ (4.25)

If rn+1
i+1 is smaller than some chosen tolerance ǫ, the iteration is considered to have converged.

The repeated application of Equation (4.24) leads to a sequence of solution vectors

{x0, x1, ..., xi, xi+1} (4.26)

whose convergence properties are determined by the fixed point theorem of Banach.
At this point it is worth highlighting an important prerequisite for the sequence (4.26) to
converge: Both field solvers need to utilize implicit formulations in which they seek equilibrium
at time step tn+1 using boundary values at time step tn+1. If one of the field solvers utilized an
explicit formulation4 then the variables at tn+1 would never be changed. As a consequence, the
same results would be obtained for all iterations 0, 1, ..., i, i+ 1 at tn+1 and no convergence of
the global series could be obtained with any of the implicit (i.e. strongly coupled) algorithms
discussed in this thesis.
Strongly coupled field iterations with field solvers employing explicit algorithms are not dis-
cussed in this thesis. Such an algorithm was proposed by the author in cooperation with
Geller (see [52]) to couple the p-FEM to the Lattice Boltzmann Method. Yet, the algorithm
suggested in Chapter 8.2 turned out to be more efficient such that there was no need to pursue
that path.
A further detail regarding the implementation of implicit coupling schemes into commercial
solvers such as CFX or FLUENT is mentioned. In order to fix the timestep i.e. not to advance
the computation in time, the state variables at state tn must only be overwritten by the field
solvers, if the next timestep is to be computed. The aforementioned commercial fluid solvers,
however, internally overwrite this state in their current implementation at every coupling step
or there values are not accessible without profound insider knowledge. The solution within
the FSI-cycles might then converge to a wrong value or not converge at all. For now, this
could only be solved by an expensive restart. A more intelligent solution is surely available
for the programmers of the commercial software, but for external users this imposes a severe
limitation causing serious difficulties for the implementation of truely implicit (i.e. strongly
coupled) iteration schemes into CFX or FLUENT.

4.3.2.1 Block Gauss-Seidel Iteration

The rate of convergence and stability of the series 4.26 may be influenced by relaxing the next
trial solution according to:

xi+1 = ωix̄i+1 + (1− ωi) xi (4.27)

4In the sense that it only used information from time step tn to advance to tn+1.
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where ωi is termed relaxation parameter. The convergence can be accelerated by choosing
1 < ωi ≤ 2 at the cost of stability or the stability may be improved by choosing 0 < ω < 1
with the effect of decreasing the rate of convergence. In linear algebra this method is known
as successive over- or underrelaxation. An optimal relaxation parameter can be computed via
the eigenvalues of the coefficient matrix A in Equation (4.23). This is, however, only possible
for linear “toy” problems and in general senseless since the knowledge of the eigenvalues of A

already provides the solution of Equation (4.23) directly.
As for realistic applications, either a predefined (non optimal) ωi is chosen which is kept
constant throughout all iterations or ωi is determined per iteration by a vector acceleration
method (i.e. by “advanced guessing”). Such an adaptive choice possibly increases the rate of
convergence and the stability. In fluid-structure interaction, the vector iteration acceleration
method proposed by Irons and Tuck [70] has shown to lead to good convergence and stability
of the overall implicit iteration procedure. Its application to FSI was suggested by [95] and
compared to other methods in [95, 82, 83]. It starts with two known pairs of interface variables
{x̄i, xi−1}, {x̄i+1, xi} and determines the relaxation factor ωi for each new iteration by:

ωi = −ωi−1
rT

i (ri+1 − ri)

‖ri+1 − ri‖2
(4.28)

Equation (4.28) does not guarantee that 0 < ωi < 2 which is necessary for the stability of the
overall iteration process. Therefore, ωi is usually (manually) limited to ǫ < ωi < 2 where ǫ
is a small number. In all examples computed in this thesis ǫ > 0.1 was chosen. This method
was applied e.g. in Chapter 7.

4.3.2.2 Interface-GMRES

At the time of investigating convergence acceleration techniques a promising method seemed to
be the Interface-GMRES method suggested by Michler [92]. While its application to compress-
ible flow solvers leads to good results, its transfer to incompressible flows disclosed deficiencies
of the method. Recently, the method has also received attention in [83] where it was classified
as a vector extrapolation scheme for the lack of explicitly using the interface Jacobian. This
interesting insight is, however, not regarded here and the method will be presented in the
sequel as originally introduced in [92]. Its application to incompressible flows is demonstrated
in Chapter 6 where its drawbacks w.r.t. other methods such as presented in Chapter 4.3.2.1
are discussed.
The idea is to solve Equation (4.23) by a hybrid Newton-Krylov method as presented generi-
cally in [15] for systems of nonlinear equations. Starting point is the nonlinear system (4.23)
which can be rewritten as follows:

Rx = 0 (4.29)

The residual operator is defined as R = C− I such that the residual r can be computed by:

ri = Cxi − Ixi = xi+1 − xi (4.30)

where bar x̄ is now neglected for simpler notation. It will be clear from the context in the
sequel if the solution x has been “postprocessed”.
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The Newton method involves a linearization step and an update of the linearized state x0 ←
x0 + ∆x according to:

Rx0 + Jx
′ = 0 ⇐⇒ Jx

′ = −Rx0 =⇒ x
′ = −J−1R x0 (4.31)

x0 = x0 + x
′ (4.32)

where J = ∂R

∂x
|xi

denotes the Jacobian at that linearization state and the notation ′ instead of
∆ is employed. At each Newton step, one needs to solve the linear system (4.31). The initial
guess x0 is then updated at each Newton iteration according to Equation (4.32) to form the
next approximation at which another linearization is carried out.
The procedure thus generates the following series of vectors from an initial guess x0

xi+1 = xi + x
′
i = xi − J−1R xi (4.33)

where xi
′ = J−1Rxi is a perturbation around the current linearization state xi

In FSI, neither the Jacobian J is known nor its inverse5. It is shown in [15] that, if a Krylov
method is employed for the solution of the linear subproblem, then J is only required in form
of a matrix-vector product. The update x′

i is therefore approximated in a Krylov space of
order m associated with the linear problem of Equation (4.31).

x
′

0 ∈ Km := span{xj − x0}j=m
j=1 (4.34)

Substitution of this Ansatz into the linear problem Equation (4.31) gives:

Rx0 + J
m∑

j=1

αj (xj − x0) = Rx0 +
m∑

j=1

αjJ (xj − x0) = 0 (4.35)

Further, the matrix vector product J (xj − x0) is approximated by finite differences:

J (xj − x0) ≈ rj − r0 ≡ xj+1 − xj − ri (4.36)

where an extra approximation error occurs explaining the choice for ≈ instead of =. Substi-
tution of Equation (4.36) into Equation (4.35) leads to:

ri +
m∑

j=i

αj (rj − ri) = 0 (4.37)

In this expression, a residual sensitivity space span{rj−r0} appears which corresponds to the
one chosen for x

′

0 in Equation (4.34)

5Crude computation of J via finite differences is prohibitively expensive.
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As is typical for a Generalized M inimum RESsidual (GMRES) algorithm, the coefficients
αi necessary for the redefinition of the linear reference state xi are determined by solving
Equation (4.37) in a least squares sense according to:

α = arg min‖ri +
m∑

j=1

αj (rj − ri) ‖ (4.38)

The residual rj is a matrix and has the dimension of the interface degrees of freedom times
the Krylov subspace currently approximating the linearization state j. The minimization in
Equation (4.38) is equivalent to solving the following system for α:

rT
j rjα = −

(

rT
i rj

)T
(4.39)

The coefficient matrix rT
j rj is of dimension j× j. With j typically being of magnitude j ≤ 10,

the minimization in Equation (4.38) needs almost no computing time.
The norm of the residual is used as an estimate of the norm of the nonlinear problem:

ξ = ‖ri +
m∑

j=1

αj (rj − ri) ‖ (4.40)

The complete algorithm as presented in [92] is given in Algorithm A-1.

Algorithm A-1 Interface GMRES

1: i = 0; x1 = Cx0; r0 = x1 − x0

2: while ‖ri‖ > ǫ0 do

3: j = 0, ξ = ‖ri‖
4: while ξ > ǫ1 do

5: j = j + 1
6: x

′

j = xj − x0

7: for k = 1 to j − 1 do

8: x
′

j = x
′

j − x
′

k

(

x
′

j · x
′

k

)

/‖x′

k‖2

9: end for

10: x
′

j = νx
′

j/‖x
′

j‖
11: xj = x0 + x

′

j

12: xj+1 = Cxj

13: r
′

j = (xj+1 − xj)− ri

14: α = arg min‖ri +
∑k=j

k=1 αkr
′

k ‖
15: ξ = ‖ri +

∑k=j
k=1 αkr

′

k‖
16: end while

17: x0 = x0 +
∑k=j

k=1 αkx
′

k

18: i = i+ 1, x1 = Cx0, ri = x1 − x0

19: end while

The algorithm consists of two main loops, the inner of which is the GMRES loop trying to
minimize the linear residual computed in line 15 according to Equation (4.40). The outer loop
constitutes the nonlinear update performed in line 17 and given in Equation (4.33).
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The first line forms the first residual r0 from the first guess x0 via the operator C. As given in
Equation (4.24), the evaluation of this operator constitutes one entire FSI-cycle. The nonlinear
residuals are controlled in line 2 and tested against a given ǫ0. Line 3 estimates the first linear
residual which is tested against ǫ1 in line 4. It is recomputed every linear step in line 15. The
Krylov subspace is formed in line 6 and orthonormalized via a Gram–Schmidt procedure in
lines 7 to 10. A test vector xj is now constructed by line 11 against which the FSI-cycle is tested
in line 12. The approximation of the matrix vector product by finite differences is computed
in line 13 (see Equation (4.36)) and those αi are found in line 14 which minimize the residual
according to Equation (4.38). Line 17 constructs the update from a linear combination of the
Krylov vectors and the αi’s.
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Chapter 5

Benchmarks

All coupling setups presented in this thesis are compared with the Benchmarks described in
this chapter. Two main benchmark tests were defined. The first one is of purely numerical
nature and closely resembles the well known benchmark of a cylinder in a cross flow published
in [133]. All members of the research group were asked to verify their coupling setups against
this numerical benchmark and the results are about to be published.

The second benchmark is an experiment, against which a validation is attempted.

Both Benchmarks were defined as part of the efforts of the Research Unit 493 supported by
the Deutsche Forschungsgemeinschaft to provide a database for verification and validation of
existing numerical codes and newly developed methods.

The question of verification, validation, confirmation and benchmarking is more diverse than
expected at first sight. For terminological details also concerning philosophical questions it is
referred to the article of Oreskes et. al in Science [98]. In this thesis, the term verification is
used to state that the developed code can reproduce results computed by other (and different)
numerical methods or available analytical solutions of test problems. The term validation is
used if the developed code can reproduce the results of physical experiments.

5.1 Numerical benchmark

5.1.1 Setup

The numerical benchmark is a two-dimensional setup and consists of a rigid cylinder in the
flow of a Newtonian fluid with a flexible flag attached to its downstream side. It was already
published in [132] but the configuration is restated here for completeness. The geometry of
the setup is depicted in Figure 5.1 and Figure 5.2.

No-slip boundary conditions are applied to the top and bottom walls. The center of the
cylinder is located at C = (0.2[m], 0.2[m]), its radius is defined as r = 0.05[m], the elastic
flag has a length of l = 0.35[m] and a height of h = 0.02[m], the bottom right-hand corner of
the flag is positioned at (0.6[m], 0.19[m]) and the left end is clamped tight against the rigid
cylinder. The deflection of the structure is measured at point A located on the right end of
the symmetry axis of the elastic flag.

Note that the cylinder is positioned slightly off the symmetry axis of the flow domain. The
Newtonian fluid has a density of ̺f = 103[ kg

m3 ] and a kinematic viscosity of νf = 10−3[m2

s
]. The
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Figure 5.1: Computational domain with H = 0.41[m] and L = 2.5[m]
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Figure 5.2: Detail: Cylinder with flag

inflow velocity is parabolic with a mean velocity Ū of either 0.2[m
s

], 1.0[m
s

] or 2.0[m
s

], defining
three different sub-Benchmarks FSI1, FSI2 and FSI3 with Reynolds numbers 20, 100 and 200.
The density of the flag is ̺s = 103[ kg

m3 ] in the cases of FSI1 and FSI3 and ̺s = 104[ kg
m3 ] in the

case of FSI2. Young’s moduli of the St. Venant-Kirchhoff materials are Es = 5.6 × 106[ N
m2 ]

for case FSI3 and Es = 1.4× 106[ N
m2 ] for FSI1 and FSI2.

5.1.2 Principle behaviour and values of comparison

FSI1 leads to a stationary upward deflection of the flag tip. Stationary, because at Re = 20
no vortices develop in the lee of the cylinder and upward due to the asymmetry of the inflow
profile w.r.t. the flag.
FSI2 leads to a large, periodic deflection of the flag. The periodic motion is mainly triggered
by vortexes developing in the lee of the cylinder causing high and low pressure fields travelling
along the flags surface. The movement is large (i.e. around 4.1 times the height of the flag),
because the density of the flag is around ten times higher than that of the fluid. It is interesting
to note that, were the flag stiff, it would act as a flow separator preventing the development
of vortexes at this Reynold number.
Similar to FSI2, FSI3 leads to a periodic motion of the flag but with a smaller amplitude and
higher frequency. FSI3 leads to vortex shedding even for a fixed flag.
The difficulties of computing these Benchmarks of course depend on the method chosen for
its discretization but generally, the main hassle associated with each individual benchmark is:

• FSI1: to get a converged, steady state solution for the solid to fluid mass ratio of one

• FSI2: to be able to compute large deflections at the end point of the flag

• FSI3: to be able to resolve the boundary layers correctly at this higher Reynolds number.

In order to save computational time, all computations were started from a converged steady
state fluid solution with a fixed flag and the flag was set free in the first step of the coupled
computation.
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Figure 5.3: Numerical benchmark: Cylinder with flag

The quantities of comparison are the deflection at point A in amplitude and frequency. Addi-
tionally, drag and lift forces are evaluated by means of Equation (5.1)

(Fd, Fl)
T =

∫

∂A

ts dl (5.1)

where ∂A represents the wetted boundary.

5.2 Experimental benchmark

The exact definitions of the experimental benchmark were published in [57]. The most im-
portant data is recited here for completeness. The experimental benchmark is similar to the
numerical benchmark as it consists of a cylinder with a flag attached to its downstream side.
Additionally, the flag has a rectangular mass mounted at its tip in order to introduce more
inertia into the system. Without it, the flag would not start to swivel. The flag is very thin
and the cylinder is not clamped but only simply supported at its center in all directions. The
cylinder can thus rotate freely around its axis. The structure is depicted in Figure 5.3. The
cylinder is composed of aluminum with a density of 2828[ kg

m3 ], the membrane like flag and

the rear mass is made of stainless steel with a density of 7855[ kg
m3 ] and 7800[ kg

m3 ], respectively.
While flag and cylinder can be considered rigid, the Young’s modulus of the flag was measured
to be E = 2.0× 1011[ N

m2 ].
The fluid domain is depicted in Figure 5.4. Its dimensions are: L = 0.338[m], l = 0.272[m],
H = 0.240[m], h = 0.170[m]. The solid box is the fluid domain with its physical boundaries,
while the dashed box represents the domain at which measurements were taken. Much like
in the numerical benchmark, the fluid is a viscous, incompressible polyethylene glycol syrup
with a high kinematic viscosity of ν = 1.64× 10−4 m2

s
resulting in low Reynolds numbers (i.e.

laminar flows) at fairly high flow speeds. The fluid density was measured to be 1050[ kg
m3 ].

Two benchmark configurations were provided which differ only in the magnitude of the inflow
velocity. “Expemiment 1” has a inflow velocity of U = 1.07[m

s
] and “Expemiment 2” of

U = 1.45[m
s

] resulting in Reynolds numbers of Re = 140 and Re = 190. The inflow profile is
mainly constant across the inflow domain, however the results are sensitive to variations in U ,
which is why it is recommended to directly impose the measured values available from [57].
The walls in the positive and negative y-direction can be considered as no slip walls and the
outflow as a “do nothing” boundary.
Gravity acts on fluid and structure alike in the direction of the positive x-axis. Difficulties in
computing this benchmark again depend on the method chosen for its discretization but the
main points are:
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Figure 5.4: Numerical benchmark: Fluid domains, the dashed domain denotes the region in which
measurements were conducted.

• the large deformations at the end of the flag and its rapid change in angle as it reverses
its general direction.

• the thin structure and the boundary layers, which need to be resolved for an accurate
computation.
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Chapter 6

Coupling to the Finite Volume Method

6.1 Motivation

The main goal of the work documented in this Chapter was to test the suitability and accuracy
of structural p-FEM in FSI against the Benchmarks presented in Chapter 5.1. This is why
CFX[2] was chosen as a well known, verified and validated commercial fluid solver. Moreover,
the accuracy of the force and velocity transfer methods suggested in Chapter 4.2.2 were to be
investigated in a FSI computation. The force transfer was performed via composed integration.
For the intersection of the meshes the tool developed in [123] was used. The displacements
were evaluated at the footprint of the nodes of the fluid mesh on the structural boundary and
directly transferred without performing a global L2 projection. The results are presented in
Chapter 6.2.
Once these goals were achieved, the convergence within the FSI cycles was to be accelerated.
Explicit methods diverged after only a few time steps. For this reason, two implicit coupling
procedures were employed, a Block Gauss-Seidel procedure with Aitken underrelaxation as
presented in Chapter 4.3.2.1 and the Interface-GMRES Method presented in Chapter 4.3.2.2.
For the Interface-GMRES method, results have only been published for small “toy” examples
and compressible fluid solvers. The main concern was that the method would have drawbacks
for larger systems with more interface degrees of freedoms. It was found that this is not the
case. Surprisingly, the drawbacks lie elsewhere. They are layed out in detail in Chapter 6.2.1.

6.2 Testing against Benchmarks

The setup was tested against the benchmark configurations presented in Chapter 5.1. The
benchmark proposed in [132] is a two-dimensional configuration. The coupling environment
created for coupling to CFX [2], however, is realized in a three dimensional setting. Therefore,
the two-dimensional setup was imitated by expanding the fluid domain by 0.005[m] (corre-

sponding to 1
4

th
of the height of the flag) into the z-direction and application of symmetry

boundary conditions on the resulting front and back slices.
The fluid was discretized with 58 368 hexahedral elements as implemented in CFX 10 [2]. The
time domain was resolved with a backward Euler method, while the structural discretization
in time was realized via the Newmark method. The extremely soft material of the structure
forced the use of a parameter set of β = 0.49, γ = 0.9 to damp out numerical instabilities
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Figure 6.1: Displacement of point A

of the structural time integration. The structure was computed geometrically nonlinear. For
fluid and solid alike, a timestep of 0.01[s] was chosen.

The deflection over time is depicted in Figure 6.1.

Figure 6.2 depicts the resulting pressure field at the steady state (time t = 10[s]) within the
domain and shows the 3-D setup of the thin domain. The mass ratio fluid

structure
is equal to

one. In combination with the relatively low Young’s modulus, this leads to divergence of the
sub iterations within the implicit coupling used in this setup. Therefore, a Gauss-Seidel type
scheme as described in Chapter 4.3.2.1 was chosen in which the forces needed to be relaxed
by a constant factor of ωi = 0.15 to achieve convergence at every time step.

Figure 6.3 shows the structural domain. It is pointed out that only three high order hexahedral
elements as described in Chapter 2.2 are needed to obtain an accurate result. The polynomial
degrees were chosen to be 7, 4 and 1 for all displacement components in x,y and z-direction
respectively. This results in an overall discretization of 252 degrees of freedom when applying
the trunk space Spξ ,pη,pζ

ts (Ωh
st). For a detailed view, the upper half of the structural domain and

the intersection with the fluid mesh is shown in Figure 6.4.

Figure 6.5 depicts the relative and absolute force error of each time step. The limiting factor
here is the precision within the commercial finite volume fluid solver CFX. The computation
of the boundary forces only has single precision accuracy. The relative force error is below
1.0× 10−3[%] while the absolute force error is below 1.0x10−5[N ]. Thus, the force transfer is
as accurate as possible within this framework.

The asymmetric setting of the cylinder with respect to the inflow profile leads to a lift force on
the flag. After a settling time of about 6 seconds, a steady state displacement of 8.141×10−4[m]
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Figure 6.2: Pressure distribution at cutting plane xy

Figure 6.3: Intersection of fluid and structural meshes
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Figure 6.4: Detail of the intersected meshes
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Figure 6.5: Force transfer error
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developed at point A. This is only 0.8[%] off the results obtained by [132] which state a
deflection of 8.209×10−4[m] as their reference value. The results are summarized in Table 6.1

Case ux(A)[m] uy(A)[m] Fd [N] Fl [N]

FSI1 2.15× 10−5 8.141× 10−4 14.287 0.7640

FSI1ref 2.27× 10−5 8.209× 10−4 14.295 0.7638

[%] deviation 5.28 0.82 0.056 0.445

Table 6.1: FSI1: Results obtained and comparison with reference [132]. Fd and Fl are computed
according to Equation (5.1) whereby ∂A is the wetted boundary of the flag plus the
wetted boundary of the cylinder.

These results were encouraging at the time, however, neither test cases FSI1 nor FSI2 could
be computed since the demand on the mesh deformation was too high. Overlapping meshes
resulted in a premature breakdown of the computations. It is referred to Chapter 8.1 at this
point for further discussion on mesh deformation problems.

6.2.1 A critical view on Interface-GMRES

The Interface-Generalized Minimal RESidual algorithm (I-GMRES) by Michler [92] was layed
out in Chapter 4.3.2.2 and showed promising performance for the examples discussed in [92]. It
was thus chosen to be implemented in CFX and tested against the FSI1 Benchmark. In order
to be able to compare the performance of I-GMRES to the widely used Gauss-Seidel method all
results in this Chapter were computed with identical initial conditions. The initial condition
was a converged stationary fluid solution with a fixed flag and no prestress or predefined
deflection in the structure. In all cases, the time step size was chosen to be ∆t = 0.01[s], and
measurements were made at the first timestep.
First, the performance of I-GMRES with compressible fluids was tested where the fluid was
given a speed of sound of c = 10m

s
. The convergence history of the first timestep is depicted

in Figure 6.6. The discrete L2 norm of the residual is plotted against the number of interfield
iterations1. The line named “Gauss-Seidel” denotes the results obtained by a Gauss-Seidel
iteration according to Chapter 4.3.2.1 with a constant relaxation factor of ωi = 0.3 which has
been chosen in advance by trial and error to lead to the best possible convergence rate for
this timestep. After 21 iterations, an error reduction at the interface of approximately three
orders, namely from 1.0× 10−5 to 1.0× 10−8 is obtained.
The curves of the convergence of I-GMRES in Figure 6.6 are termed “I-GMRES: reduction
of linear residual by < X > order” where “< X >” is either one, two or three and refers to
how much the linear residual ξ (see Algorithm A-1 Line 15) is reduced before the update of
the linearization state x0 is performed in line 17 of Algorithm A-1 (i.e. x0 = x0 +

∑k=j
k=1 αkx

′

k).
Following these curves from the left to the right in Figure 6.6, this update manifests itself by

1i.e the number of complete FSI cycles equivalent to the number of evaluations of the operator C defined
in Equation (4.24).
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Figure 6.6: Compressible FSI1: Gauss-Seidel vs. I-GMRES: reduction of interface residual

the sudden jump to a larger error. The hull of these jumps corresponds to the true, nonlinear
residual comparable to the ones obtained by a Gauss-Seidel iteration, while the intermediate
lower values represent the linear residuals. As depicted in Figure 6.6, the error at the interface
can be reduced by approximately four orders with I-GMRES; one order more than with the
GS iterations.

At first glance, the performance w.r.t. the FSI-cycles needed shows an astonishing improve-
ment, since a reduction of the interface error by three orders costs 24 iterations2 with Gauss-
Seidel compared to only five iterations between the fields with I-GMRES (see line “I-GMRES:
reduction of linear residual by one order”). This, however, is an unfair comparison since the
number of evaluations of the operator C only counts part of the effort. A more concise measure
is to count the amount of cycles needed for the field solvers to seek equilibrium within the over-
all iteration process. The structural solver required around three cycles for both Gauss-Seidel
and I-GMRES which are of minor importance in a direct comparison of efficiency. Therefore,
the number of iterations the fluid solver itself needs to converge is considered a good measure
and is thus given in brackets in Figure 6.6 for the case causing the least effort. The fluid
solver needs 35 iterations if coupled to the structure by the Gauss-Seidel method and 50 for
I-GMRES. It is noteworthy that, although at first glance I-GMRES is faster, a closer look
reveils that I-GMRES is around 1.5 times slower for this configuration.

Since most of the effort is spent in the fluid solver, the next question to answer is if the fluid
solver really needs to iterate down to an error of 5.0 × 10−6. The study in Figure 6.7 shows

2i.e. evaluations of the operator C.
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Figure 6.7: Compressible FSI1: Gauss-Seidel vs. I-GMRES: Different fluid residuals

that the fluid solver needs to compute its subproblem to an accuracy of at least 1.0 × 10−4

as otherwise the convergence of the overall algorithm deteriorates overproportionally. This
brings the necessary iterations within the fluid field solver down to 31 as indicated by the
numbers beside the corresponding curve. This is one iteration less than in the Gauss-Seidel
approach.

The reason for the difficulty of the flow solver to converge lies in the orthogonalization of
the Krylov base vectors x

′

j in lines 7-10 of Algorithm A-1. These Krylov base vectors have a
clear interpretation. They represent the boundary configuration against which the fluid solver
is tested in line 12 of Algorithm A-13. Figure 6.8 shows these vectors constituting the first
two steps of a second order reduction of the linear residual of Figure 6.6. The two Krylov
vectors correspond to the strongly bent curved boundaries. The third vector, corresponding
to curve “update” depicts the linear combination of these vectors as needed for the update of
the linearization state in line 17, namely x0 = x0 +

∑k=j
k=1 αkx

′

k. All three vectors have been
magnified by a factor of ten for better visualization. The crucial point is, that the fluid solver
is tested against orthogonal boundary conditions, i.e. boundary conditions which have as little
in common as possible. This makes it extremely difficult for the fluid solver to converge as it
needs to run into completely opposite directions each time.

The factor ν in line ten of Algorithm A-1 can be chosen to scale the magnitude of the Krylov
vectors. As a matter of fact, it must be chosen smaller than one (in this case ν = 0.005)
for the inner iterations to converge. Choosing the value of ν is much like choosing a proper

3shifted by the current linearization state x0 in line 11.
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Figure 6.8: Compressible FSI1: I-GMRES: Krylov Vectors forming the second linear update in Fig-
ure 6.7 corresponding to fluid residual 1.0 × 10−5. All vectors scaled by factor 10 for
better visibility.

epsilon for a numerical differentiation. The value may not be too small as not to run into
numerical round off errors and not too large as to capture the true tangent in a highly nonlinear
problem. In this case, the lower bound is around ν = 0.005 as CFX only computes with single
precision numbers4 and a further reduction leads to round off errors causing a breakdown of
the algorithm.

The situation is completely different in the Gauss-Seidel method, where the interface position
(i.e. vectors) slowly approaches the equilibrium position from one side instead of being or-
thogonal to each other. A selection is depicted in Figure 6.9. This is the reason why the fluid
solver needs to perform only one iteration to converge for each FSI cycle.

One might think of dropping the orthogonalization performed in lines 7-10 altogether, but
this is not possible as otherwise the basis vectors x′ spanning this space were not orthogonal.
Deleting lines 7-10 would quickly lead to a breakdown of the method, as no new linearly
independent vector could be found by the minimalization procedure carried out in line 14.
Then (a) the linear residual ξ will not diminish further at some point and (b) a premature

4even though there are double precision versions of it, but that is only related to a compiler option and
does not lead to true double precision in all routines.
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Figure 6.9: Compressible FSI1: Gauss-Seidel: Convergence history of the interface positions of the
upper boundary of the flag.

update performed in line 17 would lead to no improvement of the linearization state x0.

Up to this point, all results were obtained by coupling to a compressible fluid. Sadly, the
situation worsens when coupling to incompressible fluids because it is much harder for the
incompressible solver to satisfy the orthogonalized boundary conditions. Additionally, the
bandwidth of numerically stable choices for ν becomes very small. At some point, either
the I-GMRES breaks down for lack of orthogonality of the boundary conditions or the fluid
solver can not converge. This makes it virtually impossible to choose a value of ν in advance.
Figure 6.10 shows the convergence curves obtained by coupling to the incompressible FSI1
configuration.

Interface-GMRES, however, does perform much better than a plain underrelaxed Gauss-Seidel
iteration for small structure/fluid density ratios. The convergence history depicted in Fig-
ure 6.11 shows the convergence history of FSI1 where the structural mass has been lowered
by a factor of ten leading to a mass ration of solid/fluid of 0.1. While Gauss-Seidel almost di-
verges and causes the fluid solver to perform more than 250 iterations, I-GMRES only demands
around 85 iterations from the fluid solver. These results were obtained with the compressible
configuration, though. The incompressible configuration lead to divergence for both iteration
methods.
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In [92] it is pointed out that an increase in efficiency can be obtained by reusing the Krylov-
vectors for the next timestep. This was implemented but deteriorated the convergence prop-
erties so severely in the subsequent time steps that no further studies were undertaken.



60 7. Coupling to the Spectral Element Method

Chapter 7

Coupling to the Spectral Element

Method

7.1 Motivation

The Spectral Element Method as discussed in Chapter 3.3 and the p-FEM layed out in Chap-
ter 2.2 have the same roots. Actually, these methods are identical. Differences are only of
terminological importance as “spectral” implies the use of very high orders and smoothness.
This difference merely has historical interest. Both attempt to approximate the unknown
function and its derivatives using piecewise polynomials of high order. These methods can,
therefore, provide exponential convergence rates under the premise of the existence of suffi-
ciently smooth solutions to the considered problem. For structures, this has been shown e.g.
in [125, 126] and for fluids in [16, 73]. The goal to carry these benefits over to a partitioned
FSI computation, is yet difficult to achieve.

Only few previous publications exist using a partitioned coupling of these discretizations in an
FSI context [8, 112, 74, 10]. They are concerned with explicit, i.e. loosely coupled schemes or
they suggest suitable traction and displacement transfer methods for this type of discretiza-
tions.

However, due to the incompressible nature of the benchmark problems, loose coupling methods
diverged after only a few time steps. Therefore, an overall implicit coupling algorithm needed
to be employed. For this purpose, the implicit stiffly stable time integration scheme for
incompressible fluids layed out in Chapter 3.3 was utilized. The overall coupling algorithm
including this scheme is presented in Chapter 7.1.1. It has not been published before but
is the core result of the work jointly carried out in the framework of the master thesis of
Papaioannou[99].

The feasibility of the method was tested against a driven cavity problem in Chapter 7.2.1
and the methods showed good results. The limits of the method became visible when tested
against the Benchmarks defined in Chapter 5.1.

7.1.1 Coupling algorithm

The coupling is achieved by extending the fluids implicit time integrator to account for the
structural solution, where the boundary conditions for both solvers are updated in each sub-
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iteration. The iterative time-stepping scenario for advancing the entire FSI system from time
level n to time level n + 1 is as follows (For notations see Chapter 3.3):

Start with a predictor for the fluid solution (e.g. of zeroth order):

(vn+1,wn+1,pn+1)0 = (vn,wn,pn) (7.1)

Begin sub-iteration step j + 1:

Update the fluid solution for the current iteration:

1

∆t



ṽi −
Ji−1∑

q=0

αqMv
n−q
i



 = −N(v(n+1,j),w(n+1,j)) + Fn+1 (7.2)

1

∆t



γ0x
(n+1,j+1)
i −

Jx−1∑

q=0

αqx
n−q
i



 = w
(n+1,j)
i (7.3)

∂p(n+1,j+1)

∂n
= −n ·

[

∂v(n+1,j+1)

∂t
+ N(v(n+1,j),w(n+1,j)) + ν[∇× (∇× v(n+1,j))]

]

(7.4)

Lp(n+1,j+1) =
1

∆t
Diṽi (7.5)

(γ0M−∆tνL) v
(n+1,j+1)
i = Mṽi + DT

i p(n+1,j+1) (7.6)

Lw
(n+1,j+1)
i = 0 (7.7)

Compute the structural force vector F(n+1,j+1) by integrating the fluid tractions tj |(n+1,j+1)
S =

(τjk|Fnk)(n+1,j+1) on the wetted surface:

F(n+1,j+1) =
∫

ΓS
F S

(t|(n+1,j+1)
S )T NdΓ (7.8)

Update the structural solution for the current iteration, by solving:

Mü(n+1,j+1) + Cu̇(n+1,j+1) + Ku(n+1,j+1) = F(n+1,j+1) (7.9)

applying the Newmark method.

Compute the new fluid and mesh velocity at the interface for the next iteration, by
solving the following weighted residual equation:

∫

ΓF
F S

(vF − u̇|S)δvdΓ = 0 (7.10)

If the variance of the solution is sufficiently small, proceed to the next time step.
Otherwise, continue the sub-iterative procedure.
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7.1.2 Transfer of tractions

The right-hand side of Equation (7.8) involves the integration of the product of two functions
defined in different functional spaces. The fluid traction vector is defined on ΓF

F S, i.e. the fluid
side of ΓF S, in a space spanned by the spectral element shape functions Φ, which are locally
defined at the elements of the fluid mesh. On the other hand, the matrix N contains the
structural shape functions defined on the structural mesh footprint on ΓS

F S, i.e. the structural
side of ΓF S.
There are several concepts of how to deal with this problem in the general case, i.e. when
fluid and structural meshes do not match. Traction transfer methods and relevant literature
concerned with this situation are discussed in Chapter 4.2.2 and Chapter 4.2.3. For the
examples computed in Chapter 7.2 difficulties are avoided by matching the fluid and the solid
meshes at their interface. The tractions at the fluid boundary can then be directly evaluated
at the Gaussian points of the structure. This is equivalent to an L2 projection of the fluid
forces onto the structural boundary.

7.1.3 Transfer of Velocities

Similarly, the structural solver evaluates the velocities at the Gauss-Lobatto points of the
fluid solver. The fluid solver then solves Equation (7.10) by applying a H1/2 projection as
described e.g. in Chapter 4.2.4, in order to compute the modal coefficients of the velocity on
the interface.

7.2 Testing against Benchmarks

7.2.1 Driven Cavity

Before testing the setup against the Benchmarks proposed in Chapter 5 it was tested against
the incompressible driven cavity problem equipped with a flexible bottom. It is depicted in
Figure 7.1a.
This problem was first proposed in [140] and further investigated in [45]. Although it is
a relatively simple setup in terms of its geometry, it is prone to the artificial added mass
effect. It leads to catastrophic instabilities if the mass ratio is equal to one for any weakly
coupled, staggered solution procedures regardless of how small the time step is chosen [45].
This qualifies it for testing the suitability of the implicit coupling setup proposed in this thesis.
The fluid domain is a square of dimensions 1m × 1m and the structural thickness is with
t = 0.002m very thin compared to the height of the entire domain. The oscillation of the
flexible bottom is enforced by imposing a periodic horizontal velocity with a period of 5 sec at
the top boundary of the fluid domain, as shown in Figure 7.1a. The structure is clamped only
at its edges with no support elsewhere allowing for a free movement throughout its span width
due to the tractions applied by the fluid. The material properties for both structure and fluid
are given in Table 7.1. The fluid mesh was constructed by applying a constant element size
and refining near the edges of the domain, to cope with the singularities occurring due to the
boundary conditions. The fluid mesh consisting of 16× 16 elements is shown in Figure 7.1b.
The structural mesh consists of 16 2D plain strain elements, such that its footprint on the
interface coincides with the footprint of the fluid mesh. The structural as well as the fluid
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flexible bottom

ux(t) = (1 − cos 2πt
5

)

(a) Geometry and boundary con-
ditions

(b) Fluid spectral element mesh

Figure 7.1: Geometry, boundary conditions and discretization of the driven cavity with a flexible
bottom

fluid structure

density ρF = 1.0 [kg/m3] density ρS = 500 [kg/m3]
viscosity νF = 0.01[m2/s] stiffness E = 2.5× 108 [N/m2]

Poisson’s ratio νS = 0.0

Table 7.1: Material parameters of driven cavity example with flexible bottom

discretization where chosen with a polynomial order of five.
The coupling was carried out by implementing the scheme presented in Chapter 7.1.1, with a
first order integration of the diffusion terms and mesh position (Ji = Jx = 1). It was assumed
for simplicity that the fluid tractions on the interface consist only of the pressure. As the
displacements are very small, the pressure is assumed to act entirely in the vertical direction.
Hence, the structural loading on the interface is computed at each coupling step applying
the resulting tractions directly at the Gauss points of the structure in the y-direction. The
structural computation was performed by applying the average acceleration method, i.e. the
special case of the Newmark method for β = 1

4
and γ = 1

2
.

To achieve a compromise between high accuracy and a low Peclet number1, the time integration
step was chosen to be ∆t = 0.001[s]. To avoid instabilities at the structure due to the
excitement of modes with a period smaller than the time-step, a stiffness proportional damping
with δ = 0.00032 was applied resulting in a damping of frequencies lower than the time step.
In order to achieve convergence acceleration and thus decrease the computational cost, the
Aitken-like iteration method presented in Chapter 4.3.2.1 was applied to the transfer of the
pressure from the fluid to the structural side of the FSI interface.
The imposed periodic horizontal velocity at the top boundary of the fluid domain causes the
flexible bottom to oscillate. To monitor this oscillation, the pressure and vertical position at

1The Peclet number characterizes the relative importance of convective to diffusive effects in a given flow
problem. Its definition is given e.g. in [30, 65]. It is nicely shown in [30] that a high Peclet number is
unfavourable for pure Galerkin approximations of which the SEM used here is a representative.
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the middle node of the flexible bottom were measured. The results are depicted in Figures
7.2a and 7.2b, respectively.
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Figure 7.2: Pressure and vertical position at the middle of the flexible bottom

As may be observed in both graphs, the obtained response is periodic with a constant am-
plitude2. The attempt to solve the specific example applying a weak coupling scheme led
to an unstable solution within the first 100 time-steps, thus not being able to complete the
first period of oscillation. In Figure 7.3, a contour plot of the Euclidean velocity norm:
‖v‖2 =

√

v2
x + v2

y is shown at different time instants, describing the first period of the systems

time history. The plots are asymmetric because of the small vortices developing due to the
nonlinear convection at the two sides of the top part of the fluid domain, close to the bound-
aries. In addition, the movement of the flexible bottom can also be seen. The fluid is applying
a negative pressure to the structure, causing it to move in an inward direction.

7.2.2 DFG Benchmark

The performance was tested against FSI1 as defined in Chapter 5.1. Only pressures at the
boundary are transferred to the structural boundary and the structure is computed geometri-
cally linear3. The fluid and structural mesh is depicted in Figure 7.4. The fluid mesh footprint
at the wetted boundary matches the structural one. A polynomial degree of three was chosen
for the structure and fluid alike. The Euclidean norm of the velocity and a pressure contour
plot is given in Figure 7.5 and Figure 7.6 respectively. The deflection at point A of the flag was
computed to be 8.58×10−4[m] and is therefore approximately 4.5[%] larger than the reference
value.

It was expected, at first, that the correct evaluation of the extra shear terms can eliminate

2It is remarked that the magnitude and time history of the pressure and velocity can not be compared
directly to the ones published by [45] because the parameters and properties of the discretization methods are
different. For example, the structure is computed geometrically linear in the present thesis, the solid elements
used in [45] exhibit a strong locking effect for the parameters chosen, time steps are different et cetera.

3geometrically linear here means that the contribution to the stiffness matrix stemming from geometrically
nonlinear strains is neglected
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Figure 7.3: Contour plot of the Euclidean velocity norm ‖v‖2 at different time instants.

this inaccuracy. The shear at the boundary can be computed by Equation (3.19):

σij = −µ (vi,j + vj,i) (3.19)

However, transferring the shear terms leads to a deflection of the flag of 1.1 × 10−3[m]. A
comparison with a CFX solution highlights the source of the difference. Figure 7.7 shows the
pressures at the top of the flag as computed by CFX to the ones computed by Nǫκταρ.
The components of the traction vector ti = σijnj are given in comparison to the computation
by CFX in Figure 7.8 and Figure 7.10 respectively. For the range 0.248 < x < 0.59 these
components are in good agreement with CFX, however, for the range 0.59 < x < 0.6 the trac-
tions computed by Nǫκταρ seem to follow a developing singularity. The tractions computed
by CFX do not show this behaviour.
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Figure 7.4: FSI1: Fluid spectral- and structural p-element mesh

Figure 7.5: FSI1: Contour plot of the Euclidean velocity norm ‖v‖2

Figure 7.6: FSI1: Contour plot of the pressures
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Figure 7.7: FSI1: pressure at top of the tail, left: x=0.248...0.6

The corners at the end of the flag result in sharp gradients of the pressure and stress fields.
There are two possibilities: (a) The sharp gradients impose more difficulties to the spectral
element discretization then low order methods do. (b) There is a singularity in the solution
solution which is not seen so clearly by other methods. In this case there might not be a
solution at all. Parallels might then be drawn to linear elasticity, where point loads provoke
a singularity in the solution and where a refinement does not lead to convergence. In both
cases, a simple remedy could be to round off the corners. However, then the definition of the
geometry would have to be altered and would not represent the benchmark problems defined
in Chapter 5 any more.
At this point, only the following can be stated: The proposed algorithm leads to results that
are in the range of but different from the results of the computations of other codes on the
benchmark problems presented in Chapter 5. This does not mean the results are incorrect,
merely that they are different.
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Figure 7.8: FSI1: t1 at y=0.21[m] (top of the tail): x=0.248...0.6[m]
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Figure 7.10: FSI1: t2 at y=0.21[m] (top of the tail): left: x=0.248...0.6
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Figure 7.11: FSI1: t2 at y=0.21[m] (top of the tail): right: zoom to tail
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Chapter 8

Coupling to the Lattice Boltzmann

Method

8.1 Recapitulation, Motivation and Questions to an-

swer

This Chapter proposes and investigates new methods for coupling high order structural Finite
Elements to the Lattice Boltzmann Method in order to compute large displacement, transient
fluid-structure interaction. Efficiency and accuracy studies are carried out for benchmark
problems. The results are compared to ones obtained by completely different methods. Parts
of this Chapter have been published in [76].

Among the definitions given in Chapter 1, the previously presented approaches classify as a
type (a) coupling, in which the fluid is modelled via an ALE-formulation. As already pointed
out, these methods were not able to compute the Benchmarks with large deflections. The end
of the computation was forced once the mesh elements overlapped. Figure 8.1 depicts this
situation.

That does not mean that these cases can not be computed via a coupling of type (a) in
general. There are several remedies. One option is to remesh the domain once the element
deformation becomes too large. As remeshing changes the topology of the mesh and therefore
the discretization, the state variables need to be transferred from the old mesh to the new
mesh, preferably by a projection. Another option is to use a better mesh deformation method.
The method implemented in CFX is based on solving a Poisson system of equations where the

(a) pressure field and mesh (b) zoom to tail tip

Figure 8.1: Breakdown of ALE formulation due to large mesh deformation, FSI2 Nǫκταρ
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left-hand side is a force term indirectly proportional to the volume of the finite volumes. This
helps in some situations, however the sharp corners at the tip of the flag combined with the
large deflections depict a strong difficulty for this approach. Nǫκταρ works with the simpler
Laplace Equation (7.7). Methods which are capable of enduring the large mesh deformations
present in cases FSI2 and FSI3 do exist. The group of Schäfer [113], for example, uses an elliptic
grid movement technique as proposed in [124]. Besides the collection of methods published in
[128], grid movement techniques and their limits are topic of the book by Hansen et. al. [60].
Interestingly a horseshoe shaped region with sharp concave corners similar to the one present
at the tip of the flag serves therein as a benchmark test case for their performance. Some of
these methods have been implemented in the course of this thesis as a stand alone program
but the implementation of them into the commercial solver CFX or the code Nǫκταρ is not
trivial. Additionally, no matter which grid deformation method is chosen, at some point, all
of these must lead to unacceptably deformed discretizations, if the boundary motion is only
large enough. This encourages the use of fixed grid approaches of type (b) for FSI.

The approach taken in this Chapter classifies as a special type (b) coupling since a Lattice
Boltzmann Method is used to compute the fluid. It discretizes its unknowns on a fixed,
Cartesian grid. For further clarification the approach for fluid-structure interaction undertaken
in this Chapter is classified according to the work on Immersed Boundary Methods as presented
in the review article by Peskin [103] or more recently by Mittal and Iaccarino [94] and put
into the context of previous work.

The ideas of Peskin, Mittal and Iaccarino have been adopted in [120]. There the combination
of a structural solver incorporating a high order spatial resolution of the structure and a Lattice
Boltzmann Method for the computation of the fluid has been proposed in the context of a
fictitious domain method, where the interface conditions are imposed by means of a discrete
Lagrange multiplier method. The fluid nodes remain active inside the structure.

The approach taken in this Chapter is more similar to a Discrete Forcing approach of an
Immersed Boundary Method, where the fluid-structure interface is represented by a sharp
interface and the boundary conditions are directly imposed onto the structure and on the
fluid at this discrete interface. Thus, the proposed method is most closely related to the
Ghost-Cell Finite-Difference approach mentioned in [94].

There have been previous contributions to this field. The numerical simulation described in
[79] deals with fluid-structure interaction studying a two-dimensional heart-valve with the
structure only performing rigid body motions. In order to incorporate flexible structures, the
structure was computed by a modal expansion using only the low-frequency modes [118, 51]
while the coupled FSI problem was solved by a time-marching scheme. The forces were
exchanged on a Gaussian point mesh which was neither adapted to the needs of the fluid
solver nor correctly mapped to the structural discretization. The displacements obtained were
in the range of the displacements published by Hron and Turek [132] as long as the error of
computing the structure geometrically linearly remained small enough1.

In this chapter, a time domain approach is adopted for the structure in order to be able
to compute geometrically nonlinear displacements. An interface mesh is introduced which
adapts the two completely different discretizations at the interface and it is demonstrated
that the Benchmarks proposed in [132] can be accurately and stably computed using the
explicit coupling algorithm with the force and displacement transfer methods described in

1i.e for FSI1 and FSI3.



72 8. Coupling to the Lattice Boltzmann Method

this chapter.
Specifically, following issues are addressed:

• How can one deal with the problem of the moving boundary in the fluid solver within
this setting?

• How can tractions and displacements be exchanged within this setting?

• Is it possible to solve the given Benchmarks accurately enough using the chosen setup?

• Is it possible to maintain an explicit overall coupling procedure?

• How efficient is the proposed approach?

At this stage it is worth pointing out the motivation of asking the last question. In order to
compute the solution, the worst case scenario for an implicit, partitioned solution makes it
necessary to:

• solve a non-linear fluid problem usually resulting in solving a linear system i times

• solve a non-linear structural problem usually resulting in solving a linear system j times

• possibly iterate over the fluid and solid k times

• do the above steps l times

which leads to (i+ j) ∗ k ∗ l solutions of large linear systems for one overall calculation. This
does not include the extra effort needed to solve a system for the mesh movement and/or
the effort needed to transfer the interface information from the fluid to the solid. The entire
process is a computationally intensive task.
In order to reduce the effort, it is therefore desirable to use

1. a very efficient fluid solver, possibly incorporating an explicit time-stepping scheme on
the fluid side, thereby setting i = 1

2. a very efficient structural solver which, if not explicit, should have a high convergence
rate, if possible

3. an explicit or staggered scheme, in which the information at the interface is only ex-
changed once per time-step. In this case k reduces to 1.

These goals are difficult to achieve. The most vital restriction is the third goal, i.e. the desire
for an explicit coupling algorithm. Whereas explicit, staggered coupling algorithms can be
applied in cases where the fluid is compressible, it proved to be impossible to design a stable,
explicit staggered scheme if the fluid is incompressible [45]. Since the instability stems from
the incompressibility condition of the fluid, a possible, simple remedy is to relax this condition
by using a fluid solver which models weakly compressible flows. A further motivation is that
the timescale of the fluid problem is dictated by the smaller time scales on the fluid side as
compared to the structural side. This often results in having to choose a very small time-step
for the fluid anyway. It would therefore be very convenient if one could employ an explicit
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overall coupling procedure, preferably one in which the fluid performs smaller time steps than
the structure.
The lattice Boltzmann fluid solver is inherently explicit and describes weakly compressible
fluids which will help in trying to maintain an explicit overall-coupling algorithm. It discretizes
the fluid on an adaptive, fixed Cartesian grid so we do not have to worry about fluid-mesh
deformations and the associated problems. In addition, it provides fast and accurate solutions
for fluid problems. Moreover, the efficiency of this CFD code Virtual Fluids has already
been demonstrated in [50], for instance, for non FSI problems. It has been shown that, for
the weakly compressible case, the LB approach has a significant wall clock time advantage
compared to more classical methods like finite volume or finite element methods discretizing
the Navier-Stokes equations. Specifically, Virtual Fluids was as fast as Feat-Flow2 and faster
than CFX.

8.1.1 General considerations

The moving boundary between the fluid and the structure is considered as depicted in Fig-
ure 8.2. With the lattice Boltzmann fluid solver being a finite difference like discretization on

LBM grid

structure

inactive fluid nodes

active fluid nodes

(a) Situation at time-step tn

LBM grid

structure

inactive fluid nodes

active fluid nodes

activated fluid nodes

(b) Situation at time-step tn+1

Figure 8.2: Situation at the boundary: curved p-elements in a lattice Boltzmann grid. Fluid nodes
have to be activated and / or deactivated, as required

a regular fixed grid and the structural solver based on high order finite elements, the following
situation presents itself on the boundary: the lattice Boltzmann solver describes its unknowns
fi(t, x) at specific grid points and propagates them through this lattice. In general, the bound-
ary does not coincide with these grid points. In our implementation, the fluid boundary is
described by a polygon which is used for inter- or extrapolation of the unknowns fi(t, x) [13].
The structural solver, on the other hand, utilizes an explicit geometric description of its bound-
ary. In two dimensions it consists of piecewise continuous polynomials, which typically span
much greater distances than those between two fluid nodes. The boundary description at the
interface must therefore be controlled by the structural solver.
Transient fluid structure interaction with large structural displacements are the goal of the
investigation. This implies that fluid nodes, which were positioned inside the fluid domain at
time-step tn and therefore actively take part in the fluid calculation, may at the next time-step
tn+1 be located inside the structural domain. Since the fluid does not penetrate the structural

2http://www.mathematik.uni-dortmund.de/~featflow/

http://www.mathematik.uni-dortmund.de/~featflow/
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Figure 8.3: Interface mesh as the polygonal representation of the curved boundary of a curved p-
quadrilateral element. The nodes of the Interface mesh coincide with the curved bound-
ary.

boundary, these nodes have to be deactivated. Vice versa, solid points which may happen to
move to the fluid domain have to be activated by initializing them with reasonable values for
the unknowns fi(t, x) to become fluid nodes contributing to the fluid solution. This situation
is depicted in Figure 8.2a and Figure 8.2b.

Within this setting, the overall accuracy of the data transfer on the interface is mainly influ-
enced by:

1. the discretization of the boundary and its proximity

2. the initialization of fluid points with reasonable values

3. the evaluation of tractions at the fluid boundary

4. the computation of the structural force vector

The first point is briefly addressed in Chapter 8.1.2 and further elaborated in Chapter 8.4.1.2
while the second and third point are investigated in Chapter 8.3. The calculation of the
structural force vector is treated in Chapter 8.4.

8.1.2 Boundary discretization

In contrast to the FEM with high order Ansatz functions and relatively large elements, the grid
used within the LBM is Cartesian and in general very fine. The interface description should
be polygonal with a spacing in the order of the grid size. At the same time, the structure
needs to be able to integrate tractions on this mesh into its structural load vector. Therefore,
the boundary is discretized in two dimensions by a polygonal interpolation of the higher order
boundary provided by the structural solver, as depicted in Figure 8.3.

This polygonal representation is used by both codes to exchange data at the interface and is
therefore referred to as interface mesh. The choice of the interface mesh is further elaborated
in Chapter 8.4.1.2.
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8.2 Coupling algorithm

8.2.1 Setup process

The framework (for details see [13]) is based on a client-server concept and realized through
MPI [46]. A master process manages the exchange of data between the structural and fluid
code. Tractions and displacements are exchanged on an interface mesh common to both codes.
The data to be transferred is represented by double values organized in an array structure
situated on the nodes of the polygonal interface mesh and is assumed to vary linearly be-
tween the nodes of the interface mesh (see also assumptions on tractions in Chapter 8.3.2
and displacements in Chapter 8.4.2). As part of the setup, the structural solver provides the
supervisor process with the interface mesh in its initial configuration. This mesh is transferred
to the fluid solver.

8.2.2 Core algorithm

To understand the time-stepping procedure of the FSI algorithm (Figure 8.4) it is important
to note that a nested subcycling is used for the fluid solver. While n fluid steps are performed
corresponding to one structural step, further sub-steps (called fluid-internal steps) need to
be performed in each of these fluid steps, in order to propagate the fluid unknowns fi(t, x)
through the hierarchical, non-uniform grid defined by the LBM solver (see [21]). After the
setup process (Chapter 8.2.1), the algorithm follows these steps:

1. The fluid solver computes the traction vector on the interface mesh points according to
the description in Chapter 8.3.2.

2. The tractions are handed through the interface mesh to the structural solver.

3. The structure integrates the loads with the load conservative scheme, as described in
Chapter 8.4.1.

4. The structural solver computes the displacements described in Chapter 8.4.2, which are
then exchanged through the interface mesh.

5. The fluid solver performs an interpolation of the positions of the interface mesh in time
and computes the solution.

6. Step 5 is repeated for all fluid-internal steps.

7. Step 6 is repeated for the number n of fluid-subcycling steps. The fluid stresses of the
subcycling steps plus the fluid internal steps are averaged.

Thus, the algorithm utilized in this Chapter is a staggered coupling algorithm with a subiter-
ation for the fluid with the specialty that the fluid-solver needs to perform fluid-internal steps
on its subgrids. As pointed out in Chapter 4.3.1 such an algorithm is a member of the family
of the conventional serial staggered (CSS) procedures and is only conditionally stable. How-
ever, and although subject to improvement, the simple version utilized in this thesis suffices
to compute the benchmark cases discussed in Chapter 8.5 within the chosen setup.
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Figure 8.4: Explicit coupling algorithm with multilevel nested time-stepping

The stage is now set for an exact description of how the tractions and displacements are
evaluated at the boundaries of the fluid and solid codes. This is explained in the following
two Sections.

8.3 Fluid Boundary Conditions

8.3.1 Kinetic Boundary Conditions

The kinematic boundary conditions are discussed in more detail in [51], and restated here for
completeness. The linear interpolated bounce back scheme developed in [12, 84] is utilized to
impose velocity boundary conditions. In Figure 8.5 two cases along a link i are defined, which
intersect the boundary at rw = rb + qi êi, where êi = ei ∆t:

(a) wall-node distance qi < 0.5 and

(b) wall-node distance qi ≥ 0.5.

The modified bounce back scheme is

fI(t+ 1, rb) = (1− 2qi)f̃i(t, rb − êi) + 2qi f̃i(t, rb)−
6wi ρ0

c2
ei · u(t, rw), 0.0 < qi < 0.5

(8.1)

fI(t+ 1, rb) =
(2qi − 1)

2qi
f̃I(t, rb) +

1

2qi
f̃i(t, rb)−

3wi ρ0

qi c2
ei · u(t, rw), 0.5 ≤ qi ≤ 1.0,

(8.2)



8.3. Fluid Boundary Conditions 77

rb
q ∙i Δx

r eb i-
Δx

f (t, - )i b ir e f (t, )i brf (t, )I br
~ ~ ~

rw

^

^
u ,r(t w)

Figure 8.5: Situation at the boundary: kinetic boundary conditions.

where u(t, rw) is the velocity of the moving wall. With this scheme second order accurate
results in space even for curved geometries are obtained [50]. For a detailed discussion of LB
boundary conditions including pressure boundary conditions it is also referred to [56].
As indicated in Chapter 8.1.1, fluid nodes have to be created and deleted due to the moving
structure. Newly activated fluid nodes have to be initialized. Depending on the geometrical
configuration, velocities are linearly inter- or extrapolated to the new nodes. A local Poisson
type iteration, as described in [111], is used at those nodes to compute a consistent pressure
and higher order moments.

8.3.2 Traction evaluation at the fluid boundary

There are two possibilities for evaluating forces on boundaries using the LB method: (a) the
momentum exchange-based method and (b) the pressure/stress integration-based method. A
comparison of both methods can be found in [91].
The momentum exchange works well for forces acting on large structural elements when only
the integral of the force is relevant, but it is less feasible for the calculation of tractions when
the extension of the interface line segments is in the order of the fluid mesh resolution. In the
latter case, the stress integration method is preferable.
As stated in Chapter 3.4.4, the complete stress tensor τij as given in Equation (3.17) can be
computed at every node via a summation of Equation (3.71) and Equation (3.72) without the
need of computing derivatives of the velocity field. The stresses at the boundary nodes are
computed by inter/extrapolation.
Assume that, for a spacing hb of interface line segments and grid size hg of the LBM grid,
hb >

√
2hg. There are 16 possible cases of how the solid boundary may be positioned with

respect to the fixed fluid lattice. Figure 8.6 shows all 16 cases. They correspond to the
Marching Squares (2D) and Marching Cubes (3D) algorithms [89] generating isolines and
isosurfaces on fixed Cartesian grids. The index in Figure 8.6 is the sum of the bits of the fluid
nodes, thereby identifying the corresponding case number.
The basic procedure of transferring stresses to the structural boundary is explained by means
of an example. Consider Figure 8.7 which depicts two typical situations at a solid boundary.
As indicated in the caption of Figure 8.7, the case depicted in Figure 8.7a corresponds to
case (14) of Figure 8.6 and the case Figure 8.7b to case (12) of Figure 8.6. The grey area
symbolizes the solid structure moving over the fluid lattice. In Figure 8.7a node sw lies inside
the structure and is deactivated from the fluid point of view. The fluid stresses τ sw at this
point are therefore zero. The procedure to compute the stresses at the boundary points τ a,
τ b and τ c is described below for τ b:

1. Reconstruction of nodal values by extrapolation:
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Figure 8.7: Two possible situations at the boundary: (a) corresponds to case 14 of Figure 8.6 and
(b) corresponds to case 12 of Figure 8.6

first the fluid stresses τ sw are computed by extrapolation of the stresses τ ne, τ nene:

τ sw = 2 · τ ne − τ nene

If one were to consider the situation in Figure 8.7b instead, this extrapolation would
read:

τ sw = 2 · τ nw − τ nnw

τ se = 2 · τ ne − τ nne

2. Bilinear interpolation of stresses to boundary nodes:
With the stresses known at the points sw, nw, ne, and se it is now possible to use bilinear
interpolation to evaluate the stresses at the structural surface. The two aforementioned
steps are repeated for all structural boundary nodes. As the extension of the structure
is usually larger than the lattice distance of two neighboring LB-nodes, cases (10) and
(5) are excluded. For case (15), the stress interpolation is bilinear. For the rare case (0)
the stresses of the last time-step are imposed.

3. Computation of fluid loads on the boundary:
To obtain the traction vector ts for the structure, the stress tensor τ has to be multiplied
by the normal of the boundary nboundary.

ts = τnboundary (8.3)
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Figure 8.8: Evaluation of tractions from stress integration

Assuming that the stress components are linear between two boundary nodes (see Fig-
ure 8.8), the traction vector tb at point b e.g. is computed by:

tb =
(1

4
τ a + 3

4
τ b)nab

1
2
lab + (3

4
τ b + 1

4
τ c)nbc

1
2
lbc

1
2

(lab + lbc)
(8.4)

where lab and lbc are the distances between the points a,b and b,c.

8.4 Solid Boundary Conditions

8.4.1 Force transfer

8.4.1.1 Fluid loads for large structural displacements

The basic equation solved by the structural high order code FEM AdhoC4 [31] is the weak form
of the equation of motion in its material configuration as given by Equation (2.19). The most
important part in Equation (2.19) is term (d) as it describes the work done by the external
tractions t0 on the boundary of the solid under consideration. In this material configuration,
all forces and tractions are applied in the initial configuration. This is further emphasized by
the notation of length of the boundary dA in capital letters.

However, the fluid solver updates its boundary conditions at each time-step, which implies
that the tractions are computed on the deformed boundary. To further clarify this point, it is
stressed that both the direction of the tractions and the area on which they act are a result
of the (previously unknown) deformation state. The final deformation state is determined by
the equilibrium of forces between the fluid and the structure, which is approximated either
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by explicit determination of the state or, more accurately, by an implicit but labor-intensive
iteration over both fields.3

Therefore, the virtual work resulting from the fluid traction is defined as:

δWs =
∫

∂a

t · δv dl =
∫

∂aref

δv · t ‖ e3 × q,r ‖ dr (8.5)

in two dimensions. In the second part of Equation (8.5) the unit vector e3 is orthogonal to the
x-y plane and q,r is the derivative of the mapping function q describing the deformed interface.
This last part describes the change of the length compared to the initial configuration and is
computed in the structural solver while the traction vector t is computed by the fluid solver
using the current length l and the normals nab in Equation (8.4).

8.4.1.2 Composed integration

Two types of polygonal interface meshes have been considered. They are depicted in Figure 8.9.

LBM grid

one structural
-elementp

LBM grid points whose values can
not be transferred to the interface mesh

Gaussian integration points as end nodes
of polygonial interface mesh

(a) Gaussian interface mesh

LBM grid

one structural
-elementp

equidistantly distributed points as
end nodes of polygonial interface mesh

one integration segment with two
nodes on the element boundary

(b) Equidistant interface mesh

Figure 8.9: Two choices for interface meshes: (a) an interface mesh whose nodes coincide with the
Gaussian points on the structure (b) an equidistant mesh, ensuring that all LBM-nodes
close to the boundary are considered in the load transfer. The tractions then have to be
integrated into the structural force vector by means of composed integration.

The first type is a mesh whose nodes are the Gaussian integration points on the boundary of
the high order structural element as depicted in Figure 8.9a. This type has been investigated
in detail in [116, 115]. With the tractions directly available at the integration points, no
further effort is required and the structural force vector may be integrated in the standard
way. However, a closer look reveals two disadvantages. Firstly, the Gaussian mesh is much
denser towards the vertices of the boundary of the p-elements while it is relatively coarse in the
middle of the elements. With this type of mesh it is more probable that some fluid points in the
middle are omitted because the local inter -/extrapolation scheme described in Chapter 8.3.2
can only bridge about the distance of two fluid nodes without disregarding intermediate ones.
Secondly, this method may lead to insufficient accuracy in approximation of Equation (8.5).

3The same situation arises with follower loads in solid mechanics (see footnote 4 in Chapter 2.1) where the
direction of the load is a result of the a priori unknown equilibrium position of the structure. Rakishly spoken,
the deformation dependent term in partitioned FSI, which arises in follower loads and leads to an extra term
in the stiffness matrix is treated via the "right hand side" of the coupled system.
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The main difficulty in Equation (8.5) is that the load function is at most C0 continuous while
Gaussian integration assumes a Cp continuous integrand and thus cannot take the kinks of the
force function on the boundaries of the fluid domain into account. Examples of the convergence
of such an integration have been given in [118], for instance.
In view of these drawbacks, a second type of mesh was used on which an accurate integration
may be performed, which is equidistant and may be arbitrarily fine. The principle layout
is depicted in Figure 8.9b while the computational procedure is depicted in more detail in
Figure 8.10. The basic idea is simple. Instead of integrating the traction function over the
entire solid element with one Gaussian integration, the computation of the elemental force
vector in Equation (8.5) is split up into sections (e.g. integration segments) and the integration
is then performed as a composed integration of these segments (see also Chapter 4.2.3). The
integration is carried out in the spatial configuration according to Equation (8.5) where a
linear function q is chosen for the mapping of the interface lines. In this case, the derivative
of q simply evaluates to:

q,ir =
1

2

(

xi+1 − xi
)

(8.6)

where the mapping of the ith interface line segment is denoted by q,ir. In Equation (8.6)
xi represents the position vector of the ith point of the integration segments. A Gaussian
integration is performed within each interface line segment.
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The discrete form of the elemental structural surface load vector is then composed by summing
up the values from all interface line segments as:

Fe
s =

m∑

i=1

n∑

j=1

Ne
s
T (ξi

j, η
i
j)t

i
s(rj) ‖ e3 × q,ir(rj) ‖ wi

j (8.7)

where m is the number of interface line segments forming the interface mesh of one structural
element and n is the number of Gaussian points rj used for the integration of each individual
line segment. Ne

s
T (ξ, η) are the shape functions of the loaded quadrilateral which are evaluated

at the jth Gaussian point of the ith interface segments and wi
j are the corresponding Gaussian

weights. Since the values of ti
s(r) are given only at the nodes of the interface line segments

and a linear representation is assumed in coincidence with Chapter 8.2.1 and Chapter 8.3.2,
the tractions are interpolated linearly to the individual Gaussian points of the interface line
segments.

8.4.2 Displacement transfer

The displacements are evaluated by the structural solver directly at the nodes of the interface
mesh and transferred as a new boundary position to the fluid. It should be borne in mind
that, unlike the fluid, the structure represents its boundary by a piecewise polynomial of higher
order. This disparity of the boundary description might lead to introducing or rarefying energy
at the interface. A global L2 or a local H

1
2 projection as described in Chapter 4.2.4 might

serve to minimize this error. This has not been performed here.

8.5 Verification against numerical Benchmark

The coupling methods were verified against the two-dimensional Benchmarks described in
Chapter 5.1.
All proposed configurations have been computed using the methods described in this chapter.
On the structural side, the anisotropic trunk space was applied with a polynomial degree of 6
in longitudinal direction and 4 in thickness direction.
The fluid was discretized by a refined grid of level 6-8 unless stated otherwise. The following
notion of refinement is used: level 0 states that the grid resolution ∆x is as large as the
shorter boundary of the domain, meaning that the shorter boundary is resolved by only two
LB nodes. Each refinement level bisects the grid spacing. A refinement level of 1 resolves the
shorter boundary with three LB nodes, level 2 with five LB nodes and so on. The number of

nodes in a square domain can be computed by: LBMnodes =
(

2level n + 1
)2

and accordingly,
the number of nodes present for the current benchmark geometry can be estimated for one

level by LBMnodes =
(

2level n + 1
)2 2.1[m]

0.42[m]
. Level 6-8 states that an adaptive local refinement

has been performed starting from level 6 down to level 8. The refinement criterion used here
was proposed in [21]. The fluid calculation was started from a converged solution using a fixed
flag. The adapted refinement resulted in a “cloud” like refinement around the structure and
into the field. A graphic illustration of the spatial refinement is depicted in Figure 8.11. The
total amount of fluid grid points is shown in Table 8.1. Although it is possible in principle
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Figure 8.11: FSI2: Zoom of discretization and refinement for level 6-8.

to adapt the refinement during the solution of the adapted transient problems, it is quite an
expensive operation. Therefore, the precomputed adapted refinement was used and kept fixed,
which leads to satisfactory results also for the instationary benchmarks.
Unless stated otherwise, a refinement of level 8 was present at the structure. This leads to
a spacing of the LBM nodes at the structural interface of hb = 1.68 × 10−3[m]. The size of
interface line segments of the interface mesh was chosen to be hb ≈ 2.0 × 10−3[m] such that
almost every fluid node has a corresponding point on the interface mesh.
The structure is composed of extremely soft material and exhibits strong geometrically non-
linear deflections for cases FSI2 and FSI3. It is difficult to define a stable time integration
method for such a configuration. Applying the generalized-α method leads to unstable results
in the coupled computation. As stated in Chapter 6.2 and Chapter 7.2.2, a Newmark method
with a parameter set of β = 0.49, γ = 0.9 to eliminate numerical instabilities in the structural
time integration was utilized. For the sake of comparison, these parameters were also used
in the stationary case FSI1. All cases were computed with a fluid subcycling of two: for
one overall coupling step, the fluid performed two complete fluid solutions including internal
substeps, while the structure only performed one. The fluid Mach number was chosen to be
Ma = 0.1 in each case. All other specifications are listed in Table 8.1.

Case ∆t structure[s] LBM nodes

FSI1 2.52591× 10−3 [125553]

FSI2 5.05182× 10−4 [160170]

FSI3 2.52591× 10−4 [275646]

Table 8.1: Specification of parameters used to compute FSI1, FSI2 and FSI3

The deflection of the flag at point A, as depicted in Figure 5.2, is summarized in Table 8.2
and compared with the results obtained by [132]. The deflections are given as “〈mean〉 ±
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〈amplitude〉[Hz]” where mean = 1
2
(max+min) and amplitude = 1

2
(max−min) are computed

from the last period of the oscillations. The frequency was computed by means of a Fourier
analysis of the periodic data. To give some idea of the computational efficiency, the column
entitled “time” gives the real time in seconds which was computed over 24 hours on a 1.6GHz
AMD OPTERON processor. The computations in Chapter 6.2 are three-dimensional and
the computations in Chapter 7.2.2 were obtained with inefficient programming. A direct
comparison of the computational time needed is not considered to be reasonable. The stated
computational times are only meant to give an estimate of the effort needed to compute these
benchmark problems.
Drag and lift are evaluated by means of Equation (5.1). The results are summarized in
Table 8.3 and compared with the results obtained by [132].
While FSI1 leads to a stationary displacement, FSI2 and FSI3 lead to a periodic motion of
the flag. These instationary results are also depicted in Figure 8.12 and Figure 8.13 in which
the results obtained by [132] are shown as well.

Case ux(A)[m] ± [Hz] uy(A)[m]± [Hz] time [s/day]

FSI1 2.29× 10−5 8.10× 10−4 5.2

FSI1ref 2.27× 10−5 8.209× 10−4 ∅

FSI1 [%] deviation 0.9 −1.3 ∅

FSI2 −1.51× 10−2 ± 1.28× 10−2[3.8] 1.20× 10−3 ± 8.34× 10−2[1.9] 2.7

FSI2ref −1.458× 10−2 ± 1.244× 10−2[3.8] 1.23× 10−3 ± 8.306× 10−2[2.0] ∅

FSI2 [%] deviation 3.6± 2.9[0.0] −2.4± 0.4[−5.0] ∅

FSI3 −2.88× 10−3 ± 2.71× 10−3[11.0] 1.48× 10−3 ± 3.51× 10−2[5.5] 0.8

FSI3ref −2.69× 10−3 ± 2.53× 10−3[10.9] 1.48× 10−3 ± 3.438× 10−2[5.3] ∅

FSI1 3 [%] deviation 7.1± 7.11[0.9] 0.0± 2.1[3.8] ∅

Table 8.2: Results obtained and comparison with reference [132]. The deflections ux(A) and uy(A)
are given as follows:“〈mean〉 ± 〈amplitude〉[Hz]” where mean = 1

2(max + min) and
amplitude = 1

2(max − min) are computed from the last period of the oscillations; ∅

no results available

Figure 8.14 shows the fluid and the deflection of the flag of FSI2.

8.5.1 Sensitivity to selected discretization parameters

In order to show the sensitivity of the chosen parameters to the results the following conver-
gence studies have been carried out as exemplary for test case FSI1. The structural discretiza-
tion remained fixed in all test cases to the one mentioned above.
The convergence of the deflection of Point A was computed while varying the fluid discretiza-
tion. As opposed to the computations with a priori local refinement, a uniform fluid dis-
cretization with only one level of fluid nodes throughout the domain was used. To balance
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Figure 8.14: FSI2: velocity norm in the fluid at t = 5.0[s]
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Case Fd[N ]± [Hz] Fl[N ]± [Hz]

FSI1 14.31 0.757

FSI1ref 14.295 0.7638

[%] deviation 0.1 −0.9

FSI2 216.60± 89.31[3.8] −1.23± 283.00[1.9]

FSI2ref 208.83± 73.75[3.8] 0.88± 234.20[2.0]

[%] deviation 3.7± 21.1[0] 239.77± 20.9[5.3]

FSI3 462.53± 31.34[11.0] 1.81± 154.22[5.5]

FSI3ref 457.3± 22.66[10.9] 2.22± 149.78[5.3]

[%] deviation 1.1± 38.3[0.9] −18.4± 3.0[3.8]

Table 8.3: Results obtained and comparison with reference [132], Fd and Fl are computed according
to Equation (5.1) whereby ∂A is the wetted boundary of the flag plus the wetted boundary
of the cylinder. Drag Fd lift Fd are given as follows:“〈mean〉 ± 〈amplitude〉[Hz]” where
mean = 1

2 (max + min) and amplitude = 1
2(max − min) are computed from the last

period of the oscillations

the error resulting from the spatial discretization and the error introduced by utilizing a Mach
number greater than zero, the Mach number was reduced with each level of refinement as well.
The computational time in real time seconds per day is given additionally. The results are
presented in Table 8.44.

level Ma ∆t× 10−5[s] uy(A)[m] ux(A)[m] time [s/day]

7 0.05 31.57 1.018× 10−3 2.127× 10−5 11.4

8 0.025 7.89 8.337× 10−4 2.199× 10−5 3.1

9 0.0125 1.97 8.201× 10−4 2.216× 10−5 0.55

Table 8.4: FSI1: Deflections at point A for different fluid discretizations.

The computation converges to uy(A)[m] = 8.200× 10−4, which is in excellent agreement with

4As opposed to [76] Table IV, the data in Table 8.4 was recomputed with faster computer, an Intel
Xeon CPU E5520 with 2.27GHz and a i386-apple-darwin-9.0 operating system. Additionally, the interface
meshsize hg was chosen to be 0.004[m], 0.002[m], 0.001[m], for level 7,8,9, respectively and is thus finer and
more appropriate as in [76]
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the reference value of uy(A)[m] = 8.209× 10−4.
In order to judge the influence of the size of the interface line segments two studies have been
performed. Both were carried out with a fluid discretization of level 6-8, a Mach number of
0.1, and a fluid subcycling of two.
First, the size of the interface line segments was varied while the flag was fixed by assigning
it a very large Young’s modulus. The drag Fd and lift Fl on the structure was computed
according to Equation (5.1) by evaluating the tractions through composed integration. The
results are given in Table 8.5. The fluid discretization of level 6-8 results in a spatial resolution
of the Boltzmann grid points of hg = 1.68× 10−3[m] at the fluid-structure interface. The size
of the interface line segments was then successively decreased from hb ≈ 1.6× 10−2[m] down
to hb ≈ 2.0× 10−3[m]. This corresponds to decreasing the ratio hb/hg from 9.8 to hb/hg ≈ 1.2
whereby at hb/hg ≈ 1.2 almost every fluid node has a corresponding point on the interface
mesh.

hb/hg Fd[N ] Fl[N ]

9.8 5.483× 10−2 1.221× 10−3

4.9 5.020× 10−2 1.252× 10−3

2.4 5.118× 10−2 1.270× 10−3

1.2 5.119× 10−2 1.277× 10−2

Table 8.5: FSI1 with fixed structure: Forces on flag with different interface mesh sizes, Fd and Fl

are computed according to Equation (5.1) whereby ∂A is the wetted boundary of the flag
only.

As a second study the size of the interface line segments was varied with the flag having the
proposed Young’s Modulus of Es = 1.4× 106[ N

m2 ]. The deflection of the flag and the forces at
the flag were measured. The results are given in Table 8.6

hb/hg Fd[N ] Fl[N ] uy(A)[m]

9.8 5.162× 10−2 7.537−3 9.798× 10−4

4.9 5.026× 10−2 7.888× 10−3 8.855× 10−4

2.4 5.033× 10−2 8.121× 10−3 8.214× 10−4

1.2 5.102× 10−2 8.189× 10−2 8.096× 10−4

Table 8.6: FSI1: Forces on flexible flag with deflection at point A with different interface mesh sizes.
Fd and Fl are computed according to Equation (5.1) whereby ∂A is the wetted boundary
of the flag only.
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Figure 8.15: FSI2: Force error obtained by integration in material configuration

8.5.2 Discussion of consistent traction evaluation in the structure

As stated in Chapter 8.4.1, it is important to evaluate the fluid forces consistently with the
deformed fluid boundary by an appropriate mapping. This is emphasized by Figure 8.16 where
this mapping was performed, as compared to Figure 8.15 where the mapping was disregarded
for illustrative purposes. Figure 8.15 clearly depicts the periodic behavior of the error in the
force transfer, which stems from the periodic motion of the boundary. The relative error
measure:

e[%] =
Ffluid − Fstructure

Ffluid
100[%] (8.8)

was used to evaluate the error in the transfer of the forces. When the fluid forces Ffluid become
zero, this error measure tends towards infinity. Graph 8.16 was thus cut off at an error of
100[%].

8.5.3 Discussion of energy conservation at the interface

As stated in Chapter 8.2 the chosen coupling method is equivalent to the CSS procedure
analyzed e.g. by [105] with the modification that the fluid-solver performs fluid-internal steps
on its subgrids.

Therefore, the analysis presented in [105] can be applied here as well. The time integration
of the structure is performed by the Newmark scheme, while the fluid time integration is
best characterized by an explicit forward Euler scheme. Thus, the discrete approximation to
Equation (4.4) is computed on the interface mesh as both systems are advanced from time
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Figure 8.16: FSI2: Force error obtained by integration in spatial configuration

step n to n+ 1 as follows:

∆En→n+1
Γ = ∆E

S,n→n+1
Γ + ∆E

F,n→n+1
Γ

= t(n+1),c
s ·

(

dn+1
s − dn

s

)

− tn
f ·
(

d
(n+1),p
f − d

n,p
f

)

(8.9)

Here, t(n+1),c
s are the tractions at the interface as experienced by the structure at time step

n + 1 and d
(n+1),p
f are the displacements at the interface as experienced by the fluid at time

step n+ 1.
The algorithm described in Chapter 8.2 chooses a zero order predictor ·,p for the displacements
and a (corrected ·,c) force transfer according to:

d
(n+1),p
f = dn+1

s

t(n+1),c
s =

1

∆t

n+1∫

n

tf(t) dt (8.10)

where 1
∆t

∫ n+1
n tf(t) dt denotes that the tractions are averaged over the considered time step.

An improved version of CSS suggests the choice of a first order structural predictor and a
force correction according to:

d
(n+1),p
f = 2dn

s − dn−1
s

t(n+1),c
s =

2

∆t

n+1∫

n

tf(t) dt− tn
f (8.11)

Exemplarily, the energy artificially created (or dissipated) at the interface is computed for
case FSI2 because this configuration exhibits the largest deflections.
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Figure 8.17: FSI2: y-deflection at point A obtained by utilizing the predictor/corrector
pairs of Equation (8.10) and Equation (8.11)) at a fluid subcycling of four

While the transfer of displacements and tractions according to Equation (8.10) lead to a stable
computation of FSI2 up to a fluid subcycling of two, FSI2 exhibits catastrophic instabilities
with a fluid subcycling of four. Stability may be recovered by using Equation (8.11) for the
exchange of variables at the interface. The corresponding displacement curves for point A
are depicted in Figure 8.17 for the first four seconds of the coupled computation. Figure 8.18
displays the created artificial energy at the interface by summing up Equation (8.9) for all
time steps to give Etot =

∑n=ncurrent
n=1 En→n+1

Γ . The instability of the inferior method is clearly
depicted by the overproportionally large growth of Etot. By using Equation (8.11) instead of
Equation (8.10) Etot remains within acceptable bounds.
More accurate versions of the CSS procedure or other methods such as the Improved Serial
Staggered procedure ISS may be applied. However, as stated e.g. in [105], the optimal choice

for d
(n+1),p
f and t(n+1),c

s depends on the properties of the time integration of the individual
subdomains. To be more precise, the chosen version of the Lattice Boltzmann Method is a
second order time accurate method which achieves its second order accuracy by directionally
integrating the unknowns fi(t, x) along the discrete positions at its lattice by a forward Euler

procedure. In view of this background, it is not apparent at first sight which pair for d
(n+1),p
f

and t(n+1),c
s is optimal for the presented setting. A detailed investigation is beyond the scope

of this thesis.
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Figure 8.18: FSI2: artificial interface energy for predictor/corrector pairs of Equa-
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8.6 Validation against experimental Benchmark

In this section, the computational setup is validated against the experimental Benchmarks
defined in Chapter 5.2. For both Reynolds numbers this benchmark turned out to be quite
challenging. Stable computations could only be obtained for a fluid grid with 1360 × 960
nodes. For lower resolutions, the mass of the flag had to be increased in order to avoid
instabilities. The results of the computation are visually compared to the experiment in
Figure 8.19 and Figure 8.20 for Re = 140 and Re = 190, respectively. The computed pattern
of the deformation is found to be in good agreement with the experiment. The frequencies of
the vibration of the flag were measured to be 6.38[Hz] and 13.58[Hz] while the computation
leads to 6.71[Hz] and 16.7[Hz]. The low frequency can be captured quite well. However,
the deviation of the higher frequencies is not negligible and subject to further investigations.
Possible remedies are to use an even finer discretization of the fluid domain, a lower Mach
number or the usage of more sophisticated coupling schemata.

8.7 A three-dimensional Benchmark

The presented methods were transferred to three dimensions. However, the extrapolation
scheme as described in Chapter 8.3.2 requires a quick localization not only of the discretization
points next to the structure, but also of the discretization points in the second row next to
the structure including all its discrete distribution function values fi. A quick access to these
is not implemented into the data structure. The provision of all the necessary fi’s is work in
progress.
To avoid this difficulty, the stress computation at the fluid boundary in the fluid solver is
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Figure 8.19: experimental Benchmark 1 Re = 140

implemented in a simplified form. For now, only the closest fluid node along the normal di-
rection of the surface is detected. Its stress tensor is then computed and directly imposed on
the boundary without extrapolation. Such a procedure is also called next neighbour interpo-
lation (see i. e. [58]). This is only a first step and it is the final goal to fully implement the
method presented in Chapter 8.3.2. However, for simple cases, the simplified method leads to
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Figure 8.20: experimental Benchmark 2 Re = 190

relatively accurate results as shown next.

In order to evaluate the three-dimensional setup, the Benchmark presented by Bathe and
Ledezma in [6] is used. It consists of a plate in cross flow as depicted in Figure 8.21. The
Reynolds number is defined according to Equation (3.22) where the characteristic length L is
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chosen to be the height of the channel H = 5[m] and the kinematic viscosity ν is computed
according to Equation (3.20). In order to obtain a stationary fluid solution, the low Reynolds
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Figure 8.21: three-dimensional Benchmark according to [6]

number of Re = 10 was chosen to be simulated first. Generally, the force acting on the
structure can be estimated as i.e. given in [14]:

Fd =
1

2
CdAρv

2 (8.12)

Cd is the drag coefficient, A is the area perpendicular to the flow, ρ is the density of the fluid
and v2 is the free field velocity of the fluid. The crucial point here is that Cd is not only
dependent on the shape of the object but also on the Reynolds number. It is tabulated for
standard cases e.g. in [97]. For a sphere at a Re = 1 the drag coefficient is Cd ≈ 140 while
at Re ≥ 1000 it decreases to around 0.47. For a plate in cross flow at Re ≥ 1000, Cd ≈ 1.
To the authors knowledge, the case of a clamped plate subject to a cross flow at Re = 10 is
not tabulated. It has therefore been determined by a fully three-dimensional computation via
CFX where the discretization was adapted to the pressure field in three steps. This resulted
in a discretization of about 2 016 708 tetrahedral elements with 399 399 nodes. A view of the
pressure field and its discretization as computed by CFX is depicted in Figure 8.22a. The
pressure field as computed by LBM is depicted in Figure 8.22b.

From the steady state computation with CFX, the drag coefficient was determined to be
Cd = 9.46. A rough estimate of the expected deflection at the top of the plate can be
computed via application of the force given by Equation (8.12) to a clamped beam. Under
the assumption of small displacements and a constant load, the analytical solution simply is:

uy(A) =
qL4

8EI
; (8.13)
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(a) CFX

(b) LBM

Figure 8.22: Pressure field of plate in cross flow computed by two different methods: (a) CFX:
Visualization with CFX-postprocessor (b) LBM

where the load is q =
Fd

A
, the height of the beam is L = 3[m]. The stiffness EI is the plate

stiffness and can be computed by:

EI =
Et3

12(1− ν2)
(8.14)

The first study is to evaluate the simplified stress computation and the correct detection of
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v[m
s

] uy(A)[m] uy(A)[m]

according to Equation (8.13) computed via AdhoC-LBM

2.0× 10−4 1.53× 10−4 1.69× 10−4

2.0× 10−3 1.53× 10−2 1.65× 10−2

2.0× 10−2 1.53 1.24

Table 8.7: Benchmark Bathe at Re = 10, Ma = 0.05 and different inflow velocities

the neighbouring nodes next to the structure according to its normal. In order to achieve a
range of different deflections at Re = 10, the Benchmark was computed with three different
inflow velocities v1 = 2.0×10−4[m

s
], v2 = 2.0×10−3[m

s
] and v3 = 2.0×10−2[m

s
] where the fluid

viscosity was adjusted accordingly. The deflection should be in the range of the prediction
via Equations (8.12) and (8.13) and scale quadratically with the inflow velocity as long as the
deflection remains within the limits of geometrical linearity.

The structure was discretized by 180 elements with a polynomial degree of three in all di-
rections and computed geometrically linear. To reach a steady state quickly, the mass of the
structure was chosen to be ρs = 1.0×106[ kg

m3 ] and the first Eigenfrequency of the structure was
damped out with a stiffness proportional damping. The fluid was discretized with a uniform
mesh of 96× 144× 60 nodes. The Mach number was chosen to be Ma = 0.05. The size of the
interface mesh elements was chosen to be approximately equal to the fluid discretization. The
results lie within the expected range of accuracy and are given in Table 8.7. The transient
behaviour over time is depicted in Figure 8.23.

In a second step, the Reynolds number was raised to Re = 500 by means of increasing the
inflow velocity to v = 1.0× 10−2[m

s
], while all other parameters were kept constant. Unlike at

a Reynolds number of Re = 10, a Reynolds number of Re = 500 leads to transient behaviour
in the fluid. Vortexes detach at the tip of the plate and disperse into the domain. A snapshot
of the streamlines is depicted in Figure 8.24a clearly demonstrating these vortexes. However,
they only have a minor effect on the structure which settles at a quasi stationary deflection of
uy(A) = 8.97 × 10−2[m] ± 5.64 × 10−4[m]. In contrast, Bathe and Ledezma [6] compute the
deflection at Point A to be uy(A) = 6.6×10−2[m]. In search for the true value, the Benchmark
was recomputed with Ansys-CFX Multiphysics Version 12. In this setting, explicit coupling
algorithms lead to instabilities and a two-way fluid-structure interaction analysis needed to
be set up. This implicit coupling required an underrelaxation in the displacements according
to Equation (4.27) with ω = 0.15. The time step step was chosen to be ∆t = 2.5[s] for
fluid and structure alike. The structure was discretized with 204 hexahedral elements. The
fluid was discretized with 569 402 tetrahedral Finite Volume elements with 102 384 nodes as
opposed to Bathe and Ledezma who used a mesh of 37*54*22 hexahedral elements in their
finest resolution. The complete time history of the deflection of point A as computed by
Virtual Fluids - AdhoC (LBM-p-FEM) is directly compared to the time history of Point A
obtained by the computation with Ansys-CFX Multiphysics in Figure 8.24b.

The direct comparison as shown in Figure 8.24b is very strict. Different starting values, for
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Figure 8.23: Plate in cross flow at Re = 10: y- deflection at point A obtained by LBM–p-FEM for
different inflow velocities

example, will almost always lead to different time-histories before the system has locked in5.
This difference diminishes as time procedes. The deflection at point A is thus compared in its
last oscillation only and amounts to uy(A) = 9.43×10−2[m]±1.0×10−3[m] for the Ansys-CFX
Multiphysics computation. It is thus 4.9% larger in the mean and a little less than double
as large in its amplitude as compared to the solution computed by Virtual Fluids - AdhoC
(LBM-p-FEM) .
These differences might be due to the fact that LBM discretization is still too compressible
considering the intermediate Mach number of Ma = 0.05 as compared to the incompressible
nature of the fluid discretization utilized in CFX. These lower deflections might also partly
be attributed to the simpler and less exact next neighbor force transfer method chosen in
the LBM-solver. However, the results agree quite well considering the complicated physics
involved and the completely different approaches used for this comparison.
In a third test the Reynolds number was raised to Re = 2500 by increasing the fluid velocity at
the inflow to v = 5.0× 10−2[m

s
] while all other fluid and structural discretization parameters

were kept constant w.r.t. the test case Re = 500. The resulting deflection at point A is
depicted in Figure 8.25a and the streamlines are depicted in Figure 8.25b. The mean deflection
for this case amounts to uy(A) = 1.36[m]. As in the previous case where Re = 500, Bathe
and Ledezma [6] again arrive at a smaller deflection and give uy(A) ≈ 1.0[m]. Unfortunately,
no comparison with Ansys-CFX Multiphysics is available at the time of submission of this
thesis6.

5This is especially difficult in a turbulent, transient computation because it is virtually impossible to start
with the same fluid state for both solvers.

6Part of the problem here is that such comparative studies are painfully time consuming, even on the most
modern machines. The last run with Ansys-CFX Multiphysics for the case Re = 500, for example, took 4 days
even though it was computed on an up to date machine and in parallel using 4 Intel Xeon E5405 processors
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(a) Streamlines as computed by Virtual Fluids - AdhoC (LBM-p-FEM)
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(b) Deflection at point A: Comparison of computations with Virtual Fluids -
AdhoC (LBM-p-FEM) and Ansys-CFX Multiphysics

Figure 8.24: Plate in cross flow at Re = 500

each with 2GHz. This after many previous runs of trying to guess the correct, problem dependent settings
such as a good underrelaxation factor, the proper time step, tight but not too tight convergence values, and
all the other nitty gritty details one has to find out and pre set for such multyphysics computations.
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(a) Streamlines
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(b) Deflection at point A

Figure 8.25: Plate in cross flow at Re = 2500
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Chapter 9

Beyond Benchmarks

9.1 Very large structural deflection

With the coupling setup being an Immersed Boundary Method where the LBM solver provides
the fluid solution on its fixed background mesh, it comes as no surprise that well known
advantages of coupling to fixed grid methods can be enjoyed, namely the ability to compute
very large displacements without the necessity of remeshing. As shown in Figure 9.1 it is
possible, for example, to let the structural component of the experimental benchmark described
in Chapter 5.1 fall freely through the fluid domain. This can be realized via releasing the
Dirichlet boundary conditions at the center of the cylinder. It is stressed that, once the

Figure 9.1: Very large displacement FSI: free falling experimental benchmark5 (Re = 140)

boundary conditions are correctly imposed and the coupling setup is validated and verified,
large deflections impose virtually no additional difficulty to this type of coupling.
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9.2 A free surface example

This example is to show a typical benefit of a partitioned as opposed to a monolithic solution
approach. The computation of other types of surface coupled problems are possible with only
minor changes. Figure 9.2 shows the coupling between a high order solid tower hit by a free
surface wave. The tower was computed by AdhoC4and the fluid by Virtual Fluids.

Figure 9.2: Tower hit by a wave

9.3 An example of practical interest

Large parts of this thesis deal with verification and validation of examples which are interesting
for research purposes in order to gain confidence in the involved codes and the newly developed
methods. However, having achieved this it is of interest as well to attempt to compute a very
large example. The Millau bridge fits into this class of problems. This example is to serve as
a motivation for future development and to discuss the principle applicability of the setup to
problems of this size.
The Millau bridge is the world largest cable-stayed road-bridge spanning the valley of the river
Tan in southern France [141]. A picture of the bridge in construction is depicted in Figure 9.3.
It was built using a timed shifting method. It is prone to wind induced vibrations especially
in the construction phase when the cantilever arm of the bridge is not yet supported by the
subsequent bridge pier.
The computational model of this most critical situation is depicted in Figure 9.4. The structure
was discretized by 239 Hexahedral elements of order 4 in all directions while 2.85× 106 nodes
were used for the LBM computation in Virtual Fluids. Figure 9.3 depicts this computational
setup, the geometry of the bridge and the valley. The slices show the magnitude of the velocity
vector. The Reynolds number was set to Re = 1.0×106 and a Smagorinsky turbulence model
[122] was applied. For examples of such size, three main problems arise: (a) The spatial
resolution necessary to resolve the eddies leads to a large number of degrees of freedoms.
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Figure 9.3: Millau Bridge in construction [141]

Figure 9.4: Millau Bridge modeled by AdhoC coupled to Virtual Fluids
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Although 2.85 × 106 nodes for the model depicted in Figure 9.4 seems a lot, this is surely
insufficient to resolve the boundary layers. With the computational domain having a hight
of 400[m] the resolution along this height is only about 200 nodes resulting in approximately
one node for every two meters or about 2.5 over the height of the cross section of the bridge.
One way to reach an adequate resolution around the bridge is to utilize local refinement. This
is already implemented in Virtual Fluids but was not applied here. Another possibility to
model eddies which stem from obstacles with the same size as the grid resolution is to apply
a cascaded LBM model; see for example [48] in which a vortex shedding behind a cylinder
with the radius equal to the grid spacing is accurately modeled. (b) The critical wind speeds
to be modeled might be beyond the limitations for the Mach number in the LBM model.
The current LBM model is applicable for Mach numbers smaller than 0.1. In air this limits
the maximum flow velocity to around 130[km

h
]. The remedy is to utilize LBM models which

are also capable of higher Mach numbers. (c) The structural model might yet be to simple.
For a realistic modeling, structural cable elements would need to be introduced. Generally,
depending on the level of detail required, the structural solver, too, reaches its limits in terms
of computational complexity. In an effort to reduce the structural complexity of the model,
the bridge deck and pillars are currently modeled as one solid body. This can lead to an
overestimated rotational stiffness due to an overestimated shear modulus. The computational
models are currently refined step by step in order to be able to tackle these type of engineering
problems.
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Chapter 10

Summary and conclusions

This thesis treats selected aspects of partitioned fluid structure interaction for interface coupled
problems where the structure was always discretized by Lagrange type elements of high order.
There are two main approaches of this type of fluid-structure interaction: (a) either, the fluid
is discretized via an Arbitrary Lagrangean-Eulerian (ALE) formulation which allows a smooth
transition between the moving structure and the fixed fluid boundaries. This class of fluid-
structure interaction was treated in Chapter 6 where the commercial Finite Volume Solver CFX
was utilized and in Chapter 7 where the research code Nǫκταρ deploying a Spectral Element
Method was applied. The second class of fluid-structure interaction (b) discretizes the fluid
entirely on a fixed Cartesian grid. Here, the fluid was chosen to be discretized via the Lattice
Boltzmann Method implemented in Virtual Fluids. All coupling setups were verified and /
or validated against the benchmarks defined in Chapter 5 for two dimensions. Additionally, a
three-dimensional verifictation was carried out against the Benchmark proposed by Bathe and
Ledezma in [6]. Although deviations to the results published in [6] were observed, the obtained
results could be verified against the commercial solver Ansys-CFX Multiphysics using a large
number of degrees of freedom.

In this thesis, incompressible fluid solvers were coupled via setup (a). This called for an overall
implicit formulation in order to lead to convergence. Explicit formulations diverged even for
very small time steps. For the coupling to the commercial fluid solver CFX, the recently
developed Interface-GMRES method by Michler [92] was selected among the manyfold of
implicit coupling algorithms. It was evaluated and compared to a standard Gauss-Seidel type
procedure. While promising results have been published for Interface-GMRES in connection
with compressible fluids, a closer look disclosed weak points of the method. It was found
that these, unfortunately, do not make it applicable in its present form in connection with
incompressible flow solvers.

The coupling to spectral element methods, therefore, utilized a Gauss-Seidel type iteration for
an implicit overall coupling algorithm. For this purpose, a new, implicit, stiffly stable time
integration method needed to be introduced which was jointly developed in the framework
of the Master Thesis of Papaioannou [99]. Applied to the benchmarks, the results agreed
well with the ones obtained by other codes. Yet, differences came forth in regions with sharp
gradients in the solution.

The coupling setup of type (b) as presented in Chapter 8 utilizes a Lattice Boltzmann Method.
Based on the work of Krafczyk [78, 79], it was jointly developed in the course of this thesis
in close corporation with Geller [77, 76, 51, 53, 118] and is the first of its kind. The Lattice-
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Boltzmann Method turned out to be well suited for this type of fluid-structure interaction.
Within this setup it was possible to:

• use an efficient, explicit overall coupling approach in a straight forward manner

• verify and validate the results against the purely computational and the experimental
benchmarks, respectively

• compute examples in which the structure undergoes very large deflections, only limited
by the size of the computational domain.

None of this could be achieved with the two other fluid discretizations utilized within this
thesis. This is not to disqualify the other, well established methods. Some members of the
research group DFG 493 surely reached all or at least some of these goals as well, also with
newly developed approaches. Admittedly, part of the successful coupling of high order finite
elements with the Lattice Boltzmann Method can be attributed to the disproportional amount
of work put into this approach as opposed the other ones presented within this thesis. But
this does not taint the main result of this work.

The main result of this work is that the following can be stated without doubt:

The Lattice Boltzmann Method in connection with a structural discretization of
high order is a promising combination for the solution of surface coupled problems
in partitioned fluid-structure interaction with large displacements.

Stakes used to be against this statement at the beginning of the work for this thesis.
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