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Abstract

Modern vehicles integrate an increasing number of di�erent entertainment, in-
formation, telematics, and communication functions into their infotainment
systems. The interaction between these features is often error prone and re-
quires extensive testing in order to ensure correctness and reliability. The num-
ber of features of infotainment systems is expected to increase even more in
future vehicle generations. As a consequence, the number of feature interac-
tions increases as well. Hence, new approaches to testing are necessary in order
to cope with the complexity of future infotainment systems. In this thesis we
present a new approach to test case generation that enables the systematic
coverage of feature interaction scenarios.
A prerequisite for test case generation is a test model that describes potential
error prone paths and that limits the state space to a feasible size. In this
thesis we introduce such a test model, which is based on task models. Task
models describe the tasks the system is able to perform in interaction with
its environment. Furthermore, they provide means to describe the temporal
relations between tasks and thereby describe the space of all sequential task
executions. We introduce a new task modeling language TTask. TTask provides
a formal foundation that enables the systematic selection of such sequential
task executions. Furthermore, we de�ne new test selection criteria that enable
the systematic coverage of �interesting� task executions, namely the ones that
involve feature interactions.
A task model is, as any test model, an abstraction of the system under test
(SUT). Hence, generated test cases are abstractions as well. The automated
execution of these test cases requires additional information to bridge the ab-
straction gap between test case and the SUT. The transformation varies de-
pending on di�erent testing concerns, such as test goal, test setup and test
phase. Therefore each testing concern requires a separate transformation of
abstract test cases into executable test scripts. In this thesis we present a so-
lution for test case instantiation that uses aspect-orientation as a means to
encapsulate test concerns and hence reduces the test cases instantiation e�ort
by reuse.
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Kurzfassung

Die Anzahl der Funktionen in modernen Fahrzeugen wächst stetig. Unvorherge-
sehene Interaktionen zwischen Funktionen führen oft zu Fehlern. Um diese
Fehler aufzudecken, sind systematische Tests notwendig. Diese Arbeit stellt
einen neuen Ansatz zur Testfallgenerierung vor, der den systematischen Test
von Interaktionen ermöglicht. Die Generierung von Testfällen erfordert ein
geeignetes Testmodell, das potentielle Fehlerszenarien beschreibt und den Zu-
standsraum auf eine beherrschbare Gröÿe einschränkt. Der vorgestellte Ansatz
erreicht dies durch die Verwendung von Aufgabenmodellen. Diese Arbeit führt
TTask, eine neue Modellierungssprache für Aufgabenmodelle, ein, sowie da-
rauf aufbauende Testauswahlkriterien, die gezielt kritische Aufgabenabfolgen
auswählen. Die so erreichte systematische Abdeckung von Funktionsinteraktio-
nen wird anhand realer Systeme der BMW Group gezeigt.
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1

Introduction

Computers, once used only by the technologically savvy, have become integral
to our everyday lives. With the advancement of computing power, the trend
has moved towards integrated services. Modern mobile phones, for example,
not only o�er communication services, but also internet browsing, meeting
organizers, camera functionality and entertainment features such as music
and video. With the plethora of features on each device, this lends to the
opportunity of additional features building its functionality on existing ones.
For instance, the integration of a photo camera and internet access enables
instant photo sharing with others.

This however comes at a cost. Developing software for these systems becomes
more di�cult due to the increased complexity. With each extra feature, the
number of potential interactions between new and existing features increases
and the potential for faults increases as more unforeseen situations can lead
to unexpected side-e�ects. To counter this, new approaches are needed to
cope with the increasing number of feature interactions new devises will have.
This is especially true in the automotive industry where new vehicles have
entertainment, information and communication functions integrated into the
onboard computer.

These functions are combined in a so called automotive infotainment system
(AIS). For example, the AIS of a current BMW vehicle, combines a multi-
media player, navigation system, telephony, telematic services, and internet
access. Figure 1.1 shows the infotainment system of the current BMW 7-Series
with IDrive controller and display. The whole AIS integrates more than 1200
di�erent features.

AIS belong to the class of multi-functional, distributed systems [DGP+04].
Such a system consists of multiple features and its behavior is de�ned by
the behavior of its features and by the interactions between its features. The
situation when one feature modi�es the behavior of another one is referred
to as feature interaction [Zav03]. There are two forms of feature interaction:
intentional and unintentional feature interaction. A system exhibits inten-
tional feature interaction, when one feature in�uences the functional behavior
of another feature in a speci�ed and observable fashion. An example for an
intentional feature interaction is, when the CD playback is interrupted by
an incoming telephone call. An unintentional feature interaction takes place,
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Fig. 1.1. Automotive Infotainment System.

when the execution of one feature in�uences the behavior of another feature in
an unintended fashion. For example, when the user adjusts the seat, the bus
load increases. When the increased bus load delays messages between graph-
ical user interface (GUI) and navigation, an unintentional feature interaction
between the feature seat adjustment and feature navigation takes place.

In practice, feature interactions are often error prone. In particular, scenarios
where multiple intentional feature interactions interfere often lead to faults.
For example, the media player may be suspended simultaneously by an in-
coming call and by a check control message and does not resume correctly.
Unintentional interactions are often critical as well, because they are not spec-
i�ed and thus hard to predict. For example, the delayed bus messages might
result in a race condition that causes the navigation advice not to appear.

Future generations of AIS are expected to include even more features than the
existing generation due to the integration of new driver assistance systems and
increasing connectivity. Furthermore, feature interactions are used to further
enhance the capabilities of existing features. For instance, the active route in
the navigation system can be used to reduce fuel consumption by adapting
the brake-energy regeneration to the upcoming route pro�le. Therefore, sys-
tematically avoiding and detecting errors that result from feature interactions
is an important prerequisite in order to cope with the complexity of future
AIS. However, manually testing feature interactions in AIS is not feasible due
to the large number of features and the resulting large number of possible
feature interactions.

This thesis addresses the problem of generating executable test cases that
cover critical feature interaction scenarios. In the �rst part of this thesis we
introduce a modeling language that enables the speci�cation of feature inter-
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actions and thereby enables the generation of test cases that explicitly cover
feature interaction scenarios. Such a test model is always an abstraction of
the real system [PP05]. Hence, generated test cases are abstractions as well.
The automated execution of these test cases requires additional information
to bridge the abstraction gap between test case and the SUT. This problem
is called test case instantiation. In the second part of this thesis we address
the problem of test case instantiation and present an approach that enables
the generation of executable test scripts.

1.1 Problem Summary

This thesis has been created as part of the preparation for future generations
of infotainment systems. In order to determine the main causes of faults in
infotainment systems, we performed a study analyzing the faults that occurred
during the development of an actual AIS. The study discovered that 40% of
all severe faults involved feature interactions. This shows that by focusing on
feature interaction scenarios, one can detect a large portion of faults.

Model-based test case generation enables the systematic test of speci�c system
properties. For example, we used model-based testing at BMW Group to test
infotainment systems. We generated test cases from the speci�cation of the
dialog behavior of GUIs. The generated test cases were successfully used for
text testing, menu behavior tests and as test preambles for manual tests.
Although our results indicate that model-based test case generation can be
successfully applied in the automotive domain, we discovered that defects that
result from feature interactions could not be found by test case generation from
the dialog model. The problem was that feature interaction scenarios were not
explicitly de�ned in the existing behavior models, such as the dialog model.
The existing models focused on component behavior and on inter-component
communication and did not explicitly describe feature interactions.

To understand why feature interactions are not modeled during development,
we analyzed the current development process: when the development of an AIS
starts, it is decomposed based on functional criteria into its components. These
functional components are developed by di�erent suppliers. Finally, the origi-
nal equipment manufacturer (OEM) integrates them into the system. Features
crosscut di�erent software components and due to their crosscutting nature,
features cannot be explicitly de�ned at software component level. However,
di�erent software components are developed by di�erent suppliers. Therefore,
it is the task of the OEM to test features and their interactions when inte-
grating software components into the system. In order to systematically test
features and their interactions, an appropriate test model is required.

One solution is to use a system model that describes the behavior of the whole
system for test case generation. Such a system model implicitly describes
feature interactions as well. Thereby, the generation of test cases that cover
all paths in the system model results in the complete coverage of all feature
interaction scenarios. However, in practice such an approach is not feasible:
For example, a statechart that de�nes the dialog behavior of the GUI of
an actual BMW vehicle, comprises more than 5,000 states, more than 1,500
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variables, and more than 12,000 transitions. Thus the number of possible paths
is enormous. A system model that comprises the dialog model, the telephone
model, and the navigation model would increase the state space even more.
Together with the fact that currently the automated execution of a test case
can take up to several hours due to time-consuming test oracles, this leads
to the conclusion that path coverage is not even remotely feasibly. Therefore,
the number of generated test cases should be as small as possible and should
focus on critical paths. However, feature interactions are not explicitly de�ned
in the current development process. Hence, it is not possible to purposefully
select critical paths that involve feature interactions.

In order to solve this problem a test model is required that has a manageable
number of states but still describes feature interactions. Existing approaches
use speci�cation models to limit the number of tested paths for integration
testing [PFH+06, HIM00, FAM06]. They use scenario descriptions or use cases
for test generation. However, scenarios or use cases focus only on speci�c fea-
tures. In order to systematically cover feature interaction scenarios, we need a
suitable model at a higher abstraction level without abstracting away feature
interactions. More precisely, the model should describe intentional and unin-
tentional feature interaction scenarios. Furthermore, the model should enable
generation of test cases that systematically cover these feature interaction sce-
narios. The �rst problem for which a solution is proposed in this thesis is the
following.

Feature interaction is often error prone. In order to systematically test
feature interaction, a suitable test model is necessary that describes

intentional and unintentional feature interaction scenarios and that enables
an automated generation of test cases.

Test case generation faces an abstraction dilemma. On the one hand, test
models must be abstractions that focus on critical system properties, on the
other hand, generated test cases must be detailed enough to describe concrete
test stimuli and system reactions: The dilemma is that test cases, which are
generated from a test model, are abstractions as well. In order to execute
such a test case, the abstraction gap between abstract test case and SUT
must be bridged. Therefore, we di�erentiate between a test case and a test
script. A test script is an executable test case that contains test stimuli and
test oracles. The mapping of abstract test cases to executable test scripts
is called test case instantiation and is an essential part of the model-based
testing process. Test case instantiation is often time-consuming. In the case
studies in [UL06], test case instantiation took about 25-45% of the modeling
time. Embedded systems in particular require complex test setups to simulate
the physical environment and to observe the behavior of the system. In the
automotive infotainment domain, for example, the content of the graphical
user interface is observed using screen grabbers, audio signals are observed
by microphones, and haptic user inputs are simulated using special robots.
Test case instantiation is complicated by the fact that it varies depending
on a number of concerns: test goal, test setup and test phase. For instance,
the same abstract test case must be transformed into di�erent test scripts
in order to be executable in di�erent test setups that require di�erent test
stimuli and test oracles. We refer to a speci�c combination of test setup, test
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goal and test phase as a test focus. Thus, for each test focus a new test case
instantiation must be de�ned. However, often testing concern speci�c test case
instantiations crosscut di�erent test focus de�nitions, such as a test oracle that
is used in multiple test focuses. Hence, the second problem we address in this
thesis is:

A test focus must be de�ned in such a way as to handle the complexity of
test case instantiation and to enable easy test focus adaptation to di�erent

testing contexts.

The abstraction dilemma is especially relevant for feature interaction testing
because the test model is at a high abstraction level. Therefore, an approach
for feature interaction testing must solve both problems in order to be appli-
cable in practice.

1.2 Solution Summary

The goal of this thesis is to enable the systematic test of feature interaction
scenarios where errors are likely to occur. This thesis describes an integrated
approach of model-based test case generation that focuses on feature interac-
tion. The approach covers the generation of test cases and the subsequent test
case re�nement and instantiation in order to create executable test cases. Al-
though the approach is introduced in the context of automotive infotainment
system, it is not speci�c to the automotive domain. In fact, it can be ap-
plied to any multi-functional system where faults are often caused by feature
interactions. Our approach is divided into three steps:

1. Test Case Generation: Test cases are generated from a test model at a
suitable abstraction level, namely tasks and their temporal dependencies.
Such a task model describes the interaction between user, environment
and system in the form of tasks and their temporal dependencies. Tasks
represent a view on a system that corresponds to the crosscutting nature
of features. This thesis introduces a method of task modeling that enables
the generation of test cases. Based on such a task model, we de�ne test
selection criteria that enable the generation of test cases that explicitly
cover critical feature interaction scenarios.

2. Test Case Re�nement: The resulting test cases are task sequences. A
task model describes no input or output behavior. Thus, a task sequence
contains no input or output behavior. In order to stimulate and monitor
the system, task sequences must be enriched with missing behavior. Based
on the assumption that software component-speci�c (test-)models contain
input and output behavior, task models are mapped to these component
models. Based on this mapping, task sequences can be enriched with the
missing input and output behavior from the component models.

3. Test Script Generation: Test case instantiation transforms a test case
into an executable test script. The instantiation depends on di�erent test-
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ing concerns, such as test goal, test setup and test phase. These con-
cerns are encapsulated into aspects in order to decrease the complex-
ity of test case instantiation and to enable the reuse in di�erent testing
contexts[Ben08].

The main contributions of this thesis are:

Task-based Test Case Generation:

� A task-based modeling approach to describe feature interaction for test
case generation.

� New coverage criteria based on task models.

Task Sequence Re�nement:

� A mapping approach from task models to existing software component
models.

� A method that enriches task sequences with component-speci�c input and
output behavior.

Test Script Generation:

� A taxonomy of test case instantiation concerns.

� A modular approach for test case instantiation based on aspects and a
new language for it.

Implementation:

� The TTask modeling notation.

� Test case generator for TTask, based on the model checker SPIN.

� Re�ning of TTask sequences based on existing component models.

� AspectT : an implementation of an aspect-oriented test case instantiation
language.

Case Study:

� A task model that models functionality of a current AIS.

� A mapping of the task model to existing component models.

� Implementation of di�erent test instantiation concerns using AspectT.

� Generation of executable test scripts for di�erent coverage criteria.

� Evaluation of the proposed test selection criteria.
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1.3 Organization of this Thesis

This thesis comprises four parts. The �rst part (Chapters 2 and 3) describes
the fundamentals of test automation and gives an introduction into the auto-
motive infotainment domain. In the second part (Chapters 4 and 5), we de-
scribe our approach of task-based test case generation. The third part (Chap-
ters 6 and 7) focuses on the instantiation of abstract test cases created from
task models. In the fourth part (Chapters 8-10), the introduced concepts are
evaluated in the context of an actual BMW vehicle. The discussion of related
work to this thesis is not covered in one separate chapter. Instead, it is dis-
tributed across the di�erent parts of this thesis due to the diversity of the
covered topics. Figure 1.2 gives an overview over the outline of this thesis.
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Fig. 1.2. Outline of this thesis.

Chapter 2. Test Automation. The topic of the second chapter is test
automation with a special focus on test case generation and test case instan-
tiation. We illustrate the concepts of test case generation using an example
from the automotive infotainment domain. Based on the example we describe
di�erent techniques of behavior modeling and test case generation.

Chapter 3. Automotive Infotainment Systems. The third chapter gives
an overview of the architecture and the development process of automotive
infotainment systems. Based on the architecture, we introduce a classi�cation
of typical error scenarios and the results of an analysis of errors which occurred
during production development of a BMW infotainment system. Furthermore,
we outline the current testing process and the challenges during component
and integration testing.

Chapter 4. Task Models are Test Models. The fourth chapter introduces
task models. Conventionally, they are used in the early phase of model-based
user interface (UI) development to describe the possible tasks the user can per-
form in interaction with the system. First we argue that task models describe
critical feature interaction scenarios and are therefore a suitable abstraction
for test case generation. Then we compare di�erent task modeling notations
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with respect to potential test case generation. We conclude that existing task
modeling notations are insu�cient for test case generation. The rest of Chap-
ter 4 introduces TTask, a new task modeling notation that meets the needs
of test case generation.

Chapter 5. Generating Task Sequences. This chapter describes test case
generation based on TTask and the model checker SPIN [Hol97]. A TTask
model describes the space of all possible task sequences where each sequence
is a potential test case. We de�ne test selection criteria that cover critical task
sequences. This chapter describes the transformation of a TTask model into
a Promela [Hol97] model and the implementation of the test selection criteria
in temporal logic.

Chapter 6. Re�ning Task Sequences. Chapter 6 describes the re�nement
of task sequences using component models. A task sequence must be re�ned in
order to reduce the abstraction gap between the task sequence and the SUT.
We describe the mapping between a task model and existing component test
models. Based on this mapping we describe the enrichment of task sequence
with additional input and output behavior from component models.

Chapter 7. Test Script Generation Using AspectT. This chapter
presents the last step in test case instantiation: the test script generation.
The test case instantiation varies depending on di�erent testing concerns. We
present AspectT, an aspect-oriented language for test script generation that
provides means to handle these crosscutting testing concerns in an e�cient
way.

Chapter 8. From Use Cases to Task Models This chapter demonstrates,
how to create a TTask model from a use case-based speci�cation. The study
is performed for the software update functionality of a current BMW vehicle.

Chapter 9. Case Study. This chapter presents a case study from an actual
BMW vehicle. The case study demonstrates the application of task-based test
case generation and test case instantiation for a real world example. In the
case study, a TTask model of multiple features of the infotainment system is
described. From the TTask model test cases are generated and instantiated
using message sequence charts (MSCs) and statecharts.

Chapter 10. Test Selection Criteria Evaluation. This chapter presents
the results of our evaluation of the introduced test selection criteria. The
criteria are evaluated in the form of an empirical analysis of the faults that
occurred during the development of a BMW infotainment system.

Chapter 11. Summary and Conclusions. The last chapter summarizes
this thesis and draws conclusions.
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Test Automation

Test automation is the automation of test case generation and test case ex-
ecution. The main goal of test automation is to enable a systematic testing
process that continuously assesses the correctness and the quality of a system.
This chapter introduces the principles, activities, and goals of test automation
and is structured as follows. The �rst section introduces the general concept
of testing. The second section introduces model-based test case generation.
The third section introduces test case instantiation, the transformation of
generated test cases into executable test scripts.

2.1 Testing

Testing is de�ned in IEEE Software engineering body of knowledge [IEE04]
as:

Testing is a technique for evaluating product quality and also for indirectly
improving it, by identifying defects and problems. Software testing consists of
the dynamic veri�cation of the behavior of a program on a �nite set of test
cases, suitably selected from the usually in�nite executions domain, against

the expected behavior.

An important role of testing is to evaluate and assure the quality of a sys-
tem by examining whether it meets its requirements and expectations. This
is accomplished by executing the SUT with speci�c inputs in order to �nd
failures in its behavior. A failure is the inability of the system to perform a
required function. It is caused by a fault, which is a condition that causes
a system to fail in performing its required function. The manifestation of a
fault in a system is an error : a discrepancy between a computed, observed, or
measured value or condition and the true, speci�ed, or theoretically correct
value or condition.

Testing can be di�erentiated based on the information that is used for test
design. For instance, this can be seen comparing black box testing to white box
testing. In black-box testing, the tests are created from requirement documents.
During test design no information about the internal structure of the system
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is used, the SUT is treated as a black box. On the other hand, in white-box
testing, the implementation of the system is used for test case design. An
example for white-box testing is when tests are designed in order to cover each
statement in a procedure.

2.2 Model-based Testing

Testing is always based on an abstract model of the system [PP05]. Even
manual testing is model-based, because every tester has a mental model of the
system to create test cases from. There are four main approaches of model-
based testing [UL06]:

1. Generation of test input data from a domain model. The test
model describes the domain of the test input data. A test generator selects
and combines subsets of those values to produce test inputs.

2. Generation of test cases from an environment model. Here, the
test model describes the expected environment of the SUT. The test model
generates sequences of calls to the SUT. However, the generated test cases
do not specify the expected outputs of the SUT.

3. Generation of test cases with oracles from a behavior model.
This approach generates test cases that include oracle information, such
as the expected output values of the SUT. Hence, the test model must
describe the expected behavior of the system.

4. Generation of test scripts from abstract test cases. In this ap-
proach, an abstract test case is given, for example, in the form of sequence
diagrams [ITU96, OMG03]. This test case is then transformed into an ex-
ecutable test script that includes the corresponding system calls and test
oracles which are necessary for an automated execution.

In this thesis we focus on the last two approaches of model-based testing. In
the remainder of this chapter, we introduce these approaches in more detail.

2.3 Model-based Test Case Generation

We focus on the automated generation of black-box tests from a formal be-
havior model of the system. Such a behavior model describes the interaction
between the system and its environment omitting details about the actual
implementation of the system. Each execution path in the behavior model is
a potential test case that tests the speci�ed execution path in the SUT. A
behavior model usually describes an in�nite set of execution paths. However,
only a �nite subset of these paths can be executed in the form of test cases.
A test selection criterion restricts the space of all test cases to a �nite set by
de�ning a property that must be ful�lled by each test case. Test case gener-
ation is the automation of test case selection using a test case generator. A
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test case generator automatically selects all test cases from a behavior model
that ful�ll a given test selection criterion. We refer to a behavior model that
is used for test case generation as a test model. The selected test cases are
abstract test cases that are on the same abstraction level as the test model.
Figure 2.1 depicts the general idea of model-based test case generation.
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Fig. 2.1. Model-based test case generation.

2.3.1 Test Model

Model-based test case generation requires an appropriate model that describes
the properties of a system or its environment that should be tested. This can
either be a dedicated model for test case generation or a model that is part
of the speci�cation. A test model must be at a suitable abstraction level: it
must describe critical behavior and avoid unnecessary detail.
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Fig. 2.2. Example test model for an automotive GUI.

Figure 2.2 shows such a test model: a state machine that describes the focus
behavior of an automotive GUI by the possible cursor changes between its
buttons. The test model abstracts from the actual implementation of the
GUI by focusing only on its visible behavior. Thereby, the model describes
the space of all possible focus changes, which is potentially in�nite. However,
only a �nite number of test cases can be executed. Therefore, the space of all
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possible focus changes must be reduced to a �nite set. The process of selecting
speci�c sequences for testing is called test case generation and is performed
by a test case generator. Test cases are selected by a so called test selection
criterion.

2.3.2 Test Selection Criteria

For a given program and its speci�cation a test selection criterion speci�es the
properties that must be satis�ed by a set of test cases [Jal91]. Test case gener-
ation based on test selection criteria is called coverage-based testing. However,
the intention is not to guarantee test coverage of the SUT - its structure may
be quite di�erent from that of the model. Rather, they represent the aspects
of the system behavior that the engineer wants to test [UL06].

There are di�erent coverage-based test selection criteria.

� Structural Coverage Criteria cover certain structural parts of the test
model. These properties often depend on the semantics of the used model-
ing language. In the state machine example in Figure 2.2, typical coverage
criteria are state coverage or transition coverage. An overview on structural
test selection criteria can be found in [UL06, OXL99].

� Fault-based Coverage Criteria. Fault-based testing demonstrates the
absence of a prede�ned set of faults. Hence, fault-based coverage criteria
systematically select test cases for a given fault class. For instance, a be-
havior model is systematically mutated and test cases are generated that
distinguish each mutant from the original model [TSL04].

� Domain-speci�c Coverage Criteria cover properties that are speci�c
to the respective domain. For example, the GUI of an AIS should save the
current state when the car is switched o�, until it is switched on again.
Hence, a domain-speci�c coverage criterion covers all situations where the
GUI should save its current state.

� Resource-based Criteria cover the SUT based on the available test
resources. For example, test cases are generated randomly and are executed
for a give amount of time.

Another class of test selection criteria is the explicit test case selection. Here,
one test case is selected that tests one speci�c property in the behavior model.
This can be used as an addition to coverage-based test case selection in order
to test properties that are not covered by the coverage criteria. Furthermore,
this can be used to generate test preambles. A test preamble establishes a
speci�c state in the SUT which is a precondition to perform other tests. For
example, a tester writes a test case that tests the incoming call screen and
generates a test preamble that triggers the system to show the screen.

A rather trivial test selection criterion is the random selection of test cases.
However, in practice this has proven a valuable extension to classical coverage
criteria [CLOM07, DN84]. Furthermore, random selection of test cases can be
used to test the SUT for a longer period of time.
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The actual selection of test cases is performed by a test case generator. The
test case generator is responsible for selecting all test cases from a given test
model that ful�ll a given test selection criterion. The actual implementation
of the test case generator depends on the underlying modeling language.

2.4 Test Case Instantiation

Model-based test case generation produces a potentially large number of test
cases. The generated test cases are abstract test cases that are at the same
abstraction level as the test model. It is desirable to automate the execution
of these test cases to reduce manual test execution e�ort and to enable a
continuous testing process. For instance, a test case generated from a state
machine model consists of events that trigger certain transitions and states.
Events represent test inputs and states represent the expected test outputs for
these inputs. For testing a concrete system, such as an embedded automotive
control unit, the abstract events must be mapped to the corresponding sys-
tem inputs that stimulate the SUT. For instance, the event �Incoming Call�
must be mapped to the bus message that signals an incoming call. Only then
this event is executable in an automated setting. Likewise, a state has to be
mapped to an observable system property that represents this state. The com-
ponent that observes the system and decides if it behaves correctly is termed
the test oracle.

The mapping of abstract test cases to executable test scripts is called test case
instantiation [PERH04] and is either performed by a translator, which adds
the missing information (e.g., mapping of equivalence classes to concrete data
to overcome data abstraction), or by an adapter that encapsulates the missing
information. Both test case instantiation approaches use driver components.
Such a driver component encapsulates the access to a device that is used to
stimulate or monitor the system, for example, a component that encapsulates
the access to the screen grabber.

Adaptation-based instantiation approaches encapsulate the missing informa-
tion to bridge the abstraction gap between test case and SUT into a speci�c
adapter. Such an adapter interprets a test case and executes during interpre-
tation the corresponding test triggers and test oracles. Figure 2.3 shows the
adapter-based test case instantiation approach. For example, the testing and
test control notation TTCN-3, a test speci�cation and test implementation
language, integrates an adaptation-based instantiation approach [GHR+03a].
In TTCN-3, each abstract test input is mapped to an adapter that triggers
the system under test and each system output is adapted to its corresponding
abstract output.

Transformation approaches translate abstract test cases into executable test
cases and are typically based on model-to-text transformation frameworks.
During the translation process the test cases are enriched with the missing
information to bridge the abstraction gap between test model and SUT. For
instance, an abstract user input is translated into a call to a driver component
that simulates the user input by a corresponding bus message. Figure 2.4
shows the translational test case instantiation approach. The transformation
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is performed based on mapping rules that contain the information on how to
translate an abstract element in the test case. These mapping rules may be
code generation templates, for example.

input

input

Abstract 

Test Cases

Test Case 

Instantiator

Executable

Test Scripts

generates

Mapping

Rules

Driver

Component

Driver

Component

Driver

Component

triggercall
SUT

monitor

Fig. 2.4. Translational test case instantiation approach.

2.5 Automated Test Case Execution

Test case generation and test case execution are two essential parts of model-
based testing. They can be combined in either an online or an o�ine fashion,
depending on when the test cases are executed during test case generation. In
online testing, test cases are executed while they are generated. For example,
when test cases are executed on-the-�y during random test case generation.
This is useful when the SUT is tested for a longer period of time, for example,
during overnight testing. Adaption approaches of test case instantiation are
especially suitable for online test case execution, because test cases can be
interpreted during creation.

In o�ine testing, test cases are executed after they are generated. This enables
the storage of generated test cases in a test management system in order to use
them for regression testing. Translational test case instantiation approaches
are well suited for o�ine testing, because they transform abstract test cases
into an intermediate format that can be stored in a test management sys-
tem and that can be executed separately. Furthermore, they enable further
methods of test suite reduction.

In Chapter 7 we introduce an approach for test case instantiation that enables
the combination of both online testing and o�ine testing.
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2.6 Summary

This chapter gave a short introduction into model-based test case generation.
In this thesis we focus on the generation of test inputs and test oracles from
a behavior model of the system. Test cases are generated based on test selec-
tion criteria that restrict the space of all possible test cases. There are a large
number of di�erent selection criteria, the appropriate one is dependent on the
modeling language, the targeted system and the system's domain. However,
test case generation is only one part of model-based testing. Another impor-
tant role is test case instantiation. A test model is an abstraction of the SUT.
Hence, generated test cases are abstractions as well. Test case instantiation
is the process of bridging the abstraction gap between abstract test cases
and SUT in order to enable their automated execution. To conclude, e�ective
model-based testing requires an appropriate modeling language that is able to
express critical behavioral aspects of the system. Furthermore, test selection
criteria must be available that enable the systematic coverage of these critical
scenarios.
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Automotive Infotainment Systems

This chapter introduces automotive infotainment systems (AIS) as examples
of multi-functional interactive systems. AIS integrate a large number of dif-
ferent features. The interaction between these features is often error prone
and requires extensive testing in order to ensure the correctness and reliabil-
ity of an AIS. The number of features in an AIS is expected to increase even
more in future vehicle generations. As a consequence, the number of feature
interactions increase as well. New approaches for testing are necessary to cope
with the complexity of future infotainment systems. In this thesis we present
a new approach for test case generation that enables the systematic cover-
age of feature interaction scenarios. Our approach focuses on multi-functional
interactive systems in general and is not limited to the automotive domain.
However, in order to exemplify our approach we introduce it based on the
example of AISs. Therefore, this chapter introduces the characteristics of AIS
and shows why the systematic test of feature interactions is necessary.

This chapter is structured as follows. The �rst section introduces the archi-
tecture of AISs. The second section introduces feature interactions and shows
their importance by a study of faults that occurred during the development
of an actual BMW vehicle.

3.1 Architecture

AIS are interactive systems that are characterized by a strong interaction
between system and environment. They integrate di�erent features for com-
munication, navigation, entertainment, and telematic services. The UI plays
an important role in AIS. It must enable the safe usage of the AIS in di�er-
ent driving contexts. Therefore, AIS are multi modal systems that enable the
interaction between user and system via di�erent input and output modali-
ties, namely visual, audio-based, and haptic modalities. This enables the user
to interact safely with the AIS using the modality that is appropriate for the
current driving context. However, the multi modality increases the complexity
of AIS because all modalities must be synchronized in order to consistently
present the system state to the user.
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Fig. 3.1. AIS features and their interactions.

An AIS is also connected to other vehicle functions, such as the engine control
or driver assistance systems. In particular the integration of driver assistance
systems, such as the park distance control, leads to high demands on the
reliability of an AIS. Another important characteristic of AIS is that it enables
the integration of external devices such as mobile phone or media players in
order to make these additional functionalities available in the driving context.

Figure 3.1 shows the three main building parts of an infotainment system and
their interaction with their environment. They are in detail:

� The user interface (UI) of an AIS integrates the di�erent input and output
modalities. For example, the UI if a 7-Series BMW, integrates the IDrive
controller, a speech interface, and di�erent haptic buttons. Furthermore,
it integrates the output modalities: graphical user interface (GUI) and
audio-speakers.

� Applications implement the main feature of an AIS.

� Management features manage resources, external devices and other basic
system services.

Each of these parts is composed of multiple software components that are
distributed across di�erent electronic control units. They interact via one or
more communication buses. Figure 3.2 shows an example infotainment archi-
tecture. The infotainment ECUs communicate with each other via the media
oriented systems transport (MOST) bus [MOS] and the head unit addition-
ally communicates with other vehicle functions via the controller area network
(CAN) bus [BOS91].

To conclude, AIS interact strongly with their environment. Furthermore, the
di�erent software components inside an AIS strongly interact with each other
in order to implement the di�erent features of an AIS.
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3.2 Feature Interactions in Infotainment Systems

From the user's point of view, an AIS is composed of di�erent features, where
a feature enables the user to perform a certain task. Features have observ-
able behavior and can be triggered by the environment[EKS03]. For example,
the feature Incoming Call Handling is triggered by an incoming call and the
observable behavior is the noti�cation popup in the GUI and the ring tone.
Hence, when the system is regarded as a black-box, a feature comprises of the
interactions between system and environment that are required to perform
the corresponding task. Figure 3.3 shows the interactions between system
and environment for the feature Incoming Call. The terms feature and service
are often used synonymously. According to Broy et al. [BKM07] a service is
a crosscutting interaction aspect of complex software systems, factoring out
collaboration among software components required for ful�lling a certain task.
Hence, both service and feature describe an interaction between environment
and system. In this thesis we use the term feature instead of service because
the problem of error prone interactions between di�erent features (services)
is commonly known as the feature interaction problem [BGK00, GL93].

Environment

UserPhone System

Incoming Call

Show Call 

Popup

Fig. 3.3. Feature Incoming Call Handling.

The situation when one feature in�uences the behavior of another feature
is known as feature interaction. The term feature interaction has �rst been
described for telecommunication systems. Feature interaction in telecommuni-
cations is the expansion of existing telephone services (called features) with a
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new supplementary service that can change the behavior of pre-existing ones,
alter them, or even crash the system. The phenomena are known as the �fea-
ture interaction problem� in the telecommunication industry [BGK00, GL93].
However, not all feature interactions are errors and in order to separate more
clearly between erroneous feature interactions and correct feature interactions,
we refer to erroneous feature interactions as feature interference.

We di�erentiate between two di�erent forms of feature interaction: intentional-
and unintentional feature interaction. Intentional feature interaction takes
place when one feature in�uences the functional behavior of another feature
in a speci�ed fashion. An example for an intentional feature interaction is
when the incoming telephone call interrupts the radio. The muting of the
radio is the observable result of the speci�ed feature interaction between ra-
dio and telephone. If the radio does not resume correctly after the incoming
call is �nished, the interaction between radio and telephone exhibits feature
interference.

Unintentional feature interaction takes place when one feature in�uences an-
other feature in an unspeci�ed fashion that does not depend on a functional de-
pendency. For example, when the user adjusts his seat, the bus load increases.
When the increased bus load delays messages between GUI and navigation,
an unintentional feature interaction between the feature seat adjustment and
the feature navigation takes place. An unintentional feature interaction is not
necessarily a fault. For example, when the delayed bus messages cause a delay
of 100ms of the navigation advice, it is an acceptable unintentional feature in-
teraction (as long as it is not explicitly speci�ed otherwise). When the delayed
bus messages result in a race condition which causes the navigation advice not
to appear, the unintentional feature interaction exhibits a feature interference.

The distinction between intentional and unintentional feature interactions has
also been introduced by di�erent authors, however there is no consistent termi-
nology across the literature. Zave describes intentional and unintentional fea-
ture interactions as wanted and unwanted feature interactions[Zav01]. Other
authors speak of intended and unintended feature interactions [WEL07].
Weiss et al. use the terms functional and non-functional feature interac-
tions following the concepts of functional and non-functional requirements
[WE04, WEL07]. However, we use the terms intentional and unintentional
feature interaction because they emphasize the contrast between intentional
functional interaction and unintentional interactions that result from other
non-functional properties.

In practice, feature interactions are often error prone. During the development
of an actual infotainment system, a large fraction of the faults resulted from
feature interactions. Figure 3.4 shows a statistic that describes the reasons
for severe faults that occurred during development. The results show that
40% of all severe faults occurred in feature interaction scenarios. The study
has been performed as part of a diploma thesis at BMW[Wol08]. During the
study, the AIS was divided into its di�erent features. All faults that result
from the interaction between di�erent features have been classi�ed as feature
interaction faults.

These faults were further analyzed by deciding whether they resulted from
intentional and unintentional feature interactions. Figure 3.5 shows the results
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of this second study. The results show that most feature interferences result
from unintentional feature interactions. This leads to the conclusion that a
systematic approach is required for testing intentional as well as unintentional
feature interactions.

The literature [KK98, Vel93, CGL+94] discusses several reasons for feature
interferences:

� Con�icting goals: features with the same preconditions but incompatible
goals are in con�ict.

� Competition for resources: features compete with each other for limited
resources, which need to be partitioned among the features.

� Changing assumptions on features: features make implicit assumptions
about their operation, which can become invalid when new features are
added.

� Design evolution: features need to be added to meet new customer needs,
and the system will need to interoperate with other vendors' systems.

� Timing and race conditions: Timing (i.e., at what time a particular event
occurs, or for how long an event lasts) is always critical in distributed
systems.

In AIS, feature interactions are often critical due to the current development
process in the automotive domain. The functional decomposition of a sys-
tem does not necessarily correspond to the features of a system. An AIS is
decomposed into di�erent software components based on functional criteria,
in order to encapsulate speci�c functionalities. This enables the distributed
development of an AIS where di�erent suppliers develop di�erent software
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Fig. 3.6. Crosscutting nature of features.

components. However, features crosscut di�erent software components. For
example, in an AIS, most features use multiple software components: Figure
3.6 shows the software components that are responsible for the Handle Incom-
ing Call Feature and the Media Player Feature. The Incoming Call Handling Fea-
ture crosscuts the Phone component, Communication component, AMP com-
ponent and the GUI component. The Media Player Feature crosscuts the AMP
component, File System component, GIO component and the Media Player
component. Both features in Figure 3.6 use the components GUI and AMP.
Feature interactions take place when both features use these components at
the same time. However, the scenarios in which these interactions might occur
are often not explicitly de�ned, because they cannot be described at software
component level. Hence, when a supplier implements a software component,
not all possible scenarios in which such a component is used, are known.

3.3 Summary

This section introduced automotive infotainment systems. AIS are distributed
systems that have a strong interaction with their environment. Features cross-
cut di�erent software and hardware components. Software components are
developed by di�erent suppliers. Thus during development, a system is de-
composed into its software components which are speci�ed and implemented
separately. Hence, features and their interactions are often not explicitly spec-
i�ed. However, the study we presented in this chapter showed that feature
interactions are often error prone. In order to cope with the increasing num-
ber of features in an AIS, feature interactions must be rigorously tested. In
the following chapters we introduce our approach towards a systematic test
of feature interactions.
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Task Models are Test Models

This chapter proposes task models as a language to describe feature interac-
tions. They describe the tasks that the user can accomplish by interacting with
the system and their temporal dependencies. They were originally developed
for formally describing the capabilities of UIs[DS03], but here they are used
to model features and their dependencies. Based on the task dependencies, a
task model implicitly spans the space of possible feature interactions. In this
space of possible feature interactions we can then generate useful test cases.

The contributions of this chapter are:

� Introduction of task models as a means for describing feature interactions.

� Description of the concepts of the new task modeling language TTask.

� The de�nition of the semantics of TTask.

� Examples that demonstrate how to model feature interactions with TTask.

This chapter is structured as follows. In the �rst part, we reason that task
models describe critical feature interactions and hence are appropriate for test
case generation. Then, we evaluate di�erent task modeling notations with re-
spect to their suitability for test case generation. We conclude that existing
task modeling notations are insu�cient for test case generation. In the re-
mainder of this chapter we introduce TTask, a new task modeling notation
that meets the requirements of test case generation.

4.1 Task Models as Means to model Feature Interactions

This section introduces task models as means to model feature interactions
using a system model that is based on action traces. Actions are basic activities
in a system such as opening a popup screen or pressing a button. Actions
are thought to be atomic and instantaneous [BDD+92]. Based on a possibly
in�nite set of actions Act, the set of streams of actions, is denoted by:

Actω = Act∗ ∪Act∞
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where Act∗ denotes the �nite streams (including the empty stream) and Act∞

the in�nite ones [BKM07, BS01]. We will use the following basic operations
and relations concerning streams (following Broy et al. [BDD+92]):

� s ◦ t denotes the concatenation of t to the end of s. If s is in�nite, then
s ◦ t just yields s.

� s t t denotes that s is an in�x of t which is formally expressed by

∃u,w. u ◦ s ◦ w = t

One run of a system is a trace which is a stream of actions. The behavior of
a system S can be speci�ed by all possible system traces:

S ⊆ Actω

Each trace s ∈ S is a potential test case. The actions that are performed by
the environment are test inputs and the actions that are performed by the
system are test outputs. In an ideal world, every possible trace s ∈ S would be
covered during testing. However, due to the potentially in�nite behavior of a
system, this is not feasible. Hence, testing should focus on the traces that are
most likely to exhibit faults in the system. The previous chapter introduced
the results of a study showing that feature interaction scenarios are often
error prone. Our goal is to systematically cover these scenarios by test case
generation. Hence, we want to select and test traces s ∈ S that involve a
feature interaction and therefore are likely to exhibit faults.

In order to obtain all traces that involve a feature interaction, feature inter-
actions must be de�ned explicitly. Our approach is to describe features and
their interactions in the form of a task model. A task model describes tasks
and their temporal dependencies. A task is a goal driven interaction between
system and environment, where a goal is a desired modi�cation of the state
of a system or a query to it [PMM97]. We de�ne a task by a �nite sequence
of one or more actions:

t = 〈a1, ..., am〉 : ai ∈ Act∗

For example, the task Start CD Playback has the goal to start the playback of
a CD, which is de�ned by the action sequence: Press Play Button, Start Track
1. However, the notion of a task is always bound to a certain abstraction
level. For example, the task Start CD Playback involves the action Press Play
Button. On a lower abstraction level, this action itself might be declared a
task, namely the task Press Button. As a consequence, a task model itself is
always bound to a certain abstraction level.

A task t is performed in a trace s ∈ S i�:

t t s

Therefore, a task model T models the behavior of a system S i�:

∀t ∈ T. ∃s ∈ S. t t s
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We can separate a system trace s ∈ S that involves the execution of a task t
into three sub streams s0, s1, t:

s = s0 ◦ t ◦ s1
The trace s0 comprises all actions that are performed before the task t is
performed. These actions may involve the execution of other tasks or addi-
tional interactions that are necessary to reach the goal. For example, in order
to perform the task Start CD Playback, the user must �rst navigate to the
play button. The necessary navigation steps depend on the previously exe-
cuted tasks, for example, whether the user previously made a telephone call
or listened to the radio. Therefore we can separate s0 into two parts:

s0 = h ◦ p

Where h comprises the history of previously executed tasks and p comprises
the actions that were necessary to �prepare� the system for the next task
t. This di�erentiation corresponds to the situation during testing, when the
tester wants to test sequences of task execution. For example, in the �rst part
of a test the task Select Radio Station is tested and in the second part the
task Start CD Playback is tested. Therefore, in order to test the task Start
CD Playback, the tester must prepare the system by navigating to the Play
CD Button from the radio menu which is the postcondition of the previously
executed task.

Our goal is to model feature interactions. Therefore, we use a task model to
model each feature by the tasks that can be accomplished using the feature.
For example, the feature Incoming Call is modeled by the task Handle Incom-
ing Call. Furthermore, a task model provides means to de�ne the temporal
dependencies between tasks. An example for such a temporal dependency is,
when the execution of a task disables the execution of another task. The basic
idea is to use these dependencies to model feature interactions.

For example, given a simple task model T that comprises of three tasks a, b, c ∈
T . The task a has a disable dependency to the task b

disable(a, b)

and the task c has an enable dependency to the task b

enable(c, b)

The temporal dependency disable between the tasks a and b de�nes that there
is no trace in which the tasks a and b are performed sequentially, as long as
the task c is not performed:

∀s. ∃s0, s1, s2. (s = s0 ◦ a ◦ s1 ◦ b ◦ s2)⇒ c t s1
A feature might provide di�erent interaction scenarios. For example, the
interaction between environment and system of the feature Incoming Call varies
depending on whether the user decides to accept or reject the incoming call.
Figure 4.1 shows a sequence diagram for the Incoming Call that describes the
Incoming Call feature. To model features with di�erent interaction scenarios, a
task can be decomposed into subtasks that describe corresponding sub goals.
For example, the feature in Figure 4.1 is described by the task Handle Incoming
Call. The di�erent interaction scenarios of Incoming Call Handling are described
by the four subtasks of Handle Incoming Call and their dependencies:
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Fig. 4.1. Incoming Call feature.

1. Signal Call: which is performed by the system by showing the incoming
call popup and by giving an audio signal.

2. Accept Call: which is performed by the user by selecting and activating
the accept call button.

3. Hang Up: which is performed by the user by selecting and activating the
end call button.

4. Reject Call: which is performed by the user by selecting and activating
the reject call button.

Handle Incoming Call
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…
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Fig. 4.2. The tasks for the feature Incoming Call.

Figure 4.2 shows a complete task model for the features Incoming Call and
CD Player. The task model uses enable and disable dependencies to describe
whether the execution of a task enables or disables the execution of another
task respectively. Thus, when Signal Call has been executed, the tasks Accept
Call and Reject Call are enabled. When one of these two tasks is performed,
the other one is disabled. Thus the task model speci�es that the task Handle
Incoming Call is performed in all traces s = s0 ◦ s1 ◦ s2 ∈ T that hold:

'Incoming Call' t s⇔ 'Signal Call' t s0 ∧
('Accept Call' t s1 ∧ 'Hang Up' t s2) ∨ ('Reject Call' t (s1 ◦ s2))

A composite task is performed by executing its subtasks. The temporal depen-
dencies between the subtasks de�ne their valid execution orders. Figure 4.2
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also shows a dependency called suspend between the tasks Handle Incoming
Call and CD Playback. This dependency models an intended feature interac-
tion between the features that are represented by these two tasks, namely that
the CD playback is suspended when an incoming call is handled. The traces
that are speci�ed by this dependency are the ones we want to test in order to
cover intentional feature interactions.

Furthermore, the execution of tasks can be interleaved with the execution of
other, independent, tasks. For example, in a trace s = s0 ◦ s1 ◦ s2 the task
'Move Seat' might be performed between the tasks Signal Incoming Call and
Reject Call:

'Signal Call' t s0 ∧ 'Move Seat' t s1 ∧ 'Reject Call' t s2

The interleaved execution of tasks is potentially error prone because it might
result in unintentional feature interferences. Thus scenarios where an unin-
tentional feature interference might occur can be derived from a task model
by �nding tasks that have no temporal dependencies1. The basic assumption
is that in a system all features might have potential unintentional feature in-
teractions. In the context of AIS this is mostly true because most features use
the same resources, such as communication devices.

So far, we have seen that task models explicitly model intentional feature inter-
action scenarios and thereby implicitly model potential unintentional feature
interaction scenarios. Test cases that involve feature interaction are traces
that execute a number of features. But not all valid system traces involve fea-
ture interactions. We use task models to express at an appropriate abstraction
level:

� how tasks are composed of subtasks and

� how the executions of tasks constrain each other.

In the previous section 3.2 we gave an overview on reasons for feature inter-
ferences. In the following, we discuss how these issues can be addressed using
test case generation based on task models.

� Con�icting goals: are feature interferences in which features with the same
preconditions but incompatible goals are in con�ict. Task models explicitly
de�ne feature interactions. During the creation of the task model, one
must think about potential interactions between di�erent features. Hence,
chances are high that one identi�es con�icting goals during the creation of
the task model. If this is not the case, con�icting goals still can be identi�ed
during testing, when tests are generated that cover unintentional feature
interaction scenarios. These scenarios might reveal faults in the system
resulting from the con�icting goals.

� Competition for resources: Scenarios in which multiple tasks are active at
the same time often lead to resource con�icts. These scenarios are explic-
itly described in a task model. Hence, test cases can be generated that

1 At least no such temporal dependency is included in the model, because uninten-
tional feature dependencies are not modeled explicitly
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cover these scenarios. However, task models do not specify resource or
data dependencies. Thus it is not possible to incorporate such information
during test generation. Resource and data dependencies are added during
test case instantiation, which is explained in the following chapters in more
detail. It is reasonable to execute the same test case multiple times with
di�erent resource con�gurations.

� Changing assumptions on features: often result from new features that are
added. Describing features in a task model and generating tests from the
model enables the systematic and continuous test of features and their
interactions. Hence, faults that result from changing boundary conditions
are likely to be identi�ed.

� Design evolution: When new features are introduced to a system, a task
model is a means to de�ne the dependencies to existing features. Further-
more, when a new feature is introduced, it is possible to systematically
select scenarios that test the interaction or the non-existence of an inter-
action between the new feature and the existing ones.

� Timing and race conditions: Task models de�ne no timing. Thus it is not
possible to generate test cases that cover timing critical scenarios. How-
ever, scenarios in which multiple tasks interfere are often timing critical.
The latter can be covered by test case generation from task models. Never-
theless, it is important to include timing during the test case instantiation,
for example, by performing the same test case multiple times with di�erent
timings.

To conclude, the main advantage of task models is that they describe features
and their dependencies in a concise and explicit way. Thus task models en-
able the systematic coverage of critical feature interaction scenarios by test
case generation. This section gave an introduction into task models based on
traces and showed how task models can be used to model feature interactions.
In the next section we present related work in the �eld of task and feature
modeling. Then we introduce our task modeling language TTask and de�ne
the semantics of task hierarchies and task dependencies in more detail.

4.2 Related Work

In this section we introduce related work from the area of feature interac-
tion and task modeling. Furthermore, we compare task models to common
modeling languages, such as state machines and activity diagrams.

4.2.1 Modeling Feature Interaction

In current research we �nd several approaches for the detection of feature in-
teraction [FN03] as a part of the speci�cation process. Calder et al. provide a
comprehensive review of di�erent approaches that cope with feature interac-
tion in [CKMRM03]. Most approaches focus on the detection of unintentional
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feature interferences that result from incompatible features. The basic idea
in these approaches is to model features and their dependencies. Based on
such a feature model, techniques, such as model checking, are used to analyze
models in order to �nd feature interferences. However, these approaches only
�nd feature interferences from modeled feature interactions. From our experi-
ence, feature interferences, especially the unintentional ones, are often caused
by faults in the actual implementation, such as race conditions. Therefore,
we chose to use test case generation in order to detect feature interferences
in the implementation as well. However, using test case generation it is not
possible to detect feature interactions during speci�cation, which can be ac-
complished by the previously mentioned approaches of feature interference
detection. In the remainder of this section we give an overview approaches for
feature interference detection in di�erent domains.

Feature interaction has �rst been described for telecommunication system.
For example, Kelly et al. [KCK94] use speci�cation and description language
(SDL) models to describe feature interactions. It is based on developing mod-
els of feature behavior using the language SDL[CCI84]. Their work focuses on
analyzing SDL speci�cations in order to detect unintentional feature interfer-
ences. Their approach is to model interactions between di�erent features and
to manually simulate these models to discover feature interferences. However,
they are lacking means to automatically derive feature interaction scenarios
which is required for test case generation.

Today there are other domains were feature interactions occur as well. One ex-
ample is feature interactions in web services. Weiss et al. employs the User Re-
quirements Notation [Amy03] in [WE04, WEL07] to model and detect feature
interactions. URN is comprised of two complementary notations: the Goal-
oriented Requirements Language (GRL)2, and the Use Case Maps (UCMs)
notation[BC96]. GRL is used to model business goals, non-functional require-
ments, design alternatives, and design rationales. UCMs allow the description
of functional requirements in the form of causal scenarios. The approach de-
tects feature interactions by identifying con�icts in the goals that can be
achieved by di�erent features. This approach is similar to ours in using a high
level goal-oriented notation to model feature interactions. However, UCMs
are a semi-formal notation which does not provide means to formally an-
alyze models or to generate test cases. Amyot et al. overcome this prob-
lem by manually transforming UCMs into LOTOS speci�cations. They ap-
plied UCMs [Buh98] to model feature interactions and to generate test cases
[ACG+00, ALW05]. They propose guidelines for the manual translation of
UCMs into LOTOS speci�cations. The resulting LOTOS speci�cation is used
to generate test cases. They introduce three di�erent scenario selection criteria
that cover structural properties of UCMs. The manual translation into LO-
TOS is necessary due to the informal nature of UCMs. However, the manual
transformation of UCMs into LOTOS is potentially error prone and requires a
substantial knowledge of LOTOS. Furthermore, only a subset of the language
constructs of UCM are translated into LOTOS. An approach where a speci�-
cation must be transformed manually into a formal language is not desirable
in our context. Our goal is to provide a modeling language that can be used
by testers without formal background.

2 http://www.cs.toronto.edu/km/GRL/
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Zheng et al. propose in [ZZK07] their approach of test case generation for test-
ing web service collaborations. They model service collaborations using the
Business Process Execution Language (BPEL). BPEL is a semi-formal �ow
language that enables modeling of concurrency and hierarchy. They propose
operational execution semantics for BPEL in order to use model checking for
test case generation. They generate test cases using structural test selection
criteria, such as state and transition coverage, as proposed in [HCL+03]. Fur-
thermore, they apply coverage criteria for data �ow dependencies that were
proposed by Hong et al. in [HCL+03]. Their approach of test case generation
is similar to the one we introduce in this thesis. They use the domain-speci�c
language BPEL, to model their system, which corresponds to our approach
of using task models. They also transform these models into model checker
code in order to generate test cases. The main di�erence to our approach is
that they use BPEL, which is a language that is focused on the speci�cation
of web services. Nevertheless, the goal of both, BPEL and task models, is to
model activity �ows in a system. However, we want to explicitly cover feature
interaction scenarios, which are not covered by their test selection criteria.

Metzger et al. present in [Met04, MW03] an approach to detect feature inter-
actions in embedded control systems with the example of building automation.
They introduce a formal product model that is used as a basis to model feature
interaction. The product model comprises a hierarchical, structural model of
the system reaching from the requirements level to the implementation level.
The detection of feature interactions is performed by identifying dependen-
cies between functional needs. Interestingly, they specify functional needs in
the form of tasks, which corresponds to our idea of an abstraction to model
features. They stepwise re�ne these task into corresponding control objects
using aggregation, instantiation, and realization dependencies. They describe
only static dependencies therefore it is not possible to derive test cases that
test feature interactions at runtime.

Rittmann describes in her thesis [Rit08] a methodology to design the usage
behavior of multi-functional systems with a means to model services and their
interactions. She proposes the basic service dependencies RESET, ENABLE,
DISABLE, INTERRUPT, and CONTINUE as means to describe service in-
teractions. However, she does not provide a formal de�nition of the semantics
of the service dependencies which inhibit their formal analysis and test case
generation. Nevertheless, the work provides an approach to model feature in-
teractions and shows how this can be included in the requirements engineering
process.

4.2.2 Task Modeling Notations

The concept of task analysis and modeling as a means to analyze and describe
user interfaces is not new. In the following we give a short introduction into
task analysis and modeling with a strong emphasis on formal task modeling
approaches. A comprehensive overview on concepts, methods and languages
of task modeling can be found in [DS03].

Hierarchical task analysis (HTA) was one of the �rst methods of task anal-
ysis, developed at the University of Hull in the late 1960s by Annett and
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Duncan. Their goal was to create a rational basis for understanding the skills
required in complex non-repetitive operator tasks, especially process control
tasks such as those found in steel production, chemical and petroleum re-
�ning, and power generation [DS03]. HTA describes task models in terms of
three main concepts: tasks, task hierarchy, and plans. Tasks are recursively
decomposed into subtasks to a point where subtasks are allocated either to
the user or the user interface, thus becoming observable. The task hierarchy
statically represents this task decomposition. A plan speci�es informally an
ordering in which subtasks of a given task could be carried on.

Task models have been applied in di�erent contexts. Stanton and Young ap-
ply task models in cognitive psychology to improve the understanding how
users may interact with a given interface [SY98]. They are also used for task
planning and allocation, in order to assess task workload, to plan and to al-
locate tasks to users in a particular organization [KA92]. In these areas task
modeling has the goal to understand and structure the user interface of a
system.

In software engineering, the goal of task analysis is to provide engineering
models of human performance [JK96b]. In the ideal, such models produce
a useful qualitative description of how the user uses a computer system to
perform a task, particularly at an earlier stage in the development process
than prototyping and user testing [JK96a].

The used task modeling notations are often informal descriptions without a
formal foundation. In order to use task models during development of user in-
terfaces there are several approaches that introduce task modeling notations
for the early formal description of tasks and their relationships, such as MDL
[Sti99], UAN [HSH90], DIANE+ [TB96], and the Concur Task Tree Notation
[Pat99]. The goal of these notations is to support the design process of user
interfaces by providing a precise description of tasks and their dependencies
as well as the ability to generate development artifacts such as code or proto-
types. In the following, we introduce the Concur Task Tree Notation in more
detail.

Concur Task Trees

The concur task tree (CTT) notation has been developed by Paternò et al.
[Pat99, PMM97]. Their goal is to enable the formal modeling of user interfaces
in an early development phase. CTT are based on �ve concepts: tasks, objects,
actions, operators, and roles. Figure 4.3 shows a CTT that describes the tasks
of three features: Seat Control, CD and Incoming Call. The task model has
been created with the CTT modeling environment CTTE [MPS02]. In the
CTT notation, task models are trees where each node represents a task and
where the descendants of a task represent its sub tasks. Leaf tasks are called
basic tasks and represent atomic actions. CTT supports four di�erent types
of tasks depending on the involved actors:

User Tasks: are entirely performed by the user.

Application Tasks: are completely executed by the system.
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Fig. 4.3. Concur Task Tree.

Interaction Tasks: are performed by the user interacting with the system.

Abstract Tasks: are complex tasks, which are divided in di�erent subtasks.

Temporal operators are used to link sibling tasks on the same level of decom-
position. The temporal operators are de�ned based on LOTOS [BB87]. They
connect two adjacent sibling tasks and apply for all subtasks. For example,
the task Phone in the case study suspends all subtasks of the task CD. In
detail there are the following kinds of temporal relations:

Choice ([]): It is possible to choose between a set of tasks. If one task is
active the other tasks from the set can not be selected. For example the user
can stop or pause the playback.

Order Independence (| = |): Both tasks have to be performed, but if one
task has started, it has to be �nished, before the other can start.

Concurrent (|||): Both tasks can be executed concurrently.

Concurrent with info exchange (|[]|): Both tasks can be executed con-
currently, but have to be synchronized in order to exchange information.

Disabling ([>): When one task is �nished, it disables another task. For
example if a disc is ejected, the task play disc is disabled.
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Suspend/Resume (| >>): The execution of a task t1 interrupts the execu-
tion of another task t2, which resumes after t1 has �nished.

Enabling (>>): If a task �nishes, it enables the execution of another task.
For example the task insert disc enables the task play.

Enabling with info exchange ([] >>): If a task �nishes, it enables the
execution of another task with additional information exchange. For example,
if a CD is inserted, the playback of the CD is enabled and the track list is
exchanged.

Iteration (∗): The task can be performed multiple times.

Actions and objects are speci�ed for each basic task. Objects could be per-
ceivable objects or application objects. Application objects are mapped onto
perceivable objects in order to be presented to the user. An interesting feature
of CTT is that both input actions and output actions associated with an ob-
ject are speci�ed. The last modi�cation made to CTT was to add the concept
of platform in order to support multi-platform user interface development.

Our �rst approach of test case generation from task models used the CTT
notation [Ben07]. When we tried to describe several features comprising of
multiple intentional interactions, CTT did not provide the means of encap-
sulating feature-speci�c tasks due to the constraint that temporal operators
are only allowed between sibling tasks. Furthermore, CTTs have a dedicated
operator to describe the concurrent execution of two tasks. An AIS, for ex-
ample, has a large number of tasks that can be performed concurrently which
therefore must all be explicitly de�ned. Therefore, we decided to create a new
task modeling notation that provides a formal foundation which can be used
to generate test cases and that provides a concise way to model large systems
such as AIS.

4.2.3 Test Case Generation Approaches

In this section we compare common modeling languages that are used for
test case generation with task models. First we compare task models and
�nite state machines. Finite state machines are a widely used technique for
the speci�cation of reactive systems. They describe the possible states of a
system and the transitions between these states. They are a common technique
for test case generation. The main di�erence between task models and �nite
state machines is that task models describe possible sequences of activities
in contrast to �nite state machines that describe possible sequences of state
transitions. However, a task model can be described by an automaton by
encoding the di�erent modes of a task in states. Figure 4.4 shows a task model
and a state machine. Both describe a suspend/resume dependency between
two tasks. The state machine model is far more complex than the task model.
The complexity of the state machine increases even more when additional
tasks with suspend/resume dependencies are added, which would soon result
in the unreadability of the state machine. Hence, modeling larger systems that
comprise a large number of features is not feasible with state machines.
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Fig. 4.4. Task model versus state machine.

Chi and Hao introduce in [CH07] an approach for generating test cases that
cover feature interactions from �nite state machines. They generate test se-
quences to detect feature interactions in a complex feature-rich communication
system. Their approach shows that it is possible to generate test cases that
cover feature interactions. However, from our experience state machines are
not the right abstraction to model features interactions, because they soon
result in large and unmaintainable models.

A more appropriate abstraction to model feature interactions are activity di-
agrams that are part of the uni�ed modeling language (UML). They focus on
activities instead of state transitions by describing the sequential or concur-
rent control �ows of activities. They are typically used for modeling the logic
captured by a single use case or usage scenario. In addition to task models
they support elements such as conditions and decisions. Nóbrega et al. de-
scribe in [NNC05] the mapping of CTT to UML 2.0 Activity diagrams. The
mapping resulted in incomprehensibly large activity diagrams because the na-
tive temporal operators in a CTT were not supported and therefore had to
be reproduced using complex constructs. However, these large activity dia-
grams show that task models are able to express task dependencies in a more
compact and expressive manner.

Activity diagrams are used for test case generation as well. Mingsong et al.
present in [MXX06] an approach that supports the test case generation from
UML activity diagrams. They support structural test selection criteria, such
as activity coverage and transition coverage. The test case generation is per-
formed by generating random test cases until the generated test suite ful�lls
certain structural coverage criteria. This approach is only applicable when
the e�ort of test case execution is low, which is not true for AIS. Hence, it is
necessary to be able to generate a minimal set of test cases that cover critical
scenarios.

To summarize, task models can be expressed by state machines and activity di-
agrams. However, the advantage of task models is their compact notation that
enables the speci�cation of larger systems in comparison to general-purpose
modeling languages such as state machines and activity diagrams. Another
important advantage is that task models support di�erent operators to de-
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scribe temporal dependencies between tasks. This enables the de�nition of
speci�c test selection criteria that cover interaction scenarios based on these
dependency types.

4.3 The TTask Language

We have seen in the �rst part of this chapter that task models are an ap-
propriate technique to describe feature interactions. What is needed is a task
modeling notation that combines a formal foundation with a simple graphical
syntax in order to enable test case generation for testers with no background in
formal methods. In the remainder of this chapter, we present such a modeling
language: TTask.

Enter Destination

enable
Start Guidance Stop Guidance

disable

Route Advice

Enter City

enable

enable

Enter Street
enable

enable

Fig. 4.5. Route guidance task model.

A TTask model consists of task hierarchies and temporal dependencies. Task
hierarchies enable the speci�cation of complex tasks by decomposing them
into their subtasks. TTask supports three di�erent temporal dependencies:
enable, disable and suspend. These dependencies can be used to describe,
for example, when the execution of a task enables or disables another task.
Based on these temporal dependencies, a TTask model implicitly describes
the space of all possible sequential task executions. Figure 4.5 shows a sample
task model that describes the necessary tasks to enter a navigation destina-
tion and to control the route guidance for an AIS. A task is illustrated as
a rounded rectangle in a TTask diagram. Task hierarchies are depicted by
drawing subtasks inside of their parent tasks. In the example in Figure 4.5 the
task Enter Destination is a composite task that is divided into two subtasks
Enter City and Enter Street. The temporal dependencies between two tasks are
symbolized by directed edges. For example, the tasks Enter City and Enter
Street have an enable dependency, which means that the execution of Enter
City enables the execution of Enter Street. Note that TTask does not di�eren-
tiate between tasks that are started by the environment (e.g. Enter City) and
tasks that are started by the system (e.g. Route Advice).

Formally a TTask model M is a quadruple M = (T, S0, ∆, Φ), where:
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� T is a set of tasks T = {t1, ..., tn}, where each ti ∈ T is a unique task
identi�er.

� The task hierarchy is described by the subtask function Φ that maps a
task to its subtasks Φ(T )→ {T}. For Φ must hold that:

� there are no cycles in the task hierarchy.

� ∀t ∈ T. ∃t1 ∈ T. ∃t2 ∈ T. t ∈ Φ(t1) ∧ t ∈ Φ(t2)→ t1 = t2

� ∆ is a set of temporal task dependencies where each dependency δ ∈ ∆ is
a triple δ = (ti, tj , d), where ti, tj ∈ T and d ∈ {enable, disable, suspend}.

� S0 = 〈m1, ...,mn〉 is the initial task model state that describes for each
task ti ∈ T its initial mode mi ∈ {enabled, disabled}.

We refer to a task t that has no subtasks Φ(t) = ∅ as atomic task and otherwise
as composite task Φ(t) 6= ∅. In the task model in Figure 4.5 the tasks Enter
City and Enter Street are atomic tasks (among others). Atomic tasks represent
actual interactions between system and environment whereas composite tasks
represent the composed interactions of their subtasks. In the example, Enter
Destination is performed by the sequential execution of its two subtasks Enter
City and Enter Street.

Task dependencies describe the temporal relations between tasks based on
the task hierarchy: a task dependency holds for a task and its subtasks. For
example, in the task model in Figure 4.5, the enable dependency between Enter
Destination and Start Guidance holds for the subtasks of Enter Destination as
well. First we introduce the de�nition of a task's closure in order to de�ne
the dependencies between two tasks. The closure of a task t is the smallest
set that contains the task and all its ancestors:

closure(t) =

{
t ∪ closure(tp) , ∃tp ∈ T. t ∈ Φ(tp)
t , otherwise

(4.1)

Two task t1 and t2 have a dependency d ∈ {enable, disable, suspend} if they
or one of their ancestors have a corresponding dependency:

∃tp1 ∈ closure(t1). ∃tp2 ∈ closure(t2). ∃δ ∈ ∆.δ = (tp1, tp2, d)

The goal of a task model is to describe the temporal relations between di�er-
ent tasks by de�ning how the execution of a task in�uences other tasks. For
example, the execution of a task enables or disables the execution of another
task. A task mode de�nes whether a task can be executed or not. A task can
only be executed if its mode is enabled. Task modes describe the current state
of a task, based on its initial mode and on the history of already executed
tasks. A task mode change results from the execution of tasks that are related
by a temporal dependency. The set of possible task modes is de�ned by:

MODES = {enabled, disabled, active, suspended,
suspended_enabled, suspended_disabled} (4.2)

The task modes are in detail:
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� enabled: The task is ready for execution. It is either initially enabled or
it has been enabled by another task.

� active: The task is currently being executed.

� disabled: The task is disabled and cannot be executed. It is either initially
disabled or it has been disabled by another task.

� suspended: The task has been active and is being suspended by another
task. A task t is suspended as long as any other task tS that has a suspend
dependency δ = 〈ts, t, suspend〉 to t is active.

� suspended_enabled: The task is both enabled and suspended. Hence,
the task cannot be executed until it is resumed by the suspending task.

� suspended_disabled: The task is both disabled and suspended. In order
to enable the task, it must be enabled and resumed by other tasks.

In TTask, the actual interaction between environment and system is not de-
scribed, instead these interactions are represented by the execution of tasks. A
task is executed by �rst starting and then stopping it. When a task is started,
it changes its mode from enabled to active and when it is stopped it changes
its mode from active to disabled. The start of a task represents the beginning
of a speci�c interaction between system and environment and the stop of a
task represents the end of this interaction between system and environment.
The environment and system are not explicitly modeled in a TTask model,
instead they are combined and represented by the Executor that is responsible
for starting and stopping tasks.

Suspend

ResumeStart

Stop

Suspend Resume
Resume Suspend

Disable
Disable

Enable

Enable

Disable
Enabled Disabled Suspended

Suspended

Enabled

Suspended

Disabled

Active

Disable

start start

Fig. 4.6. Task mode transitions.

When a task is performed, the global task model state changes. Figure 4.6
shows a state diagram that describes these task mode transitions in the form of
a mealy machine. The state machine shows the resulting task mode transitions
when the executor starts or stops a task. These are represented by the inputs
start and stop. Furthermore, the state machine shows the task mode changes
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Listen to CD

Play CD

enable
enable

enable

disablesuspend/resumeenable

Play Stop

Pause

enable
Insert Disc

Eject Disc
disable

Fig. 4.7. Task model for the CD feature.

that result from the task dependencies: the state transitions for the inputs
enable, disable, suspend, and resume. Initially either the state enabled or the
state disabled is active. There are two transitions from the task mode active to
the mode disabled. They di�er based on the initiator of the task mode switch.
The �rst transition for the input stop is �red when the task is completed and
therefore stops. The other transition for the input disable is �red when the
task is disabled by another task that becomes active.

In the following we introduce the temporal task dependencies in more detail
based on the example in Figure 4.7. The task model describes the tasks of a
simple CD player application. The depicted tasks are:

1. Insert Disc: The user performs this task by inserting a disc into the
player.

2. Eject Disc: The user performs this task by pressing the eject button.

3. Play: The user performs this task by pressing the play button.

4. Stop: The user performs this task by pressing the stop button.

5. Play CD: This task represents the activity of the CD player, when it
plays a disc. It is started when the task Play is started and is stopped
when the task Stop is �nished.

6. Pause: The user performs this task by pressing the pause button twice:
�rst to pause the CD player and then to resume the playback. While this
task is performed, the task Play CD is suspended.

7. Listen to CD: This task describes the overall behavior of the CD player.
It can be performed iteratively.

The task model in Figure 4.7 uses all three task dependencies enable, disable,
and suspend in order to describe the behavior of a CD player:

enable: The enable dependency expresses that one task is enabled when an-
other task is �nished. This allows the de�nition of task sequences, where one
task is a precondition for another task. In Figure 4.7 the task Insert Disc en-
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ables the task Eject Disc and vice versa. When Insert Disc �nishes, the task
Eject Disc is enabled and can be performed. The same applies to Listen to CD
which is also enabled by Insert Disc. Temporal task dependencies hold for a
task and its subtasks. Hence, all initially enabled subtasks of Listen to CD are
enabled as well. A subtask is initially enabled if it has no incoming enable
dependency from any sibling task or any of its sibling tasks' descendants. The
task Listen to CD can be performed iteratively. This is modeled by an enable
dependency to itself. Hence, when the task Listen to CD is stopped, it changes
its mode to disabled and subsequently enables itself, which results in its new
mode being enabled.

disable: The situation that the execution of a task disables another task can
be described with the disable dependency. In Figure 4.7 the task Eject Disc
disables the task Listen to CD. When the task Eject Disc is started, the task
Listen to CD and all of its subtasks become disabled, even if the task Listen
to CD is active. The latter is depicted in Figure 4.6 by the transition for the
input disable between the states active and disabled. As a consequence Listen
to CD and all its child tasks cannot be performed until they are re-enabled by
Insert Disc.

suspend: Interruption scenarios can be described with the suspend depen-
dency. A task is suspended during the execution of a suspending task and it
is resumed when the suspending task is �nished. The task Pause in Figure
4.7 suspends the task Play CD when it starts and resumes it after Pause is
stopped. If a task is suspended by multiple active tasks it is not resumed until
all suspending tasks are �nished.

In the following, we introduce the notion of a task sequence as a means to
describe sequential task executions in a task model. Figure 4.8 shows three
di�erent task model states of the same task model. Di�erent task modes are
represented by di�erent colors. The �rst task model state shows the task
modes before the task Enter City is started and the second task model state
shows the task modes after the task Enter City is started. The last task model
state shows the resulting task modes when Enter City is completed and there-
fore is stops. When an atomic task is currently performed, thus its mode is
active, all parent tasks are active as well, which is the case for the composite
task Enter Destination in the second task model state. Parent tasks remain
active as longs as one of their subtasks is enabled or active. In the example,
Enter Destination gets disabled after the task Enter Street has been performed.

Formally, a task model state S of a given task model M = (T, S0, ∆, Φ), is
de�ned as an ordered set of task modes:

S = 〈m0, ...,mn〉

We de�ne a mapping function mode that maps a task to its mode in a task
model state:

mode : S × T →MODES

We use the following abbreviation for mode to select the mode mi of a task
ti from a task model state S:

S[ti] = mi
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Enter Destination
enable

Enter City Enter Street

Enter Destination

enable
Enter StreetEnter City

(b) S1: Enter City is started

(a) S0: Before Enter City is started

enabled

disabled

active

Enter Destination

enable
Enter StreetEnter City

(c) S2: After Enter City is stopped

Fig. 4.8. Task modes before and after Enter City is executed.

Thus Figure 4.8 shows three task model states S0, S1, and S2 that results
from the execution of the task Enter City. Additionally, the table in Figure 4.9
shows all �ve task model states that result from the sequential execution of the
tasks Enter City and Enter Street. In this table, we see that the composite task
Enter Destination changes its mode to disabled after Enter Street is performed.
In general we refer to such a sequence of task model states as a task sequence.

Enter Destination Enter City Enter Street

S0 enabled enabled disabled

S1 active active disabled

S2 active disabled enabled

S3 active disabled active

S4 disabled disabled disabled

Fig. 4.9. Task sequence.

In the remainder of this section, we introduce the execution semantics of a
TTask model. In order to simplify the de�nition of the execution semantics,
we de�ne the update function S[ti,m] = S′ that changes the mode of a task
ti in a task model state S to the new mode m ∈MODE:

S[ti,m][tj ] =

{
m , ti = tj
S[tj ] , otherwise

A task sequence TS is a sequence of task model states

TS = 〈S0, ..., Sp〉, where Si = 〈m0, ...,mn〉

for which holds:

� S0 is the initial task model state.

� Three subsequent task model states Si, Si+1, and Si+2 result from the
sequential start and stop of an enabled atomic task tj
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Φ(tj) = ∅ ∧ Si[tj ] = enabled

beginning at the initial task model state S0:

start(Si, tj) = Si+1 ∧ stop(Si+1, tj) = Si+2

where:

start : 〈MODE ×MODE × ...〉 × T → 〈MODE ×MODE × ...〉

describes the resulting task model state when a task is started and

stop : 〈MODE ×MODE × ...〉 × T → 〈MODE ×MODE × ...〉

describes the resulting task model state when a task stopped.

When a task is started, its mode is changed to active. If the task has a parent
task, the parent task is started as well. Subsequently, all tasks that are related
by suspend and disable dependencies to the started task are suspended and
disabled respectively. The start of a task is de�ned by:

start(S, ti) = suspendTasks(disableTasks(startParent(S[ti, active], ..., ti)))
(4.3)

The start of the parent task is the smallest set for which holds:

startParent(S, ti) =

{
start(S, tp) ,∃tp ∈ T. ti ∈ Φ(tp)
S , otherwise

(4.4)

Using the de�nition of a closure we can de�ne the set of disabled tasks by a
given task t by:

disabledBy(t) = {td|∃tp ∈ closure(td). ∃δ ∈ ∆. δ = (t, tp, disable)} (4.5)

The mode of the disabled tasks is changed depending on their current mode.
For example, an enabled task's mode is changed to disabled. The resulting
task modes for disabled tasks are:

disableTasks(S, ti)[td] =
suspended_disabled , td ∈ disabledBy(ti) ∧ (S[td] = suspended_enabled

∨ S[td] = suspended)
disabled , td ∈ disabledBy(ti) ∧ (S[td] = enabled

∨ S[td] = active)
S[td] , otherwise

(4.6)

All tasks that are related by the suspend dependency are suspended. For
example, a task's mode is changed from enabled to suspended_enabled. The
set of suspended tasks by a given task t is:

suspendedBy(t) = {td|∃tp ∈ closure(td). ∃δ ∈ ∆. δ = (t, tp, suspend)} (4.7)

The resulting task modes for suspended tasks are:
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suspendTasks(S, ti)[td] =
suspended , td ∈ suspendedBy(ti) ∧ S[td] = active
suspended_enabled , td ∈ suspendedBy(ti) ∧ S[td] = enabled
suspended_disabled , td ∈ suspendedBy(ti) ∧ S[td] = disabled
S[td] , otherwise

(4.8)

A task is stopped by changing its mode to disabled. Subsequently, all tasks
that are related by the enable dependency are enabled. If no subtask of the
parent task is enabled or active, the parent task is stopped as well. Finally all
tasks that are related by suspend are resumed. When a task ti is stopped the
resulting task model state S′ is de�ned by:

stop(S, ti) = resumeTasks(stopParent(enableTasks(S[ti, disabled], ..., ti)))
(4.9)

When a task stops, it enables all tasks that are related by the enable depen-
dency and their initially enabled subtasks if they are not disabled by another
active task. Initially enabled subtasks have no incoming enable dependency
from a sibling task or a sibling task's descendant. The siblings of a task and
their descendants are de�ned by:

siblings(t) = {ti|∃tp ∈ T. t ∈ Φ(tp) ∧ tP ∈ closure(ti) ∧ t /∈ closure(ti)}
(4.10)

The initially enabled subtasks of a task t are de�ned by:

initiallyEnabled(t) = {ti ∈ T |t ∈ closure(ti)
∧ ∃tp ∈ closure(ti). ∃δ ∈ ∆. @te ∈ siblings(ti).

t ∈ closure(tp) ∧ δ = (te, tp, enable)} (4.11)

The set of enabled tasks by a given task t is:

enabledBy(t) = {td ∈ T |∃tp ∈ closure(td). ∃δ ∈ ∆.@ty ∈ T.
δ = (t, tp, enable) ∧ td ∈ initiallyEnabled(tp)

∧ S[ty] = active ∧ tp ∈ disabledBy(ty)} (4.12)

The modes of the enabled tasks change as follows:

enableTasks(S, ti)[td] = enabled , td ∈ enabledBy(ti) ∧ S[td] = disabled
suspended_enabled , td ∈ enabledBy(ti) ∧ S[td] = suspended_disabled
S[td] , otherwise

(4.13)

The task model state after stopping the parent task is de�ned by:

stopParent(S, ti) = stop(S, tp) , ∃tp ∈ T. ti ∈ Φ(tp)
∧ ∀tc ∈ Φ(tp). S[tc] = disabled ∨ S[tc] = suspended_disabled

S , otherwise

(4.14)
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The set of resumed tasks by a given task t where no other suspending task is
active is:

resumedBy(t) = {td|td ∈ suspendedBy(t)
∧ @tx ∈ T. td ∈ suspendedBy(tx) ∧ S[tx] = active} (4.15)

Finally, the resulting task modes for suspended tasks are:

resumeTasks(S, ti)[td] =
active , td ∈ resumedBy(ti) ∧ S[td] = suspended
enabled , td ∈ resumedBy(ti) ∧ S[td] = suspended_enabled
disabled , td ∈ resumedBy(ti) ∧ S[td] = suspended_disabled
S[td] , otherwise

(4.16)

The last paragraphs described the semantics of a TTask model. The most
important points are:

� When a task is started, it changes its mode from enabled to active. When
it is stopped, it changes its mode from active to disabled.

� A composite task is started when it is enabled and one of its subtasks is
started. It is stopped, when no subtasks are either active or enabled.

� An active atomic tasks must be stopped before another atomic task can be
started. Hence, there are never multiple atomic tasks active at the same
time. However, composite tasks can be active at the same time.

� When a composite task is enabled, all subtasks that have no incoming
enable dependency from a task that is part of the same task hierarchy, are
initially enabled.

To sum up, TTask enables the de�nition of hierarchical tasks and their tem-
poral dependencies. The goal is to use TTask to describe feature interactions.
To achieve this we have to provide a de�nition of features. We stated earlier
that a task describes a feature. Hence, the de�nition of a feature is straight-
forward. For a given task model M = (T, S0, ∆, Φ), a feature is de�ned by a
set of tasks:

f ⊂ T

Based on the de�nition of a feature we can formally de�ne feature interac-
tions as dependencies between tasks that belong to di�erent features. Let
D(TASK × TASK)→ {∆} be the set of all temporal dependencies between
two tasks t1 and t2:

D(t1, t2) = {d ∈ ∆ : ∃tp1 ∈ closure(t1). ∃tp2 ∈ closure(t2). δ = (tp1, tp2, d)}

Two features f1 ⊂ T and f2 ⊂ T , where f1 ∩ f1 = ∅, have an intentional
feature interaction, i�:

∃t1 ∈ f1.∃t2 ∈ f2. D(t1, t2) 6= ∅

These two features have no intentional feature interaction, i�:
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@t1 ∈ f1.@t2 ∈ f2. D(t1, t2) 6= ∅

In this case, when two features have no intentional interactions, there might
be unintentional feature interferences during the execution of any of these
feature's tasks. However, even if two features have an intentional interaction,
there still might be unintentional feature interferences between them. Namely,
when there are two tasks t1 ∈ f1 and t2 ∈ f2 that have no temporal depen-
dency and if there are two tasks t3 ∈ f1 and t4 ∈ f2 that have a temporal
dependency:

∃ t1 ∈ f1.∃t2 ∈ f2. D(t1, t2) = ∅ ∧
∃ t3 ∈ f1.∃t4 ∈ f2. D(t1, t2) 6= ∅

In that case, the tasks t1 and t2 might have an unintentional feature interac-
tion, as well. This shows that it is possible to derive from a TTask model all
scenarios that involve an intentional feature interaction and all scenarios that
might involve an unintentional feature interaction. Hence, a TTask model can
be used to generate test cases that systematically test the existence of inten-
tional feature interactions and test the non-existence of unintentional feature
interferences.

To summarize, TTask is a task modeling language that enables the hierarchical
description of tasks and their temporal dependencies. Based on these temporal
dependencies it is possible to describe the enabling, disabling and suspension
of one task by another task. In contrast to other task modeling languages
such as CTTs [PMM97], concurrency must not be de�ned explicitly, instead
all tasks can be performed concurrently, as long as they are not excluded by
temporal dependencies.

We do not claim that TTask is complete in terms of being able to model the
behavior of any system. For instance, it is currently not possible to model
the situation when the same task can be performed concurrently with a prior
unknown number of concurrent executions. For example, when the user would
be able to hold an unlimited number of phone calls at the same time.

In TTask there are only three di�erent task dependencies de�ned. Hence, the
possibilities to describe the dependencies between two single tasks is limited.
However, the combination of these task dependencies with hierarchical task
structures enables the speci�cation of complex behavior patterns. We were
able to model large parts of the user interface of an actual infotainment system
using TTask. The next section introduces modeling patterns for TTask which
describe typical scenarios that have occurred in practice.

4.4 TTask Modeling Patterns

There are certain behavioral patterns that occur frequently in practice. An
example for such a typical behavior pattern is the mutual exclusion of two
tasks. Task modeling patterns are templates to describe typical behavior sce-
narios similar to design patterns for programming languages [GHJV95]. The
two goals of this section is to �rstly provide a more profound understanding
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of TTask and its capabilities by giving examples how common interactions
can be described with TTask and secondly to introduce the extended graph-
ical syntax of TTask in order to simplify the application of these modeling
patterns,

4.4.1 Iterative Task Pattern

We refer to a task that can be performed multiple times as an iterative task.
This is modeled by an enable dependency to itself. Thus, when the task is
�nished, it changes its mode from active to disabled. It then enables all tasks
that are related by the enable dependency, including itself, resulting in its
new mode being enabled. Thus it can be executed again. Figure 4.10 shows
an example of the iterative task pattern where Figure 4.10(a) shows the basic
realization in TTask and Figure 4.10(b) shows the simpli�ed graphical syntax.
The asterisk behind a task's name indicates that it is an iterative task.

Control Light

enable

Turn 

On 
Turn

Of

enable

(a) Basic realization.

Control Light*

Turn 

On 
Turn

Of

enable

(b) Simpli�ed graphical
representation.

Fig. 4.10. Iterative pattern.

4.4.2 Sequential Execution Pattern

Tasks are often executed sequentially. The implementation is straightforward
by using the enable dependency. Figure 4.11 shows an example of the sequen-
tial execution pattern. The composite task Select Song has three subtasks that
are performed sequentially.

Select Song*

Select 

Artist

Select 

Artist Album

Select 

Album Song

enable enable

Fig. 4.11. Sequential execution pattern.

4.4.3 Order Independence Pattern

When the execution order of two or more tasks is unde�ned, we can use
the order independence pattern to describe this situation. Figure 4.12 shows
an example for the task Add Contact. When the user creates a new contact,
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the user may enter the contact's forename and surname in any order. This
is modeled by a composite task with no temporal dependencies between its
subtasks. The composite task is started when one of its subtasks is started.
This is the case, when either Enter Surname or Enter Forename is started. It
stops when all subtasks are disabled.

      Add Contact*

Enter Contact

Enter 

Surname

Enter 

Forename

Save

Contact

enable

Fig. 4.12. Order independence pattern.

4.4.4 Task Interleaving Pattern

When a system can perform multiple functions concurrently, the correspond-
ing tasks are executed interleaved. Two or more composite tasks can be per-
formed interleaved, when they have no temporal dependencies. This is a typ-
ical situation in which an unintentional feature interaction might occur. This
situation is described by composite tasks with no temporal dependencies as
shown in Figure 4.13. The two tasks Control Light and Add Contact are in-
dependent of each other and therefore the atomic subtasks can be performed
interleaved.

Control Light*

Turn 

On 
Turn

Of

enable

      Add Contact*

Enter Contact

Enter 

Surename

Enter 

Forename

Save

Contact

enable

Fig. 4.13. Task interleaving pattern.

4.4.5 Mutual Exclusion Pattern

When the execution of a task excludes the execution of another task the
Mutual Exclusion Pattern applies. For example, the tasks Listen to Radio and
Listen to CD cannot be performed at the same time. This is modeled by two
opposing suspend dependencies as depicted in Figure 4.14. Figure 4.14(a)
shows the implementation and Figure 4.14(b) shows the simpli�ed graphical
syntax with only one bidirectional dependency.



4.4 TTask Modeling Patterns 51

Listen to CD

...

Listen to Radio

...

suspend

suspend

(a) Basic realization.

Listen to CD

...

Listen to Radio

...
choice

(b) Simpli�ed graphical representation.

Fig. 4.14. Mutual exclusion pattern.

4.4.6 Optional Task Pattern

When a user enters a new destination into the navigation system, the user can
start the route guidance after entering a city or additionally entering a street
and a house number. Hence, the tasks Enter Street and Enter House Number
are optional and need not to be performed in order to �nish the task Enter Des-
tination. The Optional Task Pattern implements this situation by adding an
explicit end task. Figure 4.15(a) shows the implementation with an additional
end task End Enter Destination. End Enter Destination is enabled by the task
Enter City and it has a disable dependency to the tasks Enter Street and Enter
House Number. Thus, when End Enter Destination is performed the optional
tasks become disabled and therefore Enter Destination is �nished. However,
the introduction of an explicit end task does not correspond to the real world
because the user must not explicitly end the destination input. Rather the
user implicitly ends the task by starting another task. Figure 4.15(b) shows
the simpli�ed graphical syntax with an end task. An end task is symbolized
by a �lled circle that represents a task that has a disable dependency to all
sibling tasks.

Enter Destination

enable
Enter Country Enter City

enable
Enter Street

Enter

Housenumber

enable
enable

End Enter 

Destination

disable

disable
disable disable

(a) Basic realization.

Enter Destination

enable
Enter Country Enter City

enable
Enter Street

Enter

Housenumber

enableenable

(b) Simpli�ed graphical representation.

Fig. 4.15. Optional tasks pattern.
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4.4.7 End Task Pattern

The end task pattern is related to the previous pattern. Here we have one task
that explicitly ends the parent task by disabling all sibling tasks. For example,
a task model for a simple cash machine. After the user enters the card, the
user can always cancel the task Withdraw Cash at Cashpoint by performing
the task Cancel. The Cancel task disables all other sibling tasks and thereby
ends the parent task Withdraw Cash at Cashpoint. In the �rst task model in
Figure 4.16(a) this is modeled explicitly by disable dependencies and in the
task model in Figure 4.16(b) this is implicitly modeled by modeling Cancel as
an end task which represents a disable dependency to each sibling task. The
di�erence to the previous pattern is that here the end task corresponds to a
task in the real world whereas in the previous pattern the end task has no
corresponding task in the real world.

Withdraw Cash at Cashpoint

disable
enable

Withdraw Cash

Enter Card

enable

Enter Pin Cancel

enable

disable
disable

(a) Basic realization.

Withdraw Cash at Cashpoint

enable

Withdraw Cash

Enter Card

enable

Enter Pin Cancel

enable

(b) Simpli�ed graphical
representation.

Fig. 4.16. End task pattern.

4.4.8 Selection Pattern

The Selection Pattern represents the situation where a composite task is per-
formed when one of its subtasks is performed. For example, the user can select
a radio station either by selecting an amplitude modulation (AM) station, fre-
quency modulation (FM) station, or a satellite radio station (SDARS). Hence,
the user has the choice between three di�erent tasks in order to perform the
task Choose Radio Station. In the �rst task model in Figure 4.17(a) this is
modeled explicitly by disable dependencies between the subtasks and in the
task model in Figure 4.17(b) this is implicitly modeled using the end task
pattern.

4.4.9 Long Running Task Pattern

The execution of an atomic task can not be interleaved with the execution
of another task. There are two di�erent ways to describe long running tasks
which can be executed interleaved with other tasks. The �rst solution is to
explicitly de�ne a start and stop task as shown in Figure 4.18(a) for the task
Listen to CD. The second solution is depicted in Figure 4.18(b). The end of
the long running task Listen to Radio is implicitly described by an end task.
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Choose Radio Station

disable

Select SDARS 

Station

Select AM 

Station

Select FM 

Station

disable

disable

(a) Basic realization.

Choose Radio Station

Select SDARS 

Station

Select AM 

Station

Select FM 

Station

(b) Simpli�ed graphical representation.

Fig. 4.17. Choice pattern.

Listen to CD*

Play Stop
enable

(a) Long running task with start
and end task.

Listen to Radio*

Select 

Station
enable

(b) Long running task with
implicit end task.

Fig. 4.18. Long running task.

4.5 Modeling Feature Interaction with TTask

The previous sections introduced the TTask notation. Furthermore, we intro-
duced modeling patters to describe typical behavioral scenarios of a system.
This section demonstrates how direct and indirect feature interactions can be
described with TTask. Figure 4.19 shows the task model from Figure 4.7 with
two additional tasks: Handle Incoming Call and Adjust Seat.

In Section 4.1 we introduced tasks as a way to represent feature-speci�c in-
teraction between a system and its environment. As an example: the tasks
Signal Call, Accept Call, and Reject Call describe the feature Incoming Call.
With TTask we can describe the feature-speci�c behavior with these tasks and
their temporal relations. Furthermore, we can describe feature interactions by
temporal dependencies between tasks that belong to di�erent features. Figure
4.19 shows an example task model that describes four features: CD Playback,
Radio, Handle Incoming Call and Adjust Seat. These features are highlighted in
gray.

This task model describes multiple intentional feature interactions. Direct fea-
ture interactions are task dependencies between tasks that belong to di�erent
features. For example the suspend dependency between the mutual exclusive
tasks Listen to Radio and Listen to CD. Both tasks belong to the composite
task Listen to Media which is suspended by Handle Incoming Call. Hence, the
suspend dependency between Handle Incoming Call and Listen to Media de-
scribes two di�erent feature interactions. These task dependencies describe
the following feature interaction scenarios:

Listen to Radio
suspend−−−−−→ Listen to CD: When the user listens to the radio, the

listening to a CD is suspended.
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Listen to Media

Adjust Seat FeatureIncoming Call Feature

Radio FeatureCD Player Feature

Listen to CD*

Play CD

Listen to Radio*

enable
enable

Select Radio Source

enable

disablesuspendenable

Play Stop

Pause

enable
Insert Disc

Eject Disc
disable

Select FM Station

Select AM Station

disable

choice

Handle Incoming Call*

Handle Call
enable

Reject Call

Accept Call

disable

Hang Up

Signal Call
enable

Move Seat*

Stop Moving

Start Moving

enable

suspend

Fig. 4.19. Four features and their interactions described with TTask.

Listen to CD
suspend−−−−−→ Listen to Radio: When the user listens to a CD, listening

to the radio is suspended.

Handle Incoming Call
suspend−−−−−→ Listen to Radio: An incoming call interrupts

listening to the radio. There are two possible situations, when an incoming
call can interrupt the active task Listen to Radio depending on the last radio
task that has been performed:

1. Select AM Station → Handle Incoming Call

2. Select FM Station → Handle Incoming Call

IncomingCall
suspend−−−−−→ ListentoCD: An incoming call interrupts the listening

to a CD. There are also two possible situations, in which an incoming call can
interrupt the CD depending on the last active task:

1. Insert Disc → Play → Handle Incoming Call

2. Insert Disc → Play → Pause → Handle Incoming Call

Direct feature interactions are described by temporal task dependencies. By
contrast, unintentional feature interactions are non-speci�ed interactions be-
tween two features. Hence, they cannot be described explicitly in a task model.
In an AIS, it is possible that feature interferences may result from indirect
interactions between any features because all features use the same resources
such as the GUI, the communication bus and often the same input and output
devices. Especially situations in which di�erent features are executed inter-
leaved are error prone. These situations are described implicitly by a task
model: all tasks in di�erent features that have no temporal dependencies can
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be executed interleaved. In the example in Figure 4.19 this is the case for the
feature Adjust Seat that has no temporal dependencies to the other features
(nor vice versa). Therefore, there are multiple scenarios where the execution
of Move Seat interferes with other tasks:

1. Insert Disc → Play → Start Moving → Stop Moving → Stop

2. Insert Disc → Play → Start Moving → Stop → Stop Moving

3. Insert Disc → Play → Pause → Start Moving → Stop Moving

4. ...

To conclude, this section showed how a TTask model describes intentional
feature interactions by temporal task dependencies. This section also showed
that a TTask model describes potential error prone unintentional feature in-
teraction scenarios as well: namely when independent tasks are executed inter-
leaved. The challenge is to generate task sequences that cover both intentional
feature interaction scenarios as well as unintentional feature interaction sce-
narios.

4.6 Summary

Test case generation for feature interaction testing requires an appropriate test
model. This test model should describe critical feature interaction scenarios. In
this chapter we have shown that task models ful�ll these requirements. A task
is a feature-speci�c, goal driven interaction between system and environment.
We can describe the black-box behavior of a feature by describing the set of
tasks that are enabled by the feature. Task models describe tasks and their
temporal dependencies. Hence, feature-speci�c scenarios are described by the
temporal dependencies between a feature's tasks. Furthermore, intentional
feature interactions are described by temporal dependencies between di�erent
features' tasks. Potential unintentional feature interactions can be inferred
from a task model by deriving independent tasks that can be performed in an
interleaved fashion.

We have given an overview of di�erent techniques to describe feature inter-
actions and task models with respect to test case generation. The existing
approaches either lack the necessary formalization for test case generation or
they are based on formal methods that require a deep understanding of the
underlying concepts, which is usually not the case for testers in the automo-
tive domain. In order to enable the speci�cation of complex systems such as
AIS and to enable the generation of test cases, we have introduced the new
task modeling language TTask. TTask combines an easy graphical syntax
with a formal foundation that enables the automated generation of test cases.
A TTask model implicitly describes the space of all possible task sequences
where each sequence is a potential test case. In the next chapter we introduce
test selection criteria to select �interesting� task sequences that cover critical
interaction scenarios.
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Generating Task Sequences

This chapter covers the generation of task sequences from TTask models. A
task model implicitly describes the space of all possible sequences of task
executions. The number of di�erent task sequences is potentially in�nite. In
order to use a task model for testing, we have to select from the space of
possible task sequences the most �interesting� ones, namely the ones that
are most likely to detect faults. In this chapter we introduce di�erent test
selection criteria for task models that focus on feature interaction scenarios.
Furthermore, we describe test case generation from TTask models based on
these criteria using model checking.

The contributions of this chapter are:

� The transformation of TTask models into Promela models, which is the
input language of the model checker SPIN.

� New test selection criteria to cover feature interaction scenarios.

� Implementation of the introduced test selection criteria with linear tem-
poral logic (LTL).

This chapter is structured as follows. First we give an introduction into re-
lated work of test case generation with model checkers. Next we describe the
implementation of TTask models in Promela. Lastly for the remainder of this
chapter, we introduce new test selection criteria for TTask.

5.1 Related Work

To generate test cases from a TTask model, we took the approach of utilizing a
model checker to perform the generation. Model checking is a widely adopted
technique for test case generation [RH01, BR04, HGW04, LP04, EKRV06,
Cho07, HCL+03, ZML07]. The basic idea is to treat test case generation as a
reachability problem [HdMR05, EKRV06]. Model checkers build a �nite state
transition system and exhaustively explore the reachable state space searching
for violations of the properties under investigation [CGP99].
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The starting point is a behavior model of the system under test (SUT) that
is de�ned in the input language of the targeted model checker. Test selection
criteria are expressed as temporal properties based on this behavior model.
These temporal properties are expressed in, for example, LTL, which is a
widely-accepted and very expressive logic that can specify safety, fairness,
and liveness properties. An LTL formula can be used to specify a property
that must hold on all the execution paths of the model checker's input model,
and such paths may be in�nite both in number and in length [CGP99, TSL04].
Hence, LTL formulas are an appropriate means to de�ne so called trap prop-
erties. For example, such a trap property might claim that a certain state or
transition is never reached. When the behavior model is checked against the
trap property, the model checker returns a counter-example that illustrates
how the trap property is violated. For example, it shows how the state or
transition described by the trap property is reached. This counter-example
can be instantiated into a test case that can be used to test whether the
SUT's behavior corresponds to the one speci�ed in the counter-example.

Tan et al. use this approach in [TSL04] to generate test cases from require-
ments. They specify requirements in the form of LTL formulas and use these
to generate test cases. Furthermore, they mutate these LTL formulas in order
to increase the test coverage of the generated test suite. However, the e�ort of
manually specifying LTL properties is high for large systems. Desirable is the
automated generation of LTL formulas that cover speci�c system properties.

Rayadurgam and Heimdahl present in [RH01, HRV+03] their approach of
coverage-based test case generation with model checking. Their approach gen-
erates LTL formulas that cover structural properties of a system model that
is given in the form of a transition system. The approach supports structural
coverage criteria, such as transition coverage, guard coverage, and modi�ed
condition/decision coverage (MC/DC). Later, Heimdahl et al. presented in
[HGW04] an evaluation of their structural coverage criteria. They performed
an experiment that compared test suites generated by state, transition, and
decision coverage with random generated test suites. They found out that the
structural tests uniformly performed worse than randomly generated tests.
They conclude that coverage criteria used in speci�cation testing and speci�-
cation based testing must be re�ned to better �t the semantics of the speci�-
cation languages and the structure of the models captured in these languages.
This corresponds to our approach of test case generation where we use a mod-
eling language that is dedicated to modeling features and their interactions.
Hence, we are able to de�ne coverage criteria that explicitly cover feature in-
teraction scenarios because these are explicitly included in the semantics of
our modeling language.

5.2 Translating TTask into Promela

Model checking is a promising technique for test case generation. The main
advantage is that one can use the advanced algorithms that are already imple-
mented in a model checker. Hence, the e�ort shifts from the implementation
of a test case generator to �nding the best test selection criteria. Another
advantage is that model checkers enable the simulation of their input models



5.2 Translating TTask into Promela 59

which provides the ability to validate the test model by simulation. Further-
more, it is possible to verify the correctness of the test model with respect to
requirements that are speci�ed in the form of LTL formulas.

There are many di�erent model checkers, each with speci�c advantages and
disadvantages. In the following we describe the implementation of TTask mod-
els with Promela, the input language of the model checker SPIN [Hol97]. We
use SPIN for three main reasons:

� Mature tool support: The model checker SPIN, which is based on
Promela, has �rst been introduced 1995 and has been continuously de-
veloped since then.

� Support for simulation and veri�cation: SPIN supports the veri�ca-
tion of closed models, which is required for test case generation. Further-
more, it supports the simulation of open models, which we use to simulate
TTask models. Using SPIN for both simulation and veri�cation guarantees
that both obey the same semantics.

� Easy transformation of TTask to Promela The semantics of TTask
can be easily expressed with Promela, which enable a straightforward im-
plementation of TTask in Promela.

A Promela model is constructed from three basic types of object: processes,
data objects and message channels. Processes communicate via message chan-
nels and share data via global data objects. Promela supports asynchronous
and synchronous (called rendezvous in Promela) communication. A compre-
hensive introduction into the syntax and semantics of Promela can be found
in [Hol97].

The mapping of TTask to Promela is a straightforward implementation of
the semantics introduced in the previous chapter. The task model state is
implemented by a set of global data objects that store the current mode for
each task. Task speci�c mode changes are implemented in separate processes
in Promela. Each of these processes have an input channel through which it
receives events that trigger its mode change. Task dependencies are realized
by messages that are sent between the task-speci�c processes. For example,
the Play process sends enable to the Stop process. Figure 5.1 shows the map-
ping of a TTask model to the corresponding Promela model. Figure 5.1(a)
shows a task model for a simpli�ed CD player and Figure 5.1(b) shows the
corresponding processes with the message channels and the messages that
are sent between the processes. Figure 5.1(b) also shows the executor as a
separate process that is responsible for starting and stopping atomic tasks.
The composite tasks are started and stopped by their subtasks. When a task
is started or stopped, it changes its mode and sends messages to dependent
tasks corresponding to their temporal dependencies.

Listing 5.1 shows the initialization of a TTask model in Promela. Firstly,
the di�erent task modes and task signals are initialized using Mtypes. These
enable the de�nition of symbolic names for numeric constants. Secondly, the
message channels are initialized: each task has a separate incoming message
channel. Finally the data objects that track the task states are initialized. The
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Play CD*

enable
Play Stop

(a) TTask.

System

Composite TasksAtomic Tasks
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!start
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Play CD

!stop
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inStop

inPlay

inPlayCD

Process
channel !message

!enable

(b) Promela.

Fig. 5.1. Mapping between TTask and Promela.

task modes are initialized with the initial task mode as de�ned in the task
model.

// de�ne all modes and signals
mtype = { Enabled, Disabled, Active, Suspended, SuspendedEnabled,

DisabledSuspended, Resume, Suspend, Enable, Disable, Start, Stop};
// rendezvous channel
chan inStop = [0] of {mtype};
chan inPlay = [0] of {mtype};
chan inCDPlay = [0] of {mtype};

// set initial task modes
mtype StopMode = Disabled;
mtype PlayMode = Enabled;
mtype CDPlayMode = Enabled;

Listing 5.1. Task mode and message channel initialization in Promela.

In order to perform a veri�cation in SPIN, the Promela model must be closed
which means that the model does not depend on any external inputs. To ac-
complish this, we have to encapsulate all external inputs in a separate process.
External inputs are the start and stop signals for atomic tasks. This process
corresponds to the Executor in Figure 5.1(b). The implementation of the Ex-
ecutor is shown in Listing 5.2. The Executor process is the only process that
is always active. The process loops in�nitely, starting and stopping enabled
tasks non-deterministically. If a task's mode is enabled, the Executor starts
the corresponding task process and sends the start signal. When the message
is sent, the Executor waits until all task mode changes have been performed.
This is realized by the timeout statement that evaluates to true if and only
if there are no executable statements in any of the concurrently running pro-
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cesses. This is true, when all task mode changes have been performed. After
the timeout statement evaluates to true, the executor stops the started tasks
and waits until the model is ready to start the next task. SPIN supports the
simulation of Promela models as well. In this case the executor is replaced by
the user who can manually start and stop tasks.

active proctype Executor()
{
// non deterministic loop
do

:: PlayMode == Enabled −>
// start Play
run Play();
inPlay!Start;
// wait until Play is �nished
timeout;
// stop Play
run Play();
inPlay!Stop;
// wait until Play is �nished
timeout;

:: StopMode == Enabled −>
// start Stop
...

:: else −> skip;
od;

}

Listing 5.2. Promela process for the Environment.

Listing 5.3 shows the implementation of a task in Promela. When a task is
started, it waits for a new message to arrive via its message channel. De-
pending on the incoming signal (start, stop, enable,...) and the current task
mode, the process changes its corresponding task's mode. Then it starts the
processes for its subtasks and its related tasks and sends signals depending
on the incoming signal. For example, when a process receives a start signal, it
subsequently sends a disable signal to all processes that implement tasks that
are related by the disable dependency. After all task processes are noti�ed,
the task process ends.

The execution order of statements in di�erent processes in SPIN is not deter-
ministic due to SPIN's interleaving semantic. However, in our TTask imple-
mentation in Promela there is always only one process active. Therefore we
avoid the interleaving semantics in order to restrict the number of possible
paths in the Promela model. This is achieved by using the rendezvous com-
munication between all processes in combination with the de�nition of atomic
sequences that are non-interleaved with other processes. Atomic sequences
begin with the atomic statement and are surrounded by curly braces.

proctype Play()
{
atomic{
mtype new;
// wait for new message
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inPlay?new −>
if

:: new == Start && PlayMode == Enabled −>
// reveiced start
if

// if the parent is not active send start
:: PlayCD != Active −>
run PlayCD();
PlayCD!Start;

:: else −> skip;
�;
// set task active
PlayMode = Active;

// received stop
:: new == Stop && PlayMode == Active −>
// set task disabled
PlayMode = Disabled;
// run Stop task process
run Stop();
// send enable to the Stop task
inStop!Enable;

// receive enable
...
:: else −> skip;

�;
}

}

Listing 5.3. Promela process for the Task Play.

Environment Play PlayCD Stop

Start
Start

Active

Active

Stop

Disabled

Enabled

Start

Active

Stop

Disabled

Stop

Disabled

Enable

Fig. 5.2. Execution of the tasks Play and Stop.
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Figure 5.2 shows an MSC that describes the mode changes that take place
when the Executor performs the tasks Play and Stop from the task model in
Figure 5.1(a). The MSC is automatically generated from a SPIN trail. The
diamond shapes in the MSC show the current task mode. In the MSC, �rst
the task Play is started by the Executor. When it is started, Play sends start
to its parent task PlayCD, which changes its mode to active. The task Play is
stopped and enables the task Stop which is then performed.

Based on the introduced transformation of TTask models into Promela mod-
els, we are able to use the model checker SPIN for test case generation. The
complete translation from TTask to Promela can be found in Appendix A.1.

5.3 Task Sequence Generation

This section introduces the generation of task sequences using model checking.
We demonstrate this using the task model in Figure 5.3 which has already
been introduced in Chapter 4.5.

Listen to Media

Adjust Seat FeatureIncoming Call Feature

Radio FeatureCD Player Feature

Listen to CD*

Play CD

Listen to Radio*

enable
enable

Select Radio Source

enable

disablesuspendenable

Play Stop

Pause

enable
Insert Disc

Eject Disc
disable

Select FM Station

Select AM Station

disable

choice

Handle Incoming Call*

Handle Call
enable

Reject Call

Accept Call

disable

Hang Up

Signal Call
enable

Move Seat*

Stop Moving

Start Moving

enable

suspend

Fig. 5.3. Example task model.

In order to select speci�c task sequences, we de�ne trap properties that the
model checker tries to ful�ll. For example, a trap property might claim that
the task Play is never active. The model checker explores the state space and
tries to �nd a state where the property is violated. If a property violation
is detected, namely the task Play is active, the model checker produces a
counter-example by giving a trail that leads to the violation. The trail is
a task sequence consisting of task executions and the resulting task model
states.
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The model checker SPIN supports two ways of specifying trap properties: LTL
formulas and Promela code. In this section, we focus on the speci�cation of
trap properties with LTL. A simple trap property for the task model in Figure
5.3 that claims that the task Signal Call is never active is de�ned as follows:

¬♦(SignalCall = active)

The eventually operator ♦φ de�nes that a given property φ has to hold even-
tually on the subsequent path. During the execution of a TTask model, the
subsequent path corresponds to the subsequent task model states. Using this
operator it is possible to de�ne that for all sequences in a task model Signal
Call is never active. The predicate SignalCall = active speci�es a value of
the global data object that stores the current mode of the task Signal Call.

Furthermore, LTL supports the until operator φ U τ : a predicate τ must hold
at the current or a future position in the path, and φ has to hold until that
position. At that position φ needs not to hold any more.

SPIN �nds a violation of this claim for the task model in Figure 5.3, namely
the sequential execution of the tasks Insert Disc and Play. The task sequence
for the resulting counter-example is depicted in Figure 5.4. The task sequence
consists of the task model's initial state S0 and the task model states S1, S2, S3

that result from starting and stopping the atomic tasks Insert Disc and Play.
Each task model state comprises the current mode of all tasks in the task
model. This enables selecting arbitrary task sequences by specifying sequences
of task modes.

InsertDisc  = enabled

EjectDisc  = disabled

ListenToCD = disabled

PlayCD  = disabled

Play  = disabled

Stop  = disabled

Pause  = disabled

...

Start

InsertDisc

InsertDisc  = active

EjectDisc  = disabled

ListenToCD = disabled

PlayCD  = disabled

Play  = disabled

Stop  = disabled

Pause  = disabled

...

Stop

InsertDisc

InsertDisc  = disabled

EjectDisc  = enabled

ListenToCD = enabled

PlayCD  = enabled

Play  = disabled

Stop  = disabled

Pause  = disabled

...

Start

Play

InsertDisc  = disabled

EjectDisc  = enabled

ListenToCD = active

PlayCD  = active

Play  = active

Stop  = enabled

Pause  = enabled

...

S0 S1 S2 S3

Fig. 5.4. Task sequence where ♦(Play = active).

5.4 Task-based Test Selection Criteria

Tasks can be executed multiple times, which results in a potentially in�nite
set of task sequences. Thus it is usually not possible to test all task sequences.
Rather we want to select the most �interesting� task sequences from the space
of all task sequences. The study in Section 3.2 showed that feature interac-
tions are error prone. Hence, task sequences that involve feature interaction
are �interesting� because they are likely to be error prone. This section intro-
duces test selection criteria for task models that select such �interesting� task
sequences.

The process of task-based test case generation is summarized in Figure 5.5.
First, a TTask diagram is compiled into its Promela representation. In the
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next step a trap property generator derives a set of LTL formulas from the
TTask diagram and a given test selection criterion. The generated Promela
code and LTL formula are input to the model checker SPIN which tries to gen-
erate a counter-example in the form of a task sequence for each LTL formula.
The resulting task sequences are test cases that we can use for testing.

TTask Promela

LTL Formula

Test

Selection

Criterion

Task 

Sequences

Generator

Compiler

SPIN

Fig. 5.5. The task sequence generation process.

5.4.1 Explicit Selection Criteria

Explicit selection criteria specify conditions that must be satis�ed by one task
sequence. During testing often speci�c sequences must be selected that are
especially error prone or that are not covered by other criteria. The test engi-
neer creates a test case speci�cation in LTL that selects one �interesting� task
sequence. The main advantage is that explicit selection criteria give precise
control over the generated sequences. This can be used to select error prone
sequences that are not covered by coverage-based criteria and to increase the
coverage for speci�c tasks. Another use case is the generation of test pream-
bles. A test preamble is a sequence of inputs after which the system is in a
speci�c state. A test preamble is necessary to test speci�c system properties.
For example, a test engineer wants to test if the GUI shows the correct icon
when the CD player is paused. The engineer selects a task sequence in which
the task Pause is active. After the task sequence is executed the CD player is
paused and the actual test for the correct icon can be executed.

In the following we introduce di�erent examples of the exclusive selection of
task sequences:

Single Task Execution.When a task changes its state from active to disabled, it
is performed. For example, the following LTL formula selects a task sequence
where the task Signal Call is performed:

¬♦(SignalCall = active ∧ ♦SignalCall = disabled)

Multiple Task Execution. We can extend the previous LTL formula to support
arbitrary sequences of task executions t1, ..., tn:

¬♦(t1 = active ∧ ♦(t1 = disabled ∧ ♦(t2 = active ∧ ♦(t2 = disabled ∧ ...))))
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Arbitrary Task Model State Selection. Furthermore, arbitrary task model
states can be speci�ed that must be ful�lled by a task sequence. For example,
the condition that the seat is adjusted while the CD Player is suspended by
an incoming call is de�ned as follows:

¬♦(ListenCD = suspended ∧ HandleIncCall = active

∧ MoveSeat = active ∧ ListenRadio = suspended_disabled) (5.1)

The suspension of the CD Player by the incoming call is implicitly de�ned
based upon the suspend dependency between the tasks. Hence, a task model
state, in which the task Handle Incoming Call is active and the task Listen to CD
is suspended, implies that the incoming call suspended the CD Player. This
is possible because we rule out that the CD Player is suspended by the radio.
The main disadvantage of explicit selection criteria is that the LTL formula
must be maintained for each test case separately. Nevertheless, the explicit
selection of test cases is often necessary as an addition to coverage-based test
selection criteria.

5.4.2 Coverage-based Selection

Coverage-based test selection criteria specify conditions that must be satis�ed
by a set of task sequences. They represent certain aspects of a system that the
engineer wants to test. A coverage-based test selection criterion derives a set
of properties from a given task model. These properties are trap properties
that are expressed as LTL formulas. In the following we introduce several
coverage criteria for task models.

Task Coverage Criterion. This test selection criterion ensures that each
task is performed at least once. This is achieved by generating a set of task
sequences from a given TTask model, where each task is performed at least
once in one of the task sequences. Although, this criterion seems fairly trivial,
it covers feature interactions. A task sequence consists of a set of task model
states, and each task model state comprises the current modes of all tasks.
Hence, when an active task disables another task the corresponding mode in
the task model state is disabled. This information can be used to de�ne test
oracles that test if the corresponding task is really disabled in the SUT. As a
consequence, the task coverage criterion covers disabling dependencies as well.
However, the task coverage criterion covers only one of the possible disabling
scenarios.

For a given task model M = (T, S0, ∆, Φ) the task coverage criterion creates
for each task ti ∈ T an LTL formula that selects a task sequence TSi =
〈S0, ..., Sn〉, where Si = 〈m0, ...,mn〉 in which ti is performed:

¬♦((ti = active) ∧ ♦(ti = disabled))

Then SPIN is invoked for each of these generated LTL formulas in order to
generate a counter-example.

Interruption Coverage Criterion. The interruption coverage criterion ex-
plicitly covers all feature interaction scenarios in which one task suspends
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Fig. 5.6. Interruption coverage example.

another active task. A task can be suspended in di�erent situations. For ex-
ample, the task model in Figure 5.6 describes two tasks, Enter Destination and
Check Control Message. Check control messages can interrupt the destination
input, which is modeled by the suspend dependency. The interruption can
occur after Enter Country, Enter City, Enter Street have been performed. Fur-
thermore, Enter Destination is interrupted when the task Signal Low Oil Level
or the task Signal Low Tire Pressure is performed. Hence, there are eight di�er-
ent interruption scenarios that must be selected by the interruption coverage
criterion.

First, the interruption coverage criterion generates a set of task triples P that
describe a potential interruption scenario:

P = {〈ti, tj , tp〉 | ti, tj , tp ∈ T}

Such a triple 〈ti, tj , tp〉 ∈ P describes a potential interruption scenario if ti
and tj are atomic tasks and if there exists a suspend dependency from ti or
one of its ancestors to a task tp which is an ancestor of the task tj :

Φ(ti) = ∅ ∧ Φ(tj) = ∅ ∧ ∃δ ∈ ∆. δ = 〈tx, tp, suspend〉
∧ tx ∈ closure(ti) ∧ tp ∈ closure(tj) (5.2)

In Figure 5.6, example task triples are:

� 〈SignalLowTirePressure,EnterCountry,EnterDestination〉

� 〈SignalLowTirePressure,EnterCity, EnterDestination〉

� 〈SignalLowTirePressure,EnterStreet, EnterDestination〉

� 〈SignalLowOilLevel, EnterCountry,EnterDestination〉

� ...

In the next step, the criterion creates for each task triple 〈ti, tj , tp〉 ∈ P the
following LTL formula:

¬♦(tj 6= disabled ∧ (tj = active U (tj = disabled ∧ ti 6= active

U (ti = active ∧ ti 6= disabled

U (ti = disabled ∧ tp 6= active U tp = active))))) (5.3)
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Finally, SPIN is invoked for each LTL formula in order to generate a counter-
example. The result is the set of counter-examples that were found by SPIN
for the given set of LTL formulas.

The interruption coverage criterion selects for each suspend dependency a
corresponding task sequence in a task model. The number of generated task
sequences can be restricted by focusing only on feature interactions. This is
achieved by restricting the set of task pairs to the ones that involve a feature
interaction. Hence, for a given a set of features F = f1, ..., fn, a task pair
〈ti, tj〉 ∈ P must additionally hold that:

∃fx ∈ F. ti ∈ fx ∧ tj /∈ fx

Enabling Coverage Criterion. The enabling coverage criterion covers all
task sequences where a task enables another task. Such an enabling situation
is covered by a task sequence in which an enabling task and one of its enabled
tasks are performed subsequently. In order to cover all enabling scenarios of
the task Enter City in Figure 5.6 we have to create two di�erent task sequences:

1. ...→ Enter City → Start Guidance → ...

2. ...→ Enter City → Enter Street → ...

First, the enabling coverage criterion generates a set of atomic task pairs

P = {〈ti, tj〉 | ti, tj ∈ T ∧ Φ(ti) = ∅ ∧ Φ(tj) = ∅}

which describe a potential enabling scenario. A task pair 〈ti, tj〉 describes a
potential enabling scenario when it holds1:

∃tp ∈ T. tp ∈ closure(ti) ∧ tj ∈ enabledBy(tp) (5.4)

In the next step, the criterion creates for each task pair 〈ti, tj〉 ∈ P the
following LTL formula:

¬♦(ti = active ∧ tj = disabled ∧
♦((tj = active ∧ ti = disabled) ∧ ♦(tj = disabled))) (5.5)

In order to select only enabled dependencies between di�erent features, the
extension of the enable criterion is similar to the interruption coverage crite-
rion.

Concurrency Coverage. The concurrency coverage criterion covers all task
sequences where two independent tasks are executed in an interleaved fashion.
Interleaving of tasks is only possible if they have no temporal dependencies.
Thereby, the concurrency coverage criterion covers task sequences where a
potential unintentional feature interaction may occur. Figure 5.7 shows the
two independent tasks Check Control Message and Move Seat. There are mul-
tiple task sequences in which these two tasks are executed concurrently. These
tasks are performed concurrently by executing their subtasks in an interleaved
fashion. The subtasks of Check Control Message each can be performed directly

1 for the de�nition of enabledBy(t) see de�nition 4.12 in Chapter 4.3
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Fig. 5.7. Concurrency coverage example.

after Start Moving or Stop Moving and vice versa, which results in a total of
six di�erent task sequences.

First, the concurrency coverage criterion generates a set of atomic task pairs

P = {〈ti, tj〉 | ti, tj ∈ T ∧ Φ(ti) = ∅ ∧ Φ(tj) = ∅}

which describe a potential interleaved execution of two independent tasks.
The tasks ti and tj are independent if they hold2:

@tp ∈ T. tp ∈ closure(ti)
∧ tj ∈ (suspendedBy(tp) ∪ enabledBy(tp) ∪ disabledBy(tp)) (5.6)

In the next step, the criterion creates for each task pair 〈ti, tj〉 ∈ P the
following LTL formula:

¬♦(t1 = active ∧ t2 = disabled ∧
♦((t2 = active ∧ t1 = disabled) ∧ ♦(t2 = disabled))) (5.7)

In order to select only independent tasks from di�erent features, the extension
of the concurrency criterion is similar to the interruption coverage criterion.

5.4.3 Random Selection

The random selection of test cases is no test selection criterion in the classical
sense. Nevertheless, the random selection of test cases is a useful technique
in addition to classical coverage criteria. The random generation of inputs
often generates unusual sequences that a human tester may not consider.
Furthermore, it enables the generation of large test cases that exercise a system
for a longer period of time. SPIN supports the random simulation of a given
Promela model. Using this feature it is possible to generate random task
sequences from a given TTask model without additional e�ort.

5.5 Summary

Task models describe feature interactions and hence enable the generation
of test cases that cover critical interaction scenarios. Using a model checker

2 for the de�nition of disabledBy(t) see de�nition 4.5 in Chapter 4.3
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for test case generation takes advantage of the advanced search algorithms
of a model checker. Test case generation, therefore, is reduced to de�ning
trap properties that describe scenarios that are potentially error prone. The
model checker automatically generates counter-examples for these trap prop-
erties where each counter-example is a potential test case. In this chapter,
we discussed the process of test case generation from TTask models. First we
described the automated transformation of a TTask model into a Promela
model. Furthermore, we introduced multiple test selection criteria that se-
lect task sequences that systematically cover feature interaction scenarios. Al-
though, we introduced concrete criteria for test case selection we do not claim
that the introduced criteria are complete. Rather, model checking based test
case generation enables the de�nition of custom test selection criteria that are
adapted to the respective system or domain.
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Test Case Instantiation
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Re�ning Task Sequences

The previous chapter introduced test selection criteria that enable the gen-
eration of �interesting� task sequences. Based on these test selection criteria
it is possible to generate task sequences that systematically cover feature in-
teraction scenarios. However, task sequences lack two elementary parts of a
test case: they describe no input and no output behavior. Hence, in order to
use task sequences for testing, they must be enriched with the missing be-
havior. This chapter presents two approaches that enable the re�nement of
task sequences based on existing behavior models in order to transform task
sequences into test cases. The contributions of this chapter are:

� An approach for task sequence re�nement based on scenarios.

� An approach for task sequence re�nement based on state machines.

This chapter is structured as follows: �rst we describe the abstraction gap
between task sequences and the SUT; next we give an overview on related
work dealing with the re�nement of test models; and in the rest of this chapter
we introduce two way of using existing models to enrich task sequences with
the missing input and output behavior.

6.1 Testing with Task Sequences

Task sequences represent interaction scenarios between system and environ-
ment. The test selection criteria that where introduced in the last section
enable the generation of task sequences that cover feature interaction scenar-
ios where faults are likely to occur. Hence, each task sequence represents a
scenario that must be tested in order to ensure that no feature interaction
results in a feature interference.

A task sequence describes a sequence of task executions and the correspond-
ing task modes. Figure 6.1 shows a simple task model that describes the tasks
Incoming Call and Listen to Radio. One �interesting� task sequence is the one
where the incoming call suspends the radio. Figure 6.2 shows the correspond-
ing task sequence.
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Listen to Radio*

Select 

Station
<<enable>>Incoming Call

<<suspend>>

Fig. 6.1. Task model.

A tester can now perform this task sequence and test the system for correct
behavior by executing the following steps:

1. Start the radio by selecting a station.

2. Start an incoming call.

3. Test if the incoming call is signaled.

4. Test if the radio is suspended.

The tester executes a task sequence by implicitly mapping the tasks to the
corresponding environment inputs and the task modes to the corresponding
system states. For example, the task Select Station is mapped to the IDrive
controller inputs which are necessary to select a station and the task mode
suspended from the task Listen to Radio is mapped to testing whether the
radio is suspended. The tester performs this mapping based on the knowledge
of the system and the system speci�cation.

However, the e�ort of manual test execution is high, in particular when test
cases must be repeated multiple times due to di�erent system con�gurations or
due to system changes. Furthermore, test case generation potentially produces
a large number of test cases. For example, the interleaving coverage criterion
produces a task sequence for each interleaved execution of two independent
tasks. Thus the automated execution of test cases is desirable in order to
reduce testing e�ort and to enable a continuous testing process. This requires
executable test scripts that automatically trigger and observe the system.
Therefore it would be desirable for a test script to automatically perform the
steps of a manual tester. Listing 6.1 shows such a Python test script for the

Environment SelectStation ListenToRadio IncomingCall

Start
Start

Active

Active

Stop

Stopped

Start

Active

Suspended

Suspend

...

Fig. 6.2. Task Sequence: Incoming Call suspends Listen to Radio
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task sequence in Figure 6.2. The test script can be executed automatically
and perform the same tests as the manual tester.

# Navigate to Radio Station menu

ZBE.Right(1)

ZBE.Right(1)

...

# Start radio by selecting a station

ZBE.Press(1)

# Start incoming call

MobilePhone.DialNumber("0179xxxxxxxx")

#Test: incoming call signaled

if (MMI.getText() != "Incoming Call"):

Log.error("Incoming Call not signaled")

#Test: radio suspended

if (Audio.getChannel() != Channel.Phone):

Log.error("Wrong audio channel")

Listing 6.1. Test script.

In order to automatically transform a task sequence into such a test script,
the tester's implicit mappings of tasks to test triggers and system states must
be made explicit. In this chapter and the following one we describe how this
can be accomplished.

The transformation of an abstract task sequence into an executable test script
is performed in two steps:

1. Re�nement: A task sequence is re�ned by enriching a task with the
corresponding test inputs and system outputs. For example, the task Select
Radio Station is re�ned by adding the IDrive controller inputs that are
required to select a station. The re�nement of task sequences is described
in the remainder of this chapter.

2. Test Script Generation: The transformation of a re�ned task sequence
into the test script language. For example, by transforming a task se-
quence into a Python script. The transformation of abstract test cases
into executable test scripts is the topic of the next chapter.

6.2 Related Work

The concept of mapping abstract models to more concrete ones is a common
concept to bridge di�erent abstraction levels. There are several publications
that use this concept to re�ne generated test cases.

The work presented by Pfaller et al. is based on the formalization of user
requirements in the form of services [PFH+06]. They model the re�nement of
services into underlying functional models on lower abstraction levels. Based
on these relations, they reduce the underlying functional models into the parts
that are touched by the service. From these reduced functional models they
generate service speci�c test cases. Their approach is not appropriate for in-
stantiating test cases that are generated from task models because our goal is
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to generate test cases that cover multiple services. Therefore task sequences
cover large parts of the system. Thus reducing the underlying functional mod-
els still results in large models with a potentially large number of test cases.

Fröhlich and Link map use cases to statecharts using preconditions and post-
conditions [FL00]. Based on this relations test cases for each use case are semi-
automatically generated from the statecharts using arti�cial intelligence (AI)
planning. Their approach is similar to our approach of state-machine-based
re�nement that we introduce in the second part of this chapter. However, task
models express di�erent task modes resulting from task executions, for exam-
ple, when a task is suspended by another task. Such temporal dependencies
are not de�ned for use cases. In order to test these dependencies our approach
is to include them during test case re�nement.

6.3 Re�ning Task Models with Scenarios

The most intuitive approach to re�ne a task sequence is to describe for each
task the corresponding test triggers and the corresponding system reactions
in the form of a scenario. A scenario is a sequence of interactions between en-
vironment and system. Such a scenario is a system trace, which we introduced
in the beginning of Chapter 4.1. The interaction is de�ned by a sequence of
input actions and output actions. Let I be the set of all possible environment
inputs and O be the set of all possible system outputs. Hence, a scenario C
is a sequence of environment inputs and outputs:

C = 〈i1, ..., in〉, where ii ∈ I ∪O

Our de�nition of a scenario is straightforward and does not include timing
information and conditionals. More thorough de�nitions of scenarios are given
in [BK98]. Nevertheless, our scenario de�nition is su�cient enough to describe
the re�nement of a task model. In Chapter 4.1, we used task models to abstract
from concrete system traces by combining speci�c streams of actions into
tasks. However, in order to re�ne task sequences we have to reverse this step:
the basic idea is to map each atomic task to a corresponding scenario that
describes the interaction between environment and system. Hence, composite
tasks are represented by the composed scenarios of their subtasks.

A task model M = (T, S0, ∆, Φ) is re�ned by mapping each atomic task to a
scenario C = 〈i1, ..., in〉. Let A be the set of all atomic tasks

A = {t ∈ T}, where Φ(t) = ∅

and SCENARIO be the universe of all scenarios. The task to scenario mapping
is then de�ned by a relation α:

α : A→ SCENARIO

Based on the task to scenario mapping we can de�ne the re�nement of a task
sequence by a sequence of scenarios. Given a task sequence TS = 〈S1, ..., Sn〉.
Then a sequence of scenarios SC = 〈C1, ..., Cn〉, where Ci ∈ SCENARIO , is
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a valid re�nement of TS if it holds: 1

∀Ci ∈ CS. ∃S2i−1 ∈ TS. S2i−1[tj ] = active ∧ α(tj) = Ci

The next section demonstrates the scenario-based re�nement for a small ex-
ample.

Handle Incoming Call

Handle Call
enable

Reject Call

Accept Call

disable

Hang Up

Signal Call
enable

enable

Fig. 6.3. Incoming call task.

6.3.1 Example for Scenario-based Re�nement

Figure 6.3 shows the task Handle Incoming Call that has been discussed ear-
lier in Section 4.5. Each of the atomic tasks in Figure 6.3 are mapped to
a corresponding scenario that describes the task-speci�c interaction between
environment and system. The scenarios are shown in Figures 6.4(a) - 6.4(d).

When we create a task sequence from the task model, we can add the missing
behavior by replacing each active task in the task sequence by its scenario
description. Figure 6.5 shows the re�ned version of the task sequence Signal
Call → Accept Call → Hang Up. The re�nement of the task sequence results
in a scenario that describes the sequential execution of the three task-speci�c
scenarios.

6.3.2 Test Case Composition with Task Models

In the previous section, a given task model is re�ned by creating scenarios
for each atomic task. This represents a top-down approach where the task
model is created before the scenarios are created that describe the concrete
input and output behavior of atomic tasks. However, it is also possible to use
task models in a bottom-up approach, where �rst scenarios or test cases are
created. For example, in an early phase of integration testing, usually test
cases are created to test speci�c use cases. These test cases can be performed

1 A task sequence results from the sequential execution of atomic tasks:
start(ti), stop(ti), ... Hence, S1, S3, S5, ... are task model states where one atomic
task is active and S0, S2, S4, ... are task model states where no atomic task is
active. As a consequence, a scenario Ci corresponds to a task model state S2i−1

where the corresponding atomic task is active.
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Fig. 6.4. Scenarios for the atomic tasks in Handle Incoming Call.
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Fig. 6.5. Scenario for the task sequence Signal Call → Accept Call → Hangup.

sequentially in order to test more complex usage scenarios. However, an ar-
bitrary combination of test cases is usually not possible. Rather, test cases
can only be composed if a test's precondition matches the postcondition of
the previously executed test. Task models can be used to describe these pre-
and postconditions by using the enable operator. Even more, they provide the
means to describe more complex execution scenarios by using the other tem-
poral operators disable and suspend. Our approach is to create a task for each
test case and describe the temporal dependencies to the other test case tasks.
Based on such a task model, task sequences can be generated using the previ-
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ously introduced test selection criteria which results in an increased number
of tested usage scenarios. This enables the generation of more-sophisticated
testing scenarios where multiple scenarios can be performed sequentially.

6.3.3 Limitations of Scenario-based Re�nement

The scenario-based re�nement of task sequences is a straightforward approach
to re�ne task sequences by describing task-speci�c interaction between envi-
ronment and system in the form of scenarios. However, the scenario-based
re�nement works only when the actual interaction between system and envi-
ronment is independent of the history of executed tasks. For example, when
multiple tasks are performed via a GUI, the currently focused element depends
on the last task that has been performed before. This is particularly impor-
tant for UIs that comprise of multiple screens which the user can navigate
between, such as the GUI of an AIS.

Map View Screen

…

Main Menu Screen

…

Press

Navigation

Button

Traffic Info Screen

…

West

Navigation Menu 

Screen

H

Scroll Left
Scroll Right

…

Press

Press

West

West

Show Map 

Button

Traffic Info

Button

Fig. 6.6. GUI behavior and the corresponding task model.

Figure 6.6 shows an extract of the behavior of an automotive GUI. The be-
havior is speci�ed by a statechart that describes the focus behavior of the
navigation menu. The events represent inputs by the IDrive controller, for ex-
ample, the event press is triggered by the user when the controller is pressed.
The user can perform two tasks in the statechart: view the map or retrieve
the actual tra�c information. Figure 6.7 shows the corresponding tasks.

Retrieve Traffic 

Information*
Show Map*

Fig. 6.7. Two independent tasks.

Both tasks can be performed in any order and therefore have no temporal
dependencies. The scenarios for both tasks di�er depending on the history
of performed tasks. Figure 6.8(a) shows the scenario in which only the task
Show Map is performed and Figure 6.8(b) shows the scenario in which Show
Map is performed after the task Retrieve Tra�c Info has been performed. The
scenarios for the task Show Map di�er, because in the second scenario other
input events are necessary to reach the state Map View Screen.



80 6 Re�ning Task Sequences
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(a) Show Map Scenario.
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Retrieve Traffic 

Information

(b) Show Map Scenario after Retrieve
Tra�c Info.

Fig. 6.8. Two di�erent scenarios for the same task Show Map.

As this example shows, there are situations in which tasks cannot be mapped
to a single scenario. Thus, the scenario-based re�nement cannot be applied
in every situation. Nevertheless, scenario-based re�nement is an easy way to
re�ne task models if it is applicable. In the following section, we present our
approach that enables the re�nement of task sequences where scenario-based
re�nement cannot be applied.

6.4 Re�ning Task Models using State Machines

The previous section showed that scenario-based re�nement cannot be applied
under all circumstances. Therefore, we require a more general approach for the
re�nement of task sequences that comprises the history of previously executed
tasks.

The idea behind our approach is to reuse existing behavior models that de-
scribe the concrete interaction between system and environment in order to
re�ne task sequences. For example, a dialog model of the GUI describes the
user inputs and the corresponding system reaction. This model contains the
necessary information to generate the user inputs to perform a task. Further-
more, this can be achieved in a way that is independent of the history of task
executions. We can use such a model to re�ne a task sequence by mapping a
task model to existing software component or feature models. The mapping
is performed by mapping a task to one or more states in software component
models. Our approach is similar to the one presented by Fröhlich and Link
in [FL00]. A task is mapped to a state machine by de�ning a task's precon-
dition and postcondition in the state machine. For example, the goal of the
task Signal Incoming Call would be the telephone component being in the state
Incoming Call, the CD player component in the state Paused and the GUI in
the state Incoming Call Screen, as depicted in Figure 6.9.
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Fig. 6.9. Task to software component mapping.

With the information from the mapping it is possible to derive the input be-
havior and expected output behavior from the component models and there-
fore be able to generate task scenarios that include the history of task execu-
tions. Figure 6.10 shows the resulting process of combined test generation. A
task model generates test cases for integration testing. Furthermore, the task
model is mapped to existing component models. The generated task sequences
are now re�ned into test cases by generating the missing input and output
behavior from the component models.

Test Generator
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Test Cases
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input

Task 
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input

input
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System Test 
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Task Model

mapping

Fig. 6.10. Combined test case generation.

In the following we give a more formal de�nition of the mapping between a
task model and a state machine. Given a task model M = (T, S0, ∆, Φ) and a
�nite state machine SM = (Σ,S, s0, δ, F ) where:

� Σ is the input alphabet (a �nite, non-empty set of symbols).

� S is a �nite, non-empty set of states.

� s0 ∈ S is the initial state.
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� δ is the state transition function: δ : S ×Σ → S.

� F is the set of �nal states, a (possibly empty) subset of S.

The mapping between a task model M = (T, S0, ∆, Φ) and a state machine
SM = (Σ,S, s0, δ, F ) is de�ned by two relations pre and post:

pre : T → S

post : T → S

For example, the mapping for the task Show Map in Figure 6.9 is described
by:

pre(ShowMap) =MapV iewButton

post(ShowMap) =MapV iewScreen

The mapping between a state machine and a task model enables the auto-
mated generation of the missing input behavior. An execution sequence E of
a state machine SM has the form:

E = 〈s0, i1, s1, ..., in, sn〉, where si ∈ S

where holds:

� s0 is the initial state of S.

� ∀ij ∈ E. ∃sj−1 ∈ E. ∃sj ∈ E. δ(sj−1, ij) = sj

Given a task modelM = (T, S0, ∆, Φ) and a state machine SM = (Σ,S, s0, δ, F ).
An execution sequence:

E = 〈s0, i1, s1, ..., in, sn〉

is a valid re�nement of a task sequence:

TS = 〈S0, ..., Sn〉, where Si = 〈m0, ...,mw)

when for all pairs of atomic tasks that are performed consecutively:

∀ta ∈ T. ∀tb ∈ T. Φ(ta) = ∅ ∧ Φ(tb) = ∅ ∧ ∃Si ∈ TS. ∃Si+2 ∈ TS.
Si[ta] = active ∧ Si+2[tb] = active (6.1)

holds:

∃sc, sd, se, sf ∈ E. pre(ta) = sc ∧ post(ta) = sd ∧
pre(tb) = se ∧ post(tb) = sf ∧ (c < d < e < f) (6.2)

A task sequence can be re�ned by an additional test case generator that takes
a task sequence as input and creates one or more valid paths in the state
machine. There are multiple valid re�nements of a task sequence. For example,
there are di�erent ways to navigate through a GUI in order to enter a new
target in the navigation. The test case generator can be further parameterized
by additional test selection criteria that de�ne which paths should be chosen
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to re�ne a task sequence. The easiest solution is to generate a path that
represents the shortest possible path that is a valid re�nement of a given
task sequence. There are many approaches [MAMS06, HKU04, HR04, AO99,
RH01, BR04, LP04, EKRV06, Cho07, ZML07] for test case generation from
state machines which we will not go into further detail here. Nevertheless, in
our case study in Chapter 9, we introduce the approach that we applied for
task sequence re�nement.

6.4.1 Example for State-Machine-based Re�nement

Figure 6.9 shows the mapping of a task model to a state machine that describes
a part of an automotive GUI. A GUI is an example where the scenario-based
re�nement is not possible which we have shown in Section 6.3.3. Based on the
state machine to task model mapping we are able to re�ne the task sequence
Retrieve Tra�c Info → Show Map Scenario with paths in the state machine.
Figure 6.11(a) and 6.11(b) show two valid re�nements of the task sequence.
A path in the state machine is described by an MSC in which the signals
between tester and system represent events, and the diamonds represent the
corresponding state in the state machine. The two MSCs di�er from each
other because in the second MSC in Figure 6.11(b) the system returns into
the main menu before the task Show Map is performed.

6.5 Summary

Task sequences lack two elementary properties of a test case: they describe no
input and no output behavior. In this chapter we outlined two approaches of
task sequence re�nement by adding the missing behavior. The �rst approach
uses scenario descriptions for re�nement. The underlying assumption is that
during testing and speci�cation the typical tasks are described by scenarios.
By mapping atomic tasks to scenarios we are able to re�ne task sequences.
However, scenario-based re�nement cannot be applied to all kinds of systems.
When the input behavior of a task depends on the postcondition of the pre-
viously executed task, it is not possible to describe a task with one scenario.
This problem is solved by the second approach we presented in this chapter:
the state machine-based re�nement. The idea behind our approach is to map
a task model to a state machine that describes the system's behavior in more
detail. Based on this mapping we are able to generate input sequence for a
given task sequences that incorporates previously executed tasks.
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Generating Test Scripts using AspectT

In order to automatically execute the re�ned task sequences, they must be
transformed into executable test scripts. We refer to the mapping of abstract
test cases to executable test scripts as test case instantiation [PERH04], which
is an elementary part of model-based testing. However, test case instantiation
is not speci�c to our approach of task-based test case generation. Rather, all
approaches of model-based testing are based on abstractions and therefore
require the instantiation of the generated test cases. The approach presented
in this chapter applies principles of aspect-orientation to the problem of test
case instantiation in order to reduce the e�ort of test case instantiation. The
contributions of this chapter are:

� A taxonomy of test case instantiation concerns.

� A modular approach for test case instantiation based on aspects.

� AspectT : A new aspect-oriented language for test case instantiation.

� A generic join point model for the eclipse modeling framework (EMF).

� An aspect weaver that enables test case instantiation for o�line test script
generation, test script generation during simulation, as well as on-the-�y
test execution.

� The concept of aspect-oriented test case generation where aspects are used
as test selection criteria.

This chapter is structured as follows. First, the di�erent concerns of test case
instantiation and the problems that they pose are discussed. Based on this,
we present our approach of aspect-oriented test case instantiation. We then
present our language, AspectT, and its weaver implementation. Subsequently,
we briefly introduce an approach to aspect-based test case generation. The
results section presents the impact of AspectT on the automated generation
of test cases at BMW Group.
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7.1 Testing Concerns

The instantiation of abstract test cases is an important part of the model-
based testing process and is often time-consuming. Especially embedded sys-
tems require complex test setups to simulate the environment and to observe
the behavior of the system. In the automotive infotainment domain, for ex-
ample, the content of the graphical user interface is observed using screen
grabbers, audio signals are observed by microphones, and haptic user inputs
are simulated using special robots. Utting and Legeard performed case studies
where test case instantiation took about 25-45% of the modeling time [UL06].
Test case instantiation is complicated by the fact that it varies depending on
a number of concerns:

� One abstract test case is used to test di�erent system properties: for ex-
ample the same test case is used to test a GUI's timing behavior and its
graphical representation.

� The current test phase (component, integration, acceptance test) a�ects
the necessary driver components: for instance, component testing requires
driver components that simulate the behavior of other components whereas
integration testing requires driver components that simulate environment
inputs.

� The testable system properties are restricted by the extent of implemented
features at a certain stage of development.

� The input behavior of a test case has to be varied: for example, to discover
race conditions the timing of test inputs must be varied.

� The test framework, driver components and testing environment must be
con�gured and initialized depending on the test setup.

In this section we introduce di�erent concerns of test case instantiation. We
start with an example from the automotive domain where we used UML
statecharts1 to generate test cases. Figure 7.1 shows such a test model. The
statechart describes the dialog behavior of an automotive GUI of a telephone
application. The model is an abstraction of the real system where GUI and
telephone are distributed across two di�erent electronic control units and in-
teract via bus communication. The example comes from the case study that
we describe in Section 7.5.

Each path in the model is a potential test case. The bold transitions in Figure
7.1 indicate such a path for the Incoming Call use case. The initial state is
the CD Player button (CD Player) in the main menu. When an incoming
call occurs (Incoming_Call) the GUI shows the incoming call screen and the
accept call button (Accept Call) is focused. When the user presses the IDrive
controller (Enter) the call is accepted (Active Call). To �nish the call, the user
presses the IDrive controller again and the GUI returns to the CD player
button (CD Player) which was saved by the history state (H). This path can
be expressed by a hierarchical test case as shown in Figure 7.2. The test case

1 http://www.omg.org/uml/
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Fig. 7.2. Test case for the Incoming Call use case.

consists of an initial state and multiple test steps. Each test step has an input
event and a postcondition in the form of a state. The actual execution of
this test case requires additional information that bridges the abstraction gap
between test model and the SUT. For a given input event the system must
be stimulated and the abstract postconditions must somehow be monitored
during test case execution.

Currently there are two main approaches to test case instantiation [UL06]:
the adaptation approach and the transformation approach. The adaptation
approach solves the problem of the di�erent abstraction levels between test
case and SUT by manually implementing a wrapper around the SUT: a driver
component translates between the concrete level of the SUT and the abstract
level of the test case. Transformation approaches translate abstract test cases
into executable test cases and are typically based on model-to-text transfor-
mation frameworks. During the translation process the test cases are enriched
with the missing information for bridging the abstraction gap. For instance,
an abstract user input is translated to the actual bus message that represents
this input. In practice, mixed approaches are common where driver compo-
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Fig. 7.3. Test automation framework and driver components.
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nents raise the SUT's abstraction level and test cases are translated into test
scripts that use these driver components during execution (see Figure 7.3).
For testing infotainment systems at BMW Group, we use such a combined ap-
proach, where driver components encapsulate test triggers or test observers.
We formulate the test scripts in a domain-speci�c test language based on
Python.2 The event Enter in the test case in Figure 7.2 is translated into the
corresponding test script code that calls the IDrive controller driver compo-
nent. The states in the test case are replaced with the corresponding oracle
de�nitions that decide if the SUT is in the correct state. Listing 7.1 shows
such a test oracle de�nition. The oracle tests if the currently focused but-
ton shows the correct text. ScreengrabberService is a driver component that
provides services for analyzing the current screen content. The code snippet
demonstrates a possible instantiation of the state CD Player.

buttonText = ScreengrabberService.getFocusedText()

if (buttonText != 'CD Player'):

Log.error('Test failed: CD Player button was: '+buttonText)

Listing 7.1. Test oracle for CD Player state.

Test Case

Test Script 1
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Mapping

Target

Input

Mapping

Fault

Injection

Bus Message

Tests

Text

Tests

instantiation

Testing 

Concern

realize

Fig. 7.4. One test case - many test scripts.

One test case can be used to test di�erent system properties. A test generated
from the example in Figure 7.1 can be used to test whether all buttons show
the correct text, whether the correct bus messages have been sent and whether
the GUI response is fast enough. All of these system properties represent
the same model state. As a consequence, there are many possible mappings
from a test case to a test script, and one chooses one of them based on the
particular system properties that one is interested in testing. We refer to the
information that describes the transformation of a test case to a test script
as test focus. Figure 7.4 shows an example of dependencies between test case,
test scripts and testing concerns. For a given test case, four test scripts are

2 http://www.python.org
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created that implement certain testing concerns. These concerns are di�erent
input mappings and test oracle de�nitions which depend on test focus and test
setup. Figure 7.4 also shows that di�erent test scripts share certain testing
concerns, such as the bus message tests that are performed in a PC based
simulation and on the target platform. Hence, testing concerns cut across
di�erent test focus de�nitions.

The question we answer in this chapter is how to de�ne the test focus in such
a way as to minimize the e�ort of test case instantiation and to enable an
easy test focus adaptation to di�erent testing contexts. Before we present the
approach, we need to describe the factors that in�uence the de�nition of a test
focus. During the development of a test case generation tool at BMW Group,
we have identi�ed several in�uencing factors for the test focus de�nition. We
give a classi�cation of these testing concerns in Figure 7.5. The main testing
concerns are:

Re�nement: The basic task in test case instantiation is to enrich test cases
with additional information to bridge the abstraction gap to the SUT. The
gap is determined by the model's abstraction level, which is chosen depending
on the modeler's intention. The intention in our case study is to describe the
menu structure and the navigation behavior of an automotive GUI. Therefore,
the generated test cases can be used for testing the menu structure and the
navigation behavior. The re�nement is divided into input mapping where
abstract test inputs are mapped to concrete test triggers, and test oracle
de�nition where a certain abstract condition or state is mapped to an oracle
that observes the SUT. In addition, test cases can also be used for testing
additional properties that are beyond the original intention of the model,
such as the communication between a GUI and other control units. The latter
is often the case for non-functional requirements such as timing constraints.
These additional constraints are often not included in the model because they
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cannot be expressed in the used modeling language or because the model has
another abstraction level.

Process phase: Typically, testing is divided into component testing, integra-
tion testing and acceptance testing. In each test phase, speci�c input mappings
and oracle de�nitions are necessary depending on the test setup. For exam-
ple, di�erent driver solutions are necessary depending on whether the SUT's
environment is simulated or real. With increasing development progress the
system properties that must be tested become more complex. Hoever, the
test model often stays at the same abstraction level. As a consequence, the
test oracle de�nition becomes more complex. Another important factor is the
extent of implemented features: certain features are implemented earlier and
can therefore be tested earlier.

Behavior variation: Especially if the system interacts with third party soft-
ware or human users, it is important to test how the program behaves on
non-speci�ed inputs. This can be achieved by the injection of faults and un-
de�ned inputs or by the variation of an input sequence. In concurrent systems,
for instance, it is important to vary timing or order of message sequences to
test for race conditions.

Con�guration: Test cases must often be enriched with additional code for
initialization and con�guration of the test framework, the driver components
and the SUT.

These factors just described, represent testing concerns that crosscut multiple
test focus de�nitions. To take advantage of the potential of model-based test-
ing, the chosen approach for test case instantiation must be able to handle the
introduced testing concerns. To reduce the e�ort of test case instantiation, it
is necessary to encapsulate a testing concern in order to reuse it in di�erent
test focus de�nitions.

7.2 Aspect-based Test Focus De�nition

In this section we present our approach of aspect-oriented test case instantia-
tion. Our starting point is an abstract test case that has been derived from a
behavior model (see Figures 7.1 and 7.2) or manually created in a dedicated
modeling language. This test case is transformed during test case instantiation
into a test script. This transformation is a typical application of model-based
code generation. In the previous section we introduced the concept of a test
focus that de�nes such a transformation of a test case into a test script. As
a consequence, each test focus requires a separate code generator. In the last
section, we introduce several testing concerns that crosscut multiple test focus
de�nitions. This leads to the problem of �nding the right modularization of
these crosscutting concerns to enable their reuse in di�erent test focus de�ni-
tions.

What is needed is a way of describing the test oracle de�nitions, test trigger
de�nitions and con�guration information that allows us to apply this infor-
mation to any potential test case for a given test model. Each of these testing
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concerns should be encapsulated in a separate module. During test case in-
stantiation, one element in a test case can be instantiated by multiple modules.
For example, a state may require two di�erent test oracles, where each ora-
cle checks a speci�c system property that represents this state. On the other
hand, one test oracle can apply to di�erent states in a test case. For instance,
a text test oracle can be applied to any state that represents a button. Figure
7.6 shows these relations between test focus modules, test case and test script.

Aspect-oriented software development approaches [Kic96] solve this problem
by encapsulating crosscutting concerns in aspects. Such an aspect is composed
of pointcuts and advice. A pointcut de�nes locations in a base program or base
model where an advice is going to be inserted.

In our approach we regard each testing concern as an aspect that can be wo-
ven into di�erent test cases. For instance, the crosscutting concern Incoming
Call Input Mapping is de�ned in an aspect that encapsulates the correspond-
ing telephone driver component calls. These can be woven into the di�erent
locations in a test case where an incoming call input event occurs, as depicted
in Figure 7.7.

Test Case Test ScriptTesting Concern

Pointcut AdviceA

Fig. 7.7. Aspect-oriented testing concern.

In common aspect-oriented approaches the base is an existing program or
model into which aspects are woven. The �nal result is the composition of
base and aspects. In test case instantiation, the test case acts as the base. We
produce a test script from such a test case by a tree walk through the test
case's abstract syntax tree (Figure 7.2). Each node in the test case tree is a
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potential join point where aspects emit code fragments into the test script.
The resulting test script is the composition of all code fragments that were
emitted during weaving.

Similarly to common aspect-oriented programming (AOP) approaches, such
as AspectJ, our aspect de�nition consists of pointcuts and advice. An advice
contains the test script code that is emitted into the test script. Each advice
is assigned to a pointcut that selects the join points in a test case where
the advice should be inserted. Some aspects de�ne the base implementations
for test case entities. The base implementation of the event IncomingCall in
Figure 7.2 is de�ned by an advice that implements the incoming call trigger.
We call this a base advice. Other aspects represent additional constraints, such
as timing constraints. The advice that implements additional constraints or
triggers is invoked either before, after or around a join point.

In the previous section, Listing 7.1 showed an instantiation of the test oracle
for the state CD Player Button. In our aspect-oriented approach, the test script
code from this listing is part of an advice de�nition. This advice is assigned to a
pointcut de�nition that selects all CD Player Button states in a test case. Each
state is a node in the test case tree. The kinds of nodes that can occur in a test
case tree, such as State or Event in Figure 7.2, are de�ned by the test case's
metamodel. Thus, a test case's metamodel represents the join point model
and each entity in the metamodel is a join point. Test case metamodels di�er
depending on the modeling language, the test case metamodel for test cases
de�ned as MSCs is di�erent from the metamodel of test cases derived from a
statechart. Therefore, a pointcut can de�ne multiple join point selections in
order to support multiple test case metamodels. Thus, one test oracle can be
reused to instantiate test cases in di�erent modeling notations.

Additional constraints, such as timing constraints, must often be implemented
by multiple advice. Timing constraints are de�ned by two advice: one that
starts a timer before an event is triggered and one that stops it when the
desired state is reached. One example of a timing constraint is the following:
�The state Warning Message Screen should be reached within 100ms of an
occurrence of the event Low Fuel.� However, if a generated test case reaches
the state Warning Message Screen by the input event Low tire pressure instead
of Low Fuel, the test script execution would result in an exception. The ad-
vice Start Timer has not been weaved and therefore the timer initialization
code would have not been emitted to the test script. This would result in an
exception when Stop Timer is executed, because the timer would not have
been initialized. As a consequence, our language for the test focus de�nition
provides means to describe such inter advice dependencies: advice can de�ne
preconditions and postconditions in the form of other advice that must have
been woven before or afterward. For the timing example mentioned above,
the advice de�nition for Stop Timer is extended by the statement precondition
Start Timer, which adds the constraint that Stop Timer can only be woven if
the advice Start Timer has been woven before.

By modularizing testing concerns into separate aspects the test focus de�-
nition is reduced to de�ning a set of aspects. Each trigger de�nition, oracle
de�nition or con�guration de�nition must be speci�ed once and can then be
reused in any other test focus de�nition.
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7.3 The Test Case Instantiation Language AspectT

The previous section described the general concept of aspect-oriented test case
instantiation. In this section, we introduce our implementation of the concept:
AspectT. In the �rst part of this section the language and its concepts are
introduced. The second part presents the implementation of the weaver.

7.3.1 The Join Point Model

Di�erent testing concerns are encapsulated in separate aspects. The aspects
are woven into an abstract test case. Therefore, each entity in a test case is
a potential join point. The di�erent entities and their relations are de�ned
in a test case's metamodel. There is no general test case metamodel because
it depends on the underlying modeling language. For example test cases for
communication behavior are speci�ed using MSCs. In model-based test case
generation, test cases are created from UML based notations, constraint logic
programming or model checking. Currently domain-speci�c language (DSL)
are gaining in�uence in development, speci�cation and hence in model-based
test case generation. The case study presented in this chapter was originally
de�ned using a DSL for the speci�cation of automotive user interfaces. All
these approaches have in common that the resulting test cases primarily rep-
resent the characteristics of the underlying modeling language.

In order to avoid the de�nition of a general-purpose test case language and the
implementation of a transformation that translates existing test cases into the
standard test case model, we chose a generic approach for the join point model
of AspectT. The approach in AspectT is to de�ne the join point model at a
modeling language independent level. For UML based notations, this would be
the meta object facility (MOF) [Obj02] which is used for de�ning the di�erent
UML diagrams. MOF describes only the abstract syntax of these modeling
diagrams. In order to be more �exible, we chose the Ecore [BBM03] language
which is part of the EMF. Ecore implements a subset of MOF and is tightly
integrated into the Eclipse IDE.3 The advantage of EMF is the mature tool
support. There are, for example, several frameworks to de�ne graphical editors
or textual editors based on an Ecore model. The standard UML notations
are supported by using the EMF based UML2 implementation.4 An Ecore
model consists of entities (instances of EClass) and their relations expressed by
composition, inheritance and association. Using these constructs it is possible
to de�ne the abstract syntax of a test case such as the one shown in Figure
7.2. Figure 7.8 shows an example test case metamodel for state machines as it
is de�ned in Ecore. Each entity (TestCase, State,...) is an instance of EClass.

A test case is executed sequentially. As a consequence, the test case meta-
model must describe an ordered structure. To describe complex test case en-
tities (e.g., a test step that is composed of an event and a state), we chose a
tree structure in AspectT. The test case sequence is de�ned by a depth-�rst
left-right tree walk. A test case is either described by a dedicated test case

3 http;//www.eclipse.org
4 http://www.eclipse.org/modeling/mdt/?project=uml2
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metamodel, or on top of a behavior model's metamodel, where the leaves of
the test case tree are the entities of the behavior model. An example of the
latter is shown in Figure 7.8, where the root of the test case metamodel is a
test case. A test case consists of multiple test steps, where each test step has a
trigger and a postcondition. The trigger is an Event and the postcondition is a
State, where both are de�ned in the statechart metamodel. This is an impor-
tant advantage of domain-speci�c modeling, because we are able to combine
a structural model, a behavioral model and a test case model depending on
our domain. Using these dependencies one can retrieve additional information
for a state from a corresponding structural model to de�ne more detailed test
oracles. We give an example of such a domain model in Section 7.5. Figure 7.9
shows the relationship between Ecore, behavior model and test case model.

Ecore

Behavior Metamodel Test Case Metamodel

definedIn definedIn

uses

e.g. model of all 

statecharts

e.g. model of all 

state paths

Fig. 7.9. Behavior and test case model are de�ned in Ecore.

By using Ecore models as join point models, it is possible to use AspectT
with di�erent test case models. Hence, the same aspect can be used for the
instantiation of test cases that are de�ned in di�erent modeling languages.
An aspect can de�ne multiple pointcuts that select join points from di�erent
test case models, as depicted in Figure 7.10. Furthermore, existing test case
notations can be integrated by de�ning a corresponding metamodel in Ecore
and a parser that instantiates the model. We performed this to instantiate
test cases that were generated using the model checker SPIN [Hol97]. The
downside of using a metamodeling language like Ecore is that it describes
only the abstract syntax. Thus, the semantics of the language are not formally
de�ned. Therefore, it is only possible to de�ne pointcuts based on the abstract
syntax. A test case model with speci�c semantics would enable the de�nition
of pointcuts based on speci�c test case criteria. But we deliberately chose to
base AspectT only on the abstract syntax in order to be more �exible with
respect to integrating new test case models. In the following subsections we
introduce the di�erent parts of AspectT in more detail.
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7.3.2 The Aspect De�nition

The test focus describes a testing concern speci�c transformation of a test case
into a test script. In AspectT a testing concern is encapsulated in the form of
an aspect. Thus, we can de�ne a test focus by a set of aspects. Each aspect
has one or more advice which implement a speci�c testing concern. An advice
describes a speci�c part of a test script. There are di�erent languages for test
script de�nition, such as general-purpose languages (e.g., Java, Python,...) or
DSLs (e.g., TTCN-3 [GHR+03b]). For testing infotainment systems at BMW
Group we use a DSL that is an extension of Python. To support any test script
language, an advice is de�ned in AspectT by a metaprogramming language
that enables the generation of source code in any test script language. The join
point at which an advice is woven into a test case is selected by a pointcut.
A pointcut selects a join point by de�ning an instance of EClass and by
additional constraints on the actual join point object.

To give an overall impression on AspectT, Listing 7.2 shows an example aspect
de�nition. The weaving happens during a tree walk through the test case. The
aspect writes for the �rst time it is woven:

print 'Hello World!'

Any additional time it is woven, it writes the state's name and the text �has
already been woven�. The pointcut SampleState selects any instance of State
that has the name sample. The latter is veri�ed by a constraint statement that
checks if the state's attribute name is equal to sample. The advice contains
the program that controls the text that is written to the resulting test script.

aspect HelloWorldAspect{

def hasBeenWeaved = <% false %>
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pointcut SampleState{

State : self.name = 'sample'

}

advice HelloWorldAdvice after SampleState<<

<% if (!hasBeenWeaved) {

hasBeenWeaved = true %>

print 'Hello World!'

<% } else {%>

print '<%=self.name %> has already been woven'

<% } %>

>>

}

Listing 7.2. Sample aspect de�nition.

Aspect
name  : EString
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name  : EString
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name  : EString
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Fig. 7.11. The Ecore metamodel of AspectT.

The AspectT tool has also been implemented using EMF. Figure 7.11 shows
the metamodel of AspectT as de�ned in Ecore and its relation to Ecore: the
joinPointClass reference between EClass and JoinPointSelection. In the fol-
lowing sections the elements of AspectT are introduced in more detail.

Pointcuts:

Pointcuts select join points from a test case. A join point selection is de�ned
by the join point's class (e.g., State) and by an additional constraint on the
join point object. Figure 7.12 shows an example for a join point selection. A
pointcut can contain multiple join point selection statements. The constraint
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Fig. 7.12. pointcut de�nition in AspectT.

is de�ned using the object constraint language (OCL),5 where self refers to
the current join point object. OCL was chosen due to its powerful query
expressions.

Advice:

Advice are woven into a test case and emit join point speci�c text into the
resulting test script. The following join point adaptation kinds are supported:

� before: The advice emits its text before a join point.

� after: The advice emits its text after a join point.

� base: The advice is the base implementation of a test case entity.

� around: The advice emits its text before and after a join point. The
proceed tag separates the advice into the parts that are written before
the join point and the ones that are written after the join point. Around
advice are internally divided into a before and an after advice. Only if
the adaptation kind is around, the proceed tag is allowed in an advice
de�nition.

Advice are de�ned by a metaprogramming language, which is based on the
scripting language Groovy6. Using this language it is possible to generate
source code depending on the current join point. The concept is similar to
embedded script languages such as JSP7 or PHP.8 An advice de�nes text that
is emitted into a test script. The language features the following concepts:

� The text between �<<� and �>>� is emitted into the test script.

� The text inside an advice can additionally be controlled using directives,
where �<%� and �%>� indicate the start and end of a directive. Directives
are Groovy blocks that control the text which lies between. In the exam-
ple in Listing 7.2 we used directives to write the text depending on the

5 http://www.omg.org/docs/ptc/03-10-14.pdf
6 http://groovy.codehaus.org/
7 http://java.sun.com/products/jsp/
8 http://www.php.net/
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variable hasBeenWeaved into the resulting script. Directives may contain
any Groovy code. Inside an directive it is possible to access the join point
object using the self variable. Via self it is possible to retrieve any data
from the test case. For example, if self references a state, self.outgoing
selects all outgoing transitions. The outgoing reference is de�ned in the
test metamodel which is shown in Figure 7.8.

� Dynamic data can be written to the resulting script using the �<%=� and
�%>� tags. The result of the expression inside these tags is written into the
test script.

Advice Dependencies: There are test oracles that must be implemented in
multiple advice. This applies for constraints that a�ect multiple join points.
If an advice depends on another advice (e.g. by an intertype variable), the
advice can only be executed if the other advice has been executed before.
This relation must be de�ned at advice level rather than at pointcut level
because they depend only on the advice implementation; therefore, they are
independent of the pointcuts. The explicit de�nition of these dependencies
is necessary, because it is not guaranteed whether a test case contains join
points for the pointcuts of both advice. Advice that must have been woven
before are de�ned as preconditions. Postconditions indicate that the speci�ed
advice must be woven eventually after the current advice.

Aspects:

An aspect encapsulates a testing concern by de�ning di�erent pointcuts and
advice. Each pointcut may have one or more assigned advice. An aspect is
always instantiated as a singleton.

Intertype Declarations: Inside an aspect, variables can be de�ned that can
be accessed from within each advice. Intertype declarations enable the data
exchange between di�erent advice. The concept of intertype declarations is
similar to that in AspectJ.

Aspect Inheritance: An aspect can inherit advice and pointcuts from other
aspects. Superaspects are de�ned using the keyword extends. In this case all
superaspects' advice are woven as well. Additionally an aspect can de�ne its
own advice for pointcuts de�ned in the superaspect. It is possible to de�ne
precedence relations between advice in the subaspect and in the superaspect.
Aspect inheritance allows the reuse of pointcuts and advice across di�erent
aspects. Figure 7.13 shows an example of two aspects and their dependencies.
BusService is the superaspect of IncomingCall. Advice in IncomingCall are now
able to adapt pointcuts from BusService and to de�ne advice dependencies to
advice in BusService.

7.3.3 The AspectT Weaver

The aspect weaver input is a test case model and a test focus. The test case
model must conform to its metamodel de�ned in Ecore. The metamodel must
describe a tree structure (see example in Figure 7.2). The test focus is a set
of aspects. There are three di�erent weaving scenarios:
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BusService:

Aspect

IncomingCall:

Aspect

InitBusService:

Advice

IncomingCall:

Advice

precondition

TestCase:

Pointcut

before

IncomingCallEvent:

Pointcut

base

InitPhoneSim:

Advice

 before

Fig. 7.13. Aspect and advice dependencies.

O�ine Weaving: The weaving takes place after the test case has been gener-
ated. The weaver iterates over the test case and its child entities corresponding
to a depth-�rst left-right walk and evaluates the pointcuts at each entity and
evaluates a given advice if applicable. The advice are woven depending on
their adaptation kind: before, base, after or around the join point. If two ad-
vice A and B are woven before the same join point P , the weaving order is
not de�ned. If A is a precondition of B or B is a postcondition of A, then A
is woven before B.

Online Weaving: In certain scenarios the o�ine weaving cannot be applied.
For example, when the test case generation is performed by the execution of a
state machine. Certain information is only present during statechart execution
time, such as variable values in a certain state. Often these values must be
inserted into the advice code to verify a speci�c system property. If the test
case does not contain the actual values of all variables for each state, the
variable values cannot be used for the de�nition of a test oracle. The solution
is to weave the advice during the simulation of the behavior model. Thus,
the test case is created during the simulation of the statechart. The weaver
is invoked each time a test case element is created. The creation order of the
sample from Figure 7.2 is:

IncomingCall(TestCase) → CdPlayer(State) → TestStep1(TestStep) → In-
comingCall(Event) → AcceptCall(State) →...

Before and base advice are woven directly for each join point. The advice
which must be inserted after a join point are saved in a stack. If the next join
point is not a child of the previous one, the stack is emptied and the advice
subsequently emits its text into the test script.

Runtime veri�cation: Another use case is runtime veri�cation, where test
case creation and test script execution happen at the same time. For example,
a test generator generates random input events for the statechart in Figure 7.1.
For each event a new test step is created that contains the event and its post
condition. A test focus, consisting of multiple aspects, is weaved into the test
step (similar to Online Weaving). The resulting test script code for the test
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step is directly executed which results in the stimulation and monitoring of
the SUT. In this special case the postcondition advice dependency is ignored,
because it is not possible to determine if a required advice (indicated by
postcondition) will be executed.

7.4 Using AspectT for Test Case Generation

In the previous sections, aspects have been used to translate test cases into test
scripts. In this section we show that aspects can also be used as test selection
criteria in model-based test case generation. A test focus highly depends on
the test generation with its test selection criteria. Especially in large systems
with di�erent test suites, which require di�erent test setups and test drivers,
a test focus represents a set of speci�c system properties. In an automotive
GUI, one useful test focus is to test whether all buttons' texts are shown
correctly. The corresponding test oracle TextTest is shown in Listing 7.3. The
pointcut selects all states that represent a button. A button state must hold:
self.widget.type = 'button'.

aspect TextTest{

pointcut Button{

State : self.widget.type = 'button'

}

advice ListTextTest base Button<<

ScreenGrabberService.testButton('<%=self.widget.text %>') >>

}

Listing 7.3. Text test aspect.

The test trigger de�nitions are shown in Listing 7.4. The system is stimulated
using the IDrive controller, where for each input a pointcut is de�ned. Using
these aspects we can translate a generated test case into a test script for text
testing.

To reduce the e�ort of test execution, generated test cases should cover only
the relevant system properties. In the example presented above, the generated
test sequence should be a minimal menu walk that covers all text buttons and
as few non-text-buttons as possible. The test selection criterion for this test
case is therefore that only states that represent a button should be selected.
This is identical to the pointcut de�nition of the aspect TestText in Listing 7.3
which selects all buttons. Therefore, each pointcut is a potential test selection
criterion. An example of another use case is a test setup that supports only a
limited set of possible triggers. A simple test setup for the case study would
only support test inputs in the form of IDrive controller inputs and no inputs
from other applications, such as the telephone. In this case we have to add
another test selection criterion that restricts the possible transitions to the
ones that can be triggered by the IDrive controller. This test selection criterion
corresponds to the pointcuts in the trigger aspect in Listing 7.4.

aspect IDrive{

pointcut Enter{

Event : self.name = 'Enter'
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}

pointcut Menu{

Event : self.name = 'Menu'

}

pointcut Left{

Event : self.name = 'Scroll_Up'

}

pointcut Right{

Event : self.name = 'Scroll_Down'

}

advice IDriverEnter base Enter <<

IDriveService.Enter() >>

...

}

Listing 7.4. IDrive controller aspect.

When we combine the pointcut de�nitions of the IDrive aspect and of the
TextTest aspect, we have the ideal test selection criteria for the test case
generation from a statechart. The test generation algorithm must be able to
generate a minimal path that contains all states that are selected by TextTest
where only transitions are used that can be triggered by the events de�ned by
the pointcut of IDrive. It depends on the behavior model if such an algorithm
is possible and there is no general applicable solution. Nevertheless, this shows
another potential bene�t of aspect-based test focus de�nition.

Input

Test 

Selection

Criteria

Abstract 

Test Case

generatesTest Case

Generator
AspectT

Weaver

Aspect

Executable 

Test Scripts

Input

generates

Input

Pointcuts

Provides Joinpoints

Test

Model

Fig. 7.14. Aspect-oriented test case generation.

Figure 7.14 shows the resulting process of aspect-oriented test case generation.
The aspects are de�ned based on the join points that are de�ned by the test
model. There are general test selection criteria, such as state coverage or
transition coverage for the statechart based test case generation. These can
be combined with AspectT 's pointcuts to generate test focus speci�c test
cases. The resulting abstract test cases are �nally translated into executable
test scripts using the AspectT Weaver.
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Fig. 7.15. Part of the case study's metamodel.

7.5 Example

In this section we introduce a small case study for the application of AspectT
in the automotive infotainment domain.

7.5.1 Statechart based Test Case Instantiation

The case study is part of a GUI of an automotive infotainment system that
controls a telephone application. The electronic control unit (ECU) that con-
tains the GUI application is connected with the telephone ECU by a commu-
nication bus. The GUI is speci�ed by a structural model that describes the
di�erent screens and their widgets. Widgets have properties: name, type (e.g.
button, check box, list,...) and text. The dialog behavior of the GUI is de�ned
using UML2 statecharts. The guards and actions in the statechart are de�ned
based on a data model that consists of di�erent variables (e.g. an address list).
We introduced the behavior model earlier in Figure 7.1. The behavior model
is linked to the structural model: each state refers to its corresponding wid-
get. For example the state CD Player is linked to a widget CD Player Button
that is of the type Button and contains the text CD Player. A test generated
from the behavior model is a path in the statechart. Such a test case has
an initial state and an ordered list of steps. Each step has a trigger and a
postcondition, where the trigger refers to an event. Initialstate and postcon-
dition refer to states in the behavior model. The structural model, behavior
model and test case model are described in one Ecore model. By linking the
di�erent models it is possible to retrieve detailed information for a given state
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in the behavior model. For example we can get the widget for a given state
and get additional structural properties that are important for the test oracle
de�nition.

Based on the dialog model, a simple test case is generated for the incoming
call use case. The resulting path in the statechart is marked bold in Figure 7.1.
First we de�ne a basic set of aspects to trigger the SUT by IDrive controller
inputs and to monitor the SUT by checking the shown tests. Most of the
test aspects require access to the bus system. Therefore we start with the
bus con�guration aspect: BusService in Listing 7.5. In this aspect it is clearly
visible why we model a test case as a tree. The initialization and shutdown of
a service can be woven at the start and at the end of a test case by de�ning
an around advice for the pointcut Test Case.

aspect BusService {

pointcut TestCase{

TestCase

}

advice InitBusService around TestCase

<<BusService.init()

<%proceed%>

BusService.shutdown() >>

}

Listing 7.5. The bus service con�guration.

In the case study the events are triggered by a driver component that sends
the corresponding bus messages. Listing 7.6 shows the aspect de�nition for
the input mapping. The IDrive controller service relies on the bus service.
Therefore the IDriveEnter advice has the inter advice dependency precondition
to the advice InitBusService.

aspect IDrive extends BusService{

pointcut Enter{

Event : self.name = 'Enter'

}

advice IDriveEnter base Enter precondition InitBusService

<<IDriveService.Enter() >>

//...

}

Listing 7.6. Input Mapping.

In order to decide if the system is in the correct state, the text of the cur-
rently focused button in the SUT is compared with the text from the model.
The text is checked by a screen grabber in combination with optical character
recognition (OCR) software. The aspect that implements the corresponding
test oracle is shown in Listing 7.7. The pointcut selects all instances of State.
The additional OCL statement in line 4 selects only states of the type but-
ton. The pointcut uses the references between behavior model and structural
model to retrieve the type and text information of the corresponding widget.
The text is passed in the advice to the screen grabber component that checks
if the focused element shows the correct text. To reduce the test case execu-
tion time each button is only tested once. This is accomplished by using an
intertype declaration: testedTexts. The variable testedTexts is initialized below
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the aspect de�nition. The Groovy block in the ListTextTest advice uses this
variable to check if the actual join point has already been tested. If a button
has not been tested before, the test oracle code is written and the button's
name is added to the variable testedTexts.

aspect TextTest{

def testedTexts = <% new LinkedList<String>() %>

pointcut Button{

State : self.widget.type = 'button'

}

advice ListTextTest base Button<<

<% if (!testedTexts.contains(self.name)) {

testedTexts.add(self.name) %>

ScreenGrabberService.testButton('<%=self.widget.text %>')

<% } %>

>>

Listing 7.7. Test oracle for text tests.

The next example is an aspect that requires the online weaving approach. We
want to test if the address book shows all addresses correctly. The address
book is a dynamic list. Users can scroll through the list using the IDrive con-
troller. The address list is contained in a variable addressBook, and another
variable selectedIndex tracks the index of the currently focused address. These
variables are de�ned in the underlying behavior model. The outgoing transi-
tions of the state Address List increase or decrease the value of selectedIndex
when the events Scroll_Up or Scroll_Down occur. As a consequence, the value
of selectedIndex changes during the execution of a test case. When the state
Address List is active, the selected index varies depending on the history. But
the test case model does not contain the values of selectedIndex for each test
step. Therefore, this aspect cannot be woven into an existing test case. In-
stead we simulate the statechart and create the test case dynamically. Each
new test step is woven when it is created thus each test step can access the
correct variable value.

aspect AddressBookTextTest{

pointcut AddressState{

State : self.widget.type = 'Address List'

}

advice TestListBehavior base AddressState<<

ScreenGrabberService.testButton(

'<%=self.model.getVariable('addressBook').getAt(self.model.getVariable

('selectedIndex')).value %>')

>>

}

Listing 7.8. Testing dynamic list behavior.

The aspect in Listing 7.9 demonstrates how we can enrich an existing test case
with additional constraints. When an incoming call occurs the GUI should
show the incoming call screen within less than 100ms. The aspect TimingTest
describes the test oracle for this timing constraint. We extend the aspect In-
comingCall by the aspect TimingTest in order to reuse its pointcut de�nition.
After the incoming call event, the StartTimer advice emits code that starts a



7.5 Example 105

timer. The advice StopTimer is invoked before the state AcceptCall. The test
oracle de�ned by this advice waits for the next screen to show and checks if
it occurred within 100ms using the timer created in StartTimer. The advice
StartTimer and StopTimer depend on each other, because in the �rst advice
a timer is created, which is stopped in the second advice. The dependencies
are de�ned by the additional postcondition StopTimer and precondition Start-
Timer statements. However, de�ning advice precedences only guarantees that
an advice has been woven before or after another advice. There are no guaran-
tees during test script execution if the advice is actually executed before. The
basic assumption is that test scripts are executed sequentially. The resulting
test script triggers the incoming call (IncomingCallTrigger), starts the timer
(StartTimer) and �nally waits for the correct state of the GUI (StopTimer).

aspect IncomingCall{

pointcut IncomingCallEvent{

Event : self.name = 'Incoming_Call'

}

advice IncomingCallTrigger base IncomingCallEvent

<<TelephoneService.triggerIncomingCall() >>

}

aspect TimingTest extends IncomingCall{

pointcut AcceptCallState {

State : self.name = 'Accept Call'

}

advice StartTimer after IncomingCallTrigger postcondition StopTimer

<<Timer.start('IncomingCall')>>

advice StopTimer before AcceptCallState precondition StartTimer<<

ScreenGrabberService.waitForText('<%=self.widget.text%>')

if (Timer.stop('IncomingCall') > 100):

Error.log('Timing failed')

>>

}

Listing 7.9. Timing test.

The next example demonstrates the behavior variation using AspectT. The
pointcut condition is ful�lled for each state that has no outgoing transition
for the scroll down event Scroll_Down. The test script in the advice tests if the
text of the focused element changes, when the event Scroll_Down is triggered
and logs an error with the state's id. An illegal state change is detected when
the focused text changes.

aspect BehaviorVariation{

pointcut State{

State : not self.outgoing.event->exists(i|i.name='Scroll_Down')

}

advice TurnLeft before State <<

text = ScreenGrabberService.getText()

IDriveService.triggerLeft()

if (text != ScreenGrabberService.getText()):

Error.log('<%=self.name%> Text changed on IDrive left')

>>

}

Listing 7.10. Example for behavior variation.
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Fig. 7.16. AspectT weaving.
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Each aspect presented above implements a separate testing concern, either
input mapping, test oracle de�nition or con�guration code. We also showed
how AspectT can be used to de�ne additional constraints and how to inject
faulty inputs. By separating these concerns the test focus de�nition is reduced
to selecting a set of aspects. Using these aspect de�nitions we are able to de�ne
di�erent test focuses:

� Text: The goal is to test whether all buttons show the correct text. There-
fore we need the IDriver aspect and the aspect IncomingCall to trigger the
system in order to reach all states. The test oracle is de�ned in the aspect
TextTest.

� Timing: The goal is to test if the system ful�lls certain timing constraints,
for example, the one de�ned in the aspect TimingTest. The test focus
additionally requires the IDrive aspect to trigger the system.

� Text and Timing: It is also possible to combine the previous test focuses
to test text and timing in one test script. In this case the Text test focus
is extended with the TimingTest aspect.

� Unde�ned inputs: This test focus exercises the SUT with unde�ned
inputs. Unde�ned inputs are any IDriver controller inputs that trigger
no transition in a certain state. The test focus is de�ned by the aspects
BehaviorVariation,IncomingCall and IDrive.

� Address book test: This test focus tests the dynamic address book be-
havior which requires the aspects IDrive and AddressBookTextTest.

Figure 7.16 shows the weaving of the Text and Timing test focus into an
abstract test case and the resulting test script.

GUI:ECU Phone:ECU Tester:Environment

IncomingCallMessage

StatusMessage

IncomingCall

Enter

SignalIncomingCall

Accept

Fig. 7.17. MSC based test case.

7.5.2 MSC based Test Case Instantiation

In the previous paragraphs, we have de�ned several aspects that encapsulate
speci�c testing concerns. Based on these aspects we de�ned di�erent test fo-
cuses that are used to test the GUI of an automotive infotainment system.
The input were test cases which were generated from a statechart. In the
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Fig. 7.18. A simple MSC metamodel.

following we demonstrate how it is possible to reuse the introduced aspects
to instantiate an MSC based test case. Figure 7.17 shows such a test case
for testing the communication behavior between phone application and GUI.
The use case is the same as before: Incoming Call. The environment (in our
case the test automation framework) calls the phone application. The appli-
cation sends an incoming call message and a status message to the GUI via
the communication bus. The GUI signals the incoming call, which is modeled
by a condition. The environment sends an IDrive controller enter event, which
should result in an accept call message from the GUI to the phone. For in-
stantiating the MSC we want to reuse the IncomingCall aspect and the IDrive
aspect to simulate the environment inputs. In order to achieve this, we have
to adapt the existing pointcuts to the MSC metamodel. Figure 7.18 shows a
simpli�ed MSC metamodel. In a statechart, an environment input is de�ned
by an event, which is de�ned in an MSC by a signal. As a consequence, we
have to add another join point selection for signal in the pointcuts. To test
if the correct messages are sent, we have to de�ne a new aspect BusMessage
that extends the BusService aspect. Listing 7.11 shows the extended pointcuts
and the bus message aspect.

aspect IncomingCallTrigger {

pointcut IncomingCall{

Event : self.name = 'Incoming_Call'

Signal : self.name = 'IncomingCall'

}

...

}

aspect IDrive extends BusService{

pointcut Enter{

Event : self.name = 'Enter'

Signal : self.name = 'Enter'

}

...

}

aspect BusMessage extends BusService{

pointcut BusSignal{

Signal : self.source.name <> 'Tester'

}

advice MonitorBus before BusSignal <<

BusService.assertMessageSent("<%=signal.name%>")

>>

}
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Listing 7.11. Extended pointcuts.

7.6 Results

In Figure 7.5 we gave a short classi�cation of test instantiation concerns. The
case study showed that these concerns can easily be separated into di�erent as-
pects using AspectT. This enabled us to reuse aspects in di�erent test focuses.
The possibility to inherit advice and pointcuts from other aspects is espe-
cially useful, because it enables the automatic inclusion of required aspects
and their advice. Given a base of aspect de�nitions, the e�ort of test focus
de�nition is reduced to selecting the required test oracles and test triggers.
The required test framework con�guration is automatically included based on
aspect dependencies.

The idea of AspectT originated in the development of a test generation frame-
work at BMW Group. The instantiation of generated test cases required a
high con�guration e�ort. By integrating AspectT, automatically generated
test cases could be easily adapted to di�erent testing contexts and could be
applied in a broader range of testing scenarios.

A common problem is incomplete test or speci�cation models. These models
lack certain properties that should be tested or that are required for an auto-
mated execution of test cases. Using AspectT the missing parts could easily be
integrated during instantiation which results in a greater area of application
for speci�cations and test models.

Originally in the test framework, a developer had to implement the test script
generation for each test focus. However, when applying the AspectT frame-
work, the test script generation could be separated from the framework and
test engineers could de�ne their own test focus speci�c test script generation
by using existing aspects and de�ning new aspects. This enabled the reuse of
existing artifacts and allowed the test framework developer to focus on imple-
menting test framework speci�c features. The test engineers did not have to
rely on the framework developer for generating test scripts.

In addition, the results showed that test case generation was increasingly used
in creating test preambles. The preamble in a test case establishes a certain
precondition for the execution of the actual test. The precondition is de�ned
by a pointcut, where the actual test is woven in the form of an advice and the
aspect-based test generation is used to generate the preamble.

7.7 Related Work

Extensive research has been performed in the area of model-based testing.
The main focus of these studies lie on behavior models, test selection criteria
and algorithms. To the best of the author's knowledge, there are no studies
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on the requirements of model-based testing in di�erent phases of system de-
velopment and the consequences for test case instantiation. There are several
case studies, where model-based test case generation has been evaluated for
industrial case studies. In these case studies the test case instantiation is either
performed by wrappers or by translation approaches. In [BL03], for example,
a transformation approach that generates test scripts for test cases that are
created from B [Abr96] speci�cations is presented. The test engineer de�nes
a test script pattern and a mapping table. The tables contain the mapping
between abstract model elements and their corresponding script patterns. Ex-
amples for wrapper approaches are the test case generation frameworks Torx
[BFdV+99] and TGV [JJ05]. Both provide the ability to execute the test cases
during test generation time by using such wrappers around the SUT. In this
case each test focus requires its own wrapper implementation. The combina-
tion of Torx or TGV with AspectT would combine the advantages of on-the-�y
test case execution with the �exible test focus de�nition of AspectT.

Translation approaches are often based on a model-to-text generation frame-
work. Several code generators for EMF models exist, such as JET9 or
XPAND210. The main di�erence to these code generation frameworks is that,
in AspectT, aspects can be arbitrary combined to a new code generator. In
Jet, for example, a template must be de�ned for each test focus. All possible
mappings between input model and target code are contained in this tem-
plate. There is no modularization possible to reuse certain template parts in
di�erent code generators. In XPAND2 it is possible to divide a code generator
into di�erent templates. A template can expand other templates during its
execution. Templates in XPAND2 can be reused in di�erent code generators,
but there must always be a base template that calls other templates depend-
ing on the input model. This is the primary di�erence to AspectT, where a
template (the advice) de�nes where it is woven in the input model. XPAND2
also implements aspect-oriented concepts: each template can be extended by
additional advice. The di�erence to AspectT is that the templates are join
points rather than the input model. Therefore the join point model is at the
wrong abstraction level for test case instantiation. On the other hand, these
frameworks can have any kind of model as input whereas AspectT requires
a model that has a logical tree structure. Another di�erence is the weaving:
AspectT has a �exible weaving approach that allows the weaving during the
creation of the input model.

The generation of source code from a tree structure is a common task in
programming language compilers. Especially for attribute grammars [Knu68,
Paa95, MJW00] many modularization approaches that divide an attribute
grammar into separate modules exist, where each module can be reused in
di�erent programming language compilers to reduce the implementation e�ort
for a new compiler. The advantage of AspectT and the test case instantiation
is that only one concern has to be regarded in the modularization: the mapping
between join point and code. This simpli�es the modularization, in contrast to
attribute grammars where more concerns such as production rules, attributes
and semantic rules must be regarded as well.

9 http://www.eclipse.org/modeling/m2t/?project=jet#jet
10 http://www.openarchitectureware.org/
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Gray et al. use aspect-oriented concepts to perform model evolution [GLZ06].
Their approach is based on a metamodeling framework similar to EMF: the
Generic Modeling Environment (GME).11 They de�ne pointcuts using the
Embedded Constraint Language (ECL) where a pointcut is de�ned as a query
that selects a set of objects from a given model. An advice performs a model
evolution for the objects selected by a pointcut. The model evolution is also
de�ned using ECL. The query language in ECL is similar to OCL as used in
AspectT where ECL includes additional constructs for model evolution.

Visser et al. introduced Stratego [Vis01]: a language for software transforma-
tion based on rewriting strategies. The basic idea of AspectT and Stratego are
the same, transforming a tree structure into a textual representation. Stratego
is a general-purpose program transformation language where AspectT focuses
on test case instantiation. AspectT 's advantage is its simple notation and
its intuitive way of describing a test trigger or test oracle by using concepts
of AOP. Another di�erence is the dynamic weaving. Aspects can be woven
while the input tree is dynamically created, which is important for runtime
veri�cation or simulation based test case generation.

The Motorola WEAVR developed by Cottenier et al. is an aspect-oriented
modeling approach based on UML: composite-structure architecture diagrams
and statecharts describe the structure and behavior of a system. WEAVR pro-
vides the ability to describe crosscutting concerns using pointcuts and advice.
Pointcuts select transitions and actions. Advice are de�ned as statecharts. For
statechart based test case generation this approach could be used to add miss-
ing constraint (e.g. timing) and missing input behavior. However, the map-
ping between woven statecharts and driver components cannot be described.
WEAVR is restricted to statecharts where AspectT is modeling language in-
dependent.

7.8 Summary

Test case instantiation is an important part of model-based testing. Especially
in embedded systems the abstraction gap between generated test cases and
SUT is large, because it involves complex test setups that monitor and trigger
the system. The test focus must be adapted to each possible test setup and
test context. One way to minimize the e�ort of model-based testing is to
optimize the test focus de�nition. The approach presented in this chapter uses
aspect-orientation for separating di�erent testing concerns. Each particular
mapping between test model and test script is encapsulated in a separate
aspect. This reduces the e�ort of test focus de�nition to the selection of aspects
corresponding to the test goal. Another bene�t of AspectT is that pointcuts
are potential test selection criteria. This enables the combination of test focus
de�nition and test case generation to generate test focus speci�c test cases.

We implemented our test focus de�nition approach in the language AspectT.
The language is based on the EMF, where every EMF model is a potential
join point model. This enables the application of AspectT to any modeling

11 http://www.isis.vanderbilt.edu/projects/gme/
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language, as long as the test case's metamodel is de�ned in EMF. The advice
de�nition in AspectT implements a template based code generation approach
that enables the generation of test scripts in any programming language. As-
pectT has been integrated into an existing test generation framework at BMW
Group and has been successfully applied to testing an automotive infotain-
ment system.



Part IV

Evaluation and Discussion
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From Use Cases to Task Models

In the previous chapters, we introduced TTask, a task modeling notation
that enables the modeling of features and their interactions. Furthermore, we
presented the generation of test cases from TTask models based on new test
selection criteria. This involved the re�nement of task sequences with existing
behavior models and the test script generation with AspectT. In the following
three chapters we show that the application of our approach is feasible in a
real world setting and that it enables the systematic test coverage of feature
interactions. We show this by di�erent case studies of real world examples
from the automotive domain. Throughout the following three chapters we
illustrate three points:

1. Show how to create a TTask model, based on an existing system speci�-
cation (this Chapter).

2. Show the combination of task sequence generation, re�nement, and test
script generation for a running real world example (Chapter 9: �Case
Study�).

3. Show that the introduced test selection criteria cover critical scenarios
(Chapter 10: �Evaluation of Test Selection Criteria�).

This chapter focuses on the �rst objective: how to create a TTask model from
a given speci�cation. The chapter is structured as follows. In the �rst section
we describe the translation of a real world use case speci�cation into a TTask
model. In the second section we compose these use case speci�c tasks to a
task model that describes the temporal dependencies between the use cases.

8.1 Creating Tasks from Use Cases

In this case study we model the software update functionality of an info-
tainment system with TTask. This functionality allows the user to perform
a software update of the infotainment system. The OEM provides software
updates, which the user can save on a USB �ash drive. After the user has con-
nected the USB �ash drive to the infotainment system, the update starts via
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the GUI. Furthermore, the functionality provides features to view installed
updates and to uninstall previously installed updates. The functionality is
speci�ed in the form of use cases. Our approach is to systematically translate
these use cases into a TTask model. The translation is performed in six steps:

1. Create a task for each use case.

2. For each step in the informal use case description, create a subtask in the
corresponding task.

3. Model the temporal dependencies between the use case speci�c subtasks
based on the use case description.

4. For each exception that is described in a use case, create a corresponding
subtask. For each expected system reaction to the exception, create a
subtask as well.

5. Model the dependencies between the tasks that describe the use case be-
havior and the tasks that describe the exceptional behavior.

6. Compose all use case speci�c tasks by modeling their temporal dependen-
cies.

In the remainder of this section we introduce the use cases of the software
update functionality and model them in TTask. In the following section we
describe the composition of the use case speci�c tasks into a complete TTask
model.

8.1.1 Use Case: Software Update Detection

The �rst use case in Table 8.1 describes the detection process of a USB stick.
Figure 8.1 shows the corresponding task Detect USB Flash Drive. This is a
composite task that implements the selection pattern with three subtasks.
Each subtask describes a di�erent USB �ash drive detection scenario:

1. The USB �ash drive contains no update data.

Use case: Detection of software updates on USB �ash drive

Description: The customer connects the USB �ash drive to the USB port in
the car. The storage device contains an update �le. The software
update agent detects the update �le. All detected updates are
reported to the Software Update Manager and are forwarded to
the GUI.

Prior Condition: USB �ash drive with appropriate update �le is connected to the
USB connector.

Post Condition: The system has detected updates on the USB �ash drive.

Initiator: User

Exceptions: The system should notify the user if the USB �ash drive contains
an invalid update.

Table 8.1. Use case: Software update detection.
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2. The USB �ash drive contains invalid update data.

3. The USB �ash drive contains valid update data.

Fig. 8.1. Update detection task.

The subtasks have no temporal dependencies. Thus the task Detect USB Flash
Drive is performed when one of its subtasks is performed. The second scenario
is an example, how faulty inputs can be described in TTask by being encap-
sulated in separate tasks. This demonstrates how scenarios that involve faulty
environment inputs can be covered in task-based test case generation.

8.1.2 Use Case: Display Installed Updates

The user can review previously installed updates. This part of the software
update functionality describes the second use case in Table 8.2. Figure 8.2
shows the task Show Installed Updates which describes the use case. There is
no exceptional behavior in this use case described. Thus the corresponding
task has only two subtasks that model the sequential execution of the use
case. This is a typical example for a GUI dialog, in which the user queries
information from the system. The user performs the �rst task by requesting a
list of previously installed updates from the system via the GUI. The second
task describes the corresponding system reaction.

Use case: Display currently installed updates and versions via GUI

Description:

The customer or the service partner determines installed up-
dates using the GUI.
1. The customer/service partner selects the option �display in-
stalled updates�.
2. The currently installed software updates are displayed.

Prior Condition: The system is idle.

Post Condition: The system is idle.

Initiator: User

Exceptions:

Table 8.2. Use case: Display software updates.
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Fig. 8.2. Display updates task.

8.1.3 Use Case: Software Update Removal

If the user is not satis�ed by the previously installed update, it can be removed
from the system. The third use case in Table 8.3 describes the uninstallation
procedure which removes the last installed software update. The use case is
modeled by the task in Figure 8.3. This use case also describes a sequential
dialog between user and system. The system noti�es the user over the uninstal-
lation progress, which is modeled by the long running task Show Uninstallation
Progress.

Use case: Uninstallation of the software update

Description:

The last software update that has been installed is uninstalled
by the customer using the update assistant.
1. The customer selects the software update uninstall function.
2. The customer is informed about the uninstall progress.
3. Visible con�rmation of successful uninstall is given.

Prior Condition: There are installed updates.

Post Condition:

Initiator: User

Exceptions:

Table 8.3. Use case: Uninstall software updates.

Fig. 8.3. Uninstall update task.
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8.1.4 Use Case: Software Update Installation

The fourth use case in Table 8.4 describes the installation of a software up-
date. The corresponding task in Figure 8.4 is divided into two subtasks. The
�rst subtask Perform Update describes the normal update procedure, as speci-
�ed in the use case. However, the user can remove the USB �ash drive during
the update procedure. This is a typical example of exceptional behavior that
must be tested during development. In particular, it is important to cover ev-
ery possible situation in which the exception might occur, in order to ensure a
stable state in every scenario. The second subtask Handle Removal Exception
models the situation when the user removes the USB �ash drive during the
update procedure. The task Handle Removal Exception is only enabled when
the task Perform Update is active. When the task Con�rm Successful Instal-
lation stops, the task Handle Removal Exception becomes disabled. However,
the update procedure is disabled when the USB drive is removed during the
update. This is described by the task Remove Drive When Update Active and
its disable dependency to the task Perform Update. The system's reaction to
the exception models the task Show Update Failed which is enabled by the
task Remove Drive When Update Active.

Use case: Installation of a software update

Description:

The customer or the service partner determines installed up-
dates using the GUI.
1. The customer follows the instructions on the GUI and con-
�rms the installation of the update.
2. The customer is informed about the progress of installation.
3. Visible con�rmation of successful installation is given.

Prior Condition: The system has detected new updates on the USB �ash drive.

Post Condition: The system has detected updates on the USB �ash drive.

Initiator: User

Exceptions: If the USB �ash drive is removed during installation, the system
should undo the update and notify the user.

Table 8.4. Use case: Software update installation.

8.2 Composing the Use Case Tasks

The previous section described each use case of the software update function-
ality in TTask. In order to describe the complete software update functionality,
we have to model the dependencies between these use cases. Each use case
represents a speci�c feature. Hence, the interactions between these use cases
are feature interactions. We de�ne these intentional feature interactions using
task dependencies. Figure 8.5 shows the complete task model for the software
update functionality. The subtasks that have no new dependencies are hidden
for the sake of conciseness. First of all, we have to add another task Remove
USB Flash Drive in order to describe the non-exceptional removal of a USB
drive. The normal removal of a USB �ash drive has not been described in the
use case speci�cation. The incompleteness of the speci�cation became obvious
when we simulated our task model.



120 8 From Use Cases to Task Models

Fig. 8.4. Update installation task.

Fig. 8.5. Software update taskmodel.
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There are three reasons for feature interaction:

1. Shared usage of the GUI: The three tasks Install Update, Show Installed
Updates, and Uninstall Update are controlled via the GUI. Hence, they are
all mutually exclusive because the GUI supports only the execution of one
task at a time. This is modeled by the mutual exclusion pattern, which is
symbolized by the choice dependency.

2. Required USB Flash Drive: The task Install Update requires a valid
update on a USB �ash drive. This is modeled by the enable dependency
between Detect Drive with Update and Install Update. However, there are
two tasks for the removal of a USB drive. One that represents the normal
removal of a USB drive and one that represents the exceptional removal
during the update procedure. The exceptional removal is only possible
during the update procedure. Hence, it is necessary to ensure that when
the update is started, only the exceptional task is enabled. This is mod-
eled by the disable and enable dependency between Perform Update and
Remove USB Flash Drive. Furthermore, when the task Handle Removal Ex-
ception is performed, it disables Perform Update and enables Detect USB
Flash Drive.

3. Installed Updates: The task Uninstall Update can only be performed
if an update has already been installed. This is modeled by the enable
dependency between Install Update and Uninstall Update. However, this is
an example for a situation in which the current semantics of TTask do
not su�ce. The scenario, in which the user performs two updates in a row
and then uninstalls both updates consecutively, cannot be modeled with
TTask. This would require the possibility to model additional precondi-
tions and actions in a task, based on a common data model, for example,
a counter variable, which is currently not supported in TTask.

After adding the temporal dependencies between the use case speci�c tasks,
the task model describes all usage scenarios of the software update function-
ality.

8.3 Summary

This chapter presented the �rst of three case studies of task-based test case
generation with TTask. This chapter focused on the �rst step in task-based
test case generation: modeling features and their interactions with TTask.
To demonstrate TTask we created a TTask model from an existing use case
speci�cation of the software update functionality. This chapter showed that
the transformation of an informal use case description into a TTask model is
straightforward. Furthermore, we have seen how TTask can be used to model
exceptional behavior as well as temporal dependencies between di�erent use
cases. In summary, this chapter showed that the e�ort of creating a TTask
model from a given speci�cation is reasonable. Such a TTask model enables
task sequence generation in order to systematically cover the speci�ed be-
havior. The generation of task sequences and the subsequent generation of
executable test scripts is the topic of the following two chapters.
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Generating Test Cases with TTask

This chapter presents a case study in which we apply task-based test case gen-
eration to a real world example. The �rst objective of this study is to demon-
strate our approach of task-based test case generation and test instantiation
by a running example that involves all necessary steps to create executable
test scripts from a task model. The second objective is to show the feasibility
of our approach for a real world example from the automotive domain. In
order to ful�ll the objectives, the case study comprises all steps of task-based
test case generation:

1. Modeling features and their interactions in TTask, which has been intro-
duced in Chapter 4.

2. Generation of task sequences based on test selection criteria, which were
introduced in Chapter 5.

3. Re�nement of the generated task sequences using existing behavior mod-
els, following the approach described in Chapter 6.

4. Generation of executable test scripts with AspectT (see Chapter 7).

This chapter is structured as follows. The �rst section introduces the environ-
ment at BMW Group in which the case study has been performed. The second
section introduces the features of a real world infotainment system that are
modeled using TTask. The third section presents the task sequence generation
from the task model. The fourth section demonstrates test case instantiation
with AspectT.

9.1 Environment

This section introduces the environment in which this case study has been
performed. This includes the test setup consisting of the SUT and the test
execution environment. Model-based testing strongly depends on tools that
support the process of test case generation and execution. We created such
a tool for TTask : Task-GEN. Task-GEN is a modeling environment and test
case generator for task models.
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9.1.1 Test Setup

The targeted system comprises all ECUs of the infotainment system due to
the regarded features. For testing, these ECUs are integrated in a test rack
where they are connected via the MOST and the CAN busses. Test scripts are
executed from a test host that is connected to the MOST and CAN networks.
In order to receive and make phone calls, the AIS is connected to a mobile
phone via Bluetooth. In order to stimulate and receive these phone calls, the
test host is connected to another mobile phone. Figure 9.1 depicts the testing
environment.

Test Rack

Head Unit

Phone

Navigation Amplifier

DVD Player

MOST

Bus

CAN Bus

Test Host

MOST 

Adapter

Fig. 9.1. Testing environment.

9.1.2 Test Execution Environment

Model-based test case generation results in a potentially large number of test
cases. In order to execute such a large number of test cases, the execution
of them must be automated. However, the automated execution of test cases
requires an environment that enables the automated stimulation of the SUT
as well as automated test oracles. At BMW Group, test cases for infotainment
systems are written in Python1 and use the BMW Test Automation Frame-
work (TAF). TAF provides di�erent test drivers which encapsulate function-
alities to trigger and observe the system. An example is the ZBEService2 that
provides a simple application programming interface (API) to trigger joystick
inputs via bus messages:

ZBE.Right() # send joystick turn right signal

ZBE.Press() # send joystick press signal

1 http://www.python.org
2 ZBE stands for �zentrales Bedienelement� which is German for central control
unit.
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Test oracles are de�ned using test drivers that observe the system. For exam-
ple, the following test oracle checks whether the screen change is fast enough:

MMI.WaitForText("Enter Destination", 1000)

except TimeOut:

log(ERROR, "Timeout enter destination")

The MMIService enables the monitoring of the GUI using a screen grabber
and OCR. The call to the WaitForText functions waits until the speci�ed text
occurs in the cursor or a timeout occurs. If a timeout occurs, a corresponding
error is logged.

9.1.3 Task Modeling Environment - Task-GEN

Task-GEN is a graphical modeling environment for TTask models. A modeler
can use Task-GEN to create task models with the graphical syntax that is
described in Chapter 4.3. Furthermore with Task-GEN the modeler can de-
�ne multiple views on the same task model. This is advantageous for models
with a large number of tasks, as the tasks can be distributed across multiple
diagrams. The concept of di�erent views on the same task model is depicted
in Figure 9.2. This enables the separation of feature-speci�c behavior from
feature interactions. We use the following task modeling procedure for our
case study. First, all features are described in separate views. Then, the in-
teractions between these features are described in additional views.

Task-GEN can automatically transform task models into Promela. There are
two di�erent modes for the transformation: one for the simulation of TTask
models, and one for test case generation from TTask models. In order to
simulate a TTask model, Task-GEN creates an open Promela model in which
the start and stop of a task can be triggered by the modeler. The modeler can
simulate the execution of tasks and Task-GEN provides visual feedback about
the current task model state. Figure 9.3 shows a screen shot from Task-GEN
in simulation mode. The left part of the screen shot shows the simulated task
model. The task modes are represented by di�erent colors during simulation.
The right part shows the control view where the modeler can start and stop

Check Control Navigation

NavigationCheck Control
Check Control

Navigation

interaction

describes describes describesModels

Views

Fig. 9.2. View concept.



126 9 Generating Test Cases with TTask

Fig. 9.3. Task-GEN.

the execution of a task. The actual simulation of the task model is performed
with SPIN which runs in the background.

In order to generate test cases from a task model, Task-GEN supports the
generation of closed Promela models. Based on these closed Promela models,
Task-GEN can generate task sequences using the test selection criteria that
were introduced in Chapter 5.4. Test case generation is performed in multiple
steps. These steps are de�ned in the form of openArchitectureWare (OAW)3

work�ows.

Figure 9.4 shows the complete work�ow for the generation of test scripts from
a task model. We use TTask to depict the work�ow. Each task represents a
step in the work�ow. However, the actual work�ow is speci�ed in XML. First,
a task model is loaded and transformed into Promela code. The Promela
code is then compiled into an executable model checker program. In the next
step, a set of LTL formulas are generated for a given test selection criterion.
Each LTL formula describes a trap property. For each generated LTL for-
mula a task sequence is generated. This is performed by using SPIN to check
the LTL formula against the model checker program. When SPIN �nds no
counter-example for the trap property, the task sequence generation is �n-
ished. Otherwise, SPIN creates a trail for the counter-example. Task-GEN
parses the trail �le and transforms it into a task sequence model. This task
sequence model is then transformed into test scripts with AspectT. For each
test focus, AspectT is invoked by loading a test focus speci�c aspect setup
and by weaving it into the generated task sequence.

In the remainder of this chapter, we describe this work�ow on the basis of a
real world example.

3 http://www.openarchitectureware.org
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Fig. 9.4. Test script generation process.

9.2 The Task Model

A real world infotainment system integrates more than 1000 di�erent features.
The case study comprises a representative subset of these features. The fea-
tures are Enter Destination, Route Guidance, Change Route Options, Listen to
Radio, Incoming Call, Start Call and Check Control Messages. In the �rst part of
this section, we describe the feature-speci�c tasks and in the second part we
describe the interactions between these features by their task dependencies.

9.2.1 Modeling the Features

The �rst step is to model each feature by a corresponding task. Then, these
tasks are subsequently re�ned into di�erent subtasks that describe the feature-
speci�c behavior. In the following, we describe the features that comprise the
case study.

Check Control:

The check control function in a car monitors the vehicle and noti�es the driver
when an exceptional condition occurs. This involves also critical situations,
such as when the tire pressure is below a critical value. When the check control
function observes such a critical condition it gives an audible warning signal
and noti�es the GUI. The GUI subsequently shows a warning screen that
interrupts all other active dialogs. The driver must con�rm that the warning
has been noticed in order to move the warning screen into the background.

Figure 9.5 shows the task model for the check control message Handle Low Tire
Pressure. First the system task is modeled that observes a low tire pressure.
This task enables the Handle Low Pressure task which contains tasks for the
warning signal and the warning message screen.

Radio:

An AIS supports di�erent entertainment features, for example, the reception
of television (TV) and radio and the playback of CDs and MP3s. We exemplify
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Fig. 9.5. Check Control Message.

these features by integrating the radio functionality in our case study. In this
study we focus only on one part of the radio feature, the playback of a radio
station after the selection of a radio station. Figure 9.6 shows the task Listen
to Radio that models the radio feature. The task Listen to Radio uses the long
running task pattern to model its ability to perform in an interleaved fashion
with other tasks. The task Listen to Radio is initiated by the task Select Station
which is performed when one of its subtasks is performed. The selection of
di�erent radio stations is modeled using the selection pattern.

Fig. 9.6. Radio.

Navigation:

One of the most important functionalities of an AIS is the navigation system,
and it is one of the most complex applications as well. In this case study
we model the basic navigation features destination input and route guidance.
We describe the navigation functionality with three tasks: Enter Destination,
Guidance and Change Route Criteria. The Enter Destination task has four sub-
tasks for the selection of the country, city, street and house number. In the
navigation feature, the country is initially set to the user's country. Hence,
the user can start with either Enter Country or Enter City. This is modeled
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by setting the initial mode of Enter City to enabled (indicated by the black
circle on the left side of the task). The user can always change a selected route
and therefore the task Enter Destination is never stopped once it is started.
However, when the user changes the country, the tasks Enter House Number
and Enter Street get disabled. When a city is selected, the route guidance can
be started, which is modeled by the enable dependency from the task Enter
City to the task Start Guidance.

Fig. 9.7. Navigation.

Telephony:

The user can integrate a mobile phone into the AIS via Bluetooth. In this
case study we regard the two main features Make Phone Call and Incoming
Call. Figure 9.8 shows the task model that describes these features. A call can
either be started by entering a number or by selecting a contact. When a call
is started, the system dials the number and waits for the callee to accept the
call. The user can cancel the dialing process, which results in the end of the
Start Call task. When the Dialing task is �nished, the callee can either reject
or accept the call. If accepted, the task Call Speak becomes active, otherwise
the user can set an active call on hold which suspends the call. An active call
is ended either by the user or by the callee.

The task Incoming Call in Figure 9.9 describes the incoming call handling.
This task is started when the system performs the task Signal Incoming Call.
The system signals an incoming call by showing a popup dialog in the GUI
and by playing an audio signal. The call handling is similar to the task Make
Phone Call.

9.2.2 Modeling the Feature Interactions

The previous section described the features and their behavior with tasks.
The interactions between these features are not speci�ed yet. In this section,
we discuss two main intentional feature interactions between the introduced
features. The �rst is the shared usage of the GUI. The second is the audio
channel that can only be used by one feature at a time.
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Fig. 9.8. Call.

Fig. 9.9. Incoming Call.
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Fig. 9.10. GUI-based feature interactions.

GUI-based feature interactions:

Figure 9.10 shows the intentional feature interactions that result from the
shared usage of the GUI. The low tire pressure warning popup suspends
all other GUI dialogs until the user con�rms the warning. Hence, the task
ShowLowPressureWarning suspends all other tasks that involve the GUI, such
as Select Station or Enter Destination. All other tasks that involve the GUI can
be performed interleaved.

Audio-channel-based feature interactions:

Figure 9.11 shows the intentional feature interactions that results from the
shared usage of the audio device. On the one hand there are long running tasks
that use the audio channel, such as Listen to Radio, Perform Call, and Handle
Incoming Call. On the other hand there are atomic tasks that use the audio
channel and suspend the long running tasks, for example, Advice Direction and
Give Audio Warning. Furthermore, an active phone call is interrupted by an
incoming call, which is modeled by the suspend dependency between Handle
Incoming Call and Make Phone Call, as shown in Figure 9.12.

Fig. 9.11. Audio-channel-based feature interactions.

The previous three task model views describe the interactions between the
features of our study. The composition of all task model views describes the
task model that we want to use for test case generation. The next section
introduces the task sequence generation from this task model.
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Fig. 9.12. Incoming call suspends Phone Call.

9.3 Generating Task Sequences

Chapter 5.4 introduced several coverage-based test selection criteria. This sec-
tion describes the application of these test selection criteria to the task model
introduced in the previous section. During our case study we generated �rst
the corresponding LTL formulas for each test selection criterion and then we
used SPIN to produce counter-examples for each LTL formula. SPIN creates
for a counter-example a trail �le that describes the path in the Promela model
that leads to a violation of the given LTL formula. Task-GEN parses these
trail �les and creates a task sequence. Figure 9.13 shows one of the generated
task sequences in the form of an MSC.

The task model that we used in this case study comprises 60 tasks where
38 tasks are atomic tasks. Figure 9.14 shows the number of generated task
sequences for each test selection criterion. The chart shows that the concur-
rency coverage criterion generates the most task sequences. This is no surprise
because all possible combinations of concurrent task executions are covered.
Thus the testing e�ort is particularly high, when all scenarios should be cov-
ered in which unintentional feature interferences might occur.

Environment IncomingCall HandleIncomingCall SignalIncomingCall PlayRingTone ShowIncomingCallPopup

EvStart
EvStart

Active
Active

EvStop

Stopped

EvEnable

Enabled

EvEnable

Enabled

EvEnable

Enabled
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EvStart

EvStart

Active
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EvStop

Stopped

EvStop

EvStart

Active

EvStop

Stopped

EvStop

Stopped
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...

Fig. 9.13. Task sequence example.
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The interruption coverage criterion generated a large number of test cases
as well. This depends partly on the domain, because in our task model most
features interrupt each other. Furthermore, one suspend dependency stands
for multiple suspension scenarios. For example, the task Enter Destination can
be interrupted after each of its subtasks has been performed.

By contrast, the enable coverage criterion generated a relatively small number
of task sequences. This depends on the task model in which only one enable
dependency exists between di�erent features. Furthermore, enable dependen-
cies were mostly de�ned between atomic tasks. Thus every enable dependency
is covered by one task sequence.

The number of task sequences generated by the task coverage criterion is
even lower than the number of tasks in the task model. This is due to only
generating trap properties for tasks that have not already been covered by
one of the generated task sequences.

The next chart in Figure 9.15 compares the average length of the di�erent
task sequences. The length of a task sequence is determined by the number of
executed atomic tasks. Our results show that the lengths of the task sequences
are reasonably small. The increased task sequence length of the interruption
and concurrency coverage criteria results from the more complex scenarios
they cover; usually, one task must be started in order to be interrupted or
interleaved by another task.

This section demonstrated the generation of task sequences from a task model.
Our example shows that use case speci�c test selection criteria, such as task
coverage or enable coverage, produce a relatively small number of task se-
quences. However, as soon as unintentional feature interaction scenarios are
included into the task sequence selection process, the number of generated
task sequences increases signi�cantly. These results correspond to the ones
from other case studies that we performed.
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The next step is to enrich these task sequences with input and output behavior
in order to transform them into test cases. This is covered in the next section.

9.4 Task Sequence Re�nement and Instantiation

In this section we describe the transformation of the generated task sequences
into executable test scripts with AspectT. Furthermore, we show how AspectT
can be used to combine test case re�nement and test case instantiation.

TaskModelState

Task TaskModeType

TaskMode

*
taskModes

1

mode

1

task

TaskSequence

*
taskModelStates

Fig. 9.16. Task sequence metamodel.

SPIN generates a trail �le that describes a speci�c task sequence. Task-GEN
parses this trail �le and creates an EMF task sequence model. Figure 9.16
shows the EMF metamodel of a task sequence. A task sequence consists of
multiple task model states. Each task model state consists of multiple task
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modes. This EMF task sequence is input for the AspectT weaver which creates
a python script for a given test focus.

The general approach is to encapsulate con�guration code, test triggers, and
test oracles into separate aspects. The con�guration code is weaved before
and after a task sequence in order to initialize and shutdown required services.
Test triggers and test oracles are weaved at speci�c task modes. For example,
the environment inputs to simulate the low tire pressure warning are weaved
when the task Low Pressure Warning is active. In general, for each task that
is started by the environment, a corresponding test trigger is de�ned. Tasks
that are performed by the system, such as Show Low Pressure Warning, do
not require a test trigger. Rather, they require a test oracle that tests whether
the system performs the task correctly.

Con�guration aspects, test trigger aspects, and test oracle aspects are com-
posed into a test focus. Figure 9.17 shows the test focus that is introduced
in this section. The test focus comprises four aspects: TestCase,TestGenerator,
CheckControlMessage and Phone. The aspects CheckControlMessage and Phone
encapsulate the test triggers and oracles for the corresponding features and
the aspects TestCase and TestGenerator encapsulate general initialization code.

Listing 9.1 shows the implementation of the aspect TestCase which contains
the python class header and the method declaration that starts the test script.
TestCase comprises a pointcut that selects all task sequences and an advice
that weaves the header code before an object of the type task sequence.

aspect TestCase {

pointcut TaskSequence {

TaskSequence

}

advice Header base TaskSequence

<<

from mmi.base.MMITestBase import MMITestBase

class <%=self.name %>(MMITestBase):

def __init__(self, methodName='runTest'):
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MMITestBase.__init__(self, methodName, '<%=self.name %>')

def runTest(self):

print 'Starting test <%=self.name %>...'

>>

}

Listing 9.1. Test case header.

HandleLowTirePressure Tester

trigger low tire pressure
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show warning screen

LowPressureWarning

ConfirmLowPressure

play warning signal
GiveAudioWarning

ShowWarningPopup

System

Fig. 9.18. Handle CC message scenario.

The next aspect in Listing 9.2 demonstrates the scenario-based re�nement of
the task Handle Low Tire Pressure CC with AspectT. Figure 9.18 shows the
scenario that describes the task sequence Low Pressure Warning → Give Audio
Warning Show Warning Popup→ Con�rm Low Pressure Warning. Therefore, we
have to de�ne two test triggers for the test inputs and two test oracles for
the system reactions in AspectT. The aspect CheckControlMessage in Listing
9.2 implements the corresponding test triggers and test oracles. There are
two pointcuts, one that selects the TaskMode where LowPressureWarning is
active and one that selects the TaskMode where Con�rmLowPressure is ac-
tive. There are three advice implemented in the aspect CMM. The advice
LowPressureWarning_Trigger implements the test trigger that sends a check
control (CC) message via the CAN bus. The test oracle is implemented in
TirePressureLow_Oracle. The oracle implemented in the advice waits for the
CC message screen to show and logs an error if the screen is not shown within
one second. The con�rm message trigger is implemented in the advice Con�r-
mMessage_Trigger by simulating a press by the user.

aspect CheckControlMessage {

pointcut LowPressureWarning {

TaskMode : self.state = Active and

self.task.name = 'LowPressureWarning'

}

pointcut GiveAudioWarning {

TaskMode : self.state = Active and

self.task.name = 'GiveAudioWarning'

}

pointcut ShowWarningPopup {

TaskMode : self.state = Active and

self.task.name = 'ShowWarningPopup'

}

pointcut ConfirmLowPressure {
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TaskMode : self.state = Active and

self.task.name = 'ConfirmLowPressure'

}

advice LowPressureWarning_Trigger base TirePressureLowTask

<<

CAN.CCM(1, 1) # trigger \gls{cc} message >>

advice GiveAudioWarning_Oracle before GiveAudioWarning

<<

AUDIO.waitForGong(2)

except TimeOut:

log(ERROR, "Low Tire Pressure warning signal timeout") >>

advice ShowWarningPopup_Oracle base ShowWarningPopup

<<

MMI.waitForText("Low Tire Pressure", 2)

except TimeOut:

log(ERROR, "Low Tire Pressure popup timeout") >>

advice ConfirmLowPressure_Trigger base ConfirmLowPressure

<<

ZBE.Press() >>

}

Listing 9.2. CheckControlMessage Aspect.

Previously we have shown how scenarios are implemented with AspectT. In
the following we introduce the state-machine-based re�nement of a task model
with AspectT. During component testing of the infotainment system, a speci�c
test model already has been created to systematically test the GUI. The test
model describes the focus behavior of the GUI in the form of a statechart.
It is used to generate GUI speci�c test cases, such as text tests. Figure 9.19
shows a part of this model that describes the behavior of the navigation menu.
We use this focus model for the re�nement of our task models and thereby
demonstrate the reuse of existing component models.
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Fig. 9.19. Extract of the GUI focus model.
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In order to generate test cases from the dialog model we use an existing test
case generator that enables the generation of a shortest path between two
states. The generator is implemented in Java and therefore can be called from
within an advice in AspectT. The API of the generator is shown in Listing
9.3.

def testGenerator = new TestGenerator()

// load the statechart

testGenerator.init("model/spec/MMI_Model.mbt")

def result = testGenerator.generatePathTo("Enter_Destination_Speller")

// result = [ZBE.Right, ZBE.Right, ZBE.Press,...]

result = testGenerator.generatePathTo("Change_Language_Settings")

// result = [ZBE.West, ZBE.West, ZBE.Left,...]

Listing 9.3. Test generation.

The generator is initialized with a statechart model that represents the focus
behavior of the GUI. After initialization, the generator can be used to generate
inputs that establish a speci�c state in the GUI. In Listing 9.3 the �rst call:

testGenerator.generatePathTo("Enter_Destination_Speller")

generates the test inputs that establish the state Enter_Destination_Speller
starting from the statechart's initial state. The second call:

testGenerator.generatePathTo("Change_Language_Settings")

generates the test inputs that establish the state Change_Language_Settings
starting from the active state Enter_Destination_Speller.

Our approach is to encapsulate the test generator in the aspect TestGenera-
torAspect which is shown in Listing 9.4. The aspect has an intertype declara-
tion that contains the test generator. The generator is initialized in the advice
InitTestGenerator which is invoked before a task sequence.

aspect TestGenerator {

def testGenerator = <% new TestGenerator()%>

pointcut TaskSequence {

TaskSequence

}

advice InitTestGenerator before TaskSequence

<<

<% testGenerator.init("model/spec/MMI_Model.mbt") %>

>>

}

Listing 9.4. Test generator initialization.

Each aspect that requires the test generator can extend the TestGenerator
aspect and access the intertype variable to generate test inputs. As a conse-
quence each aspect implicitly incorporates the task execution history when it
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generates an input sequence for the GUI. For example, the aspect that imple-
ments the task Select Contact uses the test generator to generate the input
sequence that is necessary to navigate to the contact list. Listing 9.5 shows
the implementation of the aspect. The test generator calls are implemented
in the advice SelectContact_Trigger.

aspect Phone extends TestGenerator {

pointcut SelectContactActive {

TaskMode : self.state = Active and

self.task.name = 'SelectContact'

}

...

advice SelectContact_Trigger base SelectContactActive <<

# Navigate to SelectContact

<%

def result = rteHelper.generatePath("C503_496")

for (step in result) { %>

<%=step%>

<%} %>

# wait for contacts in cursor

MMI.WaitForText("A A", 60)

# Call contact

ZBE.Press()

>>

...

}

Listing 9.5. Call contact.

Furthermore, AspectT can be used to implement additional test oracles. For
example, when the task Listen to Radio is suspended, the radio application
should be muted. The aspect Radio in Listing 9.6 shows the implementation
of a corresponding test oracle. The pointcut RadioSuspended selects any task
model state where the task Listen to Radio is suspended. The advice Radio-
Suspended_Oracle contains the implementation of the test oracle that tests if
the radio is muted.

aspect Radio extends TestGenerator {

pointcut RadioSuspended {

TaskMode : self.state = Suspended and

self.task.name = 'ListenToRadio'

}

...

advice RadioSuspended_Oracle base RadioSuspended <<

# Test if radio is suspended
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...

>>

...

}

Listing 9.6. Radio test oracle.

Resulting Test Scripts

Listing 9.7 shows the resulting test script for the task sequence which is shown
in Figure 9.13. This script can be executed from a computer that is connected
to a test bench by the CAN and MOST bus.

class TaskSelection000(MMITestBase):

def __init__(self, methodName='runTest'):

MMITestBase.__init__(self, methodName, 'TaskSelection000')

def runTest(self):

# Navigate to DialNumber

ZBEL6.Right(1)

ZBEL6.Right(1)

ZBEL6.Press(1)

# Dial Number via Speller

MobilePhone.DialNumber("0179xxxxxxx")

# Start call

ZBEL6.Press(1)

# Wait until dialing is finished

time.sleep(10)

# Callee Accept

MobilePhoneControl.Answer()

# Speak for 5s

time.sleep(5)

# trigger CC message

CAN.CCM(1, 1)

# wait for warning signal

AUDIO.waitForGong(2)

except TimeOut:

log(ERROR, "Low Tire Pressure warning signal timeout")

# wait for popup

MMI.waitForText("Low Tire Pressure", 2)

except TimeOut:

log(ERROR, "Low Tire Pressure popup timeout")

ZBE.Press()

# Callee ends call

MobilePhoneControl.HangUp()

Listing 9.7. Executable test script.
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9.5 Summary

We have seen in this chapter that task-based test case generation can be
applied in practice. Furthermore, we have seen that AspectT is a powerful
means for test case instantiation because it enables the combination of task
sequence re�nement and test script generation.

The state-machine-based re�nement of a task model has an additional bene�t:
the generation of input sequences veri�es whether the state machine behavior
conforms to the task model. In our case study we found multiple errors in our
dialog model where for a task sequence no corresponding test input sequence
could be generated.

Test case generation is only one important part of model-based testing. The
other important part is de�ning and implementing meaningful test oracles.
At the time this thesis was created, the infotainment system was at the end-
stage of its development and hence already well tested. Due to the lack of
detailed test oracles, it was not possible to evaluate the generated test cases
using the real system. Nevertheless, we consider the generation of inputs for
test cases that cover feature interaction scenarios a �rst big step in the test
case generation for infotainment systems. In the next chapter, we present an
evaluation of our test selection criteria in order to show that the generated
test cases cover critical scenarios.
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Test Selection Criteria Evaluation

This chapter presents the last case study of task-based test case generation.
The goal of this chapter is to show that test case generation from task mod-
els covers critical situations. We present the results of our evaluation of the
introduced test selection criteria. The criteria are evaluated in the form of
an empirical analysis of the faults that occurred during the development of a
BMW infotainment system. The objective of this section is to show that the
faults, which occurred in practice, would be detected with our task-based test
case generation approach.

10.1 Goals

The goal of this case study is to evaluate our approach with respect to the
faults that occurred during the development of a infotainment system at the
BMW Group. More precisely, we want to answer two questions with this case
study:

1. How many faults could be found with task-based test case generation?

2. How many faults could be found for each test selection criterion?

The �rst question aims at evaluating the concept of task-based feature model-
ing with respect to test case generation in general. The goal is to see if critical
scenarios can be expressed by task models. The second question focuses on
the proposed test selection criteria in Chapter 5. The goal is to see to which
degree the proposed selection criteria cover critical situations.

10.2 Setup

The study is performed on the same data as the analysis in Chapter 3.2. The
data is a collection of all faults that occurred during the development of a
infotainment system a the BMW Group. The faults were taken from the bug-
tracking system that was used during development. A fault is stored in the
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Fig. 10.1. Decision process.

bug-tracking system together with a description of its cause and its �x. These
descriptions where analyzed in order to classify faults based on their cause. In
this analysis we focus on the faults that were classi�ed in the previous analysis
(see Chapter 3.2) as caused by feature interactions.

In the �rst part of our study we classify faults into the two categories covered
by task model and not covered by task model. The study is performed under the
assumption that there exists a task model that describes all relevant features
of the AIS. The �rst category contains all faults that occurred in a scenario
that is described by a task model. The second category contains the faults
that are not described by a task model. Furthermore, we assume that there
are appropriate test oracles to observe the system's behavior. However, only
faults were classi�ed as detectable if the existence of a test oracle is reasonable.
For example, we consider the assumption that there will be a test oracle that
detects graphical errors during an animation as not reasonable. Figure 10.1
shows the decision process.

In the second part of our analysis, the faults are divided into di�erent cat-
egories based on whether one of the introduced test selection criteria would
generate a task sequence that covers the fault scenario. Hence, each test se-
lection criterion represents a fault category and one category represents faults
that would not not been covered by a test selection criterion.

10.3 Results and Discussion

Figure 10.2 shows the result of the �rst part of our analysis. The goal was
to �nd out how many fault scenarios are detectable by task-based test case
generation. The result shows that 88% of all feature interaction faults could
have been detected by task-based test case generation and 12% could have
been not.

An example of a fault that could not be found by task-based test case gener-
ation is the following: when the ignition is �rst set to on, then to o� and then
set back on before the bus transitions into the sleep mode, the audio functions
were inactive even though they should be active. This fault could not be cov-
ered because it was caused by internal system behavior (the sleep mode of the
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bus) which would not be modeled by a task model. Another example of a fault
which resulted from a feature interaction was the animation that did not run
smoothly enough during the switch from the interactive map to the digital
versatile disc (DVD) menu. This fault-scenario would have been modeled in
a task model, however, the fault could not be found by an automated test
oracle.

Nevertheless, our result clearly indicates that task models are an appropriate
means for test case generation. Our previous analyses in chapter 3.2 showed
that 40,9% of all severe faults result from feature interactions. In combination
with our results from this case study we can conclude that task-based test
case generation could cover 30% of all severe faults. This study reveals that
task-based test case generation holds huge potential.

The second goal was to analyze, the number of faults found for each test se-
lection criterion. The diagram in Figure 10.3 shows the results of the analysis.
The diagram shows that Suspend Coverage, Interleaving Coverage, and Task
Coverage �nd the most faults. 28% of the faults could not be found by the
proposed test selection criteria and only 4% could be found by the Enabling
Coverage Criterion.

The fact that the task criterion �nds such a large fraction of faults is inter-
esting, because it is a rather �trivial� test selection criterion. This results from
the fact that a task sequence describes for each active task all modes of the
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other tasks. Many faults occurred in situations where a feature should have
disabled another feature, but did not. An example of such a fault found by
task coverage was that the GUI showed the CD selection dialog every time the
voice guidance was active. This shows that unintentional feature interferences
can be found by the task coverage criterion as well.

Another interesting result was the large number of faults found by the sus-
pend coverage criterion. This was the case because there were many di�erent
interruption scenarios. Switching the ignition on and o� while performing an-
other task is especially error prone. An example of a fault resulting from an
interruption between tasks was when the driver started the car while dialing
a number. In some countries it is disallowed to dial a number while driv-
ing, therefore the system should have suspended the dialing until the car had
stopped. The fault was that the driver could wrongfully dial a number while
driving. This occurred when the driver started the car in the midst of dialing
the number.

However, 28% of the faults could not be found by the proposed test selection
criteria. These faults where classi�ed as speci�c scenarios. These were scenar-
ios in which a speci�c task sequence led to a fault which was not covered by
one of the proposed test selection criteria. On the one hand, this indicates
that there might be a potential for new test selection criteria that cover parts
of these faults and on the other hand this advocates the application of random
based test case generation.

Nevertheless, the study shows that more than two-thirds of all faults could be
found by the proposed test selection criteria. 50% of the faults are covered by
the straightforward test selection criteria Suspend Coverage, Enable Cover-
age, and Task Coverage. This is promising, because these three test selection
criteria create relatively small test suites in comparison to the Interleaving
Coverage criterion.

However, caveats need to be mentioned that can a�ect the validity of the
result:

� The assumption that appropriate test oracles will be available might not
be reasonable. Automated test case execution is gaining importance and
hence future systems are designed to support automated testing by pro-
viding corresponding test interfaces. However, detecting graphical errors
automatically is often not possible, especially in the context of animations.
Hence, we classi�ed graphical errors conservatively as non detectable.

� The sequences that lead to a fault are more complex than indicated by the
bug descriptions. In order to avoid this situation we additionally included
the descriptions of the corresponding bug �x in our evaluation. However,
when we were not sure whether a task sequence was covered by a test
selection criterion we classi�ed the fault rather as not covered by a test
selection criterion.

In this study, we focused only on faults that resulted from feature interactions.
In addition, task-based test case generation could also be used to generate
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feature-speci�c test cases. We expect then the number of detected faults to
be even higher.

10.4 Summary

The study shows that 88% of all error scenarios that resulted from feature in-
teractions could be described by a task model. Furthermore, the study showed
that the proposed test selection criteria cover a large fraction of faults. To-
gether with the previous two case studies, this shows that task-based test case
generation can be applied in practice and is able to systematically test feature
interactions.
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Summary and Conclusions

Infotainment systems are examples of multi-functional systems that integrate
a large number of features. Over the last vehicle generations the number of
features increased continuously. For example, an actual infotainment system
in a BMW vehicle integrates up to 1000 di�erent features. The number of
features is expected to increase even more in future vehicle generations.

These features are realized in multiple electronic control units that are con-
nected by communication busses. They share common resources, such as the
user interface or communication channels. The shared usage of resources re-
sults in intentional and unintentional interactions between these features. In
practice these interactions are often error prone. A study showed that 40%
of all faults that occurred during the development of an infotainment system
at the BMW Group resulted from erroneous feature interactions. In order
to cope with feature interactions and to detect erroneous interactions early,
the interactions between features must be tested thoroughly. However, up to
now there are no approaches that enable a systematic and automated test of
feature interactions.

In this thesis we targeted this situation and presented an approach for test
case generation that enables the systematic coverage of feature interaction
scenarios in order to cope with the complexity of future infotainment systems.

11.1 Summary

Model-based test case generation involves multiple steps. First of all, an ap-
propriate test model is required that describes critical system properties and
that omits unnecessary detail. We introduce task models as means to model
features and their interactions. Task models provide a simple graphical no-
tation for the explicit modeling of feature interactions. Such a task model
describes the space of all possible feature interaction scenarios.

The second step in model-based test case generation is to generate appro-
priate test cases. We propose multiple test selection criteria that derive task
sequences from a task model. These criteria select task sequences that sys-
tematically cover intentional and unintentional feature interaction scenarios.
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Task models describe the interaction between environment and system on a
high abstraction level. This reduces the state space of large systems to a fea-
sible size. Furthermore, they focus on critical feature interaction scenarios by
omitting unnecessary details. However, the generated task sequences lack two
elementary parts of a test case: they describe no input and no output behav-
ior. Hence, the third step of model-based test case generation, the test case
instantiation, is one of the most important steps. Test cases are instantiated
into executable test scripts in order to execute them automatically. This en-
ables a continuous testing process during development. Furthermore, this is
an important prerequisite in order to cope with a potentially large number of
generated test cases.

As a solution to this problem, we propose two approaches for test case instan-
tiation: task sequence re�nement and aspect-oriented test script generation.
The �rst approach is speci�c to task models. Our approach of task sequence
re�nement transforms task sequences into test cases by enriching them with
additional input and output behavior. The missing information is derived from
behavior models on a lower abstraction level.

The second approach can be applied to generate test scripts from abstract
test cases that are de�ned in arbitrary modeling languages. The problem is
that test script generation varies depending on di�erent testing concerns, such
as test goal, test setup and test phase. Thus, for each testing concern a new
transformation must be de�ned. We propose aspect-orientation as means to
modularize these testing concerns. The modularization of testing concerns
reduces test case instantiation e�ort by enabling their reuse in di�erent testing
contexts.

To conclude, in this thesis we propose an integrated approach for test case
generation that involves all steps to systematically test feature interactions.
We showed the feasibility and suitability of our approach by multiple case
studies in the automotive domain. Furthermore, we created an integrated
tooling environment that seamlessly combines all approaches to enable their
application in practice.

11.2 Conclusion

The process of task-based test case generation has been created as a part
of the preparation for future generations of infotainment systems. All case
studies were taken from the automotive domain in order to demonstrate the
feasibility for real world applications. However, task-based test case generation
is not restricted to the automotive domain. The approach can be applied to
any multi-functional system that is characterized by a strong interaction with
its environment.

We consider the explicit modeling of feature interaction to be an important
step to handle the complexity of future infotainment systems. The �rst ad-
vantage is that solely by the process of modeling feature interactions, prior
unspeci�ed feature interactions are likely to be identi�ed. Furthermore, using
task models enables an early speci�cation of features and their interactions.
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Model-based test case generation is inevitably linked with test case instantia-
tion. Considerable e�ort is required to set up an environment for automated
test case execution. This is especially true for embedded systems. However,
one of the most important aspects is to design the system for testability in
order to support automated testing by providing appropriate test interfaces.
We introduced AspectT in the context of task-based test case generation and
it has proven as an appropriate language for test case instantiation in our case
study. One of the key features of AspectT is its �exibility to support di�erent
modeling languages. Hence, it is applicable in any context where abstract test
cases must be translated into test scripts.

In this thesis we created an approach for test case generation from task models.
The approach involved all necessary steps from modeling the system, selecting
test cases, and generating executable test scripts. However, there are still open
problems that require further research.

11.3 Future Work

We were able to model large portions of an actual infotainment system using
TTask. However, we also identi�ed certain scenarios that could not be modeled
in TTask, for example, when the same task can be performed multiple times
in parallel. One task for the future work is to identify these situations and to
extend TTask accordingly.

We presented a case study that generated executable test cases for testing an
existing system. However, due to missing test oracles, the actual test of the
system was not possible. A goal for future work is to perform a case study,
in which a real system is tested using our approach in order to determine the
real fraction of feature interaction faults that can be detected. Furthermore,
it would be interesting to apply our approach in another domain in order to
show that it is not speci�c to the automotive domain.

In this thesis we focused on designing and realizing our approach of task-based
test case generation. However, �nding the best way of integrating task-based
test case generation into the current development process at BMW is still an
open issue.
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Appendix

A.1 TTask to Promela transformation

A.1.1 TTask EMF Metamodel

The TTask metamodel is de�ned using Ecore which is part of the Eclipse
Modeling Framework (EMF)1. Figure A.1 shows a class diagram of the TTask
metamodel. EMF is used in combination with the Graphical Modeling Frame-
work (GMF)2 to implement the graphical editor of the TTask modeling en-
vironment. Furthermore, the TTask to Promela transformer is implemented
based on the Ecore metamodel.

A.1.2 Promela Code Generator

The TTask to Promela transformation is performed by generating Promela
code from a given TTask model. The code generator is implemented using
XPAND which is part of the Openarchitectureware framework3. Listing A.1
shows the implementation of the code generator.

�IMPORT task�

�EXTENSION extend::TaskPromela�

�DEFINE main FOR Collection[Task]�

�FILE "pan_in.prm"�

�EXPAND init FOR this�

�EXPAND user FOR this�

�ENDFILE�

�ENDDEFINE�

�DEFINE init FOR Collection[Task]�

mtype = {

1 http://www.eclipse.org/emf/
2 http://www.eclipse.org/gmf/
3 http://openarchitectureware.org/
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Fig. A.1. TTask EMF Metamodel.

�FOREACH getTaskStateTypes() AS d SEPARATOR ","��d.toString()

��ENDFOREACH�

�FOREACH getTaskSignalTypes() AS d SEPARATOR ","��d.toString()

��ENDFOREACH�

};

�FOREACH this AS task�

chan in�task.getName()� = [0] of {mtype};

�ENDFOREACH-�

chan inEnvironment = [0] of {bool};

�FOREACH this.select(e|e.hasMultipleSuspendDependencies()) AS task-�

int �task.getName()�Suspend = 0;

�ENDFOREACH-�

�FOREACH this AS task-�

�IF task.isInitiallyEnabled()-�

mtype �task.getName()�State = �InitialStateType::Enabled�;

�ELSE-�
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mtype �task.getName()�State = �InitialStateType::Disabled�;

�ENDIF-�

�ENDFOREACH-�

�EXPAND task FOREACH this�

�ENDDEFINE�

�DEFINE user FOR Collection[Task]�

active proctype Environment()

{

do

�FOREACH this.select(i | i.isLeaf()) AS task-�

:: �task.getName()�State == �TaskStateType::Enabled� ->

�EXPAND send(TaskSignalType::EvStart, "Environment") FOR

task�

timeout;

/*inEnvironment?ready; */

�EXPAND send(TaskSignalType::EvStop, "Environment") FOR

task�

/*inEnvironment?ready; */

timeout;

�ENDFOREACH-�

:: else -> skip;

od;

}

�ENDDEFINE�

�DEFINE task FOR Task�

proctype �getName()�()

{

atomic{

mtype new;

in�getName()�?new ->

if

�IF isLeaf()�

:: new == �TaskSignalType::EvStart� && �getName()�State ==

�TaskStateType::Enabled� ->

�EXPAND start FOR this-�

:: new == �TaskSignalType::EvStop� && �getName()�State ==

�TaskStateType::Active� ->

�EXPAND stop FOR this-�

�ELSE�

:: new == �TaskSignalType::EvStart� && �getName()�State !=

�TaskStateType::Active� ->

�EXPAND start FOR this-�

:: new == �TaskSignalType::EvStop� �FOREACH children AS c� && �c.

getName()�State != �TaskStateType::Enabled� && �c.getName()

�State != �TaskStateType::Active� �ENDFOREACH�->

�EXPAND stop FOR this-�
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�ENDIF�

:: new == �TaskSignalType::EvDisable� ->

�EXPAND disable FOR this-�

:: new == �TaskSignalType::EvEnable� ->

�EXPAND enable FOR this-�

:: new == �TaskSignalType::EvResume� ->

�EXPAND resume FOR this-�

:: new == �TaskSignalType::EvSuspend� ->

�EXPAND suspend FOR this-�

:: else -> skip;

fi;

}

}

�ENDDEFINE�

�DEFINE start FOR Task�

�IF parent != null-�

if

:: �parent.getName()�State != �TaskStateType::Active� ->

�EXPAND send(TaskSignalType::EvStart, getName()) FOR parent�

:: else -> skip;

fi;

�ENDIF-�

�REM��this.getName()�Coverage = �TaskStateType::Active�;�ENDREM�

�EXPAND changeState(TaskStateType::Active, TaskStateType::Active) FOR

this�

�EXPAND send(TaskSignalType::EvDisable, getName()) FOREACH

getDisabledTasks()�

�EXPAND send(TaskSignalType::EvSuspend, getName()) FOREACH

getSuspendedTasks()�

�ENDDEFINE�

�DEFINE stop FOR Task�

�EXPAND changeState(TaskStateType::Disabled, TaskStateType::Stopped)

FOR this�

�FOREACH getEnabledTasks() AS enabledTask�

�EXPAND send(TaskSignalType::EvEnable, getName()) FOR enabledTask�

�ENDFOREACH�

�EXPAND send(TaskSignalType::EvResume, getName()) FOREACH

getSuspendedTasks()�

�IF parent != null-�

�EXPAND send(TaskSignalType::EvStop, getName()) FOR parent�

�ENDIF-�

�ENDDEFINE�

�DEFINE enable FOR Task�

if

:: �getName()�State == �TaskStateType::Disabled� ->
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�EXPAND changeState(TaskStateType::Enabled, TaskStateType::

Enabled) FOR this�

:: �getName()�State == �TaskStateType::DisabledSuspended� ->

�EXPAND changeState(TaskStateType::SuspendedEnabled,

TaskStateType::SuspendedEnabled) FOR this�

:: else -> skip;

fi;

�EXPAND send(TaskSignalType::EvEnable, getName()) FOREACH

getInitialChildTasks()�

�ENDDEFINE�

�DEFINE disable FOR Task�

�EXPAND send(TaskSignalType::EvDisable, getName()) FOREACH children�

if

:: �getName()�State == �TaskStateType::Enabled� ->

�EXPAND changeState(TaskStateType::Disabled, TaskStateType::

Disabled) FOR this�

:: �getName()�State == �TaskStateType::Suspended� ->

�EXPAND changeState(TaskStateType::DisabledSuspended,

TaskStateType::DisabledSuspended) FOR this�

�EXPAND send(TaskSignalType::EvResume, getName()) FOREACH

getSuspendedTasks()�

:: �getName()�State == �TaskStateType::SuspendedEnabled� ->

�EXPAND changeState(TaskStateType::DisabledSuspended,

TaskStateType::DisabledSuspended) FOR this�

:: else -> skip;

fi;

�ENDDEFINE�

�DEFINE suspend FOR Task�

if

:: �getName()�State == �TaskStateType::Enabled� ->

�EXPAND changeState(TaskStateType::SuspendedEnabled,

TaskStateType::SuspendedEnabled) FOR this�

:: �getName()�State == �TaskStateType::Active� ->

�EXPAND changeState(TaskStateType::Suspended, TaskStateType::

Suspended) FOR this�

:: �getName()�State == �TaskStateType::Disabled� ->

�EXPAND changeState(TaskStateType::DisabledSuspended,

TaskStateType::DisabledSuspended) FOR this�

�IF hasMultipleSuspendDependencies()�

:: �getName()�State == �TaskStateType::SuspendedEnabled�

|| �getName()�State == �TaskStateType::Suspended�

|| �getName()�State == �TaskStateType::DisabledSuspended�

�getName()�Suspend = �getName()�Suspend + 1;

�ENDIF�

:: else -> skip;

fi;

�EXPAND send(TaskSignalType::EvSuspend, getName()) FOREACH children�

�ENDDEFINE�

�DEFINE resume FOR Task�

�IF hasMultipleSuspendDependencies()-�

printf("Status: �getName()�Suspend: %d \n", �getName()�Suspend);

if
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:: �getName()�Suspend == 0 ->

�ENDIF-�

if

:: �getName()�State == �TaskStateType::Suspended� ->

�EXPAND changeState(TaskStateType::Active, TaskStateType::

Resumed) FOR this�

:: �getName()�State == �TaskStateType::SuspendedEnabled� ->

�EXPAND changeState(TaskStateType::Enabled, TaskStateType::

Enabled) FOR this�

:: �getName()�State == �TaskStateType::DisabledSuspended� ->

�EXPAND changeState(TaskStateType::Disabled, TaskStateType::

Disabled) FOR this�

:: else -> skip;

fi;

�IF hasMultipleSuspendDependencies()-�

:: else -> �getName()�Suspend = �getName()�Suspend - 1;

fi;

�ENDIF-�

�EXPAND send(TaskSignalType::EvResume, getName()) FOREACH children�

�ENDDEFINE�

�DEFINE send(TaskSignalType signal, String source) FOR Task�

printf("SEND: �source�-�signal�-�this.getName()�\n");

run �this.getName()�();

in�this.getName()�!�signal�;

�ENDDEFINE�

�DEFINE changeState(TaskStateType state, TaskStateType print) FOR Task�

printf("MSC: �getName()�=�print�\n");

�getName()�State = �state�;

�ENDDEFINE�

�DEFINE activeCoverageNeverClaim FOR Collection[Task]�

�FOREACH this AS task-�

mtype �task.getName()�Coverage = �InitialStateType::Disabled�;

�ENDFOREACH-�

never {

do

::

�FOREACH this AS task SEPARATOR "&&"�

�task.getName()�Coverage = Active

�ENDFOREACH�-> break

:: else

od

}

�ENDDEFINE�

Listing A.1. Promela code generator.
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