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ABSTRACT
Chip multi processors (CMP) are currently taking over the
desktop processor market, supplying more computational
power than former single core processors could ever achieve.
However, a big increase in computational performance au-
tomatically widens the processor-memory gap, having the
potential to slow down the whole system. Additionally,
in multicore systems, the requirements of the memory hi-
erarchy system get multiplied with the number of cores:
While, on a system supporting only one thread at the same
time, cache contention particularly introduces cache con-
flicts when switching from one thread to another at the end
of a timeslice, in a multicore scenario, the caches are perma-
nently accessed by several cores. This results in an increase
of inter-thread conflict misses. Therefore, several techniques
have been proposed to overcome inter-thread cache conflict
misses and keep memory hierarchy accesstime low. One way
to minimize cache interference in CMP systems is to allo-
cate applications to cores in an optimal way, using either
run time performance counter information or other predic-
tion methods. In order to verify and refine such methods,
a multicore CPU simulator reproducing parallel instruction
execution has to be employed. In this paper, we present
MCCCSim, an easy to use and highly configurable multi-
core cache contention simulator.

1. INTRODUCTION
Chip multiprocessors (CMPs) are supplying more computa-
tional power than single core processors could ever achieve.
However, in multicore systems, also the processor-memory
performance gap increases faster than ever before. Perfor-
mance of multithreaded systems is particularly limited by
the cache hierarchy and bus contention introduced by addi-
tional memory requests [2], [12]. Co-scheduled threads of-
ten compete with each other for the limited resources they
share, the most important of which is cache memory. For
SMT systems, Kihm and Connors observed that on average
more than 30% of all data misses and 25% of all instruction

misses on a randomly selected SPEC 2000 job mix are evoked
by inter-thread conflict misses [3]. On CMP systems with
many cores, things will be worse. Although cache interfer-
ence is caused by the limited number of cache sets available
in todays and tomorrows processors, increasing the number
of sets is not considered to be an acceptable solution: Inter-
thread conflict misses might be limited by an adapted cache
architecture, but increasing the number of cache sets implies
higher hardware cost and – due to additional lane and gate
capacitance – also an increase in cache access time. There-
fore, minimizing the amount of inter-thread conflicts and its
impacts proves to be an effective and necessary technique
[3], for which several methods have been proposed recently:

Dynamic cache partitioning exploits the fact that some pro-
cesses suffer more from misses than others. G. Suh et al.
proposed to use counters for each process to monitor L2
cache behavior at runtime. The counter values are used
by the operating system scheduler to dynamically partition
the cache amongst the executing processes, assigning more
cache ways to applications that will benefit most by having
additional ways. [13]

H. Dybdahl et al. proposed a cache-partitioning aware re-
placement policy based on an extra ‘shadow tag’ register
and two counters for every processor cache line to partition
the cache with cache line granularity [1], [9].

Liu et al. proposed to split the L2 cache into multiple small
units that can be assigned to processor cores at runtime [4],
[14].

Our research focuses on minimizing cache interference in
CMP systems by merging those threads on the same mem-
ory hierarchy entity, that minimize cache contention. We
developed a predictor that is based on the number of differ-
ent cache sets, an application accesses during the execution
of a number of instructions. To verify and refine our predic-
tors, we developed MCCCSim, a highly configurable multi
core cache simulator. MCCCSim consists of a framework
that can be used to simulate custom CPUs with an arbi-
trary number of cores and a customized memory hierarchy,
three examples of which are shown in figure 1.

The main difference of our simulator to most others lies in
the easiness a broad range of CPU architectures can be sim-
ulated by simply supplying applicable command line argu-



ments, while the parametrization of other simulators is gen-
erally limited to more “static” parameters such as cache size,
associativity, replacement policy, etc.

The SESC (SuperESCalar Simulator) [10] is an event driven
simulator related to the MIPS processor architecture. Al-
though this simulator is much more powerful than MCCC-
Sim, providing a full out-of-order pipeline with branch pre-
diction, buses, etc., these additional features do not pro-
vide any additional information since our traces are based
on SPEC2006 benchmarks that were running on a real ma-
chine and the inaccuracy of memory traces introduced by
the Pin toolchain may be neglected. Since in the SESC sim-
ulator, for performance reasons, many configuration options
are chosen at compile-time rather than run-time, it would
be necessary to compile multiple versions of SESC to sim-
ulate different architectures [10]. This does not represent a
feasible choice for automated simulation of many different
architectures.

Monchiero et al. [7] “use thread-level parallelsism in the
software system and translate it into core-level parallelsism
in the simulated world” [7]. Their work is based on the
approach proposed by [6]: A full-system functional simulator
dynamically generates an event trace that is fed into a timing
simulator afterwards.

Tao et al. [14] developed CASTOR, a cache simulator for
a comprehensive study of the multicore cache hierarchy and
used Valgrind [8] to provide memory references. As with
others, the parametrization of their simulator focuses on
cache size, cache associativity, cache level and write policies
[14]. For Valgrind, Callgrind/Cachegrind have been devel-
oped to record several cache performance metrics.

The remaining of this paper is organized as follows: Chapter
2 describes the simulator. Chapter 3 shows some simulation
results that have been gathered with the simulator. Chapter
4 outlines performance constraints and chapter 5 concludes
the paper.

2. MCCSIM
When designing the MCCSim tool, we decided to build a
trace-driven simulator to be able to reproduce comprehensi-
ble results and make them comparable to one another, since
memory address traces, once recoreded, do not change over
time, as it might be the case in execution driven simulation.
The traces are supplied by a pintool that comes along with
the simulator and is a plugin for the Pin binary instrumen-
tation tool [5] [11]. For every 1024 instructions, the supplied
pintool generates an address chunk, i.e. a section in a bi-
nary file that holds the memory addresses that have been
referenced. Chunks of several applications are fed into the
MCCCSim simulator to obtain memory hierarchy related in-
formation such as memory system access time and hit rates
of the caches in a multicore scenario.

2.1 Configuring the Simulator
Our Simulator is a command line utility written in C++ that
evaluates its argument string to generate an arbitrary CPU
architecture with respect to the number of cores, the number
and configuration of caches and the cache-interconnection.
For example, the invokation of our simulator in order to

analyze co-scheduling behavior of an architecture as shown
in figure 1 a) with SPEC 2006 benchmarks milc and gcc
running timesliced on core 0 and bzip2 running on core 1
would look as follows:

MCCCSim -l1 18-6-8_2_1.0 -l2 16-8-8_32_3.0 -m 100.0

-c0 l1-0_l2-0_m milc.trace gcc.trace

-c1 l1-1_l2-0_m bzip2.trace

This call has the following effect:

-l1 18-6-8_2_1.0

defines a cache object named “l1” with the number of bits
to code (key, setnumber, byteoffset) = (18, 6, 8), an asso-
ciativity of 2 and a hittime of 1.0 ns, which would result in
a 32 kByte cache with a waysize of 16 kByte.

The most important difference to other simulators is that
this cache object does not present the initialzation of “the
L1 cache”, but the initialization of an arbitrary cache object.
If it gets an l1, an l2, an l3, ... object just depends on where
it will be bound in the memory hierarchy.

-c0 l1-0_l2-0_m milc.trace gcc.trace

then creates a core named “c0” and adds a cache with the
now defined configuration of l1 as first memory hierarchy
element to that core. The postfix -0 in l1-0 enables the
differentiation of several caches of the same type. Therefore,
the l1 cache that gets connected to core 0 is not the same
cache as the l1 cache that gets connected to core 1. However,
since l1-0 and l1-1 both link to cache l2-0, this cache is
shared by both l1-0 and l1-1, as it is shown in figure 1 a).

Being able to build up completely different CPU architec-
tures by simply supplying the corresponding command line
arguments makes it easy to analyze a specific behavior over
a broad range of architectures. Combined with an auto-
mated evaluation of the simulation results as we exemplarly
developed for cache contention, MCCCSim turns out to be
a powerful yet easy to use simulation tool.

2.2 Building up the Simulation Framework
As mentioned before, the simulator has to be called with an
argument string that describes the cores, the CPU memory
hierarchy, and the applications to run on each core. The
argument string is processed by the simulator’s front end,
which generates and configures the CPU. As an example,
we discuss the internal configuration setup for the argument
string discussed in section 2.1, referencing the architecture
depicted in figure 1 a).

First of all, the CPU and its cores get allocated:

CPU *cpu;

Core *core0 = new Core("c0");

Core *core1 = new Core("c1");

Then, the elements of the memory hierarchy are created:

Cache *l1_0 = new Cache("l1-0", 18-6-8_2_1.0);

Cache *l1_1 = new Cache("l1-1", 18-6-8_2_1.0);

Cache *l2 = new Cache("l2", "16-8-8_32_3.0");

Memory *m = new Memory(100.0);
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Figure 1: Examples of CPU-Architectures that can be simulated with MCCCSim. MCCCSim does not have
any limitations regarding number of cores, hierarchies, size, etc.

To build up the hierarchy, the memory hierarchy elements
have to be linked together. To achieve the behavior depicted
in figure 1 a), core0 has to be bound to the L1 cache l1_0

and core1 to l1_1. Since both L1 caches share the same L2
cache, both have to be bound to l2. To connect l2 to the
main memory, it has to be linked accordingly:

core0->mem = l1_0;

l1_0->mem = l2;

core1->mem = l1_1;

l1_1->mem = l2;

l2->mem = m;

To allocate an application to a specified core, the front-end
calls the addTracefile-function for that core:

core0->addTracefile("milc.trace");

core0->addTracefile("gcc.trace");

core1->addTracefile("lbm.trace");

After adding the cores to the CPU, the frontend starts the
simulation by calling run:

cpu->addCore(core0);

cpu->addCore(core1);

cpu->run();

Other architectures as the ones shown in figure 1 can be
build up accordingly by allocating appropriate cores and
memory hierarchy elements. The binding of the elements
determines the behavior of the memory hierarchy.

A memory hierarchy representing the Intel smart cache sys-
tem can be seen in figure 1 b). Applications on core0 and
core1 cannot access memory in the l2-1 cache, since there
is no link to l2-1. In the architecture shown in figure 1 c)
however, every application can displace frames of other ap-
plications in the l2 cache.

Dynamically generating the CPU configuration based on a
parameter string enables the integration of the C++ simu-
lator in script languages such as ruby or python, making it
easy to provide automated simulation on a broad range of
different configurations.

The integrated automated Analyser sorts the results for sig-
nificance and, for convenience, automatically summarizes
them in latex-tables as depicted in table 1.

2.3 Running the Simulator and Scheduling
Applications

Applications that reside on different cores, are simulated to
execute in parallel. Since the tracefiles supplied to the simu-
lator do not contain any instructions, but only memory ad-
dresses that are separated by a separation mark representing
1024 instructions (one chunk), a synchronization mechanism
has been provided. This way, applications with lesser mem-
ory references per chunk access the memory hierarchy less
frequently than applications with a higher memory usage,
which can be seen in figure 2. The execution of addresses
in one chunk is linearly interpolated in time, synchronizing
with the applications on the other cores to simulate paral-
lelism. Figure 4 shows the corresponding algorithm used to
determine the next core to be granted memory access ac-
cording to our synchronization scheme.

If more than one application has been added to a core, then
the applications are scheduled with an adjustable time slice
value, as can be seen from figure 3.

3. RESULTS
In this section, we present some results gathered by our sim-
ulator. Figure 5 depicts the L2 miss rate degradation due to
conflict misses with applications sharing the same L2 cache
in the architecture depicted in figure 1 a). One can easily
see that co-scheduling milc with astar or gcc achieves much
lower cache contention than co-scheduling milc with gobmk
or lbm.

Table 1 shows the effect of co-scheduling applications on
the l2 cache memory for some more SPEC2006 benchmarks,
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sorted by significance regarding the value in the column padd.
This value represents the additional penalty due to L2 cache
contention and is measured by summing up the differences
of the standalone hitrate (0 ≤ h ≤ 1) and the co-scheduled
hitrate (0 ≤ h ≤ 1) of each chunkset (1 chunkset = 1024
chunks = 220 instructions). The first column shows the ap-
plication affected by the performance degradation, the sec-
ond and third column the core on which this and the co-
scheduled application resides on.

Row one of the table shows, that co-scheduling the SPEC2006
benchmarks milc and lbm results in the highest cache con-
tention among all other combinations. The introduced ac-
cess time penalty for this combination is depicted in figure 6.

4. PERFORMANCE
Figure 7 shows the performance of our simulator executed on
a 2.4 GHz Intel Core 2 Duo MacBook Pro with 4 GB of 1067
MHz DDR3 RAM, running the OSX 10.5.6 Leopard operat-
ing system. The Performance is depicted with subject to the
number of cores simulated in a scenario, where each core has
its own L1 cache and every L1 cache accesses the same L2
cache. Averaged on the depicted SPEC 2006 benchmarks, a
per core performance of about 121 + 4.8× cores ms to pro-
cess an address chunk (220 instructions) can be observed.
Figure 8 shows, that for a senario with a separate L2 cache



application app on core 1 app on core 0 padd

milc lbm milc 126.77
hmmer hmmer lbm 94.39

mcf lbm mcf 85.02
milc gobmk milc 63.86
mcf gobmk mcf 55.35
mcf mcf milc 47.79
mcf bzip2 mcf 37.29

astar astar lbm 36.54
milc bzip2 milc 35.81
gcc gcc lbm 34.83

astar astar milc 32.03
milc gcc milc 30.12
milc astar milc 28.47
bzip2 bzip2 lbm 27.53
mcf gcc mcf 23.77

astar astar gobmk 21.26
hmmer gobmk hmmer 18.25
h264ref h264ref lbm 16.71

mcf astar mcf 16.44
povray lbm povray 15.56
astar astar bzip2 15.07
astar astar gcc 14.07
gcc gcc milc 13.99
gcc bzip2 gcc 13.49
gcc gcc gobmk 11.30

bzip2 bzip2 gobmk 10.76
... ... ... ...

mcf h264ref mcf 3.25
povray milc povray 3.24
bzip2 astar bzip2 3.08
astar astar h264ref 2.87

hmmer bzip2 hmmer 2.55
bzip2 bzip2 povray 2.13
astar astar hmmer 1.88

gobmk gobmk lbm 1.66
bzip2 bzip2 mcf 1.52
astar astar povray 1.44

... ... ... ...
hmmer hmmer mcf 0.19
gobmk gobmk mcf 0.17

gcc gcc hmmer 0.15
hmmer h264ref hmmer 0.14
hmmer hmmer povray 0.14
h264ref h264ref hmmer 0.13
astar astar libquantum 0.06

gobmk gobmk hmmer 0.06
povray hmmer povray 0.06
gobmk gobmk h264ref 0.05
bzip2 bzip2 libquantum 0.02

h264ref h264ref libquantum 0.01
lbm astar lbm 0.00

libquantum astar libquantum 0.00
lbm bzip2 lbm 0.00
lbm gcc lbm 0.0
gcc gcc libquantum 0.00
... ... ... ...

Table 1: Additional L2 penalty due to conflict
misses.
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for every 4 cores, about the same average performance per
core is achieved. This means that the performance is nearly
independent of the memory hierarchy design: Supposed a
L1 hitrate of about 97 %, only three out of one hundred
memory accesses cause an L2 tag RAM search and L3 tags
are searched about 100 times more rarely. Therefore, simu-
lation time is about 121 + 4.8× cores ms per address chunk
and core, i.e. about 114 + 4.8× cores ns per instruction.

5. CONCLUSIONS
In this paper we presented MCCCSim, a simple and easy
to use simulator to analyse cache contention. In contrast to
other tools, the cpu architecture MCCCSim simulates is de-
fined by the argument string supplied to the binary. There
is no need to recompile the source or manipulate ini-files to
change the simulated CPU architecture, making it easy to
simulate over a broad range of different architectures. Sim-
ulation time scales linearly with the number of addresses to
simulate, nearly independent of the number of cores intro-
duced in the system.
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The simulator is free software, licensed under GPL and can
be downloaded from http://www.ldv.ei.tum.de/
research/areas/downloads/MCCCSim.zip.
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