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Prüfer der Dissertation: 1. Univ.-Prof. Dr. P. Rentrop

2. Hon.-Prof. Dr. Dr.h.c. A. Gilg

3. Prof. Dr. A.C. McIntosh, University of Leeds / UK

Die Dissertation wurde am 15.7.2009 bei der Technischen Universität München eingereicht und durch

die Fakultät für Mathematik am 20.10.2009 angenommen.



2



I hereby declare that I have written this thesis on my own and used no other than the stated sources

and aids.



Acknowledgements

All Praise and Glory is due to Allah, the Creator and Sustainer of the universe, the Most Merciful

who is bestowing me with His great Bounties and giving me the strength and ability to successfully

conduct this work.

I would like to thank all whose direct and indirect support helped me completing this work in time

and wish them all the best.

I would like to express my deepest gratitude to Prof. Peter Rentrop from the Technical University

Munich for his excellent supervision, his continuous support and his useful comments and advices

throughout my studies and during the PhD.

I am also highly indebted to Prof. Albert Gilg and Dr. Utz Wever from the Corporate Technol-

ogy Department of Siemens AG in Munich for their deep interest, their helpful orientations, their

stimulating support and their continuous encouragement.

Moreover I wish to express my sincere appreciation to all my old and new colleagues at the Chair of

Numerical Mathematics at the TU Munich and thank them a lot for all the good time.

I want furthermore to thank Dr. Klaus-Dieter Reinsch for his helpful orientations throughout my

studies and during the PhD. My thanks are also due to Frau Silvia Toth-Pinther for her kind support.

I would also like to acknowledge with much appreciation the important role of the TopMath Coordi-

nators Dr. Ralf Franken and Dr. Christian Kredler.

With a deep sense of gratitude I would like to share this moment of happiness with all my fam-

ily. I would like to express my deepest thanks, love and appreciation to my father, my dearest mother,

my brother and my sister. I would like also to express my sincere gratitude to my wife and thank

her for her patience, understanding and encouragement. I also take this opportunity to wish all the

best to my well beloved new-born son and to thank all family members for their encouragement,

support and endless prayers during my studies in Europe. This endeavor would not have been feasible

without your sacrifice, patience, understanding and encouragement. I am deeply indebted to all of you.

Last but not least I want to thank all my friends in Munich. You rendered me enormous support

during my stay. Thanks a lot for the great time spent together.



Contents

I Introduction 1

1 Problem description 4

1.1 Gas turbines and power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 NOx emissions and causes of concern . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thermo-acoustic instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II Mathematical Modeling 10

2 Navier-Stokes equations 11

2.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Conservation form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Pressure equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Temperature equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Chemistry and reaction kinetics 21

3.1 Stoichiometry and Flammability Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Chemical species equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Law of mass action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Reaction rate coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Chemical source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Acoustic system 30

4.1 Reynolds Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 System equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



III Modes of the thermo-acoustic system 37

5 Homogeneous Helmholtz equation 37

5.1 Eigenmodes of the 1D Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Eigenmodes of the 3D Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Orthogonality properties of the eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Acoustic eigenmodes in 1D 42

6.1 Homogeneous medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Two neighboring media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Combustion source terms 50

7.1 Flame transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Relation between combustion and velocity . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3 Modeling the unsteady heat release . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Density and chemical species equations . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Computing the eigenmodes of active combustion chambers 57

8.1 Combining the equations for temperature and species . . . . . . . . . . . . . . . . . . 57

8.2 Investigating the coupling matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.3 Equation for the acoustic pressure modes . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Benchmark and simulation methods 61

9.1 Analytical model for steady-state variables . . . . . . . . . . . . . . . . . . . . . . . . 63

9.2 Chemical reaction rates and their derivatives . . . . . . . . . . . . . . . . . . . . . . . 67

9.3 Oxydant-fuel combustion reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.4 Test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Conclusion 77

ii



1

Part I

Introduction

Due to environmental and economical reasons, the development and the improvement of gas turbines

by increasing the efficiency and reducing fuel consumption and pollutant formation has become more

essential than ever before. In order to meet the stringent emission requirements, modern gas turbines

are more and more operated in the lean premixed regime since lean premixed combustion offers the

potential of significantly reducing NOx emissions.

Yet, a major drawback of the lean premixed regime is that it is highly susceptible to thermoacoustic

oscillations and favors the developement of self-excited oscillations of pressure and temperature. The

self-excited oscillations increase the amplitude of the flame motion and heat release which in turn

leads to high variations in the pressure field. Many systems with lean premixed flames have expe-

rienced structural damage caused by these large pressure fluctuations resulting from the interaction

between sound waves and combustion. In extreme cases of resonance the thermo-acoustic instabilities

may lead to the destruction of the whole gas turbine. Consequently there is an important need to

better understand combustion instabilities and to be able to assess the dynamical behavior of modern

low-emission gas turbines already at the design stage. The numerical simulation of reactive flows in

the combustion chamber is an important step towards reaching these goals in modern power plants.

In this work we focus on the equations which describe the different oscillatory phenomena taking

place in the thermoacoustic system. The wave equation describing the pressure fluctuations and their

interaction with the unsteady heat release is of particular interest. Furthermore we are interested in

the chemical composition of the flow as well as the emission levels. Hence we provide the equations

describing the evolution of species concentrations. This enables us to predict the heat release variation.

One further aim of this work is to develop a model describing the thermo-acoustic feedback loop.

We are interested in a model that couples the pressure and velocity fluctuations to the unsteady heat

release and describes how the interaction takes place. Most models used sofar rely on empirical as-

sumptions and use model parameters which need to be adjusted from one application to the other.

We will focus on developing a model without any empirical assumptions or parameters and which

could be used for various configurations and combustion mechanisms. Moreover such a model would

enable us to identify the variables of interest that trigger the thermo-acoustic instabilities. In a next

step we would like to use this model to perform an analysis of the reactive flow properties in the

frequency domain. This analysis includes the determination of the acoustic eigenmodes of pressure

and temperature as well as the assessment of the combustion effects on the thermo-acoustic system.
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Einführung

Die alarmierende Umweltsituation erfordert eine Minimierung aller aus Verbrennungsprozessen re-

sultierenden Schadstoffe. In dem letzten Jahrzehnten wurden viele internationale Abkommen zur

Minderung der Emissionen getroffen und die Forderungen an den Energieunternehmen werden immer

strenger. Besondere Bedeutung kommt den Stickoxiden (NOx) zu, die in der Troposphäre die Bildung

des Ozons und des photochemischen Smogs begünstigen. Stickoxiden tragen auch zum Abbau des

stratosphrischen Ozons bei, was die ultraviolette Bestrahlung der Erdoberfläche erhöht.

Heutzutage beruhen etwa 90% der weltweiten Energieversorgung auf Verbrennung, so dass auch kleine

Verbesserungen zur erheblichen Reduzierung der Umweltbelastung beitragen sowie zu riesigen Kosten-

und Energieeinsparungen führen können.

Der Bedarf, Verbrennungsprozesse in Gasturbinen genauer zu untersuchen und besser zu verste-

hen, gewinnt aufgrund der alarmierenden Umweltlage zunehmend an Bedeutung. Zudem fordert

der verstärkte Wettbewerb zwischen den Energieunternehmen eine Antwort auf noch ungelösten tech-

nischen Fragestellungen.

Um diese strengen Forderungen zu treffen, wurden magere vorgemischte Verbrennungssysteme in

den modernen Gaskraftwerken eingeführt. Diese ermöglichen eine hohe Effizienz sowie eine Re-

duzierung der Schadstoffen, neigen jedoch zu thermo-akustischen Instabilitäten, welche die ganze

Anlage gefährden und enorme Schaden einrichten können. Um diese Oszillationen vorherzusagen und

zu vermeiden, ist es vonnöten, den Entstehungsmechanismus der thermo-akustischen Instabilitäten zu

verstehen.

Leider sind experimentelle Untersuchungen von Gasturbinen extrem teuer und sehr begrenzt. Größten-

teils des Entwicklungspotentiales von modernen Gasturbinen steckt daher in der numerischen Simula-

tion der verschiedenen Vorgänge, die in der Brennkammer stattfinden. Die Simulation dieser Vorgänge

umfasst das Zusammenspiel verschiedener Bereichen, u.a. Thermodynamik, Strömungsmechanik,

Reaktionskinetik und Numerische Mathematik.

Ziel der Dissertation ist die Entwicklung numerischer Methoden zur Simulation der turbulenten Ver-

brennung in Brennkammern von Gasturbinen. Dazu soll ein mathematisches Modell entwickelt wer-

den, das die Kopplung zwischen den chemischen Prozessen und der thermo-akustischen Instabilitäten

beschreibt. Zudem soll die numerische Simulation im Frequenzbereich eine Vorhersage der Eigen-

moden des Systems liefern. Die Fluktuationen von dem Druck, der Temperatur und der chemischen

Zusammensetzung sind vom besonderen Interesse.
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1 Problem description

1.1 Gas turbines and power generation

A gas turbine is an internal combustion engine that operates with rotary motion. It consists of three

main components :

1. an upstream air compressor

2. a combustion chamber

3. a downstream turbine

The upstream compressor and the downstream turbine are mechanically coupled and the combus-

tion chamber lies in between. The gas turbine extracts energy from the hot gas flow produced by

combustion of fuel in a stream of compressed air.

Figure 1: Gas Turbine

The compressor draws in ambient air and compresses it by a pressure ratio of up to 30 times ambient

pressure. After being compressed, the air is then directed to the combustor section and gets mixed

with fuel and ignited in the combustion chamber, where highly exothermic chemical reactions induce

a large temperature increase. In fact flame temperatures in the combustor can reach 2000◦C. The hot

combustion gases are then diluted with additional cool air from the compressor section and directed
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over the turbine’s blades, spinning the turbine and resulting in work output [29].

Energy is recovered in the turbine section in the form of shaft horsepower. A substantial part of the

output (typically about 60%) is required to drive the internal compressor section and is hence not

available as useful work output. Through the combination of gas and steam turbines it is possible to

achieve a better efficiency such as in the Siemens GuD turbines [2] where around 58% of the work

output is transformed in electrical energy.

Gas turbines are characterized by a high horsepower-to-size ratio which allows efficient space utilization

and a short time from order placement to on-site operation. Furthermore, because of their high

reliability, cost-effectiveness and suitability for remote operation, gas turbines are very attractive

power sources.

1.1.1 Different types of compressors and turbines

The compressor and turbine sections can each be a single fan-like wheel assembly but are usually

made up of a series of stages. There are mainly three kinds of configurations : single-shaft, two-shaft

and three-shaft.

In a single-shaft gas turbine all compressor and turbine stages are fixed to a single, continuous shaft

and operate at the same speed. A single-shaft gas turbine is typically used to drive electric generators

where there is little speed variation.

In the two-shaft gas turbine, the turbine section is divided into a high-pressure and low-pressure

arrangement, where the high-pressure turbine is mechanically tied to the compressor section by one

shaft, while the low-pressure turbine has its own shaft and is connected to the external load unit.

This configuration allows the high-pressure turbine/compressor shaft assembly to operate at or near

optimum design speeds, while the power turbine rotor speed can vary over as wide a range as is

required by most external-load units in mechanical drive applications (i.e., compressors and pumps).

A third configuration is a three-shaft gas turbine : the compressor section is divided into a low-

pressure and high-pressure configuration. The low-pressure compressor stages are mechanically tied

to the low-pressure turbine stages, and the high-pressure compressor stages are similarly connected

to the high-pressure turbine stages. These low-pressure and high-pressure rotors operate at optimum

design speeds independent of each other. The low-pressure turbine stages are mounted on a third

independent shaft and form the power turbine rotor, the speed of which can vary over as wide a range

as is necessary for mechanical drive applications.

1.1.2 Different types of combustors

We distinguish between three types of combustors: silo, annular and can-annular [28].

1. the silo combustor type is one or more chambers mounted external to the gas turbine body.

2. the annular combustor is a single continuous chamber roughly in the shape of a torus that rings

the turbine in a plane perpendicular to the air flow.
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3. the can-annular type uses a similar configuration but is a series of can-shaped chambers rather

than a single continuous chamber.

No matter which type of combustor is used, an inherent problem to combustion consists in the exhaust

products and emissions [36, 46]. Some of these combustion products, in particular nitrogen oxides and

carbon monoxides, represent a major concern in the design of modern power plants. The next section

describes the formation principles of NOx emissions in gas turbines [7].

1.2 NOx emissions and causes of concern

Nitrogen oxides, or NOx, is the generic term for a group of highly reactive gases, all of which contain

nitrogen and oxygen in varying amounts. Many of the nitrogen oxides are colorless and odorless. Chief

causes of concern are that NOx reacts to form toxic chemicals which cause serious respiratory problems

(such as acid aerosols, NO2 as well as ground-level ozone) and that it contributes to formation of acid

rain and to global warming. Also since NOx pollutants can be transported over long distances, NOx-

associated problems are of global consequences and not just confined to areas where NOx are emitted.

Nitrogen oxides form when fuel is burned at high temperatures, as in combustion processes. The

primary sources of NOx are motor vehicles (around 50%), electric utilities, and other industrial,

commercial, and residential sources that burn fuels [46].

The next section presents the principles of NOx formation, the types of NOx emitted (i.e. thermal

NOx , prompt NOx , and fuel NOx ), and how they are generated in a gas turbine combustion process.

1.2.1 Principles of NOx formation in gas turbines

Nitrogen oxides form in the gas turbine combustion process as a result of the dissociation of nitrogen

(N2) and oxygen (O2) into N and O, respectively. Reactions following this dissociation result in seven

known oxides of nitrogen: NO, NO2 , NO3 , N2O, N2O3 , N2O4 , and N2O5. Nitric oxide (NO) and

nitrogen dioxide (NO2) are formed in sufficient quantities to be significant in atmospheric pollution.

We will use NOx to refer to either or both of these gaseous oxides of nitrogen.

There are two mechanisms by which NOx is formed in turbine combustors :

1. the oxidation of atmospheric nitrogen found in the combustion air (thermal and prompt NOx)

2. the conversion of nitrogen chemically bound in the fuel (fuel NOx ).

The mechanisms leading to the formation of thermal, prompt and fuel NOx are presented below.

1.2.2 Formation of thermal NOx

Thermal NOx is formed by a series of chemical reactions in which oxygen and nitrogen present in the

combustion air dissociate and subsequently react to form oxides of nitrogen. The major contributing

chemical reactions are known as the Zeldovich mechanism and take place in the high temperature area
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of the gas turbine combustor, i.e. in the burnt gas region behind the flame front.

N2 +O 
 NO +N

N +O2 
 NO +O

N +OH 
 NO +H

Although the Zeldovich mechanism has been one of the most investigated reaction mechanism, there

is still no agreement on the choice of the rate constants of each reaction. Simply stated, the Zel-

dovich mechanism postulates that thermal NOx formation increases exponentially with increases in

temperature and linearly with increases in residence time. Hence, the introduction of cooling air into

the combustor as well as design parameters controlling equivalence ratios and residence time strongly

influence thermal NOx formation.

1.2.3 Formation of prompt NOx

Prompt NOx is formed in the proximity of the flame front as intermediate combustion products such

as HCN, N and NH are oxidized to form NOx as shown in the following equations:

CH +N2 
 HCN +N

CH2 +N2 
 HCN +NH

HCN,N,NH +Ox 
 NOx+ ....

Prompt NOx is formed in both fuel-rich flame zones and fuel-lean premixed combustion zones.

The contribution of prompt NOx to overall NOx emissions is relatively small in conventional near-

stoichiometric combustors, but this contribution increases with decreases in the equivalence ratio

(fuel-lean mixtures). For this reason, prompt NOx becomes an important consideration for the low-

NOx combustor designs and establishes a minimum NOx level attainable in lean mixtures.

1.2.4 Formation of fuel NOx

Fuel NOx (also known as organic NOx ) is formed when fuels containing nitrogen are burned. Molecular

nitrogen, present as N2 in some natural gas, does not contribute significantly to fuel NOx formation.

However, nitrogen compounds are present in coal and petroleum fuels. When these fuels are burned,

the nitrogen bonds break and some of the resulting free nitrogen oxidizes to form NOx. With excess

air, the degree of fuel NOx formation is primarily a function of the nitrogen content in the fuel.

Most gas turbines that operate in a continuous duty cycle are fueled by natural gas that typically

contains little or no fuel-bound nitrogen. As a result, when compared to thermal NOx , fuel NOx is

not currently a major contributor to overall NOx emissions from stationary gas turbines.
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1.3 Thermo-acoustic instabilities

Many solutions have been proposed to reduce NOx emissions. One of the very promising methods to

reduce NOx is the lean premixed combustion. This technology has been introduced in order to limit

pollutant emissions (especially NOx), and thus comply with the stringent environment norms. In a

conventional turbine combustor, the air and fuel are introduced at an approximately stoichiometric

ratio and air/fuel mixing occurs simultaneously with combustion. Conversely, a lean premixed com-

bustor design premixes the fuel and air prior to combustion. Premixing results in a homogeneous

air/fuel mixture, which minimizes localized fuel-rich pockets that produce elevated combustion tem-

peratures and higher NOx emissions [7].

Development of this technology is very active and modern low-NOx gas turbines are now widely op-

erated in lean premixed regime. Nevertheless, the use of lean premixed combustion presents a major

drawback. In fact, it decreases significantly the stability margin of the flames and makes gas turbines

more prone to thermoacoustic instabilities. Indeed, combustion instabilities have become a major

problem of concern in the conception of modern low-emission gas turbine. In the following section, we

will provide a physical description of this phenomenon and try to understand why and how combustion

instabilities occur.

1.3.1 Historical background and first observations

It has been known for scientists and engineers since a long time that the coupling between acoustic

waves and flames can lead to generation of sound and in some cases to high-amplitude instabilities.

Historically, the first documented observation of combustion oscillation was done by Higgins in the

late 18th Century through his experiments with the ”singing flame”. Several researchers investigated

this phenomenon and described that it is possible to produce high levels of sound by placing a flame

(fixed on a small-diameter fuel tube) in a tube of a larger diameter. They noticed that the presence

of the flame excited the fundamental mode or one of the harmonics of the larger tube.

Later on in 1858, another very interesting phenomenon was observed by Le Conte in quite fortuitous

circumstances. He observed that the flame pulsed synchronous with the beats of a music instrument.

This phenomenon was called the ”dancing flame”. Le Conte quoted :

It was exceedingly interesting to observe how perfectly even the trills of the musical instrument were

reflected on the sheet of the flame. A deaf man might have seen the harmony !

On the other side of the Atlantic, in 1859, Rijke discovered a way of using heat to generate a sound

in a vertical tube open at both ends. He used a cylindrical glass tube and placed a metal gauze in its

lower half. While keeping the tube in the vertical position, he heated the gauze with a flame until it

became glowing red hot. Upon removing the flame, he could hear a loud sound from the tube until the

gauze cooled down. In a following experiment, he heated the gauze electrically and hence managed

to get a continuous heat supply. The generated sound became also continuous. Furthermore, Rijke

noted that the sound was heard only when the heating element was placed in the lower half of the

vertical tube.

In 1878, Rayleigh observed the interaction between unsteady heat release and sound generation [42].

He stated a necessary condition for the instabilities to occur based on a phenomenological description
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of the instabiliy. Rayleigh explained that :

If heat be periodically communicated to, and abstracted from, a mass of air vibrating in a cylinder

bounded by a piston, the effect produced will depend upon the phase of the vibration at which the

transfer of heat takes place. If heat be given to the air at the moment of greatest condensation, or

be taken from it at the moment of greatest rarefaction, the vibration is encouraged. On the other

hand, if heat be given at the moment of greatest rarefaction, or abstracted at the moment of greatest

condesation, the vibration is discouraged.

In the late 1930s and early 1940s, during the development of solid rocket motors [15, 16], combustion

instabilities caused numerous failures and led to many interrupted launches or erratic behaviors. Since

then, a considerable effort has been spent on the experimental investigation of this phenomenon to

understand the underlying mechanisms of these so-called thermo-acoustic instabilities . Also, many

mathematical models have been developed in order to find ways to reduce the magnitude of these

instabilities and mitigate their effects.

1.3.2 Underlying mechanisms

Combustion instability [15, 16] is essentially a self-excited oscillation. It is mainly due to the complex

interplay between chemical processes in the flame zone and instationary flow processes in the combus-

tion chamber. It has been long recognized as a problem in continuous combustion systems [17]. As

a matter of fact, it is important to note that the thermo-acoustic oscillations are not a menace in all

industrial applications. For example, ramjet engines strongly depend on the presence of such sustained

oscillations. However, in most technical applications, particularly in gas turbines, these instabilities

are highly undesirable. In fact, they are manifested by large pressure variations as well as growing

heat release. These can lead to serious mechanical failures, high levels of noise [12]. In some cases, it

can lead to uncontrolled burn and heat tranfer possibly resulting in component melting and decrease

of efficiency.

In gas turbines the thermoacoustic instabilities are generated by the coupling between the unsteady

heat release and the pressure oscillations. Both of these subprocesses are affected by each other, re-

sulting in a tightly closed feedback loop. The interplay acts in both directions : the heat release from

the combustion of the reactants produces sound and affects the acoustics of the system by generating

instability waves [15, 16]. Due to fluid dynamic effects, these waves amplify and finally break down

into small-scale perturbations which affect the heat release dynamics, thus closing the interaction loop.
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Figure 2: Thermoacoustic system

As described by Rayleigh in 1878, if the heat release is out of phase with the pressure, the system

is stable. However, if the heat release is in phase with the pressure, then the closed-loop mechanism

becomes unstable and may lead under favorable circumstances to the degradation of the engine per-

formance and the shortening of component life.

In the recent years, the thermoacoustic instability problem has gained importance and is becoming

more relevant due to the new restrictions on emissions and the ever-growing high-power requirements.

As combustion is very sensitive to the interaction between chemical kinetics and fluid mechanics [18],

we need to understand the flow processes that describe the evolution of the physical quantities within

the combustion chamber, as well as the chemical processes responsible for the production of energy

which eventually maintains or enhances the thermo-acoustic oscillations [17].

In an active combustion chamber, many processes take place, interact and contribute to the global

dynamics of the thermo-acoustic system, such as transport and diffusion processes, fluid dynamics [18],

acoustics, wave reflections [11], chemical kinetics, flame kinematics [9], heat transfer [5, 6], fuel/air

mixing and injection dynamics, as well as atomization and vaporization phenomena [7]. These pro-

cesses interact in many different ways and take place at very different time and length scales. The

complex coupling and the large scale range make an accurate description and a detailed modeling of

such a system impossible with the currently available computing ressources.

Hence, we wil be focusing on the two dominant mechanisms that contribute to combustion instabil-

ities, namely heat release dynamics and acoustics [23]. Our objective is to provide a mathematical

model for the combustion dynamics in form of a system of partial differential equations that describe

the acoustics and gas dynamics [11], as well as the heat release dynamics and chemical kinetics. Using

computational methods to solve these equations numerically, it is possible to predict the evolution of

the main flow variables such as acoustic pressure and velocity as well as the variables that influence

the heat release dynamics.
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Part II

Mathematical Modeling

2 Navier-Stokes equations

2.1 Continuity equation

Conservation of mass [31] states that mass can neither be created nor destroyed. It can only be moved

from one place to another, that is if mass increases somewhere then it must decrease somewhere else.

Let us consider a fluid flowing through a volume Ω during a time interval [t1, t2]. Then, a statement

of conservation of mass for this flow reads

change in total mass in Ω in time interval [t1, t2]

=

net mass passing through boundaries of Ω in time interval [t1, t2]

Let ρ(x, t) denote the mass per unit volume and v(x, t) the velocity of the flow. If Ω is a one-dimensional

pipe, say [a, b], then this statement is written mathematically as∫ b

a

[ρ(x, t2)− ρ(x, t1)]dx = −
∫ t2

t1

[ρ(b, t)v(b, t)− ρ(a, t)v(a, t)]dt (1)

ρ(x, t)v(x, t) denotes the time rate of mass flow past point x. Thus
∫ b

a
ρ(x, t)dx is the total mass in

[a, b] at time t and
∫ t2

t1
ρ(x, t)v(x, t)dt is the total mass passing x in time interval [t1, t2].

In standard fluid mechanics terminology [18], the mass per unit volume ρ is called density, and the

timed rate of flow of any property through any surface called flux. So ρv is the instantaneous mass flux

and
∫ t2

t1
ρ(b, t)v(b, t)dt represents the total mass flux through the surface x = b during time interval

[t1, t2].

The arbitrary spatial region [a, b] is called control volume. Similarly, the region in the x-t plane defined

by [a, b] and [t1, t2] is called space-time control volume.

We extend this result to the three-dimensional case and consider a finite control volume Ω ∈ IR3. At

a point of the control surface ∂Ω, the flow velocity is v, the unit normal vector is n and dS denotes

an element surface area. The conservation of mass in Ω in the time interval [t1, t2] reads∫
Ω

[ρ(x, t2)− ρ(x, t1)]dv = −
∫ t2

t1

∫
∂Ω

ρ(s, t)(v(s, t) • n)dSdt (2)

Remark : By convention, the unit normal vector n points out of the control volume. As a result, we

have :

• if the scalar product (v • n) is positive, the mass flow leaves the control volume : we speak of

outflow.

• if the scalar product (v • n) is negative, we speak of inflow.
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2.2 Momentum equation

Conservation of momentum states that only three factors can change momentum, and these consist

in redistribution, conversion of momentum to or from energy and force. So, if momentum decreases

somewhere, it means that either momentum or an equivalent amount of energy increases somewhere

else, or a force is acting. The statement of conservation of momentum [31] reads

change in total momentum in Ω in time interval [t1, t2]

=

net momentum flow through boundaries of Ω in time interval [t1, t2]

+

net momentum change due to forces acting on the control volume Ω in time interval [t1, t2]

We distinguish between two kinds of forces acting on the fluid :

1. external forces or body forces :

These forces act directly on the control volume itself such as gravitational, buoyancy, Coriolis,

centrifugal or eventually electromagnetic forces.

2. surface forces :

These forces act directly on the surface of the control volume. They are the result of :

• the pressure distribution imposed by the outside fluid surrounding the control volume, or

• the shear and normal stress due to friction between the fluid and the surface of the control

volume.

If we sum up all these contributions, the momentum conservation in the pipe [a, b] takes the form∫ b

a

[ρ(x, t2)v(x, t2)− ρ(x, t1)v(x, t1)]dx = −
∫ t2

t1

[ρ(b, t)v2(b, t)− ρ(a, t)v2(a, t)]dt

+

∫ t2

t1

∫ b

a

ρ(x, t)fe(x, t)dxdt

−
∫ t2

t1

[p(b, t)− p(a, t)]dt+

∫ t2

t1

[τ(b, t)− τ(a, t)]dt (3)

where ρ(x, t)v(x, t) represents momentum per unit volume and ρ(x, t)v2(x, t) denotes the instantaneous

momentum flux. Then
∫ b

a
ρ(x, t)v(x, t)dx is the total momentum in [a, b] at time t,

∫ t2
t1
ρ(x, t)v2(x, t)dt

is the total momentum flux past x in time interval [t1, t2].
∫ b

a
ρ(x, t)fe(x, t)dx is the contribution of

the external forces fe to the momentum conservation.
∫ t2

t1
p(x, t)dt is the total momentum change at

x due to pressure in time interval [t1, t2].
∫ t2

t1
[τ(b, t)− τ(a, t)]dt represents the effect of viscous stress
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on the boundary.

The extension of this result to the three-dimensional case yields∫
Ω

[ρ(x, t2)v(x, t2)− ρ(x, t1)v(x, t1)]dx = −
∫ t2

t1

∫
∂Ω

[ρ(a, t)v(s, t)(v(s, t) • n)]dSdt

+

∫ t2

t1

∫
Ω

ρ(x, t)fe(x, t)dxdt

−
∫ t2

t1

∫
∂Ω

p(s, t)ndSdt+

∫ t2

t1

(τ(s, t) • n)dSdt (4)

τ denotes the viscous stress tensor of second order.

Remark : The equation of momentum is the same in reactive and non-reactive flows. Although this

equation does not involve explicit combustion terms, the flow is modified by the chemical reactions. In

fact, the density ρ as well as the dynamic viscosity change dramatically across the flame front, which

leads to a proportional increase of velocity [9]. So even though the momentum equations are exactly

the same with and without combustion process, the behaviour of reactive flows is very different.

2.3 Energy equation

Conservation of energy states that energy changes due to one of three factors which are redistribution,

conversion of energy to or from momentum, and conversion to or from some other form of energy,

heat or work of forces acting on the volume. So, if energy increases in one place, either energy or an

equivalent amount of momentum must decrease someplace else, heat is produced or work is done. The

conservation of energy can be written as

change in total energy in Ω in time interval [t1, t2]

=

net energy flow through boundaries of Ω in time interval [t1, t2]

+

net energy change due to heat or work of forces on Ω in time interval [t1, t2]

For the mathematical formulation of this statement we introduce some important variables :

• the specific internal energy e which denotes the energy per unit mass contained in the microscopic

motions of the individual fluid molecules,

• the specific kinetic energy 1
2
|v|2 which denotes the energy per unit mass contained in the macro-

scopic motion of the whole fluid,

• the specific total energy E is the energy per unit mass stored in both microscopic and macroscopic

motion and hence total. It is obtained by adding the internal energy per unit mass, e, to the

kinetic energy per unit mass 1
2
|v|2. Thus, the expression for the total energy is

E(x, t) = e(x, t) +
1

2
|v|2(x, t) (5)
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The contribution of the heat flux into the volume may take two forms :

1. diffusion of heat due to molecular thermal conduction : the diffusive flux is proportional to the

gradient of the internal energy and is equal λ∇T , with λ standing for the thermal conductivity

and T the absolute static temperature.

2. volumetric heating due to chemical reactions, or due to absorption or emission of radiation. We

will denote these heat sources [6]- the time rate of heat transfer per unit mass- as Q̇. The volume

sources are obtained by the sum of the heat sources to the work done by the body forces that

will be denoted by fe.

In addition to the heat flux, the surface forces also contribute to the energy equation. Their contri-

bution consists in the pressure and shear and normal stresses on the control surface.

We summarize these effects in the equation of conservation of energy [31] which reads∫ b

a

[ρ(x, t)E(x, t)]t2t1dx = −
∫ t2

t1

[ρ(b, t)v(b, t)E(b, t)− ρ(a, t)v(a, t)E(a, t)]dt

+

∫ t2

t1

∫ b

a

ρ(x, t)fe(x, t)v(x, t)dxdt

−
∫ t2

t1

[p(b, t)v(b, t)− p(a, t)v(a, t)]dt+

∫ t2

t1

[τ(b, t)v(b, t)− τ(a, t)v(a, t)]dt

+

∫ t2

t1

λ[
∂T (b, t)

∂x
− ∂T (a, t)

∂x
]dt+

∫ t2

t1

∫ b

a

Q̇(x, t)dxdt

(6)

ρE is the total energy per unit volume, and ρvE is the instantaneous total energy flux. Then we can

interpret the integrals
∫ b

a
ρ(x, t)E(x, t)dx as the total energy in [a, b] at time t,

∫ t2
t1
ρ(x, t)v(x, t)E(x, t)dt

as the total energy flowing past x in time interval [t1, t2], and
∫ t2

t1
p(x, t)v(x, t)dt as the pressure work,

i.e. the total energy change at x in time interval [t1, t2].

The extension of these results to the three-dimensional case yields∫
Ω

[ρ(x, t)E(x, t)]t2t1dx = −
∫ t2

t1

∫
∂Ω

ρ(s, t)E(s, t)(v(s, t) • n)dSdt

+

∫ t2

t1

∫
Ω

ρ(x, t)fe(x, t)v(x, t)dxdt

−
∫ t2

t1

∫
∂Ω

p(s, t)(v(s, t) • n)dSdt+

∫ t2

t1

∫
∂Ω

(τ(s, t) • v(s, t)) • n)dSdt

+

∫ t2

t1

∫
∂Ω

λ(∇T (s, t) • n)dSdt+

∫ t2

t1

∫
Ω

Q̇(x, t)dxdt

(7)
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For a compact version of the previous equation we introduce two new variables :

• the specific enthalpy h = e + p
ρ

which is the sum of the energy per unit mass found in the

microscopic motions of the fluid molecules, e, and the potential energy per unit mass stored by

compression, p
ρ

• the specific total enthalpy H = h + v2

2
which is the total energy per unit mass stored in the

microscopic and macroscopic motions of the fluid plus the potential energy per unit mass stored

by compression.

Using the total enthalpy, we get an equivalent equation of the conservation of energy∫
Ω

[ρ(x, t2)E(x, t2)− ρ(x, t1)E(x, t1)]dx = −
∫ t2

t1

∫
∂Ω

ρ(s, t)H(s, t)(v(s, t) • n)dSdt

+

∫ t2

t1

∫
Ω

ρ(x, t)fe(x, t)v(x, t)dxdt

+

∫ t2

t1

∫
∂Ω

(τ(s, t) • v(s, t)) • n)dSdt

+

∫ t2

t1

∫
∂Ω

λ(∇T (s, t) • n)dSdt+

∫ t2

t1

∫
Ω

Q̇(x, t)dxdt

(8)

2.4 Conservation form

In this section we present an other form of the Navier-Stokes equations, which is known as the

differential form or the conservation formof the Navier-Stokes equations [13]. This form has been

used in a lot of simulation programs. It is less general than the integral form since it is assumed that

all flow variables are differentiable in time and space. In the presence of discontinuities or shocks,

special care is needed to resolve the fronts and one has to consider the integral form of the Navier-

Stokes equations.

To show how to deduce the differential form from the integral from of the Navier-Stokes equations,

we consider the conservation of mass.

Supposing that ρ(x, t) is differentiable in time, we have then

ρ(x, t2)− ρ(x, t1) =

∫ t2

t1

∂ρ

∂t
dt (9)

Similarly if ρ(x, t) and v(x, t) are differentiable in space, we have

ρ(b, t)v(b, t)− ρ(a, t)v(a, t) =

∫ b

a

∂(ρv)

∂x
dx (10)
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Assuming reversibility of space and time integrals, the conservation of mass takes the form∫ t2

t1

∫ b

a

[
∂ρ

∂t
+
∂(ρv)

∂x
]dxdt = 0 (11)

Since this equation holds for any a,b,t1,t2, the integrand must be zero :

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (12)

Similarly we obtain the differential forms of conservation of momentum and of energy.

2.5 Navier-Stokes equations

2.5.1 One-dimensional flows

For essentially one-dimensional flows the conservation of mass, momentum and energy are written as

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (13)

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂p

∂x
=

∂τ

∂x
+ ρF (14)

∂(ρE)

∂t
+
∂(ρuE + up)

∂x
=

∂uτ

∂x
− ∂q

∂x
+ ρuF +Q (15)

In some cases, it is more practical to use instead of (15) one of the following two equations. These

equations are equivalent : the first one accounts for the conservation of enthalpy

∂(ρH)

∂t
+
∂(ρuH)

∂x
− ∂p

∂t
=
∂uτ

∂x
− ∂q

∂x
+ ρuF +Q (16)

whereas the second one represents the temperature equation

∂(ρT )

∂t
+
∂(ρuT )

∂x
=

1

cp

(
Dp

Dt
+ τ

∂u

∂x
− ∂q

∂x
+ Q̇

)
(17)

In the one-dimensional version of the Navier-Stokes equations, the stress τ and the flux q are expressed

in terms of velocity and temperature gradients as

τ =
4

3
µ
∂u

∂x
, q = −λ∂T

∂x
(18)

2.5.2 Three-dimensional flows

In the three-dimensional case the stress tensor τij and the heat flux qi have different expressions

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
µ
∂uk

∂xk

δij, qi = −λ ∂T
∂xi

(19)
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To simplify the notations we introduce the scalar m and the vector M defined by

m =
∂uiτij
∂xj

= τ : ∇u and M =
∂τij
∂xj

= ∇ • τ (20)

With this short-hand notation, the 3D Navier-Stokes equations take the form

∂ρ

∂t
+∇ • (ρu) = 0 (21)

∂(ρu)

∂t
+∇ • (ρu⊗ u) +∇p = M + ρF (22)

∂(ρE)

∂t
+∇ • ((ρE + p)u) = m−∇ • q + ρu • F +Q (23)

The equations of conservation of enthalpy and temperature are given by

∂(ρH)

∂t
+∇ • (ρHu) = m−∇ • q + ρu • F +Q (24)

∂(ρT )

∂t
+∇ • (ρTu) =

1

cp

(
Dp

Dt
+ τij

∂ui

∂xj

−∇ • q +Q

)
(25)

2.6 Equation of state

The thermodynamic state of a physical system is well-defined by three thermodynamic properties,

such as pressure, mass and internal energy. All other thermodynamic properties can be expressed

as functions of these three by means of the equations of state. When using specific quantities, i.e.

expressing all quantities per unit mass, we eliminate one variable, namely the mass, since mass per

unit mass is always one. Thus the specific thermodynamic state is well-defined by two specific ther-

modynamic properties -for example, density and specific internal energy. All other specific properties

can be determined with the specific equations of state [5].

For ideal gases, the equation of state known as the ideal gas law gives a relationship between pressure,

density and temperature. The ideal gas law for the species i reads

pi = ρi
R
Wi

T (26)

pi and ρi represents the partial pressure and density of species i, Wi denotes the molecular weight of

species i and T the temperature. R = 8.314J.K−1.mol−1 is the universal gas constant.

In a multicomponent flow, the mixture molecular weight W is obtained from the molecular weight Wi

of each of its components and reads

1

W
=

1

ρ

Ns∑
s=1

ρs

Ws

=
Ns∑
s=1

Ys

Ws

(27)

Dalton’s law states that for ideal gases the pressure of a gas mixture is equal the sum of the partial

pressures of the gases of which it is composed. This yields the equation of state of the mixture [26]

p =
Ns∑
s=1

ps = ρ
R
W
T (28)
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The second equation of state for ideal gases relates the internal energy e to the temperature T

de(T ) = cv(T )dT (29)

where cv is called the constant volume specific heat. An equivalent expression is given for the internal

enthalpy h

dh(T ) = cp(T )dT (30)

where cp is called the constant pressure specific heat.

The ratio of specific heats is the adiabatic exponent γ and is given by

γ =
cp
cv

(31)

The gas constant R, the adiabatic exponent γ and the specific heats cp, cv are related in many forms

cp = cv +
R
W

(32)

cp =
γ

γ − 1

R
W

(33)

cv =
1

γ − 1

R
W

(34)

Inserting one of these relations in the ideal gas law, we obtain a equation relating the pressure p to

the internal energy e

p = (γ − 1)ρe (35)

Further, we deduce that the total energy E of an ideal gas has the following expression

E =
1

γ − 1

p

ρ
+
v2

2
(36)

Yet another important equation is the one defining the speed of sound. It is the speed at which

small disturbances propagate through the flow measured relative to the movement of the flow. For an

isentropic flow, we have

c2 =

[
∂p

∂ρ

]
S=const

=
γp

ρ
(37)

2.7 Pressure equation

Lemma : If the entropy S is defined through the relation

S = cv ln(
p

ργ
) (38)

then the pressure satisfies the relation

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= (γ − 1)ρT

DS

Dt
(39)
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Proof : The two first terms in the pressure relation represent the total derivative of p. In fact,

we have
∂p

∂t
+ u

∂p

∂x
=
Dp

Dt
(40)

Using the continuity equation, we show that

∂u

∂x
= −1

ρ
(
∂ρ

∂t
+ u

∂ρ

∂x
) = −1

ρ

Dρ

Dt
(41)

Therefore, the third term is proportional to the total derivative of ρ and we obtain

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
=
Dp

Dt
− γp

ρ

Dρ

Dt
(42)

Using the identity provided by the ideal gas law and the definition of the heat capacity cv

p = (γ − 1)ρcvT (43)

the right-hand side of the previous equation takes the form

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= (γ − 1)ρcvT (

1

p

Dp

Dt
− γ

ρ

Dρ

Dt
) (44)

= (γ − 1)ρcvT (
D ln(p)

Dt
− γD ln(ρ)

Dt
) (45)

= (γ − 1)ρT
D

Dt

(
cv ln(

p

ργ
)

)
(46)

= (γ − 1)ρT
DS

Dt
(47)

�

Remark : in the one-dimensional case the entropy satisfies the equation

ρT
Ds

Dt
=
∂uτ

∂x
− ∂q

∂x
+ ρuF +Q (48)

As a consequence of the previous lemma we obtain the following pressure equation

Dp

Dt
+ γp

∂u

∂x
= (γ − 1)(

∂uτ

∂x
− ∂q

∂x
+ ρuF +Q) (49)

2.8 Temperature equation

We simplify the right-hand side of the momentum equation

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂p

∂x
= ρ

∂u

∂t
+ u(

∂ρ

∂t
+
∂(ρu)

∂x︸ ︷︷ ︸
=0

) + ρu
∂u

∂x
+
∂p

∂x
(50)

= ρ
Du

Dt
+
∂p

∂x
(51)
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and rewrite the momentum equation in the form

ρ
Du

Dt
+
∂p

∂x
=
∂τ

∂x
+ ρF (52)

As shown in the previous section the internal enthalpy is related to the temperature through h = cpT

therefore it is possible to find a temperature equation equivalent to the enthalpy equation.

Lemma : the temperature satisfies the following equation

ρcp
DT

Dt
+ γp

∂u

∂x
= γ(

∂τu

∂x
+ ρuF − ∂q

∂x
+Q)− u(∂τ

∂x
+ ρF ) (53)

Proof :

ρcp
DT

Dt
− Dp

Dt
+ ρuF + u

∂τ

∂x
= ρcp

DT

Dt
+ u(−∂p

∂x
+
∂τ

∂x
+ ρF )− ∂p

∂t
(54)

= ρcp
DT

Dt
+ ρu

Du

Dt
− ∂p

∂t
(55)

= ρ(
Dh

Dt
+

1

2

Du2

Dt
)− ∂p

∂t
(56)

= ρ
DH

Dt
− ∂p

∂t
(57)

Inserting the continuity equation on the right-hand side of this equation, we obtain

ρcp
DT

Dt
− Dp

Dt
+ ρuF + u

∂τ

∂x
= ρ

∂H

∂t
+H(

∂ρ

∂t
+
∂(ρu)

∂x
) + ρu

∂H

∂x
− ∂p

∂t
(58)

=
∂(ρH)

∂t
+
∂(ρuH)

∂x
− ∂p

∂t
(59)

The obtained term represents the right-hand side of the enthalpy equation

∂(ρH)

∂t
+
∂(ρuH)

∂x
− ∂p

∂t
=
∂uτ

∂x
− ∂q

∂x
+ ρuF +Q (60)

Hence we have

ρcp
DT

Dt
− Dp

Dt
+ ρuF + u

∂τ

∂x
=

∂uτ

∂x
− ∂q

∂x
+ ρuF +Q (61)

ρcp
DT

Dt
− Dp

Dt
= τ

∂u

∂x
− ∂q

∂x
+Q (62)

The pressure equation tells us that

Dp

Dt
+ γp

∂u

∂x
= (γ − 1)(

∂uτ

∂x
− ∂q

∂x
+ ρuF +Q) (63)

This yields the following temperature equation

ρcp
DT

Dt
+ γp

∂u

∂x
= γ(

∂τu

∂x
+ ρuF − ∂q

∂x
+Q)− u(∂τ

∂x
+ ρF ) (64)

�

Remark : in the context of gas turbines [10], the impact of body forces is very limited and will be

neglected in the following (F = 0).
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3 Chemistry and reaction kinetics

3.1 Stoichiometry and Flammability Limits

A stoichiometric mixture is the chemically correct air/fuel ratio for complete fuel and oxygen reaction.

For most hydrocarbon fuels the stoichiometric air/fuel by mass is in the range 14/1 ∼ 15/1. If the

air/fuel ratio is greater than 15/1, the mixture is lean or has excess air and this is the normal situation

in gas turbines. But, if the air/fuel ratio is less than 15/1, then the mixture is rich or has excess fuel.

Furthermore, the equivalence ratio φ is defined as the ratio of the actual fuel consumption to the

theoretical stoichiometric fuel consumption for the same air supply. In air/fuel ratio it is

φ =
(Air/Fuel)stoichiometric

(Air/Fuel)flame

(65)

The flame temperature is strongly dependent upon the equivalence ratio φ [32]. An equivalence ratio

of 1 corresponds to the stoichiometric ratio and is the point at which a flame burns at its highest

theoretical temperature [9].

Combustion is said to be fuel-lean (φ < 1) when there is excess oxygen available. Conversely, com-

bustion is fuel-rich (φ > 1) if insufficient oxygen is present to burn all of the available fuel.

In practice, it is not possible to vary the equivalence ratio arbitrarily. In fact, there exist flamma-

bility limits which define the range where flame propagation is possible. As shown in figure (3), the

flammability limits [14] are :

• the lean limit, i.e. the least amount of fuel in air that will propagate a flame, and

• the rich limit, i.e. the maximum amount of fuel in air that will support a flame.

Figure 3: Range of burnable equivalence ratios versus combustor gas velocity
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For flame stability, these flamability limits represent a vital information since the aim of a lean-burn

well-mixed low NOx gas turbine is to burn as close to the lean flammability limit as possible [9]. All

hydrocarbons are represented by the generic chemical formula CHy with y being the hydrogen/carbon

ratio. Let n be the carbon number (e.g. n = 1 for methane) then the generic formula is

• for alkanes y = 2 + 2
n
, (e.g. y = 2.67 for propane)

• for naphtenes y = 2− 2
n
, (e.g. y = 1 for ethylene)

• for aromatics y = 2− 6
n
, (e.g. y = 1 for benzene)

The simplest fire reaction is between CHy and oxygen

CHy + a O2 −→ b CO2 + c H2O (66)

The atom balance yields the value of the coefficients a, b and c

a = 1 +
y

4
, b = 1, c =

y

2
(67)

Hence, the oxygen/fuel ratio by volume is 1 + y
4

and the fuel concentration by volume is 1
2+ y

4
. Using

the molecular weight of C, H and O, we convert this quantity from volume to mass ratios

(O/F )mass = (O/F )vol ×
2WO

WC + yWH

=
32 + 8y

12 + y
(68)

As we are usually more interested in combustion in air, all we have to do to convert the O/F ratio to

A/F ratio is use the fact that there is around 21% oxygen in air by volume, corresponding to 23% by

mass. Hence for a general hydrocarbon CHy, the air/fuel ratio is

(A/F )vol =
1

21%

(
1 +

y

4

)
, (A/F )mass =

1

23%

32 + 8y

12 + y
(69)

A stoichiometric mixture of fuel and oxidant is one in which the amount of oxidant present is just

sufficient to completely oxidise the fuel. As an example, we consider the reaction between methane

and oxygen :

CH4 + 2 O2 −→ CO2 + 2 H2O (70)

The stoichiometric oxygen to fuel ratio is 2 by volume and 4 by mass. Using the formula above yields

the stoichiometric air to fuel ratio by volume 1
10%

and by mass 1
6%

.

3.2 Chemical species equations

In reactive flows the medium consists of many chemical species which interact with one another

inducing a change in the composition of the flow. As we are interested in this detailed chemical

composition we need to determine the evolution of each species present in the flow [22].



3.3 Balance laws 23

We achieve this by writing the continuity equation for species Xs and taking into account the chemical

reactions taking place as well as the diffusion process

∂ρs

∂t
+∇ • (ρsu) = ∇ •

(
ρDs∇

ρs

ρ

)
+ ω̇s (71)

ρs denotes the density of species Xs, Ds its diffusion coefficient and ω̇s its chemical production rate.

To quantify the chemical composition of the flow, we also use the mass fraction of species s given by

Ys =
ρs

ρ
(72)

The total density ρ equals the sum of the partial densities ρi. Hence the mass fractions Ys sum to 1 :

Ns∑
s=1

Ys = 1 (73)

Taking the continuity equation for the total density ρ into account

∂ρ

∂t
+∇ • (ρu) = 0 (74)

we note that the conservation law for the species Xs simplifies to

ρ

(
∂Ys

∂t
+ u • ∇Ys

)
= ∇ • (ρDs∇Ys) + ω̇s (75)

3.3 Balance laws

A chemical reaction involves one or more substances, called reactants, that react to produce other

substances called products. As the reaction proceeds, some chemical species are depleted while others

are formed. This process is governed by certain laws which can be expressed in mathematical terms

[8]. One of the assumptions made in chemical kinetics is the preservation of the number of atoms, i.e.

atoms are neither created nor destroyed. For example, if there are n atoms of carbon present before

the reaction begins, then there will be the same number n of atoms of carbon during all stages of the

reaction. To illustrate this, we take the following reactions which take place inside some automobile

catalytic converters based on the oxidation reaction of CO, hydrocarbons and H2

2 CO +O2 → 2 CO2

2 C3H6 + 9 O2 → 6 CO2 + 6 H2O

2 H2 +O2 → 2 H2O

Note the conservation of the atoms of C, H and O in each of these reactions.

Suppose a moles of A react with b moles of B to produce c moles of C and d moles of D

aA+ bB → cC + dD
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Let NA, NB, NC , ND represent the molar amounts of the chemical species in the reaction and let V be

the volume occupied by the reaction mixture. Thus the reaction rate [25] of the species A is expressed

as

rA =
1

V

dNA

dt
=

1

V

d

dt
([A] ·V ) =

1

V

(
dV

dt
· [A] + V · d[A]

dt

)
where [A] = ρA

WA
, ρA is the partial density, WA the molecular weight of species A.

Assuming the reaction volume V does not vary in time, the rates of change of the concentrations of

A and B are then given by

rA =
d[A]

dt
, rB =

d[B]

dt

Since the number of atoms is conserved, the rates at which C and D are formed are directly related

to the rates at which A and B are depleted.

Considering only the species A and C, it is true that for every a moles of A that react, c moles of C

are produced. Thus the rate of change of C is c/a times the rate of change of A. Since [A] decreases

and [C] increases, the signs are reverted and the mathematical expression reads

d[C]

dt
= − c

a

d[A]

dt

Reasoning the same way with any pair of species we conclude that

−1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt

3.4 Law of mass action

Based on experimental observation, but also explained by collision theory, the law of mass action

states that the rate of an elementary reaction (at a constant temperature) is proportional to the

product of the concentrations of the reactants.

We consider the following reaction

X + Y → Z

and introduce the reaction rate coefficient k as a constant of proportionality. Then, according to the

law of mass action, the rate of change of [X] is given by

d[X]

dt
= −k[X][Y ]

Applying this principle to a reaction where two molecules X combine to build X2

X +X → X2

we obtain the rate of consumption of X

d[X]

dt
= −k[X][X]− k[X][X] = −2k[X]2
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The factor 2 appears because two moles of X are consumed.

This reasoning may be extended to our first reaction

a A+ b B → c C + d D

and the time rate of consumption/formation of [A], [B], [C], [D] by the forward reaction are then(
d[A]

dt

)
f

= −a kf [A]a[B]b(
d[B]

dt

)
f

= −b kf [A]a[B]b(
d[C]

dt

)
f

= c kf [A]a[B]b(
d[D]

dt

)
f

= d kf [A]a[B]b

For every elementary reaction, it is in principle possible that the reaction proceeds in the backward

direction as well. Assuming that C and D react to form A and B, we may write

aA+ bB ← cC + dD

The time rate of consumption/formation of [A], [B], [C], [D] by the backward reaction are then(
d[A]

dt

)
b

= a kb[C]c[D]d(
d[B]

dt

)
b

= b kb[C]c[D]d(
d[C]

dt

)
b

= −c kb[C]c[D]d(
d[D]

dt

)
b

= −d kb[C]c[D]d

The subscript b denotes here the backward reaction and kb its rate coefficient.

So, the net rate of change is given by the sum of the forward and backward time rate

d[A]

dt
=

(
d[A]

dt

)
f

+

(
d[A]

dt

)
b

= −a kf [A]a[B]b + a kb[C]c[D]d

d[B]

dt
=

(
d[B]

dt

)
f

+

(
d[B]

dt

)
b

= −b kf [A]a[B]b + b kb[C]c[D]d

d[C]

dt
=

(
d[C]

dt

)
f

+

(
d[C]

dt

)
b

= c kf [A]a[B]b − c kb[C]c[D]d

d[D]

dt
=

(
d[D]

dt

)
f

+

(
d[D]

dt

)
b

= d kf [A]a[B]b − d kb[C]c[D]d
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Written in matrix form, the reaction kinetics for the species (A,B,C,D) are

d

dt


[A]

[B]

[C]

[D]

 =


a

b

c

d



−1 1

−1 1

1 −1

1 −1


(
kf [A]a[B]b

kb[C]c[D]d

)
(76)

Figure 4: Time evolution of the concentration of species A, B, C, D

3.5 Reaction rate coefficients

On the basis of statistical thermodynamics [5], it can be shown that the temperature dependence of

the rate coefficients follows a modified Arrhenius law

kf (T ) = AfT
nf exp

(
−
Ea

f

RT

)
kb(T ) = AbT

nbexp

(
− Ea

b

RT

)
The steric factor T nf,b is due to the fact that few collisions between reactive molecules have the

correct geometry to react. Ea
f,b represents the activation energy, i.e. the minimum energy needed

for the reaction to occur. Af,b is the collision frequency, precisely the frequency of collisions between

two molecules in the proper orientation for reaction to occur. The value of Af,b is determined by

experiment and will be different for every reaction. R is the universal gas constant.
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Figure 5: Barrier that must be overcome before forward reaction can proceed

Remark : An important consequence of the temperature dependence of the reaction rate coefficients

is that if the reactions taking place are not thermally neutral, and/or if the temperature is varying

due to the effect of an external source, then the system (76) no longer describes the correct reaction

kinetics, and needs to be extended to include an equation accounting for the change of temperature

due to the endo- or exothermicity of the reaction, or due to external effects.

3.6 Chemical source terms

3.6.1 Single-step reactions

We consider an elementary reaction containing an arbitrary number Ns of reactants and products

Ns∑
j=1

νf
j Xj 


Ns∑
j=1

νb
jXj

νf
j and νb

j are respectively the stoichiometric coefficient for the forward and the backward reactions of

species Xj. Further we introduce νj := νb
j − ν

f
j .

We define the reaction rate of the forward reaction, Ω̇f , respectively the backward reaction, Ω̇b by

Ω̇f = kf

Ns∏
s=1

[Xs]
νf

j

Ω̇b = kb

Ns∏
s=1

[Xs]
νb

j
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The time rate of change due to the forward and the backward reaction of any species participating in

the reaction is then

1

νi

(
d[Xi]

dt

)
f

=
1

νj

(
d[Xj]

dt

)
f

= Ω̇f

1

νi

(
d[Xi]

dt

)
b

=
1

νj

(
d[Xj]

dt

)
b

= Ω̇b

Thus, the net reaction rate for the s-th species, also called chemical production rate, reads

ω̇s = Wsνs(Ω̇f − Ω̇b)

= Ws(ν
b
s − νf

s )

[
kf (T )

Ns∏
j=1

[Xj]
νf

j − kb(T )
Ns∏
j=1

[Xj]
νb

j

]

= Ws(ν
b
s − νf

s )

[
kf (T )

Ns∏
j=1

(
ρj

Wj

)νf
j − kb(T )

Ns∏
j=1

(
ρj

Wj

)νb
j

]
(77)

where Ws denotes the molecular weight. Furthermore, the chemical heat release of the given reaction

reads

Q̇c = −
Ns∑
s=1

h0
sω̇s (78)

with h0
s the specific heat of formation of species Xs [26].

3.6.2 General reaction mechanisms

Generalizing these results to more complex reaction mechanisms is quite straightforward. In fact, a

multicomponent mixture in which Nr chemical reactions take place may be written in the form

Ns∑
s=1

νf
srXs 


Ns∑
s=1

νb
srXs, r = 1, · · · , Nr

where νf is now the matrix of the stoichiometric coefficients for the forward reactions, νb is the matrix

of the stoichiometric coefficients for the backward reactions. Ns denotes the number of species.

The source term in the transport equation of species Xs is the chemical production rate of that species.

It is obtained as a sum of the contributions of every reaction in which the species Xs is involved [26]

ω̇s = Ws

Nr∑
r=1

(νb
sr − νf

sr)Ω̇r (79)

In this relation, Ω̇r denotes the rate of the r-th reaction

Ω̇r = kr
f (T )

Ns∏
s=1

[Xs]
νf

sr − kr
b(T )

Ns∏
s=1

[Xs]
νb

sr (80)
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and the Arrehnius coefficient is provided for each reaction by the relation

kr(T ) = ArT
nrexp

(
− Ea

r

RT

)
(81)

The chemical heat release of the whole reaction mechanism reads

Q̇c = −
Ns∑
s=1

h0
sω̇s (82)

The chemical heat release is a source term in the energy equation and couples the chemical reactions

to the flow internal energy [25].

Example : Kinetics of the Zeldovich mechanism for NO

We consider the Zeldovich mechanism which describes the formation of thermal NO. It basically

consists of three reactions.

Reaction 1 : N2 +O 
 NO +N

Reaction 2 : N +O2 
 NO +O

Reaction 3 : N +OH 
 NO +H

Each of these reactions has two experimentally determined rate coefficients for the forward and back-

ward reaction. We will denote these reaction rates k1, k2 and k3 and use f and b to indicate the

forward, respectively the backward reaction. The formation kinetics of thermal NO is described by

d[NO]

dt
= kf

1 [O][N2] + kf
2 [N ][O2] + kf

3 [N ][OH]− kb
1[NO][N ]− kb

2[NO][O]− kb
3[NO][H] (83)
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4 Acoustic system

4.1 Reynolds Averaging

At any point in an unsteady flow all physical variables fluctuate with time even though their average

may remain constant. A very useful approach to study this instationary system is to decompose each

flow variable Z(x, t) into

• a mean part denoted Z and

• a fluctuating part Z ′(x, t)

such that

Z = Z̄ + Z ′ (84)

The mean value Z̄ is obtained by an averaging procedure and can be a function of time and/or space.

In fact, we distinguish between three different forms of averaging :

• Ensemble Averaging :

The average value is obtained through the mean of a sum of realizations or experiments

Z̄(x, t) = lim
N→∞

1

N

N∑
n=0

Zn(x, t) (85)

The obtained average is still a function of time and space.

• Spatial Averaging :

In this case, the mean variable is uniform in space but is allowed to vary in time. It is obtained

through an averaging over the control volume V

Z̄(t) =
1

|V |

∫
V

Z(x, t)dx (86)

• Time Averaging :

Z̄(x) = lim
∆T→∞

1

∆T

∫ t0+∆T

t0

Z(x, t)dt (87)

Since the mean value varies only in space and does not depend on time, we call it steady state

or stationary state.

In practice, ∆T →∞ means that the time interval ∆T should be much larger than the typical

time scale of the fluctuations.

Remark : In this thesis, we are primarily interested in the assessment of the thermo-acoustic insta-

bilites. As these instabilities are mainly triggered by the unsteady pressure and heat release oscillations

[2], we will restrict in the following to the time averaging. A common terminology used to denoted

the unsteady pressure is the acoustic pressure.
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Figure 6: The acoustic pressure is the difference between total and time-averaged pressure

By definition, unsteady terms are obtained from the difference between total and mean terms

Z ′(x, t) = Z(x, t)− Z̄(x) (88)

The following rules will be useful while deriving the Reynolds-averaged Navier-Stokes equations.

Let Y and Z be two flow variables, e.g. density ρ, velocity u or pressure p and s be one of the

independent variables x, y, z or t, then the averaging rules are

Z = Z (89)

Y + Z = Y + Z (90)

Y Z = Y Z (91)

∂Z

∂s
=

∂Z

∂s
s ∈ {x, y, z, t} (92)

Also, we should note that the average of the product is generally different from the product of the

averages

Y ·Z 6= Y ·Z (93)

Furthermore we assume that the fluctuations are much smaller than the steady-state variables

|Z ′(x, t)| � |Z̄(x)| ∀ x, t (94)

The fluctuating terms Y ′ and Z ′ obtained through this averaging procedure satisfy

Z ′ = 0, but in general Y ′Z ′ 6= 0 (95)

A further assumption is that the product of any two fluctuations is negligible. As a consequence all

equations will be linear in the instationary terms.
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4.2 Linearization

In the following we will use the Reynolds time averaging and split all variables appearing in the

governing equations into two parts : steady-state and acoustic such that

ρ(x, t) = ρ(x) + ρ′(x, t) u(x, t) = u(x) + u′(x, t)

p(x, t) = p(x) + p′(x, t) T (x, t) = T (x) + T ′(x, t)

Y (x, t) = Y (x) + Y ′(x, t) ω̇(x, t) = ω̇(x) + ω̇′(x, t)

(96)

As a consequence the governing equations will also be split into two sets :

• a set of equations for the steady-state part and

• a set of equations for the instationary acoustic terms.

To illustrate this we take the continuity equation as an example. Inserting the Reynolds-average

ansatz in the continuity equation leads to

∂ρ

∂t
+∇ • (ρu) = 0⇒

{
steady : ∇ • (ρu) = 0

unsteady : ∂ρ′

∂t
+∇ • (ρ′u + ρu′) = 0

(97)

Note that the term ∇ • (ρ′u′) was neglected since it includes the product of two acoustic variables.

As a second example, we consider the chemical species equation. Since we are only interested in

the instationary part of the mass fraction, we insert the Reynolds average ansatz in the conservation

equation of species Xs and neglect all nonlinear terms (in addition to the term ∇ • (ρ′Ds∇Y s)) [8].

We obtain the following equation for the unsteady mass fraction Y ′s

ρ
∂Y ′s
∂t

+ ρ̄ū • ∇Y ′s + ρu′ • ∇Y s + ρ′u • ∇Y s = ∇ • (ρDs∇Y ′s ) + ω̇′s (98)

Since ρ′ � ρ̄ this equation simplifies to

∂Y ′s
∂t

+ u • ∇Y ′s + u′ • ∇Y s =
1

ρ
∇ • (ρDs∇Y ′s ) +

1

ρ
ω̇′s (99)

Inserting this ansatz in the pressure, velocity and temperature equations provides equations for the

steady-state variables [24] as well as for the instationary terms.

The steady-state variables are much easier to obtain than the acoustic variables. In fact, there are

many reliable experimental techniques as well as computational methods available to determine the

values of the steady-state variables. In the following we assume that the steady-state variables have

been obtained either from measurements or previous steady-state simulations [3]. We focus on solving

the equations for the acoustic variables.

We write the linearized equations for the acoustic pressure, velocity, temperature and chemical species

∂p′

∂t
+ u • ∇p′ + u′ • ∇p+ γ(p∇ • u′ + p′∇ • u) = (γ − 1)(m′ +∇ • (λ∇T ′) +Q′)
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∂u′

∂t
+ (u • ∇)u′ + (u′ • ∇)u +

ρ′

ρ
(u • ∇)u +

1

ρ
∇p′ = 1

ρ
M′

∂T ′

∂t
+u•∇T ′+u′•∇T+

ρ′

ρ
u•∇T+

γ

ρcp
(p∇•u′+p′∇•u) =

γ

ρcp
(∇•(λ∇T ′)+Q′+m′)−(u•M′+u′•M)

∂Y ′s
∂t

+ u • ∇Y ′s + u′ • ∇Y s =
1

ρ
∇ • (ρDs∇Y ′s ) +

1

ρ
ω̇′s

4.3 System equations

In the context of gas turbine applications it is physically well-justified for the computation of the

eigenmodes to assume that :

• u = 0 : low Mach number assumption [3]

• ∇p = 0 : this is the typical case in a gas turbine combustion chamber [10]

• M,m = 0 : we neglect the effects of dissipation in the eigenmodes [33]

Due to these three assumptions the acoustic system equations simplify to

∂p′

∂t
+ γp∇ • u′ = (γ − 1)(Q′ +∇ • (λ∇T ′))

∂u′

∂t
+

1

ρ
∇p′ = 0

∂T ′

∂t
+ u′ • ∇T +

γp

ρcp
∇ • u′ =

γ

ρcp
(Q′ +∇ • (λ∇T ′))

ρ
∂Y ′s
∂t

+ ρu′ • ∇Y s = ∇ • (ρDs∇Y ′s ) + ω̇′s

In the sequel the source term will be denoted with S ′ := Q′ +∇ • (λ∇T ′).
Since all these equations are linear we assume a harmonic behaviour of the instationary variables and

separate the time dependence out as

ψ(x, t) = ψ̂(x)e−iωt (100)

The function ψ̂(x) is implicitly a function of ω. Yet this is considered a parametric dependence and

is suppressed. Using a Fourier-synthesis over frequency of these time-independent solutions ψ̂(x), it

is possible to recover the full time-dependent solution ψ(x, t).
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For all instationary variables we consider harmonic oscillations at frequency f := ω
2π

p′(x, t) = <(p̂(x)e−iωt) (101)

u′(x, t) = <(û(x)e−iωt) (102)

T ′(x, t) = <(T̂ (x)e−iωt) (103)

Y ′s (x, t) = <(Ŷs(x)e
−iωt) (104)

S ′(x, t) = <(Ŝ(x)e−iωt) (105)

Definition : We define the Fourier transform F of a function y = ϕ(x, t) by

F [ϕ(x, t)] = ϕ̂(x, ω) =
1√
2π

∫ ∞

−∞
ϕ(x, t)eiωtdt (106)

Further, the inverse transform is defined by

F−1[ϕ̂(x, ω)] = f(t) =
1√
2π

∫ ∞

−∞
ϕ̂(x, ω)e−iωtdω (107)

Then, the following rules hold for the Fourier transform

F [aϕ(x, t) + bψ(x, t)] = aF [ϕ(x, t)] + bF [ψ(x, t)]

F [ϕ(n)(x, t)] = (−iω)nF [ϕ(x, t)] (108)

Applying a Fourier transform is equivalent to inserting the harmonic ansatz in the acoustic system

equations and it yields

− iωp̂+ γp∇ • û = (γ − 1)Ŝ

− iωû +
1

ρ
∇p̂ = 0

− iωT̂ + û • ∇T +
γp

ρcp
∇ • û =

γ

ρcp
Ŝ

− iωρŶs + ρû • ∇Y s = ∇ • (ρDs∇Ŷs) + ˆ̇ωs

Combining these partial differential equations, we obtain an explicit relation between the velocity and

the gradient of pressure and eliminate the velocity mode shape from the remaining equations.

∇ • (c2∇p̂) + ω2p̂ = (γ − 1)iωŜ

iωρû = ∇p̂
ω2ρcpT̂ + cp∇T • ∇p̂ = iωŜ + ω2p̂

ω2ρŶs +∇Y s • ∇p̂ = iω∇ • (ρDs∇Ŷs) + iω ˆ̇ωs

These partial differential equations are given in the frequency domain and describe the coupling

between acoustic pressure, velocity, temperature as well as the chemical species which account for the

heat release. To complete these equations, one needs to specify the boundary conditions applied to the

system. In fact these play a major role in determining the mode shapes. In the next section we present

the different boundary conditions that could be applied to the system in real-world applications [2, 28].
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4.4 Boundary conditions

For the boundary conditions the flow variables of interest are the acoustic pressure and the acoustic

velocity. In theory it is possible to have some boundary conditions for the acoustic temperature and

species which are different from the homogeneous Dirichlet conditions. However this does not appear

in practical applications. Hence we focus on the four boundary conditions on acoustic pressure or

velocity that are of particular interest for gas turbines.

4.4.1 Zero normal velocity

This condition is used in the case of fully rigid walls or of reflecting inlets where the velocity of the

flow is imposed. Hence the outer normal component of the acoustic velocity is set to zero.

u′ • n = 0 (109)

Due to the relation,

û =
1

iωρ̄
∇p̂ (110)

it becomes clear that expressed in the frequency domain, this condition corresponds to a Neumann

boundary condition on the modes of the acoustic pressure:

∇p̂ • n = 0 (111)

Let ΓN be the part of the boundary ∂Ω on which we impose this condition. Noteworthy is that there

is no phase change in the pressure waves at ΓN .

4.4.2 Imposed pressure

This condition is suited for open walls or fully reflecting outlets, i.e. outlets where the pressure is

imposed to the flow. In this case, the pressure perturbations have to be zero. Therefore it corresponds

to a Dirichlet boundary condition on the pressure fluctuations. Let ΓD be the part of the boundary

∂Ω where we impose

p′|ΓD
= 0 (112)

In the frequency domain, this boundary condition is still of Dirichlet type for the acoustic pressure

modes p. In this case, the phase change in the pressure waves at the boundary is π.

4.4.3 Interface boundary condition

At an interface, a hyperplane of equation H(~ξ) = 0, separating two media M1 and M2 of different

density ρ1, ρ2 and wave speed c1, c2, we impose the continuity of the pressure fluctuations as well as

the continuity of the normal component of velocity{
p̂(~ξ−) = p̂(~ξ+)

û(~ξ−) • n = û(~ξ+) • n
(113)
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where n is a normal to the interface. For a one-dimensional wave these conditions are equivalent to{
p̂(ξ−) = p̂(ξ+)

1
ρ1c1

∂p̂(ξ−)
∂x

= 1
ρ2c2

∂p̂(ξ+)
∂x

(114)

4.4.4 Impedance boundary condition

In acoustics the reflection and transmission properties of interfaces and walls are characterized by

their impedance coefficient Z which relates the pressure to the normal velocity component in the

frequency-domain

Z =
p̂

û • n
(115)

We interpret this condition as a linear combination of a Dirichlet and a Neumann boundary conditions.

In fact the previous equation is equivalent to

Z(∇p̂ • n)− iωρ̄p̂ = 0 (116)

Using the reduced impedance z defined by the following expression

z =
Z

ρc
(117)

we may rewrite the impedance boundary condition as

z(∇p̂ • n)− iω
c
p̂ = 0 (118)

There is a physical interpretation of the impedance boundary condition. In fact the impedance

coefficient Z is usually a frequency-dependent complex number

Z(ω) = %(ω) + iς(ω), with %, ς ∈ IR (119)

where %(ω) and ς(ω) denote respectively the frequency-dependent resistance and reactance.

The resistive part % represents the various loss mechanisms an acoustic wave experiences. Resistive

effects remove energy from the wave and convert it into other forms. This energy is then irreversibly

lost from the system.

The reactive part ς represents the ability of the boundary to store the kinetic energy of the wave as

potential energy. For example, air is a compressible medium and stores kinetic energy by compression

and rarefaction. The electrical analogy for this is the capacitor’s ability to store or release electric

energy. By reactive effects, energy is not lost from the system but converted between kinetic and

potential forms.
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Part III

Modes of the thermo-acoustic system

5 Homogeneous Helmholtz equation

By neglecting the combustion source terms we get a purely acoustic system where the pressure mode

shapes satisfy the homogeneous Helmholtz equation

∇ • (c2∇p̂) + ω2p̂ = 0 (120)

In this system the presence of the flame is still taken into account by the steady-state field of density,

sound speed and temperature. However the unsteady flame interaction with the acoustic variables is

not taken into account.

In this case the temperature modes are obtained by a linear combination of p̂ and ∇p̂

T̂ =
1

ρcp
p̂− 1

ρω2
∇T • ∇p̂ (121)

or equivalently a linear combination of p̂ and û

T̂ =
1

ρcp
p̂+

1

iω
∇T • û (122)

It is possible to further simplify the system by neglecting the presence of the flame and assuming

a spatially-constant sound speed. As a consequence the pressure modes will depend only from the

geometry of the combustion chamber. The elliptic operator simplifies to the Laplacian and we recover

the standard form of the Helmholtz equation with the wave number k := ω
c

∆p̂+ k2p̂ = 0 (123)

We want to compute the eigenmodes of this system by considering different combinations of boundary

conditions. To simplify the notation we consider in a first step the one-dimensional case.

5.1 Eigenmodes of the 1D Helmholtz equation

We are interested in the mode shapes of a one-dimensional tube of length L denoted Ω = [0, L]. The

mode shapes are the solutions of the following Helmholtz equation

p̂′′ + k2p̂ = 0 (124)

Hence the acoustic modes represent the eigenfunctions of the second-order spatial derivative ∂2
xx. The

analytic solution for the eigenfunctions is provided by the following ansatz

p̂(x) = Aeikx +Be−ikx (125)
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Its spatial derivatives take the form

p̂′(x) = ik(Aeikx −Be−ikx) (126)

p̂′′(x) = −k2(Aeikx +Be−ikx) = −k2p̂(x) (127)

The solution is the triplet consisting in the wave number k and the coefficients A and B. To each

wave number we find pairs of coefficients A and B which are equal up to a multiplicative constant.

The solution is determined through the boundary conditions and through the geometry which is in

the one-dimensional case through the length of the domain.

Example: we consider a one-dimensional tube [0, L] with the following boundary conditions :

• a Neumann boundary condition at the inlet

p̂′(0) = 0 (128)

• a Dirichlet boundary condition at the outlet

p̂(L) = 0 (129)

These two requirements are equivalent to

A = B & ei2kL + 1 = 0 (130)

The wave numbers k which satisfy this condition are given by

k =

(
j +

1

2

)
π

L
, j ∈ N (131)

The corresponding eigenmodes are then

p̂j(x) = cos

((
j +

1

2

)
π

L
x

)
, j ∈ N (132)
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Figure 7: First three eigenmodes corresponding to j = 0 (blue), j = 1 (green), j = 2 (red)

The most general case is provided by impedance boundary conditions at both ends

z0p̂
′(0) + ikp̂(0) = 0 & zLp̂

′(L)− ikp̂(L) = 0 (133)

To get non-trivial solutions we require that z 6= 1, which means that we have a domain of finite length

and hence exclude transparent boundary conditions.The coefficients A and B are related through the

relation

(A+B) + z0(A−B) = 0 (134)

and the wave numbers k are solutions of

ei2kL =
1 + z0

1− z0

1 + zL

1− zL

(135)

5.2 Eigenmodes of the 3D Helmholtz equation

The extension of these results to the three-dimensional case is possible. The wave number k is in this

case a vector in IR3

k = (kx ky kz)
t ∈ IR3 (136)

We make the following ansatz for the eigenmodes p̂

p̂(x, y, z) = ψx(x)ψy(y)ψz(z) (137)

Inserting this ansatz in the Helmholtz equation

∆p̂+ k2p̂ = 0 (138)
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yields the following relation

ψ′′xψyψz + ψxψ
′′
yψz + ψxψyψ

′′
z + (k2

x + k2
y + k2

z)ψxψyψz = 0 (139)

Dividing this equation by p̂ yields

ψ′′x
ψx

+
ψ′′y
ψy

+
ψ′′z
ψz

+ k2
x + k2

y + k2
z = 0 (140)

By splitting this relation into three equations with appropriate boundary conditions, we reduce this

three dimensional problem into three independent one-dimensional problems and solve them as shown

in the previous section. We illustrate the procedure through the following case.

Example : let us consider the computational domain Ω = [0, Lx]× [0, Ly]× [0, Lz] with

• Neumann and Dirichlet boundary conditions on the x−axis :

∂p̂

∂x

∣∣∣∣
x=0

= 0 & p̂(Lx, y, z) = 0 ∀ y, z (141)

• Neumann boundary conditions on the y−axis :

∂p̂

∂y

∣∣∣∣
y=0

= 0 &
∂p̂

∂y

∣∣∣∣
y=Ly

= 0 (142)

• Neumann and impedance boundary conditions on the z−axis :

∂p̂

∂z

∣∣∣∣
z=0

= 0 & i
√
γp̄ρ̄

∂p̂

∂z

∣∣∣∣
z=Lz

+ p̂(x, y, Lz) = 0 ∀ x, y (143)

The solutions for the wave numbers kx, ky and kz are

kx =

(
j +

1

2

)
π

L
,

ky = j
π

L
,

kz =

(
j +

1

4

)
π

L

The eigenfunctions corresponding to these eigenvalues have to satisfy the boundary conditions and

are given by

ψx(x) = cos

((
j +

1

2

)
π
x

Lx

)
ψy(y) = cos

(
jπ

y

Ly

)
,

ψz(z) = cos

((
j +

1

4

)
π
z

Lz

)
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Hence the eigenmodes for the three-dimensional problem read

p̂j(x, y, z) = cos

((
j +

1

2

)
π
x

Lx

)
· cos

(
jπ

y

Ly

)
· cos

((
j +

1

4

)
π
z

Lz

)
, j ∈ IN (144)

Since the Helmholtz equation is linear in p̂, the full solution of is obtained by a linear combination of

the functions p̂j.

Remark : If any or all of sides of the box tends to infinity, the eigenvalues, i.e. the wave numbers,

bunch up and the eigenspectrum becomes continuous.

5.3 Orthogonality properties of the eigenmodes

Lemma : We consider the homogeneous Helmholtz equation

∇ • (c2∇p̂) + ω2p̂ = 0 (145)

defined on Ω with the following boundary conditions on ∂Ω = ΓD ∪ ΓN ∪ ΓF :

on the Dirichlet boundary ΓD : p̂ = 0 (146)

on the Neumann boundary ΓN : ∇p̂ • n = 0 (147)

on the impedance boundary ΓF : Z(ω)(∇p̂ • n) + iωρ̄p̂ = 0 (148)

Provided that

ΓF = ∅ (149)

or

∃ C : ΓF → IR such that Z(x, ω) = iC(x)ω ∀x ∈ ΓF (150)

then the set of eigenmodes is orthogonal.

Proof : Let (pm, ωm) and (pn, ωn) be two distinct eigenpairs of the Helmholtz equation defined

on Ω with boundary ∂Ω = ΓD ∪ ΓN ∪ ΓF . Then, we have

ω2
m

∫
Ω

pmp
∗
ndV = −

∫
Ω

∇ • (c2∇pm)p∗ndV (151)

=

∫
Ω

c2(∇pm • ∇p∗n)dV −
∫

∂Ω

c2p∗n(∇pm • n)ds

= −
∫

Ω

pm∇ • (c2∇p∗n)dV +

∫
∂Ω

c2pm(∇p∗n • n)− c2p∗n(∇pm • n)ds

= ω∗2n

∫
Ω

pmp
∗
ndV +

∫
∂Ω

c2pm(∇p∗n • n)− c2p∗n(∇pm • n)ds (152)

This equation is equivalent to

(ω2
m − ω∗2n )

∫
Ω

pmp
∗
ndV =

∫
∂Ω

c2pm(∇p∗n • n)− c2p∗n(∇pm • n)ds (153)
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If the boundary conditions are of homogeneous Dirichlet or Neumann type only, i.e. ∂Ω = ΓD ∪ ΓN ,

it is clear that the right-hand side of the previous equation is zero because

on ΓD ∪ ΓN : pi(∇p∗j • n) = 0 for {i, j} ⊂ {m,n} (154)

This means that if ∂Ω = ΓD ∪ ΓN then the eigenmodes of the Helmholtz equations are orthogonal.

However, in the presence of impedance boundary conditions,

Z(ωk)(∇pk • n) + iωkρ̄pk = 0 (155)

the right-hand side of the previous equation is not zero anymore and takes the form

(ω2
m − ω∗2n )

∫
Ω

pmp
∗
ndV =

∫
ΓF

(
iω∗n

Z∗(ωn)
+

iωm

Z(ωm)
)ρ̄c2pmp

∗
nds (156)

In the presence of impedance boundary conditions, the eigenmodes pm and pn are orthogonal if

ωm

Z(ωm)
+

ω∗n
Z∗(ωn)

= 0 on ΓF (157)

The necessary condition for all eigenmodes to be orthogonal is that there exists a real-valued function

C : ΓF → IR such that for all eigenfrequencies ω

Z(x, ω) = iC(x)ω ∀x ∈ ΓF (158)

�

6 Acoustic eigenmodes in 1D

Our objective is the study of the propagation of acoustic waves in a one-dimensional domain, e.g. a

tube of length L denoted Ω = [0, L]. Assume that an acoustic energy source is placed at the tube

inlet. The acoustic waves produced by such a source travel through the tube until they reach the

other end. Depending on the outlet configuration, some part of the waves is transmitted throug the

boundary while the remaining part reflects back into tho tube in form of traveling acoustic waves.

These reflected waves interact with the incoming waves to produce standing or stationary waves.

To investigate this phenomenon, we will assume in a first step that the density ρ as well as the sound

speed c are constant along Ω. In a second step, we consider that Ω consists of two neighboring media

M1 and M2 having different density and sound speed.

6.1 Homogeneous medium

Without loss of generality we take as a computational domain Ω = [0, L]. We assume that the domain

is homogeneous and that the density ρ and the sound speed c are constant in Ω.
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In the absence of source terms the acoustic pressure p′(x, t) and the acoustic velocity u′(x, t) satisfy

∂p′

∂t
+ ρc2

∂u′

∂x
= 0 (159)

ρ
∂u′

∂t
+
∂p′

∂x
= 0 (160)

By combining these two equations we note that the wave equation is simultaneously verified by the

acoustic pressure and velocity

∂2p′

∂t2
− c2∂

2p′

∂x2
= 0 (161)

∂2u′

∂t2
− c2∂

2u′

∂x2
= 0 (162)

To solve these equations we introduce the variables ξ and η defined by

ξ = x+ ct, η = x− ct (163)

By applying the chain rule in the acoustic pressure equation (161), we obtain

∂2p′

∂ξ∂η
= 0 (164)

which means that p′ is the sum of two functions f and g depending respectively from ξ and η :

p′(x, t) = f(ξ) + g(η) = f(x+ ct) + g(x− ct) (165)

The physical interpretation of this result is that the acoustic pressure is a superposition of a left- and

a right-traveling wave with constant wave speed c. The same applies for the acoustic velocity u′.

Moreover, we introduce the wave number k and wave frequency ω related to the wave speed by the

relation

c =
ω

k
(166)

It is then easy to show that for all eigenvalues kj of the Helmholtz equation

∆p̂j + k2
j p̂j = 0 (167)

the pressure and velocity terms, p±j and u±j , defined by

p±j (x, t) = ei(−ωjt±kjx) (168)

u±j (x, t) =
1

ρc
ei(−ωjt±kjx) (169)

are solutions of the wave equation.

Due to the linearity of the problem (161,162) the acoustic pressure p′ and velocity u′ take the form

p′(x, t) = p+(x, t) + p−(x, t) (170)

=
∑

j

A+
j e

i(−ωjt+kjx) +
∑

j

A−j e
i(−ωjt−kjx) (171)

u′(x, t) = u+(x, t)− u−(x, t) (172)

=
1

ρc

∑
j

A+
j e

i(−ωjt+kjx) − 1

ρc

∑
j

A−j e
i(−ωjt−kjx) (173)

where A+
j and A−j are resp. the amplitude of the right- and left-running wave with frequency ωj.
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6.2 Two neighboring media

In this section we assume that Ω consists of two neighboring media M1 = {x ≤ ξ} and M2 = {ξ < x}.
The interface is located at x = ξ. Each of the media M1 and M2 has its own density ρj and wave

speed cj and hence its own acoustic impedance Zj = ρjcj, j ∈ {1, 2}.

Figure 8: The domain Ω consists of two homogeneous media M1 and M2

We solve this problem by considering each domain apart and use the analogy of the first case.

On Mj the acoustic pressure and velocity satisfy the wave equation

∂2p′j
∂t2
− c2j

∂2p′j
∂x2

= 0 (174)

∂2u′j
∂t2
− c2j

∂2u′j
∂x2

= 0 (175)

The continuity of the acoustic pressure and normal velocity at the interface reads{
p+

1 (ξ, t) + p−1 (ξ, t) = p+
2 (ξ, t) + p−2 (ξ, t)

1
Z1

[
p+

1 (ξ, t)− p−1 (ξ, t)
]

= 1
Z2

[
p+

2 (ξ, t)− p−2 (ξ, t)
] (176)

In matrix form the interface condition is written as(
1 −1
1

Z1

1
Z2

)(
p−1 (ξ, t)

p+
2 (ξ, t)

)
=

(
−1 1
1

Z1

1
Z2

)(
p+

1 (ξ, t)

p−2 (ξ, t)

)
(177)

Since the characteristic impedances Z1 = ρ1c1 and Z2 = ρ2c2 are strictly positive we may invert the

matrix on the right-hand side and obtain the following system(
p−1 (ξ, t)

p+
2 (ξ, t)

)
=

1

Z2 + Z1

(
Z2 − Z1 2Z1

2Z2 Z1 − Z2

)(
p+

1 (ξ, t)

p−2 (ξ, t)

)
(178)

The wave traveling from M1 into M2, called incident wave wi, is not totally transmitted to the

neighbor domain. In fact, depending on the reduced impedance Z2

Z1
, a portion wt of the incident wave
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is transmitted through the interface into the second medium whereas the remaining part wr is reflected

back into the first one.

Figure 9: Reflected and transmitted wave at the interface

Hence we have at the interface {x = ξ} between M1 and M2 that

p−1 (ξ, t) =
Z2 − Z1

Z2 + Z1

p+
1 (ξ, t)︸ ︷︷ ︸

pr
1(ξ, t)

+
2Z1

Z2 + Z1

p−2 (ξ, t)︸ ︷︷ ︸
pt
2(ξ, t)

(179)

This enables us to define the reflection factor at the interface, denoted R, which is the ratio of the

amplitude of the reflected wave to the incident amplitude

R :=
pr

1(ξ, t)

p+
1 (ξ, t)

=
Z2 − Z1

Z2 + Z1

(180)

Similarly we define the transmission factor T (from M2 into M1) which is given by the ratio of the

amplitude of the transmitted wave to the amplitude of the incident one

T2→1 :=
pt

2(ξ, t)

p−2 (ξ, t)
=

2Z1

Z2 + Z1

(181)

The relations between right-running and left-running waves at the interface are summarized in the

following equation (
p−1 (ξ, t)

p+
2 (ξ, t)

)
=

(
R T2→1

T1→2 −R

)(
p+

1 (ξ, t)

p−2 (ξ, t)

)
(182)

Three cases are particularly noteworthy :

• in the limit case |Z2

Z1
| → ∞, the impedance boundary condition is equivalent to the Neumann

boundary condition : the incident wave is identically reflected at the rigid wall (R = 1 and

T = 0),
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• whereas in the case Z2

Z1
→ 0, the impedance boundary condition reduces to the Dirichlet boundary

condition. We hence have a reflecting wall (R = −1 and T = 2) : the incident wave is fully

reflected but with a sign change.

• In the case of an impedance match, i.e. Z2

Z1
= 1, then there is no reflection (R = 0) and the

waves are transmitted identically (T = 1) as it is the case for perfectly matched layers (PML).

These results are summarized in the following table

boundary condition mathematical reduced reflection transmission Example

expression impedance Z2

Z1
factor R factor T

Dirichlet p̂ = 0 0 -1 2 open wall

Impedance match ∇p̂ • n− ikp̂ = 0 1 0 1 PML

Neumann ∇p̂ • n = 0 ∞ 1 0 rigid wall

6.3 Case studies

6.3.1 Rigid-wall inlet and open-wall outlet

We consider a rigid wall at the inlet and an open wall at the outlet (equivalent to a fully reflecting

outlet). We would like to find the pulsation number ω of the acoustic modes in this duct.

Figure 10: Rigid wall at inlet and open wall at outlet

Acoustic modes on M1

The pressure modes of the subdomain M1 satisfy

p′1(x, t) = A+
1 e

i(k1x−ωt) + A−1 e
i(−k1x−ωt) (183)

The Neumann boundary condition at the inlet is

∂p′1
∂n
|x=0 = 0 (184)
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Hence the reflection factor R1 is 1, which means that the amplitudes A+
1 and A−1 of the incident and

reflected waves are equal. Consequently the pressure and velocity modes take the form

p̂1(x) = 2A+
1 cos(k1x) (185)

û1(x) = 2i
A+

1

ρ1c1
sin(k1x) (186)

Acoustic modes on M2

On M2 the pressure modes are given by

p′2(x, t) = A+
2 e

i(k2(x−L)−ωt) + A−2 e
i(−k2(x−L)−ωt) (187)

At the outlet we have the Dirichlet boundary condition

p′2(L, t) = 0 (188)

which implies for the reflection factor R2

A−2
A+

2

= R2 = −1 (189)

Then the pressure and velocity modes are

p̂2(x) = 2iA+
2 sin(k2(x− L)) (190)

û2(x) = 2
A+

2

ρ2c2
cos(k2(x− L)) (191)

Continuity conditions and pulsation number

The continuity of the acoustic pressure and normal velocity at the interface x = ξ reads{
A+

1 cos( ω
c1
ξ) = iA+

2 sin( ω
c2

(ξ − L))

i
A+

1

ρ1c1
sin( ω

c1
ξ) =

A+
2

ρ2c2
cos( ω

c2
(ξ − L))

(192)

The continuity conditions written in matrix form are(
cos( ω

c1
ξ) i sin( ω

c2
(L− ξ))

i
ρ1c1

sin( ω
c1
ξ) −1

ρ2c2
cos( ω

c2
(L− ξ))

)(
A+

1

A+
2

)
= ~0 (193)

To get nontrivial solutions we require that the determinant of the matrix vanishes. Therefore we are

interested in the pulsation numbers ω which make the matrix singular. The pulsation numbers are

solutions of these equations

sin

(
ω

c2
(L− ξ)

)
sin

(
ω

c1
ξ

)
− ρ1c1
ρ2c2

cos

(
ω

c1
ξ

)
cos

(
ω

c2
(L− ξ)

)
= 0 (194)
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6.3.2 Impedance wall at both ends

We consider a one-dimensional duct consisting of two parts having different density and sound speed.

We assume impedance walls at left and right boundary . For the well-posedness of the problem, the

domain has to be of finite dimension, which implies that we exclude the case of impedance match, i.e.

R 6= 0 at both boundaries.

Figure 11: Impedance condition at both boundaries of Ω

Acoustic modes on M1

The acoustic pressure is given by the general formula

p′1(x, t) = A+
1 e

i(k1x−ωt) + A−1 e
i(−k1x−ωt) (195)

At the inlet an impedance boundary condition is imposed

Z0
∂p̂

∂n
|x=0 − iωρ1p̂(0) = 0 (196)

The amplitude of the reflected and the incident wave are related through the reflection factor R0

A+
1

A−1
= R0 =

Z0 − ρ1c1
Z0 + ρ1c1

(197)

The pressure and velocity modes are then

p̂1(x) = A−1 [R0 e
ik1x + e−ik1x] (198)

û1(x) =
A−1
ρ1c1

[R0 e
ik1x − e−ik1x] (199)

Acoustic modes on M2

On M2 the acoustic pressure is given through

p′2(x, t) = A+
2 e

i(k2(x−L)−ωt) + A−2 e
i(−k2(x−L)−ωt) (200)

We impose an impedance boundary condition at the outlet

ZL
∂p̂

∂n
|x=L − iωρ2p̂(L) = 0 (201)
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The amplitude of the reflected wave is related to the incident wave through the reflection factor RL

A−2
A+

2

= RL =
ZL − ρ2c2
ZL + ρ2c2

(202)

The pressure and velocity modes are then

p̂2(x) = A+
2 [eik2(x−L) +RLe

−ik2(x−L)] (203)

û2(x) =
A+

2

ρ2c2
[eik2(x−L) −RLe

−ik2(x−L)] (204)

Continuity conditions and pulsation number

Written in matrix form the continuity conditions at the interface x = ξ read(
R0 e

ik1ξ + e−ik1ξ eik2(ξ−L) +RLe
−ik2(ξ−L)

1
ρ1c1

[R0 e
ik1ξ − e−ik1ξ] 1

ρ2c2
[eik2(ξ−L) −RLe

−ik2(ξ−L)]

)(
A−1
A+

2

)
= ~0 (205)

For non-trivial solutions the determinant of the matrix has to vanish. This implies the folllowing

frequency equation

ρ1c1(R0 e
i ω

c1
ξ
+ e

−i ω
c1

ξ
)(e

i ω
c2

(ξ−L) −RL e
−i ω

c2
(ξ−L)

) = ρ2c2(e
i ω

c2
(ξ−L)

+RL e
−i ω

c2
(ξ−L)

)(R0 e
i ω

c1
ξ − e−i ω

c1
ξ
)

6.4 General Case

In the previous subsections, we showed how to determine the eigenmodes of a duct consisting either

of one homogeneous medium or of two media separated by an interface. However if we want to solve

the problem of the eigenmodes for a more realistic case, we need a method to find these eigenmodes

in a duct where there is an arbitrary evolution of ρ(x), c(x) and T (x).

The idea is to recursively divide the domain Ω into subintervals such that the flow variables can

assumed to be constant in each subinterval. Hence solving the problem on Ω consists on applying the

procedure described in the previous section to each pair of subintervals.

By dividing the interval Ω to N subintervals M1, ..,MN , we get 2N wave amplitudes {A+
i , A

−
i }i=1,..,N

where A+
i and A−i are respectively the amplitudes of the right-running and left-running wave in the

subinterval Mi. To obtain the acoustic modes of the system, which correspond to its standing waves,

we require that all these 2N unknown amplitudes are different from zero.

To obtain a complete system of equations, we need to find 2N relations coupling these amplitudes. In

the case of N subintervals there are (N − 1) interfaces which means 2(N − 1) continuity conditions.

The two boundary conditions, i.e. at inlet and outlet, provide the two remaining equations.

Remark : The subintervals do not need to be of the same size. Since the steady-state variables are

known, the intervals can be adaptively refined or coarsened such that the evolution of the stationary

flow variables is well resolved.
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7 Combustion source terms

By neglecting the source terms in the previous section we reduced the complexity of the problem and

could easily compute the mode shapes of the acoustic variables. However, these mode shapes are not

accurate enough to yield a reliable assessment of the dynamics of the thermo-acoustic system since

they do not take into account the unsteady effect of combustion [34]. For a better assessment of the

dynamic behaviour of the system it is necessary to consider the coupling between unsteady flame

and acoustics. In this section we will investigate the coupling between unsteady heat release and the

acoustic variables [35].

7.1 Flame transfer functions

In order to eliminate the combustion oscillations, it is important to understand the fundamental mech-

anisms of the burner system. This guides the engineers at a very early stage on how to make a redesign

of the critical components or to increase the acoustic damping at the appropriate locations, or even

apply active control techniques to suppress the instability. To achieve this goal, it is necessary to

identify the dynamics of the system by examination of the flame transfer function.

The analysis consists in considering the combustion chamber as a dynamical system apart, with the

fluid dynamical properties of air and fuel inflow being its input variables. The output variables of

interest for this dynamical system are the heat release rate, the outflow mixture fraction as well as the

temperature. Generally, the system is linearized since the scope of the analysis is the determination

of the growing and decaying modes when their amplitudes and rates of change are small. The analysis

could be performed on discrete-time or continuous-time signals. In the last case, the flame transfer

function can be described as the ratio of the Fourier transform of the output of the system, to the

Fourier transform of its input variable. As an example of flame transfer function it is possible to

consider the ratio of the unsteady heat release at a fixed position in the combustion chamber to the

fluctuations in air inflow rate.

To determine the transfer function it is necessary to know the performance of the combustor in

the time domain. By means of experiments the characteristics of several burner systems have been

assessed. The response of the flames to different imposed acoustic perturbations have been measured

and investigated.

Unfortunately, experimental sutdy of burner systems is not always feasible. Not only are they ex-

pensive and time-consuming but also prone to high pressure and high temperature rises which dam-

age the hardware. Nowadays more and more studies are performed using numerical simulation and

computational fluid dynamics. Simulation provides a flexible tool which is widely used to analyse the

system dynamics at different operation points.

Bohn performed a numerical simulation of the burner system to determine the transfer function. Af-

ter a steady-state solution is determined, the mass flow rate is changed suddenly. The frequency

response to this disturbance represents the dynamic behavior of the flame. Dowling et al. [51] used
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numerical simulation to calculate the unsteady flow in the combustor. Through calculations of the

forced unsteady combustion resulting from the specified time-dependent variation in the fuel and air

supplies, they identified the main source of the unsteady heat release. By forcing harmonically at a

specified frequency, they determined the transfer function between the heat release rate and the air

inflow rate. In a more recent paper, Zhu, Dowling and Bray investigated the transfer function through

time-dependent simulations of the combustion process. They compared four different methods which

are the use of harmonic forcing frequency, infinite impulse response, the random binary signal and the

sum of sinusoidal signals. The transfer functions are determined as a function of the acoustic frequency.

In addition to numerical simulation, intensive research has been made using analytical techniques

to obtain the transfer function. For Bunsen-type flames, the interaction with an acoustic field is stud-

ied analytically by Fleifil et al. in [23], where the flow field is described by a Poiseuille flow and the

profile is assumed to be undistorted by the flame. The motion of the flame is determined by using the

G-equation and a constant burning velocity.

Burner-stabilized flat flames have been thoroughly investigated in the works of Van Harten et al,

Buckmaster and McIntosh and Clark [34]. Raun and Beckstead, McIntosh and Rylands used the

flame/acoustic transfer functions to investigate Rijke tube oscillations. In [35] McIntosh studied

flames that are anchored to a burner plate and pointed out that it is important to determine the the

significant change in the phase of the velocity of the acoustic disturbance to identify the conditions of

resonance. The change in velocity is governed by a velocity transfer function which depends on the

type of flame and on the geometry used. In his study McIntosh exploits the largeness of the activation

energy and the smallness of the Mach number to find an analytical expression for the transfer func-

tion. The analysis is based on the exact asymptotic solution of the governing equations with one-step

chemistry and provides relations for the velocity fluctuations through the flame. Thus for any combi-

nation of flame and tube, a prediction of the change in velocity of the acoustic disturbance across the

flame region can be made and an estimate given as to the growth or decay rate of a particular mode.

Furthermore the developed theory might be applied to predict where the flame should sit in a constant

length tube in order to cause the largest amplification of the flame noise. The obtained results indi-

cate that the most significant growth always occurs when the flame is in the lower quadrant of the tube.

In a more recent paper, Rook and de Goey [44] studied numerically the interaction of burner-stabilized

flat flame with acoustic waves. The study is restricted to the regime with low Mach numbers and

relatively low frequencies. The flame model is based on flames with a rigid internal structure, in

which the effect of reactions on acoustic distortions is determined by linearized quasi-steady relations.

By comparing the numerical results, the authors concluded that the one-step model and the skeletal

model predict a similar behavior for the acoustic response. Furthermore they pointed out that for an

accurate prediction of the acoustic response of burner-stabilized flames at relatively low frequencies

even a simple chemical reaction scheme is useful.
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7.2 Relation between combustion and velocity

We consider a reactive gas flowing [20] across a one-dimensional duct of length L in which a flame is

stabilized at x = ξ. The flame represents an interface between two sections M1 and M2.

On M1, the part of the duct upstream the flame, the gas is cold and unburnt and has a sound speed

c̄1, a temperature T̄1 and a density ρ̄1. Downstream the flame on M2, the gas is hot and burnt and

has a sound speed c̄2, a temperature T̄2 and a density ρ̄2 [19].

Figure 12: Flame zone represents the interface between unburnt and burnt gas

Therefore the mean variables ρ, c and T are essentially constant along Ω except for a step change at

the interface ξ. Therefore we may describe the mean variables through a Heaviside function H( · ). In

particular the mean temperature T takes the form

T (x) = T 1 +H(x− ξ)(T 2 − T 1) (206)

and the continuity of steady mass flow is expressed through

ρ1u1 = ρ2u2 (207)

Furthermore we assume the gas to be ideal and that the mean flow pressure p is constant along the

duct

p = ρ
R
W
T (208)

By combining these last two results we obtain a characteristic ratio which we denote Θ

Θ :=
ρ1

ρ2

=
u2

u1

=
T 2

T 1

> 1 (209)

We assume the flame to be stabilized at x = ξ and ignore the local boundary layer at the flame front.

This means that the combustion process and the flame zone are spatially localized at the interface ξ

Q′(x, t) = q′(t)δ(x− ξ) (210)
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where q′ denotes the heat release rate per unit area and δ( · ) denotes the Dirac delta function.

In this case the equations for unsteady density, velocity, temperature and pressure on Mj are given by

∂ρ′j
∂t

+
∂ρju

′
j

∂x
= 0 (211)

ρj

∂u′j
∂t

+
∂p′j
∂x

= 0 (212)

ρjcp
∂T ′j
∂t

+ γp
∂u′j
∂x

= (γ − 1)Q′ (213)

p′j = ρjcpT
′
j (214)

To obtain the matching conditions between the two domains M1 and M2, we consider a small control

interval which includes the flame front that we denote I = [ξ−, ξ+] = [ξ − ε, ξ + ε], for ε→ 0.

The first matching condition is that the acoustic pressure is continuous across the flame [19]

p′(ξ−, t) = p′(ξ+, t) (215)

Assuming the jump of density to occur in a very thin layer we integrate the unsteady density equation

and obtain the second matching condition

ρ2u
′(ξ+, t) = ρ1u

′(ξ−, t) (216)

The third matching condition relates the jump of the unsteady velocity to the heat release.

Lemma : At the interface the jump condition for the unsteady velocity reads

u′(ξ+, t)− u′(ξ−, t) =
γ − 1

γp
q′(t) (217)

Proof : the pressure equation is given by

∂p′

∂t
+ γp

∂u′

∂x
= (γ − 1)Q′(x, t)

We integrate this equation over the control interval I = [ξ−, ξ+]∫ ξ+

ξ−

[
∂p′

∂t
+ γp

∂u′

∂x

]
dx = (γ − 1)

∫ ξ+

ξ−
Q′(x, t)dx

Since γp = const, we obtain for ε→ 0 the following jump condition of the velocity

u′(ξ+, t)− u′(ξ−, t) =
γ − 1

γp
q′(t)

�
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We remind the relation between mean flow variables and summarize the three matching conditions at

the flame front

Θ =
ρ1

ρ2

=
u2

u1

=
T 2

T 1

(218)

p′(ξ+, t) = p′(ξ−, t) (219)

u′(ξ+, t) = Θu′(ξ−, t) (220)

u′(ξ+, t) = u′(ξ−, t) +
γ − 1

γp
q′(t) (221)

The last two conditions describe the unsteady velocity near the flame and are equivalent to

u′(ξ+, t) =
Θ

Θ− 1

γ − 1

γp
q′(t) (222)

q′(t) =
Θ− 1

γ − 1
γpu′(ξ−, t) (223)

The last equation shows a proportionality between the heat release rate q′(t) and the unsteady velocity

upstream the flame u′(ξ−, t). By rearranging the proportionality factor, we are able to deduce a

physical interpretation of this relation. In fact, using the definition of the heat capacity at constant

pressure cp and the upstream sound speed c̄21

cp =
γ

γ − 1

R
W
, and c̄21 = γ

R
W
T 1 (224)

we rewrite the expression for the coefficient Θ to get

Θ =
T 2

T 1

(225)

= 1 +
T 2 − T 1

T 1

(226)

= 1 + (γ − 1)cp
T 2 − T 1

c̄21
(227)

Since the upstream sound speed c̄1 is also given by

c̄1 =

√
γp

ρ1

(228)

the unsteady heat release rate takes the form

q′(t) = ρ1cpu
′
1(ξ

−, t)(T 2 − T 1) (229)

Remark : T 2−T 1 represents the temperature jump across the flame. Hence, the physical interpreta-

tion of this equation is that the unsteady heat release is proportional to the unsteady mass flow rate

into the heating zone, i.e. ρ1u
′
1(ξ

−, t), and to the heat input required to raise the mean temperature
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from upstream temperature T 1 to downstream temperature T 2, i.e. cp(T 2 − T 1).

Written in matrix form the jump conditions for the particular case above are(
cos( ω

c̄1
ξ) i sin( ω

c̄2
(L− ξ))

i
ρ1c̄1

sin( ω
c̄1
ξ)Θ −1

ρ2c̄2
cos( ω

c̄2
(L− ξ))

)(
A+

1

A+
2

)
= ~0 (230)

The frequency equation is obtained by setting the determinant of the matrix to zero, i.e.

√
Θ sin(

ω

c̄1
ξ) sin(

ω

c̄2
(L− ξ))− cos(

ω

c̄1
ξ) cos(

ω

c̄2
(L− ξ)) = 0 (231)

Remark : If there is no combustion (q′(t) = 0), hence no temperature jump (T 2 = T 1), the parameter

Θ equals 1 and we get the same equations for the pulsation ω obtained for the case without combustion.

7.3 Modeling the unsteady heat release

We want to compute the eigenmodes of the combustion chamber taking into account the effect of

combustion. Since all the acoustic variables are unsteady terms, only the effect of unsteady heat release

needs to be considered in the Helmholtz equation. The effect of stationary heat release is already taken

into account in computing the steady state of pressure, density, sound speed and temperature fields

[19].

The total heat release due to combustion is given by negative the sum over the reaction rate times

the heat of formation of every species

Q̇c = −
Ns∑
s=1

h0
sω̇s (232)

By definition, unsteady terms are obtained from the difference between total and stationary terms.

Using this property, the unsteady heat release is given by

Q̇′c = Q̇c − Q̇c = −
Ns∑
s=1

h0
sω̇s +

Ns∑
s=1

h0
sω̇s = −

Ns∑
s=1

h0
s(ω̇s − ω̇s) (233)

The same applies to the unsteady reaction rate ω̇′s

ω̇′s = ω̇′s(Y
′
s=1,..,Ns

, ρ′, T ′) (234)

= ω̇s(Ys=1,..,Ns , ρ, T )− ω̇s(Y s=1,..,Ns , ρ, T ) (235)

= ω̇s((Ys + Y ′s )s=1,..,Ns , ρ+ ρ′, T + T ′)− ω̇s(Y s=1,..,Ns , ρ, T ) (236)

The idea of the present model is to consider a Taylor series of the total reaction rate around the

stationary reaction rate

ω̇s = ω̇s((Ys + Y ′s )s=1,..,Ns , ρ+ ρ′, T + T ′) (237)

= ω̇s(Y s=1,..,Ns , ρ, T ) +
∂ω̇s

∂Y1

Y ′1 + . . .+
∂ω̇s

∂YNs

Y ′Ns
+
∂ω̇s

∂ρ
ρ′ +

∂ω̇s

∂T
T ′ + h.o.t.
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By neglecting the high-order terms we obtain a first-order approximation of the unsteady reaction

rate ω̇′s

ω̇′s
.
=
∂ω̇s

∂Y1

Y ′1 + . . .+
∂ω̇s

∂YNs

Y ′Ns
+
∂ω̇s

∂ρ
ρ′ +

∂ω̇s

∂T
T ′ (238)

To simplify the notation we define the vector Y which consists of all mass fractions

Y = (Y1 Y2 . . . YNs)
t (239)

and rewrite the unsteady reaction rate ω̇′s in the compact form

ω̇′s = ∇Y ω̇s •Y′ +
∂ω̇s

∂ρ
ρ′ +

∂ω̇s

∂T
T ′ (240)

As a result we obtain the following relation for the unsteady heat release

Q̇′c = −
Ns∑
s=1

h0
sω̇

′
s = −

Ns∑
s=1

h0
s

(
∇Y ω̇s •Y′ +

∂ω̇s

∂ρ
ρ′ +

∂ω̇s

∂T
T ′
)

(241)

Remark : Through this formalism, we obtained an expression for the unsteady heat release Q′ as

a function of the fluctuations of the mass fractions, density and temperature. It is noteworthy that

quite contrary to most of the models used sofar in numerical combustion, this formulation does not

involve any model parameters or empiric assumptions. It is based on a mathematical approach which

linearizes the heat release around its steady state. On the basis of this relation, we will construct a

flame transfer function coupling the unsteady heat release to the pressure fluctuations.

7.4 Density and chemical species equations

In addition to the mode shapes of temperature, the source term Q̂ involves the mode shapes of density

as well as the mass fractions {Ŷs}s=1,..Ns . Therefore, we need to find additional equations for these

new unknown quantities.

7.4.1 Equations for the density fluctuation

Assuming the flow to be isentropic it is possible to provide a relation between the acoustic pressure

p′ and the density fluctuation ρ′. Indeed we have for an isentropic flow the following constitutive

equation

p = p+ p′ = p+ ρ′
[
∂p

∂ρ

]
S

+
1

2
(ρ′)2

[
∂2p

∂ρ2

]
S

+ .. (242)

Neglecting the nonlinear term this equation means that the density perturbation is proportional to

the pressure perturbation

p′ = ρ′
[
∂p

∂ρ

]
S

= ρ′c2 (243)

which yields for the Fourier transforms

ρ̂ =
1

c2
p̂ (244)
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7.4.2 Equations for the chemical species

The conservation laws of the chemical species Xs reads

ρ
∂Y ′s
∂t

+ ρu′ • ∇Y s = ∇ • (ρDs∇Y ′s ) + ω̇′s (245)

We take the Fourier transform of this equation and use the expression of the acoustic velocity

ρω2Ŷs +∇Y s • ∇p̂ = iω∇ • (ρDs∇Y ′s ) + iω ˆ̇ωs (246)

Inserting the first-order approximation for ω̇s yields

ρω2Ŷs +∇Y s • ∇p̂ = iω∇ • (ρDs∇Ŷs) + iω(∇Y ω̇s • Ŷ +
∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂ ) (247)

8 Computing the eigenmodes of active combustion chambers

8.1 Combining the equations for temperature and species

At this stage we obtained the additional equations for the temperature, mass fractions and density

modes. We would like to combine the temperature modes equation

ρω2T̂ +∇T • ∇p̂ =
1

cp
ω2p̂+

1

cp
iω∇ • (λ∇T̂ )− 1

cp
iω

Ns∑
s=1

h0
s

(
∇Y ω̇s • Ŷ +

∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂

)
(248)

with the Ns chemical species equations

ρω2Ŷs +∇Y s • ∇p̂ = iω∇ • (ρDs∇Ŷs) + iω(∇Y ω̇s • Ŷ +
∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂ ), s = 1, . . . , Ns (249)

and write all these equations in matrix form as

iω


∇ • (ρD1∇Ŷ1)

...

∇ • (ρDNs∇ŶNs)
1
cp
∇ • (λ∇T̂ )

+ iωJ


Ŷ1

...

ŶNs

T̂

 = b(p̂) + b∇(p̂) (250)

The vectors b(p̂) and b∇(p̂) on the right-hand side are dependent on the acoustic pressure p̂ and its

gradient ∇p̂ as well as the frequency number ω. All other terms appearing in the expression of these

vectors are either constants or steady-state variables.

b(p̂) = −ω
2

cp


0
...

0

1

 p̂− iω

c2


∂ω̇1

∂ρ
...

∂ω̇Ns

∂ρ

−
∑Ns

s=1
h0

s

cp

∂ω̇s

∂ρ

 p̂, b∇(p̂) =


∇Y 1

...

∇Y Ns

∇T

 • ∇p̂, (251)
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The matrix J is a square matrix of dimension (Ns + 1) and is given by

J = iωρI + J̃ (252)

where I represents the identity matrix of size (Ns + 1). The matrix J̃ couples the temperature

fluctuation to the mass fractions fluctuations and is given by

J̃ =


∂ω̇1

∂Y1
. . . ∂ω̇1

∂YNs

∂ω̇1

∂T
...

...
...

...
∂ω̇Ns

∂Y1
. . .

∂ω̇Ns

∂YNs

∂ω̇Ns

∂T

−
∑Ns

s=1
h0

s

cp

∂ω̇s

∂Y1
. . . −

∑Ns

s=1
h0

s

cp

∂ω̇s

∂YNs
−
∑Ns

s=1
h0

s

cp

∂ω̇s

∂T

 (253)

Remark : it is straightforward to note that the last line of the matrix J̃ which corresponds to the

temperature equation can be obtained by a linear combination of all previous lines. Furthermore, the

conservation of mass being still valid in a reactive flow, we know that all reaction rates ω̇s sum up to

0. Hence the sum of the first Ns lines of the matrix J̃ is also 0. As a result of these two observations

the matrix J̃ of dimension (Ns + 1) cannot have full rank

1 ≤ rank(J̃) ≤ Ns − 1 (254)

8.2 Investigating the coupling matrix

We would like to develop a flame-transfer function which couples directly the heat release to the

acoustic pressure. To achieve this we need to examine the properties of the matrix J and if possible

find an inverse of this matrix. It is important to obtain an analytic formula for the inverse of the

functional matrix J as computing the inverse numerically in every grid point would be cumbersome

and infeasible in real-world applications. The only option is to investigate the coupling matrix J

thoroughly and try to use the physical as well as mathematical properties of the thermo-acoustic

system to obtain an analytical expression for the inverse of J .

For a multicomponent mixture in which Nr chemical reactions take place, the reaction mechanism is

written as
Ns∑
s=1

νf
srXs 


Ns∑
s=1

νb
srXs, r = 1, 2, · · · , Nr

νf and νb are respectively the matrices of the stoichiometric coefficients for the forward and backward

reactions. ν = νb − νf represents the matrix of the net stoichiometric coefficients. Let Ω̇r denote the

net reaction rate of the r-th reaction. Then Ω̇r has the following expression

Ω̇r = kf
r (T )

Ns∏
s=1

(
ρs

Ws

)νf
sr − kb

r(T )
Ns∏
s=1

(
ρs

Ws

)νb
sr (255)

The net reaction rate ω̇s of species Xs is obtained by summing over all Nr reactions and is given by

ω̇s =
Nr∑
r=1

WsνsrΩ̇r (256)
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This relation is very interesting as it allows us to understand the special structure of the matrix J̃

which becomes more clear by introducing the vectors u and v defined as

ur = ( W1ν1r . . . Wsνsr . . . WNsνNsr −
∑Ns

s=1Ws
h0

s

cp
νsr )t

vr = ( ∂Ω̇r

∂Y1
. . . ∂Ω̇r

∂Ys
. . . ∂Ω̇r

∂YNs

∂Ω̇r

∂T
)t

(257)

The matrix J̃ can be obtained by combinations of these vectors ur and vr. More precisely the matrix

J̃ takes the form of a sum of rank-1 updates

J̃ =
Nr∑
r=1

urv
t
r (258)

As a direct consequence we obtain a better bound for rank(J̃)

1 ≤ rank(J̃) ≤ min(Nr, Ns − 1) (259)

Remarks :

• Let z denote the vector (h0
1 h

0
2 . . . h0

Ns
cp)

t. The vector z is orthogonal to all vectors ur for any

combination of stoechiometric coefficients νsr and any molecular weights Ws.

∀r ∈ 1, .., Nr : ztur = 0⇒ ztJ̃ = 0 (260)

• An important consequence of ztJ̃ = 0 is that z is a right eigenvector of J and the corresponding

eigenvalue is iωρ̄.

• Due to equation (256) we have that

∂ω̇s

∂ρ
=

Nr∑
r=1

Wsνsr
∂Ω̇r

∂ρ
(261)

and rewrite the right-hand side vector b(p̂)

b(p̂) = −ω
2

cp


0
...

0

1

 p̂− iω

c2

Nr∑
r=1

∂Ω̇r

∂ρ
urp̂ (262)

8.3 Equation for the acoustic pressure modes

To get the acoustic pressure modes of the thermo-acoustic system [17] we need to solve the Helmholtz

equation with the unsteady heat realease as a source term

∇ • (c2∇p̂) + ω2p̂ = (γ − 1)iωQ̂ (263)
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In the previous section we derived the following equation to describe the unsteady heat release

ˆ̇Q = −
Ns∑
s=1

h0
s

(
∇Y ω̇s • Ŷ +

∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂

)
(264)

Hence the pressure modes equation involves all the unknown modes p̂, T̂ , ρ̂ and Ŷ. As it stands it is

not possible to solve this equation. We need to obtain an equation for the acoustic pressure having

only the eigenpair (p̂, ω) as unknown. To obtain such an equation we combined the temperature and

species equation in matrix form. We are primarily interested in getting the low-frequency modes of the

system which are in practice included in the set of the first thirty eigenomdes. Numerical simulation

shows that diffusion effects are not significant in the low-frequency range of interest. For this reason

the equations coupling temperature and chemical species become

iωJ

(
Ŷ

T̂

)
= b(p̂) + b∇(p̂) (265)

Assuming that the coupling matrix J is invertible -this will be shown later on- it is possible to use

the previous system of equations to eliminate Ŷs, T̂ and ρ from the pressure equation. By doing so we

get an equation with only the eigenpair (p̂, ω) as unknown

∇ • (c2∇p̂) + ω2p̂+ iω
(γ − 1)

c2

Ns∑
s=1

h0
s

∂ω̇s

∂ρ
p̂ = −(γ − 1)

Ns∑
s=1

h0
s

(
∇Y ω̇s

∂ω̇s

∂T

)
J−1(b(p̂) + b∇(p̂)) (266)

8.3.1 Computing the inverse matrix J−1

The Sherman-Morrison formula provides a way to obtain an analytical expression for the inverse of

the matrix J . In fact let A be a square matrix of size n and u, vt be vectors of length n. We consider

the matrix Â obtained by a rank-1 update of A

Â = A+ uvt (267)

Lemma : If A is invertible and satisfies vtA−1u 6= −1, then Â is invertible and the inverse matrix

Â−1 reads

Â−1 = (A+ uvt)−1 = A−1 − A−1uvtA−1

1 + vtA−1u
(268)

As a result of this lemma it is straightforward to construct a recursive scheme [43] to obtain the inverse

of the matrix J for any number of rank-1 updates Nr :

J = iωρI +
Nr∑
r=1

urv
t
r (269)

For this we need first to check that the conditions required in the lemma are satisfied by the matrix

J . It is indeed the case since :

• ω 6= 0 and hence the matrix iωρI is invertible

• vtu
iωρ

is a complex number having a non-zero imaginary part and hence cannot be equal −1

Clearly this reasoning can be extended by induction for an arbitrary number Nr of rank-1 updates.
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8.3.2 Velocity, temperature and species modes

By providing an analytical expression for the inverse of the matrix J we obtained an eigenvalue

problem in p̂. After solving for the pressure modes we use the following equation to get the acoustic

velocity modes

û =
1

iωρ̄
∇p̂ (270)

The temperature and species modes are provided through the following relation
Ŷ1

...

ŶNs

T̂

 =
J−1

iω
(b(p̂) + b∇(p̂)) (271)

9 Benchmark and simulation methods

A suitable benchmark for preliminary studies is a duct, with uniform cross-sectional area, mean tem-

perature, constant density and having no mean flow. The duct is connected to a large plenum at

the inlet cross section and has a restriction at the outlet. In [6] Dowling and Stow examined a sim-

ilar benchmark and performed different analysis on its dynamic behavior. Since the cross-section is

constant, this benchmark can be considered as a one-dimensional case in which the planar wave hy-

pothesis is appropriate. The variation of acoustic pressure and velocity in the duct is a function of time

and abscissa x only. Furthermore the flame is supposed to be concentrated at a particular abscissa.

Under the no flow hypothesis, a Dirichlet boundary condition at the inlet and a Neumann boundary

condition at the outlet is assumed. Considering a quasi-one-dimensional geometry provides a more

realistic approach to the combustion instabilities. The geometry consists in three co-axial cylindrical

ducts modelling the diffuser, the premixer and the combustion chamber. The blockage at the premixer

inlet is modelled by a Neumann boundary condition, whereas the open end at the exit of the combus-

tor is described by a Dirichlet boundary condition. As in the one-dimensional benchmark, the flame

sheet is supposed to be concentrated at the exit of the premixer, exactly at the inlet of the combustion

chamber. The heat release fluctuation is then related to the fluctuations of the fuel and air inflow rates.

In this study the test case consists in a combustor through which a reactive gas is flowing and

gets burnt in the flame region [34]. All external body forces such as gravity are neglected. The

diameter-to-length ratio being very small, we may assume that the propagation is one-dimensional in

the longitudinal direction of the combustor. Furthermore we assume that dissipation effects on the

acoustic waves are negligible. Also we suppose adiabatic conditions, i.e. no heat loss to the surround-

ing takes place.
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Taking these assumptions into account, the equations describing the reactive gas dynamics are the

conservation of mass, momentum and energy.

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (272)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0 (273)

ρ
∂e

∂t
+ ρu

∂e

∂x
= −p∂u

∂x
+ q (274)

where ρ, u, p and e denote the density, velocity, pressure and specific internal energy. The variable q

accounts for the heat release due to chemical reactions.

In addition to these three equations we need further equations to describe the evolution of the chemical

species. These are given by

∂(ρY1)

∂t
+
∂(ρY1u)

∂x
= ω̇1 (275)

∂(ρY2)

∂t
+
∂(ρY2u)

∂x
= ω̇2 (276)

... (277)

∂(ρYNs)

∂t
+
∂(ρYNsu)

∂x
= ω̇Ns (278)

Ys denotes the mass fraction of species Xs and ω̇s its chemical production rate. Furthermore we assume

that the flow is an ideal gas and hence the pressure is related to density and temperature through the

ideal gas law which states that

p = (γ − 1)ρe = ρ
R
W
T (279)

where R is the universal gas constant and W the molecular weight of the mixture.

Combining the mass conservation, the energy conservation and the ideal gas law, we obtain an equation

describing the evolution of the pressure field

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= (γ − 1)q (280)

Finally the assumptions are summarized as :

• one-dimensional ideal gas flow in the longitudinal direction of the combustor [20]

• negligible dissipation on the acoustic waves [21]

• negligible thermal conductivity to the surrounding domain
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9.1 Analytical model for steady-state variables

We propose the following model to describe the mean variables in the case of steady combustion.

Let Ω = [0, L] be the one-dimensional combustor in which the reactive gas is flowing and let b ∈ (0, L)

denote the location of the flame in its steady state. Without loss of generality we may suppose that

b = L
2

meaning that the flame front is located in the middle of the combustor.

The computational grid has to be defined in such a way that it resolves the flame front as well as the

boundary conditions accurately. To achieve this we require the grid to be very fine at both boundaries

and near the flame zone and to be coarser elsewhere.

Parameters :

hmin : minimum step size of grid,

h̄ : typical step size of grid,

n0, nb, nL : control parameters for grid size distribution

Algorithm :

i = 0, xi = 0

while (xi < L)

hi = hmin + h
(

xi

L

)n0
∣∣xi

b
− 1
∣∣nb
(
1− xi

L

)nL ,

xi+1 = xi + hi,

i = i+ 1,

end

xi = L,

hi−1 = L− xi−1
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Figure 13: Grid points distribution obtained by the adaptive mesh size algorithm
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In order to capture the very steep gradients of temperature and mass fractions at the flame front it is

very useful to introduce the stretched variable x̂ defined by

x̂ =
x
b
− 1

ε
(281)

where ε is a typical flame thickness (e.g.10−3 m). The choice of x̂ is such that it has its origin exactly

at the stationary position of the flame and takes very large values at both boundaries. Furthermore

we introduce the variable χ which describes a profile showing two almost constant states and a sudden

jump in between

χ =
tanh(x̂) + 1

2
=

1

1 + e−2x̂
(282)

The following table summarizes the space variables used in the grid generation and their values at the

cold boundary in the preheat zone, at the flame and at the hot boundary in the equilibrium zone.

Variable values at cold boundary flame zone hot boundary

x 0 b L

x̂ −ε−1 0 ε−1

χ 0 1
2

1

For all steady-state variables representing the density, the temperature, the sound speed or the mass

fractions of the chemical species we expect a very slow variation at both the preheat and the equilibrium

zone and a rapid change across the flame. For this reason we choose the following model to describe

all these variables

ρ(x) = (1− χ)ρ0 + χρ1 (283)

T (x) = (1− χ)T 0 + χT 1 (284)

c2(x) = (1− χ)c20 + χc21 (285)

Y s(x) = (1− χ)Y s,0 + χY s,1 (286)

where v0 and v1 represent respectively the value of the variable v upstream and downstream the flame.

Remarks : the values of these variables upstream and downstream the flame cannot be chosen at

will. In fact these quantities are coupled [26]. As already shown in (209) we require that

Θ =
ρ0

ρ1

=
u1

u0

=
T 1

T 0

> 1 (287)

Also since the sound speed is given by

c2 =
γp̄

ρ̄
= γ
R
W
T̄ (288)

then as a consequence we have that
c̄1
c̄0

=
√

Θ > 1 (289)
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Figure 14: Evolution of steady-state profiles of density and temperature

Furthermore the temperature values upstream and downstream the flame are directly linked to the

mass fractions values [26]. This is shown by considering the steady-state equations for the mass

fractions and the temperature

ρu
dY s

dx
= ω̇s

ρcpu
dT

dx
= Q = −

Ns∑
s=1

h0
sω̇s (290)

Combining these two equations and integrating over the whole domain we obtain an equation describ-

ing the conversion of chemical energy into heat

T̄1 − T̄0 = −
Ns∑
s=1

h0
s

cp
(Ȳs,1 − Ȳs,0) (291)

The coupling of the upstream and downstream variables is summarized in the following equation

Θ =
ρ0

ρ1

=
u1

u0

=
T 1

T 0

=
c̄21
c̄20

= 1−
Ns∑
s=1

h0
s

cpT̄0

(Ȳs,1 − Ȳs,0) > 1 (292)
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9.2 Chemical reaction rates and their derivatives

For a given reaction mechanism [49, 50] involving Ns species undergoing Nr reactions the chemical

reaction rate of the r-th reaction denoted Ω̇r can be modeled by

Ω̇r = kr
f (T )

Ns∏
s=1

[Xs]
νf

sr − kr
b(T )

Ns∏
s=1

[Xs]
νb

sr (293)

= kr
f (T )

Ns∏
s=1

(
ρYs

Ws

)νf
sr

− kr
b(T )

Ns∏
s=1

(
ρYs

Ws

)νb
sr

(294)

with the Arrehnius rate coefficients kf , kb for the forward and backward reactions

k(T ) = AT µexp(− Ea

RT
) (295)

For the combustion model developed in this thesis we need to know the derivatives of the chemical

reaction rates with respect to the mass fractions Ys, the density ρ and the temperature T . These are

given through the following equations

∂Ω̇r

∂Yi

= νf
irk

r
f (T )

ρ

Wi

(
ρYi

Wi

)νf
ir−1 Ns∏

s=1,s 6=i

(
ρYs

Ws

)νf
sr

− νb
irk

r
b(T )

ρ

Wi

(
ρYi

Wi

)νb
ir−1 Ns∏

s=1,s 6=i

(
ρYs

Ws

)νb
sr

(296)

∂Ω̇r

∂ρ
=

∑Ns

s=1 ν
f
sr

ρ
kr

f (T )
Ns∏
s=1

(
ρYs

Ws

)νf
sr

−
∑Ns

s=1 ν
b
sr

ρ
kr

b(T )
Ns∏
s=1

(
ρYs

Ws

)νb
sr

(297)

∂Ω̇r

∂T
=
dkr

f (T )

dT

Ns∏
s=1

(
ρYs

Ws

)νf
sr

− dkr
b(T )

dT

Ns∏
s=1

(
ρYs

Ws

)νb
sr

(298)

with
dk(T )

dT
=
Ea + µRT
RT 2

k(T ) (299)

Alternatively it is possible to give a mathematical model for the chemical production rate ωs of each

species Xs. We know that the chemical properties of combustion are such that the reaction terms are

zero at both ends and have their maximum around the flame position. Hence we suggest the following

model function

ω̇s(x̂) =
α

(ex̂ + e−x̂)2
, α ∈ IR (300)

According to the chemical species equation the stationary reaction rate ω̇s of species Xs satisfies∫ L

0

ω̇s(x)dx =

∫ Y s
1

Y s
0
ρ̄ūdY (301)

= [ρūYs]
1
0 = ρ1ū1(Ys

1 − Ys
0
) (302)
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As a consequnce the constant α is provided by the following equation

α =

∫ L

0
ω̇s(x)dx∫ +∞

−∞
dx̂

(ex̂+e−x̂)2

(303)

=
2(ρ1ū1Ys

1 − ρ0ū0Ys
0
)∫ 1

0
dχ

=
2ρ1ū1(Ys

1 − Ys
0
)∫ 1

0
dχ

(304)

Hence we model the stationary reaction rate ω̇s by

ω̇s(x̂) =
2ρū[Y s]

1
0

(ex̂ + e−x̂)2
(305)

Through this model it is possible to obtain the derivative of ω̇s with respect to any of the steady-state

variables ρ, T and Y s. Let v be one of these steady-state variables, then we have

∂ω̇s

∂v
=

dω̇s

dx̂

dx̂

dχ

(
dv

dχ

)−1

(306)

= −2[ρūY s]
1
0

2(ex̂ − e−x̂)

(ex̂ + e−x̂)3

(ex̂ + e−x̂)2

2

1

[v]10
(307)

= −2ρū[Y s]
1
0

[v]10

ex̂ − e−x̂

ex̂ + e−x̂
(308)

= −2ρū[Y s]
1
0

[v]10
tanh(x̂) (309)

where [v]10 represents the jump in the value of v downstream (subscript 1) and upstream (subscript 0)

the flame. For example the derivative of ω̇s with respect to temperature is given by

∂ω̇s

∂T
= − [ρū[Y s]

1
0

[T ]10
tanh(x̂) (310)

9.3 Oxydant-fuel combustion reaction

For the computation of the eigenmodes of the gas turbine, we have extended the acoustic pressure

equation in order to take the combustion processes into account. In the following we assume that the

combustion process is triggered by one dominant reaction as it is the case for most hydrocarbon fuels.

CnHm +
4n+m

4
O2 → nCO2 +

m

2
H2O (311)

For example the combustion reaction of propane (n = 3,m = 8) is given by

C3H8 + 5O2 → 3CO2 + 4H2O (312)

As a generalisation we consider a reaction of the form

νf
FF + νf

OO → P (313)
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where O denotes the oxydant, F the fuel and P the combustion products. Let [X] denote the con-

centration of species X then the combustion reaction rate Ω̇ is given by

Ω̇ = k(T )[O]ν
f
O [F ]ν

f
F (314)

and the reaction rates for the fuel and the oxydant are then

ω̇O = νOWOΩ̇ (315)

ω̇F = νFWF Ω̇ (316)

Note that νO = −νf
O and νF = −νf

F .

As derived in the previous section we combine the equation for temperature and chemical species and

obtain an equation describing the coupling between these quantities and the acoustic pressure

iωJ

 ŶO

ŶF

T̂

 = b(p̂) + b∇(p̂) (317)

The coupling matrix J for the fuel-oxydant combustion reaction takes the form

J = iωρI +


∂ω̇O

∂YO

∂ω̇O

∂YF

∂ω̇O

∂T
∂ω̇F

∂YO

∂ω̇F

∂YF

∂ω̇F

∂T

−
∑

s=O,F
h0

s

cp

∂ω̇s

∂YO
−
∑

s=O,F
h0

s

cp

∂ω̇s

∂YF
−
∑

s=O,F
h0

s

cp

∂ω̇s

∂T

 (318)

The terms on the right-hand side b(p̂) and b∇(p̂) are given by

b(p̂) = −iω
c2


∂ω̇O

∂ρ
∂ω̇F

∂ρ

− iωc2

cp
−
∑

s=O,F
h0

s

cp

∂ω̇s

∂ρ

 p̂, b∇(p̂) =

 ∇Y O

∇Y F

∇T

 • ∇p̂ (319)

We define the variable H as a global enthalpy of the combustion reaction

H :=
∑

s=O,F

h0
sνsWs (320)

By introducing the vectors

u =

 νOWO

νFWF

−H
cp

 , v =


∂Ω̇
∂YO

∂Ω̇
∂YF

∂Ω̇
∂T

 (321)

we write the matrix J as rank-1 update of the diagonal matrix iωρI of dimension 3

J = iωρI + uvt (322)

According to the Shermann-Morrison formula the inverse of the matrix J is given by

J−1 =
I

iωρ
− uvt

iωρ(iωρ+ vtu)
(323)
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Also we rewrite the right-hand side vector b(p̂) as

b(p̂) = −iω
c2


νOWO

∂Ω̇
∂ρ

νFWF
∂Ω̇
∂ρ

− iωc2

cp
− H

cp

∂Ω̇
∂ρ

 p̂ (324)

At this stage we remind the equation for the pressure modes

∇ • (c2∇p̂) + ω2p̂ = (γ − 1)iωQ̂

with Q̂ = −
Ns∑
s=1

h0
s

(
∇Y ω̇s • Ŷ +

∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂

)
We used the additional equations to eliminate Ŷs, T̂ and ρ̂ from the pressure equation by inverting the

coupling matrix J

∇ • (c2∇p̂) + ω2p̂ + iω
(γ − 1)

c2

Ns∑
s=1

h0
s

∂ω̇s

∂ρ
p̂ (325)

= −(γ − 1)
Ns∑
s=1

h0
s

(
∇Y ω̇s

∂ω̇s

∂T

)
J−1(b(p̂) + b∇(p̂))

Using the analytical expression for the inverse of J we obtain an equation with just two unknowns,

namely the eigenpair (p̂, ω).

iω3ρp̂+ ω2

(
νOWO

∂Ω̇

∂YO

+ νFWF
∂Ω̇

∂YF

− H
cv

∂Ω̇

∂T
− ρH
cpT

∂Ω̇

∂ρ

)
p̂ (326)

+

(
iωρ+ νOWO

∂Ω̇

∂YO

+ νFWF
∂Ω̇

∂YF

− H
cp

∂Ω̇

∂T
)∇ • (c2∇p̂

)

+ (γ − 1)H

(
∂Ω̇

∂YO

∇YO +
∂Ω̇

∂YF

∇YF +
∂Ω̇

∂T
∇T

)
• ∇p̂ = 0

Using the formula of the combustion reaction rate Ω̇ of the combustion we will provide the exact ex-

pression of the different steady-state terms appearing in the eigenvalue problem. To simplify notation

let us introduce the three variables A, B and C defined as

A := νOWO
∂Ω̇

∂YO

+ νFWF
∂Ω̇

∂YF

− H
cv

∂Ω̇

∂T
− ρH
cpT

∂Ω̇

∂ρ
(327)

B := νOWO
∂Ω̇

∂YO

+ νFWF
∂Ω̇

∂YF

− H
cp

∂Ω̇

∂T
(328)

C := (γ − 1)H

(
∂Ω̇

∂YO

∇YO +
∂Ω̇

∂YF

∇YF +
∂Ω̇

∂T
∇T

)
(329)
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Using the total derivative of Ω̇ we obtain an alternative expression for C which reads

C = (γ − 1)H

(
∇Ω̇− ∂Ω̇

∂ρ
∇ρ̄

)
(330)

With the new variables A, B and C the cubic eigenvalue problem takes the form

iω3ρp̂+ ω2Ap̂+ (iωρ+B)∇ • (c2∇p̂) + C • ∇p̂ = 0 (331)

The combustion reaction rate is given by

Ω̇ = k(T )[O]−νO [F ]−νF = k(T )

(
ρYO

WO

)−νO
(
ρYF

WF

)−νF

(332)

with the Arrehnius coefficient k(T ) being a temperature-dependent function

k(T ) = A0T
µexp(− Ea

RT
) (333)

Hence the derivatives of Ω̇ with respect to fuel and oxydant mass fractions YF , YO, to temperature T

and density ρ are

∂Ω̇

∂YF

= −νF

YF

Ω̇ (334)

∂Ω̇

∂YO

= −νO

YO

Ω̇ (335)

∂Ω̇

∂T
=

Ea + µRT
RT 2

Ω̇ (336)

∂Ω̇

∂ρ
= −νF + νO

ρ
Ω̇ (337)

With these analytical expressions for the derivatives we obtain for the three variables A, B and C

A =

(
−ν

2
OWO

YO

− ν2
FWF

YF

− H
cv

Ea + µRT
RT 2 +

(νF + νO)H
cpT

)
Ω̇ (338)

B =

(
−ν

2
OWO

YO

− ν2
FWF

YF

− H
cp

Ea + µRT
RT 2

)
Ω̇ (339)

C = (γ − 1)H
(
−νO

YO

∇YO −
νF

YF

∇YF +
Ea + µRT
RT 2 ∇T

)
Ω̇ (340)

or alternatively for C

C = (γ − 1)H
(
∇Ω̇ +

νF + νO

ρ
Ω̇∇ρ̄

)
(341)
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Remarks :

• We should note that the expressions for the derivatives of Ω̇ with respect to the mass fractions

YF and YO are only valid for Ω̇ 6= 0, i.e. YF 6= 0 and YO 6= 0. If any of the mass fractions is zero,

then clearly Ω̇ = 0 and the derivatives ∂Ω̇
∂Y

are set to be zero as well.

∂Ω̇

∂Y
=

{
0 if Y, Ω̇ = 0

− ν
Y

Ω̇ else
(342)

• Assuming that there is no combustion reaction, i.e. Ω̇ = 0, then the three variables A, B and C

vanish and the eigenvalue problem takes the form

iω(∇ • (c2∇p̂) + ω2p̂) = 0 (343)

Since the frequency number ω cannot be zero we recover the original Helmholtz equation.

• If we assume that the reaction is active but thermally neutral, i.e. no heat release (H = 0), then

only the variable C vanishes whereas the variables A and B become equal

A = B = −
(
ν2

OWO

YO

+
ν2

FWF

YF

)
Ω̇ (344)

and the cubic eigenvalue problem takes the form

(iωρ+ A)(∇ • (c2∇p̂) + ω2p̂) = 0 (345)

The complex number iωρ + A corresponds exactly to the term iωρ + vtu and is a factor ap-

pearing in the determinant of the matrix J which is for the special case of a single-step reaction

mechanism

det(J) = iωρ(iωρ+ vtu) (346)

As already shown the matrix J is invertible and the complex number iωρ+A is nonzero. Hence

in the absence of heat release, i.e. H = 0, we recover the original Helmholtz equation without

source terms as expected

∇ • (c2∇p̂) + ω2p̂ = 0 (347)

Once we solved the eigenvalue problem for the pressure modes it is possible to obtain the modeshapes

of the velocity and of the density

û =
1

iωρ̄
∇p̂, ρ̂ =

1

c2
p̂ (348)

The modeshapes of the chemical species and of the temperature are obtained using ŶO

ŶF

T̂

 =
J−1

iω
(b(p̂) + b∇(p̂)) (349)
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By inserting the expression of the inverse matrix we obtain ŶO

ŶF

T̂

 = − 1

ρω2

(
I − uvt

iωρ+ vtu

)
(b(p̂) + b∇(p̂)) (350)

which is equivalent to ŶO

ŶF

T̂

 =
1

iωρc2

− iωc2

cp

∂Ω̇
∂T

+ vtu∂Ω̇
∂ρ

iωρ+ vtu

 νOWO

νFWF

−H
cp

−


νOWO
∂Ω̇
∂ρ

νFWF
∂Ω̇
∂ρ

− iωc2

cp
− H

cp

∂Ω̇
∂ρ


 p̂ (351)

+
1

iω


 ∇Y O

∇Y F

∇T

− ∂Ω̇
∂YO
∇Y O + ∂Ω̇

∂YF
∇Y F + ∂Ω̇

∂T
∇T

iωρ+ vtu

 νOWO

νFWF

−H
cp


 • û (352)

By simplifying these equations we get the modeshapes of species and temperature

 ŶO

ŶF

T̂

 =
1

iωρ+ vtu


−νOWO

(
1

ρ̄cp

∂Ω̇
∂T

+ 1
c2

∂Ω̇
∂ρ

)
−νFWF

(
1

ρ̄cp

∂Ω̇
∂T

+ 1
c2

∂Ω̇
∂ρ

)
1
cp

(
iω + νOWO

ρ̄
∂Ω̇
∂YO

+ νF WF

ρ̄
∂Ω̇
∂YF

+ H
c2

∂Ω̇
∂ρ

)
 p̂ (353)

+
1

iω


 ∇Y O

∇Y F

∇T

− ∂Ω̇
∂YO
∇Y O + ∂Ω̇

∂YF
∇Y F + ∂Ω̇

∂T
∇T

iωρ+ vtu

 νOWO

νFWF

−H
cp


 • û (354)

9.4 Test case

The scope of this test case is to validate the model equations and to compare the eigenmodes of a

tube obtained by taking into account a chemical reaction with the eigenmodes of the same tube but

neglecting the reaction effects, i.e. without source terms.

For an easy comparison we choose the undergoing reaction to be weakly exothermic. For example

we might take the parameter Θ defined in (209) to be Θ = 1.1.

With the benchmark assumptions defined in the previous section, we consider a reactive fluid flowing

through a tube. The boundary conditions imposed are of Dirichlet at the inlet and of Neumann at

the outlet. Therefore the pressure modes are sucht that

p̂|inlet = 0,
∂p̂

∂n

∣∣∣∣
outlet

= 0 (355)

By taking the chemical source terms into account the eigenvalue problem is cubic

iω3ρp̂+ ω2Ap̂+ (iωρ+B)
∂

∂x

(
c2
∂p̂

∂x

)
+ C

∂p̂

∂x
= 0 (356)



9.4 Test case 74

whereas in the homogeneous case it is linear

∂

∂x

(
c2
∂p̂

∂x

)
+ ω2p̂ = 0 (357)

Using the finite element method [1] described in the appendix we discretize the eigenvalue problem in

both cases and solve for the eigenpair (p̂, ω). By using an adaptive meshing algorithm we are able to

accurately resolve the reaction front and have a coarser mesh in the regions of small gradients. This

makes the number of grid points needed reasonable and the solution procedure quite fast.

First of all we would like to compare the eigenspectrum in both cases. As expected the eigenvalues

λ = −iω obtained for the homogeneous Helmholtz equation are pure imaginary numbers, i.e. the

eigenmodes do not show any growth or decay. For the cubic eigenvalue problem the obtained eigen-

values λ appear always in pairs as complex conjugate eigenvalues. This means that depending on the

sign of <(λ) the eigenmodes will be growing or decaying or eventually remain unchanged if λ is pure

imaginary. The following figure shows the eigenspectrum of both cases.

Figure 15: Imaginary part vs. Real part of eigenvalue λ = −iω with and without combustion effects

We note that taking combustion effects into accounts not only alters the real part of the eigenvalue to

become either positive (i.e. growing mode) or negative (decaying mode) but it also shifts the frequency
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of the mode. As shown in figure (15) there is no global trend which applies to all modes. We note

that some modes get a higher frequency and become decaying while others decrease their frequency

and grow in time. This confirms that the effect of the combustion on the eigenmodes and on their

stability is quite complex and should not be neglected.
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Figure 16: First (upper figure) and second pressure eigenmodes
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10 Conclusion

The subject of this thesis is the study of thermo-acoustic instabilities appearing in ultra-low emission

gas turbines. The enorm potential of lean premixed combustion in reducing the NOx emissions can be

widely used only if the thermo-acoustic instabilities inherent to this combustion regime are eliminated.

Hence these instabilities represent one of the major obstacles towards cleaner gas turbines.

In this thesis we derived the mathematical equations describing the reactive flows inside the combustion

chambers of gas turbines. The Navier-Stokes equations have been extended to include the effects of

chemical reactions. Of particular interest is the equation relating the pressure field to the heat release.

To describe the instationary properties of the combustion system we derived the equations of the

unsteady variables of interest such as the pressure, the temperature and the chemical composition of

the flow. As our primary scope is finding the eigenmodes and assessing their stability, we transformed

the unsteady reactive Navier-Stokes equations in the frequency domain and obtained a system of

coupled eigenvalue problems. This system shows the interaction between the pressure fluctuations,

the unsteady heat release and the chemical components. Such a system can only be solved if an

additional equation, called flame transfer function, is provided. This function describes the unsteady

heat release as a function of the pressure and velocity fluctuations. In this thesis a novel model has

been developed. The flame transfer function developed in this thesis does not involve any model

parameters or empiric assumptions. To the author’s knowledge such a model is developed for the first

time. Since it does not include any parameters it can be used in many applications. It is based on

an approach which takes advantage of the physical as well as mathematical properties of the system

to find a closed-form expression for the unsteady heat release. The developed model does not link

the unsteady heat release directly to the pressure and velocity fluctations. It accurately describes

how the fluctuations in temperature, density and chemical components affect the heat release cycle.

In a further step we derive partial differential equations which couple these influence factors to the

pressure and velocity fluctuations through an operator J . We investigate this mathematical operator

and show that it is invertible for any reaction mechanism. By inverting the operator J we obtain the

equation of the unsteady heat release as a direct function of the pressure and velocity fluctuations

without any empirical assumptions or model parameters. With this result it is possible to study the

dynamics the thermo-acoustic system in the frequency domain as presented in this thesis or in the

time-domain as presented in a report to be submitted for publication.

Using the model of the unsteady heat release we derived an eigenvalue problem with only the pressure

modes as unknown. We showed that the cubic eigenvalue problem obtained is an extension of the

homogeneous Helmholtz equation. Using adaptive mesh generation and finite element discretization

we solved both eigenvalue problems with high accuracy. The comparison of the pressure eigenmodes

obtained in both cases shows that the combustion effects are complex. In fact it does not only

affect the stability of the system but also shifts its eigenfrequencies. The mode shapes are also

altered particularly at the flame zone. At the present stage no clear trend could be identified on

how combustion makes some modes go unstable while it dissipates other. This represents a very

interesting problem. Answers could be provided through a sensitivity analysis of the eigenfrequencies

to combustion parameters.
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[32] T. Lieuwen and B. Zinn : The Role of Equivalence Ratio Oscillations In Driving Combustion

Instabilities In Low NOx Gas Turbines, Proc. of the Combustion Institute, 1998. 27 : p.

1809-1816

[33] A. Linan, F. Williams : Fundamental Aspects of Combustion, Oxford University Press 1993



REFERENCES C

[34] A. McIntosh : The interaction of acoustics and compressible combustion fronts - application

to flames in tubes, 17th Colloquium on the dynamics of explosions and reactive systems

1999

[35] A. McIntosh : Flame Resonance in Tubes, Combustion Science and Technology 1990, 69

[36] G. Merker, C. Schwarz, G. Stiesch, F. Otto : Simulating Combustion, Springer 2006

[37] R. Missen et al : Introduction to chemical reaction engineering and kinetics, Wiley 1999

[38] E.S. Oran, J.P. Boris : Numerical Simulation of Reacting Flows, Elsevier 1987

[39] N. Peters : Turbulent combustion, Cambridge University Press 2000.

[40] T. Poinsot, D. Veynante : Combustion, in Encyclopedia of Computational Mechanics, Wiley

2004

[41] T. Poinsot, D. Veynante : Theoretical and numerical combustion, 2nd edition, Edwards

2005

[42] R. Raun, M. Beckstead, J. Finlinson, K. Brooks : Review of Rijke Tubes, Rijke Burners

and Related Devices, Energy Combustion Science 1993, 19

[43] L. Rayleigh : The explanation of certain acoustic phenomena. Nature (1971), 319321

[44] R. Rook, L. de Goey : Response of Burner-stabilized Flat Flames to Acoustic Perturbations,

Combustion Theory and Modeling 2002, 6

[45] R. Saigal : On the inverse of a matrix with several rank one updates, technical report 93-41,

University of Michigan 1993

[46] K. Schreel, L. de Goey, D. Roekaerts : Course on Combustion, J.M. Burgerscentrum, TU

Eindhoven 2005

[47] S. Turns : Introduction to Combustion : Concepts and Applications, 2nd edition, McGraw-

Hill 2000

[48] US Environmental Protection Agency : NOx Emissions from Stationary Gas Turbines,

Report 1993

[49] J. Warnatz, U. Maas, R.W. Dibble : Verbrennung : Physikalisch-Chemische Grundlagen,

Modellierung und Simulation, Experimente, Schadstoffentstehung, Springer 2001

[50] Y. Zeldovich, D. Frank-Kamenetzki. Theorie thermischer Flammenausbreitung. Zh. Fiz.

Khim., 12:100, 1938

[51] M. Zhu, A. Dowling, K. Bray : Transfer function calculations for aeroengine combustion

oscillations, ASME Transactions, Engineering for Gas Turbines and Power 2005, 127 (1)



REFERENCES D

[52] JANAF Thermochemical Tables, 3rd edition, Journal of Physical and Chemical Reference

Data 14(1985) Supplement 1, http://www.galcit.caltech.edu/EDL/public/thermo.html

[53] NIST scientific databases : NIST Chemistry WebBook - NIST Standard Reference Database

Number 69, June 2005 Release http://webbook.nist.gov/chemistry/



Appendix

i



ii



Rayleigh criterion

The Rayleigh criterion says basically that an acoustic wave will amplify if its pressure and heat release are in
phase. The mathematical formulation of this criterion is that instability will occur if the integral over a cycle
of the product of the pressure and the unsteady heat release is larger than the energy dissipation :∫ Tosc

0

∫
Vf

[
p′(x, t)Q̇′(x, t)− φ(x, t)

]
dxdt > 0 ⇒ Instability (1)

p′(x, t) represents the acoustic pressure and Q̇′(x, t) the unsteady heat release. φ(x, t) denotes the wave energy
dissipation which will be neglected in the following.
The acoustic energy density e′ is the sum of the kinetic acoustic energy and the potential kinetic energy. In a
one-dimensional flow it takes the form

e′ =
ρu′2

2
+

p′2
2ρc2

(2)

Assuming that the mean flow velocity u as well as the steady pressure gradient ∂p
∂x are negligible, the acoustic

pressure and velocity equations take the form

∂p′

∂t
+ γp

∂u′

∂x
= (γ − 1)Q̇′ (3)

∂u′

∂t
+

1
ρ

∂p′

∂x
= 0 (4)

Using the definition of the acoustic energy and of the sound speed c2 = γp
ρ , it is possible to combine the last

two equations to obtain an equation describing the evolution of the acoustic energy

∂e′

∂t
+
∂(p′u′)
∂x

=
γ − 1
γp

p′Q̇′ (5)

Let L be the length of the combustor and Tosc be the period of acoustic oscillation. Integrating this equation
temporally over the period of oscillation and spatially over the length of the combustor yields∫ L

0

[e′(x, t)]Tosc
0 dx = −

∫ Tosc

0

[p′(x, t)u′(x, t)]L0 dt+
γ − 1
γp

∫ Tosc

0

∫ L

0

p′Q̇′dxdt (6)

The left-hand side of this equation represents the change in the acoustic energy along the combustor during an
oscillation period. The first term on the right-hand side denotes the acoustic energy flux across the boundary
and is typically small or inexistent. Assuming no energy flux across the control surface, i.e. [p′(x, t)u′(x, t)]L0 = 0,
we get the following relation ∫ L

0

[e′(x, t)]Tosc
0 dx =

γ − 1
γp

∫ Tosc

0

∫ L

0

p′Q̇′dxdt (7)

It becomes clear that if the Rayleigh criterion is satisfied, i.e. the acoustic pressure and heat release are in phase,
then there will be an increase in the acoustic energy in the combustion system and instabilities are encouraged.∫ Tosc

0

∫ L

0

p′(x, t)Q̇′(x, t)dxdt > 0 ⇒ Instability (8)

The difficulty of this criterion is that the heat release is part of the solution and not known a priori.
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Linearized reactive Navier-Stokes equations

Let Yi = ρi

ρ , ωi denote the mass fraction, the production rate of species i
Continuity Equation

∂ρ

∂t
+
∂(ρuj)
∂xj

= 0 (9)

Conservation of mass of species i

∂ρi

∂t
+
∂(ρiuj)
∂xj

=
∂

∂xj
(ρDi

∂

∂xj
(
ρi

ρ
)) + ωi (10)

We may write the lhs of this equation as

∂ρi

∂t
+
∂(ρiuj)
∂xj

=
∂ρYi

∂t
+
∂(ρYiuj)
∂xj

= ρ
∂Yi

∂t
+ Yi(

∂ρ

∂t
+
∂(ρuj)
∂xj

) + ρuj
∂Yi

∂xj

= ρ(
∂Yi

∂t
+ uj

∂Yi

∂xj
) (11)

Hence we get the following 1-D equation :

ρ(
∂Yi

∂t
+ u

∂Yi

∂x
) =

∂

∂x
(ρDi

∂Yi

∂x
) + ωi (12)

and 3-D equation :

ρ(
∂Yi

∂t
+ u • ∇Yi) = ∇ • (ρDi∇Yi) + ωi (13)

Reynolds Average Ansatz :

ρ = ρ̄+ ρ′ , u = ū+ u′ , Y = Ȳ + Y ′ , ω = ω̄ + ω′ (14)

The steady-state variables satisfy :

ρ̄ūj
∂Ȳi

∂xj
=

∂

∂xj
(ρ̄Di

∂Ȳi

∂xj
) + ω̄i (15)

The equation for the fluctuations in the conservation equation of species i

(1 +
ρ′

ρ̄
)(
∂Y ′

i

∂t
+ ūj

∂Y ′
i

∂xj
+ u′j

∂Ȳi

∂xj
+ u′j

∂Y ′
i

∂xj
) +

ρ′

ρ̄
ūj
∂Ȳi

∂xj
=

1
ρ̄

∂

∂xj
(ρ′Di

∂Ȳi

∂xj
+ (ρ̄+ ρ′)Di

∂Y ′
i

∂xj
) +

1
ρ̄
ω′i (16)

Neglecting the nonlinearities, this equation simplifies to

∂Y ′
i

∂t
+ ūj

∂Y ′
i

∂xj
+ u′j

∂Ȳi

∂xj
+
ρ′

ρ̄
ūj
∂Ȳi

∂xj
=

1
ρ̄

∂

∂xj
(ρ′Di

∂Ȳi

∂xj
) +

1
ρ̄

∂

∂xj
(ρ̄Di

∂Y ′
i

∂xj
) +

1
ρ̄
ω′i (17)

which yields in 1-D

ρ̄ū
∂Ȳi

∂x
=

∂

∂x
(ρ̄Di

∂Ȳi

∂x
) + ω̄i

∂Y ′
i

∂t
+ ū

∂Y ′
i

∂x
+ u′

∂Ȳi

∂x
+
ρ′

ρ̄
ū
∂Ȳi

∂x
=

1
ρ̄

∂

∂x
(ρ′Di

∂Ȳi

∂x
) +

1
ρ̄

∂

∂x
(ρ̄Di

∂Y ′
i

∂x
) +

1
ρ̄
ω′i

and in 3-D

ρ̄ū • ∇Ȳi = ∇ • (ρ̄Di∇Ȳi) + ω̄i

∂Y ′
i

∂t
+ ū • ∇Y ′

i + u′ • ∇Ȳi +
ρ′

ρ̄
ū • ∇Ȳi =

1
ρ̄
∇ • (ρ′Di∇Ȳi) +

1
ρ̄
∇ • (ρ̄Di∇Y ′

i ) +
1
ρ̄
ω′i
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Matrix Notation :

Y ′
1
...
Y ′

i
...
Y ′

N


t

+



ū 0 0 0 0

0
. . . 0 0 0

0 0 ū 0 0

0 0 0
. . . 0

0 0 0 0 ū





Y ′
1
...
Y ′

i
...
Y ′

N


x

+



v̄ 0 0 0 0

0
. . . 0 0 0

0 0 v̄ 0 0

0 0 0
. . . 0

0 0 0 0 v̄





Y ′
1
...
Y ′

i
...
Y ′

N


y

+



w̄ 0 0 0 0

0
. . . 0 0 0

0 0 w̄ 0 0

0 0 0
. . . 0

0 0 0 0 w̄





Y ′
1
...
Y ′

i
...
Y ′

N


z

+



(ρ′

ρ̄ ū + u′) • ∇Ȳ1

...
(ρ′

ρ̄ ū + u′) • ∇Ȳi

...
(ρ′

ρ̄ ū + u′) • ∇ȲN



=



1
ρ̄∇ • (ρ′D1∇Ȳ1) + 1

ρ̄∇ • (ρ̄D1∇Y ′
1)

...
1
ρ̄∇ • (ρ′Di∇Ȳi) + 1

ρ̄∇ • (ρ̄Di∇Y ′
i )

...
1
ρ̄∇ • (ρ′DN∇ȲN ) + 1

ρ̄∇ • (ρ̄DN∇Y ′
N )


+



1
ρ̄ω

′
1

...
1
ρ̄ω

′
i

...
1
ρ̄ω

′
N
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Finite element method for steady-state chemistry

In order to find the steady-state chemical composition of the fluid, we consider the following convection-diffusion-
reaction equations

ρu • ∇Yk = ∇ • (ρDk∇Yk) + Fk(Y1, .., Yk, .., YN , T ) (18)

We introduce a ”non-physical” relaxation ∂Yk

∂t (physical : ρ∂Yk

∂t ) and solve the following equation instead

∂Yk

∂t
+ ρu • ∇Yk = ∇ • (ρDk∇Yk) + Fk(Y1, .., Yk, .., YN , T ) (19)

These equations build a nonlinear system of N equations
Shorthand Notation :

Fk(Y1, .., Yk, .., YN , T ) = Fk(Y1,..,N , T ) := ωk(Y1, .., Yk, .., YN , T )

Weak Formulation : Test functions ψi, domain Ω∫
Ω

∂Yk

∂t
ψidx+

∫
Ω

ρu • ∇Ykψidx =
∫

Ω

∇ • (ρDk∇Yk)ψidx+
∫

Ω

Fk(Y1,..,N , T )ψidx

Partial integration of convective and diffusive terms :∫
Ω

ρu • ∇Ykψidx =
∫

∂Ω

ρYkψi(u • n)ds−
∫

Ω

Yk∇ • (ρψiu)dx

=
∫

∂Ω

ρYkψi(u • n)ds−
∫

Ω

ρYku • ∇ψidx−
∫

Ω

∇ • (ρu)Ykψidx∫
Ω

∇ • (ρDk∇Yk)ψidx =
∫

∂Ω

ρDkψi(∇Yk • n)ds−
∫

Ω

ρDk∇Yk • ∇ψidx

This yields the following equation∫
Ω

∂Yk

∂t
ψidx =

∫
Ω

∇ • (ρu)Ykψidx+
∫

Ω

ρ(Yku−Dk∇Yk) • ∇ψidx

+
∫

∂Ω

ρψi(Dk∇Yk − Yku) • nds+
∫

Ω

Fk(Y1,..,N , T )ψidx

Assuming ψi = 0 on ∂Ω we get∫
Ω

∂Yk

∂t
ψidx =

∫
Ω

∇ • (ρu)Ykψidx+
∫

Ω

ρ(Yku−Dk∇Yk) • ∇ψidx+
∫

Ω

Fk(Y1,..,N , T )ψidx (20)

We make the following Galerkin Ansatz and split time and space

Yk(x, t) =
∑

j

yk
j (t)ϕj(x) (21)

This ansatz yields∫
Ω

∑
j

ẏk
j ϕjψidx =

∫
Ω

∑
j

∇ • (ρu)yk
j ϕjψi + ρ(yk

j ϕju−Dky
k
j∇ϕj) • ∇ψidx+

∫
Ω

Fk(Y1,..,N , T )ψidx

∑
j

(
∫

Ω

ϕjψidx)ẏk
j =

∑
j

(
∫

Ω

∇ • (ρu)ϕjψidx+ ρ(ϕju−Dk∇ϕj) • ∇ψi)yk
j +

∫
Ω

Fk(Y1,..,N , T )ψidx

This is equivalent to
MẎk = AkYk + rk (22)

where

(Yk)j = yk
j ,

Mij =
∫

Ω

ϕjψidx,

(Ak)ij = Cij −DkDij =
∫

Ω

∇ • (ρu)ϕjψi + ρϕju • ∇ψidx−Dk

∫
Ω

ρ∇ϕj • ∇ψidx,

(rk)i =
∫

Ω

Fk(Y1,..,N , T )ψidx =
∫

Ω

Fk(
∑

j

y1
jϕj , ..,

∑
j

yk
j ϕj , ..,

∑
j

yN
j ϕj , T )ψidx
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Hence the nonlinear system for the N species is

M
. . .

M
. . .

M





Ẏ1

...
Ẏk

...
ẎN


=



A1

. . .
Ak

. . .
AN





Y1

...
Yk

...
YN


+



r1

...
rk

...
rN


(23)

SUPG ansatz for test functions ψi :

ψi = ϕi + τiu • ∇ϕi = ϕi + τiuk
∂ϕi

∂xk
(24)

u • ∇ψi = uj
∂ψi

∂xj

= uj
∂ϕi

∂xj
+ τiuj

∂uk

∂xj

∂ϕi

∂xk
+ τiujuk

∂2ϕi

∂xk∂xj

= u • ∇ϕi + τi( (u • ∇)u • ∇ϕi + uT∇2ϕiu) (25)

∇ϕ • ∇ψi =
∂ϕ

∂xj

∂ψi

∂xj

=
∂ϕ

∂xj
(
∂ϕi

∂xj
+ τi

∂uk

∂xj

∂ϕi

∂xk
+ τiuk

∂2ϕi

∂xj∂xk
)

=
∂ϕ

∂xj

∂ϕi

∂xj
+ τi

∂ϕ

∂xj

∂uk

∂xj

∂ϕi

∂xk
+ τi

∂ϕ

∂xj
uk

∂2ϕi

∂xj∂xk

= ∇ϕ • ∇ϕi + τi∇ϕ • (∇u∇ϕi +∇2ϕiu)

In that case

Mij =
∫

Ω

ϕjψidx

=
∫

Ω

ϕjϕidx+ τi

∫
Ω

ϕju • ∇ϕidx

:= M̄ij + τiM̃ij (26)

Cij =
∫

Ω

∇ • (ρu)ϕjψidx+
∫

Ω

ρϕju • ∇ψidx

=
∫

Ω

∇ • (ρu)ϕjϕidx+ τi

∫
Ω

∇ • (ρu)ϕju • ∇ϕidx

+
∫

Ω

ρϕju • ∇ϕidx+ τi

∫
Ω

ρϕj( (u • ∇)u • ∇ϕi + uT∇2ϕiu)dx

:= C̄ij + τiC̃ij (27)

Dij =
∫

Ω

ρ∇ϕj • ∇ψidx

=
∫

Ω

ρ∇ϕj • ∇ϕi + τi

∫
Ω

ρ∇ϕj • (∇u∇ϕi +∇2ϕiu)dx

:= D̄ij + τiD̃ij (28)
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Since we are looking for the stationary chemical composition of the flow, we know that density and velocity are
also steady-state variables

∂ρ

∂t
= 0,

∂u
∂t

= 0, (29)

Because of the continuity equation, the term ∇•(ρu) is zero and the matrix C becomes much easier to compute.

Example : 1D case with linear shape functions
In this example we will be assuming ρ,u piecewise constant.
For a quantity X, let Xi+ 1

2
denote Xi+Xi+1

2 .
On [xi−1, xi]

ϕi−1(t) =
xi − t

xi − xi−1
, ϕi(t) =

t− xi−1

xi − xi−1
, t ∈ [xi−1, xi], else ϕ = 0 (30)

On [xi, xi+1]

ϕi(t) =
xi+1 − t

xi+1 − xi
, ϕi+1(t) =

t− xi

xi+1 − xi
, t ∈ [xi, xi+1], else ϕ = 0 (31)

Mi,i−1 =
∫ xi

xi−1

ϕi(t)ϕi−1(t)dt =
xi − xi−1

6
(32)

Mi,i =
∫ xi+1

xi−1

ϕi(t)ϕi(t)dt =
xi − xi−1

3
+
xi+1 − xi

3
=
xi+1 − xi−1

3
(33)

Mi,i+1 =
∫ xi+1

xi

ϕi(t)ϕi+1(t)dt =
xi+1 − xi

6
(34)

Ci,i−1 =
∫ xi

xi−1

ϕ′i(t)ϕi−1(t)dt =
1
2
ρi− 1

2
ui− 1

2
(35)

Ci,i =
∫ xi+1

xi−1

ϕ′i(t)ϕi(t)dt =
1
2
ρi− 1

2
ui− 1

2
− 1

2
ρi+ 1

2
ui+ 1

2
(36)

Ci,i+1 =
∫ xi+1

xi

ϕ′i(t)ϕi+1(t)dt = −1
2
ρi+ 1

2
ui+ 1

2
(37)

Di,i−1 =
∫ xi

xi−1

ϕ′i(t)ϕ
′
i−1(t)dt = − 1

xi − xi−1
(38)

Di,i =
∫ xi+1

xi−1

ϕ′i(t)ϕ
′
i(t)dt =

1
xi − xi−1

+
1

xi+1 − xi
(39)

Di,i+1 =
∫ xi+1

xi

ϕ′i(t)ϕ
′
i+1(t)dt = − 1

xi+1 − xi
(40)
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Proof of the Sherman-Morrison Formula

Let A be a square matrix of size n and u, v be vectors of length n. We consider the matrix Â obtained by a
rank-1 update of A

Â = A+ uvt (41)

Lemma : If A is invertible and satisfies vtA−1u 6= −1, then Â is invertible and the inverse matrix Â−1 reads

Â−1 = (A+ uvt)−1 = A−1 − A−1uvtA−1

1 + vtA−1u
(42)

This formula is called the Sherman-Morrison formula.
Proof : Let I be the identity matrix of appropriate size. Since det(I + uvt) = 1 + vtu, it follows that if A is
invertible, then the determinant of Â is related to the determinant of A by the relation

det(Â) = det(A+ uvt) = det(A(I +A−1uvt)) = det(A)(1 + vtA−1u) (43)

This means that
Â is regular ⇔ A is regular and 1 + vtA−1u 6= 0 (44)

In this case, it is possible to compute the inverse of Â in a relatively cheap way by updating the inverse of A.
In fact, the inverse of Â is obtained by an update of the inverse of A

Â−1 = (A+ uvt)−1 = A−1 − A−1u(A−tv)t

1 + vtA−1u
(45)

= A−1 − A−1uvtA−1

1 + vtA−1u
(46)

To verify this assertion, we multiply both matrices

(A+ uvt)
(
A−1 − A−1uvtA−1

1 + vtA−1u

)
= AA−1 + uvtA−1 − AA−1uvtA−1 + uvtA−1uvtA−1

1 + vtA−1u
(47)

= I + uvtA−1 − uvtA−1 + uvtA−1uvtA−1

1 + vtA−1u
(48)

= I + uvtA−1 − (1 + vtA−1u)uvtA−1

1 + vtA−1u
(49)

= I + uvtA−1 − uvtA−1 (50)

= I (51)

�
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Finite element method for the Helmholtz equation

In the case of a cube, a parallelepiped or a cylinder it is possible to provide analytic solutions for the eigenmodes.
However, in the general case and for complicated geometries, we have to use numerical methods to compute the
eigenmodes. We use the finite element method to discretize the Helmholtz equation

∇ • (c2∇p̂) + ω2p̂ = 0 (52)

taking into account the following boundary conditions

Type of boundary abbr. boundary condition
Dirichlet ΓD p′ = 0, Ψj = 0
Neumann ΓN u′ • n = 0, 1

iωj ρ̄∇Ψj • n = 0
Impedance ΓF p′ = 1

iωρ̄Z(∇p′ • n), Ψj = 1
iωj ρ̄Zj(∇Ψj • n)

The variational form of the Helmholtz equation is∫
Ω

ϕi∇ • (c2∇p̂)dV +
∫

Ω

ϕiω
2p̂dV = 0 (53)

Partial integration of the first term yields∫
Γ

c2ϕi(∇p̂ • n)ds−
∫

Ω

c2(∇ϕi • ∇p̂)dV +
∫

Ω

ϕiω
2p̂dV = 0 (54)

Hence, we may write the boundary integral as∫
Γ

c2ϕi(∇p̂ • n)ds =
∫

ΓF

ρ̄c2
iω

Z
ϕip̂ds =

∫
ΓF

γp
iω

Z
ϕip̂ds (55)

leading to ∫
Ω

c2(∇ϕi • ∇p̂)dV =
∫

ΓF

ρ̄c2
iω

Z
ϕip̂ds+ ω2

∫
Ω

ϕip̂dV (56)

By inserting the finite element ansatz for the pressure modes p̂

p̂(x) =
Np∑
j=1

pjψj(x) (57)

in the previous relation, we obtain

Np∑
j=1

(∫
Ω

c2(∇ϕi • ∇ψj)dV
)
pj =

Np∑
j=1

(∫
ΓF

ρ̄c2
iω

Z
ϕiψjds+ ω2

∫
Ω

ϕiψjdV

)
pj

which is equivalent to the system
HP = (Z(ω) + ω2E)P (58)

where
Pj = pj , Hij =

∫
Ω

c2(∇ϕi • ∇ψj)dV, Eij =
∫

Ω

ϕiψjdV, Zij =
∫

ΓF

ρ̄c2
iω

Z
ϕiψjds (59)

x



Finite element method for the convected Helmholtz equation

The variational form of the convected Helmholtz equation is∫
Ω

ϕi∇ • (c2∇p̂)dV +
∫

Ω

ϕig • ∇p̂dV +
∫

Ω

ϕifp̂dV +
∫

Ω

ϕiω
2p̂dV = 0 (60)

Partial integration of the first term yields∫
Γ

c2ϕi(∇p̂ • n)ds−
∫

Ω

c2(∇ϕi • ∇p̂)dV +
∫

Ω

ϕig • ∇p̂dV +
∫

Ω

ϕifp̂dV +
∫

Ω

ϕiω
2p̂dV = 0 (61)

The pressure modes satisfy the following boundary conditions

Type of boundary abbr. boundary condition
Dirichlet ΓD p = 0, p′ = 0, Ψj = 0
Neumann ΓN u • n = 0, u′ • n = 0, 1

iωj ρ̄∇Ψj • n = 0
Impedance ΓF p′ = 1

iωρ̄Z(∇p′ • n), Ψj = 1
iωj ρ̄Zj(∇Ψj • n)

Hence, we may write the boundary integral as∫
Γ

c2ϕi(∇p̂ • n)ds =
∫

ΓF

ρ̄c2
iω

Z
ϕip̂ds =

∫
ΓF

γp
iω

Z
ϕip̂ds (62)

leading to ∫
Ω

c2(∇ϕi • ∇p̂)dV =
∫

ΓF

ρ̄c2
iω

Z
ϕip̂ds+

∫
Ω

ϕig • ∇p̂dV +
∫

Ω

ϕifp̂dV + ω2

∫
Ω

ϕip̂dV (63)

Using the following ansatz for the pressure modes p̂

p̂(x) =
Np∑
j=1

pjψj(x) = pjψj(x) (64)

we get

Np∑
j=1

(∫
Ω

c2(∇ϕi • ∇ψj)dV
)
pj

= (65)
Np∑
j=1

(∫
ΓF

ρ̄c2
iω

Z
ϕiψjds+

∫
Ω

ϕig • ∇ψjdV +
∫

Ω

fϕiψjdV + ω2

∫
Ω

ϕiψjdV

)
pj

which is equivalent to the system

HP = (Z(ω) +G(ω) + F (ω) + ω2E)P (66)

where

Pj = pj (67)

Hij =
∫

Ω

c2(∇ϕi • ∇ψj)dV (68)

Gij =
∫

Ω

ϕig • ∇ψjdV (69)

Fij =
∫

Ω

fϕiψjdV (70)

Eij =
∫

Ω

ϕiψjdV (71)

Zij =
∫

ΓF

ρ̄c2
iω

Z
ϕiψjds (72)
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Linear shape functions as finite elements
For a quantity X, let Xi+ 1

2
denote Xi+Xi+1

2 .
On [xi−1, xi]

ϕi−1(t) =
xi − t

xi − xi−1
, (73)

ϕi(t) =
t− xi−1

xi − xi−1
, t ∈ [xi−1, xi], (74)

ϕj(t) = 0, else (75)

On [xi, xi+1]

ϕi(t) =
xi+1 − t

xi+1 − xi
, (76)

ϕi+1(t) =
t− xi

xi+1 − xi
, t ∈ [xi, xi+1], (77)

ϕj(t) = 0, else (78)

Ei,i−1 =
∫ xi

xi−1

ϕi(t)ϕi−1(t)dt =
xi − xi−1

6
(79)

Ei,i =
∫ xi+1

xi−1

ϕi(t)ϕi(t)dt =
xi − xi−1

3
+
xi+1 − xi

3
(80)

Ei,i+1 =
∫ xi+1

xi

ϕi(t)ϕi+1(t)dt =
xi+1 − xi

6
(81)

Fi,i−1 =
∫ xi

xi−1

fϕi(t)ϕi−1(t)dt = fi− 1
2

xi − xi−1

6
(82)

Fi,i =
∫ xi+1

xi−1

fϕi(t)ϕi(t)dt = fi− 1
2

xi − xi−1

3
+ fi+ 1

2

xi+1 − xi

3
(83)

Fi,i+1 =
∫ xi+1

xi

fϕi(t)ϕi+1(t)dt = fi+ 1
2

xi+1 − xi

6
(84)

Gi,i−1 =
∫ xi

xi−1

gϕi(t)ϕ′i−1(t)dt =
1
2
gi− 1

2
(85)

Gi,i =
∫ xi+1

xi−1

gϕi(t)ϕ′i(t)dt =
1
2
gi− 1

2
− 1

2
gi+ 1

2
(86)

Gi,i+1 =
∫ xi+1

xi

gϕi(t)ϕ′i+1(t)dt =
1
2
gi+ 1

2
(87)

Hi,i−1 =
∫ xi

xi−1

c2ϕ′i(t)ϕ
′
i−1(t)dt = − 1

xi − xi−1
c2i− 1

2
(88)

Hi,i =
∫ xi+1

xi−1

c2ϕ′i(t)ϕ
′
i(t)dt =

1
xi − xi−1

c2i− 1
2

+
1

xi+1 − xi
c2i+ 1

2
(89)

Hi,i+1 =
∫ xi+1

xi

c2ϕ′i(t)ϕ
′
i+1(t)dt = − 1

xi+1 − xi
c2i+ 1

2
(90)
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Formulation as a quadratic eigenvalue problem

We obtain an equivalent equation for the pressure modes by using the species equation. In fact, if we sum over
all the equations for the species, we may write the unsteady heat release

Q̂ = −
Ns∑
s=1

hsω̂s = − 1
iω

Ns∑
s=1

hs(ρ̄ω2Ŷs +∇Y s • ∇p̂) (91)

and the pressure equation takes the form

∇ • (c2∇p̂) + (γ − 1)
Ns∑
s=1

hs∇Y s • ∇p̂+ ω2p̂ = −(γ − 1)ω2ρ

Ns∑
s=1

hsŶs (92)

Moreover we use the temperature equation to rewrite the pressure equation as

∇ • (c2∇p̂)− (γ − 1)cp∇T • ∇p̂+ γω2p̂ = (γ − 1)ω2ρcpT̂ (93)

Remark: Using the two last equations we get a relation between the pressure, temperature and species modes

ω2p̂− (cp∇T +
Ns∑
s=1

hs∇Y s) • ∇p̂ = ω2ρ(cpT̂ +
Ns∑
s=1

hsŶs) (94)

We will use the last equation for the pressure modes in addition to the temperature equation

ρ̄cpω
2T̂ + cp∇T • ∇p̂− ω2p̂ = iω

Ns∑
s=1

hs(∇Y ω̇s • Ŷ +
∂ω̇s

∂p
p̂+

∂ω̇s

∂T
T̂ ) (95)

and the chemical species equations

ρω2Ŷs +∇Y s • ∇p̂ = iω∇ • (ρDs∇Ŷs) + iω(∇Y ω̇s • Ŷ +
∂ω̇s

∂p
p̂+

∂ω̇s

∂T
T̂ ) (96)

We combine these relations to get the following equations
for the pressure p̂

∇ • (c2∇p̂)− (γ − 1)cp∇T • ∇p̂+ γω2p̂ = (γ − 1)ω2ρcpT̂ (97)

for the temperature T̂

∇ • (c2∇p̂) + (cp∇T + γ

Ns∑
s=1

hs∇Y s) • ∇p̂+ ω2ρ(cpT̂ + γ

Ns∑
s=1

hsŶs) = 0 (98)

for the species Ŷs

∇Y s • ∇p̂+ ω2ρŶs = iω(∇Y ω̇s • Ŷ +
∂ω̇s

∂ρ
ρ̂+

∂ω̇s

∂T
T̂ ) (99)

For the density ρ̂ we use the following relation

ρ̂ =
1
c2
p̂ (100)

A finite element discretization of these equations yields a quadratic eigenvalue problem

(λ2M + λC +K)X = 0, where λ = iω (101)

Let N be the number of nodes in the finite element discretization, then the dimension of this problem is
d = (Ns + 2) ∗N .
The eigenvector X consists of the eigenmodes of pressure, temperature and species

X = (P T Y1 . . . YNs
)t (102)
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The stiffness matrix K is singular and has rank ≤ N since it has the following stucture

K =


∗
∗
∗
...
∗

 (103)

The damping matrix C is also rank-defficient with the following structure

C =


∗ ∗ . . . ∗ ∗
...

...
...

...
...

∗ ∗ . . . ∗ ∗

 (104)

The mass matrix M is upper triangular and has full rank

M =


∗ ∗

∗ ∗ . . . ∗
∗

. . .
∗

 (105)

Since the matrix M is nonsingular, this problem has 2 ∗ d finite eigenvalues.
Furthermore, the matrices M , C and K being real, the eigenvalues λ = iω are either real or appear in conjugate
pairs (λ, λ̄).
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Iterative resolution of the eigenvalue problem

The FEM formulation of the Helmholtz equation yields the equation

AP + F (λ)P = 0 (106)

where λ = −iω. Considering that the eigenmode (P0, λ0) of the cold chamber is a good start guess, we want to
solve this equation for the eigenpair (P, λ) in an iterative way. To do this, we need a further equation to have
a complete system. We may use the following requirement

||P ||22 = 1 ⇔ P tP = 1 (107)

Hence we want to solve the system for X = (P, λ)t

F(X) =
(
AP + F (λ)P
P tP − 1

)
= 0 (108)

Introducing the matrices B and D

Bi = A+ F (λi), Di =
∂F

∂λ

∣∣∣∣i (109)

the Jacobian DF at Xi is given by

DF(Xi) =
(

Bi DiP i

(P i)t 0

)
(110)

To solve the equation F(X) = 0, we may linearize F

0 = F(X∗) = F(X) +DF(X)(X∗ −X) +O(||X∗ −X||2) (111)

and proceed as follows

for i = 1, 2, . . . (112)

DF(Xi)∆Xi+1 = −F(Xi) (113)

Xi+1 = Xi + γ∆Xi+1 (114)
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Reduced reaction mechanism

Combustion involves many physical and chemical processes with very complex dynamics. In practical com-
bustion systems, reaction mechanisms are in the order of thousands of elementary reactions or more and a
large number of reactive intermediates. For example, hydrocarbon combustion involves around 100 species with
10.000 reactions. A simulation of such a reaction mechanism could be possible in spatially homogenous reaction
systems, such as perfectly-stirred tank reactors. However, in the simulation of real systems with spatial de-
pendency such as combustion chambers of gas turbines, one can not afford to include all species and reactions.
In fact, the spatially inhomogeneous nature of reactive flows and the large number of changing concentrations
leads to extremely high computational costs in the simulation of practical systems. For a three-dimensional
complex geometry as it is the case in the combustion chamber of a gas turbine, numerical procedures based on
discretization techniques (such as finite difference, finite element or finite volume methods) typically involve a
few million unknowns. Besides the prohibitive amount of involved variables, the underlying nonlinearities that
describe the chemical kinetics bring additional complexities and make the computation significantly harder. All
this represents a major obstacle to the use of detailed reaction mechanisms. The level of fundamental sophis-
tication that can be realistically included is limited. Therefore, it is highly desirable to use simplified chemical
kinetics schemes which describe the reactions in terms of only a small number of species without significant loss
of detailed information and accuracy. In the last years, many algorithms have been developed to automatically
produce reduced chemical kinetic mechanisms starting with a detailed mechanism and a set of input problems
representing the operating conditions. The major advantage of introducing reduced reaction mechanism is mak-
ing combustion models applicable as design tools for realistic industrial applications. Since computation times
are reduced significantly, the models can be implemented in CFD codes to describe combustion in complex
geometries for practical cases. Such systematically reduced reaction mechanisms have been successfully applied
to a range of hydrogen and hydrocarbon flames in arbitrary geometries.
Basically, there are four steps in the formulation of a reduced chemical kinetic mechanism:

1. Identification of a short or skeletal mechanism containing only the most essential species and reaction
steps of the detailed mechanism.

2. Identification of appropriate quasi-steady-state approximations (QSSA).

3. Elimination of reactions using the algebraic relations obtained in the previous step.

4. Solution of the coupled and nonlinear set of algebraic equations obtained in the previous steps to find the
QSS species concentrations reaction rates of the non-QSS species.
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